xref: /linux/kernel/events/uprobes.c (revision 00c010e130e58301db2ea0cec1eadc931e1cb8cf)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>	/* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/export.h>
19 #include <linux/rmap.h>		/* anon_vma_prepare */
20 #include <linux/mmu_notifier.h>
21 #include <linux/swap.h>		/* folio_free_swap */
22 #include <linux/ptrace.h>	/* user_enable_single_step */
23 #include <linux/kdebug.h>	/* notifier mechanism */
24 #include <linux/percpu-rwsem.h>
25 #include <linux/task_work.h>
26 #include <linux/shmem_fs.h>
27 #include <linux/khugepaged.h>
28 #include <linux/rcupdate_trace.h>
29 #include <linux/workqueue.h>
30 #include <linux/srcu.h>
31 #include <linux/oom.h>          /* check_stable_address_space */
32 #include <linux/pagewalk.h>
33 
34 #include <linux/uprobes.h>
35 
36 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
37 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
38 
39 static struct rb_root uprobes_tree = RB_ROOT;
40 /*
41  * allows us to skip the uprobe_mmap if there are no uprobe events active
42  * at this time.  Probably a fine grained per inode count is better?
43  */
44 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
45 
46 static DEFINE_RWLOCK(uprobes_treelock);	/* serialize rbtree access */
47 static seqcount_rwlock_t uprobes_seqcount = SEQCNT_RWLOCK_ZERO(uprobes_seqcount, &uprobes_treelock);
48 
49 #define UPROBES_HASH_SZ	13
50 /* serialize uprobe->pending_list */
51 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
52 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
53 
54 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
55 
56 /* Covers return_instance's uprobe lifetime. */
57 DEFINE_STATIC_SRCU(uretprobes_srcu);
58 
59 /* Have a copy of original instruction */
60 #define UPROBE_COPY_INSN	0
61 
62 struct uprobe {
63 	struct rb_node		rb_node;	/* node in the rb tree */
64 	refcount_t		ref;
65 	struct rw_semaphore	register_rwsem;
66 	struct rw_semaphore	consumer_rwsem;
67 	struct list_head	pending_list;
68 	struct list_head	consumers;
69 	struct inode		*inode;		/* Also hold a ref to inode */
70 	union {
71 		struct rcu_head		rcu;
72 		struct work_struct	work;
73 	};
74 	loff_t			offset;
75 	loff_t			ref_ctr_offset;
76 	unsigned long		flags;		/* "unsigned long" so bitops work */
77 
78 	/*
79 	 * The generic code assumes that it has two members of unknown type
80 	 * owned by the arch-specific code:
81 	 *
82 	 * 	insn -	copy_insn() saves the original instruction here for
83 	 *		arch_uprobe_analyze_insn().
84 	 *
85 	 *	ixol -	potentially modified instruction to execute out of
86 	 *		line, copied to xol_area by xol_get_insn_slot().
87 	 */
88 	struct arch_uprobe	arch;
89 };
90 
91 struct delayed_uprobe {
92 	struct list_head list;
93 	struct uprobe *uprobe;
94 	struct mm_struct *mm;
95 };
96 
97 static DEFINE_MUTEX(delayed_uprobe_lock);
98 static LIST_HEAD(delayed_uprobe_list);
99 
100 /*
101  * Execute out of line area: anonymous executable mapping installed
102  * by the probed task to execute the copy of the original instruction
103  * mangled by set_swbp().
104  *
105  * On a breakpoint hit, thread contests for a slot.  It frees the
106  * slot after singlestep. Currently a fixed number of slots are
107  * allocated.
108  */
109 struct xol_area {
110 	wait_queue_head_t 		wq;		/* if all slots are busy */
111 	unsigned long 			*bitmap;	/* 0 = free slot */
112 
113 	struct page			*page;
114 	/*
115 	 * We keep the vma's vm_start rather than a pointer to the vma
116 	 * itself.  The probed process or a naughty kernel module could make
117 	 * the vma go away, and we must handle that reasonably gracefully.
118 	 */
119 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
120 };
121 
uprobe_warn(struct task_struct * t,const char * msg)122 static void uprobe_warn(struct task_struct *t, const char *msg)
123 {
124 	pr_warn("uprobe: %s:%d failed to %s\n", current->comm, current->pid, msg);
125 }
126 
127 /*
128  * valid_vma: Verify if the specified vma is an executable vma
129  * Relax restrictions while unregistering: vm_flags might have
130  * changed after breakpoint was inserted.
131  *	- is_register: indicates if we are in register context.
132  *	- Return 1 if the specified virtual address is in an
133  *	  executable vma.
134  */
valid_vma(struct vm_area_struct * vma,bool is_register)135 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
136 {
137 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
138 
139 	if (is_register)
140 		flags |= VM_WRITE;
141 
142 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
143 }
144 
offset_to_vaddr(struct vm_area_struct * vma,loff_t offset)145 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
146 {
147 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
148 }
149 
vaddr_to_offset(struct vm_area_struct * vma,unsigned long vaddr)150 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
151 {
152 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
153 }
154 
155 /**
156  * is_swbp_insn - check if instruction is breakpoint instruction.
157  * @insn: instruction to be checked.
158  * Default implementation of is_swbp_insn
159  * Returns true if @insn is a breakpoint instruction.
160  */
is_swbp_insn(uprobe_opcode_t * insn)161 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
162 {
163 	return *insn == UPROBE_SWBP_INSN;
164 }
165 
166 /**
167  * is_trap_insn - check if instruction is breakpoint instruction.
168  * @insn: instruction to be checked.
169  * Default implementation of is_trap_insn
170  * Returns true if @insn is a breakpoint instruction.
171  *
172  * This function is needed for the case where an architecture has multiple
173  * trap instructions (like powerpc).
174  */
is_trap_insn(uprobe_opcode_t * insn)175 bool __weak is_trap_insn(uprobe_opcode_t *insn)
176 {
177 	return is_swbp_insn(insn);
178 }
179 
copy_from_page(struct page * page,unsigned long vaddr,void * dst,int len)180 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
181 {
182 	void *kaddr = kmap_atomic(page);
183 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
184 	kunmap_atomic(kaddr);
185 }
186 
copy_to_page(struct page * page,unsigned long vaddr,const void * src,int len)187 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
188 {
189 	void *kaddr = kmap_atomic(page);
190 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
191 	kunmap_atomic(kaddr);
192 }
193 
verify_opcode(struct page * page,unsigned long vaddr,uprobe_opcode_t * new_opcode)194 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
195 {
196 	uprobe_opcode_t old_opcode;
197 	bool is_swbp;
198 
199 	/*
200 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
201 	 * We do not check if it is any other 'trap variant' which could
202 	 * be conditional trap instruction such as the one powerpc supports.
203 	 *
204 	 * The logic is that we do not care if the underlying instruction
205 	 * is a trap variant; uprobes always wins over any other (gdb)
206 	 * breakpoint.
207 	 */
208 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
209 	is_swbp = is_swbp_insn(&old_opcode);
210 
211 	if (is_swbp_insn(new_opcode)) {
212 		if (is_swbp)		/* register: already installed? */
213 			return 0;
214 	} else {
215 		if (!is_swbp)		/* unregister: was it changed by us? */
216 			return 0;
217 	}
218 
219 	return 1;
220 }
221 
222 static struct delayed_uprobe *
delayed_uprobe_check(struct uprobe * uprobe,struct mm_struct * mm)223 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
224 {
225 	struct delayed_uprobe *du;
226 
227 	list_for_each_entry(du, &delayed_uprobe_list, list)
228 		if (du->uprobe == uprobe && du->mm == mm)
229 			return du;
230 	return NULL;
231 }
232 
delayed_uprobe_add(struct uprobe * uprobe,struct mm_struct * mm)233 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
234 {
235 	struct delayed_uprobe *du;
236 
237 	if (delayed_uprobe_check(uprobe, mm))
238 		return 0;
239 
240 	du  = kzalloc(sizeof(*du), GFP_KERNEL);
241 	if (!du)
242 		return -ENOMEM;
243 
244 	du->uprobe = uprobe;
245 	du->mm = mm;
246 	list_add(&du->list, &delayed_uprobe_list);
247 	return 0;
248 }
249 
delayed_uprobe_delete(struct delayed_uprobe * du)250 static void delayed_uprobe_delete(struct delayed_uprobe *du)
251 {
252 	if (WARN_ON(!du))
253 		return;
254 	list_del(&du->list);
255 	kfree(du);
256 }
257 
delayed_uprobe_remove(struct uprobe * uprobe,struct mm_struct * mm)258 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
259 {
260 	struct list_head *pos, *q;
261 	struct delayed_uprobe *du;
262 
263 	if (!uprobe && !mm)
264 		return;
265 
266 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
267 		du = list_entry(pos, struct delayed_uprobe, list);
268 
269 		if (uprobe && du->uprobe != uprobe)
270 			continue;
271 		if (mm && du->mm != mm)
272 			continue;
273 
274 		delayed_uprobe_delete(du);
275 	}
276 }
277 
valid_ref_ctr_vma(struct uprobe * uprobe,struct vm_area_struct * vma)278 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
279 			      struct vm_area_struct *vma)
280 {
281 	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
282 
283 	return uprobe->ref_ctr_offset &&
284 		vma->vm_file &&
285 		file_inode(vma->vm_file) == uprobe->inode &&
286 		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
287 		vma->vm_start <= vaddr &&
288 		vma->vm_end > vaddr;
289 }
290 
291 static struct vm_area_struct *
find_ref_ctr_vma(struct uprobe * uprobe,struct mm_struct * mm)292 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
293 {
294 	VMA_ITERATOR(vmi, mm, 0);
295 	struct vm_area_struct *tmp;
296 
297 	for_each_vma(vmi, tmp)
298 		if (valid_ref_ctr_vma(uprobe, tmp))
299 			return tmp;
300 
301 	return NULL;
302 }
303 
304 static int
__update_ref_ctr(struct mm_struct * mm,unsigned long vaddr,short d)305 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
306 {
307 	void *kaddr;
308 	struct page *page;
309 	int ret;
310 	short *ptr;
311 
312 	if (!vaddr || !d)
313 		return -EINVAL;
314 
315 	ret = get_user_pages_remote(mm, vaddr, 1,
316 				    FOLL_WRITE, &page, NULL);
317 	if (unlikely(ret <= 0)) {
318 		/*
319 		 * We are asking for 1 page. If get_user_pages_remote() fails,
320 		 * it may return 0, in that case we have to return error.
321 		 */
322 		return ret == 0 ? -EBUSY : ret;
323 	}
324 
325 	kaddr = kmap_atomic(page);
326 	ptr = kaddr + (vaddr & ~PAGE_MASK);
327 
328 	if (unlikely(*ptr + d < 0)) {
329 		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
330 			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
331 		ret = -EINVAL;
332 		goto out;
333 	}
334 
335 	*ptr += d;
336 	ret = 0;
337 out:
338 	kunmap_atomic(kaddr);
339 	put_page(page);
340 	return ret;
341 }
342 
update_ref_ctr_warn(struct uprobe * uprobe,struct mm_struct * mm,short d)343 static void update_ref_ctr_warn(struct uprobe *uprobe,
344 				struct mm_struct *mm, short d)
345 {
346 	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
347 		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%p\n",
348 		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
349 		(unsigned long long) uprobe->offset,
350 		(unsigned long long) uprobe->ref_ctr_offset, mm);
351 }
352 
update_ref_ctr(struct uprobe * uprobe,struct mm_struct * mm,short d)353 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
354 			  short d)
355 {
356 	struct vm_area_struct *rc_vma;
357 	unsigned long rc_vaddr;
358 	int ret = 0;
359 
360 	rc_vma = find_ref_ctr_vma(uprobe, mm);
361 
362 	if (rc_vma) {
363 		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
364 		ret = __update_ref_ctr(mm, rc_vaddr, d);
365 		if (ret)
366 			update_ref_ctr_warn(uprobe, mm, d);
367 
368 		if (d > 0)
369 			return ret;
370 	}
371 
372 	mutex_lock(&delayed_uprobe_lock);
373 	if (d > 0)
374 		ret = delayed_uprobe_add(uprobe, mm);
375 	else
376 		delayed_uprobe_remove(uprobe, mm);
377 	mutex_unlock(&delayed_uprobe_lock);
378 
379 	return ret;
380 }
381 
orig_page_is_identical(struct vm_area_struct * vma,unsigned long vaddr,struct page * page,bool * pmd_mappable)382 static bool orig_page_is_identical(struct vm_area_struct *vma,
383 		unsigned long vaddr, struct page *page, bool *pmd_mappable)
384 {
385 	const pgoff_t index = vaddr_to_offset(vma, vaddr) >> PAGE_SHIFT;
386 	struct folio *orig_folio = filemap_get_folio(vma->vm_file->f_mapping,
387 						    index);
388 	struct page *orig_page;
389 	bool identical;
390 
391 	if (IS_ERR(orig_folio))
392 		return false;
393 	orig_page = folio_file_page(orig_folio, index);
394 
395 	*pmd_mappable = folio_test_pmd_mappable(orig_folio);
396 	identical = folio_test_uptodate(orig_folio) &&
397 		    pages_identical(page, orig_page);
398 	folio_put(orig_folio);
399 	return identical;
400 }
401 
__uprobe_write_opcode(struct vm_area_struct * vma,struct folio_walk * fw,struct folio * folio,unsigned long opcode_vaddr,uprobe_opcode_t opcode)402 static int __uprobe_write_opcode(struct vm_area_struct *vma,
403 		struct folio_walk *fw, struct folio *folio,
404 		unsigned long opcode_vaddr, uprobe_opcode_t opcode)
405 {
406 	const unsigned long vaddr = opcode_vaddr & PAGE_MASK;
407 	const bool is_register = !!is_swbp_insn(&opcode);
408 	bool pmd_mappable;
409 
410 	/* For now, we'll only handle PTE-mapped folios. */
411 	if (fw->level != FW_LEVEL_PTE)
412 		return -EFAULT;
413 
414 	/*
415 	 * See can_follow_write_pte(): we'd actually prefer a writable PTE here,
416 	 * but the VMA might not be writable.
417 	 */
418 	if (!pte_write(fw->pte)) {
419 		if (!PageAnonExclusive(fw->page))
420 			return -EFAULT;
421 		if (unlikely(userfaultfd_pte_wp(vma, fw->pte)))
422 			return -EFAULT;
423 		/* SOFTDIRTY is handled via pte_mkdirty() below. */
424 	}
425 
426 	/*
427 	 * We'll temporarily unmap the page and flush the TLB, such that we can
428 	 * modify the page atomically.
429 	 */
430 	flush_cache_page(vma, vaddr, pte_pfn(fw->pte));
431 	fw->pte = ptep_clear_flush(vma, vaddr, fw->ptep);
432 	copy_to_page(fw->page, opcode_vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
433 
434 	/*
435 	 * When unregistering, we may only zap a PTE if uffd is disabled and
436 	 * there are no unexpected folio references ...
437 	 */
438 	if (is_register || userfaultfd_missing(vma) ||
439 	    (folio_ref_count(folio) != folio_mapcount(folio) + 1 +
440 	     folio_test_swapcache(folio) * folio_nr_pages(folio)))
441 		goto remap;
442 
443 	/*
444 	 * ... and the mapped page is identical to the original page that
445 	 * would get faulted in on next access.
446 	 */
447 	if (!orig_page_is_identical(vma, vaddr, fw->page, &pmd_mappable))
448 		goto remap;
449 
450 	dec_mm_counter(vma->vm_mm, MM_ANONPAGES);
451 	folio_remove_rmap_pte(folio, fw->page, vma);
452 	if (!folio_mapped(folio) && folio_test_swapcache(folio) &&
453 	     folio_trylock(folio)) {
454 		folio_free_swap(folio);
455 		folio_unlock(folio);
456 	}
457 	folio_put(folio);
458 
459 	return pmd_mappable;
460 remap:
461 	/*
462 	 * Make sure that our copy_to_page() changes become visible before the
463 	 * set_pte_at() write.
464 	 */
465 	smp_wmb();
466 	/* We modified the page. Make sure to mark the PTE dirty. */
467 	set_pte_at(vma->vm_mm, vaddr, fw->ptep, pte_mkdirty(fw->pte));
468 	return 0;
469 }
470 
471 /*
472  * NOTE:
473  * Expect the breakpoint instruction to be the smallest size instruction for
474  * the architecture. If an arch has variable length instruction and the
475  * breakpoint instruction is not of the smallest length instruction
476  * supported by that architecture then we need to modify is_trap_at_addr and
477  * uprobe_write_opcode accordingly. This would never be a problem for archs
478  * that have fixed length instructions.
479  *
480  * uprobe_write_opcode - write the opcode at a given virtual address.
481  * @auprobe: arch specific probepoint information.
482  * @vma: the probed virtual memory area.
483  * @opcode_vaddr: the virtual address to store the opcode.
484  * @opcode: opcode to be written at @opcode_vaddr.
485  *
486  * Called with mm->mmap_lock held for read or write.
487  * Return 0 (success) or a negative errno.
488  */
uprobe_write_opcode(struct arch_uprobe * auprobe,struct vm_area_struct * vma,const unsigned long opcode_vaddr,uprobe_opcode_t opcode)489 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct vm_area_struct *vma,
490 		const unsigned long opcode_vaddr, uprobe_opcode_t opcode)
491 {
492 	const unsigned long vaddr = opcode_vaddr & PAGE_MASK;
493 	struct mm_struct *mm = vma->vm_mm;
494 	struct uprobe *uprobe;
495 	int ret, is_register, ref_ctr_updated = 0;
496 	unsigned int gup_flags = FOLL_FORCE;
497 	struct mmu_notifier_range range;
498 	struct folio_walk fw;
499 	struct folio *folio;
500 	struct page *page;
501 
502 	is_register = is_swbp_insn(&opcode);
503 	uprobe = container_of(auprobe, struct uprobe, arch);
504 
505 	if (WARN_ON_ONCE(!is_cow_mapping(vma->vm_flags)))
506 		return -EINVAL;
507 
508 	/*
509 	 * When registering, we have to break COW to get an exclusive anonymous
510 	 * page that we can safely modify. Use FOLL_WRITE to trigger a write
511 	 * fault if required. When unregistering, we might be lucky and the
512 	 * anon page is already gone. So defer write faults until really
513 	 * required. Use FOLL_SPLIT_PMD, because __uprobe_write_opcode()
514 	 * cannot deal with PMDs yet.
515 	 */
516 	if (is_register)
517 		gup_flags |= FOLL_WRITE | FOLL_SPLIT_PMD;
518 
519 retry:
520 	ret = get_user_pages_remote(mm, vaddr, 1, gup_flags, &page, NULL);
521 	if (ret <= 0)
522 		goto out;
523 	folio = page_folio(page);
524 
525 	ret = verify_opcode(page, opcode_vaddr, &opcode);
526 	if (ret <= 0) {
527 		folio_put(folio);
528 		goto out;
529 	}
530 
531 	/* We are going to replace instruction, update ref_ctr. */
532 	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
533 		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
534 		if (ret) {
535 			folio_put(folio);
536 			goto out;
537 		}
538 
539 		ref_ctr_updated = 1;
540 	}
541 
542 	ret = 0;
543 	if (unlikely(!folio_test_anon(folio))) {
544 		VM_WARN_ON_ONCE(is_register);
545 		folio_put(folio);
546 		goto out;
547 	}
548 
549 	if (!is_register) {
550 		/*
551 		 * In the common case, we'll be able to zap the page when
552 		 * unregistering. So trigger MMU notifiers now, as we won't
553 		 * be able to do it under PTL.
554 		 */
555 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
556 					vaddr, vaddr + PAGE_SIZE);
557 		mmu_notifier_invalidate_range_start(&range);
558 	}
559 
560 	ret = -EAGAIN;
561 	/* Walk the page tables again, to perform the actual update. */
562 	if (folio_walk_start(&fw, vma, vaddr, 0)) {
563 		if (fw.page == page)
564 			ret = __uprobe_write_opcode(vma, &fw, folio, opcode_vaddr, opcode);
565 		folio_walk_end(&fw, vma);
566 	}
567 
568 	if (!is_register)
569 		mmu_notifier_invalidate_range_end(&range);
570 
571 	folio_put(folio);
572 	switch (ret) {
573 	case -EFAULT:
574 		gup_flags |= FOLL_WRITE | FOLL_SPLIT_PMD;
575 		fallthrough;
576 	case -EAGAIN:
577 		goto retry;
578 	default:
579 		break;
580 	}
581 
582 out:
583 	/* Revert back reference counter if instruction update failed. */
584 	if (ret < 0 && is_register && ref_ctr_updated)
585 		update_ref_ctr(uprobe, mm, -1);
586 
587 	/* try collapse pmd for compound page */
588 	if (ret > 0)
589 		collapse_pte_mapped_thp(mm, vaddr, false);
590 
591 	return ret < 0 ? ret : 0;
592 }
593 
594 /**
595  * set_swbp - store breakpoint at a given address.
596  * @auprobe: arch specific probepoint information.
597  * @vma: the probed virtual memory area.
598  * @vaddr: the virtual address to insert the opcode.
599  *
600  * For mm @mm, store the breakpoint instruction at @vaddr.
601  * Return 0 (success) or a negative errno.
602  */
set_swbp(struct arch_uprobe * auprobe,struct vm_area_struct * vma,unsigned long vaddr)603 int __weak set_swbp(struct arch_uprobe *auprobe, struct vm_area_struct *vma,
604 		unsigned long vaddr)
605 {
606 	return uprobe_write_opcode(auprobe, vma, vaddr, UPROBE_SWBP_INSN);
607 }
608 
609 /**
610  * set_orig_insn - Restore the original instruction.
611  * @vma: the probed virtual memory area.
612  * @auprobe: arch specific probepoint information.
613  * @vaddr: the virtual address to insert the opcode.
614  *
615  * For mm @mm, restore the original opcode (opcode) at @vaddr.
616  * Return 0 (success) or a negative errno.
617  */
set_orig_insn(struct arch_uprobe * auprobe,struct vm_area_struct * vma,unsigned long vaddr)618 int __weak set_orig_insn(struct arch_uprobe *auprobe,
619 		struct vm_area_struct *vma, unsigned long vaddr)
620 {
621 	return uprobe_write_opcode(auprobe, vma, vaddr,
622 			*(uprobe_opcode_t *)&auprobe->insn);
623 }
624 
625 /* uprobe should have guaranteed positive refcount */
get_uprobe(struct uprobe * uprobe)626 static struct uprobe *get_uprobe(struct uprobe *uprobe)
627 {
628 	refcount_inc(&uprobe->ref);
629 	return uprobe;
630 }
631 
632 /*
633  * uprobe should have guaranteed lifetime, which can be either of:
634  *   - caller already has refcount taken (and wants an extra one);
635  *   - uprobe is RCU protected and won't be freed until after grace period;
636  *   - we are holding uprobes_treelock (for read or write, doesn't matter).
637  */
try_get_uprobe(struct uprobe * uprobe)638 static struct uprobe *try_get_uprobe(struct uprobe *uprobe)
639 {
640 	if (refcount_inc_not_zero(&uprobe->ref))
641 		return uprobe;
642 	return NULL;
643 }
644 
uprobe_is_active(struct uprobe * uprobe)645 static inline bool uprobe_is_active(struct uprobe *uprobe)
646 {
647 	return !RB_EMPTY_NODE(&uprobe->rb_node);
648 }
649 
uprobe_free_rcu_tasks_trace(struct rcu_head * rcu)650 static void uprobe_free_rcu_tasks_trace(struct rcu_head *rcu)
651 {
652 	struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
653 
654 	kfree(uprobe);
655 }
656 
uprobe_free_srcu(struct rcu_head * rcu)657 static void uprobe_free_srcu(struct rcu_head *rcu)
658 {
659 	struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
660 
661 	call_rcu_tasks_trace(&uprobe->rcu, uprobe_free_rcu_tasks_trace);
662 }
663 
uprobe_free_deferred(struct work_struct * work)664 static void uprobe_free_deferred(struct work_struct *work)
665 {
666 	struct uprobe *uprobe = container_of(work, struct uprobe, work);
667 
668 	write_lock(&uprobes_treelock);
669 
670 	if (uprobe_is_active(uprobe)) {
671 		write_seqcount_begin(&uprobes_seqcount);
672 		rb_erase(&uprobe->rb_node, &uprobes_tree);
673 		write_seqcount_end(&uprobes_seqcount);
674 	}
675 
676 	write_unlock(&uprobes_treelock);
677 
678 	/*
679 	 * If application munmap(exec_vma) before uprobe_unregister()
680 	 * gets called, we don't get a chance to remove uprobe from
681 	 * delayed_uprobe_list from remove_breakpoint(). Do it here.
682 	 */
683 	mutex_lock(&delayed_uprobe_lock);
684 	delayed_uprobe_remove(uprobe, NULL);
685 	mutex_unlock(&delayed_uprobe_lock);
686 
687 	/* start srcu -> rcu_tasks_trace -> kfree chain */
688 	call_srcu(&uretprobes_srcu, &uprobe->rcu, uprobe_free_srcu);
689 }
690 
put_uprobe(struct uprobe * uprobe)691 static void put_uprobe(struct uprobe *uprobe)
692 {
693 	if (!refcount_dec_and_test(&uprobe->ref))
694 		return;
695 
696 	INIT_WORK(&uprobe->work, uprobe_free_deferred);
697 	schedule_work(&uprobe->work);
698 }
699 
700 /* Initialize hprobe as SRCU-protected "leased" uprobe */
hprobe_init_leased(struct hprobe * hprobe,struct uprobe * uprobe,int srcu_idx)701 static void hprobe_init_leased(struct hprobe *hprobe, struct uprobe *uprobe, int srcu_idx)
702 {
703 	WARN_ON(!uprobe);
704 	hprobe->state = HPROBE_LEASED;
705 	hprobe->uprobe = uprobe;
706 	hprobe->srcu_idx = srcu_idx;
707 }
708 
709 /* Initialize hprobe as refcounted ("stable") uprobe (uprobe can be NULL). */
hprobe_init_stable(struct hprobe * hprobe,struct uprobe * uprobe)710 static void hprobe_init_stable(struct hprobe *hprobe, struct uprobe *uprobe)
711 {
712 	hprobe->state = uprobe ? HPROBE_STABLE : HPROBE_GONE;
713 	hprobe->uprobe = uprobe;
714 	hprobe->srcu_idx = -1;
715 }
716 
717 /*
718  * hprobe_consume() fetches hprobe's underlying uprobe and detects whether
719  * uprobe is SRCU protected or is refcounted. hprobe_consume() can be
720  * used only once for a given hprobe.
721  *
722  * Caller has to call hprobe_finalize() and pass previous hprobe_state, so
723  * that hprobe_finalize() can perform SRCU unlock or put uprobe, whichever
724  * is appropriate.
725  */
hprobe_consume(struct hprobe * hprobe,enum hprobe_state * hstate)726 static inline struct uprobe *hprobe_consume(struct hprobe *hprobe, enum hprobe_state *hstate)
727 {
728 	*hstate = xchg(&hprobe->state, HPROBE_CONSUMED);
729 	switch (*hstate) {
730 	case HPROBE_LEASED:
731 	case HPROBE_STABLE:
732 		return hprobe->uprobe;
733 	case HPROBE_GONE:	/* uprobe is NULL, no SRCU */
734 	case HPROBE_CONSUMED:	/* uprobe was finalized already, do nothing */
735 		return NULL;
736 	default:
737 		WARN(1, "hprobe invalid state %d", *hstate);
738 		return NULL;
739 	}
740 }
741 
742 /*
743  * Reset hprobe state and, if hprobe was LEASED, release SRCU lock.
744  * hprobe_finalize() can only be used from current context after
745  * hprobe_consume() call (which determines uprobe and hstate value).
746  */
hprobe_finalize(struct hprobe * hprobe,enum hprobe_state hstate)747 static void hprobe_finalize(struct hprobe *hprobe, enum hprobe_state hstate)
748 {
749 	switch (hstate) {
750 	case HPROBE_LEASED:
751 		__srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx);
752 		break;
753 	case HPROBE_STABLE:
754 		put_uprobe(hprobe->uprobe);
755 		break;
756 	case HPROBE_GONE:
757 	case HPROBE_CONSUMED:
758 		break;
759 	default:
760 		WARN(1, "hprobe invalid state %d", hstate);
761 		break;
762 	}
763 }
764 
765 /*
766  * Attempt to switch (atomically) uprobe from being SRCU protected (LEASED)
767  * to refcounted (STABLE) state. Competes with hprobe_consume(); only one of
768  * them can win the race to perform SRCU unlocking. Whoever wins must perform
769  * SRCU unlock.
770  *
771  * Returns underlying valid uprobe or NULL, if there was no underlying uprobe
772  * to begin with or we failed to bump its refcount and it's going away.
773  *
774  * Returned non-NULL uprobe can be still safely used within an ongoing SRCU
775  * locked region. If `get` is true, it's guaranteed that non-NULL uprobe has
776  * an extra refcount for caller to assume and use. Otherwise, it's not
777  * guaranteed that returned uprobe has a positive refcount, so caller has to
778  * attempt try_get_uprobe(), if it needs to preserve uprobe beyond current
779  * SRCU lock region. See dup_utask().
780  */
hprobe_expire(struct hprobe * hprobe,bool get)781 static struct uprobe *hprobe_expire(struct hprobe *hprobe, bool get)
782 {
783 	enum hprobe_state hstate;
784 
785 	/*
786 	 * Caller should guarantee that return_instance is not going to be
787 	 * freed from under us. This can be achieved either through holding
788 	 * rcu_read_lock() or by owning return_instance in the first place.
789 	 *
790 	 * Underlying uprobe is itself protected from reuse by SRCU, so ensure
791 	 * SRCU lock is held properly.
792 	 */
793 	lockdep_assert(srcu_read_lock_held(&uretprobes_srcu));
794 
795 	hstate = READ_ONCE(hprobe->state);
796 	switch (hstate) {
797 	case HPROBE_STABLE:
798 		/* uprobe has positive refcount, bump refcount, if necessary */
799 		return get ? get_uprobe(hprobe->uprobe) : hprobe->uprobe;
800 	case HPROBE_GONE:
801 		/*
802 		 * SRCU was unlocked earlier and we didn't manage to take
803 		 * uprobe refcnt, so it's effectively NULL
804 		 */
805 		return NULL;
806 	case HPROBE_CONSUMED:
807 		/*
808 		 * uprobe was consumed, so it's effectively NULL as far as
809 		 * uretprobe processing logic is concerned
810 		 */
811 		return NULL;
812 	case HPROBE_LEASED: {
813 		struct uprobe *uprobe = try_get_uprobe(hprobe->uprobe);
814 		/*
815 		 * Try to switch hprobe state, guarding against
816 		 * hprobe_consume() or another hprobe_expire() racing with us.
817 		 * Note, if we failed to get uprobe refcount, we use special
818 		 * HPROBE_GONE state to signal that hprobe->uprobe shouldn't
819 		 * be used as it will be freed after SRCU is unlocked.
820 		 */
821 		if (try_cmpxchg(&hprobe->state, &hstate, uprobe ? HPROBE_STABLE : HPROBE_GONE)) {
822 			/* We won the race, we are the ones to unlock SRCU */
823 			__srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx);
824 			return get ? get_uprobe(uprobe) : uprobe;
825 		}
826 
827 		/*
828 		 * We lost the race, undo refcount bump (if it ever happened),
829 		 * unless caller would like an extra refcount anyways.
830 		 */
831 		if (uprobe && !get)
832 			put_uprobe(uprobe);
833 		/*
834 		 * Even if hprobe_consume() or another hprobe_expire() wins
835 		 * the state update race and unlocks SRCU from under us, we
836 		 * still have a guarantee that underyling uprobe won't be
837 		 * freed due to ongoing caller's SRCU lock region, so we can
838 		 * return it regardless. Also, if `get` was true, we also have
839 		 * an extra ref for the caller to own. This is used in dup_utask().
840 		 */
841 		return uprobe;
842 	}
843 	default:
844 		WARN(1, "unknown hprobe state %d", hstate);
845 		return NULL;
846 	}
847 }
848 
849 static __always_inline
uprobe_cmp(const struct inode * l_inode,const loff_t l_offset,const struct uprobe * r)850 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
851 	       const struct uprobe *r)
852 {
853 	if (l_inode < r->inode)
854 		return -1;
855 
856 	if (l_inode > r->inode)
857 		return 1;
858 
859 	if (l_offset < r->offset)
860 		return -1;
861 
862 	if (l_offset > r->offset)
863 		return 1;
864 
865 	return 0;
866 }
867 
868 #define __node_2_uprobe(node) \
869 	rb_entry((node), struct uprobe, rb_node)
870 
871 struct __uprobe_key {
872 	struct inode *inode;
873 	loff_t offset;
874 };
875 
__uprobe_cmp_key(const void * key,const struct rb_node * b)876 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
877 {
878 	const struct __uprobe_key *a = key;
879 	return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
880 }
881 
__uprobe_cmp(struct rb_node * a,const struct rb_node * b)882 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
883 {
884 	struct uprobe *u = __node_2_uprobe(a);
885 	return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
886 }
887 
888 /*
889  * Assumes being inside RCU protected region.
890  * No refcount is taken on returned uprobe.
891  */
find_uprobe_rcu(struct inode * inode,loff_t offset)892 static struct uprobe *find_uprobe_rcu(struct inode *inode, loff_t offset)
893 {
894 	struct __uprobe_key key = {
895 		.inode = inode,
896 		.offset = offset,
897 	};
898 	struct rb_node *node;
899 	unsigned int seq;
900 
901 	lockdep_assert(rcu_read_lock_trace_held());
902 
903 	do {
904 		seq = read_seqcount_begin(&uprobes_seqcount);
905 		node = rb_find_rcu(&key, &uprobes_tree, __uprobe_cmp_key);
906 		/*
907 		 * Lockless RB-tree lookups can result only in false negatives.
908 		 * If the element is found, it is correct and can be returned
909 		 * under RCU protection. If we find nothing, we need to
910 		 * validate that seqcount didn't change. If it did, we have to
911 		 * try again as we might have missed the element (false
912 		 * negative). If seqcount is unchanged, search truly failed.
913 		 */
914 		if (node)
915 			return __node_2_uprobe(node);
916 	} while (read_seqcount_retry(&uprobes_seqcount, seq));
917 
918 	return NULL;
919 }
920 
921 /*
922  * Attempt to insert a new uprobe into uprobes_tree.
923  *
924  * If uprobe already exists (for given inode+offset), we just increment
925  * refcount of previously existing uprobe.
926  *
927  * If not, a provided new instance of uprobe is inserted into the tree (with
928  * assumed initial refcount == 1).
929  *
930  * In any case, we return a uprobe instance that ends up being in uprobes_tree.
931  * Caller has to clean up new uprobe instance, if it ended up not being
932  * inserted into the tree.
933  *
934  * We assume that uprobes_treelock is held for writing.
935  */
__insert_uprobe(struct uprobe * uprobe)936 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
937 {
938 	struct rb_node *node;
939 again:
940 	node = rb_find_add_rcu(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
941 	if (node) {
942 		struct uprobe *u = __node_2_uprobe(node);
943 
944 		if (!try_get_uprobe(u)) {
945 			rb_erase(node, &uprobes_tree);
946 			RB_CLEAR_NODE(&u->rb_node);
947 			goto again;
948 		}
949 
950 		return u;
951 	}
952 
953 	return uprobe;
954 }
955 
956 /*
957  * Acquire uprobes_treelock and insert uprobe into uprobes_tree
958  * (or reuse existing one, see __insert_uprobe() comments above).
959  */
insert_uprobe(struct uprobe * uprobe)960 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
961 {
962 	struct uprobe *u;
963 
964 	write_lock(&uprobes_treelock);
965 	write_seqcount_begin(&uprobes_seqcount);
966 	u = __insert_uprobe(uprobe);
967 	write_seqcount_end(&uprobes_seqcount);
968 	write_unlock(&uprobes_treelock);
969 
970 	return u;
971 }
972 
973 static void
ref_ctr_mismatch_warn(struct uprobe * cur_uprobe,struct uprobe * uprobe)974 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
975 {
976 	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
977 		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
978 		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
979 		(unsigned long long) cur_uprobe->ref_ctr_offset,
980 		(unsigned long long) uprobe->ref_ctr_offset);
981 }
982 
alloc_uprobe(struct inode * inode,loff_t offset,loff_t ref_ctr_offset)983 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
984 				   loff_t ref_ctr_offset)
985 {
986 	struct uprobe *uprobe, *cur_uprobe;
987 
988 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
989 	if (!uprobe)
990 		return ERR_PTR(-ENOMEM);
991 
992 	uprobe->inode = inode;
993 	uprobe->offset = offset;
994 	uprobe->ref_ctr_offset = ref_ctr_offset;
995 	INIT_LIST_HEAD(&uprobe->consumers);
996 	init_rwsem(&uprobe->register_rwsem);
997 	init_rwsem(&uprobe->consumer_rwsem);
998 	RB_CLEAR_NODE(&uprobe->rb_node);
999 	refcount_set(&uprobe->ref, 1);
1000 
1001 	/* add to uprobes_tree, sorted on inode:offset */
1002 	cur_uprobe = insert_uprobe(uprobe);
1003 	/* a uprobe exists for this inode:offset combination */
1004 	if (cur_uprobe != uprobe) {
1005 		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
1006 			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
1007 			put_uprobe(cur_uprobe);
1008 			kfree(uprobe);
1009 			return ERR_PTR(-EINVAL);
1010 		}
1011 		kfree(uprobe);
1012 		uprobe = cur_uprobe;
1013 	}
1014 
1015 	return uprobe;
1016 }
1017 
consumer_add(struct uprobe * uprobe,struct uprobe_consumer * uc)1018 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
1019 {
1020 	static atomic64_t id;
1021 
1022 	down_write(&uprobe->consumer_rwsem);
1023 	list_add_rcu(&uc->cons_node, &uprobe->consumers);
1024 	uc->id = (__u64) atomic64_inc_return(&id);
1025 	up_write(&uprobe->consumer_rwsem);
1026 }
1027 
1028 /*
1029  * For uprobe @uprobe, delete the consumer @uc.
1030  * Should never be called with consumer that's not part of @uprobe->consumers.
1031  */
consumer_del(struct uprobe * uprobe,struct uprobe_consumer * uc)1032 static void consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
1033 {
1034 	down_write(&uprobe->consumer_rwsem);
1035 	list_del_rcu(&uc->cons_node);
1036 	up_write(&uprobe->consumer_rwsem);
1037 }
1038 
__copy_insn(struct address_space * mapping,struct file * filp,void * insn,int nbytes,loff_t offset)1039 static int __copy_insn(struct address_space *mapping, struct file *filp,
1040 			void *insn, int nbytes, loff_t offset)
1041 {
1042 	struct page *page;
1043 	/*
1044 	 * Ensure that the page that has the original instruction is populated
1045 	 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
1046 	 * see uprobe_register().
1047 	 */
1048 	if (mapping->a_ops->read_folio)
1049 		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
1050 	else
1051 		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
1052 	if (IS_ERR(page))
1053 		return PTR_ERR(page);
1054 
1055 	copy_from_page(page, offset, insn, nbytes);
1056 	put_page(page);
1057 
1058 	return 0;
1059 }
1060 
copy_insn(struct uprobe * uprobe,struct file * filp)1061 static int copy_insn(struct uprobe *uprobe, struct file *filp)
1062 {
1063 	struct address_space *mapping = uprobe->inode->i_mapping;
1064 	loff_t offs = uprobe->offset;
1065 	void *insn = &uprobe->arch.insn;
1066 	int size = sizeof(uprobe->arch.insn);
1067 	int len, err = -EIO;
1068 
1069 	/* Copy only available bytes, -EIO if nothing was read */
1070 	do {
1071 		if (offs >= i_size_read(uprobe->inode))
1072 			break;
1073 
1074 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
1075 		err = __copy_insn(mapping, filp, insn, len, offs);
1076 		if (err)
1077 			break;
1078 
1079 		insn += len;
1080 		offs += len;
1081 		size -= len;
1082 	} while (size);
1083 
1084 	return err;
1085 }
1086 
prepare_uprobe(struct uprobe * uprobe,struct file * file,struct mm_struct * mm,unsigned long vaddr)1087 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
1088 				struct mm_struct *mm, unsigned long vaddr)
1089 {
1090 	int ret = 0;
1091 
1092 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
1093 		return ret;
1094 
1095 	/* TODO: move this into _register, until then we abuse this sem. */
1096 	down_write(&uprobe->consumer_rwsem);
1097 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
1098 		goto out;
1099 
1100 	ret = copy_insn(uprobe, file);
1101 	if (ret)
1102 		goto out;
1103 
1104 	ret = -ENOTSUPP;
1105 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
1106 		goto out;
1107 
1108 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
1109 	if (ret)
1110 		goto out;
1111 
1112 	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
1113 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
1114 
1115  out:
1116 	up_write(&uprobe->consumer_rwsem);
1117 
1118 	return ret;
1119 }
1120 
consumer_filter(struct uprobe_consumer * uc,struct mm_struct * mm)1121 static inline bool consumer_filter(struct uprobe_consumer *uc, struct mm_struct *mm)
1122 {
1123 	return !uc->filter || uc->filter(uc, mm);
1124 }
1125 
filter_chain(struct uprobe * uprobe,struct mm_struct * mm)1126 static bool filter_chain(struct uprobe *uprobe, struct mm_struct *mm)
1127 {
1128 	struct uprobe_consumer *uc;
1129 	bool ret = false;
1130 
1131 	down_read(&uprobe->consumer_rwsem);
1132 	list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
1133 		ret = consumer_filter(uc, mm);
1134 		if (ret)
1135 			break;
1136 	}
1137 	up_read(&uprobe->consumer_rwsem);
1138 
1139 	return ret;
1140 }
1141 
install_breakpoint(struct uprobe * uprobe,struct vm_area_struct * vma,unsigned long vaddr)1142 static int install_breakpoint(struct uprobe *uprobe, struct vm_area_struct *vma,
1143 		unsigned long vaddr)
1144 {
1145 	struct mm_struct *mm = vma->vm_mm;
1146 	bool first_uprobe;
1147 	int ret;
1148 
1149 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
1150 	if (ret)
1151 		return ret;
1152 
1153 	/*
1154 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
1155 	 * the task can hit this breakpoint right after __replace_page().
1156 	 */
1157 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
1158 	if (first_uprobe)
1159 		set_bit(MMF_HAS_UPROBES, &mm->flags);
1160 
1161 	ret = set_swbp(&uprobe->arch, vma, vaddr);
1162 	if (!ret)
1163 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
1164 	else if (first_uprobe)
1165 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
1166 
1167 	return ret;
1168 }
1169 
remove_breakpoint(struct uprobe * uprobe,struct vm_area_struct * vma,unsigned long vaddr)1170 static int remove_breakpoint(struct uprobe *uprobe, struct vm_area_struct *vma,
1171 		unsigned long vaddr)
1172 {
1173 	struct mm_struct *mm = vma->vm_mm;
1174 
1175 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
1176 	return set_orig_insn(&uprobe->arch, vma, vaddr);
1177 }
1178 
1179 struct map_info {
1180 	struct map_info *next;
1181 	struct mm_struct *mm;
1182 	unsigned long vaddr;
1183 };
1184 
free_map_info(struct map_info * info)1185 static inline struct map_info *free_map_info(struct map_info *info)
1186 {
1187 	struct map_info *next = info->next;
1188 	kfree(info);
1189 	return next;
1190 }
1191 
1192 static struct map_info *
build_map_info(struct address_space * mapping,loff_t offset,bool is_register)1193 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
1194 {
1195 	unsigned long pgoff = offset >> PAGE_SHIFT;
1196 	struct vm_area_struct *vma;
1197 	struct map_info *curr = NULL;
1198 	struct map_info *prev = NULL;
1199 	struct map_info *info;
1200 	int more = 0;
1201 
1202  again:
1203 	i_mmap_lock_read(mapping);
1204 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1205 		if (!valid_vma(vma, is_register))
1206 			continue;
1207 
1208 		if (!prev && !more) {
1209 			/*
1210 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
1211 			 * reclaim. This is optimistic, no harm done if it fails.
1212 			 */
1213 			prev = kmalloc(sizeof(struct map_info),
1214 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
1215 			if (prev)
1216 				prev->next = NULL;
1217 		}
1218 		if (!prev) {
1219 			more++;
1220 			continue;
1221 		}
1222 
1223 		if (!mmget_not_zero(vma->vm_mm))
1224 			continue;
1225 
1226 		info = prev;
1227 		prev = prev->next;
1228 		info->next = curr;
1229 		curr = info;
1230 
1231 		info->mm = vma->vm_mm;
1232 		info->vaddr = offset_to_vaddr(vma, offset);
1233 	}
1234 	i_mmap_unlock_read(mapping);
1235 
1236 	if (!more)
1237 		goto out;
1238 
1239 	prev = curr;
1240 	while (curr) {
1241 		mmput(curr->mm);
1242 		curr = curr->next;
1243 	}
1244 
1245 	do {
1246 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1247 		if (!info) {
1248 			curr = ERR_PTR(-ENOMEM);
1249 			goto out;
1250 		}
1251 		info->next = prev;
1252 		prev = info;
1253 	} while (--more);
1254 
1255 	goto again;
1256  out:
1257 	while (prev)
1258 		prev = free_map_info(prev);
1259 	return curr;
1260 }
1261 
1262 static int
register_for_each_vma(struct uprobe * uprobe,struct uprobe_consumer * new)1263 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1264 {
1265 	bool is_register = !!new;
1266 	struct map_info *info;
1267 	int err = 0;
1268 
1269 	percpu_down_write(&dup_mmap_sem);
1270 	info = build_map_info(uprobe->inode->i_mapping,
1271 					uprobe->offset, is_register);
1272 	if (IS_ERR(info)) {
1273 		err = PTR_ERR(info);
1274 		goto out;
1275 	}
1276 
1277 	while (info) {
1278 		struct mm_struct *mm = info->mm;
1279 		struct vm_area_struct *vma;
1280 
1281 		if (err && is_register)
1282 			goto free;
1283 		/*
1284 		 * We take mmap_lock for writing to avoid the race with
1285 		 * find_active_uprobe_rcu() which takes mmap_lock for reading.
1286 		 * Thus this install_breakpoint() can not make
1287 		 * is_trap_at_addr() true right after find_uprobe_rcu()
1288 		 * returns NULL in find_active_uprobe_rcu().
1289 		 */
1290 		mmap_write_lock(mm);
1291 		if (check_stable_address_space(mm))
1292 			goto unlock;
1293 
1294 		vma = find_vma(mm, info->vaddr);
1295 		if (!vma || !valid_vma(vma, is_register) ||
1296 		    file_inode(vma->vm_file) != uprobe->inode)
1297 			goto unlock;
1298 
1299 		if (vma->vm_start > info->vaddr ||
1300 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1301 			goto unlock;
1302 
1303 		if (is_register) {
1304 			/* consult only the "caller", new consumer. */
1305 			if (consumer_filter(new, mm))
1306 				err = install_breakpoint(uprobe, vma, info->vaddr);
1307 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1308 			if (!filter_chain(uprobe, mm))
1309 				err |= remove_breakpoint(uprobe, vma, info->vaddr);
1310 		}
1311 
1312  unlock:
1313 		mmap_write_unlock(mm);
1314  free:
1315 		mmput(mm);
1316 		info = free_map_info(info);
1317 	}
1318  out:
1319 	percpu_up_write(&dup_mmap_sem);
1320 	return err;
1321 }
1322 
1323 /**
1324  * uprobe_unregister_nosync - unregister an already registered probe.
1325  * @uprobe: uprobe to remove
1326  * @uc: identify which probe if multiple probes are colocated.
1327  */
uprobe_unregister_nosync(struct uprobe * uprobe,struct uprobe_consumer * uc)1328 void uprobe_unregister_nosync(struct uprobe *uprobe, struct uprobe_consumer *uc)
1329 {
1330 	int err;
1331 
1332 	down_write(&uprobe->register_rwsem);
1333 	consumer_del(uprobe, uc);
1334 	err = register_for_each_vma(uprobe, NULL);
1335 	up_write(&uprobe->register_rwsem);
1336 
1337 	/* TODO : cant unregister? schedule a worker thread */
1338 	if (unlikely(err)) {
1339 		uprobe_warn(current, "unregister, leaking uprobe");
1340 		return;
1341 	}
1342 
1343 	put_uprobe(uprobe);
1344 }
1345 EXPORT_SYMBOL_GPL(uprobe_unregister_nosync);
1346 
uprobe_unregister_sync(void)1347 void uprobe_unregister_sync(void)
1348 {
1349 	/*
1350 	 * Now that handler_chain() and handle_uretprobe_chain() iterate over
1351 	 * uprobe->consumers list under RCU protection without holding
1352 	 * uprobe->register_rwsem, we need to wait for RCU grace period to
1353 	 * make sure that we can't call into just unregistered
1354 	 * uprobe_consumer's callbacks anymore. If we don't do that, fast and
1355 	 * unlucky enough caller can free consumer's memory and cause
1356 	 * handler_chain() or handle_uretprobe_chain() to do an use-after-free.
1357 	 */
1358 	synchronize_rcu_tasks_trace();
1359 	synchronize_srcu(&uretprobes_srcu);
1360 }
1361 EXPORT_SYMBOL_GPL(uprobe_unregister_sync);
1362 
1363 /**
1364  * uprobe_register - register a probe
1365  * @inode: the file in which the probe has to be placed.
1366  * @offset: offset from the start of the file.
1367  * @ref_ctr_offset: offset of SDT marker / reference counter
1368  * @uc: information on howto handle the probe..
1369  *
1370  * Apart from the access refcount, uprobe_register() takes a creation
1371  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1372  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1373  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1374  * @uprobe even before the register operation is complete. Creation
1375  * refcount is released when the last @uc for the @uprobe
1376  * unregisters. Caller of uprobe_register() is required to keep @inode
1377  * (and the containing mount) referenced.
1378  *
1379  * Return: pointer to the new uprobe on success or an ERR_PTR on failure.
1380  */
uprobe_register(struct inode * inode,loff_t offset,loff_t ref_ctr_offset,struct uprobe_consumer * uc)1381 struct uprobe *uprobe_register(struct inode *inode,
1382 				loff_t offset, loff_t ref_ctr_offset,
1383 				struct uprobe_consumer *uc)
1384 {
1385 	struct uprobe *uprobe;
1386 	int ret;
1387 
1388 	/* Uprobe must have at least one set consumer */
1389 	if (!uc->handler && !uc->ret_handler)
1390 		return ERR_PTR(-EINVAL);
1391 
1392 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1393 	if (!inode->i_mapping->a_ops->read_folio &&
1394 	    !shmem_mapping(inode->i_mapping))
1395 		return ERR_PTR(-EIO);
1396 	/* Racy, just to catch the obvious mistakes */
1397 	if (offset > i_size_read(inode))
1398 		return ERR_PTR(-EINVAL);
1399 
1400 	/*
1401 	 * This ensures that copy_from_page(), copy_to_page() and
1402 	 * __update_ref_ctr() can't cross page boundary.
1403 	 */
1404 	if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1405 		return ERR_PTR(-EINVAL);
1406 	if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1407 		return ERR_PTR(-EINVAL);
1408 
1409 	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1410 	if (IS_ERR(uprobe))
1411 		return uprobe;
1412 
1413 	down_write(&uprobe->register_rwsem);
1414 	consumer_add(uprobe, uc);
1415 	ret = register_for_each_vma(uprobe, uc);
1416 	up_write(&uprobe->register_rwsem);
1417 
1418 	if (ret) {
1419 		uprobe_unregister_nosync(uprobe, uc);
1420 		/*
1421 		 * Registration might have partially succeeded, so we can have
1422 		 * this consumer being called right at this time. We need to
1423 		 * sync here. It's ok, it's unlikely slow path.
1424 		 */
1425 		uprobe_unregister_sync();
1426 		return ERR_PTR(ret);
1427 	}
1428 
1429 	return uprobe;
1430 }
1431 EXPORT_SYMBOL_GPL(uprobe_register);
1432 
1433 /**
1434  * uprobe_apply - add or remove the breakpoints according to @uc->filter
1435  * @uprobe: uprobe which "owns" the breakpoint
1436  * @uc: consumer which wants to add more or remove some breakpoints
1437  * @add: add or remove the breakpoints
1438  * Return: 0 on success or negative error code.
1439  */
uprobe_apply(struct uprobe * uprobe,struct uprobe_consumer * uc,bool add)1440 int uprobe_apply(struct uprobe *uprobe, struct uprobe_consumer *uc, bool add)
1441 {
1442 	struct uprobe_consumer *con;
1443 	int ret = -ENOENT;
1444 
1445 	down_write(&uprobe->register_rwsem);
1446 
1447 	rcu_read_lock_trace();
1448 	list_for_each_entry_rcu(con, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
1449 		if (con == uc) {
1450 			ret = register_for_each_vma(uprobe, add ? uc : NULL);
1451 			break;
1452 		}
1453 	}
1454 	rcu_read_unlock_trace();
1455 
1456 	up_write(&uprobe->register_rwsem);
1457 
1458 	return ret;
1459 }
1460 
unapply_uprobe(struct uprobe * uprobe,struct mm_struct * mm)1461 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1462 {
1463 	VMA_ITERATOR(vmi, mm, 0);
1464 	struct vm_area_struct *vma;
1465 	int err = 0;
1466 
1467 	mmap_read_lock(mm);
1468 	for_each_vma(vmi, vma) {
1469 		unsigned long vaddr;
1470 		loff_t offset;
1471 
1472 		if (!valid_vma(vma, false) ||
1473 		    file_inode(vma->vm_file) != uprobe->inode)
1474 			continue;
1475 
1476 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1477 		if (uprobe->offset <  offset ||
1478 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1479 			continue;
1480 
1481 		vaddr = offset_to_vaddr(vma, uprobe->offset);
1482 		err |= remove_breakpoint(uprobe, vma, vaddr);
1483 	}
1484 	mmap_read_unlock(mm);
1485 
1486 	return err;
1487 }
1488 
1489 static struct rb_node *
find_node_in_range(struct inode * inode,loff_t min,loff_t max)1490 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1491 {
1492 	struct rb_node *n = uprobes_tree.rb_node;
1493 
1494 	while (n) {
1495 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1496 
1497 		if (inode < u->inode) {
1498 			n = n->rb_left;
1499 		} else if (inode > u->inode) {
1500 			n = n->rb_right;
1501 		} else {
1502 			if (max < u->offset)
1503 				n = n->rb_left;
1504 			else if (min > u->offset)
1505 				n = n->rb_right;
1506 			else
1507 				break;
1508 		}
1509 	}
1510 
1511 	return n;
1512 }
1513 
1514 /*
1515  * For a given range in vma, build a list of probes that need to be inserted.
1516  */
build_probe_list(struct inode * inode,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * head)1517 static void build_probe_list(struct inode *inode,
1518 				struct vm_area_struct *vma,
1519 				unsigned long start, unsigned long end,
1520 				struct list_head *head)
1521 {
1522 	loff_t min, max;
1523 	struct rb_node *n, *t;
1524 	struct uprobe *u;
1525 
1526 	INIT_LIST_HEAD(head);
1527 	min = vaddr_to_offset(vma, start);
1528 	max = min + (end - start) - 1;
1529 
1530 	read_lock(&uprobes_treelock);
1531 	n = find_node_in_range(inode, min, max);
1532 	if (n) {
1533 		for (t = n; t; t = rb_prev(t)) {
1534 			u = rb_entry(t, struct uprobe, rb_node);
1535 			if (u->inode != inode || u->offset < min)
1536 				break;
1537 			/* if uprobe went away, it's safe to ignore it */
1538 			if (try_get_uprobe(u))
1539 				list_add(&u->pending_list, head);
1540 		}
1541 		for (t = n; (t = rb_next(t)); ) {
1542 			u = rb_entry(t, struct uprobe, rb_node);
1543 			if (u->inode != inode || u->offset > max)
1544 				break;
1545 			/* if uprobe went away, it's safe to ignore it */
1546 			if (try_get_uprobe(u))
1547 				list_add(&u->pending_list, head);
1548 		}
1549 	}
1550 	read_unlock(&uprobes_treelock);
1551 }
1552 
1553 /* @vma contains reference counter, not the probed instruction. */
delayed_ref_ctr_inc(struct vm_area_struct * vma)1554 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1555 {
1556 	struct list_head *pos, *q;
1557 	struct delayed_uprobe *du;
1558 	unsigned long vaddr;
1559 	int ret = 0, err = 0;
1560 
1561 	mutex_lock(&delayed_uprobe_lock);
1562 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1563 		du = list_entry(pos, struct delayed_uprobe, list);
1564 
1565 		if (du->mm != vma->vm_mm ||
1566 		    !valid_ref_ctr_vma(du->uprobe, vma))
1567 			continue;
1568 
1569 		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1570 		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1571 		if (ret) {
1572 			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1573 			if (!err)
1574 				err = ret;
1575 		}
1576 		delayed_uprobe_delete(du);
1577 	}
1578 	mutex_unlock(&delayed_uprobe_lock);
1579 	return err;
1580 }
1581 
1582 /*
1583  * Called from mmap_region/vma_merge with mm->mmap_lock acquired.
1584  *
1585  * Currently we ignore all errors and always return 0, the callers
1586  * can't handle the failure anyway.
1587  */
uprobe_mmap(struct vm_area_struct * vma)1588 int uprobe_mmap(struct vm_area_struct *vma)
1589 {
1590 	struct list_head tmp_list;
1591 	struct uprobe *uprobe, *u;
1592 	struct inode *inode;
1593 
1594 	if (no_uprobe_events())
1595 		return 0;
1596 
1597 	if (vma->vm_file &&
1598 	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1599 	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1600 		delayed_ref_ctr_inc(vma);
1601 
1602 	if (!valid_vma(vma, true))
1603 		return 0;
1604 
1605 	inode = file_inode(vma->vm_file);
1606 	if (!inode)
1607 		return 0;
1608 
1609 	mutex_lock(uprobes_mmap_hash(inode));
1610 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1611 	/*
1612 	 * We can race with uprobe_unregister(), this uprobe can be already
1613 	 * removed. But in this case filter_chain() must return false, all
1614 	 * consumers have gone away.
1615 	 */
1616 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1617 		if (!fatal_signal_pending(current) &&
1618 		    filter_chain(uprobe, vma->vm_mm)) {
1619 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1620 			install_breakpoint(uprobe, vma, vaddr);
1621 		}
1622 		put_uprobe(uprobe);
1623 	}
1624 	mutex_unlock(uprobes_mmap_hash(inode));
1625 
1626 	return 0;
1627 }
1628 
1629 static bool
vma_has_uprobes(struct vm_area_struct * vma,unsigned long start,unsigned long end)1630 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1631 {
1632 	loff_t min, max;
1633 	struct inode *inode;
1634 	struct rb_node *n;
1635 
1636 	inode = file_inode(vma->vm_file);
1637 
1638 	min = vaddr_to_offset(vma, start);
1639 	max = min + (end - start) - 1;
1640 
1641 	read_lock(&uprobes_treelock);
1642 	n = find_node_in_range(inode, min, max);
1643 	read_unlock(&uprobes_treelock);
1644 
1645 	return !!n;
1646 }
1647 
1648 /*
1649  * Called in context of a munmap of a vma.
1650  */
uprobe_munmap(struct vm_area_struct * vma,unsigned long start,unsigned long end)1651 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1652 {
1653 	if (no_uprobe_events() || !valid_vma(vma, false))
1654 		return;
1655 
1656 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1657 		return;
1658 
1659 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1660 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1661 		return;
1662 
1663 	if (vma_has_uprobes(vma, start, end))
1664 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1665 }
1666 
xol_fault(const struct vm_special_mapping * sm,struct vm_area_struct * vma,struct vm_fault * vmf)1667 static vm_fault_t xol_fault(const struct vm_special_mapping *sm,
1668 			    struct vm_area_struct *vma, struct vm_fault *vmf)
1669 {
1670 	struct xol_area *area = vma->vm_mm->uprobes_state.xol_area;
1671 
1672 	vmf->page = area->page;
1673 	get_page(vmf->page);
1674 	return 0;
1675 }
1676 
xol_mremap(const struct vm_special_mapping * sm,struct vm_area_struct * new_vma)1677 static int xol_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma)
1678 {
1679 	return -EPERM;
1680 }
1681 
1682 static const struct vm_special_mapping xol_mapping = {
1683 	.name = "[uprobes]",
1684 	.fault = xol_fault,
1685 	.mremap = xol_mremap,
1686 };
1687 
1688 /* Slot allocation for XOL */
xol_add_vma(struct mm_struct * mm,struct xol_area * area)1689 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1690 {
1691 	struct vm_area_struct *vma;
1692 	int ret;
1693 
1694 	if (mmap_write_lock_killable(mm))
1695 		return -EINTR;
1696 
1697 	if (mm->uprobes_state.xol_area) {
1698 		ret = -EALREADY;
1699 		goto fail;
1700 	}
1701 
1702 	if (!area->vaddr) {
1703 		/* Try to map as high as possible, this is only a hint. */
1704 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1705 						PAGE_SIZE, 0, 0);
1706 		if (IS_ERR_VALUE(area->vaddr)) {
1707 			ret = area->vaddr;
1708 			goto fail;
1709 		}
1710 	}
1711 
1712 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1713 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO|
1714 				VM_SEALED_SYSMAP,
1715 				&xol_mapping);
1716 	if (IS_ERR(vma)) {
1717 		ret = PTR_ERR(vma);
1718 		goto fail;
1719 	}
1720 
1721 	ret = 0;
1722 	/* pairs with get_xol_area() */
1723 	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1724  fail:
1725 	mmap_write_unlock(mm);
1726 
1727 	return ret;
1728 }
1729 
arch_uprobe_trampoline(unsigned long * psize)1730 void * __weak arch_uprobe_trampoline(unsigned long *psize)
1731 {
1732 	static uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1733 
1734 	*psize = UPROBE_SWBP_INSN_SIZE;
1735 	return &insn;
1736 }
1737 
__create_xol_area(unsigned long vaddr)1738 static struct xol_area *__create_xol_area(unsigned long vaddr)
1739 {
1740 	struct mm_struct *mm = current->mm;
1741 	unsigned long insns_size;
1742 	struct xol_area *area;
1743 	void *insns;
1744 
1745 	area = kzalloc(sizeof(*area), GFP_KERNEL);
1746 	if (unlikely(!area))
1747 		goto out;
1748 
1749 	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1750 			       GFP_KERNEL);
1751 	if (!area->bitmap)
1752 		goto free_area;
1753 
1754 	area->page = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
1755 	if (!area->page)
1756 		goto free_bitmap;
1757 
1758 	area->vaddr = vaddr;
1759 	init_waitqueue_head(&area->wq);
1760 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1761 	set_bit(0, area->bitmap);
1762 	insns = arch_uprobe_trampoline(&insns_size);
1763 	arch_uprobe_copy_ixol(area->page, 0, insns, insns_size);
1764 
1765 	if (!xol_add_vma(mm, area))
1766 		return area;
1767 
1768 	__free_page(area->page);
1769  free_bitmap:
1770 	kfree(area->bitmap);
1771  free_area:
1772 	kfree(area);
1773  out:
1774 	return NULL;
1775 }
1776 
1777 /*
1778  * get_xol_area - Allocate process's xol_area if necessary.
1779  * This area will be used for storing instructions for execution out of line.
1780  *
1781  * Returns the allocated area or NULL.
1782  */
get_xol_area(void)1783 static struct xol_area *get_xol_area(void)
1784 {
1785 	struct mm_struct *mm = current->mm;
1786 	struct xol_area *area;
1787 
1788 	if (!mm->uprobes_state.xol_area)
1789 		__create_xol_area(0);
1790 
1791 	/* Pairs with xol_add_vma() smp_store_release() */
1792 	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1793 	return area;
1794 }
1795 
1796 /*
1797  * uprobe_clear_state - Free the area allocated for slots.
1798  */
uprobe_clear_state(struct mm_struct * mm)1799 void uprobe_clear_state(struct mm_struct *mm)
1800 {
1801 	struct xol_area *area = mm->uprobes_state.xol_area;
1802 
1803 	mutex_lock(&delayed_uprobe_lock);
1804 	delayed_uprobe_remove(NULL, mm);
1805 	mutex_unlock(&delayed_uprobe_lock);
1806 
1807 	if (!area)
1808 		return;
1809 
1810 	put_page(area->page);
1811 	kfree(area->bitmap);
1812 	kfree(area);
1813 }
1814 
uprobe_start_dup_mmap(void)1815 void uprobe_start_dup_mmap(void)
1816 {
1817 	percpu_down_read(&dup_mmap_sem);
1818 }
1819 
uprobe_end_dup_mmap(void)1820 void uprobe_end_dup_mmap(void)
1821 {
1822 	percpu_up_read(&dup_mmap_sem);
1823 }
1824 
uprobe_dup_mmap(struct mm_struct * oldmm,struct mm_struct * newmm)1825 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1826 {
1827 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1828 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1829 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1830 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1831 	}
1832 }
1833 
xol_get_slot_nr(struct xol_area * area)1834 static unsigned long xol_get_slot_nr(struct xol_area *area)
1835 {
1836 	unsigned long slot_nr;
1837 
1838 	slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1839 	if (slot_nr < UINSNS_PER_PAGE) {
1840 		if (!test_and_set_bit(slot_nr, area->bitmap))
1841 			return slot_nr;
1842 	}
1843 
1844 	return UINSNS_PER_PAGE;
1845 }
1846 
1847 /*
1848  * xol_get_insn_slot - allocate a slot for xol.
1849  */
xol_get_insn_slot(struct uprobe * uprobe,struct uprobe_task * utask)1850 static bool xol_get_insn_slot(struct uprobe *uprobe, struct uprobe_task *utask)
1851 {
1852 	struct xol_area *area = get_xol_area();
1853 	unsigned long slot_nr;
1854 
1855 	if (!area)
1856 		return false;
1857 
1858 	wait_event(area->wq, (slot_nr = xol_get_slot_nr(area)) < UINSNS_PER_PAGE);
1859 
1860 	utask->xol_vaddr = area->vaddr + slot_nr * UPROBE_XOL_SLOT_BYTES;
1861 	arch_uprobe_copy_ixol(area->page, utask->xol_vaddr,
1862 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1863 	return true;
1864 }
1865 
1866 /*
1867  * xol_free_insn_slot - free the slot allocated by xol_get_insn_slot()
1868  */
xol_free_insn_slot(struct uprobe_task * utask)1869 static void xol_free_insn_slot(struct uprobe_task *utask)
1870 {
1871 	struct xol_area *area = current->mm->uprobes_state.xol_area;
1872 	unsigned long offset = utask->xol_vaddr - area->vaddr;
1873 	unsigned int slot_nr;
1874 
1875 	utask->xol_vaddr = 0;
1876 	/* xol_vaddr must fit into [area->vaddr, area->vaddr + PAGE_SIZE) */
1877 	if (WARN_ON_ONCE(offset >= PAGE_SIZE))
1878 		return;
1879 
1880 	slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1881 	clear_bit(slot_nr, area->bitmap);
1882 	smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1883 	if (waitqueue_active(&area->wq))
1884 		wake_up(&area->wq);
1885 }
1886 
arch_uprobe_copy_ixol(struct page * page,unsigned long vaddr,void * src,unsigned long len)1887 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1888 				  void *src, unsigned long len)
1889 {
1890 	/* Initialize the slot */
1891 	copy_to_page(page, vaddr, src, len);
1892 
1893 	/*
1894 	 * We probably need flush_icache_user_page() but it needs vma.
1895 	 * This should work on most of architectures by default. If
1896 	 * architecture needs to do something different it can define
1897 	 * its own version of the function.
1898 	 */
1899 	flush_dcache_page(page);
1900 }
1901 
1902 /**
1903  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1904  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1905  * instruction.
1906  * Return the address of the breakpoint instruction.
1907  */
uprobe_get_swbp_addr(struct pt_regs * regs)1908 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1909 {
1910 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1911 }
1912 
uprobe_get_trap_addr(struct pt_regs * regs)1913 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1914 {
1915 	struct uprobe_task *utask = current->utask;
1916 
1917 	if (unlikely(utask && utask->active_uprobe))
1918 		return utask->vaddr;
1919 
1920 	return instruction_pointer(regs);
1921 }
1922 
ri_pool_push(struct uprobe_task * utask,struct return_instance * ri)1923 static void ri_pool_push(struct uprobe_task *utask, struct return_instance *ri)
1924 {
1925 	ri->cons_cnt = 0;
1926 	ri->next = utask->ri_pool;
1927 	utask->ri_pool = ri;
1928 }
1929 
ri_pool_pop(struct uprobe_task * utask)1930 static struct return_instance *ri_pool_pop(struct uprobe_task *utask)
1931 {
1932 	struct return_instance *ri = utask->ri_pool;
1933 
1934 	if (likely(ri))
1935 		utask->ri_pool = ri->next;
1936 
1937 	return ri;
1938 }
1939 
ri_free(struct return_instance * ri)1940 static void ri_free(struct return_instance *ri)
1941 {
1942 	kfree(ri->extra_consumers);
1943 	kfree_rcu(ri, rcu);
1944 }
1945 
free_ret_instance(struct uprobe_task * utask,struct return_instance * ri,bool cleanup_hprobe)1946 static void free_ret_instance(struct uprobe_task *utask,
1947 			      struct return_instance *ri, bool cleanup_hprobe)
1948 {
1949 	unsigned seq;
1950 
1951 	if (cleanup_hprobe) {
1952 		enum hprobe_state hstate;
1953 
1954 		(void)hprobe_consume(&ri->hprobe, &hstate);
1955 		hprobe_finalize(&ri->hprobe, hstate);
1956 	}
1957 
1958 	/*
1959 	 * At this point return_instance is unlinked from utask's
1960 	 * return_instances list and this has become visible to ri_timer().
1961 	 * If seqcount now indicates that ri_timer's return instance
1962 	 * processing loop isn't active, we can return ri into the pool of
1963 	 * to-be-reused return instances for future uretprobes. If ri_timer()
1964 	 * happens to be running right now, though, we fallback to safety and
1965 	 * just perform RCU-delated freeing of ri.
1966 	 * Admittedly, this is a rather simple use of seqcount, but it nicely
1967 	 * abstracts away all the necessary memory barriers, so we use
1968 	 * a well-supported kernel primitive here.
1969 	 */
1970 	if (raw_seqcount_try_begin(&utask->ri_seqcount, seq)) {
1971 		/* immediate reuse of ri without RCU GP is OK */
1972 		ri_pool_push(utask, ri);
1973 	} else {
1974 		/* we might be racing with ri_timer(), so play it safe */
1975 		ri_free(ri);
1976 	}
1977 }
1978 
1979 /*
1980  * Called with no locks held.
1981  * Called in context of an exiting or an exec-ing thread.
1982  */
uprobe_free_utask(struct task_struct * t)1983 void uprobe_free_utask(struct task_struct *t)
1984 {
1985 	struct uprobe_task *utask = t->utask;
1986 	struct return_instance *ri, *ri_next;
1987 
1988 	if (!utask)
1989 		return;
1990 
1991 	t->utask = NULL;
1992 	WARN_ON_ONCE(utask->active_uprobe || utask->xol_vaddr);
1993 
1994 	timer_delete_sync(&utask->ri_timer);
1995 
1996 	ri = utask->return_instances;
1997 	while (ri) {
1998 		ri_next = ri->next;
1999 		free_ret_instance(utask, ri, true /* cleanup_hprobe */);
2000 		ri = ri_next;
2001 	}
2002 
2003 	/* free_ret_instance() above might add to ri_pool, so this loop should come last */
2004 	ri = utask->ri_pool;
2005 	while (ri) {
2006 		ri_next = ri->next;
2007 		ri_free(ri);
2008 		ri = ri_next;
2009 	}
2010 
2011 	kfree(utask);
2012 }
2013 
2014 #define RI_TIMER_PERIOD (HZ / 10) /* 100 ms */
2015 
2016 #define for_each_ret_instance_rcu(pos, head) \
2017 	for (pos = rcu_dereference_raw(head); pos; pos = rcu_dereference_raw(pos->next))
2018 
ri_timer(struct timer_list * timer)2019 static void ri_timer(struct timer_list *timer)
2020 {
2021 	struct uprobe_task *utask = container_of(timer, struct uprobe_task, ri_timer);
2022 	struct return_instance *ri;
2023 
2024 	/* SRCU protects uprobe from reuse for the cmpxchg() inside hprobe_expire(). */
2025 	guard(srcu)(&uretprobes_srcu);
2026 	/* RCU protects return_instance from freeing. */
2027 	guard(rcu)();
2028 
2029 	/*
2030 	 * See free_ret_instance() for notes on seqcount use.
2031 	 * We also employ raw API variants to avoid lockdep false-positive
2032 	 * warning complaining about enabled preemption. The timer can only be
2033 	 * invoked once for a uprobe_task. Therefore there can only be one
2034 	 * writer. The reader does not require an even sequence count to make
2035 	 * progress, so it is OK to remain preemptible on PREEMPT_RT.
2036 	 */
2037 	raw_write_seqcount_begin(&utask->ri_seqcount);
2038 
2039 	for_each_ret_instance_rcu(ri, utask->return_instances)
2040 		hprobe_expire(&ri->hprobe, false);
2041 
2042 	raw_write_seqcount_end(&utask->ri_seqcount);
2043 }
2044 
alloc_utask(void)2045 static struct uprobe_task *alloc_utask(void)
2046 {
2047 	struct uprobe_task *utask;
2048 
2049 	utask = kzalloc(sizeof(*utask), GFP_KERNEL);
2050 	if (!utask)
2051 		return NULL;
2052 
2053 	timer_setup(&utask->ri_timer, ri_timer, 0);
2054 	seqcount_init(&utask->ri_seqcount);
2055 
2056 	return utask;
2057 }
2058 
2059 /*
2060  * Allocate a uprobe_task object for the task if necessary.
2061  * Called when the thread hits a breakpoint.
2062  *
2063  * Returns:
2064  * - pointer to new uprobe_task on success
2065  * - NULL otherwise
2066  */
get_utask(void)2067 static struct uprobe_task *get_utask(void)
2068 {
2069 	if (!current->utask)
2070 		current->utask = alloc_utask();
2071 	return current->utask;
2072 }
2073 
alloc_return_instance(struct uprobe_task * utask)2074 static struct return_instance *alloc_return_instance(struct uprobe_task *utask)
2075 {
2076 	struct return_instance *ri;
2077 
2078 	ri = ri_pool_pop(utask);
2079 	if (ri)
2080 		return ri;
2081 
2082 	ri = kzalloc(sizeof(*ri), GFP_KERNEL);
2083 	if (!ri)
2084 		return ZERO_SIZE_PTR;
2085 
2086 	return ri;
2087 }
2088 
dup_return_instance(struct return_instance * old)2089 static struct return_instance *dup_return_instance(struct return_instance *old)
2090 {
2091 	struct return_instance *ri;
2092 
2093 	ri = kmemdup(old, sizeof(*ri), GFP_KERNEL);
2094 	if (!ri)
2095 		return NULL;
2096 
2097 	if (unlikely(old->cons_cnt > 1)) {
2098 		ri->extra_consumers = kmemdup(old->extra_consumers,
2099 					      sizeof(ri->extra_consumers[0]) * (old->cons_cnt - 1),
2100 					      GFP_KERNEL);
2101 		if (!ri->extra_consumers) {
2102 			kfree(ri);
2103 			return NULL;
2104 		}
2105 	}
2106 
2107 	return ri;
2108 }
2109 
dup_utask(struct task_struct * t,struct uprobe_task * o_utask)2110 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
2111 {
2112 	struct uprobe_task *n_utask;
2113 	struct return_instance **p, *o, *n;
2114 	struct uprobe *uprobe;
2115 
2116 	n_utask = alloc_utask();
2117 	if (!n_utask)
2118 		return -ENOMEM;
2119 	t->utask = n_utask;
2120 
2121 	/* protect uprobes from freeing, we'll need try_get_uprobe() them */
2122 	guard(srcu)(&uretprobes_srcu);
2123 
2124 	p = &n_utask->return_instances;
2125 	for (o = o_utask->return_instances; o; o = o->next) {
2126 		n = dup_return_instance(o);
2127 		if (!n)
2128 			return -ENOMEM;
2129 
2130 		/* if uprobe is non-NULL, we'll have an extra refcount for uprobe */
2131 		uprobe = hprobe_expire(&o->hprobe, true);
2132 
2133 		/*
2134 		 * New utask will have stable properly refcounted uprobe or
2135 		 * NULL. Even if we failed to get refcounted uprobe, we still
2136 		 * need to preserve full set of return_instances for proper
2137 		 * uretprobe handling and nesting in forked task.
2138 		 */
2139 		hprobe_init_stable(&n->hprobe, uprobe);
2140 
2141 		n->next = NULL;
2142 		rcu_assign_pointer(*p, n);
2143 		p = &n->next;
2144 
2145 		n_utask->depth++;
2146 	}
2147 
2148 	return 0;
2149 }
2150 
dup_xol_work(struct callback_head * work)2151 static void dup_xol_work(struct callback_head *work)
2152 {
2153 	if (current->flags & PF_EXITING)
2154 		return;
2155 
2156 	if (!__create_xol_area(current->utask->dup_xol_addr) &&
2157 			!fatal_signal_pending(current))
2158 		uprobe_warn(current, "dup xol area");
2159 }
2160 
2161 /*
2162  * Called in context of a new clone/fork from copy_process.
2163  */
uprobe_copy_process(struct task_struct * t,unsigned long flags)2164 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
2165 {
2166 	struct uprobe_task *utask = current->utask;
2167 	struct mm_struct *mm = current->mm;
2168 	struct xol_area *area;
2169 
2170 	t->utask = NULL;
2171 
2172 	if (!utask || !utask->return_instances)
2173 		return;
2174 
2175 	if (mm == t->mm && !(flags & CLONE_VFORK))
2176 		return;
2177 
2178 	if (dup_utask(t, utask))
2179 		return uprobe_warn(t, "dup ret instances");
2180 
2181 	/* The task can fork() after dup_xol_work() fails */
2182 	area = mm->uprobes_state.xol_area;
2183 	if (!area)
2184 		return uprobe_warn(t, "dup xol area");
2185 
2186 	if (mm == t->mm)
2187 		return;
2188 
2189 	t->utask->dup_xol_addr = area->vaddr;
2190 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
2191 	task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
2192 }
2193 
2194 /*
2195  * Current area->vaddr notion assume the trampoline address is always
2196  * equal area->vaddr.
2197  *
2198  * Returns -1 in case the xol_area is not allocated.
2199  */
uprobe_get_trampoline_vaddr(void)2200 unsigned long uprobe_get_trampoline_vaddr(void)
2201 {
2202 	unsigned long trampoline_vaddr = UPROBE_NO_TRAMPOLINE_VADDR;
2203 	struct xol_area *area;
2204 
2205 	/* Pairs with xol_add_vma() smp_store_release() */
2206 	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
2207 	if (area)
2208 		trampoline_vaddr = area->vaddr;
2209 
2210 	return trampoline_vaddr;
2211 }
2212 
cleanup_return_instances(struct uprobe_task * utask,bool chained,struct pt_regs * regs)2213 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
2214 					struct pt_regs *regs)
2215 {
2216 	struct return_instance *ri = utask->return_instances, *ri_next;
2217 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
2218 
2219 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
2220 		ri_next = ri->next;
2221 		rcu_assign_pointer(utask->return_instances, ri_next);
2222 		utask->depth--;
2223 
2224 		free_ret_instance(utask, ri, true /* cleanup_hprobe */);
2225 		ri = ri_next;
2226 	}
2227 }
2228 
prepare_uretprobe(struct uprobe * uprobe,struct pt_regs * regs,struct return_instance * ri)2229 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs,
2230 			      struct return_instance *ri)
2231 {
2232 	struct uprobe_task *utask = current->utask;
2233 	unsigned long orig_ret_vaddr, trampoline_vaddr;
2234 	bool chained;
2235 	int srcu_idx;
2236 
2237 	if (!get_xol_area())
2238 		goto free;
2239 
2240 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
2241 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
2242 				" nestedness limit pid/tgid=%d/%d\n",
2243 				current->pid, current->tgid);
2244 		goto free;
2245 	}
2246 
2247 	trampoline_vaddr = uprobe_get_trampoline_vaddr();
2248 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
2249 	if (orig_ret_vaddr == -1)
2250 		goto free;
2251 
2252 	/* drop the entries invalidated by longjmp() */
2253 	chained = (orig_ret_vaddr == trampoline_vaddr);
2254 	cleanup_return_instances(utask, chained, regs);
2255 
2256 	/*
2257 	 * We don't want to keep trampoline address in stack, rather keep the
2258 	 * original return address of first caller thru all the consequent
2259 	 * instances. This also makes breakpoint unwrapping easier.
2260 	 */
2261 	if (chained) {
2262 		if (!utask->return_instances) {
2263 			/*
2264 			 * This situation is not possible. Likely we have an
2265 			 * attack from user-space.
2266 			 */
2267 			uprobe_warn(current, "handle tail call");
2268 			goto free;
2269 		}
2270 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
2271 	}
2272 
2273 	/* __srcu_read_lock() because SRCU lock survives switch to user space */
2274 	srcu_idx = __srcu_read_lock(&uretprobes_srcu);
2275 
2276 	ri->func = instruction_pointer(regs);
2277 	ri->stack = user_stack_pointer(regs);
2278 	ri->orig_ret_vaddr = orig_ret_vaddr;
2279 	ri->chained = chained;
2280 
2281 	utask->depth++;
2282 
2283 	hprobe_init_leased(&ri->hprobe, uprobe, srcu_idx);
2284 	ri->next = utask->return_instances;
2285 	rcu_assign_pointer(utask->return_instances, ri);
2286 
2287 	mod_timer(&utask->ri_timer, jiffies + RI_TIMER_PERIOD);
2288 
2289 	return;
2290 free:
2291 	ri_free(ri);
2292 }
2293 
2294 /* Prepare to single-step probed instruction out of line. */
2295 static int
pre_ssout(struct uprobe * uprobe,struct pt_regs * regs,unsigned long bp_vaddr)2296 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
2297 {
2298 	struct uprobe_task *utask = current->utask;
2299 	int err;
2300 
2301 	if (!try_get_uprobe(uprobe))
2302 		return -EINVAL;
2303 
2304 	if (!xol_get_insn_slot(uprobe, utask)) {
2305 		err = -ENOMEM;
2306 		goto err_out;
2307 	}
2308 
2309 	utask->vaddr = bp_vaddr;
2310 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
2311 	if (unlikely(err)) {
2312 		xol_free_insn_slot(utask);
2313 		goto err_out;
2314 	}
2315 
2316 	utask->active_uprobe = uprobe;
2317 	utask->state = UTASK_SSTEP;
2318 	return 0;
2319 err_out:
2320 	put_uprobe(uprobe);
2321 	return err;
2322 }
2323 
2324 /*
2325  * If we are singlestepping, then ensure this thread is not connected to
2326  * non-fatal signals until completion of singlestep.  When xol insn itself
2327  * triggers the signal,  restart the original insn even if the task is
2328  * already SIGKILL'ed (since coredump should report the correct ip).  This
2329  * is even more important if the task has a handler for SIGSEGV/etc, The
2330  * _same_ instruction should be repeated again after return from the signal
2331  * handler, and SSTEP can never finish in this case.
2332  */
uprobe_deny_signal(void)2333 bool uprobe_deny_signal(void)
2334 {
2335 	struct task_struct *t = current;
2336 	struct uprobe_task *utask = t->utask;
2337 
2338 	if (likely(!utask || !utask->active_uprobe))
2339 		return false;
2340 
2341 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
2342 
2343 	if (task_sigpending(t)) {
2344 		utask->signal_denied = true;
2345 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
2346 
2347 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
2348 			utask->state = UTASK_SSTEP_TRAPPED;
2349 			set_tsk_thread_flag(t, TIF_UPROBE);
2350 		}
2351 	}
2352 
2353 	return true;
2354 }
2355 
mmf_recalc_uprobes(struct mm_struct * mm)2356 static void mmf_recalc_uprobes(struct mm_struct *mm)
2357 {
2358 	VMA_ITERATOR(vmi, mm, 0);
2359 	struct vm_area_struct *vma;
2360 
2361 	for_each_vma(vmi, vma) {
2362 		if (!valid_vma(vma, false))
2363 			continue;
2364 		/*
2365 		 * This is not strictly accurate, we can race with
2366 		 * uprobe_unregister() and see the already removed
2367 		 * uprobe if delete_uprobe() was not yet called.
2368 		 * Or this uprobe can be filtered out.
2369 		 */
2370 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2371 			return;
2372 	}
2373 
2374 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
2375 }
2376 
is_trap_at_addr(struct mm_struct * mm,unsigned long vaddr)2377 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2378 {
2379 	struct page *page;
2380 	uprobe_opcode_t opcode;
2381 	int result;
2382 
2383 	if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2384 		return -EINVAL;
2385 
2386 	pagefault_disable();
2387 	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2388 	pagefault_enable();
2389 
2390 	if (likely(result == 0))
2391 		goto out;
2392 
2393 	result = get_user_pages(vaddr, 1, FOLL_FORCE, &page);
2394 	if (result < 0)
2395 		return result;
2396 
2397 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2398 	put_page(page);
2399  out:
2400 	/* This needs to return true for any variant of the trap insn */
2401 	return is_trap_insn(&opcode);
2402 }
2403 
find_active_uprobe_speculative(unsigned long bp_vaddr)2404 static struct uprobe *find_active_uprobe_speculative(unsigned long bp_vaddr)
2405 {
2406 	struct mm_struct *mm = current->mm;
2407 	struct uprobe *uprobe = NULL;
2408 	struct vm_area_struct *vma;
2409 	struct file *vm_file;
2410 	loff_t offset;
2411 	unsigned int seq;
2412 
2413 	guard(rcu)();
2414 
2415 	if (!mmap_lock_speculate_try_begin(mm, &seq))
2416 		return NULL;
2417 
2418 	vma = vma_lookup(mm, bp_vaddr);
2419 	if (!vma)
2420 		return NULL;
2421 
2422 	/*
2423 	 * vm_file memory can be reused for another instance of struct file,
2424 	 * but can't be freed from under us, so it's safe to read fields from
2425 	 * it, even if the values are some garbage values; ultimately
2426 	 * find_uprobe_rcu() + mmap_lock_speculation_end() check will ensure
2427 	 * that whatever we speculatively found is correct
2428 	 */
2429 	vm_file = READ_ONCE(vma->vm_file);
2430 	if (!vm_file)
2431 		return NULL;
2432 
2433 	offset = (loff_t)(vma->vm_pgoff << PAGE_SHIFT) + (bp_vaddr - vma->vm_start);
2434 	uprobe = find_uprobe_rcu(vm_file->f_inode, offset);
2435 	if (!uprobe)
2436 		return NULL;
2437 
2438 	/* now double check that nothing about MM changed */
2439 	if (mmap_lock_speculate_retry(mm, seq))
2440 		return NULL;
2441 
2442 	return uprobe;
2443 }
2444 
2445 /* assumes being inside RCU protected region */
find_active_uprobe_rcu(unsigned long bp_vaddr,int * is_swbp)2446 static struct uprobe *find_active_uprobe_rcu(unsigned long bp_vaddr, int *is_swbp)
2447 {
2448 	struct mm_struct *mm = current->mm;
2449 	struct uprobe *uprobe = NULL;
2450 	struct vm_area_struct *vma;
2451 
2452 	uprobe = find_active_uprobe_speculative(bp_vaddr);
2453 	if (uprobe)
2454 		return uprobe;
2455 
2456 	mmap_read_lock(mm);
2457 	vma = vma_lookup(mm, bp_vaddr);
2458 	if (vma) {
2459 		if (vma->vm_file) {
2460 			struct inode *inode = file_inode(vma->vm_file);
2461 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2462 
2463 			uprobe = find_uprobe_rcu(inode, offset);
2464 		}
2465 
2466 		if (!uprobe)
2467 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2468 	} else {
2469 		*is_swbp = -EFAULT;
2470 	}
2471 
2472 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2473 		mmf_recalc_uprobes(mm);
2474 	mmap_read_unlock(mm);
2475 
2476 	return uprobe;
2477 }
2478 
push_consumer(struct return_instance * ri,__u64 id,__u64 cookie)2479 static struct return_instance *push_consumer(struct return_instance *ri, __u64 id, __u64 cookie)
2480 {
2481 	struct return_consumer *ric;
2482 
2483 	if (unlikely(ri == ZERO_SIZE_PTR))
2484 		return ri;
2485 
2486 	if (unlikely(ri->cons_cnt > 0)) {
2487 		ric = krealloc(ri->extra_consumers, sizeof(*ric) * ri->cons_cnt, GFP_KERNEL);
2488 		if (!ric) {
2489 			ri_free(ri);
2490 			return ZERO_SIZE_PTR;
2491 		}
2492 		ri->extra_consumers = ric;
2493 	}
2494 
2495 	ric = likely(ri->cons_cnt == 0) ? &ri->consumer : &ri->extra_consumers[ri->cons_cnt - 1];
2496 	ric->id = id;
2497 	ric->cookie = cookie;
2498 
2499 	ri->cons_cnt++;
2500 	return ri;
2501 }
2502 
2503 static struct return_consumer *
return_consumer_find(struct return_instance * ri,int * iter,int id)2504 return_consumer_find(struct return_instance *ri, int *iter, int id)
2505 {
2506 	struct return_consumer *ric;
2507 	int idx;
2508 
2509 	for (idx = *iter; idx < ri->cons_cnt; idx++)
2510 	{
2511 		ric = likely(idx == 0) ? &ri->consumer : &ri->extra_consumers[idx - 1];
2512 		if (ric->id == id) {
2513 			*iter = idx + 1;
2514 			return ric;
2515 		}
2516 	}
2517 
2518 	return NULL;
2519 }
2520 
ignore_ret_handler(int rc)2521 static bool ignore_ret_handler(int rc)
2522 {
2523 	return rc == UPROBE_HANDLER_REMOVE || rc == UPROBE_HANDLER_IGNORE;
2524 }
2525 
handler_chain(struct uprobe * uprobe,struct pt_regs * regs)2526 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2527 {
2528 	struct uprobe_consumer *uc;
2529 	bool has_consumers = false, remove = true;
2530 	struct return_instance *ri = NULL;
2531 	struct uprobe_task *utask = current->utask;
2532 
2533 	utask->auprobe = &uprobe->arch;
2534 
2535 	list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
2536 		bool session = uc->handler && uc->ret_handler;
2537 		__u64 cookie = 0;
2538 		int rc = 0;
2539 
2540 		if (uc->handler) {
2541 			rc = uc->handler(uc, regs, &cookie);
2542 			WARN(rc < 0 || rc > 2,
2543 				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2544 		}
2545 
2546 		remove &= rc == UPROBE_HANDLER_REMOVE;
2547 		has_consumers = true;
2548 
2549 		if (!uc->ret_handler || ignore_ret_handler(rc))
2550 			continue;
2551 
2552 		if (!ri)
2553 			ri = alloc_return_instance(utask);
2554 
2555 		if (session)
2556 			ri = push_consumer(ri, uc->id, cookie);
2557 	}
2558 	utask->auprobe = NULL;
2559 
2560 	if (!ZERO_OR_NULL_PTR(ri))
2561 		prepare_uretprobe(uprobe, regs, ri);
2562 
2563 	if (remove && has_consumers) {
2564 		down_read(&uprobe->register_rwsem);
2565 
2566 		/* re-check that removal is still required, this time under lock */
2567 		if (!filter_chain(uprobe, current->mm)) {
2568 			WARN_ON(!uprobe_is_active(uprobe));
2569 			unapply_uprobe(uprobe, current->mm);
2570 		}
2571 
2572 		up_read(&uprobe->register_rwsem);
2573 	}
2574 }
2575 
2576 static void
handle_uretprobe_chain(struct return_instance * ri,struct uprobe * uprobe,struct pt_regs * regs)2577 handle_uretprobe_chain(struct return_instance *ri, struct uprobe *uprobe, struct pt_regs *regs)
2578 {
2579 	struct return_consumer *ric;
2580 	struct uprobe_consumer *uc;
2581 	int ric_idx = 0;
2582 
2583 	/* all consumers unsubscribed meanwhile */
2584 	if (unlikely(!uprobe))
2585 		return;
2586 
2587 	rcu_read_lock_trace();
2588 	list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
2589 		bool session = uc->handler && uc->ret_handler;
2590 
2591 		if (uc->ret_handler) {
2592 			ric = return_consumer_find(ri, &ric_idx, uc->id);
2593 			if (!session || ric)
2594 				uc->ret_handler(uc, ri->func, regs, ric ? &ric->cookie : NULL);
2595 		}
2596 	}
2597 	rcu_read_unlock_trace();
2598 }
2599 
find_next_ret_chain(struct return_instance * ri)2600 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2601 {
2602 	bool chained;
2603 
2604 	do {
2605 		chained = ri->chained;
2606 		ri = ri->next;	/* can't be NULL if chained */
2607 	} while (chained);
2608 
2609 	return ri;
2610 }
2611 
uprobe_handle_trampoline(struct pt_regs * regs)2612 void uprobe_handle_trampoline(struct pt_regs *regs)
2613 {
2614 	struct uprobe_task *utask;
2615 	struct return_instance *ri, *ri_next, *next_chain;
2616 	struct uprobe *uprobe;
2617 	enum hprobe_state hstate;
2618 	bool valid;
2619 
2620 	utask = current->utask;
2621 	if (!utask)
2622 		goto sigill;
2623 
2624 	ri = utask->return_instances;
2625 	if (!ri)
2626 		goto sigill;
2627 
2628 	do {
2629 		/*
2630 		 * We should throw out the frames invalidated by longjmp().
2631 		 * If this chain is valid, then the next one should be alive
2632 		 * or NULL; the latter case means that nobody but ri->func
2633 		 * could hit this trampoline on return. TODO: sigaltstack().
2634 		 */
2635 		next_chain = find_next_ret_chain(ri);
2636 		valid = !next_chain || arch_uretprobe_is_alive(next_chain, RP_CHECK_RET, regs);
2637 
2638 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2639 		do {
2640 			/* pop current instance from the stack of pending return instances,
2641 			 * as it's not pending anymore: we just fixed up original
2642 			 * instruction pointer in regs and are about to call handlers;
2643 			 * this allows fixup_uretprobe_trampoline_entries() to properly fix up
2644 			 * captured stack traces from uretprobe handlers, in which pending
2645 			 * trampoline addresses on the stack are replaced with correct
2646 			 * original return addresses
2647 			 */
2648 			ri_next = ri->next;
2649 			rcu_assign_pointer(utask->return_instances, ri_next);
2650 			utask->depth--;
2651 
2652 			uprobe = hprobe_consume(&ri->hprobe, &hstate);
2653 			if (valid)
2654 				handle_uretprobe_chain(ri, uprobe, regs);
2655 			hprobe_finalize(&ri->hprobe, hstate);
2656 
2657 			/* We already took care of hprobe, no need to waste more time on that. */
2658 			free_ret_instance(utask, ri, false /* !cleanup_hprobe */);
2659 			ri = ri_next;
2660 		} while (ri != next_chain);
2661 	} while (!valid);
2662 
2663 	return;
2664 
2665 sigill:
2666 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2667 	force_sig(SIGILL);
2668 }
2669 
arch_uprobe_ignore(struct arch_uprobe * aup,struct pt_regs * regs)2670 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2671 {
2672 	return false;
2673 }
2674 
arch_uretprobe_is_alive(struct return_instance * ret,enum rp_check ctx,struct pt_regs * regs)2675 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2676 					struct pt_regs *regs)
2677 {
2678 	return true;
2679 }
2680 
2681 /*
2682  * Run handler and ask thread to singlestep.
2683  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2684  */
handle_swbp(struct pt_regs * regs)2685 static void handle_swbp(struct pt_regs *regs)
2686 {
2687 	struct uprobe *uprobe;
2688 	unsigned long bp_vaddr;
2689 	int is_swbp;
2690 
2691 	bp_vaddr = uprobe_get_swbp_addr(regs);
2692 	if (bp_vaddr == uprobe_get_trampoline_vaddr())
2693 		return uprobe_handle_trampoline(regs);
2694 
2695 	rcu_read_lock_trace();
2696 
2697 	uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp);
2698 	if (!uprobe) {
2699 		if (is_swbp > 0) {
2700 			/* No matching uprobe; signal SIGTRAP. */
2701 			force_sig(SIGTRAP);
2702 		} else {
2703 			/*
2704 			 * Either we raced with uprobe_unregister() or we can't
2705 			 * access this memory. The latter is only possible if
2706 			 * another thread plays with our ->mm. In both cases
2707 			 * we can simply restart. If this vma was unmapped we
2708 			 * can pretend this insn was not executed yet and get
2709 			 * the (correct) SIGSEGV after restart.
2710 			 */
2711 			instruction_pointer_set(regs, bp_vaddr);
2712 		}
2713 		goto out;
2714 	}
2715 
2716 	/* change it in advance for ->handler() and restart */
2717 	instruction_pointer_set(regs, bp_vaddr);
2718 
2719 	/*
2720 	 * TODO: move copy_insn/etc into _register and remove this hack.
2721 	 * After we hit the bp, _unregister + _register can install the
2722 	 * new and not-yet-analyzed uprobe at the same address, restart.
2723 	 */
2724 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2725 		goto out;
2726 
2727 	/*
2728 	 * Pairs with the smp_wmb() in prepare_uprobe().
2729 	 *
2730 	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2731 	 * we must also see the stores to &uprobe->arch performed by the
2732 	 * prepare_uprobe() call.
2733 	 */
2734 	smp_rmb();
2735 
2736 	/* Tracing handlers use ->utask to communicate with fetch methods */
2737 	if (!get_utask())
2738 		goto out;
2739 
2740 	if (arch_uprobe_ignore(&uprobe->arch, regs))
2741 		goto out;
2742 
2743 	handler_chain(uprobe, regs);
2744 
2745 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2746 		goto out;
2747 
2748 	if (pre_ssout(uprobe, regs, bp_vaddr))
2749 		goto out;
2750 
2751 out:
2752 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2753 	rcu_read_unlock_trace();
2754 }
2755 
2756 /*
2757  * Perform required fix-ups and disable singlestep.
2758  * Allow pending signals to take effect.
2759  */
handle_singlestep(struct uprobe_task * utask,struct pt_regs * regs)2760 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2761 {
2762 	struct uprobe *uprobe;
2763 	int err = 0;
2764 
2765 	uprobe = utask->active_uprobe;
2766 	if (utask->state == UTASK_SSTEP_ACK)
2767 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2768 	else if (utask->state == UTASK_SSTEP_TRAPPED)
2769 		arch_uprobe_abort_xol(&uprobe->arch, regs);
2770 	else
2771 		WARN_ON_ONCE(1);
2772 
2773 	put_uprobe(uprobe);
2774 	utask->active_uprobe = NULL;
2775 	utask->state = UTASK_RUNNING;
2776 	xol_free_insn_slot(utask);
2777 
2778 	if (utask->signal_denied) {
2779 		set_thread_flag(TIF_SIGPENDING);
2780 		utask->signal_denied = false;
2781 	}
2782 
2783 	if (unlikely(err)) {
2784 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2785 		force_sig(SIGILL);
2786 	}
2787 }
2788 
2789 /*
2790  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2791  * allows the thread to return from interrupt. After that handle_swbp()
2792  * sets utask->active_uprobe.
2793  *
2794  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2795  * and allows the thread to return from interrupt.
2796  *
2797  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2798  * uprobe_notify_resume().
2799  */
uprobe_notify_resume(struct pt_regs * regs)2800 void uprobe_notify_resume(struct pt_regs *regs)
2801 {
2802 	struct uprobe_task *utask;
2803 
2804 	clear_thread_flag(TIF_UPROBE);
2805 
2806 	utask = current->utask;
2807 	if (utask && utask->active_uprobe)
2808 		handle_singlestep(utask, regs);
2809 	else
2810 		handle_swbp(regs);
2811 }
2812 
2813 /*
2814  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2815  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2816  */
uprobe_pre_sstep_notifier(struct pt_regs * regs)2817 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2818 {
2819 	if (!current->mm)
2820 		return 0;
2821 
2822 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2823 	    (!current->utask || !current->utask->return_instances))
2824 		return 0;
2825 
2826 	set_thread_flag(TIF_UPROBE);
2827 	return 1;
2828 }
2829 
2830 /*
2831  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2832  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2833  */
uprobe_post_sstep_notifier(struct pt_regs * regs)2834 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2835 {
2836 	struct uprobe_task *utask = current->utask;
2837 
2838 	if (!current->mm || !utask || !utask->active_uprobe)
2839 		/* task is currently not uprobed */
2840 		return 0;
2841 
2842 	utask->state = UTASK_SSTEP_ACK;
2843 	set_thread_flag(TIF_UPROBE);
2844 	return 1;
2845 }
2846 
2847 static struct notifier_block uprobe_exception_nb = {
2848 	.notifier_call		= arch_uprobe_exception_notify,
2849 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2850 };
2851 
uprobes_init(void)2852 void __init uprobes_init(void)
2853 {
2854 	int i;
2855 
2856 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2857 		mutex_init(&uprobes_mmap_mutex[i]);
2858 
2859 	BUG_ON(register_die_notifier(&uprobe_exception_nb));
2860 }
2861