xref: /linux/arch/xtensa/include/asm/pgtable.h (revision 9b0d551bcc05fa4786689544a2845024db1d41b6)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * include/asm-xtensa/pgtable.h
4  *
5  * Copyright (C) 2001 - 2013 Tensilica Inc.
6  */
7 
8 #ifndef _XTENSA_PGTABLE_H
9 #define _XTENSA_PGTABLE_H
10 
11 #include <asm/page.h>
12 #include <asm/kmem_layout.h>
13 #include <asm-generic/pgtable-nopmd.h>
14 
15 /*
16  * We only use two ring levels, user and kernel space.
17  */
18 
19 #ifdef CONFIG_MMU
20 #define USER_RING		1	/* user ring level */
21 #else
22 #define USER_RING		0
23 #endif
24 #define KERNEL_RING		0	/* kernel ring level */
25 
26 /*
27  * The Xtensa architecture port of Linux has a two-level page table system,
28  * i.e. the logical three-level Linux page table layout is folded.
29  * Each task has the following memory page tables:
30  *
31  *   PGD table (page directory), ie. 3rd-level page table:
32  *	One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables
33  *	(Architectures that don't have the PMD folded point to the PMD tables)
34  *
35  *	The pointer to the PGD table for a given task can be retrieved from
36  *	the task structure (struct task_struct*) t, e.g. current():
37  *	  (t->mm ? t->mm : t->active_mm)->pgd
38  *
39  *   PMD tables (page middle-directory), ie. 2nd-level page tables:
40  *	Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1).
41  *
42  *   PTE tables (page table entry), ie. 1st-level page tables:
43  *	One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE
44  *	invalid_pte_table for absent mappings.
45  *
46  * The individual pages are 4 kB big with special pages for the empty_zero_page.
47  */
48 
49 #define PGDIR_SHIFT	22
50 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
51 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
52 
53 /*
54  * Entries per page directory level: we use two-level, so
55  * we don't really have any PMD directory physically.
56  */
57 #define PTRS_PER_PTE		1024
58 #define PTRS_PER_PTE_SHIFT	10
59 #define PTRS_PER_PGD		1024
60 #define USER_PTRS_PER_PGD	(TASK_SIZE/PGDIR_SIZE)
61 
62 #ifdef CONFIG_MMU
63 /*
64  * Virtual memory area. We keep a distance to other memory regions to be
65  * on the safe side. We also use this area for cache aliasing.
66  */
67 #define VMALLOC_START		(XCHAL_KSEG_CACHED_VADDR - 0x10000000)
68 #define VMALLOC_END		(VMALLOC_START + 0x07FEFFFF)
69 #define TLBTEMP_BASE_1		(VMALLOC_START + 0x08000000)
70 #define TLBTEMP_BASE_2		(TLBTEMP_BASE_1 + DCACHE_WAY_SIZE)
71 #if 2 * DCACHE_WAY_SIZE > ICACHE_WAY_SIZE
72 #define TLBTEMP_SIZE		(2 * DCACHE_WAY_SIZE)
73 #else
74 #define TLBTEMP_SIZE		ICACHE_WAY_SIZE
75 #endif
76 
77 #else
78 
79 #define VMALLOC_START		__XTENSA_UL_CONST(0)
80 #define VMALLOC_END		__XTENSA_UL_CONST(0xffffffff)
81 
82 #endif
83 
84 /*
85  * For the Xtensa architecture, the PTE layout is as follows:
86  *
87  *		31------12  11  10-9   8-6  5-4  3-2  1-0
88  *		+-----------------------------------------+
89  *		|           |   Software   |   HARDWARE   |
90  *		|    PPN    |          ADW | RI |Attribute|
91  *		+-----------------------------------------+
92  *   pte_none	|             MBZ          | 01 | 11 | 00 |
93  *		+-----------------------------------------+
94  *   present	|    PPN    | 0 | 00 | ADW | RI | CA | wx |
95  *		+- - - - - - - - - - - - - - - - - - - - -+
96  *   (PAGE_NONE)|    PPN    | 0 | 00 | ADW | 01 | 11 | 11 |
97  *		+-----------------------------------------+
98  *   swap	|     index     |   type   | 01 | 11 | e0 |
99  *		+-----------------------------------------+
100  *
101  * For T1050 hardware and earlier the layout differs for present and (PAGE_NONE)
102  *		+-----------------------------------------+
103  *   present	|    PPN    | 0 | 00 | ADW | RI | CA | w1 |
104  *		+-----------------------------------------+
105  *   (PAGE_NONE)|    PPN    | 0 | 00 | ADW | 01 | 01 | 00 |
106  *		+-----------------------------------------+
107  *
108  *  Legend:
109  *   PPN        Physical Page Number
110  *   ADW	software: accessed (young) / dirty / writable
111  *   RI         ring (0=privileged, 1=user, 2 and 3 are unused)
112  *   CA		cache attribute: 00 bypass, 01 writeback, 10 writethrough
113  *		(11 is invalid and used to mark pages that are not present)
114  *   e		exclusive marker in swap PTEs
115  *   w		page is writable (hw)
116  *   x		page is executable (hw)
117  *   index      swap offset / PAGE_SIZE (bit 11-31: 21 bits -> 8 GB)
118  *		(note that the index is always non-zero)
119  *   type       swap type (5 bits -> 32 types)
120  *
121  *  Notes:
122  *   - (PROT_NONE) is a special case of 'present' but causes an exception for
123  *     any access (read, write, and execute).
124  *   - 'multihit-exception' has the highest priority of all MMU exceptions,
125  *     so the ring must be set to 'RING_USER' even for 'non-present' pages.
126  *   - on older hardware, the exectuable flag was not supported and
127  *     used as a 'valid' flag, so it needs to be always set.
128  *   - we need to keep track of certain flags in software (dirty and young)
129  *     to do this, we use write exceptions and have a separate software w-flag.
130  *   - attribute value 1101 (and 1111 on T1050 and earlier) is reserved
131  */
132 
133 #define _PAGE_ATTRIB_MASK	0xf
134 
135 #define _PAGE_HW_EXEC		(1<<0)	/* hardware: page is executable */
136 #define _PAGE_HW_WRITE		(1<<1)	/* hardware: page is writable */
137 
138 #define _PAGE_CA_BYPASS		(0<<2)	/* bypass, non-speculative */
139 #define _PAGE_CA_WB		(1<<2)	/* write-back */
140 #define _PAGE_CA_WT		(2<<2)	/* write-through */
141 #define _PAGE_CA_MASK		(3<<2)
142 #define _PAGE_CA_INVALID	(3<<2)
143 
144 /* We use invalid attribute values to distinguish special pte entries */
145 #if XCHAL_HW_VERSION_MAJOR < 2000
146 #define _PAGE_HW_VALID		0x01	/* older HW needed this bit set */
147 #define _PAGE_NONE		0x04
148 #else
149 #define _PAGE_HW_VALID		0x00
150 #define _PAGE_NONE		0x0f
151 #endif
152 
153 #define _PAGE_USER		(1<<4)	/* user access (ring=1) */
154 
155 /* Software */
156 #define _PAGE_WRITABLE_BIT	6
157 #define _PAGE_WRITABLE		(1<<6)	/* software: page writable */
158 #define _PAGE_DIRTY		(1<<7)	/* software: page dirty */
159 #define _PAGE_ACCESSED		(1<<8)	/* software: page accessed (read) */
160 
161 /* We borrow bit 1 to store the exclusive marker in swap PTEs. */
162 #define _PAGE_SWP_EXCLUSIVE	(1<<1)
163 
164 #ifdef CONFIG_MMU
165 
166 #define _PAGE_CHG_MASK	   (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
167 #define _PAGE_PRESENT	   (_PAGE_HW_VALID | _PAGE_CA_WB | _PAGE_ACCESSED)
168 
169 #define PAGE_NONE	   __pgprot(_PAGE_NONE | _PAGE_USER)
170 #define PAGE_COPY	   __pgprot(_PAGE_PRESENT | _PAGE_USER)
171 #define PAGE_COPY_EXEC	   __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
172 #define PAGE_READONLY	   __pgprot(_PAGE_PRESENT | _PAGE_USER)
173 #define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
174 #define PAGE_SHARED	   __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE)
175 #define PAGE_SHARED_EXEC \
176 	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE | _PAGE_HW_EXEC)
177 #define PAGE_KERNEL	   __pgprot(_PAGE_PRESENT | _PAGE_HW_WRITE)
178 #define PAGE_KERNEL_RO	   __pgprot(_PAGE_PRESENT)
179 #define PAGE_KERNEL_EXEC   __pgprot(_PAGE_PRESENT|_PAGE_HW_WRITE|_PAGE_HW_EXEC)
180 
181 #if (DCACHE_WAY_SIZE > PAGE_SIZE)
182 # define _PAGE_DIRECTORY   (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_BYPASS)
183 #else
184 # define _PAGE_DIRECTORY   (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_WB)
185 #endif
186 
187 #else /* no mmu */
188 
189 # define _PAGE_CHG_MASK  (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
190 # define PAGE_NONE       __pgprot(0)
191 # define PAGE_SHARED     __pgprot(0)
192 # define PAGE_COPY       __pgprot(0)
193 # define PAGE_READONLY   __pgprot(0)
194 # define PAGE_KERNEL     __pgprot(0)
195 
196 #endif
197 
198 /*
199  * On certain configurations of Xtensa MMUs (eg. the initial Linux config),
200  * the MMU can't do page protection for execute, and considers that the same as
201  * read.  Also, write permissions may imply read permissions.
202  * What follows is the closest we can get by reasonable means..
203  * See linux/mm/mmap.c for protection_map[] array that uses these definitions.
204  */
205 #ifndef __ASSEMBLER__
206 
207 #define pte_ERROR(e) \
208 	printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
209 #define pgd_ERROR(e) \
210 	printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e))
211 
212 extern unsigned long empty_zero_page[1024];
213 
214 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
215 
216 #ifdef CONFIG_MMU
217 extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)];
218 extern void paging_init(void);
219 #else
220 # define swapper_pg_dir NULL
paging_init(void)221 static inline void paging_init(void) { }
222 #endif
223 
224 /*
225  * The pmd contains the kernel virtual address of the pte page.
226  */
227 #define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK))
228 #define pmd_pfn(pmd) (__pa(pmd_val(pmd)) >> PAGE_SHIFT)
229 #define pmd_page(pmd) virt_to_page(pmd_val(pmd))
230 
231 /*
232  * pte status.
233  */
234 # define pte_none(pte)	 (pte_val(pte) == (_PAGE_CA_INVALID | _PAGE_USER))
235 #if XCHAL_HW_VERSION_MAJOR < 2000
236 # define pte_present(pte) ((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID)
237 #else
238 # define pte_present(pte)						\
239 	(((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID)		\
240 	 || ((pte_val(pte) & _PAGE_ATTRIB_MASK) == _PAGE_NONE))
241 #endif
242 #define pte_clear(mm,addr,ptep)						\
243 	do { update_pte(ptep, __pte(_PAGE_CA_INVALID | _PAGE_USER)); } while (0)
244 
245 #define pmd_none(pmd)	 (!pmd_val(pmd))
246 #define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK)
247 #define pmd_bad(pmd)	 (pmd_val(pmd) & ~PAGE_MASK)
248 #define pmd_clear(pmdp)	 do { set_pmd(pmdp, __pmd(0)); } while (0)
249 
pte_write(pte_t pte)250 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITABLE; }
pte_dirty(pte_t pte)251 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
pte_young(pte_t pte)252 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
253 
pte_wrprotect(pte_t pte)254 static inline pte_t pte_wrprotect(pte_t pte)
255 	{ pte_val(pte) &= ~(_PAGE_WRITABLE | _PAGE_HW_WRITE); return pte; }
pte_mkclean(pte_t pte)256 static inline pte_t pte_mkclean(pte_t pte)
257 	{ pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HW_WRITE); return pte; }
pte_mkold(pte_t pte)258 static inline pte_t pte_mkold(pte_t pte)
259 	{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
pte_mkdirty(pte_t pte)260 static inline pte_t pte_mkdirty(pte_t pte)
261 	{ pte_val(pte) |= _PAGE_DIRTY; return pte; }
pte_mkyoung(pte_t pte)262 static inline pte_t pte_mkyoung(pte_t pte)
263 	{ pte_val(pte) |= _PAGE_ACCESSED; return pte; }
pte_mkwrite_novma(pte_t pte)264 static inline pte_t pte_mkwrite_novma(pte_t pte)
265 	{ pte_val(pte) |= _PAGE_WRITABLE; return pte; }
266 
267 #define pgprot_noncached(prot) \
268 		((__pgprot((pgprot_val(prot) & ~_PAGE_CA_MASK) | \
269 			   _PAGE_CA_BYPASS)))
270 
271 #define PFN_PTE_SHIFT		PAGE_SHIFT
272 #define pte_pfn(pte)		(pte_val(pte) >> PAGE_SHIFT)
273 #define pte_same(a,b)		(pte_val(a) == pte_val(b))
274 #define pte_page(x)		pfn_to_page(pte_pfn(x))
275 #define pfn_pte(pfn, prot)	__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
276 
pte_modify(pte_t pte,pgprot_t newprot)277 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
278 {
279 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
280 }
281 
282 /*
283  * Certain architectures need to do special things when pte's
284  * within a page table are directly modified.  Thus, the following
285  * hook is made available.
286  */
update_pte(pte_t * ptep,pte_t pteval)287 static inline void update_pte(pte_t *ptep, pte_t pteval)
288 {
289 	*ptep = pteval;
290 #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
291 	__asm__ __volatile__ ("dhwb %0, 0" :: "a" (ptep));
292 #endif
293 
294 }
295 
296 struct mm_struct;
297 
set_pte(pte_t * ptep,pte_t pte)298 static inline void set_pte(pte_t *ptep, pte_t pte)
299 {
300 	update_pte(ptep, pte);
301 }
302 
303 static inline void
set_pmd(pmd_t * pmdp,pmd_t pmdval)304 set_pmd(pmd_t *pmdp, pmd_t pmdval)
305 {
306 	*pmdp = pmdval;
307 }
308 
309 struct vm_area_struct;
310 
311 static inline int
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)312 ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
313 			  pte_t *ptep)
314 {
315 	pte_t pte = *ptep;
316 	if (!pte_young(pte))
317 		return 0;
318 	update_pte(ptep, pte_mkold(pte));
319 	return 1;
320 }
321 
322 static inline pte_t
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)323 ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
324 {
325 	pte_t pte = *ptep;
326 	pte_clear(mm, addr, ptep);
327 	return pte;
328 }
329 
330 static inline void
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)331 ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
332 {
333 	pte_t pte = *ptep;
334 	update_pte(ptep, pte_wrprotect(pte));
335 }
336 
337 /*
338  * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
339  * are !pte_none() && !pte_present().
340  */
341 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > 5)
342 
343 #define __swp_type(entry)	(((entry).val >> 6) & 0x1f)
344 #define __swp_offset(entry)	((entry).val >> 11)
345 #define __swp_entry(type,offs)	\
346 	((swp_entry_t){(((type) & 0x1f) << 6) | ((offs) << 11) | \
347 	 _PAGE_CA_INVALID | _PAGE_USER})
348 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
349 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
350 
pte_swp_exclusive(pte_t pte)351 static inline bool pte_swp_exclusive(pte_t pte)
352 {
353 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
354 }
355 
pte_swp_mkexclusive(pte_t pte)356 static inline pte_t pte_swp_mkexclusive(pte_t pte)
357 {
358 	pte_val(pte) |= _PAGE_SWP_EXCLUSIVE;
359 	return pte;
360 }
361 
pte_swp_clear_exclusive(pte_t pte)362 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
363 {
364 	pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE;
365 	return pte;
366 }
367 
368 #endif /*  !defined (__ASSEMBLER__) */
369 
370 
371 #ifdef __ASSEMBLER__
372 
373 /* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long),
374  *                _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long),
375  *                _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long)
376  *                _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long)
377  *
378  * Note: We require an additional temporary register which can be the same as
379  *       the register that holds the address.
380  *
381  * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr))
382  *
383  */
384 #define _PGD_INDEX(rt,rs)	extui	rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT
385 #define _PTE_INDEX(rt,rs)	extui	rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT
386 
387 #define _PGD_OFFSET(mm,adr,tmp)		l32i	mm, mm, MM_PGD;		\
388 					_PGD_INDEX(tmp, adr);		\
389 					addx4	mm, tmp, mm
390 
391 #define _PTE_OFFSET(pmd,adr,tmp)	_PTE_INDEX(tmp, adr);		\
392 					srli	pmd, pmd, PAGE_SHIFT;	\
393 					slli	pmd, pmd, PAGE_SHIFT;	\
394 					addx4	pmd, tmp, pmd
395 
396 #else
397 
398 struct vm_fault;
399 void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma,
400 		unsigned long address, pte_t *ptep, unsigned int nr);
401 #define update_mmu_cache(vma, address, ptep) \
402 	update_mmu_cache_range(NULL, vma, address, ptep, 1)
403 
404 typedef pte_t *pte_addr_t;
405 
406 void update_mmu_tlb_range(struct vm_area_struct *vma,
407 		unsigned long address, pte_t *ptep, unsigned int nr);
408 #define update_mmu_tlb_range update_mmu_tlb_range
409 
410 #endif /* !defined (__ASSEMBLER__) */
411 
412 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
413 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
414 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
415 #define __HAVE_ARCH_PTEP_MKDIRTY
416 #define __HAVE_ARCH_PTE_SAME
417 /* We provide our own get_unmapped_area to cope with
418  * SHM area cache aliasing for userland.
419  */
420 #define HAVE_ARCH_UNMAPPED_AREA
421 
422 #endif /* _XTENSA_PGTABLE_H */
423