1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_BTREE_TYPES_H
3 #define _BCACHEFS_BTREE_TYPES_H
4
5 #include <linux/list.h>
6 #include <linux/rhashtable.h>
7
8 #include "bbpos_types.h"
9 #include "btree_key_cache_types.h"
10 #include "buckets_types.h"
11 #include "darray.h"
12 #include "errcode.h"
13 #include "journal_types.h"
14 #include "replicas_types.h"
15 #include "six.h"
16
17 struct open_bucket;
18 struct btree_update;
19 struct btree_trans;
20
21 #define MAX_BSETS 3U
22
23 struct btree_nr_keys {
24
25 /*
26 * Amount of live metadata (i.e. size of node after a compaction) in
27 * units of u64s
28 */
29 u16 live_u64s;
30 u16 bset_u64s[MAX_BSETS];
31
32 /* live keys only: */
33 u16 packed_keys;
34 u16 unpacked_keys;
35 };
36
37 struct bset_tree {
38 /*
39 * We construct a binary tree in an array as if the array
40 * started at 1, so that things line up on the same cachelines
41 * better: see comments in bset.c at cacheline_to_bkey() for
42 * details
43 */
44
45 /* size of the binary tree and prev array */
46 u16 size;
47
48 /* function of size - precalculated for to_inorder() */
49 u16 extra;
50
51 u16 data_offset;
52 u16 aux_data_offset;
53 u16 end_offset;
54 };
55
56 struct btree_write {
57 struct journal_entry_pin journal;
58 };
59
60 struct btree_alloc {
61 struct open_buckets ob;
62 __BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX);
63 };
64
65 struct btree_bkey_cached_common {
66 struct six_lock lock;
67 u8 level;
68 u8 btree_id;
69 bool cached;
70 };
71
72 struct btree {
73 struct btree_bkey_cached_common c;
74
75 struct rhash_head hash;
76 u64 hash_val;
77
78 unsigned long flags;
79 u16 written;
80 u8 nsets;
81 u8 nr_key_bits;
82 u16 version_ondisk;
83
84 struct bkey_format format;
85
86 struct btree_node *data;
87 void *aux_data;
88
89 /*
90 * Sets of sorted keys - the real btree node - plus a binary search tree
91 *
92 * set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point
93 * to the memory we have allocated for this btree node. Additionally,
94 * set[0]->data points to the entire btree node as it exists on disk.
95 */
96 struct bset_tree set[MAX_BSETS];
97
98 struct btree_nr_keys nr;
99 u16 sib_u64s[2];
100 u16 whiteout_u64s;
101 u8 byte_order;
102 u8 unpack_fn_len;
103
104 struct btree_write writes[2];
105
106 /* Key/pointer for this btree node */
107 __BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX);
108
109 /*
110 * XXX: add a delete sequence number, so when bch2_btree_node_relock()
111 * fails because the lock sequence number has changed - i.e. the
112 * contents were modified - we can still relock the node if it's still
113 * the one we want, without redoing the traversal
114 */
115
116 /*
117 * For asynchronous splits/interior node updates:
118 * When we do a split, we allocate new child nodes and update the parent
119 * node to point to them: we update the parent in memory immediately,
120 * but then we must wait until the children have been written out before
121 * the update to the parent can be written - this is a list of the
122 * btree_updates that are blocking this node from being
123 * written:
124 */
125 struct list_head write_blocked;
126
127 /*
128 * Also for asynchronous splits/interior node updates:
129 * If a btree node isn't reachable yet, we don't want to kick off
130 * another write - because that write also won't yet be reachable and
131 * marking it as completed before it's reachable would be incorrect:
132 */
133 unsigned long will_make_reachable;
134
135 struct open_buckets ob;
136
137 /* lru list */
138 struct list_head list;
139 };
140
141 #define BCH_BTREE_CACHE_NOT_FREED_REASONS() \
142 x(lock_intent) \
143 x(lock_write) \
144 x(dirty) \
145 x(read_in_flight) \
146 x(write_in_flight) \
147 x(noevict) \
148 x(write_blocked) \
149 x(will_make_reachable) \
150 x(access_bit)
151
152 enum bch_btree_cache_not_freed_reasons {
153 #define x(n) BCH_BTREE_CACHE_NOT_FREED_##n,
154 BCH_BTREE_CACHE_NOT_FREED_REASONS()
155 #undef x
156 BCH_BTREE_CACHE_NOT_FREED_REASONS_NR,
157 };
158
159 struct btree_cache_list {
160 unsigned idx;
161 struct shrinker *shrink;
162 struct list_head list;
163 size_t nr;
164 };
165
166 struct btree_cache {
167 struct rhashtable table;
168 bool table_init_done;
169 /*
170 * We never free a struct btree, except on shutdown - we just put it on
171 * the btree_cache_freed list and reuse it later. This simplifies the
172 * code, and it doesn't cost us much memory as the memory usage is
173 * dominated by buffers that hold the actual btree node data and those
174 * can be freed - and the number of struct btrees allocated is
175 * effectively bounded.
176 *
177 * btree_cache_freeable effectively is a small cache - we use it because
178 * high order page allocations can be rather expensive, and it's quite
179 * common to delete and allocate btree nodes in quick succession. It
180 * should never grow past ~2-3 nodes in practice.
181 */
182 struct mutex lock;
183 struct list_head freeable;
184 struct list_head freed_pcpu;
185 struct list_head freed_nonpcpu;
186 struct btree_cache_list live[2];
187
188 size_t nr_freeable;
189 size_t nr_reserve;
190 size_t nr_by_btree[BTREE_ID_NR];
191 atomic_long_t nr_dirty;
192
193 /* shrinker stats */
194 size_t nr_freed;
195 u64 not_freed[BCH_BTREE_CACHE_NOT_FREED_REASONS_NR];
196
197 /*
198 * If we need to allocate memory for a new btree node and that
199 * allocation fails, we can cannibalize another node in the btree cache
200 * to satisfy the allocation - lock to guarantee only one thread does
201 * this at a time:
202 */
203 struct task_struct *alloc_lock;
204 struct closure_waitlist alloc_wait;
205
206 struct bbpos pinned_nodes_start;
207 struct bbpos pinned_nodes_end;
208 /* btree id mask: 0 for leaves, 1 for interior */
209 u64 pinned_nodes_mask[2];
210 };
211
212 struct btree_node_iter {
213 struct btree_node_iter_set {
214 u16 k, end;
215 } data[MAX_BSETS];
216 };
217
218 #define BTREE_ITER_FLAGS() \
219 x(slots) \
220 x(intent) \
221 x(prefetch) \
222 x(is_extents) \
223 x(not_extents) \
224 x(cached) \
225 x(with_key_cache) \
226 x(with_updates) \
227 x(with_journal) \
228 x(snapshot_field) \
229 x(all_snapshots) \
230 x(filter_snapshots) \
231 x(nopreserve) \
232 x(cached_nofill) \
233 x(key_cache_fill) \
234
235 #define STR_HASH_FLAGS() \
236 x(must_create) \
237 x(must_replace)
238
239 #define BTREE_UPDATE_FLAGS() \
240 x(internal_snapshot_node) \
241 x(nojournal) \
242 x(key_cache_reclaim)
243
244
245 /*
246 * BTREE_TRIGGER_norun - don't run triggers at all
247 *
248 * BTREE_TRIGGER_transactional - we're running transactional triggers as part of
249 * a transaction commit: triggers may generate new updates
250 *
251 * BTREE_TRIGGER_atomic - we're running atomic triggers during a transaction
252 * commit: we have our journal reservation, we're holding btree node write
253 * locks, and we know the transaction is going to commit (returning an error
254 * here is a fatal error, causing us to go emergency read-only)
255 *
256 * BTREE_TRIGGER_gc - we're in gc/fsck: running triggers to recalculate e.g. disk usage
257 *
258 * BTREE_TRIGGER_insert - @new is entering the btree
259 * BTREE_TRIGGER_overwrite - @old is leaving the btree
260 *
261 * BTREE_TRIGGER_bucket_invalidate - signal from bucket invalidate path to alloc
262 * trigger
263 */
264 #define BTREE_TRIGGER_FLAGS() \
265 x(norun) \
266 x(transactional) \
267 x(atomic) \
268 x(check_repair) \
269 x(gc) \
270 x(insert) \
271 x(overwrite) \
272 x(is_root) \
273 x(bucket_invalidate)
274
275 enum {
276 #define x(n) BTREE_ITER_FLAG_BIT_##n,
277 BTREE_ITER_FLAGS()
278 STR_HASH_FLAGS()
279 BTREE_UPDATE_FLAGS()
280 BTREE_TRIGGER_FLAGS()
281 #undef x
282 };
283
284 /* iter flags must fit in a u16: */
285 //BUILD_BUG_ON(BTREE_ITER_FLAG_BIT_key_cache_fill > 15);
286
287 enum btree_iter_update_trigger_flags {
288 #define x(n) BTREE_ITER_##n = 1U << BTREE_ITER_FLAG_BIT_##n,
289 BTREE_ITER_FLAGS()
290 #undef x
291 #define x(n) STR_HASH_##n = 1U << BTREE_ITER_FLAG_BIT_##n,
292 STR_HASH_FLAGS()
293 #undef x
294 #define x(n) BTREE_UPDATE_##n = 1U << BTREE_ITER_FLAG_BIT_##n,
295 BTREE_UPDATE_FLAGS()
296 #undef x
297 #define x(n) BTREE_TRIGGER_##n = 1U << BTREE_ITER_FLAG_BIT_##n,
298 BTREE_TRIGGER_FLAGS()
299 #undef x
300 };
301
302 enum btree_path_uptodate {
303 BTREE_ITER_UPTODATE = 0,
304 BTREE_ITER_NEED_RELOCK = 1,
305 BTREE_ITER_NEED_TRAVERSE = 2,
306 };
307
308 #if defined(CONFIG_BCACHEFS_LOCK_TIME_STATS) || defined(CONFIG_BCACHEFS_DEBUG)
309 #define TRACK_PATH_ALLOCATED
310 #endif
311
312 typedef u16 btree_path_idx_t;
313
314 struct btree_path {
315 btree_path_idx_t sorted_idx;
316 u8 ref;
317 u8 intent_ref;
318
319 /* btree_iter_copy starts here: */
320 struct bpos pos;
321
322 enum btree_id btree_id:5;
323 bool cached:1;
324 bool preserve:1;
325 enum btree_path_uptodate uptodate:2;
326 /*
327 * When true, failing to relock this path will cause the transaction to
328 * restart:
329 */
330 bool should_be_locked:1;
331 unsigned level:3,
332 locks_want:3;
333 u8 nodes_locked;
334
335 struct btree_path_level {
336 struct btree *b;
337 struct btree_node_iter iter;
338 u32 lock_seq;
339 #ifdef CONFIG_BCACHEFS_LOCK_TIME_STATS
340 u64 lock_taken_time;
341 #endif
342 } l[BTREE_MAX_DEPTH];
343 #ifdef TRACK_PATH_ALLOCATED
344 unsigned long ip_allocated;
345 #endif
346 };
347
path_l(struct btree_path * path)348 static inline struct btree_path_level *path_l(struct btree_path *path)
349 {
350 return path->l + path->level;
351 }
352
btree_path_ip_allocated(struct btree_path * path)353 static inline unsigned long btree_path_ip_allocated(struct btree_path *path)
354 {
355 #ifdef TRACK_PATH_ALLOCATED
356 return path->ip_allocated;
357 #else
358 return _THIS_IP_;
359 #endif
360 }
361
362 /*
363 * @pos - iterator's current position
364 * @level - current btree depth
365 * @locks_want - btree level below which we start taking intent locks
366 * @nodes_locked - bitmask indicating which nodes in @nodes are locked
367 * @nodes_intent_locked - bitmask indicating which locks are intent locks
368 */
369 struct btree_iter {
370 struct btree_trans *trans;
371 btree_path_idx_t path;
372 btree_path_idx_t update_path;
373 btree_path_idx_t key_cache_path;
374
375 enum btree_id btree_id:8;
376 u8 min_depth;
377
378 /* btree_iter_copy starts here: */
379 u16 flags;
380
381 /* When we're filtering by snapshot, the snapshot ID we're looking for: */
382 unsigned snapshot;
383
384 struct bpos pos;
385 /*
386 * Current unpacked key - so that bch2_btree_iter_next()/
387 * bch2_btree_iter_next_slot() can correctly advance pos.
388 */
389 struct bkey k;
390
391 /* BTREE_ITER_with_journal: */
392 size_t journal_idx;
393 #ifdef TRACK_PATH_ALLOCATED
394 unsigned long ip_allocated;
395 #endif
396 };
397
398 #define BKEY_CACHED_ACCESSED 0
399 #define BKEY_CACHED_DIRTY 1
400
401 struct bkey_cached {
402 struct btree_bkey_cached_common c;
403
404 unsigned long flags;
405 u16 u64s;
406 struct bkey_cached_key key;
407
408 struct rhash_head hash;
409
410 struct journal_entry_pin journal;
411 u64 seq;
412
413 struct bkey_i *k;
414 struct rcu_head rcu;
415 };
416
btree_node_pos(struct btree_bkey_cached_common * b)417 static inline struct bpos btree_node_pos(struct btree_bkey_cached_common *b)
418 {
419 return !b->cached
420 ? container_of(b, struct btree, c)->key.k.p
421 : container_of(b, struct bkey_cached, c)->key.pos;
422 }
423
424 struct btree_insert_entry {
425 unsigned flags;
426 u8 sort_order;
427 u8 bkey_type;
428 enum btree_id btree_id:8;
429 u8 level:4;
430 bool cached:1;
431 bool insert_trigger_run:1;
432 bool overwrite_trigger_run:1;
433 bool key_cache_already_flushed:1;
434 /*
435 * @old_k may be a key from the journal; @old_btree_u64s always refers
436 * to the size of the key being overwritten in the btree:
437 */
438 u8 old_btree_u64s;
439 btree_path_idx_t path;
440 struct bkey_i *k;
441 /* key being overwritten: */
442 struct bkey old_k;
443 const struct bch_val *old_v;
444 unsigned long ip_allocated;
445 };
446
447 /* Number of btree paths we preallocate, usually enough */
448 #define BTREE_ITER_INITIAL 64
449 /*
450 * Lmiit for btree_trans_too_many_iters(); this is enough that almost all code
451 * paths should run inside this limit, and if they don't it usually indicates a
452 * bug (leaking/duplicated btree paths).
453 *
454 * exception: some fsck paths
455 *
456 * bugs with excessive path usage seem to have possibly been eliminated now, so
457 * we might consider eliminating this (and btree_trans_too_many_iter()) at some
458 * point.
459 */
460 #define BTREE_ITER_NORMAL_LIMIT 256
461 /* never exceed limit */
462 #define BTREE_ITER_MAX (1U << 10)
463
464 struct btree_trans_commit_hook;
465 typedef int (btree_trans_commit_hook_fn)(struct btree_trans *, struct btree_trans_commit_hook *);
466
467 struct btree_trans_commit_hook {
468 btree_trans_commit_hook_fn *fn;
469 struct btree_trans_commit_hook *next;
470 };
471
472 #define BTREE_TRANS_MEM_MAX (1U << 16)
473
474 #define BTREE_TRANS_MAX_LOCK_HOLD_TIME_NS 10000
475
476 struct btree_trans_paths {
477 unsigned long nr_paths;
478 struct btree_path paths[];
479 };
480
481 struct btree_trans {
482 struct bch_fs *c;
483
484 unsigned long *paths_allocated;
485 struct btree_path *paths;
486 btree_path_idx_t *sorted;
487 struct btree_insert_entry *updates;
488
489 void *mem;
490 unsigned mem_top;
491 unsigned mem_bytes;
492
493 btree_path_idx_t nr_sorted;
494 btree_path_idx_t nr_paths;
495 btree_path_idx_t nr_paths_max;
496 btree_path_idx_t nr_updates;
497 u8 fn_idx;
498 u8 lock_must_abort;
499 bool lock_may_not_fail:1;
500 bool srcu_held:1;
501 bool locked:1;
502 bool pf_memalloc_nofs:1;
503 bool write_locked:1;
504 bool used_mempool:1;
505 bool in_traverse_all:1;
506 bool paths_sorted:1;
507 bool memory_allocation_failure:1;
508 bool journal_transaction_names:1;
509 bool journal_replay_not_finished:1;
510 bool notrace_relock_fail:1;
511 enum bch_errcode restarted:16;
512 u32 restart_count;
513 #ifdef CONFIG_BCACHEFS_INJECT_TRANSACTION_RESTARTS
514 u32 restart_count_this_trans;
515 #endif
516
517 u64 last_begin_time;
518 unsigned long last_begin_ip;
519 unsigned long last_restarted_ip;
520 #ifdef CONFIG_BCACHEFS_DEBUG
521 bch_stacktrace last_restarted_trace;
522 #endif
523 unsigned long last_unlock_ip;
524 unsigned long srcu_lock_time;
525
526 const char *fn;
527 struct btree_bkey_cached_common *locking;
528 struct six_lock_waiter locking_wait;
529 int srcu_idx;
530
531 /* update path: */
532 u16 journal_entries_u64s;
533 u16 journal_entries_size;
534 struct jset_entry *journal_entries;
535
536 struct btree_trans_commit_hook *hooks;
537 struct journal_entry_pin *journal_pin;
538
539 struct journal_res journal_res;
540 u64 *journal_seq;
541 struct disk_reservation *disk_res;
542
543 struct bch_fs_usage_base fs_usage_delta;
544
545 unsigned journal_u64s;
546 unsigned extra_disk_res; /* XXX kill */
547
548 #ifdef CONFIG_DEBUG_LOCK_ALLOC
549 struct lockdep_map dep_map;
550 #endif
551 /* Entries before this are zeroed out on every bch2_trans_get() call */
552
553 struct list_head list;
554 struct closure ref;
555
556 unsigned long _paths_allocated[BITS_TO_LONGS(BTREE_ITER_INITIAL)];
557 struct btree_trans_paths trans_paths;
558 struct btree_path _paths[BTREE_ITER_INITIAL];
559 btree_path_idx_t _sorted[BTREE_ITER_INITIAL + 4];
560 struct btree_insert_entry _updates[BTREE_ITER_INITIAL];
561 };
562
btree_iter_path(struct btree_trans * trans,struct btree_iter * iter)563 static inline struct btree_path *btree_iter_path(struct btree_trans *trans, struct btree_iter *iter)
564 {
565 return trans->paths + iter->path;
566 }
567
btree_iter_key_cache_path(struct btree_trans * trans,struct btree_iter * iter)568 static inline struct btree_path *btree_iter_key_cache_path(struct btree_trans *trans, struct btree_iter *iter)
569 {
570 return iter->key_cache_path
571 ? trans->paths + iter->key_cache_path
572 : NULL;
573 }
574
575 #define BCH_BTREE_WRITE_TYPES() \
576 x(initial, 0) \
577 x(init_next_bset, 1) \
578 x(cache_reclaim, 2) \
579 x(journal_reclaim, 3) \
580 x(interior, 4)
581
582 enum btree_write_type {
583 #define x(t, n) BTREE_WRITE_##t,
584 BCH_BTREE_WRITE_TYPES()
585 #undef x
586 BTREE_WRITE_TYPE_NR,
587 };
588
589 #define BTREE_WRITE_TYPE_MASK (roundup_pow_of_two(BTREE_WRITE_TYPE_NR) - 1)
590 #define BTREE_WRITE_TYPE_BITS ilog2(roundup_pow_of_two(BTREE_WRITE_TYPE_NR))
591
592 #define BTREE_FLAGS() \
593 x(read_in_flight) \
594 x(read_error) \
595 x(dirty) \
596 x(need_write) \
597 x(write_blocked) \
598 x(will_make_reachable) \
599 x(noevict) \
600 x(write_idx) \
601 x(accessed) \
602 x(write_in_flight) \
603 x(write_in_flight_inner) \
604 x(just_written) \
605 x(dying) \
606 x(fake) \
607 x(need_rewrite) \
608 x(never_write) \
609 x(pinned)
610
611 enum btree_flags {
612 /* First bits for btree node write type */
613 BTREE_NODE_FLAGS_START = BTREE_WRITE_TYPE_BITS - 1,
614 #define x(flag) BTREE_NODE_##flag,
615 BTREE_FLAGS()
616 #undef x
617 };
618
619 #define x(flag) \
620 static inline bool btree_node_ ## flag(struct btree *b) \
621 { return test_bit(BTREE_NODE_ ## flag, &b->flags); } \
622 \
623 static inline void set_btree_node_ ## flag(struct btree *b) \
624 { set_bit(BTREE_NODE_ ## flag, &b->flags); } \
625 \
626 static inline void clear_btree_node_ ## flag(struct btree *b) \
627 { clear_bit(BTREE_NODE_ ## flag, &b->flags); }
628
BTREE_FLAGS()629 BTREE_FLAGS()
630 #undef x
631
632 static inline struct btree_write *btree_current_write(struct btree *b)
633 {
634 return b->writes + btree_node_write_idx(b);
635 }
636
btree_prev_write(struct btree * b)637 static inline struct btree_write *btree_prev_write(struct btree *b)
638 {
639 return b->writes + (btree_node_write_idx(b) ^ 1);
640 }
641
bset_tree_last(struct btree * b)642 static inline struct bset_tree *bset_tree_last(struct btree *b)
643 {
644 EBUG_ON(!b->nsets);
645 return b->set + b->nsets - 1;
646 }
647
648 static inline void *
__btree_node_offset_to_ptr(const struct btree * b,u16 offset)649 __btree_node_offset_to_ptr(const struct btree *b, u16 offset)
650 {
651 return (void *) ((u64 *) b->data + 1 + offset);
652 }
653
654 static inline u16
__btree_node_ptr_to_offset(const struct btree * b,const void * p)655 __btree_node_ptr_to_offset(const struct btree *b, const void *p)
656 {
657 u16 ret = (u64 *) p - 1 - (u64 *) b->data;
658
659 EBUG_ON(__btree_node_offset_to_ptr(b, ret) != p);
660 return ret;
661 }
662
bset(const struct btree * b,const struct bset_tree * t)663 static inline struct bset *bset(const struct btree *b,
664 const struct bset_tree *t)
665 {
666 return __btree_node_offset_to_ptr(b, t->data_offset);
667 }
668
set_btree_bset_end(struct btree * b,struct bset_tree * t)669 static inline void set_btree_bset_end(struct btree *b, struct bset_tree *t)
670 {
671 t->end_offset =
672 __btree_node_ptr_to_offset(b, vstruct_last(bset(b, t)));
673 }
674
set_btree_bset(struct btree * b,struct bset_tree * t,const struct bset * i)675 static inline void set_btree_bset(struct btree *b, struct bset_tree *t,
676 const struct bset *i)
677 {
678 t->data_offset = __btree_node_ptr_to_offset(b, i);
679 set_btree_bset_end(b, t);
680 }
681
btree_bset_first(struct btree * b)682 static inline struct bset *btree_bset_first(struct btree *b)
683 {
684 return bset(b, b->set);
685 }
686
btree_bset_last(struct btree * b)687 static inline struct bset *btree_bset_last(struct btree *b)
688 {
689 return bset(b, bset_tree_last(b));
690 }
691
692 static inline u16
__btree_node_key_to_offset(const struct btree * b,const struct bkey_packed * k)693 __btree_node_key_to_offset(const struct btree *b, const struct bkey_packed *k)
694 {
695 return __btree_node_ptr_to_offset(b, k);
696 }
697
698 static inline struct bkey_packed *
__btree_node_offset_to_key(const struct btree * b,u16 k)699 __btree_node_offset_to_key(const struct btree *b, u16 k)
700 {
701 return __btree_node_offset_to_ptr(b, k);
702 }
703
btree_bkey_first_offset(const struct bset_tree * t)704 static inline unsigned btree_bkey_first_offset(const struct bset_tree *t)
705 {
706 return t->data_offset + offsetof(struct bset, _data) / sizeof(u64);
707 }
708
709 #define btree_bkey_first(_b, _t) \
710 ({ \
711 EBUG_ON(bset(_b, _t)->start != \
712 __btree_node_offset_to_key(_b, btree_bkey_first_offset(_t)));\
713 \
714 bset(_b, _t)->start; \
715 })
716
717 #define btree_bkey_last(_b, _t) \
718 ({ \
719 EBUG_ON(__btree_node_offset_to_key(_b, (_t)->end_offset) != \
720 vstruct_last(bset(_b, _t))); \
721 \
722 __btree_node_offset_to_key(_b, (_t)->end_offset); \
723 })
724
bset_u64s(struct bset_tree * t)725 static inline unsigned bset_u64s(struct bset_tree *t)
726 {
727 return t->end_offset - t->data_offset -
728 sizeof(struct bset) / sizeof(u64);
729 }
730
bset_dead_u64s(struct btree * b,struct bset_tree * t)731 static inline unsigned bset_dead_u64s(struct btree *b, struct bset_tree *t)
732 {
733 return bset_u64s(t) - b->nr.bset_u64s[t - b->set];
734 }
735
bset_byte_offset(struct btree * b,void * i)736 static inline unsigned bset_byte_offset(struct btree *b, void *i)
737 {
738 return i - (void *) b->data;
739 }
740
741 enum btree_node_type {
742 BKEY_TYPE_btree,
743 #define x(kwd, val, ...) BKEY_TYPE_##kwd = val + 1,
744 BCH_BTREE_IDS()
745 #undef x
746 BKEY_TYPE_NR
747 };
748
749 /* Type of a key in btree @id at level @level: */
__btree_node_type(unsigned level,enum btree_id id)750 static inline enum btree_node_type __btree_node_type(unsigned level, enum btree_id id)
751 {
752 return level ? BKEY_TYPE_btree : (unsigned) id + 1;
753 }
754
755 /* Type of keys @b contains: */
btree_node_type(struct btree * b)756 static inline enum btree_node_type btree_node_type(struct btree *b)
757 {
758 return __btree_node_type(b->c.level, b->c.btree_id);
759 }
760
761 const char *bch2_btree_node_type_str(enum btree_node_type);
762
763 #define BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS \
764 (BIT_ULL(BKEY_TYPE_extents)| \
765 BIT_ULL(BKEY_TYPE_alloc)| \
766 BIT_ULL(BKEY_TYPE_inodes)| \
767 BIT_ULL(BKEY_TYPE_stripes)| \
768 BIT_ULL(BKEY_TYPE_reflink)| \
769 BIT_ULL(BKEY_TYPE_subvolumes)| \
770 BIT_ULL(BKEY_TYPE_btree))
771
772 #define BTREE_NODE_TYPE_HAS_ATOMIC_TRIGGERS \
773 (BIT_ULL(BKEY_TYPE_alloc)| \
774 BIT_ULL(BKEY_TYPE_inodes)| \
775 BIT_ULL(BKEY_TYPE_stripes)| \
776 BIT_ULL(BKEY_TYPE_snapshots))
777
778 #define BTREE_NODE_TYPE_HAS_TRIGGERS \
779 (BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS| \
780 BTREE_NODE_TYPE_HAS_ATOMIC_TRIGGERS)
781
btree_node_type_has_trans_triggers(enum btree_node_type type)782 static inline bool btree_node_type_has_trans_triggers(enum btree_node_type type)
783 {
784 return BIT_ULL(type) & BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS;
785 }
786
btree_node_type_has_atomic_triggers(enum btree_node_type type)787 static inline bool btree_node_type_has_atomic_triggers(enum btree_node_type type)
788 {
789 return BIT_ULL(type) & BTREE_NODE_TYPE_HAS_ATOMIC_TRIGGERS;
790 }
791
btree_node_type_has_triggers(enum btree_node_type type)792 static inline bool btree_node_type_has_triggers(enum btree_node_type type)
793 {
794 return BIT_ULL(type) & BTREE_NODE_TYPE_HAS_TRIGGERS;
795 }
796
btree_id_is_extents(enum btree_id btree)797 static inline bool btree_id_is_extents(enum btree_id btree)
798 {
799 const u64 mask = 0
800 #define x(name, nr, flags, ...) |((!!((flags) & BTREE_IS_extents)) << nr)
801 BCH_BTREE_IDS()
802 #undef x
803 ;
804
805 return BIT_ULL(btree) & mask;
806 }
807
btree_node_type_is_extents(enum btree_node_type type)808 static inline bool btree_node_type_is_extents(enum btree_node_type type)
809 {
810 return type != BKEY_TYPE_btree && btree_id_is_extents(type - 1);
811 }
812
btree_type_has_snapshots(enum btree_id btree)813 static inline bool btree_type_has_snapshots(enum btree_id btree)
814 {
815 const u64 mask = 0
816 #define x(name, nr, flags, ...) |((!!((flags) & BTREE_IS_snapshots)) << nr)
817 BCH_BTREE_IDS()
818 #undef x
819 ;
820
821 return BIT_ULL(btree) & mask;
822 }
823
btree_type_has_snapshot_field(enum btree_id btree)824 static inline bool btree_type_has_snapshot_field(enum btree_id btree)
825 {
826 const u64 mask = 0
827 #define x(name, nr, flags, ...) |((!!((flags) & (BTREE_IS_snapshot_field|BTREE_IS_snapshots))) << nr)
828 BCH_BTREE_IDS()
829 #undef x
830 ;
831
832 return BIT_ULL(btree) & mask;
833 }
834
btree_type_has_ptrs(enum btree_id btree)835 static inline bool btree_type_has_ptrs(enum btree_id btree)
836 {
837 const u64 mask = 0
838 #define x(name, nr, flags, ...) |((!!((flags) & BTREE_IS_data)) << nr)
839 BCH_BTREE_IDS()
840 #undef x
841 ;
842
843 return BIT_ULL(btree) & mask;
844 }
845
btree_type_uses_write_buffer(enum btree_id btree)846 static inline bool btree_type_uses_write_buffer(enum btree_id btree)
847 {
848 const u64 mask = 0
849 #define x(name, nr, flags, ...) |((!!((flags) & BTREE_IS_write_buffer)) << nr)
850 BCH_BTREE_IDS()
851 #undef x
852 ;
853
854 return BIT_ULL(btree) & mask;
855 }
856
btree_trigger_order(enum btree_id btree)857 static inline u8 btree_trigger_order(enum btree_id btree)
858 {
859 switch (btree) {
860 case BTREE_ID_alloc:
861 return U8_MAX;
862 case BTREE_ID_stripes:
863 return U8_MAX - 1;
864 default:
865 return btree;
866 }
867 }
868
869 struct btree_root {
870 struct btree *b;
871
872 /* On disk root - see async splits: */
873 __BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX);
874 u8 level;
875 u8 alive;
876 s16 error;
877 };
878
879 enum btree_gc_coalesce_fail_reason {
880 BTREE_GC_COALESCE_FAIL_RESERVE_GET,
881 BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC,
882 BTREE_GC_COALESCE_FAIL_FORMAT_FITS,
883 };
884
885 enum btree_node_sibling {
886 btree_prev_sib,
887 btree_next_sib,
888 };
889
890 struct get_locks_fail {
891 unsigned l;
892 struct btree *b;
893 };
894
895 #endif /* _BCACHEFS_BTREE_TYPES_H */
896