1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_BTREE_UPDATE_INTERIOR_H
3 #define _BCACHEFS_BTREE_UPDATE_INTERIOR_H
4
5 #include "btree_cache.h"
6 #include "btree_locking.h"
7 #include "btree_update.h"
8
9 #define BTREE_UPDATE_NODES_MAX ((BTREE_MAX_DEPTH - 2) * 2 + GC_MERGE_NODES)
10
11 #define BTREE_UPDATE_JOURNAL_RES (BTREE_UPDATE_NODES_MAX * (BKEY_BTREE_PTR_U64s_MAX + 1))
12
13 int bch2_btree_node_check_topology(struct btree_trans *, struct btree *);
14
15 #define BTREE_UPDATE_MODES() \
16 x(none) \
17 x(node) \
18 x(root) \
19 x(update)
20
21 enum btree_update_mode {
22 #define x(n) BTREE_UPDATE_##n,
23 BTREE_UPDATE_MODES()
24 #undef x
25 };
26
27 /*
28 * Tracks an in progress split/rewrite of a btree node and the update to the
29 * parent node:
30 *
31 * When we split/rewrite a node, we do all the updates in memory without
32 * waiting for any writes to complete - we allocate the new node(s) and update
33 * the parent node, possibly recursively up to the root.
34 *
35 * The end result is that we have one or more new nodes being written -
36 * possibly several, if there were multiple splits - and then a write (updating
37 * an interior node) which will make all these new nodes visible.
38 *
39 * Additionally, as we split/rewrite nodes we free the old nodes - but the old
40 * nodes can't be freed (their space on disk can't be reclaimed) until the
41 * update to the interior node that makes the new node visible completes -
42 * until then, the old nodes are still reachable on disk.
43 *
44 */
45 struct btree_update {
46 struct closure cl;
47 struct bch_fs *c;
48 u64 start_time;
49 unsigned long ip_started;
50
51 struct list_head list;
52 struct list_head unwritten_list;
53
54 enum btree_update_mode mode;
55 enum bch_trans_commit_flags flags;
56 unsigned nodes_written:1;
57 unsigned took_gc_lock:1;
58
59 enum btree_id btree_id;
60 struct bpos node_start;
61 struct bpos node_end;
62 enum btree_node_rewrite_reason node_needed_rewrite;
63 u16 node_written;
64 u16 node_sectors;
65 u16 node_remaining;
66
67 unsigned update_level_start;
68 unsigned update_level_end;
69
70 struct disk_reservation disk_res;
71
72 /*
73 * BTREE_UPDATE_node:
74 * The update that made the new nodes visible was a regular update to an
75 * existing interior node - @b. We can't write out the update to @b
76 * until the new nodes we created are finished writing, so we block @b
77 * from writing by putting this btree_interior update on the
78 * @b->write_blocked list with @write_blocked_list:
79 */
80 struct btree *b;
81 struct list_head write_blocked_list;
82
83 /*
84 * We may be freeing nodes that were dirty, and thus had journal entries
85 * pinned: we need to transfer the oldest of those pins to the
86 * btree_update operation, and release it when the new node(s)
87 * are all persistent and reachable:
88 */
89 struct journal_entry_pin journal;
90
91 /* Preallocated nodes we reserve when we start the update: */
92 struct prealloc_nodes {
93 struct btree *b[BTREE_UPDATE_NODES_MAX];
94 unsigned nr;
95 } prealloc_nodes[2];
96
97 /* Nodes being freed: */
98 struct keylist old_keys;
99 u64 _old_keys[BTREE_UPDATE_NODES_MAX *
100 BKEY_BTREE_PTR_U64s_MAX];
101
102 /* Nodes being added: */
103 struct keylist new_keys;
104 u64 _new_keys[BTREE_UPDATE_NODES_MAX *
105 BKEY_BTREE_PTR_U64s_MAX];
106
107 /* New nodes, that will be made reachable by this update: */
108 struct btree *new_nodes[BTREE_UPDATE_NODES_MAX];
109 unsigned nr_new_nodes;
110
111 struct btree *old_nodes[BTREE_UPDATE_NODES_MAX];
112 __le64 old_nodes_seq[BTREE_UPDATE_NODES_MAX];
113 unsigned nr_old_nodes;
114
115 open_bucket_idx_t open_buckets[BTREE_UPDATE_NODES_MAX *
116 BCH_REPLICAS_MAX];
117 open_bucket_idx_t nr_open_buckets;
118
119 unsigned journal_u64s;
120 u64 journal_entries[BTREE_UPDATE_JOURNAL_RES];
121
122 /* Only here to reduce stack usage on recursive splits: */
123 struct keylist parent_keys;
124 /*
125 * Enough room for btree_split's keys without realloc - btree node
126 * pointers never have crc/compression info, so we only need to acount
127 * for the pointers for three keys
128 */
129 u64 inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3];
130 };
131
132 struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *,
133 struct btree_trans *,
134 struct btree *,
135 struct bkey_format);
136
137 int bch2_btree_split_leaf(struct btree_trans *, btree_path_idx_t, unsigned);
138
139 int bch2_btree_increase_depth(struct btree_trans *, btree_path_idx_t, unsigned);
140
141 int __bch2_foreground_maybe_merge(struct btree_trans *, btree_path_idx_t,
142 unsigned, unsigned, enum btree_node_sibling);
143
bch2_foreground_maybe_merge_sibling(struct btree_trans * trans,btree_path_idx_t path_idx,unsigned level,unsigned flags,enum btree_node_sibling sib)144 static inline int bch2_foreground_maybe_merge_sibling(struct btree_trans *trans,
145 btree_path_idx_t path_idx,
146 unsigned level, unsigned flags,
147 enum btree_node_sibling sib)
148 {
149 struct btree_path *path = trans->paths + path_idx;
150 struct btree *b;
151
152 EBUG_ON(!btree_node_locked(path, level));
153
154 if (static_branch_unlikely(&bch2_btree_node_merging_disabled))
155 return 0;
156
157 b = path->l[level].b;
158 if (b->sib_u64s[sib] > trans->c->btree_foreground_merge_threshold)
159 return 0;
160
161 return __bch2_foreground_maybe_merge(trans, path_idx, level, flags, sib);
162 }
163
bch2_foreground_maybe_merge(struct btree_trans * trans,btree_path_idx_t path,unsigned level,unsigned flags)164 static inline int bch2_foreground_maybe_merge(struct btree_trans *trans,
165 btree_path_idx_t path,
166 unsigned level,
167 unsigned flags)
168 {
169 bch2_trans_verify_not_unlocked_or_in_restart(trans);
170
171 return bch2_foreground_maybe_merge_sibling(trans, path, level, flags,
172 btree_prev_sib) ?:
173 bch2_foreground_maybe_merge_sibling(trans, path, level, flags,
174 btree_next_sib);
175 }
176
177 int bch2_btree_node_rewrite(struct btree_trans *, struct btree_iter *,
178 struct btree *, unsigned, unsigned);
179 int bch2_btree_node_rewrite_key(struct btree_trans *,
180 enum btree_id, unsigned,
181 struct bkey_i *, unsigned);
182 int bch2_btree_node_rewrite_pos(struct btree_trans *,
183 enum btree_id, unsigned,
184 struct bpos, unsigned, unsigned);
185 int bch2_btree_node_rewrite_key_get_iter(struct btree_trans *,
186 struct btree *, unsigned);
187
188 void bch2_btree_node_rewrite_async(struct bch_fs *, struct btree *);
189
190 int bch2_btree_node_update_key(struct btree_trans *, struct btree_iter *,
191 struct btree *, struct bkey_i *,
192 unsigned, bool);
193 int bch2_btree_node_update_key_get_iter(struct btree_trans *, struct btree *,
194 struct bkey_i *, unsigned, bool);
195
196 void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *);
197
198 int bch2_btree_root_alloc_fake_trans(struct btree_trans *, enum btree_id, unsigned);
199 void bch2_btree_root_alloc_fake(struct bch_fs *, enum btree_id, unsigned);
200
btree_update_reserve_required(struct bch_fs * c,struct btree * b)201 static inline unsigned btree_update_reserve_required(struct bch_fs *c,
202 struct btree *b)
203 {
204 unsigned depth = btree_node_root(c, b)->c.level + 1;
205
206 /*
207 * Number of nodes we might have to allocate in a worst case btree
208 * split operation - we split all the way up to the root, then allocate
209 * a new root, unless we're already at max depth:
210 */
211 if (depth < BTREE_MAX_DEPTH)
212 return (depth - b->c.level) * 2 + 1;
213 else
214 return (depth - b->c.level) * 2 - 1;
215 }
216
btree_node_reset_sib_u64s(struct btree * b)217 static inline void btree_node_reset_sib_u64s(struct btree *b)
218 {
219 b->sib_u64s[0] = b->nr.live_u64s;
220 b->sib_u64s[1] = b->nr.live_u64s;
221 }
222
btree_data_end(struct btree * b)223 static inline void *btree_data_end(struct btree *b)
224 {
225 return (void *) b->data + btree_buf_bytes(b);
226 }
227
unwritten_whiteouts_start(struct btree * b)228 static inline struct bkey_packed *unwritten_whiteouts_start(struct btree *b)
229 {
230 return (void *) ((u64 *) btree_data_end(b) - b->whiteout_u64s);
231 }
232
unwritten_whiteouts_end(struct btree * b)233 static inline struct bkey_packed *unwritten_whiteouts_end(struct btree *b)
234 {
235 return btree_data_end(b);
236 }
237
write_block(struct btree * b)238 static inline void *write_block(struct btree *b)
239 {
240 return (void *) b->data + (b->written << 9);
241 }
242
__btree_addr_written(struct btree * b,void * p)243 static inline bool __btree_addr_written(struct btree *b, void *p)
244 {
245 return p < write_block(b);
246 }
247
bset_written(struct btree * b,struct bset * i)248 static inline bool bset_written(struct btree *b, struct bset *i)
249 {
250 return __btree_addr_written(b, i);
251 }
252
bkey_written(struct btree * b,struct bkey_packed * k)253 static inline bool bkey_written(struct btree *b, struct bkey_packed *k)
254 {
255 return __btree_addr_written(b, k);
256 }
257
__bch2_btree_u64s_remaining(struct btree * b,void * end)258 static inline ssize_t __bch2_btree_u64s_remaining(struct btree *b, void *end)
259 {
260 ssize_t used = bset_byte_offset(b, end) / sizeof(u64) +
261 b->whiteout_u64s;
262 ssize_t total = btree_buf_bytes(b) >> 3;
263
264 /* Always leave one extra u64 for bch2_varint_decode: */
265 used++;
266
267 return total - used;
268 }
269
bch2_btree_keys_u64s_remaining(struct btree * b)270 static inline size_t bch2_btree_keys_u64s_remaining(struct btree *b)
271 {
272 ssize_t remaining = __bch2_btree_u64s_remaining(b,
273 btree_bkey_last(b, bset_tree_last(b)));
274
275 BUG_ON(remaining < 0);
276
277 if (bset_written(b, btree_bset_last(b)))
278 return 0;
279
280 return remaining;
281 }
282
283 #define BTREE_WRITE_SET_U64s_BITS 9
284
btree_write_set_buffer(struct btree * b)285 static inline unsigned btree_write_set_buffer(struct btree *b)
286 {
287 /*
288 * Could buffer up larger amounts of keys for btrees with larger keys,
289 * pending benchmarking:
290 */
291 return 8 << BTREE_WRITE_SET_U64s_BITS;
292 }
293
want_new_bset(struct bch_fs * c,struct btree * b)294 static inline struct btree_node_entry *want_new_bset(struct bch_fs *c, struct btree *b)
295 {
296 struct bset_tree *t = bset_tree_last(b);
297 struct btree_node_entry *bne = max(write_block(b),
298 (void *) btree_bkey_last(b, t));
299 ssize_t remaining_space =
300 __bch2_btree_u64s_remaining(b, bne->keys.start);
301
302 if (unlikely(bset_written(b, bset(b, t)))) {
303 if (b->written + block_sectors(c) <= btree_sectors(c))
304 return bne;
305 } else {
306 if (unlikely(bset_u64s(t) * sizeof(u64) > btree_write_set_buffer(b)) &&
307 remaining_space > (ssize_t) (btree_write_set_buffer(b) >> 3))
308 return bne;
309 }
310
311 return NULL;
312 }
313
push_whiteout(struct btree * b,struct bpos pos)314 static inline void push_whiteout(struct btree *b, struct bpos pos)
315 {
316 struct bkey_packed k;
317
318 BUG_ON(bch2_btree_keys_u64s_remaining(b) < BKEY_U64s);
319 EBUG_ON(btree_node_just_written(b));
320
321 if (!bkey_pack_pos(&k, pos, b)) {
322 struct bkey *u = (void *) &k;
323
324 bkey_init(u);
325 u->p = pos;
326 }
327
328 k.needs_whiteout = true;
329
330 b->whiteout_u64s += k.u64s;
331 bkey_p_copy(unwritten_whiteouts_start(b), &k);
332 }
333
334 /*
335 * write lock must be held on @b (else the dirty bset that we were going to
336 * insert into could be written out from under us)
337 */
bch2_btree_node_insert_fits(struct btree * b,unsigned u64s)338 static inline bool bch2_btree_node_insert_fits(struct btree *b, unsigned u64s)
339 {
340 if (unlikely(btree_node_need_rewrite(b)))
341 return false;
342
343 return u64s <= bch2_btree_keys_u64s_remaining(b);
344 }
345
346 void bch2_btree_updates_to_text(struct printbuf *, struct bch_fs *);
347
348 bool bch2_btree_interior_updates_flush(struct bch_fs *);
349
350 void bch2_journal_entry_to_btree_root(struct bch_fs *, struct jset_entry *);
351 struct jset_entry *bch2_btree_roots_to_journal_entries(struct bch_fs *,
352 struct jset_entry *, unsigned long);
353
354 void bch2_async_btree_node_rewrites_flush(struct bch_fs *);
355 void bch2_do_pending_node_rewrites(struct bch_fs *);
356 void bch2_free_pending_node_rewrites(struct bch_fs *);
357
358 void bch2_btree_reserve_cache_to_text(struct printbuf *, struct bch_fs *);
359
360 void bch2_fs_btree_interior_update_exit(struct bch_fs *);
361 void bch2_fs_btree_interior_update_init_early(struct bch_fs *);
362 int bch2_fs_btree_interior_update_init(struct bch_fs *);
363
364 #endif /* _BCACHEFS_BTREE_UPDATE_INTERIOR_H */
365