xref: /linux/kernel/cgroup/cpuset.c (revision 8449d3252c2603a51ffc7c36cb5bd94874378b7d)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 #include "cpuset-internal.h"
25 
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/kernel.h>
29 #include <linux/mempolicy.h>
30 #include <linux/mm.h>
31 #include <linux/memory.h>
32 #include <linux/export.h>
33 #include <linux/rcupdate.h>
34 #include <linux/sched.h>
35 #include <linux/sched/deadline.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/task.h>
38 #include <linux/security.h>
39 #include <linux/oom.h>
40 #include <linux/sched/isolation.h>
41 #include <linux/wait.h>
42 #include <linux/workqueue.h>
43 #include <linux/task_work.h>
44 
45 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
46 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
47 
48 /*
49  * There could be abnormal cpuset configurations for cpu or memory
50  * node binding, add this key to provide a quick low-cost judgment
51  * of the situation.
52  */
53 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
54 
55 static const char * const perr_strings[] = {
56 	[PERR_INVCPUS]   = "Invalid cpu list in cpuset.cpus.exclusive",
57 	[PERR_INVPARENT] = "Parent is an invalid partition root",
58 	[PERR_NOTPART]   = "Parent is not a partition root",
59 	[PERR_NOTEXCL]   = "Cpu list in cpuset.cpus not exclusive",
60 	[PERR_NOCPUS]    = "Parent unable to distribute cpu downstream",
61 	[PERR_HOTPLUG]   = "No cpu available due to hotplug",
62 	[PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty",
63 	[PERR_HKEEPING]  = "partition config conflicts with housekeeping setup",
64 	[PERR_ACCESS]    = "Enable partition not permitted",
65 	[PERR_REMOTE]    = "Have remote partition underneath",
66 };
67 
68 /*
69  * For local partitions, update to subpartitions_cpus & isolated_cpus is done
70  * in update_parent_effective_cpumask(). For remote partitions, it is done in
71  * the remote_partition_*() and remote_cpus_update() helpers.
72  */
73 /*
74  * Exclusive CPUs distributed out to local or remote sub-partitions of
75  * top_cpuset
76  */
77 static cpumask_var_t	subpartitions_cpus;
78 
79 /*
80  * Exclusive CPUs in isolated partitions
81  */
82 static cpumask_var_t	isolated_cpus;
83 
84 /*
85  * isolated_cpus updating flag (protected by cpuset_mutex)
86  * Set if isolated_cpus is going to be updated in the current
87  * cpuset_mutex crtical section.
88  */
89 static bool isolated_cpus_updating;
90 
91 /*
92  * Housekeeping (HK_TYPE_DOMAIN) CPUs at boot
93  */
94 static cpumask_var_t	boot_hk_cpus;
95 static bool		have_boot_isolcpus;
96 
97 /*
98  * A flag to force sched domain rebuild at the end of an operation.
99  * It can be set in
100  *  - update_partition_sd_lb()
101  *  - update_cpumasks_hier()
102  *  - cpuset_update_flag()
103  *  - cpuset_hotplug_update_tasks()
104  *  - cpuset_handle_hotplug()
105  *
106  * Protected by cpuset_mutex (with cpus_read_lock held) or cpus_write_lock.
107  *
108  * Note that update_relax_domain_level() in cpuset-v1.c can still call
109  * rebuild_sched_domains_locked() directly without using this flag.
110  */
111 static bool force_sd_rebuild;
112 
113 /*
114  * Partition root states:
115  *
116  *   0 - member (not a partition root)
117  *   1 - partition root
118  *   2 - partition root without load balancing (isolated)
119  *  -1 - invalid partition root
120  *  -2 - invalid isolated partition root
121  *
122  *  There are 2 types of partitions - local or remote. Local partitions are
123  *  those whose parents are partition root themselves. Setting of
124  *  cpuset.cpus.exclusive are optional in setting up local partitions.
125  *  Remote partitions are those whose parents are not partition roots. Passing
126  *  down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor
127  *  nodes are mandatory in creating a remote partition.
128  *
129  *  For simplicity, a local partition can be created under a local or remote
130  *  partition but a remote partition cannot have any partition root in its
131  *  ancestor chain except the cgroup root.
132  */
133 #define PRS_MEMBER		0
134 #define PRS_ROOT		1
135 #define PRS_ISOLATED		2
136 #define PRS_INVALID_ROOT	-1
137 #define PRS_INVALID_ISOLATED	-2
138 
139 /*
140  * Temporary cpumasks for working with partitions that are passed among
141  * functions to avoid memory allocation in inner functions.
142  */
143 struct tmpmasks {
144 	cpumask_var_t addmask, delmask;	/* For partition root */
145 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
146 };
147 
inc_dl_tasks_cs(struct task_struct * p)148 void inc_dl_tasks_cs(struct task_struct *p)
149 {
150 	struct cpuset *cs = task_cs(p);
151 
152 	cs->nr_deadline_tasks++;
153 }
154 
dec_dl_tasks_cs(struct task_struct * p)155 void dec_dl_tasks_cs(struct task_struct *p)
156 {
157 	struct cpuset *cs = task_cs(p);
158 
159 	cs->nr_deadline_tasks--;
160 }
161 
is_partition_valid(const struct cpuset * cs)162 static inline bool is_partition_valid(const struct cpuset *cs)
163 {
164 	return cs->partition_root_state > 0;
165 }
166 
is_partition_invalid(const struct cpuset * cs)167 static inline bool is_partition_invalid(const struct cpuset *cs)
168 {
169 	return cs->partition_root_state < 0;
170 }
171 
cs_is_member(const struct cpuset * cs)172 static inline bool cs_is_member(const struct cpuset *cs)
173 {
174 	return cs->partition_root_state == PRS_MEMBER;
175 }
176 
177 /*
178  * Callers should hold callback_lock to modify partition_root_state.
179  */
make_partition_invalid(struct cpuset * cs)180 static inline void make_partition_invalid(struct cpuset *cs)
181 {
182 	if (cs->partition_root_state > 0)
183 		cs->partition_root_state = -cs->partition_root_state;
184 }
185 
186 /*
187  * Send notification event of whenever partition_root_state changes.
188  */
notify_partition_change(struct cpuset * cs,int old_prs)189 static inline void notify_partition_change(struct cpuset *cs, int old_prs)
190 {
191 	if (old_prs == cs->partition_root_state)
192 		return;
193 	cgroup_file_notify(&cs->partition_file);
194 
195 	/* Reset prs_err if not invalid */
196 	if (is_partition_valid(cs))
197 		WRITE_ONCE(cs->prs_err, PERR_NONE);
198 }
199 
200 /*
201  * The top_cpuset is always synchronized to cpu_active_mask and we should avoid
202  * using cpu_online_mask as much as possible. An active CPU is always an online
203  * CPU, but not vice versa. cpu_active_mask and cpu_online_mask can differ
204  * during hotplug operations. A CPU is marked active at the last stage of CPU
205  * bringup (CPUHP_AP_ACTIVE). It is also the stage where cpuset hotplug code
206  * will be called to update the sched domains so that the scheduler can move
207  * a normal task to a newly active CPU or remove tasks away from a newly
208  * inactivated CPU. The online bit is set much earlier in the CPU bringup
209  * process and cleared much later in CPU teardown.
210  *
211  * If cpu_online_mask is used while a hotunplug operation is happening in
212  * parallel, we may leave an offline CPU in cpu_allowed or some other masks.
213  */
214 static struct cpuset top_cpuset = {
215 	.flags = BIT(CS_CPU_EXCLUSIVE) |
216 		 BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE),
217 	.partition_root_state = PRS_ROOT,
218 	.relax_domain_level = -1,
219 	.remote_partition = false,
220 };
221 
222 /*
223  * There are two global locks guarding cpuset structures - cpuset_mutex and
224  * callback_lock. The cpuset code uses only cpuset_mutex. Other kernel
225  * subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
226  * structures. Note that cpuset_mutex needs to be a mutex as it is used in
227  * paths that rely on priority inheritance (e.g. scheduler - on RT) for
228  * correctness.
229  *
230  * A task must hold both locks to modify cpusets.  If a task holds
231  * cpuset_mutex, it blocks others, ensuring that it is the only task able to
232  * also acquire callback_lock and be able to modify cpusets.  It can perform
233  * various checks on the cpuset structure first, knowing nothing will change.
234  * It can also allocate memory while just holding cpuset_mutex.  While it is
235  * performing these checks, various callback routines can briefly acquire
236  * callback_lock to query cpusets.  Once it is ready to make the changes, it
237  * takes callback_lock, blocking everyone else.
238  *
239  * Calls to the kernel memory allocator can not be made while holding
240  * callback_lock, as that would risk double tripping on callback_lock
241  * from one of the callbacks into the cpuset code from within
242  * __alloc_pages().
243  *
244  * If a task is only holding callback_lock, then it has read-only
245  * access to cpusets.
246  *
247  * Now, the task_struct fields mems_allowed and mempolicy may be changed
248  * by other task, we use alloc_lock in the task_struct fields to protect
249  * them.
250  *
251  * The cpuset_common_seq_show() handlers only hold callback_lock across
252  * small pieces of code, such as when reading out possibly multi-word
253  * cpumasks and nodemasks.
254  */
255 
256 static DEFINE_MUTEX(cpuset_mutex);
257 
258 /**
259  * cpuset_lock - Acquire the global cpuset mutex
260  *
261  * This locks the global cpuset mutex to prevent modifications to cpuset
262  * hierarchy and configurations. This helper is not enough to make modification.
263  */
cpuset_lock(void)264 void cpuset_lock(void)
265 {
266 	mutex_lock(&cpuset_mutex);
267 }
268 
cpuset_unlock(void)269 void cpuset_unlock(void)
270 {
271 	mutex_unlock(&cpuset_mutex);
272 }
273 
274 /**
275  * cpuset_full_lock - Acquire full protection for cpuset modification
276  *
277  * Takes both CPU hotplug read lock (cpus_read_lock()) and cpuset mutex
278  * to safely modify cpuset data.
279  */
cpuset_full_lock(void)280 void cpuset_full_lock(void)
281 {
282 	cpus_read_lock();
283 	mutex_lock(&cpuset_mutex);
284 }
285 
cpuset_full_unlock(void)286 void cpuset_full_unlock(void)
287 {
288 	mutex_unlock(&cpuset_mutex);
289 	cpus_read_unlock();
290 }
291 
292 static DEFINE_SPINLOCK(callback_lock);
293 
cpuset_callback_lock_irq(void)294 void cpuset_callback_lock_irq(void)
295 {
296 	spin_lock_irq(&callback_lock);
297 }
298 
cpuset_callback_unlock_irq(void)299 void cpuset_callback_unlock_irq(void)
300 {
301 	spin_unlock_irq(&callback_lock);
302 }
303 
304 static struct workqueue_struct *cpuset_migrate_mm_wq;
305 
306 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
307 
check_insane_mems_config(nodemask_t * nodes)308 static inline void check_insane_mems_config(nodemask_t *nodes)
309 {
310 	if (!cpusets_insane_config() &&
311 		movable_only_nodes(nodes)) {
312 		static_branch_enable_cpuslocked(&cpusets_insane_config_key);
313 		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
314 			"Cpuset allocations might fail even with a lot of memory available.\n",
315 			nodemask_pr_args(nodes));
316 	}
317 }
318 
319 /*
320  * decrease cs->attach_in_progress.
321  * wake_up cpuset_attach_wq if cs->attach_in_progress==0.
322  */
dec_attach_in_progress_locked(struct cpuset * cs)323 static inline void dec_attach_in_progress_locked(struct cpuset *cs)
324 {
325 	lockdep_assert_held(&cpuset_mutex);
326 
327 	cs->attach_in_progress--;
328 	if (!cs->attach_in_progress)
329 		wake_up(&cpuset_attach_wq);
330 }
331 
dec_attach_in_progress(struct cpuset * cs)332 static inline void dec_attach_in_progress(struct cpuset *cs)
333 {
334 	mutex_lock(&cpuset_mutex);
335 	dec_attach_in_progress_locked(cs);
336 	mutex_unlock(&cpuset_mutex);
337 }
338 
cpuset_v2(void)339 static inline bool cpuset_v2(void)
340 {
341 	return !IS_ENABLED(CONFIG_CPUSETS_V1) ||
342 		cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
343 }
344 
345 /*
346  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
347  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
348  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
349  * With v2 behavior, "cpus" and "mems" are always what the users have
350  * requested and won't be changed by hotplug events. Only the effective
351  * cpus or mems will be affected.
352  */
is_in_v2_mode(void)353 static inline bool is_in_v2_mode(void)
354 {
355 	return cpuset_v2() ||
356 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
357 }
358 
cpuset_is_populated(struct cpuset * cs)359 static inline bool cpuset_is_populated(struct cpuset *cs)
360 {
361 	lockdep_assert_held(&cpuset_mutex);
362 
363 	/* Cpusets in the process of attaching should be considered as populated */
364 	return cgroup_is_populated(cs->css.cgroup) ||
365 		cs->attach_in_progress;
366 }
367 
368 /**
369  * partition_is_populated - check if partition has tasks
370  * @cs: partition root to be checked
371  * @excluded_child: a child cpuset to be excluded in task checking
372  * Return: true if there are tasks, false otherwise
373  *
374  * @cs should be a valid partition root or going to become a partition root.
375  * @excluded_child should be non-NULL when this cpuset is going to become a
376  * partition itself.
377  *
378  * Note that a remote partition is not allowed underneath a valid local
379  * or remote partition. So if a non-partition root child is populated,
380  * the whole partition is considered populated.
381  */
partition_is_populated(struct cpuset * cs,struct cpuset * excluded_child)382 static inline bool partition_is_populated(struct cpuset *cs,
383 					  struct cpuset *excluded_child)
384 {
385 	struct cpuset *cp;
386 	struct cgroup_subsys_state *pos_css;
387 
388 	/*
389 	 * We cannot call cs_is_populated(cs) directly, as
390 	 * nr_populated_domain_children may include populated
391 	 * csets from descendants that are partitions.
392 	 */
393 	if (cs->css.cgroup->nr_populated_csets ||
394 	    cs->attach_in_progress)
395 		return true;
396 
397 	rcu_read_lock();
398 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
399 		if (cp == cs || cp == excluded_child)
400 			continue;
401 
402 		if (is_partition_valid(cp)) {
403 			pos_css = css_rightmost_descendant(pos_css);
404 			continue;
405 		}
406 
407 		if (cpuset_is_populated(cp)) {
408 			rcu_read_unlock();
409 			return true;
410 		}
411 	}
412 	rcu_read_unlock();
413 	return false;
414 }
415 
416 /*
417  * Return in pmask the portion of a task's cpusets's cpus_allowed that
418  * are online and are capable of running the task.  If none are found,
419  * walk up the cpuset hierarchy until we find one that does have some
420  * appropriate cpus.
421  *
422  * One way or another, we guarantee to return some non-empty subset
423  * of cpu_active_mask.
424  *
425  * Call with callback_lock or cpuset_mutex held.
426  */
guarantee_active_cpus(struct task_struct * tsk,struct cpumask * pmask)427 static void guarantee_active_cpus(struct task_struct *tsk,
428 				  struct cpumask *pmask)
429 {
430 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
431 	struct cpuset *cs;
432 
433 	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_active_mask)))
434 		cpumask_copy(pmask, cpu_active_mask);
435 
436 	rcu_read_lock();
437 	cs = task_cs(tsk);
438 
439 	while (!cpumask_intersects(cs->effective_cpus, pmask))
440 		cs = parent_cs(cs);
441 
442 	cpumask_and(pmask, pmask, cs->effective_cpus);
443 	rcu_read_unlock();
444 }
445 
446 /*
447  * Return in *pmask the portion of a cpusets's mems_allowed that
448  * are online, with memory.  If none are online with memory, walk
449  * up the cpuset hierarchy until we find one that does have some
450  * online mems.  The top cpuset always has some mems online.
451  *
452  * One way or another, we guarantee to return some non-empty subset
453  * of node_states[N_MEMORY].
454  *
455  * Call with callback_lock or cpuset_mutex held.
456  */
guarantee_online_mems(struct cpuset * cs,nodemask_t * pmask)457 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
458 {
459 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
460 		cs = parent_cs(cs);
461 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
462 }
463 
464 /**
465  * alloc_cpumasks - Allocate an array of cpumask variables
466  * @pmasks: Pointer to array of cpumask_var_t pointers
467  * @size: Number of cpumasks to allocate
468  * Return: 0 if successful, -ENOMEM otherwise.
469  *
470  * Allocates @size cpumasks and initializes them to empty. Returns 0 on
471  * success, -ENOMEM on allocation failure. On failure, any previously
472  * allocated cpumasks are freed.
473  */
alloc_cpumasks(cpumask_var_t * pmasks[],u32 size)474 static inline int alloc_cpumasks(cpumask_var_t *pmasks[], u32 size)
475 {
476 	int i;
477 
478 	for (i = 0; i < size; i++) {
479 		if (!zalloc_cpumask_var(pmasks[i], GFP_KERNEL)) {
480 			while (--i >= 0)
481 				free_cpumask_var(*pmasks[i]);
482 			return -ENOMEM;
483 		}
484 	}
485 	return 0;
486 }
487 
488 /**
489  * alloc_tmpmasks - Allocate temporary cpumasks for cpuset operations.
490  * @tmp: Pointer to tmpmasks structure to populate
491  * Return: 0 on success, -ENOMEM on allocation failure
492  */
alloc_tmpmasks(struct tmpmasks * tmp)493 static inline int alloc_tmpmasks(struct tmpmasks *tmp)
494 {
495 	/*
496 	 * Array of pointers to the three cpumask_var_t fields in tmpmasks.
497 	 * Note: Array size must match actual number of masks (3)
498 	 */
499 	cpumask_var_t *pmask[3] = {
500 		&tmp->new_cpus,
501 		&tmp->addmask,
502 		&tmp->delmask
503 	};
504 
505 	return alloc_cpumasks(pmask, ARRAY_SIZE(pmask));
506 }
507 
508 /**
509  * free_tmpmasks - free cpumasks in a tmpmasks structure
510  * @tmp: the tmpmasks structure pointer
511  */
free_tmpmasks(struct tmpmasks * tmp)512 static inline void free_tmpmasks(struct tmpmasks *tmp)
513 {
514 	if (!tmp)
515 		return;
516 
517 	free_cpumask_var(tmp->new_cpus);
518 	free_cpumask_var(tmp->addmask);
519 	free_cpumask_var(tmp->delmask);
520 }
521 
522 /**
523  * dup_or_alloc_cpuset - Duplicate or allocate a new cpuset
524  * @cs: Source cpuset to duplicate (NULL for a fresh allocation)
525  *
526  * Creates a new cpuset by either:
527  * 1. Duplicating an existing cpuset (if @cs is non-NULL), or
528  * 2. Allocating a fresh cpuset with zero-initialized masks (if @cs is NULL)
529  *
530  * Return: Pointer to newly allocated cpuset on success, NULL on failure
531  */
dup_or_alloc_cpuset(struct cpuset * cs)532 static struct cpuset *dup_or_alloc_cpuset(struct cpuset *cs)
533 {
534 	struct cpuset *trial;
535 
536 	/* Allocate base structure */
537 	trial = cs ? kmemdup(cs, sizeof(*cs), GFP_KERNEL) :
538 		     kzalloc(sizeof(*cs), GFP_KERNEL);
539 	if (!trial)
540 		return NULL;
541 
542 	/* Setup cpumask pointer array */
543 	cpumask_var_t *pmask[4] = {
544 		&trial->cpus_allowed,
545 		&trial->effective_cpus,
546 		&trial->effective_xcpus,
547 		&trial->exclusive_cpus
548 	};
549 
550 	if (alloc_cpumasks(pmask, ARRAY_SIZE(pmask))) {
551 		kfree(trial);
552 		return NULL;
553 	}
554 
555 	/* Copy masks if duplicating */
556 	if (cs) {
557 		cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
558 		cpumask_copy(trial->effective_cpus, cs->effective_cpus);
559 		cpumask_copy(trial->effective_xcpus, cs->effective_xcpus);
560 		cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus);
561 	}
562 
563 	return trial;
564 }
565 
566 /**
567  * free_cpuset - free the cpuset
568  * @cs: the cpuset to be freed
569  */
free_cpuset(struct cpuset * cs)570 static inline void free_cpuset(struct cpuset *cs)
571 {
572 	free_cpumask_var(cs->cpus_allowed);
573 	free_cpumask_var(cs->effective_cpus);
574 	free_cpumask_var(cs->effective_xcpus);
575 	free_cpumask_var(cs->exclusive_cpus);
576 	kfree(cs);
577 }
578 
579 /* Return user specified exclusive CPUs */
user_xcpus(struct cpuset * cs)580 static inline struct cpumask *user_xcpus(struct cpuset *cs)
581 {
582 	return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed
583 						 : cs->exclusive_cpus;
584 }
585 
xcpus_empty(struct cpuset * cs)586 static inline bool xcpus_empty(struct cpuset *cs)
587 {
588 	return cpumask_empty(cs->cpus_allowed) &&
589 	       cpumask_empty(cs->exclusive_cpus);
590 }
591 
592 /*
593  * cpusets_are_exclusive() - check if two cpusets are exclusive
594  *
595  * Return true if exclusive, false if not
596  */
cpusets_are_exclusive(struct cpuset * cs1,struct cpuset * cs2)597 static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2)
598 {
599 	struct cpumask *xcpus1 = user_xcpus(cs1);
600 	struct cpumask *xcpus2 = user_xcpus(cs2);
601 
602 	if (cpumask_intersects(xcpus1, xcpus2))
603 		return false;
604 	return true;
605 }
606 
607 /**
608  * cpus_excl_conflict - Check if two cpusets have exclusive CPU conflicts
609  * @cs1: first cpuset to check
610  * @cs2: second cpuset to check
611  *
612  * Returns: true if CPU exclusivity conflict exists, false otherwise
613  *
614  * Conflict detection rules:
615  * 1. If either cpuset is CPU exclusive, they must be mutually exclusive
616  * 2. exclusive_cpus masks cannot intersect between cpusets
617  * 3. The allowed CPUs of one cpuset cannot be a subset of another's exclusive CPUs
618  */
cpus_excl_conflict(struct cpuset * cs1,struct cpuset * cs2)619 static inline bool cpus_excl_conflict(struct cpuset *cs1, struct cpuset *cs2)
620 {
621 	/* If either cpuset is exclusive, check if they are mutually exclusive */
622 	if (is_cpu_exclusive(cs1) || is_cpu_exclusive(cs2))
623 		return !cpusets_are_exclusive(cs1, cs2);
624 
625 	/* Exclusive_cpus cannot intersect */
626 	if (cpumask_intersects(cs1->exclusive_cpus, cs2->exclusive_cpus))
627 		return true;
628 
629 	/* The cpus_allowed of one cpuset cannot be a subset of another cpuset's exclusive_cpus */
630 	if (!cpumask_empty(cs1->cpus_allowed) &&
631 	    cpumask_subset(cs1->cpus_allowed, cs2->exclusive_cpus))
632 		return true;
633 
634 	if (!cpumask_empty(cs2->cpus_allowed) &&
635 	    cpumask_subset(cs2->cpus_allowed, cs1->exclusive_cpus))
636 		return true;
637 
638 	return false;
639 }
640 
mems_excl_conflict(struct cpuset * cs1,struct cpuset * cs2)641 static inline bool mems_excl_conflict(struct cpuset *cs1, struct cpuset *cs2)
642 {
643 	if ((is_mem_exclusive(cs1) || is_mem_exclusive(cs2)))
644 		return nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
645 	return false;
646 }
647 
648 /*
649  * validate_change() - Used to validate that any proposed cpuset change
650  *		       follows the structural rules for cpusets.
651  *
652  * If we replaced the flag and mask values of the current cpuset
653  * (cur) with those values in the trial cpuset (trial), would
654  * our various subset and exclusive rules still be valid?  Presumes
655  * cpuset_mutex held.
656  *
657  * 'cur' is the address of an actual, in-use cpuset.  Operations
658  * such as list traversal that depend on the actual address of the
659  * cpuset in the list must use cur below, not trial.
660  *
661  * 'trial' is the address of bulk structure copy of cur, with
662  * perhaps one or more of the fields cpus_allowed, mems_allowed,
663  * or flags changed to new, trial values.
664  *
665  * Return 0 if valid, -errno if not.
666  */
667 
validate_change(struct cpuset * cur,struct cpuset * trial)668 static int validate_change(struct cpuset *cur, struct cpuset *trial)
669 {
670 	struct cgroup_subsys_state *css;
671 	struct cpuset *c, *par;
672 	int ret = 0;
673 
674 	rcu_read_lock();
675 
676 	if (!is_in_v2_mode())
677 		ret = cpuset1_validate_change(cur, trial);
678 	if (ret)
679 		goto out;
680 
681 	/* Remaining checks don't apply to root cpuset */
682 	if (cur == &top_cpuset)
683 		goto out;
684 
685 	par = parent_cs(cur);
686 
687 	/*
688 	 * Cpusets with tasks - existing or newly being attached - can't
689 	 * be changed to have empty cpus_allowed or mems_allowed.
690 	 */
691 	ret = -ENOSPC;
692 	if (cpuset_is_populated(cur)) {
693 		if (!cpumask_empty(cur->cpus_allowed) &&
694 		    cpumask_empty(trial->cpus_allowed))
695 			goto out;
696 		if (!nodes_empty(cur->mems_allowed) &&
697 		    nodes_empty(trial->mems_allowed))
698 			goto out;
699 	}
700 
701 	/*
702 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
703 	 * tasks. This check is not done when scheduling is disabled as the
704 	 * users should know what they are doing.
705 	 *
706 	 * For v1, effective_cpus == cpus_allowed & user_xcpus() returns
707 	 * cpus_allowed.
708 	 *
709 	 * For v2, is_cpu_exclusive() & is_sched_load_balance() are true only
710 	 * for non-isolated partition root. At this point, the target
711 	 * effective_cpus isn't computed yet. user_xcpus() is the best
712 	 * approximation.
713 	 *
714 	 * TBD: May need to precompute the real effective_cpus here in case
715 	 * incorrect scheduling of SCHED_DEADLINE tasks in a partition
716 	 * becomes an issue.
717 	 */
718 	ret = -EBUSY;
719 	if (is_cpu_exclusive(cur) && is_sched_load_balance(cur) &&
720 	    !cpuset_cpumask_can_shrink(cur->effective_cpus, user_xcpus(trial)))
721 		goto out;
722 
723 	/*
724 	 * If either I or some sibling (!= me) is exclusive, we can't
725 	 * overlap. exclusive_cpus cannot overlap with each other if set.
726 	 */
727 	ret = -EINVAL;
728 	cpuset_for_each_child(c, css, par) {
729 		if (c == cur)
730 			continue;
731 		if (cpus_excl_conflict(trial, c))
732 			goto out;
733 		if (mems_excl_conflict(trial, c))
734 			goto out;
735 	}
736 
737 	ret = 0;
738 out:
739 	rcu_read_unlock();
740 	return ret;
741 }
742 
743 #ifdef CONFIG_SMP
744 /*
745  * Helper routine for generate_sched_domains().
746  * Do cpusets a, b have overlapping effective cpus_allowed masks?
747  */
cpusets_overlap(struct cpuset * a,struct cpuset * b)748 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
749 {
750 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
751 }
752 
753 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)754 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
755 {
756 	if (dattr->relax_domain_level < c->relax_domain_level)
757 		dattr->relax_domain_level = c->relax_domain_level;
758 	return;
759 }
760 
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * root_cs)761 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
762 				    struct cpuset *root_cs)
763 {
764 	struct cpuset *cp;
765 	struct cgroup_subsys_state *pos_css;
766 
767 	rcu_read_lock();
768 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
769 		/* skip the whole subtree if @cp doesn't have any CPU */
770 		if (cpumask_empty(cp->cpus_allowed)) {
771 			pos_css = css_rightmost_descendant(pos_css);
772 			continue;
773 		}
774 
775 		if (is_sched_load_balance(cp))
776 			update_domain_attr(dattr, cp);
777 	}
778 	rcu_read_unlock();
779 }
780 
781 /* Must be called with cpuset_mutex held.  */
nr_cpusets(void)782 static inline int nr_cpusets(void)
783 {
784 	/* jump label reference count + the top-level cpuset */
785 	return static_key_count(&cpusets_enabled_key.key) + 1;
786 }
787 
788 /*
789  * generate_sched_domains()
790  *
791  * This function builds a partial partition of the systems CPUs
792  * A 'partial partition' is a set of non-overlapping subsets whose
793  * union is a subset of that set.
794  * The output of this function needs to be passed to kernel/sched/core.c
795  * partition_sched_domains() routine, which will rebuild the scheduler's
796  * load balancing domains (sched domains) as specified by that partial
797  * partition.
798  *
799  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
800  * for a background explanation of this.
801  *
802  * Does not return errors, on the theory that the callers of this
803  * routine would rather not worry about failures to rebuild sched
804  * domains when operating in the severe memory shortage situations
805  * that could cause allocation failures below.
806  *
807  * Must be called with cpuset_mutex held.
808  *
809  * The three key local variables below are:
810  *    cp - cpuset pointer, used (together with pos_css) to perform a
811  *	   top-down scan of all cpusets. For our purposes, rebuilding
812  *	   the schedulers sched domains, we can ignore !is_sched_load_
813  *	   balance cpusets.
814  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
815  *	   that need to be load balanced, for convenient iterative
816  *	   access by the subsequent code that finds the best partition,
817  *	   i.e the set of domains (subsets) of CPUs such that the
818  *	   cpus_allowed of every cpuset marked is_sched_load_balance
819  *	   is a subset of one of these domains, while there are as
820  *	   many such domains as possible, each as small as possible.
821  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
822  *	   the kernel/sched/core.c routine partition_sched_domains() in a
823  *	   convenient format, that can be easily compared to the prior
824  *	   value to determine what partition elements (sched domains)
825  *	   were changed (added or removed.)
826  *
827  * Finding the best partition (set of domains):
828  *	The double nested loops below over i, j scan over the load
829  *	balanced cpusets (using the array of cpuset pointers in csa[])
830  *	looking for pairs of cpusets that have overlapping cpus_allowed
831  *	and merging them using a union-find algorithm.
832  *
833  *	The union of the cpus_allowed masks from the set of all cpusets
834  *	having the same root then form the one element of the partition
835  *	(one sched domain) to be passed to partition_sched_domains().
836  *
837  */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)838 static int generate_sched_domains(cpumask_var_t **domains,
839 			struct sched_domain_attr **attributes)
840 {
841 	struct cpuset *cp;	/* top-down scan of cpusets */
842 	struct cpuset **csa;	/* array of all cpuset ptrs */
843 	int csn;		/* how many cpuset ptrs in csa so far */
844 	int i, j;		/* indices for partition finding loops */
845 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
846 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
847 	int ndoms = 0;		/* number of sched domains in result */
848 	int nslot;		/* next empty doms[] struct cpumask slot */
849 	struct cgroup_subsys_state *pos_css;
850 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
851 	bool cgrpv2 = cpuset_v2();
852 	int nslot_update;
853 
854 	doms = NULL;
855 	dattr = NULL;
856 	csa = NULL;
857 
858 	/* Special case for the 99% of systems with one, full, sched domain */
859 	if (root_load_balance && cpumask_empty(subpartitions_cpus)) {
860 single_root_domain:
861 		ndoms = 1;
862 		doms = alloc_sched_domains(ndoms);
863 		if (!doms)
864 			goto done;
865 
866 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
867 		if (dattr) {
868 			*dattr = SD_ATTR_INIT;
869 			update_domain_attr_tree(dattr, &top_cpuset);
870 		}
871 		cpumask_and(doms[0], top_cpuset.effective_cpus,
872 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
873 
874 		goto done;
875 	}
876 
877 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
878 	if (!csa)
879 		goto done;
880 	csn = 0;
881 
882 	rcu_read_lock();
883 	if (root_load_balance)
884 		csa[csn++] = &top_cpuset;
885 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
886 		if (cp == &top_cpuset)
887 			continue;
888 
889 		if (cgrpv2)
890 			goto v2;
891 
892 		/*
893 		 * v1:
894 		 * Continue traversing beyond @cp iff @cp has some CPUs and
895 		 * isn't load balancing.  The former is obvious.  The
896 		 * latter: All child cpusets contain a subset of the
897 		 * parent's cpus, so just skip them, and then we call
898 		 * update_domain_attr_tree() to calc relax_domain_level of
899 		 * the corresponding sched domain.
900 		 */
901 		if (!cpumask_empty(cp->cpus_allowed) &&
902 		    !(is_sched_load_balance(cp) &&
903 		      cpumask_intersects(cp->cpus_allowed,
904 					 housekeeping_cpumask(HK_TYPE_DOMAIN))))
905 			continue;
906 
907 		if (is_sched_load_balance(cp) &&
908 		    !cpumask_empty(cp->effective_cpus))
909 			csa[csn++] = cp;
910 
911 		/* skip @cp's subtree */
912 		pos_css = css_rightmost_descendant(pos_css);
913 		continue;
914 
915 v2:
916 		/*
917 		 * Only valid partition roots that are not isolated and with
918 		 * non-empty effective_cpus will be saved into csn[].
919 		 */
920 		if ((cp->partition_root_state == PRS_ROOT) &&
921 		    !cpumask_empty(cp->effective_cpus))
922 			csa[csn++] = cp;
923 
924 		/*
925 		 * Skip @cp's subtree if not a partition root and has no
926 		 * exclusive CPUs to be granted to child cpusets.
927 		 */
928 		if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus))
929 			pos_css = css_rightmost_descendant(pos_css);
930 	}
931 	rcu_read_unlock();
932 
933 	/*
934 	 * If there are only isolated partitions underneath the cgroup root,
935 	 * we can optimize out unneeded sched domains scanning.
936 	 */
937 	if (root_load_balance && (csn == 1))
938 		goto single_root_domain;
939 
940 	for (i = 0; i < csn; i++)
941 		uf_node_init(&csa[i]->node);
942 
943 	/* Merge overlapping cpusets */
944 	for (i = 0; i < csn; i++) {
945 		for (j = i + 1; j < csn; j++) {
946 			if (cpusets_overlap(csa[i], csa[j])) {
947 				/*
948 				 * Cgroup v2 shouldn't pass down overlapping
949 				 * partition root cpusets.
950 				 */
951 				WARN_ON_ONCE(cgrpv2);
952 				uf_union(&csa[i]->node, &csa[j]->node);
953 			}
954 		}
955 	}
956 
957 	/* Count the total number of domains */
958 	for (i = 0; i < csn; i++) {
959 		if (uf_find(&csa[i]->node) == &csa[i]->node)
960 			ndoms++;
961 	}
962 
963 	/*
964 	 * Now we know how many domains to create.
965 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
966 	 */
967 	doms = alloc_sched_domains(ndoms);
968 	if (!doms)
969 		goto done;
970 
971 	/*
972 	 * The rest of the code, including the scheduler, can deal with
973 	 * dattr==NULL case. No need to abort if alloc fails.
974 	 */
975 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
976 			      GFP_KERNEL);
977 
978 	/*
979 	 * Cgroup v2 doesn't support domain attributes, just set all of them
980 	 * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a
981 	 * subset of HK_TYPE_DOMAIN housekeeping CPUs.
982 	 */
983 	if (cgrpv2) {
984 		for (i = 0; i < ndoms; i++) {
985 			/*
986 			 * The top cpuset may contain some boot time isolated
987 			 * CPUs that need to be excluded from the sched domain.
988 			 */
989 			if (csa[i] == &top_cpuset)
990 				cpumask_and(doms[i], csa[i]->effective_cpus,
991 					    housekeeping_cpumask(HK_TYPE_DOMAIN));
992 			else
993 				cpumask_copy(doms[i], csa[i]->effective_cpus);
994 			if (dattr)
995 				dattr[i] = SD_ATTR_INIT;
996 		}
997 		goto done;
998 	}
999 
1000 	for (nslot = 0, i = 0; i < csn; i++) {
1001 		nslot_update = 0;
1002 		for (j = i; j < csn; j++) {
1003 			if (uf_find(&csa[j]->node) == &csa[i]->node) {
1004 				struct cpumask *dp = doms[nslot];
1005 
1006 				if (i == j) {
1007 					nslot_update = 1;
1008 					cpumask_clear(dp);
1009 					if (dattr)
1010 						*(dattr + nslot) = SD_ATTR_INIT;
1011 				}
1012 				cpumask_or(dp, dp, csa[j]->effective_cpus);
1013 				cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
1014 				if (dattr)
1015 					update_domain_attr_tree(dattr + nslot, csa[j]);
1016 			}
1017 		}
1018 		if (nslot_update)
1019 			nslot++;
1020 	}
1021 	BUG_ON(nslot != ndoms);
1022 
1023 done:
1024 	kfree(csa);
1025 
1026 	/*
1027 	 * Fallback to the default domain if kmalloc() failed.
1028 	 * See comments in partition_sched_domains().
1029 	 */
1030 	if (doms == NULL)
1031 		ndoms = 1;
1032 
1033 	*domains    = doms;
1034 	*attributes = dattr;
1035 	return ndoms;
1036 }
1037 
dl_update_tasks_root_domain(struct cpuset * cs)1038 static void dl_update_tasks_root_domain(struct cpuset *cs)
1039 {
1040 	struct css_task_iter it;
1041 	struct task_struct *task;
1042 
1043 	if (cs->nr_deadline_tasks == 0)
1044 		return;
1045 
1046 	css_task_iter_start(&cs->css, 0, &it);
1047 
1048 	while ((task = css_task_iter_next(&it)))
1049 		dl_add_task_root_domain(task);
1050 
1051 	css_task_iter_end(&it);
1052 }
1053 
dl_rebuild_rd_accounting(void)1054 void dl_rebuild_rd_accounting(void)
1055 {
1056 	struct cpuset *cs = NULL;
1057 	struct cgroup_subsys_state *pos_css;
1058 	int cpu;
1059 	u64 cookie = ++dl_cookie;
1060 
1061 	lockdep_assert_held(&cpuset_mutex);
1062 	lockdep_assert_cpus_held();
1063 	lockdep_assert_held(&sched_domains_mutex);
1064 
1065 	rcu_read_lock();
1066 
1067 	for_each_possible_cpu(cpu) {
1068 		if (dl_bw_visited(cpu, cookie))
1069 			continue;
1070 
1071 		dl_clear_root_domain_cpu(cpu);
1072 	}
1073 
1074 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1075 
1076 		if (cpumask_empty(cs->effective_cpus)) {
1077 			pos_css = css_rightmost_descendant(pos_css);
1078 			continue;
1079 		}
1080 
1081 		css_get(&cs->css);
1082 
1083 		rcu_read_unlock();
1084 
1085 		dl_update_tasks_root_domain(cs);
1086 
1087 		rcu_read_lock();
1088 		css_put(&cs->css);
1089 	}
1090 	rcu_read_unlock();
1091 }
1092 
1093 /*
1094  * Rebuild scheduler domains.
1095  *
1096  * If the flag 'sched_load_balance' of any cpuset with non-empty
1097  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1098  * which has that flag enabled, or if any cpuset with a non-empty
1099  * 'cpus' is removed, then call this routine to rebuild the
1100  * scheduler's dynamic sched domains.
1101  *
1102  * Call with cpuset_mutex held.  Takes cpus_read_lock().
1103  */
rebuild_sched_domains_locked(void)1104 void rebuild_sched_domains_locked(void)
1105 {
1106 	struct cgroup_subsys_state *pos_css;
1107 	struct sched_domain_attr *attr;
1108 	cpumask_var_t *doms;
1109 	struct cpuset *cs;
1110 	int ndoms;
1111 
1112 	lockdep_assert_cpus_held();
1113 	lockdep_assert_held(&cpuset_mutex);
1114 	force_sd_rebuild = false;
1115 
1116 	/*
1117 	 * If we have raced with CPU hotplug, return early to avoid
1118 	 * passing doms with offlined cpu to partition_sched_domains().
1119 	 * Anyways, cpuset_handle_hotplug() will rebuild sched domains.
1120 	 *
1121 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1122 	 * should be the same as the active CPUs, so checking only top_cpuset
1123 	 * is enough to detect racing CPU offlines.
1124 	 */
1125 	if (cpumask_empty(subpartitions_cpus) &&
1126 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1127 		return;
1128 
1129 	/*
1130 	 * With subpartition CPUs, however, the effective CPUs of a partition
1131 	 * root should be only a subset of the active CPUs.  Since a CPU in any
1132 	 * partition root could be offlined, all must be checked.
1133 	 */
1134 	if (!cpumask_empty(subpartitions_cpus)) {
1135 		rcu_read_lock();
1136 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1137 			if (!is_partition_valid(cs)) {
1138 				pos_css = css_rightmost_descendant(pos_css);
1139 				continue;
1140 			}
1141 			if (!cpumask_subset(cs->effective_cpus,
1142 					    cpu_active_mask)) {
1143 				rcu_read_unlock();
1144 				return;
1145 			}
1146 		}
1147 		rcu_read_unlock();
1148 	}
1149 
1150 	/* Generate domain masks and attrs */
1151 	ndoms = generate_sched_domains(&doms, &attr);
1152 
1153 	/* Have scheduler rebuild the domains */
1154 	partition_sched_domains(ndoms, doms, attr);
1155 }
1156 #else /* !CONFIG_SMP */
rebuild_sched_domains_locked(void)1157 void rebuild_sched_domains_locked(void)
1158 {
1159 }
1160 #endif /* CONFIG_SMP */
1161 
rebuild_sched_domains_cpuslocked(void)1162 static void rebuild_sched_domains_cpuslocked(void)
1163 {
1164 	mutex_lock(&cpuset_mutex);
1165 	rebuild_sched_domains_locked();
1166 	mutex_unlock(&cpuset_mutex);
1167 }
1168 
rebuild_sched_domains(void)1169 void rebuild_sched_domains(void)
1170 {
1171 	cpus_read_lock();
1172 	rebuild_sched_domains_cpuslocked();
1173 	cpus_read_unlock();
1174 }
1175 
cpuset_reset_sched_domains(void)1176 void cpuset_reset_sched_domains(void)
1177 {
1178 	mutex_lock(&cpuset_mutex);
1179 	partition_sched_domains(1, NULL, NULL);
1180 	mutex_unlock(&cpuset_mutex);
1181 }
1182 
1183 /**
1184  * cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1185  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1186  * @new_cpus: the temp variable for the new effective_cpus mask
1187  *
1188  * Iterate through each task of @cs updating its cpus_allowed to the
1189  * effective cpuset's.  As this function is called with cpuset_mutex held,
1190  * cpuset membership stays stable.
1191  *
1192  * For top_cpuset, task_cpu_possible_mask() is used instead of effective_cpus
1193  * to make sure all offline CPUs are also included as hotplug code won't
1194  * update cpumasks for tasks in top_cpuset.
1195  *
1196  * As task_cpu_possible_mask() can be task dependent in arm64, we have to
1197  * do cpu masking per task instead of doing it once for all.
1198  */
cpuset_update_tasks_cpumask(struct cpuset * cs,struct cpumask * new_cpus)1199 void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1200 {
1201 	struct css_task_iter it;
1202 	struct task_struct *task;
1203 	bool top_cs = cs == &top_cpuset;
1204 
1205 	css_task_iter_start(&cs->css, 0, &it);
1206 	while ((task = css_task_iter_next(&it))) {
1207 		const struct cpumask *possible_mask = task_cpu_possible_mask(task);
1208 
1209 		if (top_cs) {
1210 			/*
1211 			 * PF_NO_SETAFFINITY tasks are ignored.
1212 			 * All per cpu kthreads should have PF_NO_SETAFFINITY
1213 			 * flag set, see kthread_set_per_cpu().
1214 			 */
1215 			if (task->flags & PF_NO_SETAFFINITY)
1216 				continue;
1217 			cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus);
1218 		} else {
1219 			cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
1220 		}
1221 		set_cpus_allowed_ptr(task, new_cpus);
1222 	}
1223 	css_task_iter_end(&it);
1224 }
1225 
1226 /**
1227  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1228  * @new_cpus: the temp variable for the new effective_cpus mask
1229  * @cs: the cpuset the need to recompute the new effective_cpus mask
1230  * @parent: the parent cpuset
1231  *
1232  * The result is valid only if the given cpuset isn't a partition root.
1233  */
compute_effective_cpumask(struct cpumask * new_cpus,struct cpuset * cs,struct cpuset * parent)1234 static void compute_effective_cpumask(struct cpumask *new_cpus,
1235 				      struct cpuset *cs, struct cpuset *parent)
1236 {
1237 	cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1238 }
1239 
1240 /*
1241  * Commands for update_parent_effective_cpumask
1242  */
1243 enum partition_cmd {
1244 	partcmd_enable,		/* Enable partition root	  */
1245 	partcmd_enablei,	/* Enable isolated partition root */
1246 	partcmd_disable,	/* Disable partition root	  */
1247 	partcmd_update,		/* Update parent's effective_cpus */
1248 	partcmd_invalidate,	/* Make partition invalid	  */
1249 };
1250 
1251 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1252 				    struct tmpmasks *tmp);
1253 
1254 /*
1255  * Update partition exclusive flag
1256  *
1257  * Return: 0 if successful, an error code otherwise
1258  */
update_partition_exclusive_flag(struct cpuset * cs,int new_prs)1259 static int update_partition_exclusive_flag(struct cpuset *cs, int new_prs)
1260 {
1261 	bool exclusive = (new_prs > PRS_MEMBER);
1262 
1263 	if (exclusive && !is_cpu_exclusive(cs)) {
1264 		if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1))
1265 			return PERR_NOTEXCL;
1266 	} else if (!exclusive && is_cpu_exclusive(cs)) {
1267 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
1268 		cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1269 	}
1270 	return 0;
1271 }
1272 
1273 /*
1274  * Update partition load balance flag and/or rebuild sched domain
1275  *
1276  * Changing load balance flag will automatically call
1277  * rebuild_sched_domains_locked().
1278  * This function is for cgroup v2 only.
1279  */
update_partition_sd_lb(struct cpuset * cs,int old_prs)1280 static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
1281 {
1282 	int new_prs = cs->partition_root_state;
1283 	bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
1284 	bool new_lb;
1285 
1286 	/*
1287 	 * If cs is not a valid partition root, the load balance state
1288 	 * will follow its parent.
1289 	 */
1290 	if (new_prs > 0) {
1291 		new_lb = (new_prs != PRS_ISOLATED);
1292 	} else {
1293 		new_lb = is_sched_load_balance(parent_cs(cs));
1294 	}
1295 	if (new_lb != !!is_sched_load_balance(cs)) {
1296 		rebuild_domains = true;
1297 		if (new_lb)
1298 			set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1299 		else
1300 			clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1301 	}
1302 
1303 	if (rebuild_domains)
1304 		cpuset_force_rebuild();
1305 }
1306 
1307 /*
1308  * tasks_nocpu_error - Return true if tasks will have no effective_cpus
1309  */
tasks_nocpu_error(struct cpuset * parent,struct cpuset * cs,struct cpumask * xcpus)1310 static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs,
1311 			      struct cpumask *xcpus)
1312 {
1313 	/*
1314 	 * A populated partition (cs or parent) can't have empty effective_cpus
1315 	 */
1316 	return (cpumask_subset(parent->effective_cpus, xcpus) &&
1317 		partition_is_populated(parent, cs)) ||
1318 	       (!cpumask_intersects(xcpus, cpu_active_mask) &&
1319 		partition_is_populated(cs, NULL));
1320 }
1321 
reset_partition_data(struct cpuset * cs)1322 static void reset_partition_data(struct cpuset *cs)
1323 {
1324 	struct cpuset *parent = parent_cs(cs);
1325 
1326 	if (!cpuset_v2())
1327 		return;
1328 
1329 	lockdep_assert_held(&callback_lock);
1330 
1331 	if (cpumask_empty(cs->exclusive_cpus)) {
1332 		cpumask_clear(cs->effective_xcpus);
1333 		if (is_cpu_exclusive(cs))
1334 			clear_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1335 	}
1336 	if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed))
1337 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1338 }
1339 
1340 /*
1341  * isolated_cpus_update - Update the isolated_cpus mask
1342  * @old_prs: old partition_root_state
1343  * @new_prs: new partition_root_state
1344  * @xcpus: exclusive CPUs with state change
1345  */
isolated_cpus_update(int old_prs,int new_prs,struct cpumask * xcpus)1346 static void isolated_cpus_update(int old_prs, int new_prs, struct cpumask *xcpus)
1347 {
1348 	WARN_ON_ONCE(old_prs == new_prs);
1349 	if (new_prs == PRS_ISOLATED)
1350 		cpumask_or(isolated_cpus, isolated_cpus, xcpus);
1351 	else
1352 		cpumask_andnot(isolated_cpus, isolated_cpus, xcpus);
1353 
1354 	isolated_cpus_updating = true;
1355 }
1356 
1357 /*
1358  * partition_xcpus_add - Add new exclusive CPUs to partition
1359  * @new_prs: new partition_root_state
1360  * @parent: parent cpuset
1361  * @xcpus: exclusive CPUs to be added
1362  *
1363  * Remote partition if parent == NULL
1364  */
partition_xcpus_add(int new_prs,struct cpuset * parent,struct cpumask * xcpus)1365 static void partition_xcpus_add(int new_prs, struct cpuset *parent,
1366 				struct cpumask *xcpus)
1367 {
1368 	WARN_ON_ONCE(new_prs < 0);
1369 	lockdep_assert_held(&callback_lock);
1370 	if (!parent)
1371 		parent = &top_cpuset;
1372 
1373 
1374 	if (parent == &top_cpuset)
1375 		cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus);
1376 
1377 	if (new_prs != parent->partition_root_state)
1378 		isolated_cpus_update(parent->partition_root_state, new_prs,
1379 				     xcpus);
1380 
1381 	cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus);
1382 }
1383 
1384 /*
1385  * partition_xcpus_del - Remove exclusive CPUs from partition
1386  * @old_prs: old partition_root_state
1387  * @parent: parent cpuset
1388  * @xcpus: exclusive CPUs to be removed
1389  *
1390  * Remote partition if parent == NULL
1391  */
partition_xcpus_del(int old_prs,struct cpuset * parent,struct cpumask * xcpus)1392 static void partition_xcpus_del(int old_prs, struct cpuset *parent,
1393 				struct cpumask *xcpus)
1394 {
1395 	WARN_ON_ONCE(old_prs < 0);
1396 	lockdep_assert_held(&callback_lock);
1397 	if (!parent)
1398 		parent = &top_cpuset;
1399 
1400 	if (parent == &top_cpuset)
1401 		cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus);
1402 
1403 	if (old_prs != parent->partition_root_state)
1404 		isolated_cpus_update(old_prs, parent->partition_root_state,
1405 				     xcpus);
1406 
1407 	cpumask_and(xcpus, xcpus, cpu_active_mask);
1408 	cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus);
1409 }
1410 
1411 /*
1412  * isolated_cpus_can_update - check for isolated & nohz_full conflicts
1413  * @add_cpus: cpu mask for cpus that are going to be isolated
1414  * @del_cpus: cpu mask for cpus that are no longer isolated, can be NULL
1415  * Return: false if there is conflict, true otherwise
1416  *
1417  * If nohz_full is enabled and we have isolated CPUs, their combination must
1418  * still leave housekeeping CPUs.
1419  *
1420  * TBD: Should consider merging this function into
1421  *      prstate_housekeeping_conflict().
1422  */
isolated_cpus_can_update(struct cpumask * add_cpus,struct cpumask * del_cpus)1423 static bool isolated_cpus_can_update(struct cpumask *add_cpus,
1424 				     struct cpumask *del_cpus)
1425 {
1426 	cpumask_var_t full_hk_cpus;
1427 	int res = true;
1428 
1429 	if (!housekeeping_enabled(HK_TYPE_KERNEL_NOISE))
1430 		return true;
1431 
1432 	if (del_cpus && cpumask_weight_and(del_cpus,
1433 			housekeeping_cpumask(HK_TYPE_KERNEL_NOISE)))
1434 		return true;
1435 
1436 	if (!alloc_cpumask_var(&full_hk_cpus, GFP_KERNEL))
1437 		return false;
1438 
1439 	cpumask_and(full_hk_cpus, housekeeping_cpumask(HK_TYPE_KERNEL_NOISE),
1440 		    housekeeping_cpumask(HK_TYPE_DOMAIN));
1441 	cpumask_andnot(full_hk_cpus, full_hk_cpus, isolated_cpus);
1442 	cpumask_and(full_hk_cpus, full_hk_cpus, cpu_active_mask);
1443 	if (!cpumask_weight_andnot(full_hk_cpus, add_cpus))
1444 		res = false;
1445 
1446 	free_cpumask_var(full_hk_cpus);
1447 	return res;
1448 }
1449 
1450 /*
1451  * prstate_housekeeping_conflict - check for partition & housekeeping conflicts
1452  * @prstate: partition root state to be checked
1453  * @new_cpus: cpu mask
1454  * Return: true if there is conflict, false otherwise
1455  *
1456  * CPUs outside of boot_hk_cpus, if defined, can only be used in an
1457  * isolated partition.
1458  */
prstate_housekeeping_conflict(int prstate,struct cpumask * new_cpus)1459 static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
1460 {
1461 	if (!have_boot_isolcpus)
1462 		return false;
1463 
1464 	if ((prstate != PRS_ISOLATED) && !cpumask_subset(new_cpus, boot_hk_cpus))
1465 		return true;
1466 
1467 	return false;
1468 }
1469 
1470 /*
1471  * update_isolation_cpumasks - Update external isolation related CPU masks
1472  *
1473  * The following external CPU masks will be updated if necessary:
1474  * - workqueue unbound cpumask
1475  */
update_isolation_cpumasks(void)1476 static void update_isolation_cpumasks(void)
1477 {
1478 	int ret;
1479 
1480 	if (!isolated_cpus_updating)
1481 		return;
1482 
1483 	lockdep_assert_cpus_held();
1484 
1485 	ret = workqueue_unbound_exclude_cpumask(isolated_cpus);
1486 	WARN_ON_ONCE(ret < 0);
1487 
1488 	ret = tmigr_isolated_exclude_cpumask(isolated_cpus);
1489 	WARN_ON_ONCE(ret < 0);
1490 
1491 	isolated_cpus_updating = false;
1492 }
1493 
1494 /**
1495  * cpuset_cpu_is_isolated - Check if the given CPU is isolated
1496  * @cpu: the CPU number to be checked
1497  * Return: true if CPU is used in an isolated partition, false otherwise
1498  */
cpuset_cpu_is_isolated(int cpu)1499 bool cpuset_cpu_is_isolated(int cpu)
1500 {
1501 	return cpumask_test_cpu(cpu, isolated_cpus);
1502 }
1503 EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated);
1504 
1505 /**
1506  * rm_siblings_excl_cpus - Remove exclusive CPUs that are used by sibling cpusets
1507  * @parent: Parent cpuset containing all siblings
1508  * @cs: Current cpuset (will be skipped)
1509  * @excpus:  exclusive effective CPU mask to modify
1510  *
1511  * This function ensures the given @excpus mask doesn't include any CPUs that
1512  * are exclusively allocated to sibling cpusets. It walks through all siblings
1513  * of @cs under @parent and removes their exclusive CPUs from @excpus.
1514  */
rm_siblings_excl_cpus(struct cpuset * parent,struct cpuset * cs,struct cpumask * excpus)1515 static int rm_siblings_excl_cpus(struct cpuset *parent, struct cpuset *cs,
1516 					struct cpumask *excpus)
1517 {
1518 	struct cgroup_subsys_state *css;
1519 	struct cpuset *sibling;
1520 	int retval = 0;
1521 
1522 	if (cpumask_empty(excpus))
1523 		return retval;
1524 
1525 	/*
1526 	 * Exclude exclusive CPUs from siblings
1527 	 */
1528 	rcu_read_lock();
1529 	cpuset_for_each_child(sibling, css, parent) {
1530 		if (sibling == cs)
1531 			continue;
1532 
1533 		if (cpumask_intersects(excpus, sibling->exclusive_cpus)) {
1534 			cpumask_andnot(excpus, excpus, sibling->exclusive_cpus);
1535 			retval++;
1536 			continue;
1537 		}
1538 		if (cpumask_intersects(excpus, sibling->effective_xcpus)) {
1539 			cpumask_andnot(excpus, excpus, sibling->effective_xcpus);
1540 			retval++;
1541 		}
1542 	}
1543 	rcu_read_unlock();
1544 
1545 	return retval;
1546 }
1547 
1548 /*
1549  * compute_excpus - compute effective exclusive CPUs
1550  * @cs: cpuset
1551  * @xcpus: effective exclusive CPUs value to be set
1552  * Return: 0 if there is no sibling conflict, > 0 otherwise
1553  *
1554  * If exclusive_cpus isn't explicitly set , we have to scan the sibling cpusets
1555  * and exclude their exclusive_cpus or effective_xcpus as well.
1556  */
compute_excpus(struct cpuset * cs,struct cpumask * excpus)1557 static int compute_excpus(struct cpuset *cs, struct cpumask *excpus)
1558 {
1559 	struct cpuset *parent = parent_cs(cs);
1560 
1561 	cpumask_and(excpus, user_xcpus(cs), parent->effective_xcpus);
1562 
1563 	if (!cpumask_empty(cs->exclusive_cpus))
1564 		return 0;
1565 
1566 	return rm_siblings_excl_cpus(parent, cs, excpus);
1567 }
1568 
1569 /*
1570  * compute_trialcs_excpus - Compute effective exclusive CPUs for a trial cpuset
1571  * @trialcs: The trial cpuset containing the proposed new configuration
1572  * @cs: The original cpuset that the trial configuration is based on
1573  * Return: 0 if successful with no sibling conflict, >0 if a conflict is found
1574  *
1575  * Computes the effective_xcpus for a trial configuration. @cs is provided to represent
1576  * the real cs.
1577  */
compute_trialcs_excpus(struct cpuset * trialcs,struct cpuset * cs)1578 static int compute_trialcs_excpus(struct cpuset *trialcs, struct cpuset *cs)
1579 {
1580 	struct cpuset *parent = parent_cs(trialcs);
1581 	struct cpumask *excpus = trialcs->effective_xcpus;
1582 
1583 	/* trialcs is member, cpuset.cpus has no impact to excpus */
1584 	if (cs_is_member(cs))
1585 		cpumask_and(excpus, trialcs->exclusive_cpus,
1586 				parent->effective_xcpus);
1587 	else
1588 		cpumask_and(excpus, user_xcpus(trialcs), parent->effective_xcpus);
1589 
1590 	return rm_siblings_excl_cpus(parent, cs, excpus);
1591 }
1592 
is_remote_partition(struct cpuset * cs)1593 static inline bool is_remote_partition(struct cpuset *cs)
1594 {
1595 	return cs->remote_partition;
1596 }
1597 
is_local_partition(struct cpuset * cs)1598 static inline bool is_local_partition(struct cpuset *cs)
1599 {
1600 	return is_partition_valid(cs) && !is_remote_partition(cs);
1601 }
1602 
1603 /*
1604  * remote_partition_enable - Enable current cpuset as a remote partition root
1605  * @cs: the cpuset to update
1606  * @new_prs: new partition_root_state
1607  * @tmp: temporary masks
1608  * Return: 0 if successful, errcode if error
1609  *
1610  * Enable the current cpuset to become a remote partition root taking CPUs
1611  * directly from the top cpuset. cpuset_mutex must be held by the caller.
1612  */
remote_partition_enable(struct cpuset * cs,int new_prs,struct tmpmasks * tmp)1613 static int remote_partition_enable(struct cpuset *cs, int new_prs,
1614 				   struct tmpmasks *tmp)
1615 {
1616 	/*
1617 	 * The user must have sysadmin privilege.
1618 	 */
1619 	if (!capable(CAP_SYS_ADMIN))
1620 		return PERR_ACCESS;
1621 
1622 	/*
1623 	 * The requested exclusive_cpus must not be allocated to other
1624 	 * partitions and it can't use up all the root's effective_cpus.
1625 	 *
1626 	 * The effective_xcpus mask can contain offline CPUs, but there must
1627 	 * be at least one or more online CPUs present before it can be enabled.
1628 	 *
1629 	 * Note that creating a remote partition with any local partition root
1630 	 * above it or remote partition root underneath it is not allowed.
1631 	 */
1632 	compute_excpus(cs, tmp->new_cpus);
1633 	WARN_ON_ONCE(cpumask_intersects(tmp->new_cpus, subpartitions_cpus));
1634 	if (!cpumask_intersects(tmp->new_cpus, cpu_active_mask) ||
1635 	    cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus))
1636 		return PERR_INVCPUS;
1637 	if (((new_prs == PRS_ISOLATED) &&
1638 	     !isolated_cpus_can_update(tmp->new_cpus, NULL)) ||
1639 	    prstate_housekeeping_conflict(new_prs, tmp->new_cpus))
1640 		return PERR_HKEEPING;
1641 
1642 	spin_lock_irq(&callback_lock);
1643 	partition_xcpus_add(new_prs, NULL, tmp->new_cpus);
1644 	cs->remote_partition = true;
1645 	cpumask_copy(cs->effective_xcpus, tmp->new_cpus);
1646 	spin_unlock_irq(&callback_lock);
1647 	update_isolation_cpumasks();
1648 	cpuset_force_rebuild();
1649 	cs->prs_err = 0;
1650 
1651 	/*
1652 	 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1653 	 */
1654 	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1655 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1656 	return 0;
1657 }
1658 
1659 /*
1660  * remote_partition_disable - Remove current cpuset from remote partition list
1661  * @cs: the cpuset to update
1662  * @tmp: temporary masks
1663  *
1664  * The effective_cpus is also updated.
1665  *
1666  * cpuset_mutex must be held by the caller.
1667  */
remote_partition_disable(struct cpuset * cs,struct tmpmasks * tmp)1668 static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp)
1669 {
1670 	WARN_ON_ONCE(!is_remote_partition(cs));
1671 	WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
1672 
1673 	spin_lock_irq(&callback_lock);
1674 	cs->remote_partition = false;
1675 	partition_xcpus_del(cs->partition_root_state, NULL, cs->effective_xcpus);
1676 	if (cs->prs_err)
1677 		cs->partition_root_state = -cs->partition_root_state;
1678 	else
1679 		cs->partition_root_state = PRS_MEMBER;
1680 
1681 	/* effective_xcpus may need to be changed */
1682 	compute_excpus(cs, cs->effective_xcpus);
1683 	reset_partition_data(cs);
1684 	spin_unlock_irq(&callback_lock);
1685 	update_isolation_cpumasks();
1686 	cpuset_force_rebuild();
1687 
1688 	/*
1689 	 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1690 	 */
1691 	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1692 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1693 }
1694 
1695 /*
1696  * remote_cpus_update - cpus_exclusive change of remote partition
1697  * @cs: the cpuset to be updated
1698  * @xcpus: the new exclusive_cpus mask, if non-NULL
1699  * @excpus: the new effective_xcpus mask
1700  * @tmp: temporary masks
1701  *
1702  * top_cpuset and subpartitions_cpus will be updated or partition can be
1703  * invalidated.
1704  */
remote_cpus_update(struct cpuset * cs,struct cpumask * xcpus,struct cpumask * excpus,struct tmpmasks * tmp)1705 static void remote_cpus_update(struct cpuset *cs, struct cpumask *xcpus,
1706 			       struct cpumask *excpus, struct tmpmasks *tmp)
1707 {
1708 	bool adding, deleting;
1709 	int prs = cs->partition_root_state;
1710 
1711 	if (WARN_ON_ONCE(!is_remote_partition(cs)))
1712 		return;
1713 
1714 	WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
1715 
1716 	if (cpumask_empty(excpus)) {
1717 		cs->prs_err = PERR_CPUSEMPTY;
1718 		goto invalidate;
1719 	}
1720 
1721 	adding   = cpumask_andnot(tmp->addmask, excpus, cs->effective_xcpus);
1722 	deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, excpus);
1723 
1724 	/*
1725 	 * Additions of remote CPUs is only allowed if those CPUs are
1726 	 * not allocated to other partitions and there are effective_cpus
1727 	 * left in the top cpuset.
1728 	 */
1729 	if (adding) {
1730 		WARN_ON_ONCE(cpumask_intersects(tmp->addmask, subpartitions_cpus));
1731 		if (!capable(CAP_SYS_ADMIN))
1732 			cs->prs_err = PERR_ACCESS;
1733 		else if (cpumask_intersects(tmp->addmask, subpartitions_cpus) ||
1734 			 cpumask_subset(top_cpuset.effective_cpus, tmp->addmask))
1735 			cs->prs_err = PERR_NOCPUS;
1736 		else if ((prs == PRS_ISOLATED) &&
1737 			 !isolated_cpus_can_update(tmp->addmask, tmp->delmask))
1738 			cs->prs_err = PERR_HKEEPING;
1739 		if (cs->prs_err)
1740 			goto invalidate;
1741 	}
1742 
1743 	spin_lock_irq(&callback_lock);
1744 	if (adding)
1745 		partition_xcpus_add(prs, NULL, tmp->addmask);
1746 	if (deleting)
1747 		partition_xcpus_del(prs, NULL, tmp->delmask);
1748 	/*
1749 	 * Need to update effective_xcpus and exclusive_cpus now as
1750 	 * update_sibling_cpumasks() below may iterate back to the same cs.
1751 	 */
1752 	cpumask_copy(cs->effective_xcpus, excpus);
1753 	if (xcpus)
1754 		cpumask_copy(cs->exclusive_cpus, xcpus);
1755 	spin_unlock_irq(&callback_lock);
1756 	update_isolation_cpumasks();
1757 	if (adding || deleting)
1758 		cpuset_force_rebuild();
1759 
1760 	/*
1761 	 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1762 	 */
1763 	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1764 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1765 	return;
1766 
1767 invalidate:
1768 	remote_partition_disable(cs, tmp);
1769 }
1770 
1771 /**
1772  * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset
1773  * @cs:      The cpuset that requests change in partition root state
1774  * @cmd:     Partition root state change command
1775  * @newmask: Optional new cpumask for partcmd_update
1776  * @tmp:     Temporary addmask and delmask
1777  * Return:   0 or a partition root state error code
1778  *
1779  * For partcmd_enable*, the cpuset is being transformed from a non-partition
1780  * root to a partition root. The effective_xcpus (cpus_allowed if
1781  * effective_xcpus not set) mask of the given cpuset will be taken away from
1782  * parent's effective_cpus. The function will return 0 if all the CPUs listed
1783  * in effective_xcpus can be granted or an error code will be returned.
1784  *
1785  * For partcmd_disable, the cpuset is being transformed from a partition
1786  * root back to a non-partition root. Any CPUs in effective_xcpus will be
1787  * given back to parent's effective_cpus. 0 will always be returned.
1788  *
1789  * For partcmd_update, if the optional newmask is specified, the cpu list is
1790  * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is
1791  * assumed to remain the same. The cpuset should either be a valid or invalid
1792  * partition root. The partition root state may change from valid to invalid
1793  * or vice versa. An error code will be returned if transitioning from
1794  * invalid to valid violates the exclusivity rule.
1795  *
1796  * For partcmd_invalidate, the current partition will be made invalid.
1797  *
1798  * The partcmd_enable* and partcmd_disable commands are used by
1799  * update_prstate(). An error code may be returned and the caller will check
1800  * for error.
1801  *
1802  * The partcmd_update command is used by update_cpumasks_hier() with newmask
1803  * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1804  * by update_cpumask() with NULL newmask. In both cases, the callers won't
1805  * check for error and so partition_root_state and prs_err will be updated
1806  * directly.
1807  */
update_parent_effective_cpumask(struct cpuset * cs,int cmd,struct cpumask * newmask,struct tmpmasks * tmp)1808 static int update_parent_effective_cpumask(struct cpuset *cs, int cmd,
1809 					   struct cpumask *newmask,
1810 					   struct tmpmasks *tmp)
1811 {
1812 	struct cpuset *parent = parent_cs(cs);
1813 	int adding;	/* Adding cpus to parent's effective_cpus	*/
1814 	int deleting;	/* Deleting cpus from parent's effective_cpus	*/
1815 	int old_prs, new_prs;
1816 	int part_error = PERR_NONE;	/* Partition error? */
1817 	struct cpumask *xcpus = user_xcpus(cs);
1818 	int parent_prs = parent->partition_root_state;
1819 	bool nocpu;
1820 
1821 	lockdep_assert_held(&cpuset_mutex);
1822 	WARN_ON_ONCE(is_remote_partition(cs));	/* For local partition only */
1823 
1824 	/*
1825 	 * new_prs will only be changed for the partcmd_update and
1826 	 * partcmd_invalidate commands.
1827 	 */
1828 	adding = deleting = false;
1829 	old_prs = new_prs = cs->partition_root_state;
1830 
1831 	if (cmd == partcmd_invalidate) {
1832 		if (is_partition_invalid(cs))
1833 			return 0;
1834 
1835 		/*
1836 		 * Make the current partition invalid.
1837 		 */
1838 		if (is_partition_valid(parent))
1839 			adding = cpumask_and(tmp->addmask,
1840 					     xcpus, parent->effective_xcpus);
1841 		if (old_prs > 0)
1842 			new_prs = -old_prs;
1843 
1844 		goto write_error;
1845 	}
1846 
1847 	/*
1848 	 * The parent must be a partition root.
1849 	 * The new cpumask, if present, or the current cpus_allowed must
1850 	 * not be empty.
1851 	 */
1852 	if (!is_partition_valid(parent)) {
1853 		return is_partition_invalid(parent)
1854 		       ? PERR_INVPARENT : PERR_NOTPART;
1855 	}
1856 	if (!newmask && xcpus_empty(cs))
1857 		return PERR_CPUSEMPTY;
1858 
1859 	nocpu = tasks_nocpu_error(parent, cs, xcpus);
1860 
1861 	if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) {
1862 		/*
1863 		 * Need to call compute_excpus() in case
1864 		 * exclusive_cpus not set. Sibling conflict should only happen
1865 		 * if exclusive_cpus isn't set.
1866 		 */
1867 		xcpus = tmp->delmask;
1868 		if (compute_excpus(cs, xcpus))
1869 			WARN_ON_ONCE(!cpumask_empty(cs->exclusive_cpus));
1870 		new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED;
1871 
1872 		/*
1873 		 * Enabling partition root is not allowed if its
1874 		 * effective_xcpus is empty.
1875 		 */
1876 		if (cpumask_empty(xcpus))
1877 			return PERR_INVCPUS;
1878 
1879 		if (prstate_housekeeping_conflict(new_prs, xcpus))
1880 			return PERR_HKEEPING;
1881 
1882 		if ((new_prs == PRS_ISOLATED) && (new_prs != parent_prs) &&
1883 		    !isolated_cpus_can_update(xcpus, NULL))
1884 			return PERR_HKEEPING;
1885 
1886 		if (tasks_nocpu_error(parent, cs, xcpus))
1887 			return PERR_NOCPUS;
1888 
1889 		/*
1890 		 * This function will only be called when all the preliminary
1891 		 * checks have passed. At this point, the following condition
1892 		 * should hold.
1893 		 *
1894 		 * (cs->effective_xcpus & cpu_active_mask) ⊆ parent->effective_cpus
1895 		 *
1896 		 * Warn if it is not the case.
1897 		 */
1898 		cpumask_and(tmp->new_cpus, xcpus, cpu_active_mask);
1899 		WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus));
1900 
1901 		deleting = true;
1902 	} else if (cmd == partcmd_disable) {
1903 		/*
1904 		 * May need to add cpus back to parent's effective_cpus
1905 		 * (and maybe removed from subpartitions_cpus/isolated_cpus)
1906 		 * for valid partition root. xcpus may contain CPUs that
1907 		 * shouldn't be removed from the two global cpumasks.
1908 		 */
1909 		if (is_partition_valid(cs)) {
1910 			cpumask_copy(tmp->addmask, cs->effective_xcpus);
1911 			adding = true;
1912 		}
1913 		new_prs = PRS_MEMBER;
1914 	} else if (newmask) {
1915 		/*
1916 		 * Empty cpumask is not allowed
1917 		 */
1918 		if (cpumask_empty(newmask)) {
1919 			part_error = PERR_CPUSEMPTY;
1920 			goto write_error;
1921 		}
1922 
1923 		/* Check newmask again, whether cpus are available for parent/cs */
1924 		nocpu |= tasks_nocpu_error(parent, cs, newmask);
1925 
1926 		/*
1927 		 * partcmd_update with newmask:
1928 		 *
1929 		 * Compute add/delete mask to/from effective_cpus
1930 		 *
1931 		 * For valid partition:
1932 		 *   addmask = exclusive_cpus & ~newmask
1933 		 *			      & parent->effective_xcpus
1934 		 *   delmask = newmask & ~exclusive_cpus
1935 		 *		       & parent->effective_xcpus
1936 		 *
1937 		 * For invalid partition:
1938 		 *   delmask = newmask & parent->effective_xcpus
1939 		 *   The partition may become valid soon.
1940 		 */
1941 		if (is_partition_invalid(cs)) {
1942 			adding = false;
1943 			deleting = cpumask_and(tmp->delmask,
1944 					newmask, parent->effective_xcpus);
1945 		} else {
1946 			cpumask_andnot(tmp->addmask, xcpus, newmask);
1947 			adding = cpumask_and(tmp->addmask, tmp->addmask,
1948 					     parent->effective_xcpus);
1949 
1950 			cpumask_andnot(tmp->delmask, newmask, xcpus);
1951 			deleting = cpumask_and(tmp->delmask, tmp->delmask,
1952 					       parent->effective_xcpus);
1953 		}
1954 
1955 		/*
1956 		 * TBD: Invalidate a currently valid child root partition may
1957 		 * still break isolated_cpus_can_update() rule if parent is an
1958 		 * isolated partition.
1959 		 */
1960 		if (is_partition_valid(cs) && (old_prs != parent_prs)) {
1961 			if ((parent_prs == PRS_ROOT) &&
1962 			    /* Adding to parent means removing isolated CPUs */
1963 			    !isolated_cpus_can_update(tmp->delmask, tmp->addmask))
1964 				part_error = PERR_HKEEPING;
1965 			if ((parent_prs == PRS_ISOLATED) &&
1966 			    /* Adding to parent means adding isolated CPUs */
1967 			    !isolated_cpus_can_update(tmp->addmask, tmp->delmask))
1968 				part_error = PERR_HKEEPING;
1969 		}
1970 
1971 		/*
1972 		 * The new CPUs to be removed from parent's effective CPUs
1973 		 * must be present.
1974 		 */
1975 		if (deleting) {
1976 			cpumask_and(tmp->new_cpus, tmp->delmask, cpu_active_mask);
1977 			WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus));
1978 		}
1979 
1980 		/*
1981 		 * Make partition invalid if parent's effective_cpus could
1982 		 * become empty and there are tasks in the parent.
1983 		 */
1984 		if (nocpu && (!adding ||
1985 		    !cpumask_intersects(tmp->addmask, cpu_active_mask))) {
1986 			part_error = PERR_NOCPUS;
1987 			deleting = false;
1988 			adding = cpumask_and(tmp->addmask,
1989 					     xcpus, parent->effective_xcpus);
1990 		}
1991 	} else {
1992 		/*
1993 		 * partcmd_update w/o newmask
1994 		 *
1995 		 * delmask = effective_xcpus & parent->effective_cpus
1996 		 *
1997 		 * This can be called from:
1998 		 * 1) update_cpumasks_hier()
1999 		 * 2) cpuset_hotplug_update_tasks()
2000 		 *
2001 		 * Check to see if it can be transitioned from valid to
2002 		 * invalid partition or vice versa.
2003 		 *
2004 		 * A partition error happens when parent has tasks and all
2005 		 * its effective CPUs will have to be distributed out.
2006 		 */
2007 		if (nocpu) {
2008 			part_error = PERR_NOCPUS;
2009 			if (is_partition_valid(cs))
2010 				adding = cpumask_and(tmp->addmask,
2011 						xcpus, parent->effective_xcpus);
2012 		} else if (is_partition_invalid(cs) && !cpumask_empty(xcpus) &&
2013 			   cpumask_subset(xcpus, parent->effective_xcpus)) {
2014 			struct cgroup_subsys_state *css;
2015 			struct cpuset *child;
2016 			bool exclusive = true;
2017 
2018 			/*
2019 			 * Convert invalid partition to valid has to
2020 			 * pass the cpu exclusivity test.
2021 			 */
2022 			rcu_read_lock();
2023 			cpuset_for_each_child(child, css, parent) {
2024 				if (child == cs)
2025 					continue;
2026 				if (!cpusets_are_exclusive(cs, child)) {
2027 					exclusive = false;
2028 					break;
2029 				}
2030 			}
2031 			rcu_read_unlock();
2032 			if (exclusive)
2033 				deleting = cpumask_and(tmp->delmask,
2034 						xcpus, parent->effective_cpus);
2035 			else
2036 				part_error = PERR_NOTEXCL;
2037 		}
2038 	}
2039 
2040 write_error:
2041 	if (part_error)
2042 		WRITE_ONCE(cs->prs_err, part_error);
2043 
2044 	if (cmd == partcmd_update) {
2045 		/*
2046 		 * Check for possible transition between valid and invalid
2047 		 * partition root.
2048 		 */
2049 		switch (cs->partition_root_state) {
2050 		case PRS_ROOT:
2051 		case PRS_ISOLATED:
2052 			if (part_error)
2053 				new_prs = -old_prs;
2054 			break;
2055 		case PRS_INVALID_ROOT:
2056 		case PRS_INVALID_ISOLATED:
2057 			if (!part_error)
2058 				new_prs = -old_prs;
2059 			break;
2060 		}
2061 	}
2062 
2063 	if (!adding && !deleting && (new_prs == old_prs))
2064 		return 0;
2065 
2066 	/*
2067 	 * Transitioning between invalid to valid or vice versa may require
2068 	 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update,
2069 	 * validate_change() has already been successfully called and
2070 	 * CPU lists in cs haven't been updated yet. So defer it to later.
2071 	 */
2072 	if ((old_prs != new_prs) && (cmd != partcmd_update))  {
2073 		int err = update_partition_exclusive_flag(cs, new_prs);
2074 
2075 		if (err)
2076 			return err;
2077 	}
2078 
2079 	/*
2080 	 * Change the parent's effective_cpus & effective_xcpus (top cpuset
2081 	 * only).
2082 	 *
2083 	 * Newly added CPUs will be removed from effective_cpus and
2084 	 * newly deleted ones will be added back to effective_cpus.
2085 	 */
2086 	spin_lock_irq(&callback_lock);
2087 	if (old_prs != new_prs)
2088 		cs->partition_root_state = new_prs;
2089 
2090 	/*
2091 	 * Adding to parent's effective_cpus means deletion CPUs from cs
2092 	 * and vice versa.
2093 	 */
2094 	if (adding)
2095 		partition_xcpus_del(old_prs, parent, tmp->addmask);
2096 	if (deleting)
2097 		partition_xcpus_add(new_prs, parent, tmp->delmask);
2098 
2099 	spin_unlock_irq(&callback_lock);
2100 	update_isolation_cpumasks();
2101 
2102 	if ((old_prs != new_prs) && (cmd == partcmd_update))
2103 		update_partition_exclusive_flag(cs, new_prs);
2104 
2105 	if (adding || deleting) {
2106 		cpuset_update_tasks_cpumask(parent, tmp->addmask);
2107 		update_sibling_cpumasks(parent, cs, tmp);
2108 	}
2109 
2110 	/*
2111 	 * For partcmd_update without newmask, it is being called from
2112 	 * cpuset_handle_hotplug(). Update the load balance flag and
2113 	 * scheduling domain accordingly.
2114 	 */
2115 	if ((cmd == partcmd_update) && !newmask)
2116 		update_partition_sd_lb(cs, old_prs);
2117 
2118 	notify_partition_change(cs, old_prs);
2119 	return 0;
2120 }
2121 
2122 /**
2123  * compute_partition_effective_cpumask - compute effective_cpus for partition
2124  * @cs: partition root cpuset
2125  * @new_ecpus: previously computed effective_cpus to be updated
2126  *
2127  * Compute the effective_cpus of a partition root by scanning effective_xcpus
2128  * of child partition roots and excluding their effective_xcpus.
2129  *
2130  * This has the side effect of invalidating valid child partition roots,
2131  * if necessary. Since it is called from either cpuset_hotplug_update_tasks()
2132  * or update_cpumasks_hier() where parent and children are modified
2133  * successively, we don't need to call update_parent_effective_cpumask()
2134  * and the child's effective_cpus will be updated in later iterations.
2135  *
2136  * Note that rcu_read_lock() is assumed to be held.
2137  */
compute_partition_effective_cpumask(struct cpuset * cs,struct cpumask * new_ecpus)2138 static void compute_partition_effective_cpumask(struct cpuset *cs,
2139 						struct cpumask *new_ecpus)
2140 {
2141 	struct cgroup_subsys_state *css;
2142 	struct cpuset *child;
2143 	bool populated = partition_is_populated(cs, NULL);
2144 
2145 	/*
2146 	 * Check child partition roots to see if they should be
2147 	 * invalidated when
2148 	 *  1) child effective_xcpus not a subset of new
2149 	 *     excluisve_cpus
2150 	 *  2) All the effective_cpus will be used up and cp
2151 	 *     has tasks
2152 	 */
2153 	compute_excpus(cs, new_ecpus);
2154 	cpumask_and(new_ecpus, new_ecpus, cpu_active_mask);
2155 
2156 	rcu_read_lock();
2157 	cpuset_for_each_child(child, css, cs) {
2158 		if (!is_partition_valid(child))
2159 			continue;
2160 
2161 		/*
2162 		 * There shouldn't be a remote partition underneath another
2163 		 * partition root.
2164 		 */
2165 		WARN_ON_ONCE(is_remote_partition(child));
2166 		child->prs_err = 0;
2167 		if (!cpumask_subset(child->effective_xcpus,
2168 				    cs->effective_xcpus))
2169 			child->prs_err = PERR_INVCPUS;
2170 		else if (populated &&
2171 			 cpumask_subset(new_ecpus, child->effective_xcpus))
2172 			child->prs_err = PERR_NOCPUS;
2173 
2174 		if (child->prs_err) {
2175 			int old_prs = child->partition_root_state;
2176 
2177 			/*
2178 			 * Invalidate child partition
2179 			 */
2180 			spin_lock_irq(&callback_lock);
2181 			make_partition_invalid(child);
2182 			spin_unlock_irq(&callback_lock);
2183 			notify_partition_change(child, old_prs);
2184 			continue;
2185 		}
2186 		cpumask_andnot(new_ecpus, new_ecpus,
2187 			       child->effective_xcpus);
2188 	}
2189 	rcu_read_unlock();
2190 }
2191 
2192 /*
2193  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
2194  * @cs:  the cpuset to consider
2195  * @tmp: temp variables for calculating effective_cpus & partition setup
2196  * @force: don't skip any descendant cpusets if set
2197  *
2198  * When configured cpumask is changed, the effective cpumasks of this cpuset
2199  * and all its descendants need to be updated.
2200  *
2201  * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
2202  *
2203  * Called with cpuset_mutex held
2204  */
update_cpumasks_hier(struct cpuset * cs,struct tmpmasks * tmp,bool force)2205 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
2206 				 bool force)
2207 {
2208 	struct cpuset *cp;
2209 	struct cgroup_subsys_state *pos_css;
2210 	int old_prs, new_prs;
2211 
2212 	rcu_read_lock();
2213 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2214 		struct cpuset *parent = parent_cs(cp);
2215 		bool remote = is_remote_partition(cp);
2216 		bool update_parent = false;
2217 
2218 		old_prs = new_prs = cp->partition_root_state;
2219 
2220 		/*
2221 		 * For child remote partition root (!= cs), we need to call
2222 		 * remote_cpus_update() if effective_xcpus will be changed.
2223 		 * Otherwise, we can skip the whole subtree.
2224 		 *
2225 		 * remote_cpus_update() will reuse tmp->new_cpus only after
2226 		 * its value is being processed.
2227 		 */
2228 		if (remote && (cp != cs)) {
2229 			compute_excpus(cp, tmp->new_cpus);
2230 			if (cpumask_equal(cp->effective_xcpus, tmp->new_cpus)) {
2231 				pos_css = css_rightmost_descendant(pos_css);
2232 				continue;
2233 			}
2234 			rcu_read_unlock();
2235 			remote_cpus_update(cp, NULL, tmp->new_cpus, tmp);
2236 			rcu_read_lock();
2237 
2238 			/* Remote partition may be invalidated */
2239 			new_prs = cp->partition_root_state;
2240 			remote = (new_prs == old_prs);
2241 		}
2242 
2243 		if (remote || (is_partition_valid(parent) && is_partition_valid(cp)))
2244 			compute_partition_effective_cpumask(cp, tmp->new_cpus);
2245 		else
2246 			compute_effective_cpumask(tmp->new_cpus, cp, parent);
2247 
2248 		if (remote)
2249 			goto get_css;	/* Ready to update cpuset data */
2250 
2251 		/*
2252 		 * A partition with no effective_cpus is allowed as long as
2253 		 * there is no task associated with it. Call
2254 		 * update_parent_effective_cpumask() to check it.
2255 		 */
2256 		if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) {
2257 			update_parent = true;
2258 			goto update_parent_effective;
2259 		}
2260 
2261 		/*
2262 		 * If it becomes empty, inherit the effective mask of the
2263 		 * parent, which is guaranteed to have some CPUs unless
2264 		 * it is a partition root that has explicitly distributed
2265 		 * out all its CPUs.
2266 		 */
2267 		if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus))
2268 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
2269 
2270 		/*
2271 		 * Skip the whole subtree if
2272 		 * 1) the cpumask remains the same,
2273 		 * 2) has no partition root state,
2274 		 * 3) force flag not set, and
2275 		 * 4) for v2 load balance state same as its parent.
2276 		 */
2277 		if (!cp->partition_root_state && !force &&
2278 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
2279 		    (!cpuset_v2() ||
2280 		    (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
2281 			pos_css = css_rightmost_descendant(pos_css);
2282 			continue;
2283 		}
2284 
2285 update_parent_effective:
2286 		/*
2287 		 * update_parent_effective_cpumask() should have been called
2288 		 * for cs already in update_cpumask(). We should also call
2289 		 * cpuset_update_tasks_cpumask() again for tasks in the parent
2290 		 * cpuset if the parent's effective_cpus changes.
2291 		 */
2292 		if ((cp != cs) && old_prs) {
2293 			switch (parent->partition_root_state) {
2294 			case PRS_ROOT:
2295 			case PRS_ISOLATED:
2296 				update_parent = true;
2297 				break;
2298 
2299 			default:
2300 				/*
2301 				 * When parent is not a partition root or is
2302 				 * invalid, child partition roots become
2303 				 * invalid too.
2304 				 */
2305 				if (is_partition_valid(cp))
2306 					new_prs = -cp->partition_root_state;
2307 				WRITE_ONCE(cp->prs_err,
2308 					   is_partition_invalid(parent)
2309 					   ? PERR_INVPARENT : PERR_NOTPART);
2310 				break;
2311 			}
2312 		}
2313 get_css:
2314 		if (!css_tryget_online(&cp->css))
2315 			continue;
2316 		rcu_read_unlock();
2317 
2318 		if (update_parent) {
2319 			update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp);
2320 			/*
2321 			 * The cpuset partition_root_state may become
2322 			 * invalid. Capture it.
2323 			 */
2324 			new_prs = cp->partition_root_state;
2325 		}
2326 
2327 		spin_lock_irq(&callback_lock);
2328 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
2329 		cp->partition_root_state = new_prs;
2330 		if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs))
2331 			compute_excpus(cp, cp->effective_xcpus);
2332 
2333 		/*
2334 		 * Make sure effective_xcpus is properly set for a valid
2335 		 * partition root.
2336 		 */
2337 		if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus))
2338 			cpumask_and(cp->effective_xcpus,
2339 				    cp->cpus_allowed, parent->effective_xcpus);
2340 		else if (new_prs < 0)
2341 			reset_partition_data(cp);
2342 		spin_unlock_irq(&callback_lock);
2343 
2344 		notify_partition_change(cp, old_prs);
2345 
2346 		WARN_ON(!is_in_v2_mode() &&
2347 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
2348 
2349 		cpuset_update_tasks_cpumask(cp, cp->effective_cpus);
2350 
2351 		/*
2352 		 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE
2353 		 * from parent if current cpuset isn't a valid partition root
2354 		 * and their load balance states differ.
2355 		 */
2356 		if (cpuset_v2() && !is_partition_valid(cp) &&
2357 		    (is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
2358 			if (is_sched_load_balance(parent))
2359 				set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2360 			else
2361 				clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2362 		}
2363 
2364 		/*
2365 		 * On legacy hierarchy, if the effective cpumask of any non-
2366 		 * empty cpuset is changed, we need to rebuild sched domains.
2367 		 * On default hierarchy, the cpuset needs to be a partition
2368 		 * root as well.
2369 		 */
2370 		if (!cpumask_empty(cp->cpus_allowed) &&
2371 		    is_sched_load_balance(cp) &&
2372 		   (!cpuset_v2() || is_partition_valid(cp)))
2373 			cpuset_force_rebuild();
2374 
2375 		rcu_read_lock();
2376 		css_put(&cp->css);
2377 	}
2378 	rcu_read_unlock();
2379 }
2380 
2381 /**
2382  * update_sibling_cpumasks - Update siblings cpumasks
2383  * @parent:  Parent cpuset
2384  * @cs:      Current cpuset
2385  * @tmp:     Temp variables
2386  */
update_sibling_cpumasks(struct cpuset * parent,struct cpuset * cs,struct tmpmasks * tmp)2387 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
2388 				    struct tmpmasks *tmp)
2389 {
2390 	struct cpuset *sibling;
2391 	struct cgroup_subsys_state *pos_css;
2392 
2393 	lockdep_assert_held(&cpuset_mutex);
2394 
2395 	/*
2396 	 * Check all its siblings and call update_cpumasks_hier()
2397 	 * if their effective_cpus will need to be changed.
2398 	 *
2399 	 * It is possible a change in parent's effective_cpus
2400 	 * due to a change in a child partition's effective_xcpus will impact
2401 	 * its siblings even if they do not inherit parent's effective_cpus
2402 	 * directly.
2403 	 *
2404 	 * The update_cpumasks_hier() function may sleep. So we have to
2405 	 * release the RCU read lock before calling it.
2406 	 */
2407 	rcu_read_lock();
2408 	cpuset_for_each_child(sibling, pos_css, parent) {
2409 		if (sibling == cs)
2410 			continue;
2411 		if (!is_partition_valid(sibling)) {
2412 			compute_effective_cpumask(tmp->new_cpus, sibling,
2413 						  parent);
2414 			if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus))
2415 				continue;
2416 		} else if (is_remote_partition(sibling)) {
2417 			/*
2418 			 * Change in a sibling cpuset won't affect a remote
2419 			 * partition root.
2420 			 */
2421 			continue;
2422 		}
2423 
2424 		if (!css_tryget_online(&sibling->css))
2425 			continue;
2426 
2427 		rcu_read_unlock();
2428 		update_cpumasks_hier(sibling, tmp, false);
2429 		rcu_read_lock();
2430 		css_put(&sibling->css);
2431 	}
2432 	rcu_read_unlock();
2433 }
2434 
parse_cpuset_cpulist(const char * buf,struct cpumask * out_mask)2435 static int parse_cpuset_cpulist(const char *buf, struct cpumask *out_mask)
2436 {
2437 	int retval;
2438 
2439 	retval = cpulist_parse(buf, out_mask);
2440 	if (retval < 0)
2441 		return retval;
2442 	if (!cpumask_subset(out_mask, top_cpuset.cpus_allowed))
2443 		return -EINVAL;
2444 
2445 	return 0;
2446 }
2447 
2448 /**
2449  * validate_partition - Validate a cpuset partition configuration
2450  * @cs: The cpuset to validate
2451  * @trialcs: The trial cpuset containing proposed configuration changes
2452  *
2453  * If any validation check fails, the appropriate error code is set in the
2454  * cpuset's prs_err field.
2455  *
2456  * Return: PRS error code (0 if valid, non-zero error code if invalid)
2457  */
validate_partition(struct cpuset * cs,struct cpuset * trialcs)2458 static enum prs_errcode validate_partition(struct cpuset *cs, struct cpuset *trialcs)
2459 {
2460 	struct cpuset *parent = parent_cs(cs);
2461 
2462 	if (cs_is_member(trialcs))
2463 		return PERR_NONE;
2464 
2465 	if (cpumask_empty(trialcs->effective_xcpus))
2466 		return PERR_INVCPUS;
2467 
2468 	if (prstate_housekeeping_conflict(trialcs->partition_root_state,
2469 					  trialcs->effective_xcpus))
2470 		return PERR_HKEEPING;
2471 
2472 	if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus))
2473 		return PERR_NOCPUS;
2474 
2475 	return PERR_NONE;
2476 }
2477 
cpus_allowed_validate_change(struct cpuset * cs,struct cpuset * trialcs,struct tmpmasks * tmp)2478 static int cpus_allowed_validate_change(struct cpuset *cs, struct cpuset *trialcs,
2479 					struct tmpmasks *tmp)
2480 {
2481 	int retval;
2482 	struct cpuset *parent = parent_cs(cs);
2483 
2484 	retval = validate_change(cs, trialcs);
2485 
2486 	if ((retval == -EINVAL) && cpuset_v2()) {
2487 		struct cgroup_subsys_state *css;
2488 		struct cpuset *cp;
2489 
2490 		/*
2491 		 * The -EINVAL error code indicates that partition sibling
2492 		 * CPU exclusivity rule has been violated. We still allow
2493 		 * the cpumask change to proceed while invalidating the
2494 		 * partition. However, any conflicting sibling partitions
2495 		 * have to be marked as invalid too.
2496 		 */
2497 		trialcs->prs_err = PERR_NOTEXCL;
2498 		rcu_read_lock();
2499 		cpuset_for_each_child(cp, css, parent) {
2500 			struct cpumask *xcpus = user_xcpus(trialcs);
2501 
2502 			if (is_partition_valid(cp) &&
2503 			    cpumask_intersects(xcpus, cp->effective_xcpus)) {
2504 				rcu_read_unlock();
2505 				update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, tmp);
2506 				rcu_read_lock();
2507 			}
2508 		}
2509 		rcu_read_unlock();
2510 		retval = 0;
2511 	}
2512 	return retval;
2513 }
2514 
2515 /**
2516  * partition_cpus_change - Handle partition state changes due to CPU mask updates
2517  * @cs: The target cpuset being modified
2518  * @trialcs: The trial cpuset containing proposed configuration changes
2519  * @tmp: Temporary masks for intermediate calculations
2520  *
2521  * This function handles partition state transitions triggered by CPU mask changes.
2522  * CPU modifications may cause a partition to be disabled or require state updates.
2523  */
partition_cpus_change(struct cpuset * cs,struct cpuset * trialcs,struct tmpmasks * tmp)2524 static void partition_cpus_change(struct cpuset *cs, struct cpuset *trialcs,
2525 					struct tmpmasks *tmp)
2526 {
2527 	enum prs_errcode prs_err;
2528 
2529 	if (cs_is_member(cs))
2530 		return;
2531 
2532 	prs_err = validate_partition(cs, trialcs);
2533 	if (prs_err)
2534 		trialcs->prs_err = cs->prs_err = prs_err;
2535 
2536 	if (is_remote_partition(cs)) {
2537 		if (trialcs->prs_err)
2538 			remote_partition_disable(cs, tmp);
2539 		else
2540 			remote_cpus_update(cs, trialcs->exclusive_cpus,
2541 					   trialcs->effective_xcpus, tmp);
2542 	} else {
2543 		if (trialcs->prs_err)
2544 			update_parent_effective_cpumask(cs, partcmd_invalidate,
2545 							NULL, tmp);
2546 		else
2547 			update_parent_effective_cpumask(cs, partcmd_update,
2548 							trialcs->effective_xcpus, tmp);
2549 	}
2550 }
2551 
2552 /**
2553  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
2554  * @cs: the cpuset to consider
2555  * @trialcs: trial cpuset
2556  * @buf: buffer of cpu numbers written to this cpuset
2557  */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)2558 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2559 			  const char *buf)
2560 {
2561 	int retval;
2562 	struct tmpmasks tmp;
2563 	bool force = false;
2564 	int old_prs = cs->partition_root_state;
2565 
2566 	retval = parse_cpuset_cpulist(buf, trialcs->cpus_allowed);
2567 	if (retval < 0)
2568 		return retval;
2569 
2570 	/* Nothing to do if the cpus didn't change */
2571 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
2572 		return 0;
2573 
2574 	if (alloc_tmpmasks(&tmp))
2575 		return -ENOMEM;
2576 
2577 	compute_trialcs_excpus(trialcs, cs);
2578 	trialcs->prs_err = PERR_NONE;
2579 
2580 	retval = cpus_allowed_validate_change(cs, trialcs, &tmp);
2581 	if (retval < 0)
2582 		goto out_free;
2583 
2584 	/*
2585 	 * Check all the descendants in update_cpumasks_hier() if
2586 	 * effective_xcpus is to be changed.
2587 	 */
2588 	force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
2589 
2590 	partition_cpus_change(cs, trialcs, &tmp);
2591 
2592 	spin_lock_irq(&callback_lock);
2593 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
2594 	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2595 	if ((old_prs > 0) && !is_partition_valid(cs))
2596 		reset_partition_data(cs);
2597 	spin_unlock_irq(&callback_lock);
2598 
2599 	/* effective_cpus/effective_xcpus will be updated here */
2600 	update_cpumasks_hier(cs, &tmp, force);
2601 
2602 	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2603 	if (cs->partition_root_state)
2604 		update_partition_sd_lb(cs, old_prs);
2605 out_free:
2606 	free_tmpmasks(&tmp);
2607 	return retval;
2608 }
2609 
2610 /**
2611  * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset
2612  * @cs: the cpuset to consider
2613  * @trialcs: trial cpuset
2614  * @buf: buffer of cpu numbers written to this cpuset
2615  *
2616  * The tasks' cpumask will be updated if cs is a valid partition root.
2617  */
update_exclusive_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)2618 static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2619 				    const char *buf)
2620 {
2621 	int retval;
2622 	struct tmpmasks tmp;
2623 	bool force = false;
2624 	int old_prs = cs->partition_root_state;
2625 
2626 	retval = parse_cpuset_cpulist(buf, trialcs->exclusive_cpus);
2627 	if (retval < 0)
2628 		return retval;
2629 
2630 	/* Nothing to do if the CPUs didn't change */
2631 	if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus))
2632 		return 0;
2633 
2634 	/*
2635 	 * Reject the change if there is exclusive CPUs conflict with
2636 	 * the siblings.
2637 	 */
2638 	if (compute_trialcs_excpus(trialcs, cs))
2639 		return -EINVAL;
2640 
2641 	/*
2642 	 * Check all the descendants in update_cpumasks_hier() if
2643 	 * effective_xcpus is to be changed.
2644 	 */
2645 	force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
2646 
2647 	retval = validate_change(cs, trialcs);
2648 	if (retval)
2649 		return retval;
2650 
2651 	if (alloc_tmpmasks(&tmp))
2652 		return -ENOMEM;
2653 
2654 	trialcs->prs_err = PERR_NONE;
2655 	partition_cpus_change(cs, trialcs, &tmp);
2656 
2657 	spin_lock_irq(&callback_lock);
2658 	cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus);
2659 	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2660 	if ((old_prs > 0) && !is_partition_valid(cs))
2661 		reset_partition_data(cs);
2662 	spin_unlock_irq(&callback_lock);
2663 
2664 	/*
2665 	 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus
2666 	 * of the subtree when it is a valid partition root or effective_xcpus
2667 	 * is updated.
2668 	 */
2669 	if (is_partition_valid(cs) || force)
2670 		update_cpumasks_hier(cs, &tmp, force);
2671 
2672 	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2673 	if (cs->partition_root_state)
2674 		update_partition_sd_lb(cs, old_prs);
2675 
2676 	free_tmpmasks(&tmp);
2677 	return 0;
2678 }
2679 
2680 /*
2681  * Migrate memory region from one set of nodes to another.  This is
2682  * performed asynchronously as it can be called from process migration path
2683  * holding locks involved in process management.  All mm migrations are
2684  * performed in the queued order and can be waited for by flushing
2685  * cpuset_migrate_mm_wq.
2686  */
2687 
2688 struct cpuset_migrate_mm_work {
2689 	struct work_struct	work;
2690 	struct mm_struct	*mm;
2691 	nodemask_t		from;
2692 	nodemask_t		to;
2693 };
2694 
cpuset_migrate_mm_workfn(struct work_struct * work)2695 static void cpuset_migrate_mm_workfn(struct work_struct *work)
2696 {
2697 	struct cpuset_migrate_mm_work *mwork =
2698 		container_of(work, struct cpuset_migrate_mm_work, work);
2699 
2700 	/* on a wq worker, no need to worry about %current's mems_allowed */
2701 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
2702 	mmput(mwork->mm);
2703 	kfree(mwork);
2704 }
2705 
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)2706 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
2707 							const nodemask_t *to)
2708 {
2709 	struct cpuset_migrate_mm_work *mwork;
2710 
2711 	if (nodes_equal(*from, *to)) {
2712 		mmput(mm);
2713 		return;
2714 	}
2715 
2716 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
2717 	if (mwork) {
2718 		mwork->mm = mm;
2719 		mwork->from = *from;
2720 		mwork->to = *to;
2721 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
2722 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
2723 	} else {
2724 		mmput(mm);
2725 	}
2726 }
2727 
flush_migrate_mm_task_workfn(struct callback_head * head)2728 static void flush_migrate_mm_task_workfn(struct callback_head *head)
2729 {
2730 	flush_workqueue(cpuset_migrate_mm_wq);
2731 	kfree(head);
2732 }
2733 
schedule_flush_migrate_mm(void)2734 static void schedule_flush_migrate_mm(void)
2735 {
2736 	struct callback_head *flush_cb;
2737 
2738 	flush_cb = kzalloc(sizeof(struct callback_head), GFP_KERNEL);
2739 	if (!flush_cb)
2740 		return;
2741 
2742 	init_task_work(flush_cb, flush_migrate_mm_task_workfn);
2743 
2744 	if (task_work_add(current, flush_cb, TWA_RESUME))
2745 		kfree(flush_cb);
2746 }
2747 
2748 /*
2749  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
2750  * @tsk: the task to change
2751  * @newmems: new nodes that the task will be set
2752  *
2753  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
2754  * and rebind an eventual tasks' mempolicy. If the task is allocating in
2755  * parallel, it might temporarily see an empty intersection, which results in
2756  * a seqlock check and retry before OOM or allocation failure.
2757  */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)2758 static void cpuset_change_task_nodemask(struct task_struct *tsk,
2759 					nodemask_t *newmems)
2760 {
2761 	task_lock(tsk);
2762 
2763 	local_irq_disable();
2764 	write_seqcount_begin(&tsk->mems_allowed_seq);
2765 
2766 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
2767 	mpol_rebind_task(tsk, newmems);
2768 	tsk->mems_allowed = *newmems;
2769 
2770 	write_seqcount_end(&tsk->mems_allowed_seq);
2771 	local_irq_enable();
2772 
2773 	task_unlock(tsk);
2774 }
2775 
2776 static void *cpuset_being_rebound;
2777 
2778 /**
2779  * cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
2780  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
2781  *
2782  * Iterate through each task of @cs updating its mems_allowed to the
2783  * effective cpuset's.  As this function is called with cpuset_mutex held,
2784  * cpuset membership stays stable.
2785  */
cpuset_update_tasks_nodemask(struct cpuset * cs)2786 void cpuset_update_tasks_nodemask(struct cpuset *cs)
2787 {
2788 	static nodemask_t newmems;	/* protected by cpuset_mutex */
2789 	struct css_task_iter it;
2790 	struct task_struct *task;
2791 
2792 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
2793 
2794 	guarantee_online_mems(cs, &newmems);
2795 
2796 	/*
2797 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
2798 	 * take while holding tasklist_lock.  Forks can happen - the
2799 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
2800 	 * and rebind their vma mempolicies too.  Because we still hold
2801 	 * the global cpuset_mutex, we know that no other rebind effort
2802 	 * will be contending for the global variable cpuset_being_rebound.
2803 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
2804 	 * is idempotent.  Also migrate pages in each mm to new nodes.
2805 	 */
2806 	css_task_iter_start(&cs->css, 0, &it);
2807 	while ((task = css_task_iter_next(&it))) {
2808 		struct mm_struct *mm;
2809 		bool migrate;
2810 
2811 		cpuset_change_task_nodemask(task, &newmems);
2812 
2813 		mm = get_task_mm(task);
2814 		if (!mm)
2815 			continue;
2816 
2817 		migrate = is_memory_migrate(cs);
2818 
2819 		mpol_rebind_mm(mm, &cs->mems_allowed);
2820 		if (migrate)
2821 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
2822 		else
2823 			mmput(mm);
2824 	}
2825 	css_task_iter_end(&it);
2826 
2827 	/*
2828 	 * All the tasks' nodemasks have been updated, update
2829 	 * cs->old_mems_allowed.
2830 	 */
2831 	cs->old_mems_allowed = newmems;
2832 
2833 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
2834 	cpuset_being_rebound = NULL;
2835 }
2836 
2837 /*
2838  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2839  * @cs: the cpuset to consider
2840  * @new_mems: a temp variable for calculating new effective_mems
2841  *
2842  * When configured nodemask is changed, the effective nodemasks of this cpuset
2843  * and all its descendants need to be updated.
2844  *
2845  * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2846  *
2847  * Called with cpuset_mutex held
2848  */
update_nodemasks_hier(struct cpuset * cs,nodemask_t * new_mems)2849 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2850 {
2851 	struct cpuset *cp;
2852 	struct cgroup_subsys_state *pos_css;
2853 
2854 	rcu_read_lock();
2855 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2856 		struct cpuset *parent = parent_cs(cp);
2857 
2858 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2859 
2860 		/*
2861 		 * If it becomes empty, inherit the effective mask of the
2862 		 * parent, which is guaranteed to have some MEMs.
2863 		 */
2864 		if (is_in_v2_mode() && nodes_empty(*new_mems))
2865 			*new_mems = parent->effective_mems;
2866 
2867 		/* Skip the whole subtree if the nodemask remains the same. */
2868 		if (nodes_equal(*new_mems, cp->effective_mems)) {
2869 			pos_css = css_rightmost_descendant(pos_css);
2870 			continue;
2871 		}
2872 
2873 		if (!css_tryget_online(&cp->css))
2874 			continue;
2875 		rcu_read_unlock();
2876 
2877 		spin_lock_irq(&callback_lock);
2878 		cp->effective_mems = *new_mems;
2879 		spin_unlock_irq(&callback_lock);
2880 
2881 		WARN_ON(!is_in_v2_mode() &&
2882 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
2883 
2884 		cpuset_update_tasks_nodemask(cp);
2885 
2886 		rcu_read_lock();
2887 		css_put(&cp->css);
2888 	}
2889 	rcu_read_unlock();
2890 }
2891 
2892 /*
2893  * Handle user request to change the 'mems' memory placement
2894  * of a cpuset.  Needs to validate the request, update the
2895  * cpusets mems_allowed, and for each task in the cpuset,
2896  * update mems_allowed and rebind task's mempolicy and any vma
2897  * mempolicies and if the cpuset is marked 'memory_migrate',
2898  * migrate the tasks pages to the new memory.
2899  *
2900  * Call with cpuset_mutex held. May take callback_lock during call.
2901  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2902  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2903  * their mempolicies to the cpusets new mems_allowed.
2904  */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)2905 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2906 			   const char *buf)
2907 {
2908 	int retval;
2909 
2910 	/*
2911 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2912 	 * The validate_change() call ensures that cpusets with tasks have memory.
2913 	 */
2914 	retval = nodelist_parse(buf, trialcs->mems_allowed);
2915 	if (retval < 0)
2916 		return retval;
2917 
2918 	if (!nodes_subset(trialcs->mems_allowed,
2919 			  top_cpuset.mems_allowed))
2920 		return -EINVAL;
2921 
2922 	/* No change? nothing to do */
2923 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed))
2924 		return 0;
2925 
2926 	retval = validate_change(cs, trialcs);
2927 	if (retval < 0)
2928 		return retval;
2929 
2930 	check_insane_mems_config(&trialcs->mems_allowed);
2931 
2932 	spin_lock_irq(&callback_lock);
2933 	cs->mems_allowed = trialcs->mems_allowed;
2934 	spin_unlock_irq(&callback_lock);
2935 
2936 	/* use trialcs->mems_allowed as a temp variable */
2937 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
2938 	return 0;
2939 }
2940 
current_cpuset_is_being_rebound(void)2941 bool current_cpuset_is_being_rebound(void)
2942 {
2943 	bool ret;
2944 
2945 	rcu_read_lock();
2946 	ret = task_cs(current) == cpuset_being_rebound;
2947 	rcu_read_unlock();
2948 
2949 	return ret;
2950 }
2951 
2952 /*
2953  * cpuset_update_flag - read a 0 or a 1 in a file and update associated flag
2954  * bit:		the bit to update (see cpuset_flagbits_t)
2955  * cs:		the cpuset to update
2956  * turning_on: 	whether the flag is being set or cleared
2957  *
2958  * Call with cpuset_mutex held.
2959  */
2960 
cpuset_update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)2961 int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2962 		       int turning_on)
2963 {
2964 	struct cpuset *trialcs;
2965 	int balance_flag_changed;
2966 	int spread_flag_changed;
2967 	int err;
2968 
2969 	trialcs = dup_or_alloc_cpuset(cs);
2970 	if (!trialcs)
2971 		return -ENOMEM;
2972 
2973 	if (turning_on)
2974 		set_bit(bit, &trialcs->flags);
2975 	else
2976 		clear_bit(bit, &trialcs->flags);
2977 
2978 	err = validate_change(cs, trialcs);
2979 	if (err < 0)
2980 		goto out;
2981 
2982 	balance_flag_changed = (is_sched_load_balance(cs) !=
2983 				is_sched_load_balance(trialcs));
2984 
2985 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2986 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
2987 
2988 	spin_lock_irq(&callback_lock);
2989 	cs->flags = trialcs->flags;
2990 	spin_unlock_irq(&callback_lock);
2991 
2992 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) {
2993 		if (cpuset_v2())
2994 			cpuset_force_rebuild();
2995 		else
2996 			rebuild_sched_domains_locked();
2997 	}
2998 
2999 	if (spread_flag_changed)
3000 		cpuset1_update_tasks_flags(cs);
3001 out:
3002 	free_cpuset(trialcs);
3003 	return err;
3004 }
3005 
3006 /**
3007  * update_prstate - update partition_root_state
3008  * @cs: the cpuset to update
3009  * @new_prs: new partition root state
3010  * Return: 0 if successful, != 0 if error
3011  *
3012  * Call with cpuset_mutex held.
3013  */
update_prstate(struct cpuset * cs,int new_prs)3014 static int update_prstate(struct cpuset *cs, int new_prs)
3015 {
3016 	int err = PERR_NONE, old_prs = cs->partition_root_state;
3017 	struct cpuset *parent = parent_cs(cs);
3018 	struct tmpmasks tmpmask;
3019 	bool isolcpus_updated = false;
3020 
3021 	if (old_prs == new_prs)
3022 		return 0;
3023 
3024 	/*
3025 	 * Treat a previously invalid partition root as if it is a "member".
3026 	 */
3027 	if (new_prs && is_partition_invalid(cs))
3028 		old_prs = PRS_MEMBER;
3029 
3030 	if (alloc_tmpmasks(&tmpmask))
3031 		return -ENOMEM;
3032 
3033 	err = update_partition_exclusive_flag(cs, new_prs);
3034 	if (err)
3035 		goto out;
3036 
3037 	if (!old_prs) {
3038 		/*
3039 		 * cpus_allowed and exclusive_cpus cannot be both empty.
3040 		 */
3041 		if (xcpus_empty(cs)) {
3042 			err = PERR_CPUSEMPTY;
3043 			goto out;
3044 		}
3045 
3046 		/*
3047 		 * We don't support the creation of a new local partition with
3048 		 * a remote partition underneath it. This unsupported
3049 		 * setting can happen only if parent is the top_cpuset because
3050 		 * a remote partition cannot be created underneath an existing
3051 		 * local or remote partition.
3052 		 */
3053 		if ((parent == &top_cpuset) &&
3054 		    cpumask_intersects(cs->exclusive_cpus, subpartitions_cpus)) {
3055 			err = PERR_REMOTE;
3056 			goto out;
3057 		}
3058 
3059 		/*
3060 		 * If parent is valid partition, enable local partiion.
3061 		 * Otherwise, enable a remote partition.
3062 		 */
3063 		if (is_partition_valid(parent)) {
3064 			enum partition_cmd cmd = (new_prs == PRS_ROOT)
3065 					       ? partcmd_enable : partcmd_enablei;
3066 
3067 			err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask);
3068 		} else {
3069 			err = remote_partition_enable(cs, new_prs, &tmpmask);
3070 		}
3071 	} else if (old_prs && new_prs) {
3072 		/*
3073 		 * A change in load balance state only, no change in cpumasks.
3074 		 * Need to update isolated_cpus.
3075 		 */
3076 		if (((new_prs == PRS_ISOLATED) &&
3077 		     !isolated_cpus_can_update(cs->effective_xcpus, NULL)) ||
3078 		    prstate_housekeeping_conflict(new_prs, cs->effective_xcpus))
3079 			err = PERR_HKEEPING;
3080 		else
3081 			isolcpus_updated = true;
3082 	} else {
3083 		/*
3084 		 * Switching back to member is always allowed even if it
3085 		 * disables child partitions.
3086 		 */
3087 		if (is_remote_partition(cs))
3088 			remote_partition_disable(cs, &tmpmask);
3089 		else
3090 			update_parent_effective_cpumask(cs, partcmd_disable,
3091 							NULL, &tmpmask);
3092 
3093 		/*
3094 		 * Invalidation of child partitions will be done in
3095 		 * update_cpumasks_hier().
3096 		 */
3097 	}
3098 out:
3099 	/*
3100 	 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error
3101 	 * happens.
3102 	 */
3103 	if (err) {
3104 		new_prs = -new_prs;
3105 		update_partition_exclusive_flag(cs, new_prs);
3106 	}
3107 
3108 	spin_lock_irq(&callback_lock);
3109 	cs->partition_root_state = new_prs;
3110 	WRITE_ONCE(cs->prs_err, err);
3111 	if (!is_partition_valid(cs))
3112 		reset_partition_data(cs);
3113 	else if (isolcpus_updated)
3114 		isolated_cpus_update(old_prs, new_prs, cs->effective_xcpus);
3115 	spin_unlock_irq(&callback_lock);
3116 	update_isolation_cpumasks();
3117 
3118 	/* Force update if switching back to member & update effective_xcpus */
3119 	update_cpumasks_hier(cs, &tmpmask, !new_prs);
3120 
3121 	/* A newly created partition must have effective_xcpus set */
3122 	WARN_ON_ONCE(!old_prs && (new_prs > 0)
3123 			      && cpumask_empty(cs->effective_xcpus));
3124 
3125 	/* Update sched domains and load balance flag */
3126 	update_partition_sd_lb(cs, old_prs);
3127 
3128 	notify_partition_change(cs, old_prs);
3129 	if (force_sd_rebuild)
3130 		rebuild_sched_domains_locked();
3131 	free_tmpmasks(&tmpmask);
3132 	return 0;
3133 }
3134 
3135 static struct cpuset *cpuset_attach_old_cs;
3136 
3137 /*
3138  * Check to see if a cpuset can accept a new task
3139  * For v1, cpus_allowed and mems_allowed can't be empty.
3140  * For v2, effective_cpus can't be empty.
3141  * Note that in v1, effective_cpus = cpus_allowed.
3142  */
cpuset_can_attach_check(struct cpuset * cs)3143 static int cpuset_can_attach_check(struct cpuset *cs)
3144 {
3145 	if (cpumask_empty(cs->effective_cpus) ||
3146 	   (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
3147 		return -ENOSPC;
3148 	return 0;
3149 }
3150 
reset_migrate_dl_data(struct cpuset * cs)3151 static void reset_migrate_dl_data(struct cpuset *cs)
3152 {
3153 	cs->nr_migrate_dl_tasks = 0;
3154 	cs->sum_migrate_dl_bw = 0;
3155 }
3156 
3157 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
cpuset_can_attach(struct cgroup_taskset * tset)3158 static int cpuset_can_attach(struct cgroup_taskset *tset)
3159 {
3160 	struct cgroup_subsys_state *css;
3161 	struct cpuset *cs, *oldcs;
3162 	struct task_struct *task;
3163 	bool cpus_updated, mems_updated;
3164 	int ret;
3165 
3166 	/* used later by cpuset_attach() */
3167 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
3168 	oldcs = cpuset_attach_old_cs;
3169 	cs = css_cs(css);
3170 
3171 	mutex_lock(&cpuset_mutex);
3172 
3173 	/* Check to see if task is allowed in the cpuset */
3174 	ret = cpuset_can_attach_check(cs);
3175 	if (ret)
3176 		goto out_unlock;
3177 
3178 	cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
3179 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3180 
3181 	cgroup_taskset_for_each(task, css, tset) {
3182 		ret = task_can_attach(task);
3183 		if (ret)
3184 			goto out_unlock;
3185 
3186 		/*
3187 		 * Skip rights over task check in v2 when nothing changes,
3188 		 * migration permission derives from hierarchy ownership in
3189 		 * cgroup_procs_write_permission()).
3190 		 */
3191 		if (!cpuset_v2() || (cpus_updated || mems_updated)) {
3192 			ret = security_task_setscheduler(task);
3193 			if (ret)
3194 				goto out_unlock;
3195 		}
3196 
3197 		if (dl_task(task)) {
3198 			cs->nr_migrate_dl_tasks++;
3199 			cs->sum_migrate_dl_bw += task->dl.dl_bw;
3200 		}
3201 	}
3202 
3203 	if (!cs->nr_migrate_dl_tasks)
3204 		goto out_success;
3205 
3206 	if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
3207 		int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
3208 
3209 		if (unlikely(cpu >= nr_cpu_ids)) {
3210 			reset_migrate_dl_data(cs);
3211 			ret = -EINVAL;
3212 			goto out_unlock;
3213 		}
3214 
3215 		ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
3216 		if (ret) {
3217 			reset_migrate_dl_data(cs);
3218 			goto out_unlock;
3219 		}
3220 	}
3221 
3222 out_success:
3223 	/*
3224 	 * Mark attach is in progress.  This makes validate_change() fail
3225 	 * changes which zero cpus/mems_allowed.
3226 	 */
3227 	cs->attach_in_progress++;
3228 out_unlock:
3229 	mutex_unlock(&cpuset_mutex);
3230 	return ret;
3231 }
3232 
cpuset_cancel_attach(struct cgroup_taskset * tset)3233 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
3234 {
3235 	struct cgroup_subsys_state *css;
3236 	struct cpuset *cs;
3237 
3238 	cgroup_taskset_first(tset, &css);
3239 	cs = css_cs(css);
3240 
3241 	mutex_lock(&cpuset_mutex);
3242 	dec_attach_in_progress_locked(cs);
3243 
3244 	if (cs->nr_migrate_dl_tasks) {
3245 		int cpu = cpumask_any(cs->effective_cpus);
3246 
3247 		dl_bw_free(cpu, cs->sum_migrate_dl_bw);
3248 		reset_migrate_dl_data(cs);
3249 	}
3250 
3251 	mutex_unlock(&cpuset_mutex);
3252 }
3253 
3254 /*
3255  * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
3256  * but we can't allocate it dynamically there.  Define it global and
3257  * allocate from cpuset_init().
3258  */
3259 static cpumask_var_t cpus_attach;
3260 static nodemask_t cpuset_attach_nodemask_to;
3261 
cpuset_attach_task(struct cpuset * cs,struct task_struct * task)3262 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
3263 {
3264 	lockdep_assert_held(&cpuset_mutex);
3265 
3266 	if (cs != &top_cpuset)
3267 		guarantee_active_cpus(task, cpus_attach);
3268 	else
3269 		cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
3270 			       subpartitions_cpus);
3271 	/*
3272 	 * can_attach beforehand should guarantee that this doesn't
3273 	 * fail.  TODO: have a better way to handle failure here
3274 	 */
3275 	WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
3276 
3277 	cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
3278 	cpuset1_update_task_spread_flags(cs, task);
3279 }
3280 
cpuset_attach(struct cgroup_taskset * tset)3281 static void cpuset_attach(struct cgroup_taskset *tset)
3282 {
3283 	struct task_struct *task;
3284 	struct task_struct *leader;
3285 	struct cgroup_subsys_state *css;
3286 	struct cpuset *cs;
3287 	struct cpuset *oldcs = cpuset_attach_old_cs;
3288 	bool cpus_updated, mems_updated;
3289 	bool queue_task_work = false;
3290 
3291 	cgroup_taskset_first(tset, &css);
3292 	cs = css_cs(css);
3293 
3294 	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
3295 	mutex_lock(&cpuset_mutex);
3296 	cpus_updated = !cpumask_equal(cs->effective_cpus,
3297 				      oldcs->effective_cpus);
3298 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3299 
3300 	/*
3301 	 * In the default hierarchy, enabling cpuset in the child cgroups
3302 	 * will trigger a number of cpuset_attach() calls with no change
3303 	 * in effective cpus and mems. In that case, we can optimize out
3304 	 * by skipping the task iteration and update.
3305 	 */
3306 	if (cpuset_v2() && !cpus_updated && !mems_updated) {
3307 		cpuset_attach_nodemask_to = cs->effective_mems;
3308 		goto out;
3309 	}
3310 
3311 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3312 
3313 	cgroup_taskset_for_each(task, css, tset)
3314 		cpuset_attach_task(cs, task);
3315 
3316 	/*
3317 	 * Change mm for all threadgroup leaders. This is expensive and may
3318 	 * sleep and should be moved outside migration path proper. Skip it
3319 	 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
3320 	 * not set.
3321 	 */
3322 	cpuset_attach_nodemask_to = cs->effective_mems;
3323 	if (!is_memory_migrate(cs) && !mems_updated)
3324 		goto out;
3325 
3326 	cgroup_taskset_for_each_leader(leader, css, tset) {
3327 		struct mm_struct *mm = get_task_mm(leader);
3328 
3329 		if (mm) {
3330 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
3331 
3332 			/*
3333 			 * old_mems_allowed is the same with mems_allowed
3334 			 * here, except if this task is being moved
3335 			 * automatically due to hotplug.  In that case
3336 			 * @mems_allowed has been updated and is empty, so
3337 			 * @old_mems_allowed is the right nodesets that we
3338 			 * migrate mm from.
3339 			 */
3340 			if (is_memory_migrate(cs)) {
3341 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
3342 						  &cpuset_attach_nodemask_to);
3343 				queue_task_work = true;
3344 			} else
3345 				mmput(mm);
3346 		}
3347 	}
3348 
3349 out:
3350 	if (queue_task_work)
3351 		schedule_flush_migrate_mm();
3352 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
3353 
3354 	if (cs->nr_migrate_dl_tasks) {
3355 		cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
3356 		oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
3357 		reset_migrate_dl_data(cs);
3358 	}
3359 
3360 	dec_attach_in_progress_locked(cs);
3361 
3362 	mutex_unlock(&cpuset_mutex);
3363 }
3364 
3365 /*
3366  * Common handling for a write to a "cpus" or "mems" file.
3367  */
cpuset_write_resmask(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3368 ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
3369 				    char *buf, size_t nbytes, loff_t off)
3370 {
3371 	struct cpuset *cs = css_cs(of_css(of));
3372 	struct cpuset *trialcs;
3373 	int retval = -ENODEV;
3374 
3375 	/* root is read-only */
3376 	if (cs == &top_cpuset)
3377 		return -EACCES;
3378 
3379 	buf = strstrip(buf);
3380 	cpuset_full_lock();
3381 	if (!is_cpuset_online(cs))
3382 		goto out_unlock;
3383 
3384 	trialcs = dup_or_alloc_cpuset(cs);
3385 	if (!trialcs) {
3386 		retval = -ENOMEM;
3387 		goto out_unlock;
3388 	}
3389 
3390 	switch (of_cft(of)->private) {
3391 	case FILE_CPULIST:
3392 		retval = update_cpumask(cs, trialcs, buf);
3393 		break;
3394 	case FILE_EXCLUSIVE_CPULIST:
3395 		retval = update_exclusive_cpumask(cs, trialcs, buf);
3396 		break;
3397 	case FILE_MEMLIST:
3398 		retval = update_nodemask(cs, trialcs, buf);
3399 		break;
3400 	default:
3401 		retval = -EINVAL;
3402 		break;
3403 	}
3404 
3405 	free_cpuset(trialcs);
3406 	if (force_sd_rebuild)
3407 		rebuild_sched_domains_locked();
3408 out_unlock:
3409 	cpuset_full_unlock();
3410 	if (of_cft(of)->private == FILE_MEMLIST)
3411 		schedule_flush_migrate_mm();
3412 	return retval ?: nbytes;
3413 }
3414 
3415 /*
3416  * These ascii lists should be read in a single call, by using a user
3417  * buffer large enough to hold the entire map.  If read in smaller
3418  * chunks, there is no guarantee of atomicity.  Since the display format
3419  * used, list of ranges of sequential numbers, is variable length,
3420  * and since these maps can change value dynamically, one could read
3421  * gibberish by doing partial reads while a list was changing.
3422  */
cpuset_common_seq_show(struct seq_file * sf,void * v)3423 int cpuset_common_seq_show(struct seq_file *sf, void *v)
3424 {
3425 	struct cpuset *cs = css_cs(seq_css(sf));
3426 	cpuset_filetype_t type = seq_cft(sf)->private;
3427 	int ret = 0;
3428 
3429 	spin_lock_irq(&callback_lock);
3430 
3431 	switch (type) {
3432 	case FILE_CPULIST:
3433 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
3434 		break;
3435 	case FILE_MEMLIST:
3436 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
3437 		break;
3438 	case FILE_EFFECTIVE_CPULIST:
3439 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
3440 		break;
3441 	case FILE_EFFECTIVE_MEMLIST:
3442 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
3443 		break;
3444 	case FILE_EXCLUSIVE_CPULIST:
3445 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus));
3446 		break;
3447 	case FILE_EFFECTIVE_XCPULIST:
3448 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus));
3449 		break;
3450 	case FILE_SUBPARTS_CPULIST:
3451 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus));
3452 		break;
3453 	case FILE_ISOLATED_CPULIST:
3454 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus));
3455 		break;
3456 	default:
3457 		ret = -EINVAL;
3458 	}
3459 
3460 	spin_unlock_irq(&callback_lock);
3461 	return ret;
3462 }
3463 
cpuset_partition_show(struct seq_file * seq,void * v)3464 static int cpuset_partition_show(struct seq_file *seq, void *v)
3465 {
3466 	struct cpuset *cs = css_cs(seq_css(seq));
3467 	const char *err, *type = NULL;
3468 
3469 	switch (cs->partition_root_state) {
3470 	case PRS_ROOT:
3471 		seq_puts(seq, "root\n");
3472 		break;
3473 	case PRS_ISOLATED:
3474 		seq_puts(seq, "isolated\n");
3475 		break;
3476 	case PRS_MEMBER:
3477 		seq_puts(seq, "member\n");
3478 		break;
3479 	case PRS_INVALID_ROOT:
3480 		type = "root";
3481 		fallthrough;
3482 	case PRS_INVALID_ISOLATED:
3483 		if (!type)
3484 			type = "isolated";
3485 		err = perr_strings[READ_ONCE(cs->prs_err)];
3486 		if (err)
3487 			seq_printf(seq, "%s invalid (%s)\n", type, err);
3488 		else
3489 			seq_printf(seq, "%s invalid\n", type);
3490 		break;
3491 	}
3492 	return 0;
3493 }
3494 
cpuset_partition_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3495 static ssize_t cpuset_partition_write(struct kernfs_open_file *of, char *buf,
3496 				     size_t nbytes, loff_t off)
3497 {
3498 	struct cpuset *cs = css_cs(of_css(of));
3499 	int val;
3500 	int retval = -ENODEV;
3501 
3502 	buf = strstrip(buf);
3503 
3504 	if (!strcmp(buf, "root"))
3505 		val = PRS_ROOT;
3506 	else if (!strcmp(buf, "member"))
3507 		val = PRS_MEMBER;
3508 	else if (!strcmp(buf, "isolated"))
3509 		val = PRS_ISOLATED;
3510 	else
3511 		return -EINVAL;
3512 
3513 	cpuset_full_lock();
3514 	if (is_cpuset_online(cs))
3515 		retval = update_prstate(cs, val);
3516 	cpuset_full_unlock();
3517 	return retval ?: nbytes;
3518 }
3519 
3520 /*
3521  * This is currently a minimal set for the default hierarchy. It can be
3522  * expanded later on by migrating more features and control files from v1.
3523  */
3524 static struct cftype dfl_files[] = {
3525 	{
3526 		.name = "cpus",
3527 		.seq_show = cpuset_common_seq_show,
3528 		.write = cpuset_write_resmask,
3529 		.max_write_len = (100U + 6 * NR_CPUS),
3530 		.private = FILE_CPULIST,
3531 		.flags = CFTYPE_NOT_ON_ROOT,
3532 	},
3533 
3534 	{
3535 		.name = "mems",
3536 		.seq_show = cpuset_common_seq_show,
3537 		.write = cpuset_write_resmask,
3538 		.max_write_len = (100U + 6 * MAX_NUMNODES),
3539 		.private = FILE_MEMLIST,
3540 		.flags = CFTYPE_NOT_ON_ROOT,
3541 	},
3542 
3543 	{
3544 		.name = "cpus.effective",
3545 		.seq_show = cpuset_common_seq_show,
3546 		.private = FILE_EFFECTIVE_CPULIST,
3547 	},
3548 
3549 	{
3550 		.name = "mems.effective",
3551 		.seq_show = cpuset_common_seq_show,
3552 		.private = FILE_EFFECTIVE_MEMLIST,
3553 	},
3554 
3555 	{
3556 		.name = "cpus.partition",
3557 		.seq_show = cpuset_partition_show,
3558 		.write = cpuset_partition_write,
3559 		.private = FILE_PARTITION_ROOT,
3560 		.flags = CFTYPE_NOT_ON_ROOT,
3561 		.file_offset = offsetof(struct cpuset, partition_file),
3562 	},
3563 
3564 	{
3565 		.name = "cpus.exclusive",
3566 		.seq_show = cpuset_common_seq_show,
3567 		.write = cpuset_write_resmask,
3568 		.max_write_len = (100U + 6 * NR_CPUS),
3569 		.private = FILE_EXCLUSIVE_CPULIST,
3570 		.flags = CFTYPE_NOT_ON_ROOT,
3571 	},
3572 
3573 	{
3574 		.name = "cpus.exclusive.effective",
3575 		.seq_show = cpuset_common_seq_show,
3576 		.private = FILE_EFFECTIVE_XCPULIST,
3577 		.flags = CFTYPE_NOT_ON_ROOT,
3578 	},
3579 
3580 	{
3581 		.name = "cpus.subpartitions",
3582 		.seq_show = cpuset_common_seq_show,
3583 		.private = FILE_SUBPARTS_CPULIST,
3584 		.flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG,
3585 	},
3586 
3587 	{
3588 		.name = "cpus.isolated",
3589 		.seq_show = cpuset_common_seq_show,
3590 		.private = FILE_ISOLATED_CPULIST,
3591 		.flags = CFTYPE_ONLY_ON_ROOT,
3592 	},
3593 
3594 	{ }	/* terminate */
3595 };
3596 
3597 
3598 /**
3599  * cpuset_css_alloc - Allocate a cpuset css
3600  * @parent_css: Parent css of the control group that the new cpuset will be
3601  *              part of
3602  * Return: cpuset css on success, -ENOMEM on failure.
3603  *
3604  * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
3605  * top cpuset css otherwise.
3606  */
3607 static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state * parent_css)3608 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
3609 {
3610 	struct cpuset *cs;
3611 
3612 	if (!parent_css)
3613 		return &top_cpuset.css;
3614 
3615 	cs = dup_or_alloc_cpuset(NULL);
3616 	if (!cs)
3617 		return ERR_PTR(-ENOMEM);
3618 
3619 	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3620 	fmeter_init(&cs->fmeter);
3621 	cs->relax_domain_level = -1;
3622 
3623 	/* Set CS_MEMORY_MIGRATE for default hierarchy */
3624 	if (cpuset_v2())
3625 		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
3626 
3627 	return &cs->css;
3628 }
3629 
cpuset_css_online(struct cgroup_subsys_state * css)3630 static int cpuset_css_online(struct cgroup_subsys_state *css)
3631 {
3632 	struct cpuset *cs = css_cs(css);
3633 	struct cpuset *parent = parent_cs(cs);
3634 	struct cpuset *tmp_cs;
3635 	struct cgroup_subsys_state *pos_css;
3636 
3637 	if (!parent)
3638 		return 0;
3639 
3640 	cpuset_full_lock();
3641 	if (is_spread_page(parent))
3642 		set_bit(CS_SPREAD_PAGE, &cs->flags);
3643 	if (is_spread_slab(parent))
3644 		set_bit(CS_SPREAD_SLAB, &cs->flags);
3645 	/*
3646 	 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
3647 	 */
3648 	if (cpuset_v2() && !is_sched_load_balance(parent))
3649 		clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3650 
3651 	cpuset_inc();
3652 
3653 	spin_lock_irq(&callback_lock);
3654 	if (is_in_v2_mode()) {
3655 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
3656 		cs->effective_mems = parent->effective_mems;
3657 	}
3658 	spin_unlock_irq(&callback_lock);
3659 
3660 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
3661 		goto out_unlock;
3662 
3663 	/*
3664 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
3665 	 * set.  This flag handling is implemented in cgroup core for
3666 	 * historical reasons - the flag may be specified during mount.
3667 	 *
3668 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
3669 	 * refuse to clone the configuration - thereby refusing the task to
3670 	 * be entered, and as a result refusing the sys_unshare() or
3671 	 * clone() which initiated it.  If this becomes a problem for some
3672 	 * users who wish to allow that scenario, then this could be
3673 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
3674 	 * (and likewise for mems) to the new cgroup.
3675 	 */
3676 	rcu_read_lock();
3677 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
3678 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
3679 			rcu_read_unlock();
3680 			goto out_unlock;
3681 		}
3682 	}
3683 	rcu_read_unlock();
3684 
3685 	spin_lock_irq(&callback_lock);
3686 	cs->mems_allowed = parent->mems_allowed;
3687 	cs->effective_mems = parent->mems_allowed;
3688 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
3689 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
3690 	spin_unlock_irq(&callback_lock);
3691 out_unlock:
3692 	cpuset_full_unlock();
3693 	return 0;
3694 }
3695 
3696 /*
3697  * If the cpuset being removed has its flag 'sched_load_balance'
3698  * enabled, then simulate turning sched_load_balance off, which
3699  * will call rebuild_sched_domains_locked(). That is not needed
3700  * in the default hierarchy where only changes in partition
3701  * will cause repartitioning.
3702  */
cpuset_css_offline(struct cgroup_subsys_state * css)3703 static void cpuset_css_offline(struct cgroup_subsys_state *css)
3704 {
3705 	struct cpuset *cs = css_cs(css);
3706 
3707 	cpuset_full_lock();
3708 	if (!cpuset_v2() && is_sched_load_balance(cs))
3709 		cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
3710 
3711 	cpuset_dec();
3712 	cpuset_full_unlock();
3713 }
3714 
3715 /*
3716  * If a dying cpuset has the 'cpus.partition' enabled, turn it off by
3717  * changing it back to member to free its exclusive CPUs back to the pool to
3718  * be used by other online cpusets.
3719  */
cpuset_css_killed(struct cgroup_subsys_state * css)3720 static void cpuset_css_killed(struct cgroup_subsys_state *css)
3721 {
3722 	struct cpuset *cs = css_cs(css);
3723 
3724 	cpuset_full_lock();
3725 	/* Reset valid partition back to member */
3726 	if (is_partition_valid(cs))
3727 		update_prstate(cs, PRS_MEMBER);
3728 	cpuset_full_unlock();
3729 }
3730 
cpuset_css_free(struct cgroup_subsys_state * css)3731 static void cpuset_css_free(struct cgroup_subsys_state *css)
3732 {
3733 	struct cpuset *cs = css_cs(css);
3734 
3735 	free_cpuset(cs);
3736 }
3737 
cpuset_bind(struct cgroup_subsys_state * root_css)3738 static void cpuset_bind(struct cgroup_subsys_state *root_css)
3739 {
3740 	mutex_lock(&cpuset_mutex);
3741 	spin_lock_irq(&callback_lock);
3742 
3743 	if (is_in_v2_mode()) {
3744 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3745 		cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask);
3746 		top_cpuset.mems_allowed = node_possible_map;
3747 	} else {
3748 		cpumask_copy(top_cpuset.cpus_allowed,
3749 			     top_cpuset.effective_cpus);
3750 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
3751 	}
3752 
3753 	spin_unlock_irq(&callback_lock);
3754 	mutex_unlock(&cpuset_mutex);
3755 }
3756 
3757 /*
3758  * In case the child is cloned into a cpuset different from its parent,
3759  * additional checks are done to see if the move is allowed.
3760  */
cpuset_can_fork(struct task_struct * task,struct css_set * cset)3761 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
3762 {
3763 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3764 	bool same_cs;
3765 	int ret;
3766 
3767 	rcu_read_lock();
3768 	same_cs = (cs == task_cs(current));
3769 	rcu_read_unlock();
3770 
3771 	if (same_cs)
3772 		return 0;
3773 
3774 	lockdep_assert_held(&cgroup_mutex);
3775 	mutex_lock(&cpuset_mutex);
3776 
3777 	/* Check to see if task is allowed in the cpuset */
3778 	ret = cpuset_can_attach_check(cs);
3779 	if (ret)
3780 		goto out_unlock;
3781 
3782 	ret = task_can_attach(task);
3783 	if (ret)
3784 		goto out_unlock;
3785 
3786 	ret = security_task_setscheduler(task);
3787 	if (ret)
3788 		goto out_unlock;
3789 
3790 	/*
3791 	 * Mark attach is in progress.  This makes validate_change() fail
3792 	 * changes which zero cpus/mems_allowed.
3793 	 */
3794 	cs->attach_in_progress++;
3795 out_unlock:
3796 	mutex_unlock(&cpuset_mutex);
3797 	return ret;
3798 }
3799 
cpuset_cancel_fork(struct task_struct * task,struct css_set * cset)3800 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
3801 {
3802 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3803 	bool same_cs;
3804 
3805 	rcu_read_lock();
3806 	same_cs = (cs == task_cs(current));
3807 	rcu_read_unlock();
3808 
3809 	if (same_cs)
3810 		return;
3811 
3812 	dec_attach_in_progress(cs);
3813 }
3814 
3815 /*
3816  * Make sure the new task conform to the current state of its parent,
3817  * which could have been changed by cpuset just after it inherits the
3818  * state from the parent and before it sits on the cgroup's task list.
3819  */
cpuset_fork(struct task_struct * task)3820 static void cpuset_fork(struct task_struct *task)
3821 {
3822 	struct cpuset *cs;
3823 	bool same_cs;
3824 
3825 	rcu_read_lock();
3826 	cs = task_cs(task);
3827 	same_cs = (cs == task_cs(current));
3828 	rcu_read_unlock();
3829 
3830 	if (same_cs) {
3831 		if (cs == &top_cpuset)
3832 			return;
3833 
3834 		set_cpus_allowed_ptr(task, current->cpus_ptr);
3835 		task->mems_allowed = current->mems_allowed;
3836 		return;
3837 	}
3838 
3839 	/* CLONE_INTO_CGROUP */
3840 	mutex_lock(&cpuset_mutex);
3841 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3842 	cpuset_attach_task(cs, task);
3843 
3844 	dec_attach_in_progress_locked(cs);
3845 	mutex_unlock(&cpuset_mutex);
3846 }
3847 
3848 struct cgroup_subsys cpuset_cgrp_subsys = {
3849 	.css_alloc	= cpuset_css_alloc,
3850 	.css_online	= cpuset_css_online,
3851 	.css_offline	= cpuset_css_offline,
3852 	.css_killed	= cpuset_css_killed,
3853 	.css_free	= cpuset_css_free,
3854 	.can_attach	= cpuset_can_attach,
3855 	.cancel_attach	= cpuset_cancel_attach,
3856 	.attach		= cpuset_attach,
3857 	.bind		= cpuset_bind,
3858 	.can_fork	= cpuset_can_fork,
3859 	.cancel_fork	= cpuset_cancel_fork,
3860 	.fork		= cpuset_fork,
3861 #ifdef CONFIG_CPUSETS_V1
3862 	.legacy_cftypes	= cpuset1_files,
3863 #endif
3864 	.dfl_cftypes	= dfl_files,
3865 	.early_init	= true,
3866 	.threaded	= true,
3867 };
3868 
3869 /**
3870  * cpuset_init - initialize cpusets at system boot
3871  *
3872  * Description: Initialize top_cpuset
3873  **/
3874 
cpuset_init(void)3875 int __init cpuset_init(void)
3876 {
3877 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3878 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3879 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL));
3880 	BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL));
3881 	BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL));
3882 	BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL));
3883 
3884 	cpumask_setall(top_cpuset.cpus_allowed);
3885 	nodes_setall(top_cpuset.mems_allowed);
3886 	cpumask_setall(top_cpuset.effective_cpus);
3887 	cpumask_setall(top_cpuset.effective_xcpus);
3888 	cpumask_setall(top_cpuset.exclusive_cpus);
3889 	nodes_setall(top_cpuset.effective_mems);
3890 
3891 	fmeter_init(&top_cpuset.fmeter);
3892 
3893 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3894 
3895 	have_boot_isolcpus = housekeeping_enabled(HK_TYPE_DOMAIN);
3896 	if (have_boot_isolcpus) {
3897 		BUG_ON(!alloc_cpumask_var(&boot_hk_cpus, GFP_KERNEL));
3898 		cpumask_copy(boot_hk_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN));
3899 		cpumask_andnot(isolated_cpus, cpu_possible_mask, boot_hk_cpus);
3900 	}
3901 
3902 	return 0;
3903 }
3904 
3905 static void
hotplug_update_tasks(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3906 hotplug_update_tasks(struct cpuset *cs,
3907 		     struct cpumask *new_cpus, nodemask_t *new_mems,
3908 		     bool cpus_updated, bool mems_updated)
3909 {
3910 	/* A partition root is allowed to have empty effective cpus */
3911 	if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
3912 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3913 	if (nodes_empty(*new_mems))
3914 		*new_mems = parent_cs(cs)->effective_mems;
3915 
3916 	spin_lock_irq(&callback_lock);
3917 	cpumask_copy(cs->effective_cpus, new_cpus);
3918 	cs->effective_mems = *new_mems;
3919 	spin_unlock_irq(&callback_lock);
3920 
3921 	if (cpus_updated)
3922 		cpuset_update_tasks_cpumask(cs, new_cpus);
3923 	if (mems_updated)
3924 		cpuset_update_tasks_nodemask(cs);
3925 }
3926 
cpuset_force_rebuild(void)3927 void cpuset_force_rebuild(void)
3928 {
3929 	force_sd_rebuild = true;
3930 }
3931 
3932 /**
3933  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3934  * @cs: cpuset in interest
3935  * @tmp: the tmpmasks structure pointer
3936  *
3937  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3938  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3939  * all its tasks are moved to the nearest ancestor with both resources.
3940  */
cpuset_hotplug_update_tasks(struct cpuset * cs,struct tmpmasks * tmp)3941 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3942 {
3943 	static cpumask_t new_cpus;
3944 	static nodemask_t new_mems;
3945 	bool cpus_updated;
3946 	bool mems_updated;
3947 	bool remote;
3948 	int partcmd = -1;
3949 	struct cpuset *parent;
3950 retry:
3951 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3952 
3953 	mutex_lock(&cpuset_mutex);
3954 
3955 	/*
3956 	 * We have raced with task attaching. We wait until attaching
3957 	 * is finished, so we won't attach a task to an empty cpuset.
3958 	 */
3959 	if (cs->attach_in_progress) {
3960 		mutex_unlock(&cpuset_mutex);
3961 		goto retry;
3962 	}
3963 
3964 	parent = parent_cs(cs);
3965 	compute_effective_cpumask(&new_cpus, cs, parent);
3966 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3967 
3968 	if (!tmp || !cs->partition_root_state)
3969 		goto update_tasks;
3970 
3971 	/*
3972 	 * Compute effective_cpus for valid partition root, may invalidate
3973 	 * child partition roots if necessary.
3974 	 */
3975 	remote = is_remote_partition(cs);
3976 	if (remote || (is_partition_valid(cs) && is_partition_valid(parent)))
3977 		compute_partition_effective_cpumask(cs, &new_cpus);
3978 
3979 	if (remote && cpumask_empty(&new_cpus) &&
3980 	    partition_is_populated(cs, NULL)) {
3981 		cs->prs_err = PERR_HOTPLUG;
3982 		remote_partition_disable(cs, tmp);
3983 		compute_effective_cpumask(&new_cpus, cs, parent);
3984 		remote = false;
3985 	}
3986 
3987 	/*
3988 	 * Force the partition to become invalid if either one of
3989 	 * the following conditions hold:
3990 	 * 1) empty effective cpus but not valid empty partition.
3991 	 * 2) parent is invalid or doesn't grant any cpus to child
3992 	 *    partitions.
3993 	 */
3994 	if (is_local_partition(cs) && (!is_partition_valid(parent) ||
3995 				tasks_nocpu_error(parent, cs, &new_cpus)))
3996 		partcmd = partcmd_invalidate;
3997 	/*
3998 	 * On the other hand, an invalid partition root may be transitioned
3999 	 * back to a regular one with a non-empty effective xcpus.
4000 	 */
4001 	else if (is_partition_valid(parent) && is_partition_invalid(cs) &&
4002 		 !cpumask_empty(cs->effective_xcpus))
4003 		partcmd = partcmd_update;
4004 
4005 	if (partcmd >= 0) {
4006 		update_parent_effective_cpumask(cs, partcmd, NULL, tmp);
4007 		if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) {
4008 			compute_partition_effective_cpumask(cs, &new_cpus);
4009 			cpuset_force_rebuild();
4010 		}
4011 	}
4012 
4013 update_tasks:
4014 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
4015 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
4016 	if (!cpus_updated && !mems_updated)
4017 		goto unlock;	/* Hotplug doesn't affect this cpuset */
4018 
4019 	if (mems_updated)
4020 		check_insane_mems_config(&new_mems);
4021 
4022 	if (is_in_v2_mode())
4023 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
4024 				     cpus_updated, mems_updated);
4025 	else
4026 		cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems,
4027 					    cpus_updated, mems_updated);
4028 
4029 unlock:
4030 	mutex_unlock(&cpuset_mutex);
4031 }
4032 
4033 /**
4034  * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset
4035  *
4036  * This function is called after either CPU or memory configuration has
4037  * changed and updates cpuset accordingly.  The top_cpuset is always
4038  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
4039  * order to make cpusets transparent (of no affect) on systems that are
4040  * actively using CPU hotplug but making no active use of cpusets.
4041  *
4042  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
4043  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
4044  * all descendants.
4045  *
4046  * Note that CPU offlining during suspend is ignored.  We don't modify
4047  * cpusets across suspend/resume cycles at all.
4048  *
4049  * CPU / memory hotplug is handled synchronously.
4050  */
cpuset_handle_hotplug(void)4051 static void cpuset_handle_hotplug(void)
4052 {
4053 	static cpumask_t new_cpus;
4054 	static nodemask_t new_mems;
4055 	bool cpus_updated, mems_updated;
4056 	bool on_dfl = is_in_v2_mode();
4057 	struct tmpmasks tmp, *ptmp = NULL;
4058 
4059 	if (on_dfl && !alloc_tmpmasks(&tmp))
4060 		ptmp = &tmp;
4061 
4062 	lockdep_assert_cpus_held();
4063 	mutex_lock(&cpuset_mutex);
4064 
4065 	/* fetch the available cpus/mems and find out which changed how */
4066 	cpumask_copy(&new_cpus, cpu_active_mask);
4067 	new_mems = node_states[N_MEMORY];
4068 
4069 	/*
4070 	 * If subpartitions_cpus is populated, it is likely that the check
4071 	 * below will produce a false positive on cpus_updated when the cpu
4072 	 * list isn't changed. It is extra work, but it is better to be safe.
4073 	 */
4074 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) ||
4075 		       !cpumask_empty(subpartitions_cpus);
4076 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
4077 
4078 	/* For v1, synchronize cpus_allowed to cpu_active_mask */
4079 	if (cpus_updated) {
4080 		cpuset_force_rebuild();
4081 		spin_lock_irq(&callback_lock);
4082 		if (!on_dfl)
4083 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
4084 		/*
4085 		 * Make sure that CPUs allocated to child partitions
4086 		 * do not show up in effective_cpus. If no CPU is left,
4087 		 * we clear the subpartitions_cpus & let the child partitions
4088 		 * fight for the CPUs again.
4089 		 */
4090 		if (!cpumask_empty(subpartitions_cpus)) {
4091 			if (cpumask_subset(&new_cpus, subpartitions_cpus)) {
4092 				cpumask_clear(subpartitions_cpus);
4093 			} else {
4094 				cpumask_andnot(&new_cpus, &new_cpus,
4095 					       subpartitions_cpus);
4096 			}
4097 		}
4098 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
4099 		spin_unlock_irq(&callback_lock);
4100 		/* we don't mess with cpumasks of tasks in top_cpuset */
4101 	}
4102 
4103 	/* synchronize mems_allowed to N_MEMORY */
4104 	if (mems_updated) {
4105 		spin_lock_irq(&callback_lock);
4106 		if (!on_dfl)
4107 			top_cpuset.mems_allowed = new_mems;
4108 		top_cpuset.effective_mems = new_mems;
4109 		spin_unlock_irq(&callback_lock);
4110 		cpuset_update_tasks_nodemask(&top_cpuset);
4111 	}
4112 
4113 	mutex_unlock(&cpuset_mutex);
4114 
4115 	/* if cpus or mems changed, we need to propagate to descendants */
4116 	if (cpus_updated || mems_updated) {
4117 		struct cpuset *cs;
4118 		struct cgroup_subsys_state *pos_css;
4119 
4120 		rcu_read_lock();
4121 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
4122 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
4123 				continue;
4124 			rcu_read_unlock();
4125 
4126 			cpuset_hotplug_update_tasks(cs, ptmp);
4127 
4128 			rcu_read_lock();
4129 			css_put(&cs->css);
4130 		}
4131 		rcu_read_unlock();
4132 	}
4133 
4134 	/* rebuild sched domains if necessary */
4135 	if (force_sd_rebuild)
4136 		rebuild_sched_domains_cpuslocked();
4137 
4138 	free_tmpmasks(ptmp);
4139 }
4140 
cpuset_update_active_cpus(void)4141 void cpuset_update_active_cpus(void)
4142 {
4143 	/*
4144 	 * We're inside cpu hotplug critical region which usually nests
4145 	 * inside cgroup synchronization.  Bounce actual hotplug processing
4146 	 * to a work item to avoid reverse locking order.
4147 	 */
4148 	cpuset_handle_hotplug();
4149 }
4150 
4151 /*
4152  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
4153  * Call this routine anytime after node_states[N_MEMORY] changes.
4154  * See cpuset_update_active_cpus() for CPU hotplug handling.
4155  */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)4156 static int cpuset_track_online_nodes(struct notifier_block *self,
4157 				unsigned long action, void *arg)
4158 {
4159 	cpuset_handle_hotplug();
4160 	return NOTIFY_OK;
4161 }
4162 
4163 /**
4164  * cpuset_init_smp - initialize cpus_allowed
4165  *
4166  * Description: Finish top cpuset after cpu, node maps are initialized
4167  */
cpuset_init_smp(void)4168 void __init cpuset_init_smp(void)
4169 {
4170 	/*
4171 	 * cpus_allowd/mems_allowed set to v2 values in the initial
4172 	 * cpuset_bind() call will be reset to v1 values in another
4173 	 * cpuset_bind() call when v1 cpuset is mounted.
4174 	 */
4175 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4176 
4177 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
4178 	top_cpuset.effective_mems = node_states[N_MEMORY];
4179 
4180 	hotplug_node_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
4181 
4182 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
4183 	BUG_ON(!cpuset_migrate_mm_wq);
4184 }
4185 
4186 /*
4187  * Return cpus_allowed mask from a task's cpuset.
4188  */
__cpuset_cpus_allowed_locked(struct task_struct * tsk,struct cpumask * pmask)4189 static void __cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
4190 {
4191 	struct cpuset *cs;
4192 
4193 	cs = task_cs(tsk);
4194 	if (cs != &top_cpuset)
4195 		guarantee_active_cpus(tsk, pmask);
4196 	/*
4197 	 * Tasks in the top cpuset won't get update to their cpumasks
4198 	 * when a hotplug online/offline event happens. So we include all
4199 	 * offline cpus in the allowed cpu list.
4200 	 */
4201 	if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
4202 		const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4203 
4204 		/*
4205 		 * We first exclude cpus allocated to partitions. If there is no
4206 		 * allowable online cpu left, we fall back to all possible cpus.
4207 		 */
4208 		cpumask_andnot(pmask, possible_mask, subpartitions_cpus);
4209 		if (!cpumask_intersects(pmask, cpu_active_mask))
4210 			cpumask_copy(pmask, possible_mask);
4211 	}
4212 }
4213 
4214 /**
4215  * cpuset_cpus_allowed_locked - return cpus_allowed mask from a task's cpuset.
4216  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
4217  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
4218  *
4219  * Similir to cpuset_cpus_allowed() except that the caller must have acquired
4220  * cpuset_mutex.
4221  */
cpuset_cpus_allowed_locked(struct task_struct * tsk,struct cpumask * pmask)4222 void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
4223 {
4224 	lockdep_assert_held(&cpuset_mutex);
4225 	__cpuset_cpus_allowed_locked(tsk, pmask);
4226 }
4227 
4228 /**
4229  * cpuset_cpus_allowed - return cpus_allowed mask from a task's cpuset.
4230  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
4231  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
4232  *
4233  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
4234  * attached to the specified @tsk.  Guaranteed to return some non-empty
4235  * subset of cpu_active_mask, even if this means going outside the
4236  * tasks cpuset, except when the task is in the top cpuset.
4237  **/
4238 
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)4239 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
4240 {
4241 	unsigned long flags;
4242 
4243 	spin_lock_irqsave(&callback_lock, flags);
4244 	__cpuset_cpus_allowed_locked(tsk, pmask);
4245 	spin_unlock_irqrestore(&callback_lock, flags);
4246 }
4247 
4248 /**
4249  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
4250  * @tsk: pointer to task_struct with which the scheduler is struggling
4251  *
4252  * Description: In the case that the scheduler cannot find an allowed cpu in
4253  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
4254  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
4255  * which will not contain a sane cpumask during cases such as cpu hotplugging.
4256  * This is the absolute last resort for the scheduler and it is only used if
4257  * _every_ other avenue has been traveled.
4258  *
4259  * Returns true if the affinity of @tsk was changed, false otherwise.
4260  **/
4261 
cpuset_cpus_allowed_fallback(struct task_struct * tsk)4262 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
4263 {
4264 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4265 	const struct cpumask *cs_mask;
4266 	bool changed = false;
4267 
4268 	rcu_read_lock();
4269 	cs_mask = task_cs(tsk)->cpus_allowed;
4270 	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
4271 		set_cpus_allowed_force(tsk, cs_mask);
4272 		changed = true;
4273 	}
4274 	rcu_read_unlock();
4275 
4276 	/*
4277 	 * We own tsk->cpus_allowed, nobody can change it under us.
4278 	 *
4279 	 * But we used cs && cs->cpus_allowed lockless and thus can
4280 	 * race with cgroup_attach_task() or update_cpumask() and get
4281 	 * the wrong tsk->cpus_allowed. However, both cases imply the
4282 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
4283 	 * which takes task_rq_lock().
4284 	 *
4285 	 * If we are called after it dropped the lock we must see all
4286 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
4287 	 * set any mask even if it is not right from task_cs() pov,
4288 	 * the pending set_cpus_allowed_ptr() will fix things.
4289 	 *
4290 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
4291 	 * if required.
4292 	 */
4293 	return changed;
4294 }
4295 
cpuset_init_current_mems_allowed(void)4296 void __init cpuset_init_current_mems_allowed(void)
4297 {
4298 	nodes_setall(current->mems_allowed);
4299 }
4300 
4301 /**
4302  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
4303  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
4304  *
4305  * Description: Returns the nodemask_t mems_allowed of the cpuset
4306  * attached to the specified @tsk.  Guaranteed to return some non-empty
4307  * subset of node_states[N_MEMORY], even if this means going outside the
4308  * tasks cpuset.
4309  **/
4310 
cpuset_mems_allowed(struct task_struct * tsk)4311 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
4312 {
4313 	nodemask_t mask;
4314 	unsigned long flags;
4315 
4316 	spin_lock_irqsave(&callback_lock, flags);
4317 	guarantee_online_mems(task_cs(tsk), &mask);
4318 	spin_unlock_irqrestore(&callback_lock, flags);
4319 
4320 	return mask;
4321 }
4322 
4323 /**
4324  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
4325  * @nodemask: the nodemask to be checked
4326  *
4327  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
4328  */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)4329 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
4330 {
4331 	return nodes_intersects(*nodemask, current->mems_allowed);
4332 }
4333 
4334 /*
4335  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
4336  * mem_hardwall ancestor to the specified cpuset.  Call holding
4337  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
4338  * (an unusual configuration), then returns the root cpuset.
4339  */
nearest_hardwall_ancestor(struct cpuset * cs)4340 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
4341 {
4342 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
4343 		cs = parent_cs(cs);
4344 	return cs;
4345 }
4346 
4347 /*
4348  * cpuset_current_node_allowed - Can current task allocate on a memory node?
4349  * @node: is this an allowed node?
4350  * @gfp_mask: memory allocation flags
4351  *
4352  * If we're in interrupt, yes, we can always allocate.  If @node is set in
4353  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
4354  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
4355  * yes.  If current has access to memory reserves as an oom victim, yes.
4356  * Otherwise, no.
4357  *
4358  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
4359  * and do not allow allocations outside the current tasks cpuset
4360  * unless the task has been OOM killed.
4361  * GFP_KERNEL allocations are not so marked, so can escape to the
4362  * nearest enclosing hardwalled ancestor cpuset.
4363  *
4364  * Scanning up parent cpusets requires callback_lock.  The
4365  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
4366  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
4367  * current tasks mems_allowed came up empty on the first pass over
4368  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
4369  * cpuset are short of memory, might require taking the callback_lock.
4370  *
4371  * The first call here from mm/page_alloc:get_page_from_freelist()
4372  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
4373  * so no allocation on a node outside the cpuset is allowed (unless
4374  * in interrupt, of course).
4375  *
4376  * The second pass through get_page_from_freelist() doesn't even call
4377  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
4378  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
4379  * in alloc_flags.  That logic and the checks below have the combined
4380  * affect that:
4381  *	in_interrupt - any node ok (current task context irrelevant)
4382  *	GFP_ATOMIC   - any node ok
4383  *	tsk_is_oom_victim   - any node ok
4384  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
4385  *	GFP_USER     - only nodes in current tasks mems allowed ok.
4386  */
cpuset_current_node_allowed(int node,gfp_t gfp_mask)4387 bool cpuset_current_node_allowed(int node, gfp_t gfp_mask)
4388 {
4389 	struct cpuset *cs;		/* current cpuset ancestors */
4390 	bool allowed;			/* is allocation in zone z allowed? */
4391 	unsigned long flags;
4392 
4393 	if (in_interrupt())
4394 		return true;
4395 	if (node_isset(node, current->mems_allowed))
4396 		return true;
4397 	/*
4398 	 * Allow tasks that have access to memory reserves because they have
4399 	 * been OOM killed to get memory anywhere.
4400 	 */
4401 	if (unlikely(tsk_is_oom_victim(current)))
4402 		return true;
4403 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
4404 		return false;
4405 
4406 	if (current->flags & PF_EXITING) /* Let dying task have memory */
4407 		return true;
4408 
4409 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
4410 	spin_lock_irqsave(&callback_lock, flags);
4411 
4412 	cs = nearest_hardwall_ancestor(task_cs(current));
4413 	allowed = node_isset(node, cs->mems_allowed);
4414 
4415 	spin_unlock_irqrestore(&callback_lock, flags);
4416 	return allowed;
4417 }
4418 
cpuset_node_allowed(struct cgroup * cgroup,int nid)4419 bool cpuset_node_allowed(struct cgroup *cgroup, int nid)
4420 {
4421 	struct cgroup_subsys_state *css;
4422 	struct cpuset *cs;
4423 	bool allowed;
4424 
4425 	/*
4426 	 * In v1, mem_cgroup and cpuset are unlikely in the same hierarchy
4427 	 * and mems_allowed is likely to be empty even if we could get to it,
4428 	 * so return true to avoid taking a global lock on the empty check.
4429 	 */
4430 	if (!cpuset_v2())
4431 		return true;
4432 
4433 	css = cgroup_get_e_css(cgroup, &cpuset_cgrp_subsys);
4434 	if (!css)
4435 		return true;
4436 
4437 	/*
4438 	 * Normally, accessing effective_mems would require the cpuset_mutex
4439 	 * or callback_lock - but node_isset is atomic and the reference
4440 	 * taken via cgroup_get_e_css is sufficient to protect css.
4441 	 *
4442 	 * Since this interface is intended for use by migration paths, we
4443 	 * relax locking here to avoid taking global locks - while accepting
4444 	 * there may be rare scenarios where the result may be innaccurate.
4445 	 *
4446 	 * Reclaim and migration are subject to these same race conditions, and
4447 	 * cannot make strong isolation guarantees, so this is acceptable.
4448 	 */
4449 	cs = container_of(css, struct cpuset, css);
4450 	allowed = node_isset(nid, cs->effective_mems);
4451 	css_put(css);
4452 	return allowed;
4453 }
4454 
4455 /**
4456  * cpuset_spread_node() - On which node to begin search for a page
4457  * @rotor: round robin rotor
4458  *
4459  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
4460  * tasks in a cpuset with is_spread_page or is_spread_slab set),
4461  * and if the memory allocation used cpuset_mem_spread_node()
4462  * to determine on which node to start looking, as it will for
4463  * certain page cache or slab cache pages such as used for file
4464  * system buffers and inode caches, then instead of starting on the
4465  * local node to look for a free page, rather spread the starting
4466  * node around the tasks mems_allowed nodes.
4467  *
4468  * We don't have to worry about the returned node being offline
4469  * because "it can't happen", and even if it did, it would be ok.
4470  *
4471  * The routines calling guarantee_online_mems() are careful to
4472  * only set nodes in task->mems_allowed that are online.  So it
4473  * should not be possible for the following code to return an
4474  * offline node.  But if it did, that would be ok, as this routine
4475  * is not returning the node where the allocation must be, only
4476  * the node where the search should start.  The zonelist passed to
4477  * __alloc_pages() will include all nodes.  If the slab allocator
4478  * is passed an offline node, it will fall back to the local node.
4479  * See kmem_cache_alloc_node().
4480  */
cpuset_spread_node(int * rotor)4481 static int cpuset_spread_node(int *rotor)
4482 {
4483 	return *rotor = next_node_in(*rotor, current->mems_allowed);
4484 }
4485 
4486 /**
4487  * cpuset_mem_spread_node() - On which node to begin search for a file page
4488  */
cpuset_mem_spread_node(void)4489 int cpuset_mem_spread_node(void)
4490 {
4491 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
4492 		current->cpuset_mem_spread_rotor =
4493 			node_random(&current->mems_allowed);
4494 
4495 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
4496 }
4497 
4498 /**
4499  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
4500  * @tsk1: pointer to task_struct of some task.
4501  * @tsk2: pointer to task_struct of some other task.
4502  *
4503  * Description: Return true if @tsk1's mems_allowed intersects the
4504  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
4505  * one of the task's memory usage might impact the memory available
4506  * to the other.
4507  **/
4508 
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)4509 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
4510 				   const struct task_struct *tsk2)
4511 {
4512 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
4513 }
4514 
4515 /**
4516  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
4517  *
4518  * Description: Prints current's name, cpuset name, and cached copy of its
4519  * mems_allowed to the kernel log.
4520  */
cpuset_print_current_mems_allowed(void)4521 void cpuset_print_current_mems_allowed(void)
4522 {
4523 	struct cgroup *cgrp;
4524 
4525 	rcu_read_lock();
4526 
4527 	cgrp = task_cs(current)->css.cgroup;
4528 	pr_cont(",cpuset=");
4529 	pr_cont_cgroup_name(cgrp);
4530 	pr_cont(",mems_allowed=%*pbl",
4531 		nodemask_pr_args(&current->mems_allowed));
4532 
4533 	rcu_read_unlock();
4534 }
4535 
4536 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)4537 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
4538 {
4539 	seq_printf(m, "Mems_allowed:\t%*pb\n",
4540 		   nodemask_pr_args(&task->mems_allowed));
4541 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
4542 		   nodemask_pr_args(&task->mems_allowed));
4543 }
4544