1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/prio.h>
41
42 #include <linux/cpuidle.h>
43 #include <linux/interrupt.h>
44 #include <linux/memory-tiers.h>
45 #include <linux/mempolicy.h>
46 #include <linux/mutex_api.h>
47 #include <linux/profile.h>
48 #include <linux/psi.h>
49 #include <linux/ratelimit.h>
50 #include <linux/task_work.h>
51 #include <linux/rbtree_augmented.h>
52
53 #include <asm/switch_to.h>
54
55 #include <uapi/linux/sched/types.h>
56
57 #include "sched.h"
58 #include "stats.h"
59 #include "autogroup.h"
60
61 /*
62 * The initial- and re-scaling of tunables is configurable
63 *
64 * Options are:
65 *
66 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
67 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
68 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
69 *
70 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
71 */
72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
73
74 /*
75 * Minimal preemption granularity for CPU-bound tasks:
76 *
77 * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds)
78 */
79 unsigned int sysctl_sched_base_slice = 700000ULL;
80 static unsigned int normalized_sysctl_sched_base_slice = 700000ULL;
81
82 __read_mostly unsigned int sysctl_sched_migration_cost = 500000UL;
83
setup_sched_thermal_decay_shift(char * str)84 static int __init setup_sched_thermal_decay_shift(char *str)
85 {
86 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
87 return 1;
88 }
89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
90
91 /*
92 * For asym packing, by default the lower numbered CPU has higher priority.
93 */
arch_asym_cpu_priority(int cpu)94 int __weak arch_asym_cpu_priority(int cpu)
95 {
96 return -cpu;
97 }
98
99 /*
100 * The margin used when comparing utilization with CPU capacity.
101 *
102 * (default: ~20%)
103 */
104 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
105
106 /*
107 * The margin used when comparing CPU capacities.
108 * is 'cap1' noticeably greater than 'cap2'
109 *
110 * (default: ~5%)
111 */
112 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
113
114 #ifdef CONFIG_CFS_BANDWIDTH
115 /*
116 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
117 * each time a cfs_rq requests quota.
118 *
119 * Note: in the case that the slice exceeds the runtime remaining (either due
120 * to consumption or the quota being specified to be smaller than the slice)
121 * we will always only issue the remaining available time.
122 *
123 * (default: 5 msec, units: microseconds)
124 */
125 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
126 #endif
127
128 #ifdef CONFIG_NUMA_BALANCING
129 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
130 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
131 #endif
132
133 #ifdef CONFIG_SYSCTL
134 static const struct ctl_table sched_fair_sysctls[] = {
135 #ifdef CONFIG_CFS_BANDWIDTH
136 {
137 .procname = "sched_cfs_bandwidth_slice_us",
138 .data = &sysctl_sched_cfs_bandwidth_slice,
139 .maxlen = sizeof(unsigned int),
140 .mode = 0644,
141 .proc_handler = proc_dointvec_minmax,
142 .extra1 = SYSCTL_ONE,
143 },
144 #endif
145 #ifdef CONFIG_NUMA_BALANCING
146 {
147 .procname = "numa_balancing_promote_rate_limit_MBps",
148 .data = &sysctl_numa_balancing_promote_rate_limit,
149 .maxlen = sizeof(unsigned int),
150 .mode = 0644,
151 .proc_handler = proc_dointvec_minmax,
152 .extra1 = SYSCTL_ZERO,
153 },
154 #endif /* CONFIG_NUMA_BALANCING */
155 };
156
sched_fair_sysctl_init(void)157 static int __init sched_fair_sysctl_init(void)
158 {
159 register_sysctl_init("kernel", sched_fair_sysctls);
160 return 0;
161 }
162 late_initcall(sched_fair_sysctl_init);
163 #endif /* CONFIG_SYSCTL */
164
update_load_add(struct load_weight * lw,unsigned long inc)165 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
166 {
167 lw->weight += inc;
168 lw->inv_weight = 0;
169 }
170
update_load_sub(struct load_weight * lw,unsigned long dec)171 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
172 {
173 lw->weight -= dec;
174 lw->inv_weight = 0;
175 }
176
update_load_set(struct load_weight * lw,unsigned long w)177 static inline void update_load_set(struct load_weight *lw, unsigned long w)
178 {
179 lw->weight = w;
180 lw->inv_weight = 0;
181 }
182
183 /*
184 * Increase the granularity value when there are more CPUs,
185 * because with more CPUs the 'effective latency' as visible
186 * to users decreases. But the relationship is not linear,
187 * so pick a second-best guess by going with the log2 of the
188 * number of CPUs.
189 *
190 * This idea comes from the SD scheduler of Con Kolivas:
191 */
get_update_sysctl_factor(void)192 static unsigned int get_update_sysctl_factor(void)
193 {
194 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
195 unsigned int factor;
196
197 switch (sysctl_sched_tunable_scaling) {
198 case SCHED_TUNABLESCALING_NONE:
199 factor = 1;
200 break;
201 case SCHED_TUNABLESCALING_LINEAR:
202 factor = cpus;
203 break;
204 case SCHED_TUNABLESCALING_LOG:
205 default:
206 factor = 1 + ilog2(cpus);
207 break;
208 }
209
210 return factor;
211 }
212
update_sysctl(void)213 static void update_sysctl(void)
214 {
215 unsigned int factor = get_update_sysctl_factor();
216
217 #define SET_SYSCTL(name) \
218 (sysctl_##name = (factor) * normalized_sysctl_##name)
219 SET_SYSCTL(sched_base_slice);
220 #undef SET_SYSCTL
221 }
222
sched_init_granularity(void)223 void __init sched_init_granularity(void)
224 {
225 update_sysctl();
226 }
227
228 #define WMULT_CONST (~0U)
229 #define WMULT_SHIFT 32
230
__update_inv_weight(struct load_weight * lw)231 static void __update_inv_weight(struct load_weight *lw)
232 {
233 unsigned long w;
234
235 if (likely(lw->inv_weight))
236 return;
237
238 w = scale_load_down(lw->weight);
239
240 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
241 lw->inv_weight = 1;
242 else if (unlikely(!w))
243 lw->inv_weight = WMULT_CONST;
244 else
245 lw->inv_weight = WMULT_CONST / w;
246 }
247
248 /*
249 * delta_exec * weight / lw.weight
250 * OR
251 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
252 *
253 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
254 * we're guaranteed shift stays positive because inv_weight is guaranteed to
255 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
256 *
257 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
258 * weight/lw.weight <= 1, and therefore our shift will also be positive.
259 */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)260 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
261 {
262 u64 fact = scale_load_down(weight);
263 u32 fact_hi = (u32)(fact >> 32);
264 int shift = WMULT_SHIFT;
265 int fs;
266
267 __update_inv_weight(lw);
268
269 if (unlikely(fact_hi)) {
270 fs = fls(fact_hi);
271 shift -= fs;
272 fact >>= fs;
273 }
274
275 fact = mul_u32_u32(fact, lw->inv_weight);
276
277 fact_hi = (u32)(fact >> 32);
278 if (fact_hi) {
279 fs = fls(fact_hi);
280 shift -= fs;
281 fact >>= fs;
282 }
283
284 return mul_u64_u32_shr(delta_exec, fact, shift);
285 }
286
287 /*
288 * delta /= w
289 */
calc_delta_fair(u64 delta,struct sched_entity * se)290 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
291 {
292 if (unlikely(se->load.weight != NICE_0_LOAD))
293 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
294
295 return delta;
296 }
297
298 const struct sched_class fair_sched_class;
299
300 /**************************************************************
301 * CFS operations on generic schedulable entities:
302 */
303
304 #ifdef CONFIG_FAIR_GROUP_SCHED
305
306 /* Walk up scheduling entities hierarchy */
307 #define for_each_sched_entity(se) \
308 for (; se; se = se->parent)
309
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)310 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311 {
312 struct rq *rq = rq_of(cfs_rq);
313 int cpu = cpu_of(rq);
314
315 if (cfs_rq->on_list)
316 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
317
318 cfs_rq->on_list = 1;
319
320 /*
321 * Ensure we either appear before our parent (if already
322 * enqueued) or force our parent to appear after us when it is
323 * enqueued. The fact that we always enqueue bottom-up
324 * reduces this to two cases and a special case for the root
325 * cfs_rq. Furthermore, it also means that we will always reset
326 * tmp_alone_branch either when the branch is connected
327 * to a tree or when we reach the top of the tree
328 */
329 if (cfs_rq->tg->parent &&
330 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
331 /*
332 * If parent is already on the list, we add the child
333 * just before. Thanks to circular linked property of
334 * the list, this means to put the child at the tail
335 * of the list that starts by parent.
336 */
337 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
338 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
339 /*
340 * The branch is now connected to its tree so we can
341 * reset tmp_alone_branch to the beginning of the
342 * list.
343 */
344 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
345 return true;
346 }
347
348 if (!cfs_rq->tg->parent) {
349 /*
350 * cfs rq without parent should be put
351 * at the tail of the list.
352 */
353 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
354 &rq->leaf_cfs_rq_list);
355 /*
356 * We have reach the top of a tree so we can reset
357 * tmp_alone_branch to the beginning of the list.
358 */
359 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
360 return true;
361 }
362
363 /*
364 * The parent has not already been added so we want to
365 * make sure that it will be put after us.
366 * tmp_alone_branch points to the begin of the branch
367 * where we will add parent.
368 */
369 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
370 /*
371 * update tmp_alone_branch to points to the new begin
372 * of the branch
373 */
374 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
375 return false;
376 }
377
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)378 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
379 {
380 if (cfs_rq->on_list) {
381 struct rq *rq = rq_of(cfs_rq);
382
383 /*
384 * With cfs_rq being unthrottled/throttled during an enqueue,
385 * it can happen the tmp_alone_branch points to the leaf that
386 * we finally want to delete. In this case, tmp_alone_branch moves
387 * to the prev element but it will point to rq->leaf_cfs_rq_list
388 * at the end of the enqueue.
389 */
390 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
391 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
392
393 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
394 cfs_rq->on_list = 0;
395 }
396 }
397
assert_list_leaf_cfs_rq(struct rq * rq)398 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
399 {
400 WARN_ON_ONCE(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
401 }
402
403 /* Iterate through all leaf cfs_rq's on a runqueue */
404 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
405 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
406 leaf_cfs_rq_list)
407
408 /* Do the two (enqueued) entities belong to the same group ? */
409 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)410 is_same_group(struct sched_entity *se, struct sched_entity *pse)
411 {
412 if (se->cfs_rq == pse->cfs_rq)
413 return se->cfs_rq;
414
415 return NULL;
416 }
417
parent_entity(const struct sched_entity * se)418 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
419 {
420 return se->parent;
421 }
422
423 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)424 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425 {
426 int se_depth, pse_depth;
427
428 /*
429 * preemption test can be made between sibling entities who are in the
430 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
431 * both tasks until we find their ancestors who are siblings of common
432 * parent.
433 */
434
435 /* First walk up until both entities are at same depth */
436 se_depth = (*se)->depth;
437 pse_depth = (*pse)->depth;
438
439 while (se_depth > pse_depth) {
440 se_depth--;
441 *se = parent_entity(*se);
442 }
443
444 while (pse_depth > se_depth) {
445 pse_depth--;
446 *pse = parent_entity(*pse);
447 }
448
449 while (!is_same_group(*se, *pse)) {
450 *se = parent_entity(*se);
451 *pse = parent_entity(*pse);
452 }
453 }
454
tg_is_idle(struct task_group * tg)455 static int tg_is_idle(struct task_group *tg)
456 {
457 return tg->idle > 0;
458 }
459
cfs_rq_is_idle(struct cfs_rq * cfs_rq)460 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
461 {
462 return cfs_rq->idle > 0;
463 }
464
se_is_idle(struct sched_entity * se)465 static int se_is_idle(struct sched_entity *se)
466 {
467 if (entity_is_task(se))
468 return task_has_idle_policy(task_of(se));
469 return cfs_rq_is_idle(group_cfs_rq(se));
470 }
471
472 #else /* !CONFIG_FAIR_GROUP_SCHED: */
473
474 #define for_each_sched_entity(se) \
475 for (; se; se = NULL)
476
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)477 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
478 {
479 return true;
480 }
481
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)482 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
483 {
484 }
485
assert_list_leaf_cfs_rq(struct rq * rq)486 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
487 {
488 }
489
490 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
491 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
492
parent_entity(struct sched_entity * se)493 static inline struct sched_entity *parent_entity(struct sched_entity *se)
494 {
495 return NULL;
496 }
497
498 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)499 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
500 {
501 }
502
tg_is_idle(struct task_group * tg)503 static inline int tg_is_idle(struct task_group *tg)
504 {
505 return 0;
506 }
507
cfs_rq_is_idle(struct cfs_rq * cfs_rq)508 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
509 {
510 return 0;
511 }
512
se_is_idle(struct sched_entity * se)513 static int se_is_idle(struct sched_entity *se)
514 {
515 return task_has_idle_policy(task_of(se));
516 }
517
518 #endif /* !CONFIG_FAIR_GROUP_SCHED */
519
520 static __always_inline
521 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
522
523 /**************************************************************
524 * Scheduling class tree data structure manipulation methods:
525 */
526
max_vruntime(u64 max_vruntime,u64 vruntime)527 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime)
528 {
529 s64 delta = (s64)(vruntime - max_vruntime);
530 if (delta > 0)
531 max_vruntime = vruntime;
532
533 return max_vruntime;
534 }
535
min_vruntime(u64 min_vruntime,u64 vruntime)536 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime)
537 {
538 s64 delta = (s64)(vruntime - min_vruntime);
539 if (delta < 0)
540 min_vruntime = vruntime;
541
542 return min_vruntime;
543 }
544
entity_before(const struct sched_entity * a,const struct sched_entity * b)545 static inline bool entity_before(const struct sched_entity *a,
546 const struct sched_entity *b)
547 {
548 /*
549 * Tiebreak on vruntime seems unnecessary since it can
550 * hardly happen.
551 */
552 return (s64)(a->deadline - b->deadline) < 0;
553 }
554
entity_key(struct cfs_rq * cfs_rq,struct sched_entity * se)555 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
556 {
557 return (s64)(se->vruntime - cfs_rq->min_vruntime);
558 }
559
560 #define __node_2_se(node) \
561 rb_entry((node), struct sched_entity, run_node)
562
563 /*
564 * Compute virtual time from the per-task service numbers:
565 *
566 * Fair schedulers conserve lag:
567 *
568 * \Sum lag_i = 0
569 *
570 * Where lag_i is given by:
571 *
572 * lag_i = S - s_i = w_i * (V - v_i)
573 *
574 * Where S is the ideal service time and V is it's virtual time counterpart.
575 * Therefore:
576 *
577 * \Sum lag_i = 0
578 * \Sum w_i * (V - v_i) = 0
579 * \Sum w_i * V - w_i * v_i = 0
580 *
581 * From which we can solve an expression for V in v_i (which we have in
582 * se->vruntime):
583 *
584 * \Sum v_i * w_i \Sum v_i * w_i
585 * V = -------------- = --------------
586 * \Sum w_i W
587 *
588 * Specifically, this is the weighted average of all entity virtual runtimes.
589 *
590 * [[ NOTE: this is only equal to the ideal scheduler under the condition
591 * that join/leave operations happen at lag_i = 0, otherwise the
592 * virtual time has non-contiguous motion equivalent to:
593 *
594 * V +-= lag_i / W
595 *
596 * Also see the comment in place_entity() that deals with this. ]]
597 *
598 * However, since v_i is u64, and the multiplication could easily overflow
599 * transform it into a relative form that uses smaller quantities:
600 *
601 * Substitute: v_i == (v_i - v0) + v0
602 *
603 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i
604 * V = ---------------------------- = --------------------- + v0
605 * W W
606 *
607 * Which we track using:
608 *
609 * v0 := cfs_rq->min_vruntime
610 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
611 * \Sum w_i := cfs_rq->avg_load
612 *
613 * Since min_vruntime is a monotonic increasing variable that closely tracks
614 * the per-task service, these deltas: (v_i - v), will be in the order of the
615 * maximal (virtual) lag induced in the system due to quantisation.
616 *
617 * Also, we use scale_load_down() to reduce the size.
618 *
619 * As measured, the max (key * weight) value was ~44 bits for a kernel build.
620 */
621 static void
avg_vruntime_add(struct cfs_rq * cfs_rq,struct sched_entity * se)622 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
623 {
624 unsigned long weight = scale_load_down(se->load.weight);
625 s64 key = entity_key(cfs_rq, se);
626
627 cfs_rq->avg_vruntime += key * weight;
628 cfs_rq->avg_load += weight;
629 }
630
631 static void
avg_vruntime_sub(struct cfs_rq * cfs_rq,struct sched_entity * se)632 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
633 {
634 unsigned long weight = scale_load_down(se->load.weight);
635 s64 key = entity_key(cfs_rq, se);
636
637 cfs_rq->avg_vruntime -= key * weight;
638 cfs_rq->avg_load -= weight;
639 }
640
641 static inline
avg_vruntime_update(struct cfs_rq * cfs_rq,s64 delta)642 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
643 {
644 /*
645 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
646 */
647 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
648 }
649
650 /*
651 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
652 * For this to be so, the result of this function must have a left bias.
653 */
avg_vruntime(struct cfs_rq * cfs_rq)654 u64 avg_vruntime(struct cfs_rq *cfs_rq)
655 {
656 struct sched_entity *curr = cfs_rq->curr;
657 s64 avg = cfs_rq->avg_vruntime;
658 long load = cfs_rq->avg_load;
659
660 if (curr && curr->on_rq) {
661 unsigned long weight = scale_load_down(curr->load.weight);
662
663 avg += entity_key(cfs_rq, curr) * weight;
664 load += weight;
665 }
666
667 if (load) {
668 /* sign flips effective floor / ceiling */
669 if (avg < 0)
670 avg -= (load - 1);
671 avg = div_s64(avg, load);
672 }
673
674 return cfs_rq->min_vruntime + avg;
675 }
676
677 /*
678 * lag_i = S - s_i = w_i * (V - v_i)
679 *
680 * However, since V is approximated by the weighted average of all entities it
681 * is possible -- by addition/removal/reweight to the tree -- to move V around
682 * and end up with a larger lag than we started with.
683 *
684 * Limit this to either double the slice length with a minimum of TICK_NSEC
685 * since that is the timing granularity.
686 *
687 * EEVDF gives the following limit for a steady state system:
688 *
689 * -r_max < lag < max(r_max, q)
690 *
691 * XXX could add max_slice to the augmented data to track this.
692 */
update_entity_lag(struct cfs_rq * cfs_rq,struct sched_entity * se)693 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
694 {
695 s64 vlag, limit;
696
697 WARN_ON_ONCE(!se->on_rq);
698
699 vlag = avg_vruntime(cfs_rq) - se->vruntime;
700 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
701
702 se->vlag = clamp(vlag, -limit, limit);
703 }
704
705 /*
706 * Entity is eligible once it received less service than it ought to have,
707 * eg. lag >= 0.
708 *
709 * lag_i = S - s_i = w_i*(V - v_i)
710 *
711 * lag_i >= 0 -> V >= v_i
712 *
713 * \Sum (v_i - v)*w_i
714 * V = ------------------ + v
715 * \Sum w_i
716 *
717 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
718 *
719 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
720 * to the loss in precision caused by the division.
721 */
vruntime_eligible(struct cfs_rq * cfs_rq,u64 vruntime)722 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
723 {
724 struct sched_entity *curr = cfs_rq->curr;
725 s64 avg = cfs_rq->avg_vruntime;
726 long load = cfs_rq->avg_load;
727
728 if (curr && curr->on_rq) {
729 unsigned long weight = scale_load_down(curr->load.weight);
730
731 avg += entity_key(cfs_rq, curr) * weight;
732 load += weight;
733 }
734
735 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
736 }
737
entity_eligible(struct cfs_rq * cfs_rq,struct sched_entity * se)738 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
739 {
740 return vruntime_eligible(cfs_rq, se->vruntime);
741 }
742
__update_min_vruntime(struct cfs_rq * cfs_rq,u64 vruntime)743 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
744 {
745 u64 min_vruntime = cfs_rq->min_vruntime;
746 /*
747 * open coded max_vruntime() to allow updating avg_vruntime
748 */
749 s64 delta = (s64)(vruntime - min_vruntime);
750 if (delta > 0) {
751 avg_vruntime_update(cfs_rq, delta);
752 min_vruntime = vruntime;
753 }
754 return min_vruntime;
755 }
756
update_min_vruntime(struct cfs_rq * cfs_rq)757 static void update_min_vruntime(struct cfs_rq *cfs_rq)
758 {
759 struct sched_entity *se = __pick_root_entity(cfs_rq);
760 struct sched_entity *curr = cfs_rq->curr;
761 u64 vruntime = cfs_rq->min_vruntime;
762
763 if (curr) {
764 if (curr->on_rq)
765 vruntime = curr->vruntime;
766 else
767 curr = NULL;
768 }
769
770 if (se) {
771 if (!curr)
772 vruntime = se->min_vruntime;
773 else
774 vruntime = min_vruntime(vruntime, se->min_vruntime);
775 }
776
777 /* ensure we never gain time by being placed backwards. */
778 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
779 }
780
cfs_rq_min_slice(struct cfs_rq * cfs_rq)781 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
782 {
783 struct sched_entity *root = __pick_root_entity(cfs_rq);
784 struct sched_entity *curr = cfs_rq->curr;
785 u64 min_slice = ~0ULL;
786
787 if (curr && curr->on_rq)
788 min_slice = curr->slice;
789
790 if (root)
791 min_slice = min(min_slice, root->min_slice);
792
793 return min_slice;
794 }
795
__entity_less(struct rb_node * a,const struct rb_node * b)796 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
797 {
798 return entity_before(__node_2_se(a), __node_2_se(b));
799 }
800
801 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
802
__min_vruntime_update(struct sched_entity * se,struct rb_node * node)803 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
804 {
805 if (node) {
806 struct sched_entity *rse = __node_2_se(node);
807 if (vruntime_gt(min_vruntime, se, rse))
808 se->min_vruntime = rse->min_vruntime;
809 }
810 }
811
__min_slice_update(struct sched_entity * se,struct rb_node * node)812 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
813 {
814 if (node) {
815 struct sched_entity *rse = __node_2_se(node);
816 if (rse->min_slice < se->min_slice)
817 se->min_slice = rse->min_slice;
818 }
819 }
820
821 /*
822 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
823 */
min_vruntime_update(struct sched_entity * se,bool exit)824 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
825 {
826 u64 old_min_vruntime = se->min_vruntime;
827 u64 old_min_slice = se->min_slice;
828 struct rb_node *node = &se->run_node;
829
830 se->min_vruntime = se->vruntime;
831 __min_vruntime_update(se, node->rb_right);
832 __min_vruntime_update(se, node->rb_left);
833
834 se->min_slice = se->slice;
835 __min_slice_update(se, node->rb_right);
836 __min_slice_update(se, node->rb_left);
837
838 return se->min_vruntime == old_min_vruntime &&
839 se->min_slice == old_min_slice;
840 }
841
842 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
843 run_node, min_vruntime, min_vruntime_update);
844
845 /*
846 * Enqueue an entity into the rb-tree:
847 */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)848 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
849 {
850 avg_vruntime_add(cfs_rq, se);
851 se->min_vruntime = se->vruntime;
852 se->min_slice = se->slice;
853 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
854 __entity_less, &min_vruntime_cb);
855 }
856
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)857 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
858 {
859 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
860 &min_vruntime_cb);
861 avg_vruntime_sub(cfs_rq, se);
862 }
863
__pick_root_entity(struct cfs_rq * cfs_rq)864 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
865 {
866 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
867
868 if (!root)
869 return NULL;
870
871 return __node_2_se(root);
872 }
873
__pick_first_entity(struct cfs_rq * cfs_rq)874 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
875 {
876 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
877
878 if (!left)
879 return NULL;
880
881 return __node_2_se(left);
882 }
883
884 /*
885 * Set the vruntime up to which an entity can run before looking
886 * for another entity to pick.
887 * In case of run to parity, we use the shortest slice of the enqueued
888 * entities to set the protected period.
889 * When run to parity is disabled, we give a minimum quantum to the running
890 * entity to ensure progress.
891 */
set_protect_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)892 static inline void set_protect_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
893 {
894 u64 slice = normalized_sysctl_sched_base_slice;
895 u64 vprot = se->deadline;
896
897 if (sched_feat(RUN_TO_PARITY))
898 slice = cfs_rq_min_slice(cfs_rq);
899
900 slice = min(slice, se->slice);
901 if (slice != se->slice)
902 vprot = min_vruntime(vprot, se->vruntime + calc_delta_fair(slice, se));
903
904 se->vprot = vprot;
905 }
906
update_protect_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)907 static inline void update_protect_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
908 {
909 u64 slice = cfs_rq_min_slice(cfs_rq);
910
911 se->vprot = min_vruntime(se->vprot, se->vruntime + calc_delta_fair(slice, se));
912 }
913
protect_slice(struct sched_entity * se)914 static inline bool protect_slice(struct sched_entity *se)
915 {
916 return ((s64)(se->vprot - se->vruntime) > 0);
917 }
918
cancel_protect_slice(struct sched_entity * se)919 static inline void cancel_protect_slice(struct sched_entity *se)
920 {
921 if (protect_slice(se))
922 se->vprot = se->vruntime;
923 }
924
925 /*
926 * Earliest Eligible Virtual Deadline First
927 *
928 * In order to provide latency guarantees for different request sizes
929 * EEVDF selects the best runnable task from two criteria:
930 *
931 * 1) the task must be eligible (must be owed service)
932 *
933 * 2) from those tasks that meet 1), we select the one
934 * with the earliest virtual deadline.
935 *
936 * We can do this in O(log n) time due to an augmented RB-tree. The
937 * tree keeps the entries sorted on deadline, but also functions as a
938 * heap based on the vruntime by keeping:
939 *
940 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
941 *
942 * Which allows tree pruning through eligibility.
943 */
__pick_eevdf(struct cfs_rq * cfs_rq,bool protect)944 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq, bool protect)
945 {
946 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
947 struct sched_entity *se = __pick_first_entity(cfs_rq);
948 struct sched_entity *curr = cfs_rq->curr;
949 struct sched_entity *best = NULL;
950
951 /*
952 * We can safely skip eligibility check if there is only one entity
953 * in this cfs_rq, saving some cycles.
954 */
955 if (cfs_rq->nr_queued == 1)
956 return curr && curr->on_rq ? curr : se;
957
958 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
959 curr = NULL;
960
961 if (curr && protect && protect_slice(curr))
962 return curr;
963
964 /* Pick the leftmost entity if it's eligible */
965 if (se && entity_eligible(cfs_rq, se)) {
966 best = se;
967 goto found;
968 }
969
970 /* Heap search for the EEVD entity */
971 while (node) {
972 struct rb_node *left = node->rb_left;
973
974 /*
975 * Eligible entities in left subtree are always better
976 * choices, since they have earlier deadlines.
977 */
978 if (left && vruntime_eligible(cfs_rq,
979 __node_2_se(left)->min_vruntime)) {
980 node = left;
981 continue;
982 }
983
984 se = __node_2_se(node);
985
986 /*
987 * The left subtree either is empty or has no eligible
988 * entity, so check the current node since it is the one
989 * with earliest deadline that might be eligible.
990 */
991 if (entity_eligible(cfs_rq, se)) {
992 best = se;
993 break;
994 }
995
996 node = node->rb_right;
997 }
998 found:
999 if (!best || (curr && entity_before(curr, best)))
1000 best = curr;
1001
1002 return best;
1003 }
1004
pick_eevdf(struct cfs_rq * cfs_rq)1005 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
1006 {
1007 return __pick_eevdf(cfs_rq, true);
1008 }
1009
__pick_last_entity(struct cfs_rq * cfs_rq)1010 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
1011 {
1012 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
1013
1014 if (!last)
1015 return NULL;
1016
1017 return __node_2_se(last);
1018 }
1019
1020 /**************************************************************
1021 * Scheduling class statistics methods:
1022 */
sched_update_scaling(void)1023 int sched_update_scaling(void)
1024 {
1025 unsigned int factor = get_update_sysctl_factor();
1026
1027 #define WRT_SYSCTL(name) \
1028 (normalized_sysctl_##name = sysctl_##name / (factor))
1029 WRT_SYSCTL(sched_base_slice);
1030 #undef WRT_SYSCTL
1031
1032 return 0;
1033 }
1034
1035 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1036
1037 /*
1038 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1039 * this is probably good enough.
1040 */
update_deadline(struct cfs_rq * cfs_rq,struct sched_entity * se)1041 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1042 {
1043 if ((s64)(se->vruntime - se->deadline) < 0)
1044 return false;
1045
1046 /*
1047 * For EEVDF the virtual time slope is determined by w_i (iow.
1048 * nice) while the request time r_i is determined by
1049 * sysctl_sched_base_slice.
1050 */
1051 if (!se->custom_slice)
1052 se->slice = sysctl_sched_base_slice;
1053
1054 /*
1055 * EEVDF: vd_i = ve_i + r_i / w_i
1056 */
1057 se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1058
1059 /*
1060 * The task has consumed its request, reschedule.
1061 */
1062 return true;
1063 }
1064
1065 #include "pelt.h"
1066
1067 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1068 static unsigned long task_h_load(struct task_struct *p);
1069 static unsigned long capacity_of(int cpu);
1070
1071 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)1072 void init_entity_runnable_average(struct sched_entity *se)
1073 {
1074 struct sched_avg *sa = &se->avg;
1075
1076 memset(sa, 0, sizeof(*sa));
1077
1078 /*
1079 * Tasks are initialized with full load to be seen as heavy tasks until
1080 * they get a chance to stabilize to their real load level.
1081 * Group entities are initialized with zero load to reflect the fact that
1082 * nothing has been attached to the task group yet.
1083 */
1084 if (entity_is_task(se))
1085 sa->load_avg = scale_load_down(se->load.weight);
1086
1087 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1088 }
1089
1090 /*
1091 * With new tasks being created, their initial util_avgs are extrapolated
1092 * based on the cfs_rq's current util_avg:
1093 *
1094 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1095 * * se_weight(se)
1096 *
1097 * However, in many cases, the above util_avg does not give a desired
1098 * value. Moreover, the sum of the util_avgs may be divergent, such
1099 * as when the series is a harmonic series.
1100 *
1101 * To solve this problem, we also cap the util_avg of successive tasks to
1102 * only 1/2 of the left utilization budget:
1103 *
1104 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1105 *
1106 * where n denotes the nth task and cpu_scale the CPU capacity.
1107 *
1108 * For example, for a CPU with 1024 of capacity, a simplest series from
1109 * the beginning would be like:
1110 *
1111 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
1112 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1113 *
1114 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1115 * if util_avg > util_avg_cap.
1116 */
post_init_entity_util_avg(struct task_struct * p)1117 void post_init_entity_util_avg(struct task_struct *p)
1118 {
1119 struct sched_entity *se = &p->se;
1120 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1121 struct sched_avg *sa = &se->avg;
1122 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1123 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1124
1125 if (p->sched_class != &fair_sched_class) {
1126 /*
1127 * For !fair tasks do:
1128 *
1129 update_cfs_rq_load_avg(now, cfs_rq);
1130 attach_entity_load_avg(cfs_rq, se);
1131 switched_from_fair(rq, p);
1132 *
1133 * such that the next switched_to_fair() has the
1134 * expected state.
1135 */
1136 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1137 return;
1138 }
1139
1140 if (cap > 0) {
1141 if (cfs_rq->avg.util_avg != 0) {
1142 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se);
1143 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1144
1145 if (sa->util_avg > cap)
1146 sa->util_avg = cap;
1147 } else {
1148 sa->util_avg = cap;
1149 }
1150 }
1151
1152 sa->runnable_avg = sa->util_avg;
1153 }
1154
update_se(struct rq * rq,struct sched_entity * se)1155 static s64 update_se(struct rq *rq, struct sched_entity *se)
1156 {
1157 u64 now = rq_clock_task(rq);
1158 s64 delta_exec;
1159
1160 delta_exec = now - se->exec_start;
1161 if (unlikely(delta_exec <= 0))
1162 return delta_exec;
1163
1164 se->exec_start = now;
1165 if (entity_is_task(se)) {
1166 struct task_struct *donor = task_of(se);
1167 struct task_struct *running = rq->curr;
1168 /*
1169 * If se is a task, we account the time against the running
1170 * task, as w/ proxy-exec they may not be the same.
1171 */
1172 running->se.exec_start = now;
1173 running->se.sum_exec_runtime += delta_exec;
1174
1175 trace_sched_stat_runtime(running, delta_exec);
1176 account_group_exec_runtime(running, delta_exec);
1177
1178 /* cgroup time is always accounted against the donor */
1179 cgroup_account_cputime(donor, delta_exec);
1180 } else {
1181 /* If not task, account the time against donor se */
1182 se->sum_exec_runtime += delta_exec;
1183 }
1184
1185 if (schedstat_enabled()) {
1186 struct sched_statistics *stats;
1187
1188 stats = __schedstats_from_se(se);
1189 __schedstat_set(stats->exec_max,
1190 max(delta_exec, stats->exec_max));
1191 }
1192
1193 return delta_exec;
1194 }
1195
1196 /*
1197 * Used by other classes to account runtime.
1198 */
update_curr_common(struct rq * rq)1199 s64 update_curr_common(struct rq *rq)
1200 {
1201 return update_se(rq, &rq->donor->se);
1202 }
1203
1204 /*
1205 * Update the current task's runtime statistics.
1206 */
update_curr(struct cfs_rq * cfs_rq)1207 static void update_curr(struct cfs_rq *cfs_rq)
1208 {
1209 /*
1210 * Note: cfs_rq->curr corresponds to the task picked to
1211 * run (ie: rq->donor.se) which due to proxy-exec may
1212 * not necessarily be the actual task running
1213 * (rq->curr.se). This is easy to confuse!
1214 */
1215 struct sched_entity *curr = cfs_rq->curr;
1216 struct rq *rq = rq_of(cfs_rq);
1217 s64 delta_exec;
1218 bool resched;
1219
1220 if (unlikely(!curr))
1221 return;
1222
1223 delta_exec = update_se(rq, curr);
1224 if (unlikely(delta_exec <= 0))
1225 return;
1226
1227 curr->vruntime += calc_delta_fair(delta_exec, curr);
1228 resched = update_deadline(cfs_rq, curr);
1229 update_min_vruntime(cfs_rq);
1230
1231 if (entity_is_task(curr)) {
1232 /*
1233 * If the fair_server is active, we need to account for the
1234 * fair_server time whether or not the task is running on
1235 * behalf of fair_server or not:
1236 * - If the task is running on behalf of fair_server, we need
1237 * to limit its time based on the assigned runtime.
1238 * - Fair task that runs outside of fair_server should account
1239 * against fair_server such that it can account for this time
1240 * and possibly avoid running this period.
1241 */
1242 if (dl_server_active(&rq->fair_server))
1243 dl_server_update(&rq->fair_server, delta_exec);
1244 }
1245
1246 account_cfs_rq_runtime(cfs_rq, delta_exec);
1247
1248 if (cfs_rq->nr_queued == 1)
1249 return;
1250
1251 if (resched || !protect_slice(curr)) {
1252 resched_curr_lazy(rq);
1253 clear_buddies(cfs_rq, curr);
1254 }
1255 }
1256
update_curr_fair(struct rq * rq)1257 static void update_curr_fair(struct rq *rq)
1258 {
1259 update_curr(cfs_rq_of(&rq->donor->se));
1260 }
1261
1262 static inline void
update_stats_wait_start_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1263 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1264 {
1265 struct sched_statistics *stats;
1266 struct task_struct *p = NULL;
1267
1268 if (!schedstat_enabled())
1269 return;
1270
1271 stats = __schedstats_from_se(se);
1272
1273 if (entity_is_task(se))
1274 p = task_of(se);
1275
1276 __update_stats_wait_start(rq_of(cfs_rq), p, stats);
1277 }
1278
1279 static inline void
update_stats_wait_end_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1280 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1281 {
1282 struct sched_statistics *stats;
1283 struct task_struct *p = NULL;
1284
1285 if (!schedstat_enabled())
1286 return;
1287
1288 stats = __schedstats_from_se(se);
1289
1290 /*
1291 * When the sched_schedstat changes from 0 to 1, some sched se
1292 * maybe already in the runqueue, the se->statistics.wait_start
1293 * will be 0.So it will let the delta wrong. We need to avoid this
1294 * scenario.
1295 */
1296 if (unlikely(!schedstat_val(stats->wait_start)))
1297 return;
1298
1299 if (entity_is_task(se))
1300 p = task_of(se);
1301
1302 __update_stats_wait_end(rq_of(cfs_rq), p, stats);
1303 }
1304
1305 static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1306 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1307 {
1308 struct sched_statistics *stats;
1309 struct task_struct *tsk = NULL;
1310
1311 if (!schedstat_enabled())
1312 return;
1313
1314 stats = __schedstats_from_se(se);
1315
1316 if (entity_is_task(se))
1317 tsk = task_of(se);
1318
1319 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1320 }
1321
1322 /*
1323 * Task is being enqueued - update stats:
1324 */
1325 static inline void
update_stats_enqueue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1326 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1327 {
1328 if (!schedstat_enabled())
1329 return;
1330
1331 /*
1332 * Are we enqueueing a waiting task? (for current tasks
1333 * a dequeue/enqueue event is a NOP)
1334 */
1335 if (se != cfs_rq->curr)
1336 update_stats_wait_start_fair(cfs_rq, se);
1337
1338 if (flags & ENQUEUE_WAKEUP)
1339 update_stats_enqueue_sleeper_fair(cfs_rq, se);
1340 }
1341
1342 static inline void
update_stats_dequeue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1343 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1344 {
1345
1346 if (!schedstat_enabled())
1347 return;
1348
1349 /*
1350 * Mark the end of the wait period if dequeueing a
1351 * waiting task:
1352 */
1353 if (se != cfs_rq->curr)
1354 update_stats_wait_end_fair(cfs_rq, se);
1355
1356 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1357 struct task_struct *tsk = task_of(se);
1358 unsigned int state;
1359
1360 /* XXX racy against TTWU */
1361 state = READ_ONCE(tsk->__state);
1362 if (state & TASK_INTERRUPTIBLE)
1363 __schedstat_set(tsk->stats.sleep_start,
1364 rq_clock(rq_of(cfs_rq)));
1365 if (state & TASK_UNINTERRUPTIBLE)
1366 __schedstat_set(tsk->stats.block_start,
1367 rq_clock(rq_of(cfs_rq)));
1368 }
1369 }
1370
1371 /*
1372 * We are picking a new current task - update its stats:
1373 */
1374 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1375 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1376 {
1377 /*
1378 * We are starting a new run period:
1379 */
1380 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1381 }
1382
1383 /**************************************************
1384 * Scheduling class queueing methods:
1385 */
1386
is_core_idle(int cpu)1387 static inline bool is_core_idle(int cpu)
1388 {
1389 #ifdef CONFIG_SCHED_SMT
1390 int sibling;
1391
1392 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1393 if (cpu == sibling)
1394 continue;
1395
1396 if (!idle_cpu(sibling))
1397 return false;
1398 }
1399 #endif
1400
1401 return true;
1402 }
1403
1404 #ifdef CONFIG_NUMA
1405 #define NUMA_IMBALANCE_MIN 2
1406
1407 static inline long
adjust_numa_imbalance(int imbalance,int dst_running,int imb_numa_nr)1408 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1409 {
1410 /*
1411 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1412 * threshold. Above this threshold, individual tasks may be contending
1413 * for both memory bandwidth and any shared HT resources. This is an
1414 * approximation as the number of running tasks may not be related to
1415 * the number of busy CPUs due to sched_setaffinity.
1416 */
1417 if (dst_running > imb_numa_nr)
1418 return imbalance;
1419
1420 /*
1421 * Allow a small imbalance based on a simple pair of communicating
1422 * tasks that remain local when the destination is lightly loaded.
1423 */
1424 if (imbalance <= NUMA_IMBALANCE_MIN)
1425 return 0;
1426
1427 return imbalance;
1428 }
1429 #endif /* CONFIG_NUMA */
1430
1431 #ifdef CONFIG_NUMA_BALANCING
1432 /*
1433 * Approximate time to scan a full NUMA task in ms. The task scan period is
1434 * calculated based on the tasks virtual memory size and
1435 * numa_balancing_scan_size.
1436 */
1437 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1438 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1439
1440 /* Portion of address space to scan in MB */
1441 unsigned int sysctl_numa_balancing_scan_size = 256;
1442
1443 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1444 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1445
1446 /* The page with hint page fault latency < threshold in ms is considered hot */
1447 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1448
1449 struct numa_group {
1450 refcount_t refcount;
1451
1452 spinlock_t lock; /* nr_tasks, tasks */
1453 int nr_tasks;
1454 pid_t gid;
1455 int active_nodes;
1456
1457 struct rcu_head rcu;
1458 unsigned long total_faults;
1459 unsigned long max_faults_cpu;
1460 /*
1461 * faults[] array is split into two regions: faults_mem and faults_cpu.
1462 *
1463 * Faults_cpu is used to decide whether memory should move
1464 * towards the CPU. As a consequence, these stats are weighted
1465 * more by CPU use than by memory faults.
1466 */
1467 unsigned long faults[];
1468 };
1469
1470 /*
1471 * For functions that can be called in multiple contexts that permit reading
1472 * ->numa_group (see struct task_struct for locking rules).
1473 */
deref_task_numa_group(struct task_struct * p)1474 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1475 {
1476 return rcu_dereference_check(p->numa_group, p == current ||
1477 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1478 }
1479
deref_curr_numa_group(struct task_struct * p)1480 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1481 {
1482 return rcu_dereference_protected(p->numa_group, p == current);
1483 }
1484
1485 static inline unsigned long group_faults_priv(struct numa_group *ng);
1486 static inline unsigned long group_faults_shared(struct numa_group *ng);
1487
task_nr_scan_windows(struct task_struct * p)1488 static unsigned int task_nr_scan_windows(struct task_struct *p)
1489 {
1490 unsigned long rss = 0;
1491 unsigned long nr_scan_pages;
1492
1493 /*
1494 * Calculations based on RSS as non-present and empty pages are skipped
1495 * by the PTE scanner and NUMA hinting faults should be trapped based
1496 * on resident pages
1497 */
1498 nr_scan_pages = MB_TO_PAGES(sysctl_numa_balancing_scan_size);
1499 rss = get_mm_rss(p->mm);
1500 if (!rss)
1501 rss = nr_scan_pages;
1502
1503 rss = round_up(rss, nr_scan_pages);
1504 return rss / nr_scan_pages;
1505 }
1506
1507 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1508 #define MAX_SCAN_WINDOW 2560
1509
task_scan_min(struct task_struct * p)1510 static unsigned int task_scan_min(struct task_struct *p)
1511 {
1512 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1513 unsigned int scan, floor;
1514 unsigned int windows = 1;
1515
1516 if (scan_size < MAX_SCAN_WINDOW)
1517 windows = MAX_SCAN_WINDOW / scan_size;
1518 floor = 1000 / windows;
1519
1520 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1521 return max_t(unsigned int, floor, scan);
1522 }
1523
task_scan_start(struct task_struct * p)1524 static unsigned int task_scan_start(struct task_struct *p)
1525 {
1526 unsigned long smin = task_scan_min(p);
1527 unsigned long period = smin;
1528 struct numa_group *ng;
1529
1530 /* Scale the maximum scan period with the amount of shared memory. */
1531 rcu_read_lock();
1532 ng = rcu_dereference(p->numa_group);
1533 if (ng) {
1534 unsigned long shared = group_faults_shared(ng);
1535 unsigned long private = group_faults_priv(ng);
1536
1537 period *= refcount_read(&ng->refcount);
1538 period *= shared + 1;
1539 period /= private + shared + 1;
1540 }
1541 rcu_read_unlock();
1542
1543 return max(smin, period);
1544 }
1545
task_scan_max(struct task_struct * p)1546 static unsigned int task_scan_max(struct task_struct *p)
1547 {
1548 unsigned long smin = task_scan_min(p);
1549 unsigned long smax;
1550 struct numa_group *ng;
1551
1552 /* Watch for min being lower than max due to floor calculations */
1553 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1554
1555 /* Scale the maximum scan period with the amount of shared memory. */
1556 ng = deref_curr_numa_group(p);
1557 if (ng) {
1558 unsigned long shared = group_faults_shared(ng);
1559 unsigned long private = group_faults_priv(ng);
1560 unsigned long period = smax;
1561
1562 period *= refcount_read(&ng->refcount);
1563 period *= shared + 1;
1564 period /= private + shared + 1;
1565
1566 smax = max(smax, period);
1567 }
1568
1569 return max(smin, smax);
1570 }
1571
account_numa_enqueue(struct rq * rq,struct task_struct * p)1572 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1573 {
1574 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1575 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1576 }
1577
account_numa_dequeue(struct rq * rq,struct task_struct * p)1578 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1579 {
1580 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1581 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1582 }
1583
1584 /* Shared or private faults. */
1585 #define NR_NUMA_HINT_FAULT_TYPES 2
1586
1587 /* Memory and CPU locality */
1588 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1589
1590 /* Averaged statistics, and temporary buffers. */
1591 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1592
task_numa_group_id(struct task_struct * p)1593 pid_t task_numa_group_id(struct task_struct *p)
1594 {
1595 struct numa_group *ng;
1596 pid_t gid = 0;
1597
1598 rcu_read_lock();
1599 ng = rcu_dereference(p->numa_group);
1600 if (ng)
1601 gid = ng->gid;
1602 rcu_read_unlock();
1603
1604 return gid;
1605 }
1606
1607 /*
1608 * The averaged statistics, shared & private, memory & CPU,
1609 * occupy the first half of the array. The second half of the
1610 * array is for current counters, which are averaged into the
1611 * first set by task_numa_placement.
1612 */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1613 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1614 {
1615 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1616 }
1617
task_faults(struct task_struct * p,int nid)1618 static inline unsigned long task_faults(struct task_struct *p, int nid)
1619 {
1620 if (!p->numa_faults)
1621 return 0;
1622
1623 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1624 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1625 }
1626
group_faults(struct task_struct * p,int nid)1627 static inline unsigned long group_faults(struct task_struct *p, int nid)
1628 {
1629 struct numa_group *ng = deref_task_numa_group(p);
1630
1631 if (!ng)
1632 return 0;
1633
1634 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1635 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1636 }
1637
group_faults_cpu(struct numa_group * group,int nid)1638 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1639 {
1640 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1641 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1642 }
1643
group_faults_priv(struct numa_group * ng)1644 static inline unsigned long group_faults_priv(struct numa_group *ng)
1645 {
1646 unsigned long faults = 0;
1647 int node;
1648
1649 for_each_online_node(node) {
1650 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1651 }
1652
1653 return faults;
1654 }
1655
group_faults_shared(struct numa_group * ng)1656 static inline unsigned long group_faults_shared(struct numa_group *ng)
1657 {
1658 unsigned long faults = 0;
1659 int node;
1660
1661 for_each_online_node(node) {
1662 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1663 }
1664
1665 return faults;
1666 }
1667
1668 /*
1669 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1670 * considered part of a numa group's pseudo-interleaving set. Migrations
1671 * between these nodes are slowed down, to allow things to settle down.
1672 */
1673 #define ACTIVE_NODE_FRACTION 3
1674
numa_is_active_node(int nid,struct numa_group * ng)1675 static bool numa_is_active_node(int nid, struct numa_group *ng)
1676 {
1677 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1678 }
1679
1680 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int lim_dist,bool task)1681 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1682 int lim_dist, bool task)
1683 {
1684 unsigned long score = 0;
1685 int node, max_dist;
1686
1687 /*
1688 * All nodes are directly connected, and the same distance
1689 * from each other. No need for fancy placement algorithms.
1690 */
1691 if (sched_numa_topology_type == NUMA_DIRECT)
1692 return 0;
1693
1694 /* sched_max_numa_distance may be changed in parallel. */
1695 max_dist = READ_ONCE(sched_max_numa_distance);
1696 /*
1697 * This code is called for each node, introducing N^2 complexity,
1698 * which should be OK given the number of nodes rarely exceeds 8.
1699 */
1700 for_each_online_node(node) {
1701 unsigned long faults;
1702 int dist = node_distance(nid, node);
1703
1704 /*
1705 * The furthest away nodes in the system are not interesting
1706 * for placement; nid was already counted.
1707 */
1708 if (dist >= max_dist || node == nid)
1709 continue;
1710
1711 /*
1712 * On systems with a backplane NUMA topology, compare groups
1713 * of nodes, and move tasks towards the group with the most
1714 * memory accesses. When comparing two nodes at distance
1715 * "hoplimit", only nodes closer by than "hoplimit" are part
1716 * of each group. Skip other nodes.
1717 */
1718 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1719 continue;
1720
1721 /* Add up the faults from nearby nodes. */
1722 if (task)
1723 faults = task_faults(p, node);
1724 else
1725 faults = group_faults(p, node);
1726
1727 /*
1728 * On systems with a glueless mesh NUMA topology, there are
1729 * no fixed "groups of nodes". Instead, nodes that are not
1730 * directly connected bounce traffic through intermediate
1731 * nodes; a numa_group can occupy any set of nodes.
1732 * The further away a node is, the less the faults count.
1733 * This seems to result in good task placement.
1734 */
1735 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1736 faults *= (max_dist - dist);
1737 faults /= (max_dist - LOCAL_DISTANCE);
1738 }
1739
1740 score += faults;
1741 }
1742
1743 return score;
1744 }
1745
1746 /*
1747 * These return the fraction of accesses done by a particular task, or
1748 * task group, on a particular numa node. The group weight is given a
1749 * larger multiplier, in order to group tasks together that are almost
1750 * evenly spread out between numa nodes.
1751 */
task_weight(struct task_struct * p,int nid,int dist)1752 static inline unsigned long task_weight(struct task_struct *p, int nid,
1753 int dist)
1754 {
1755 unsigned long faults, total_faults;
1756
1757 if (!p->numa_faults)
1758 return 0;
1759
1760 total_faults = p->total_numa_faults;
1761
1762 if (!total_faults)
1763 return 0;
1764
1765 faults = task_faults(p, nid);
1766 faults += score_nearby_nodes(p, nid, dist, true);
1767
1768 return 1000 * faults / total_faults;
1769 }
1770
group_weight(struct task_struct * p,int nid,int dist)1771 static inline unsigned long group_weight(struct task_struct *p, int nid,
1772 int dist)
1773 {
1774 struct numa_group *ng = deref_task_numa_group(p);
1775 unsigned long faults, total_faults;
1776
1777 if (!ng)
1778 return 0;
1779
1780 total_faults = ng->total_faults;
1781
1782 if (!total_faults)
1783 return 0;
1784
1785 faults = group_faults(p, nid);
1786 faults += score_nearby_nodes(p, nid, dist, false);
1787
1788 return 1000 * faults / total_faults;
1789 }
1790
1791 /*
1792 * If memory tiering mode is enabled, cpupid of slow memory page is
1793 * used to record scan time instead of CPU and PID. When tiering mode
1794 * is disabled at run time, the scan time (in cpupid) will be
1795 * interpreted as CPU and PID. So CPU needs to be checked to avoid to
1796 * access out of array bound.
1797 */
cpupid_valid(int cpupid)1798 static inline bool cpupid_valid(int cpupid)
1799 {
1800 return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1801 }
1802
1803 /*
1804 * For memory tiering mode, if there are enough free pages (more than
1805 * enough watermark defined here) in fast memory node, to take full
1806 * advantage of fast memory capacity, all recently accessed slow
1807 * memory pages will be migrated to fast memory node without
1808 * considering hot threshold.
1809 */
pgdat_free_space_enough(struct pglist_data * pgdat)1810 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1811 {
1812 int z;
1813 unsigned long enough_wmark;
1814
1815 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1816 pgdat->node_present_pages >> 4);
1817 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1818 struct zone *zone = pgdat->node_zones + z;
1819
1820 if (!populated_zone(zone))
1821 continue;
1822
1823 if (zone_watermark_ok(zone, 0,
1824 promo_wmark_pages(zone) + enough_wmark,
1825 ZONE_MOVABLE, 0))
1826 return true;
1827 }
1828 return false;
1829 }
1830
1831 /*
1832 * For memory tiering mode, when page tables are scanned, the scan
1833 * time will be recorded in struct page in addition to make page
1834 * PROT_NONE for slow memory page. So when the page is accessed, in
1835 * hint page fault handler, the hint page fault latency is calculated
1836 * via,
1837 *
1838 * hint page fault latency = hint page fault time - scan time
1839 *
1840 * The smaller the hint page fault latency, the higher the possibility
1841 * for the page to be hot.
1842 */
numa_hint_fault_latency(struct folio * folio)1843 static int numa_hint_fault_latency(struct folio *folio)
1844 {
1845 int last_time, time;
1846
1847 time = jiffies_to_msecs(jiffies);
1848 last_time = folio_xchg_access_time(folio, time);
1849
1850 return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1851 }
1852
1853 /*
1854 * For memory tiering mode, too high promotion/demotion throughput may
1855 * hurt application latency. So we provide a mechanism to rate limit
1856 * the number of pages that are tried to be promoted.
1857 */
numa_promotion_rate_limit(struct pglist_data * pgdat,unsigned long rate_limit,int nr)1858 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1859 unsigned long rate_limit, int nr)
1860 {
1861 unsigned long nr_cand;
1862 unsigned int now, start;
1863
1864 now = jiffies_to_msecs(jiffies);
1865 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1866 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1867 start = pgdat->nbp_rl_start;
1868 if (now - start > MSEC_PER_SEC &&
1869 cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1870 pgdat->nbp_rl_nr_cand = nr_cand;
1871 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1872 return true;
1873 return false;
1874 }
1875
1876 #define NUMA_MIGRATION_ADJUST_STEPS 16
1877
numa_promotion_adjust_threshold(struct pglist_data * pgdat,unsigned long rate_limit,unsigned int ref_th)1878 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1879 unsigned long rate_limit,
1880 unsigned int ref_th)
1881 {
1882 unsigned int now, start, th_period, unit_th, th;
1883 unsigned long nr_cand, ref_cand, diff_cand;
1884
1885 now = jiffies_to_msecs(jiffies);
1886 th_period = sysctl_numa_balancing_scan_period_max;
1887 start = pgdat->nbp_th_start;
1888 if (now - start > th_period &&
1889 cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1890 ref_cand = rate_limit *
1891 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1892 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1893 diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1894 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1895 th = pgdat->nbp_threshold ? : ref_th;
1896 if (diff_cand > ref_cand * 11 / 10)
1897 th = max(th - unit_th, unit_th);
1898 else if (diff_cand < ref_cand * 9 / 10)
1899 th = min(th + unit_th, ref_th * 2);
1900 pgdat->nbp_th_nr_cand = nr_cand;
1901 pgdat->nbp_threshold = th;
1902 }
1903 }
1904
should_numa_migrate_memory(struct task_struct * p,struct folio * folio,int src_nid,int dst_cpu)1905 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1906 int src_nid, int dst_cpu)
1907 {
1908 struct numa_group *ng = deref_curr_numa_group(p);
1909 int dst_nid = cpu_to_node(dst_cpu);
1910 int last_cpupid, this_cpupid;
1911
1912 /*
1913 * Cannot migrate to memoryless nodes.
1914 */
1915 if (!node_state(dst_nid, N_MEMORY))
1916 return false;
1917
1918 /*
1919 * The pages in slow memory node should be migrated according
1920 * to hot/cold instead of private/shared.
1921 */
1922 if (folio_use_access_time(folio)) {
1923 struct pglist_data *pgdat;
1924 unsigned long rate_limit;
1925 unsigned int latency, th, def_th;
1926 long nr = folio_nr_pages(folio);
1927
1928 pgdat = NODE_DATA(dst_nid);
1929 if (pgdat_free_space_enough(pgdat)) {
1930 /* workload changed, reset hot threshold */
1931 pgdat->nbp_threshold = 0;
1932 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE_NRL, nr);
1933 return true;
1934 }
1935
1936 def_th = sysctl_numa_balancing_hot_threshold;
1937 rate_limit = MB_TO_PAGES(sysctl_numa_balancing_promote_rate_limit);
1938 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1939
1940 th = pgdat->nbp_threshold ? : def_th;
1941 latency = numa_hint_fault_latency(folio);
1942 if (latency >= th)
1943 return false;
1944
1945 return !numa_promotion_rate_limit(pgdat, rate_limit, nr);
1946 }
1947
1948 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1949 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1950
1951 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1952 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1953 return false;
1954
1955 /*
1956 * Allow first faults or private faults to migrate immediately early in
1957 * the lifetime of a task. The magic number 4 is based on waiting for
1958 * two full passes of the "multi-stage node selection" test that is
1959 * executed below.
1960 */
1961 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1962 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1963 return true;
1964
1965 /*
1966 * Multi-stage node selection is used in conjunction with a periodic
1967 * migration fault to build a temporal task<->page relation. By using
1968 * a two-stage filter we remove short/unlikely relations.
1969 *
1970 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1971 * a task's usage of a particular page (n_p) per total usage of this
1972 * page (n_t) (in a given time-span) to a probability.
1973 *
1974 * Our periodic faults will sample this probability and getting the
1975 * same result twice in a row, given these samples are fully
1976 * independent, is then given by P(n)^2, provided our sample period
1977 * is sufficiently short compared to the usage pattern.
1978 *
1979 * This quadric squishes small probabilities, making it less likely we
1980 * act on an unlikely task<->page relation.
1981 */
1982 if (!cpupid_pid_unset(last_cpupid) &&
1983 cpupid_to_nid(last_cpupid) != dst_nid)
1984 return false;
1985
1986 /* Always allow migrate on private faults */
1987 if (cpupid_match_pid(p, last_cpupid))
1988 return true;
1989
1990 /* A shared fault, but p->numa_group has not been set up yet. */
1991 if (!ng)
1992 return true;
1993
1994 /*
1995 * Destination node is much more heavily used than the source
1996 * node? Allow migration.
1997 */
1998 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1999 ACTIVE_NODE_FRACTION)
2000 return true;
2001
2002 /*
2003 * Distribute memory according to CPU & memory use on each node,
2004 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2005 *
2006 * faults_cpu(dst) 3 faults_cpu(src)
2007 * --------------- * - > ---------------
2008 * faults_mem(dst) 4 faults_mem(src)
2009 */
2010 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
2011 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
2012 }
2013
2014 /*
2015 * 'numa_type' describes the node at the moment of load balancing.
2016 */
2017 enum numa_type {
2018 /* The node has spare capacity that can be used to run more tasks. */
2019 node_has_spare = 0,
2020 /*
2021 * The node is fully used and the tasks don't compete for more CPU
2022 * cycles. Nevertheless, some tasks might wait before running.
2023 */
2024 node_fully_busy,
2025 /*
2026 * The node is overloaded and can't provide expected CPU cycles to all
2027 * tasks.
2028 */
2029 node_overloaded
2030 };
2031
2032 /* Cached statistics for all CPUs within a node */
2033 struct numa_stats {
2034 unsigned long load;
2035 unsigned long runnable;
2036 unsigned long util;
2037 /* Total compute capacity of CPUs on a node */
2038 unsigned long compute_capacity;
2039 unsigned int nr_running;
2040 unsigned int weight;
2041 enum numa_type node_type;
2042 int idle_cpu;
2043 };
2044
2045 struct task_numa_env {
2046 struct task_struct *p;
2047
2048 int src_cpu, src_nid;
2049 int dst_cpu, dst_nid;
2050 int imb_numa_nr;
2051
2052 struct numa_stats src_stats, dst_stats;
2053
2054 int imbalance_pct;
2055 int dist;
2056
2057 struct task_struct *best_task;
2058 long best_imp;
2059 int best_cpu;
2060 };
2061
2062 static unsigned long cpu_load(struct rq *rq);
2063 static unsigned long cpu_runnable(struct rq *rq);
2064
2065 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)2066 numa_type numa_classify(unsigned int imbalance_pct,
2067 struct numa_stats *ns)
2068 {
2069 if ((ns->nr_running > ns->weight) &&
2070 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2071 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2072 return node_overloaded;
2073
2074 if ((ns->nr_running < ns->weight) ||
2075 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2076 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2077 return node_has_spare;
2078
2079 return node_fully_busy;
2080 }
2081
2082 #ifdef CONFIG_SCHED_SMT
2083 /* Forward declarations of select_idle_sibling helpers */
2084 static inline bool test_idle_cores(int cpu);
numa_idle_core(int idle_core,int cpu)2085 static inline int numa_idle_core(int idle_core, int cpu)
2086 {
2087 if (!static_branch_likely(&sched_smt_present) ||
2088 idle_core >= 0 || !test_idle_cores(cpu))
2089 return idle_core;
2090
2091 /*
2092 * Prefer cores instead of packing HT siblings
2093 * and triggering future load balancing.
2094 */
2095 if (is_core_idle(cpu))
2096 idle_core = cpu;
2097
2098 return idle_core;
2099 }
2100 #else /* !CONFIG_SCHED_SMT: */
numa_idle_core(int idle_core,int cpu)2101 static inline int numa_idle_core(int idle_core, int cpu)
2102 {
2103 return idle_core;
2104 }
2105 #endif /* !CONFIG_SCHED_SMT */
2106
2107 /*
2108 * Gather all necessary information to make NUMA balancing placement
2109 * decisions that are compatible with standard load balancer. This
2110 * borrows code and logic from update_sg_lb_stats but sharing a
2111 * common implementation is impractical.
2112 */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)2113 static void update_numa_stats(struct task_numa_env *env,
2114 struct numa_stats *ns, int nid,
2115 bool find_idle)
2116 {
2117 int cpu, idle_core = -1;
2118
2119 memset(ns, 0, sizeof(*ns));
2120 ns->idle_cpu = -1;
2121
2122 rcu_read_lock();
2123 for_each_cpu(cpu, cpumask_of_node(nid)) {
2124 struct rq *rq = cpu_rq(cpu);
2125
2126 ns->load += cpu_load(rq);
2127 ns->runnable += cpu_runnable(rq);
2128 ns->util += cpu_util_cfs(cpu);
2129 ns->nr_running += rq->cfs.h_nr_runnable;
2130 ns->compute_capacity += capacity_of(cpu);
2131
2132 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2133 if (READ_ONCE(rq->numa_migrate_on) ||
2134 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2135 continue;
2136
2137 if (ns->idle_cpu == -1)
2138 ns->idle_cpu = cpu;
2139
2140 idle_core = numa_idle_core(idle_core, cpu);
2141 }
2142 }
2143 rcu_read_unlock();
2144
2145 ns->weight = cpumask_weight(cpumask_of_node(nid));
2146
2147 ns->node_type = numa_classify(env->imbalance_pct, ns);
2148
2149 if (idle_core >= 0)
2150 ns->idle_cpu = idle_core;
2151 }
2152
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)2153 static void task_numa_assign(struct task_numa_env *env,
2154 struct task_struct *p, long imp)
2155 {
2156 struct rq *rq = cpu_rq(env->dst_cpu);
2157
2158 /* Check if run-queue part of active NUMA balance. */
2159 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2160 int cpu;
2161 int start = env->dst_cpu;
2162
2163 /* Find alternative idle CPU. */
2164 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2165 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2166 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2167 continue;
2168 }
2169
2170 env->dst_cpu = cpu;
2171 rq = cpu_rq(env->dst_cpu);
2172 if (!xchg(&rq->numa_migrate_on, 1))
2173 goto assign;
2174 }
2175
2176 /* Failed to find an alternative idle CPU */
2177 return;
2178 }
2179
2180 assign:
2181 /*
2182 * Clear previous best_cpu/rq numa-migrate flag, since task now
2183 * found a better CPU to move/swap.
2184 */
2185 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2186 rq = cpu_rq(env->best_cpu);
2187 WRITE_ONCE(rq->numa_migrate_on, 0);
2188 }
2189
2190 if (env->best_task)
2191 put_task_struct(env->best_task);
2192 if (p)
2193 get_task_struct(p);
2194
2195 env->best_task = p;
2196 env->best_imp = imp;
2197 env->best_cpu = env->dst_cpu;
2198 }
2199
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)2200 static bool load_too_imbalanced(long src_load, long dst_load,
2201 struct task_numa_env *env)
2202 {
2203 long imb, old_imb;
2204 long orig_src_load, orig_dst_load;
2205 long src_capacity, dst_capacity;
2206
2207 /*
2208 * The load is corrected for the CPU capacity available on each node.
2209 *
2210 * src_load dst_load
2211 * ------------ vs ---------
2212 * src_capacity dst_capacity
2213 */
2214 src_capacity = env->src_stats.compute_capacity;
2215 dst_capacity = env->dst_stats.compute_capacity;
2216
2217 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2218
2219 orig_src_load = env->src_stats.load;
2220 orig_dst_load = env->dst_stats.load;
2221
2222 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2223
2224 /* Would this change make things worse? */
2225 return (imb > old_imb);
2226 }
2227
2228 /*
2229 * Maximum NUMA importance can be 1998 (2*999);
2230 * SMALLIMP @ 30 would be close to 1998/64.
2231 * Used to deter task migration.
2232 */
2233 #define SMALLIMP 30
2234
2235 /*
2236 * This checks if the overall compute and NUMA accesses of the system would
2237 * be improved if the source tasks was migrated to the target dst_cpu taking
2238 * into account that it might be best if task running on the dst_cpu should
2239 * be exchanged with the source task
2240 */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)2241 static bool task_numa_compare(struct task_numa_env *env,
2242 long taskimp, long groupimp, bool maymove)
2243 {
2244 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2245 struct rq *dst_rq = cpu_rq(env->dst_cpu);
2246 long imp = p_ng ? groupimp : taskimp;
2247 struct task_struct *cur;
2248 long src_load, dst_load;
2249 int dist = env->dist;
2250 long moveimp = imp;
2251 long load;
2252 bool stopsearch = false;
2253
2254 if (READ_ONCE(dst_rq->numa_migrate_on))
2255 return false;
2256
2257 rcu_read_lock();
2258 cur = rcu_dereference(dst_rq->curr);
2259 if (cur && ((cur->flags & (PF_EXITING | PF_KTHREAD)) ||
2260 !cur->mm))
2261 cur = NULL;
2262
2263 /*
2264 * Because we have preemption enabled we can get migrated around and
2265 * end try selecting ourselves (current == env->p) as a swap candidate.
2266 */
2267 if (cur == env->p) {
2268 stopsearch = true;
2269 goto unlock;
2270 }
2271
2272 if (!cur) {
2273 if (maymove && moveimp >= env->best_imp)
2274 goto assign;
2275 else
2276 goto unlock;
2277 }
2278
2279 /* Skip this swap candidate if cannot move to the source cpu. */
2280 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2281 goto unlock;
2282
2283 /*
2284 * Skip this swap candidate if it is not moving to its preferred
2285 * node and the best task is.
2286 */
2287 if (env->best_task &&
2288 env->best_task->numa_preferred_nid == env->src_nid &&
2289 cur->numa_preferred_nid != env->src_nid) {
2290 goto unlock;
2291 }
2292
2293 /*
2294 * "imp" is the fault differential for the source task between the
2295 * source and destination node. Calculate the total differential for
2296 * the source task and potential destination task. The more negative
2297 * the value is, the more remote accesses that would be expected to
2298 * be incurred if the tasks were swapped.
2299 *
2300 * If dst and source tasks are in the same NUMA group, or not
2301 * in any group then look only at task weights.
2302 */
2303 cur_ng = rcu_dereference(cur->numa_group);
2304 if (cur_ng == p_ng) {
2305 /*
2306 * Do not swap within a group or between tasks that have
2307 * no group if there is spare capacity. Swapping does
2308 * not address the load imbalance and helps one task at
2309 * the cost of punishing another.
2310 */
2311 if (env->dst_stats.node_type == node_has_spare)
2312 goto unlock;
2313
2314 imp = taskimp + task_weight(cur, env->src_nid, dist) -
2315 task_weight(cur, env->dst_nid, dist);
2316 /*
2317 * Add some hysteresis to prevent swapping the
2318 * tasks within a group over tiny differences.
2319 */
2320 if (cur_ng)
2321 imp -= imp / 16;
2322 } else {
2323 /*
2324 * Compare the group weights. If a task is all by itself
2325 * (not part of a group), use the task weight instead.
2326 */
2327 if (cur_ng && p_ng)
2328 imp += group_weight(cur, env->src_nid, dist) -
2329 group_weight(cur, env->dst_nid, dist);
2330 else
2331 imp += task_weight(cur, env->src_nid, dist) -
2332 task_weight(cur, env->dst_nid, dist);
2333 }
2334
2335 /* Discourage picking a task already on its preferred node */
2336 if (cur->numa_preferred_nid == env->dst_nid)
2337 imp -= imp / 16;
2338
2339 /*
2340 * Encourage picking a task that moves to its preferred node.
2341 * This potentially makes imp larger than it's maximum of
2342 * 1998 (see SMALLIMP and task_weight for why) but in this
2343 * case, it does not matter.
2344 */
2345 if (cur->numa_preferred_nid == env->src_nid)
2346 imp += imp / 8;
2347
2348 if (maymove && moveimp > imp && moveimp > env->best_imp) {
2349 imp = moveimp;
2350 cur = NULL;
2351 goto assign;
2352 }
2353
2354 /*
2355 * Prefer swapping with a task moving to its preferred node over a
2356 * task that is not.
2357 */
2358 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2359 env->best_task->numa_preferred_nid != env->src_nid) {
2360 goto assign;
2361 }
2362
2363 /*
2364 * If the NUMA importance is less than SMALLIMP,
2365 * task migration might only result in ping pong
2366 * of tasks and also hurt performance due to cache
2367 * misses.
2368 */
2369 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2370 goto unlock;
2371
2372 /*
2373 * In the overloaded case, try and keep the load balanced.
2374 */
2375 load = task_h_load(env->p) - task_h_load(cur);
2376 if (!load)
2377 goto assign;
2378
2379 dst_load = env->dst_stats.load + load;
2380 src_load = env->src_stats.load - load;
2381
2382 if (load_too_imbalanced(src_load, dst_load, env))
2383 goto unlock;
2384
2385 assign:
2386 /* Evaluate an idle CPU for a task numa move. */
2387 if (!cur) {
2388 int cpu = env->dst_stats.idle_cpu;
2389
2390 /* Nothing cached so current CPU went idle since the search. */
2391 if (cpu < 0)
2392 cpu = env->dst_cpu;
2393
2394 /*
2395 * If the CPU is no longer truly idle and the previous best CPU
2396 * is, keep using it.
2397 */
2398 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2399 idle_cpu(env->best_cpu)) {
2400 cpu = env->best_cpu;
2401 }
2402
2403 env->dst_cpu = cpu;
2404 }
2405
2406 task_numa_assign(env, cur, imp);
2407
2408 /*
2409 * If a move to idle is allowed because there is capacity or load
2410 * balance improves then stop the search. While a better swap
2411 * candidate may exist, a search is not free.
2412 */
2413 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2414 stopsearch = true;
2415
2416 /*
2417 * If a swap candidate must be identified and the current best task
2418 * moves its preferred node then stop the search.
2419 */
2420 if (!maymove && env->best_task &&
2421 env->best_task->numa_preferred_nid == env->src_nid) {
2422 stopsearch = true;
2423 }
2424 unlock:
2425 rcu_read_unlock();
2426
2427 return stopsearch;
2428 }
2429
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)2430 static void task_numa_find_cpu(struct task_numa_env *env,
2431 long taskimp, long groupimp)
2432 {
2433 bool maymove = false;
2434 int cpu;
2435
2436 /*
2437 * If dst node has spare capacity, then check if there is an
2438 * imbalance that would be overruled by the load balancer.
2439 */
2440 if (env->dst_stats.node_type == node_has_spare) {
2441 unsigned int imbalance;
2442 int src_running, dst_running;
2443
2444 /*
2445 * Would movement cause an imbalance? Note that if src has
2446 * more running tasks that the imbalance is ignored as the
2447 * move improves the imbalance from the perspective of the
2448 * CPU load balancer.
2449 * */
2450 src_running = env->src_stats.nr_running - 1;
2451 dst_running = env->dst_stats.nr_running + 1;
2452 imbalance = max(0, dst_running - src_running);
2453 imbalance = adjust_numa_imbalance(imbalance, dst_running,
2454 env->imb_numa_nr);
2455
2456 /* Use idle CPU if there is no imbalance */
2457 if (!imbalance) {
2458 maymove = true;
2459 if (env->dst_stats.idle_cpu >= 0) {
2460 env->dst_cpu = env->dst_stats.idle_cpu;
2461 task_numa_assign(env, NULL, 0);
2462 return;
2463 }
2464 }
2465 } else {
2466 long src_load, dst_load, load;
2467 /*
2468 * If the improvement from just moving env->p direction is better
2469 * than swapping tasks around, check if a move is possible.
2470 */
2471 load = task_h_load(env->p);
2472 dst_load = env->dst_stats.load + load;
2473 src_load = env->src_stats.load - load;
2474 maymove = !load_too_imbalanced(src_load, dst_load, env);
2475 }
2476
2477 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2478 /* Skip this CPU if the source task cannot migrate */
2479 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2480 continue;
2481
2482 env->dst_cpu = cpu;
2483 if (task_numa_compare(env, taskimp, groupimp, maymove))
2484 break;
2485 }
2486 }
2487
task_numa_migrate(struct task_struct * p)2488 static int task_numa_migrate(struct task_struct *p)
2489 {
2490 struct task_numa_env env = {
2491 .p = p,
2492
2493 .src_cpu = task_cpu(p),
2494 .src_nid = task_node(p),
2495
2496 .imbalance_pct = 112,
2497
2498 .best_task = NULL,
2499 .best_imp = 0,
2500 .best_cpu = -1,
2501 };
2502 unsigned long taskweight, groupweight;
2503 struct sched_domain *sd;
2504 long taskimp, groupimp;
2505 struct numa_group *ng;
2506 struct rq *best_rq;
2507 int nid, ret, dist;
2508
2509 /*
2510 * Pick the lowest SD_NUMA domain, as that would have the smallest
2511 * imbalance and would be the first to start moving tasks about.
2512 *
2513 * And we want to avoid any moving of tasks about, as that would create
2514 * random movement of tasks -- counter the numa conditions we're trying
2515 * to satisfy here.
2516 */
2517 rcu_read_lock();
2518 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2519 if (sd) {
2520 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2521 env.imb_numa_nr = sd->imb_numa_nr;
2522 }
2523 rcu_read_unlock();
2524
2525 /*
2526 * Cpusets can break the scheduler domain tree into smaller
2527 * balance domains, some of which do not cross NUMA boundaries.
2528 * Tasks that are "trapped" in such domains cannot be migrated
2529 * elsewhere, so there is no point in (re)trying.
2530 */
2531 if (unlikely(!sd)) {
2532 sched_setnuma(p, task_node(p));
2533 return -EINVAL;
2534 }
2535
2536 env.dst_nid = p->numa_preferred_nid;
2537 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2538 taskweight = task_weight(p, env.src_nid, dist);
2539 groupweight = group_weight(p, env.src_nid, dist);
2540 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2541 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2542 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2543 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2544
2545 /* Try to find a spot on the preferred nid. */
2546 task_numa_find_cpu(&env, taskimp, groupimp);
2547
2548 /*
2549 * Look at other nodes in these cases:
2550 * - there is no space available on the preferred_nid
2551 * - the task is part of a numa_group that is interleaved across
2552 * multiple NUMA nodes; in order to better consolidate the group,
2553 * we need to check other locations.
2554 */
2555 ng = deref_curr_numa_group(p);
2556 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2557 for_each_node_state(nid, N_CPU) {
2558 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2559 continue;
2560
2561 dist = node_distance(env.src_nid, env.dst_nid);
2562 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2563 dist != env.dist) {
2564 taskweight = task_weight(p, env.src_nid, dist);
2565 groupweight = group_weight(p, env.src_nid, dist);
2566 }
2567
2568 /* Only consider nodes where both task and groups benefit */
2569 taskimp = task_weight(p, nid, dist) - taskweight;
2570 groupimp = group_weight(p, nid, dist) - groupweight;
2571 if (taskimp < 0 && groupimp < 0)
2572 continue;
2573
2574 env.dist = dist;
2575 env.dst_nid = nid;
2576 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2577 task_numa_find_cpu(&env, taskimp, groupimp);
2578 }
2579 }
2580
2581 /*
2582 * If the task is part of a workload that spans multiple NUMA nodes,
2583 * and is migrating into one of the workload's active nodes, remember
2584 * this node as the task's preferred numa node, so the workload can
2585 * settle down.
2586 * A task that migrated to a second choice node will be better off
2587 * trying for a better one later. Do not set the preferred node here.
2588 */
2589 if (ng) {
2590 if (env.best_cpu == -1)
2591 nid = env.src_nid;
2592 else
2593 nid = cpu_to_node(env.best_cpu);
2594
2595 if (nid != p->numa_preferred_nid)
2596 sched_setnuma(p, nid);
2597 }
2598
2599 /* No better CPU than the current one was found. */
2600 if (env.best_cpu == -1) {
2601 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2602 return -EAGAIN;
2603 }
2604
2605 best_rq = cpu_rq(env.best_cpu);
2606 if (env.best_task == NULL) {
2607 ret = migrate_task_to(p, env.best_cpu);
2608 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2609 if (ret != 0)
2610 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2611 return ret;
2612 }
2613
2614 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2615 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2616
2617 if (ret != 0)
2618 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2619 put_task_struct(env.best_task);
2620 return ret;
2621 }
2622
2623 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2624 static void numa_migrate_preferred(struct task_struct *p)
2625 {
2626 unsigned long interval = HZ;
2627
2628 /* This task has no NUMA fault statistics yet */
2629 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2630 return;
2631
2632 /* Periodically retry migrating the task to the preferred node */
2633 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2634 p->numa_migrate_retry = jiffies + interval;
2635
2636 /* Success if task is already running on preferred CPU */
2637 if (task_node(p) == p->numa_preferred_nid)
2638 return;
2639
2640 /* Otherwise, try migrate to a CPU on the preferred node */
2641 task_numa_migrate(p);
2642 }
2643
2644 /*
2645 * Find out how many nodes the workload is actively running on. Do this by
2646 * tracking the nodes from which NUMA hinting faults are triggered. This can
2647 * be different from the set of nodes where the workload's memory is currently
2648 * located.
2649 */
numa_group_count_active_nodes(struct numa_group * numa_group)2650 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2651 {
2652 unsigned long faults, max_faults = 0;
2653 int nid, active_nodes = 0;
2654
2655 for_each_node_state(nid, N_CPU) {
2656 faults = group_faults_cpu(numa_group, nid);
2657 if (faults > max_faults)
2658 max_faults = faults;
2659 }
2660
2661 for_each_node_state(nid, N_CPU) {
2662 faults = group_faults_cpu(numa_group, nid);
2663 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2664 active_nodes++;
2665 }
2666
2667 numa_group->max_faults_cpu = max_faults;
2668 numa_group->active_nodes = active_nodes;
2669 }
2670
2671 /*
2672 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2673 * increments. The more local the fault statistics are, the higher the scan
2674 * period will be for the next scan window. If local/(local+remote) ratio is
2675 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2676 * the scan period will decrease. Aim for 70% local accesses.
2677 */
2678 #define NUMA_PERIOD_SLOTS 10
2679 #define NUMA_PERIOD_THRESHOLD 7
2680
2681 /*
2682 * Increase the scan period (slow down scanning) if the majority of
2683 * our memory is already on our local node, or if the majority of
2684 * the page accesses are shared with other processes.
2685 * Otherwise, decrease the scan period.
2686 */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2687 static void update_task_scan_period(struct task_struct *p,
2688 unsigned long shared, unsigned long private)
2689 {
2690 unsigned int period_slot;
2691 int lr_ratio, ps_ratio;
2692 int diff;
2693
2694 unsigned long remote = p->numa_faults_locality[0];
2695 unsigned long local = p->numa_faults_locality[1];
2696
2697 /*
2698 * If there were no record hinting faults then either the task is
2699 * completely idle or all activity is in areas that are not of interest
2700 * to automatic numa balancing. Related to that, if there were failed
2701 * migration then it implies we are migrating too quickly or the local
2702 * node is overloaded. In either case, scan slower
2703 */
2704 if (local + shared == 0 || p->numa_faults_locality[2]) {
2705 p->numa_scan_period = min(p->numa_scan_period_max,
2706 p->numa_scan_period << 1);
2707
2708 p->mm->numa_next_scan = jiffies +
2709 msecs_to_jiffies(p->numa_scan_period);
2710
2711 return;
2712 }
2713
2714 /*
2715 * Prepare to scale scan period relative to the current period.
2716 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2717 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2718 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2719 */
2720 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2721 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2722 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2723
2724 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2725 /*
2726 * Most memory accesses are local. There is no need to
2727 * do fast NUMA scanning, since memory is already local.
2728 */
2729 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2730 if (!slot)
2731 slot = 1;
2732 diff = slot * period_slot;
2733 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2734 /*
2735 * Most memory accesses are shared with other tasks.
2736 * There is no point in continuing fast NUMA scanning,
2737 * since other tasks may just move the memory elsewhere.
2738 */
2739 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2740 if (!slot)
2741 slot = 1;
2742 diff = slot * period_slot;
2743 } else {
2744 /*
2745 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2746 * yet they are not on the local NUMA node. Speed up
2747 * NUMA scanning to get the memory moved over.
2748 */
2749 int ratio = max(lr_ratio, ps_ratio);
2750 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2751 }
2752
2753 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2754 task_scan_min(p), task_scan_max(p));
2755 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2756 }
2757
2758 /*
2759 * Get the fraction of time the task has been running since the last
2760 * NUMA placement cycle. The scheduler keeps similar statistics, but
2761 * decays those on a 32ms period, which is orders of magnitude off
2762 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2763 * stats only if the task is so new there are no NUMA statistics yet.
2764 */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2765 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2766 {
2767 u64 runtime, delta, now;
2768 /* Use the start of this time slice to avoid calculations. */
2769 now = p->se.exec_start;
2770 runtime = p->se.sum_exec_runtime;
2771
2772 if (p->last_task_numa_placement) {
2773 delta = runtime - p->last_sum_exec_runtime;
2774 *period = now - p->last_task_numa_placement;
2775
2776 /* Avoid time going backwards, prevent potential divide error: */
2777 if (unlikely((s64)*period < 0))
2778 *period = 0;
2779 } else {
2780 delta = p->se.avg.load_sum;
2781 *period = LOAD_AVG_MAX;
2782 }
2783
2784 p->last_sum_exec_runtime = runtime;
2785 p->last_task_numa_placement = now;
2786
2787 return delta;
2788 }
2789
2790 /*
2791 * Determine the preferred nid for a task in a numa_group. This needs to
2792 * be done in a way that produces consistent results with group_weight,
2793 * otherwise workloads might not converge.
2794 */
preferred_group_nid(struct task_struct * p,int nid)2795 static int preferred_group_nid(struct task_struct *p, int nid)
2796 {
2797 nodemask_t nodes;
2798 int dist;
2799
2800 /* Direct connections between all NUMA nodes. */
2801 if (sched_numa_topology_type == NUMA_DIRECT)
2802 return nid;
2803
2804 /*
2805 * On a system with glueless mesh NUMA topology, group_weight
2806 * scores nodes according to the number of NUMA hinting faults on
2807 * both the node itself, and on nearby nodes.
2808 */
2809 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2810 unsigned long score, max_score = 0;
2811 int node, max_node = nid;
2812
2813 dist = sched_max_numa_distance;
2814
2815 for_each_node_state(node, N_CPU) {
2816 score = group_weight(p, node, dist);
2817 if (score > max_score) {
2818 max_score = score;
2819 max_node = node;
2820 }
2821 }
2822 return max_node;
2823 }
2824
2825 /*
2826 * Finding the preferred nid in a system with NUMA backplane
2827 * interconnect topology is more involved. The goal is to locate
2828 * tasks from numa_groups near each other in the system, and
2829 * untangle workloads from different sides of the system. This requires
2830 * searching down the hierarchy of node groups, recursively searching
2831 * inside the highest scoring group of nodes. The nodemask tricks
2832 * keep the complexity of the search down.
2833 */
2834 nodes = node_states[N_CPU];
2835 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2836 unsigned long max_faults = 0;
2837 nodemask_t max_group = NODE_MASK_NONE;
2838 int a, b;
2839
2840 /* Are there nodes at this distance from each other? */
2841 if (!find_numa_distance(dist))
2842 continue;
2843
2844 for_each_node_mask(a, nodes) {
2845 unsigned long faults = 0;
2846 nodemask_t this_group;
2847 nodes_clear(this_group);
2848
2849 /* Sum group's NUMA faults; includes a==b case. */
2850 for_each_node_mask(b, nodes) {
2851 if (node_distance(a, b) < dist) {
2852 faults += group_faults(p, b);
2853 node_set(b, this_group);
2854 node_clear(b, nodes);
2855 }
2856 }
2857
2858 /* Remember the top group. */
2859 if (faults > max_faults) {
2860 max_faults = faults;
2861 max_group = this_group;
2862 /*
2863 * subtle: at the smallest distance there is
2864 * just one node left in each "group", the
2865 * winner is the preferred nid.
2866 */
2867 nid = a;
2868 }
2869 }
2870 /* Next round, evaluate the nodes within max_group. */
2871 if (!max_faults)
2872 break;
2873 nodes = max_group;
2874 }
2875 return nid;
2876 }
2877
task_numa_placement(struct task_struct * p)2878 static void task_numa_placement(struct task_struct *p)
2879 {
2880 int seq, nid, max_nid = NUMA_NO_NODE;
2881 unsigned long max_faults = 0;
2882 unsigned long fault_types[2] = { 0, 0 };
2883 unsigned long total_faults;
2884 u64 runtime, period;
2885 spinlock_t *group_lock = NULL;
2886 struct numa_group *ng;
2887
2888 /*
2889 * The p->mm->numa_scan_seq field gets updated without
2890 * exclusive access. Use READ_ONCE() here to ensure
2891 * that the field is read in a single access:
2892 */
2893 seq = READ_ONCE(p->mm->numa_scan_seq);
2894 if (p->numa_scan_seq == seq)
2895 return;
2896 p->numa_scan_seq = seq;
2897 p->numa_scan_period_max = task_scan_max(p);
2898
2899 total_faults = p->numa_faults_locality[0] +
2900 p->numa_faults_locality[1];
2901 runtime = numa_get_avg_runtime(p, &period);
2902
2903 /* If the task is part of a group prevent parallel updates to group stats */
2904 ng = deref_curr_numa_group(p);
2905 if (ng) {
2906 group_lock = &ng->lock;
2907 spin_lock_irq(group_lock);
2908 }
2909
2910 /* Find the node with the highest number of faults */
2911 for_each_online_node(nid) {
2912 /* Keep track of the offsets in numa_faults array */
2913 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2914 unsigned long faults = 0, group_faults = 0;
2915 int priv;
2916
2917 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2918 long diff, f_diff, f_weight;
2919
2920 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2921 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2922 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2923 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2924
2925 /* Decay existing window, copy faults since last scan */
2926 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2927 fault_types[priv] += p->numa_faults[membuf_idx];
2928 p->numa_faults[membuf_idx] = 0;
2929
2930 /*
2931 * Normalize the faults_from, so all tasks in a group
2932 * count according to CPU use, instead of by the raw
2933 * number of faults. Tasks with little runtime have
2934 * little over-all impact on throughput, and thus their
2935 * faults are less important.
2936 */
2937 f_weight = div64_u64(runtime << 16, period + 1);
2938 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2939 (total_faults + 1);
2940 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2941 p->numa_faults[cpubuf_idx] = 0;
2942
2943 p->numa_faults[mem_idx] += diff;
2944 p->numa_faults[cpu_idx] += f_diff;
2945 faults += p->numa_faults[mem_idx];
2946 p->total_numa_faults += diff;
2947 if (ng) {
2948 /*
2949 * safe because we can only change our own group
2950 *
2951 * mem_idx represents the offset for a given
2952 * nid and priv in a specific region because it
2953 * is at the beginning of the numa_faults array.
2954 */
2955 ng->faults[mem_idx] += diff;
2956 ng->faults[cpu_idx] += f_diff;
2957 ng->total_faults += diff;
2958 group_faults += ng->faults[mem_idx];
2959 }
2960 }
2961
2962 if (!ng) {
2963 if (faults > max_faults) {
2964 max_faults = faults;
2965 max_nid = nid;
2966 }
2967 } else if (group_faults > max_faults) {
2968 max_faults = group_faults;
2969 max_nid = nid;
2970 }
2971 }
2972
2973 /* Cannot migrate task to CPU-less node */
2974 max_nid = numa_nearest_node(max_nid, N_CPU);
2975
2976 if (ng) {
2977 numa_group_count_active_nodes(ng);
2978 spin_unlock_irq(group_lock);
2979 max_nid = preferred_group_nid(p, max_nid);
2980 }
2981
2982 if (max_faults) {
2983 /* Set the new preferred node */
2984 if (max_nid != p->numa_preferred_nid)
2985 sched_setnuma(p, max_nid);
2986 }
2987
2988 update_task_scan_period(p, fault_types[0], fault_types[1]);
2989 }
2990
get_numa_group(struct numa_group * grp)2991 static inline int get_numa_group(struct numa_group *grp)
2992 {
2993 return refcount_inc_not_zero(&grp->refcount);
2994 }
2995
put_numa_group(struct numa_group * grp)2996 static inline void put_numa_group(struct numa_group *grp)
2997 {
2998 if (refcount_dec_and_test(&grp->refcount))
2999 kfree_rcu(grp, rcu);
3000 }
3001
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)3002 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
3003 int *priv)
3004 {
3005 struct numa_group *grp, *my_grp;
3006 struct task_struct *tsk;
3007 bool join = false;
3008 int cpu = cpupid_to_cpu(cpupid);
3009 int i;
3010
3011 if (unlikely(!deref_curr_numa_group(p))) {
3012 unsigned int size = sizeof(struct numa_group) +
3013 NR_NUMA_HINT_FAULT_STATS *
3014 nr_node_ids * sizeof(unsigned long);
3015
3016 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3017 if (!grp)
3018 return;
3019
3020 refcount_set(&grp->refcount, 1);
3021 grp->active_nodes = 1;
3022 grp->max_faults_cpu = 0;
3023 spin_lock_init(&grp->lock);
3024 grp->gid = p->pid;
3025
3026 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3027 grp->faults[i] = p->numa_faults[i];
3028
3029 grp->total_faults = p->total_numa_faults;
3030
3031 grp->nr_tasks++;
3032 rcu_assign_pointer(p->numa_group, grp);
3033 }
3034
3035 rcu_read_lock();
3036 tsk = READ_ONCE(cpu_rq(cpu)->curr);
3037
3038 if (!cpupid_match_pid(tsk, cpupid))
3039 goto no_join;
3040
3041 grp = rcu_dereference(tsk->numa_group);
3042 if (!grp)
3043 goto no_join;
3044
3045 my_grp = deref_curr_numa_group(p);
3046 if (grp == my_grp)
3047 goto no_join;
3048
3049 /*
3050 * Only join the other group if its bigger; if we're the bigger group,
3051 * the other task will join us.
3052 */
3053 if (my_grp->nr_tasks > grp->nr_tasks)
3054 goto no_join;
3055
3056 /*
3057 * Tie-break on the grp address.
3058 */
3059 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3060 goto no_join;
3061
3062 /* Always join threads in the same process. */
3063 if (tsk->mm == current->mm)
3064 join = true;
3065
3066 /* Simple filter to avoid false positives due to PID collisions */
3067 if (flags & TNF_SHARED)
3068 join = true;
3069
3070 /* Update priv based on whether false sharing was detected */
3071 *priv = !join;
3072
3073 if (join && !get_numa_group(grp))
3074 goto no_join;
3075
3076 rcu_read_unlock();
3077
3078 if (!join)
3079 return;
3080
3081 WARN_ON_ONCE(irqs_disabled());
3082 double_lock_irq(&my_grp->lock, &grp->lock);
3083
3084 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3085 my_grp->faults[i] -= p->numa_faults[i];
3086 grp->faults[i] += p->numa_faults[i];
3087 }
3088 my_grp->total_faults -= p->total_numa_faults;
3089 grp->total_faults += p->total_numa_faults;
3090
3091 my_grp->nr_tasks--;
3092 grp->nr_tasks++;
3093
3094 spin_unlock(&my_grp->lock);
3095 spin_unlock_irq(&grp->lock);
3096
3097 rcu_assign_pointer(p->numa_group, grp);
3098
3099 put_numa_group(my_grp);
3100 return;
3101
3102 no_join:
3103 rcu_read_unlock();
3104 return;
3105 }
3106
3107 /*
3108 * Get rid of NUMA statistics associated with a task (either current or dead).
3109 * If @final is set, the task is dead and has reached refcount zero, so we can
3110 * safely free all relevant data structures. Otherwise, there might be
3111 * concurrent reads from places like load balancing and procfs, and we should
3112 * reset the data back to default state without freeing ->numa_faults.
3113 */
task_numa_free(struct task_struct * p,bool final)3114 void task_numa_free(struct task_struct *p, bool final)
3115 {
3116 /* safe: p either is current or is being freed by current */
3117 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3118 unsigned long *numa_faults = p->numa_faults;
3119 unsigned long flags;
3120 int i;
3121
3122 if (!numa_faults)
3123 return;
3124
3125 if (grp) {
3126 spin_lock_irqsave(&grp->lock, flags);
3127 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3128 grp->faults[i] -= p->numa_faults[i];
3129 grp->total_faults -= p->total_numa_faults;
3130
3131 grp->nr_tasks--;
3132 spin_unlock_irqrestore(&grp->lock, flags);
3133 RCU_INIT_POINTER(p->numa_group, NULL);
3134 put_numa_group(grp);
3135 }
3136
3137 if (final) {
3138 p->numa_faults = NULL;
3139 kfree(numa_faults);
3140 } else {
3141 p->total_numa_faults = 0;
3142 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3143 numa_faults[i] = 0;
3144 }
3145 }
3146
3147 /*
3148 * Got a PROT_NONE fault for a page on @node.
3149 */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)3150 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3151 {
3152 struct task_struct *p = current;
3153 bool migrated = flags & TNF_MIGRATED;
3154 int cpu_node = task_node(current);
3155 int local = !!(flags & TNF_FAULT_LOCAL);
3156 struct numa_group *ng;
3157 int priv;
3158
3159 if (!static_branch_likely(&sched_numa_balancing))
3160 return;
3161
3162 /* for example, ksmd faulting in a user's mm */
3163 if (!p->mm)
3164 return;
3165
3166 /*
3167 * NUMA faults statistics are unnecessary for the slow memory
3168 * node for memory tiering mode.
3169 */
3170 if (!node_is_toptier(mem_node) &&
3171 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3172 !cpupid_valid(last_cpupid)))
3173 return;
3174
3175 /* Allocate buffer to track faults on a per-node basis */
3176 if (unlikely(!p->numa_faults)) {
3177 int size = sizeof(*p->numa_faults) *
3178 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3179
3180 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3181 if (!p->numa_faults)
3182 return;
3183
3184 p->total_numa_faults = 0;
3185 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3186 }
3187
3188 /*
3189 * First accesses are treated as private, otherwise consider accesses
3190 * to be private if the accessing pid has not changed
3191 */
3192 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3193 priv = 1;
3194 } else {
3195 priv = cpupid_match_pid(p, last_cpupid);
3196 if (!priv && !(flags & TNF_NO_GROUP))
3197 task_numa_group(p, last_cpupid, flags, &priv);
3198 }
3199
3200 /*
3201 * If a workload spans multiple NUMA nodes, a shared fault that
3202 * occurs wholly within the set of nodes that the workload is
3203 * actively using should be counted as local. This allows the
3204 * scan rate to slow down when a workload has settled down.
3205 */
3206 ng = deref_curr_numa_group(p);
3207 if (!priv && !local && ng && ng->active_nodes > 1 &&
3208 numa_is_active_node(cpu_node, ng) &&
3209 numa_is_active_node(mem_node, ng))
3210 local = 1;
3211
3212 /*
3213 * Retry to migrate task to preferred node periodically, in case it
3214 * previously failed, or the scheduler moved us.
3215 */
3216 if (time_after(jiffies, p->numa_migrate_retry)) {
3217 task_numa_placement(p);
3218 numa_migrate_preferred(p);
3219 }
3220
3221 if (migrated)
3222 p->numa_pages_migrated += pages;
3223 if (flags & TNF_MIGRATE_FAIL)
3224 p->numa_faults_locality[2] += pages;
3225
3226 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3227 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3228 p->numa_faults_locality[local] += pages;
3229 }
3230
reset_ptenuma_scan(struct task_struct * p)3231 static void reset_ptenuma_scan(struct task_struct *p)
3232 {
3233 /*
3234 * We only did a read acquisition of the mmap sem, so
3235 * p->mm->numa_scan_seq is written to without exclusive access
3236 * and the update is not guaranteed to be atomic. That's not
3237 * much of an issue though, since this is just used for
3238 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3239 * expensive, to avoid any form of compiler optimizations:
3240 */
3241 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3242 p->mm->numa_scan_offset = 0;
3243 }
3244
vma_is_accessed(struct mm_struct * mm,struct vm_area_struct * vma)3245 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3246 {
3247 unsigned long pids;
3248 /*
3249 * Allow unconditional access first two times, so that all the (pages)
3250 * of VMAs get prot_none fault introduced irrespective of accesses.
3251 * This is also done to avoid any side effect of task scanning
3252 * amplifying the unfairness of disjoint set of VMAs' access.
3253 */
3254 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3255 return true;
3256
3257 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3258 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3259 return true;
3260
3261 /*
3262 * Complete a scan that has already started regardless of PID access, or
3263 * some VMAs may never be scanned in multi-threaded applications:
3264 */
3265 if (mm->numa_scan_offset > vma->vm_start) {
3266 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3267 return true;
3268 }
3269
3270 /*
3271 * This vma has not been accessed for a while, and if the number
3272 * the threads in the same process is low, which means no other
3273 * threads can help scan this vma, force a vma scan.
3274 */
3275 if (READ_ONCE(mm->numa_scan_seq) >
3276 (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3277 return true;
3278
3279 return false;
3280 }
3281
3282 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3283
3284 /*
3285 * The expensive part of numa migration is done from task_work context.
3286 * Triggered from task_tick_numa().
3287 */
task_numa_work(struct callback_head * work)3288 static void task_numa_work(struct callback_head *work)
3289 {
3290 unsigned long migrate, next_scan, now = jiffies;
3291 struct task_struct *p = current;
3292 struct mm_struct *mm = p->mm;
3293 u64 runtime = p->se.sum_exec_runtime;
3294 struct vm_area_struct *vma;
3295 unsigned long start, end;
3296 unsigned long nr_pte_updates = 0;
3297 long pages, virtpages;
3298 struct vma_iterator vmi;
3299 bool vma_pids_skipped;
3300 bool vma_pids_forced = false;
3301
3302 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
3303
3304 work->next = work;
3305 /*
3306 * Who cares about NUMA placement when they're dying.
3307 *
3308 * NOTE: make sure not to dereference p->mm before this check,
3309 * exit_task_work() happens _after_ exit_mm() so we could be called
3310 * without p->mm even though we still had it when we enqueued this
3311 * work.
3312 */
3313 if (p->flags & PF_EXITING)
3314 return;
3315
3316 /*
3317 * Memory is pinned to only one NUMA node via cpuset.mems, naturally
3318 * no page can be migrated.
3319 */
3320 if (cpusets_enabled() && nodes_weight(cpuset_current_mems_allowed) == 1) {
3321 trace_sched_skip_cpuset_numa(current, &cpuset_current_mems_allowed);
3322 return;
3323 }
3324
3325 if (!mm->numa_next_scan) {
3326 mm->numa_next_scan = now +
3327 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3328 }
3329
3330 /*
3331 * Enforce maximal scan/migration frequency..
3332 */
3333 migrate = mm->numa_next_scan;
3334 if (time_before(now, migrate))
3335 return;
3336
3337 if (p->numa_scan_period == 0) {
3338 p->numa_scan_period_max = task_scan_max(p);
3339 p->numa_scan_period = task_scan_start(p);
3340 }
3341
3342 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3343 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3344 return;
3345
3346 /*
3347 * Delay this task enough that another task of this mm will likely win
3348 * the next time around.
3349 */
3350 p->node_stamp += 2 * TICK_NSEC;
3351
3352 pages = sysctl_numa_balancing_scan_size;
3353 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3354 virtpages = pages * 8; /* Scan up to this much virtual space */
3355 if (!pages)
3356 return;
3357
3358
3359 if (!mmap_read_trylock(mm))
3360 return;
3361
3362 /*
3363 * VMAs are skipped if the current PID has not trapped a fault within
3364 * the VMA recently. Allow scanning to be forced if there is no
3365 * suitable VMA remaining.
3366 */
3367 vma_pids_skipped = false;
3368
3369 retry_pids:
3370 start = mm->numa_scan_offset;
3371 vma_iter_init(&vmi, mm, start);
3372 vma = vma_next(&vmi);
3373 if (!vma) {
3374 reset_ptenuma_scan(p);
3375 start = 0;
3376 vma_iter_set(&vmi, start);
3377 vma = vma_next(&vmi);
3378 }
3379
3380 for (; vma; vma = vma_next(&vmi)) {
3381 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3382 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3383 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3384 continue;
3385 }
3386
3387 /*
3388 * Shared library pages mapped by multiple processes are not
3389 * migrated as it is expected they are cache replicated. Avoid
3390 * hinting faults in read-only file-backed mappings or the vDSO
3391 * as migrating the pages will be of marginal benefit.
3392 */
3393 if (!vma->vm_mm ||
3394 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3395 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3396 continue;
3397 }
3398
3399 /*
3400 * Skip inaccessible VMAs to avoid any confusion between
3401 * PROT_NONE and NUMA hinting PTEs
3402 */
3403 if (!vma_is_accessible(vma)) {
3404 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3405 continue;
3406 }
3407
3408 /* Initialise new per-VMA NUMAB state. */
3409 if (!vma->numab_state) {
3410 struct vma_numab_state *ptr;
3411
3412 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
3413 if (!ptr)
3414 continue;
3415
3416 if (cmpxchg(&vma->numab_state, NULL, ptr)) {
3417 kfree(ptr);
3418 continue;
3419 }
3420
3421 vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3422
3423 vma->numab_state->next_scan = now +
3424 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3425
3426 /* Reset happens after 4 times scan delay of scan start */
3427 vma->numab_state->pids_active_reset = vma->numab_state->next_scan +
3428 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3429
3430 /*
3431 * Ensure prev_scan_seq does not match numa_scan_seq,
3432 * to prevent VMAs being skipped prematurely on the
3433 * first scan:
3434 */
3435 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3436 }
3437
3438 /*
3439 * Scanning the VMAs of short lived tasks add more overhead. So
3440 * delay the scan for new VMAs.
3441 */
3442 if (mm->numa_scan_seq && time_before(jiffies,
3443 vma->numab_state->next_scan)) {
3444 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3445 continue;
3446 }
3447
3448 /* RESET access PIDs regularly for old VMAs. */
3449 if (mm->numa_scan_seq &&
3450 time_after(jiffies, vma->numab_state->pids_active_reset)) {
3451 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3452 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3453 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3454 vma->numab_state->pids_active[1] = 0;
3455 }
3456
3457 /* Do not rescan VMAs twice within the same sequence. */
3458 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3459 mm->numa_scan_offset = vma->vm_end;
3460 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3461 continue;
3462 }
3463
3464 /*
3465 * Do not scan the VMA if task has not accessed it, unless no other
3466 * VMA candidate exists.
3467 */
3468 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3469 vma_pids_skipped = true;
3470 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3471 continue;
3472 }
3473
3474 do {
3475 start = max(start, vma->vm_start);
3476 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3477 end = min(end, vma->vm_end);
3478 nr_pte_updates = change_prot_numa(vma, start, end);
3479
3480 /*
3481 * Try to scan sysctl_numa_balancing_size worth of
3482 * hpages that have at least one present PTE that
3483 * is not already PTE-numa. If the VMA contains
3484 * areas that are unused or already full of prot_numa
3485 * PTEs, scan up to virtpages, to skip through those
3486 * areas faster.
3487 */
3488 if (nr_pte_updates)
3489 pages -= (end - start) >> PAGE_SHIFT;
3490 virtpages -= (end - start) >> PAGE_SHIFT;
3491
3492 start = end;
3493 if (pages <= 0 || virtpages <= 0)
3494 goto out;
3495
3496 cond_resched();
3497 } while (end != vma->vm_end);
3498
3499 /* VMA scan is complete, do not scan until next sequence. */
3500 vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3501
3502 /*
3503 * Only force scan within one VMA at a time, to limit the
3504 * cost of scanning a potentially uninteresting VMA.
3505 */
3506 if (vma_pids_forced)
3507 break;
3508 }
3509
3510 /*
3511 * If no VMAs are remaining and VMAs were skipped due to the PID
3512 * not accessing the VMA previously, then force a scan to ensure
3513 * forward progress:
3514 */
3515 if (!vma && !vma_pids_forced && vma_pids_skipped) {
3516 vma_pids_forced = true;
3517 goto retry_pids;
3518 }
3519
3520 out:
3521 /*
3522 * It is possible to reach the end of the VMA list but the last few
3523 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3524 * would find the !migratable VMA on the next scan but not reset the
3525 * scanner to the start so check it now.
3526 */
3527 if (vma)
3528 mm->numa_scan_offset = start;
3529 else
3530 reset_ptenuma_scan(p);
3531 mmap_read_unlock(mm);
3532
3533 /*
3534 * Make sure tasks use at least 32x as much time to run other code
3535 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3536 * Usually update_task_scan_period slows down scanning enough; on an
3537 * overloaded system we need to limit overhead on a per task basis.
3538 */
3539 if (unlikely(p->se.sum_exec_runtime != runtime)) {
3540 u64 diff = p->se.sum_exec_runtime - runtime;
3541 p->node_stamp += 32 * diff;
3542 }
3543 }
3544
init_numa_balancing(u64 clone_flags,struct task_struct * p)3545 void init_numa_balancing(u64 clone_flags, struct task_struct *p)
3546 {
3547 int mm_users = 0;
3548 struct mm_struct *mm = p->mm;
3549
3550 if (mm) {
3551 mm_users = atomic_read(&mm->mm_users);
3552 if (mm_users == 1) {
3553 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3554 mm->numa_scan_seq = 0;
3555 }
3556 }
3557 p->node_stamp = 0;
3558 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
3559 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
3560 p->numa_migrate_retry = 0;
3561 /* Protect against double add, see task_tick_numa and task_numa_work */
3562 p->numa_work.next = &p->numa_work;
3563 p->numa_faults = NULL;
3564 p->numa_pages_migrated = 0;
3565 p->total_numa_faults = 0;
3566 RCU_INIT_POINTER(p->numa_group, NULL);
3567 p->last_task_numa_placement = 0;
3568 p->last_sum_exec_runtime = 0;
3569
3570 init_task_work(&p->numa_work, task_numa_work);
3571
3572 /* New address space, reset the preferred nid */
3573 if (!(clone_flags & CLONE_VM)) {
3574 p->numa_preferred_nid = NUMA_NO_NODE;
3575 return;
3576 }
3577
3578 /*
3579 * New thread, keep existing numa_preferred_nid which should be copied
3580 * already by arch_dup_task_struct but stagger when scans start.
3581 */
3582 if (mm) {
3583 unsigned int delay;
3584
3585 delay = min_t(unsigned int, task_scan_max(current),
3586 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3587 delay += 2 * TICK_NSEC;
3588 p->node_stamp = delay;
3589 }
3590 }
3591
3592 /*
3593 * Drive the periodic memory faults..
3594 */
task_tick_numa(struct rq * rq,struct task_struct * curr)3595 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3596 {
3597 struct callback_head *work = &curr->numa_work;
3598 u64 period, now;
3599
3600 /*
3601 * We don't care about NUMA placement if we don't have memory.
3602 */
3603 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3604 return;
3605
3606 /*
3607 * Using runtime rather than walltime has the dual advantage that
3608 * we (mostly) drive the selection from busy threads and that the
3609 * task needs to have done some actual work before we bother with
3610 * NUMA placement.
3611 */
3612 now = curr->se.sum_exec_runtime;
3613 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3614
3615 if (now > curr->node_stamp + period) {
3616 if (!curr->node_stamp)
3617 curr->numa_scan_period = task_scan_start(curr);
3618 curr->node_stamp += period;
3619
3620 if (!time_before(jiffies, curr->mm->numa_next_scan))
3621 task_work_add(curr, work, TWA_RESUME);
3622 }
3623 }
3624
update_scan_period(struct task_struct * p,int new_cpu)3625 static void update_scan_period(struct task_struct *p, int new_cpu)
3626 {
3627 int src_nid = cpu_to_node(task_cpu(p));
3628 int dst_nid = cpu_to_node(new_cpu);
3629
3630 if (!static_branch_likely(&sched_numa_balancing))
3631 return;
3632
3633 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3634 return;
3635
3636 if (src_nid == dst_nid)
3637 return;
3638
3639 /*
3640 * Allow resets if faults have been trapped before one scan
3641 * has completed. This is most likely due to a new task that
3642 * is pulled cross-node due to wakeups or load balancing.
3643 */
3644 if (p->numa_scan_seq) {
3645 /*
3646 * Avoid scan adjustments if moving to the preferred
3647 * node or if the task was not previously running on
3648 * the preferred node.
3649 */
3650 if (dst_nid == p->numa_preferred_nid ||
3651 (p->numa_preferred_nid != NUMA_NO_NODE &&
3652 src_nid != p->numa_preferred_nid))
3653 return;
3654 }
3655
3656 p->numa_scan_period = task_scan_start(p);
3657 }
3658
3659 #else /* !CONFIG_NUMA_BALANCING: */
3660
task_tick_numa(struct rq * rq,struct task_struct * curr)3661 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3662 {
3663 }
3664
account_numa_enqueue(struct rq * rq,struct task_struct * p)3665 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3666 {
3667 }
3668
account_numa_dequeue(struct rq * rq,struct task_struct * p)3669 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3670 {
3671 }
3672
update_scan_period(struct task_struct * p,int new_cpu)3673 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3674 {
3675 }
3676
3677 #endif /* !CONFIG_NUMA_BALANCING */
3678
3679 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3680 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3681 {
3682 update_load_add(&cfs_rq->load, se->load.weight);
3683 if (entity_is_task(se)) {
3684 struct rq *rq = rq_of(cfs_rq);
3685
3686 account_numa_enqueue(rq, task_of(se));
3687 list_add(&se->group_node, &rq->cfs_tasks);
3688 }
3689 cfs_rq->nr_queued++;
3690 }
3691
3692 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3693 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3694 {
3695 update_load_sub(&cfs_rq->load, se->load.weight);
3696 if (entity_is_task(se)) {
3697 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3698 list_del_init(&se->group_node);
3699 }
3700 cfs_rq->nr_queued--;
3701 }
3702
3703 /*
3704 * Signed add and clamp on underflow.
3705 *
3706 * Explicitly do a load-store to ensure the intermediate value never hits
3707 * memory. This allows lockless observations without ever seeing the negative
3708 * values.
3709 */
3710 #define add_positive(_ptr, _val) do { \
3711 typeof(_ptr) ptr = (_ptr); \
3712 typeof(_val) val = (_val); \
3713 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3714 \
3715 res = var + val; \
3716 \
3717 if (val < 0 && res > var) \
3718 res = 0; \
3719 \
3720 WRITE_ONCE(*ptr, res); \
3721 } while (0)
3722
3723 /*
3724 * Unsigned subtract and clamp on underflow.
3725 *
3726 * Explicitly do a load-store to ensure the intermediate value never hits
3727 * memory. This allows lockless observations without ever seeing the negative
3728 * values.
3729 */
3730 #define sub_positive(_ptr, _val) do { \
3731 typeof(_ptr) ptr = (_ptr); \
3732 typeof(*ptr) val = (_val); \
3733 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3734 res = var - val; \
3735 if (res > var) \
3736 res = 0; \
3737 WRITE_ONCE(*ptr, res); \
3738 } while (0)
3739
3740 /*
3741 * Remove and clamp on negative, from a local variable.
3742 *
3743 * A variant of sub_positive(), which does not use explicit load-store
3744 * and is thus optimized for local variable updates.
3745 */
3746 #define lsub_positive(_ptr, _val) do { \
3747 typeof(_ptr) ptr = (_ptr); \
3748 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3749 } while (0)
3750
3751 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3752 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3753 {
3754 cfs_rq->avg.load_avg += se->avg.load_avg;
3755 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3756 }
3757
3758 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3759 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3760 {
3761 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3762 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3763 /* See update_cfs_rq_load_avg() */
3764 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3765 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3766 }
3767
3768 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags);
3769
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3770 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3771 unsigned long weight)
3772 {
3773 bool curr = cfs_rq->curr == se;
3774
3775 if (se->on_rq) {
3776 /* commit outstanding execution time */
3777 update_curr(cfs_rq);
3778 update_entity_lag(cfs_rq, se);
3779 se->deadline -= se->vruntime;
3780 se->rel_deadline = 1;
3781 cfs_rq->nr_queued--;
3782 if (!curr)
3783 __dequeue_entity(cfs_rq, se);
3784 update_load_sub(&cfs_rq->load, se->load.weight);
3785 }
3786 dequeue_load_avg(cfs_rq, se);
3787
3788 /*
3789 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3790 * we need to scale se->vlag when w_i changes.
3791 */
3792 se->vlag = div_s64(se->vlag * se->load.weight, weight);
3793 if (se->rel_deadline)
3794 se->deadline = div_s64(se->deadline * se->load.weight, weight);
3795
3796 update_load_set(&se->load, weight);
3797
3798 do {
3799 u32 divider = get_pelt_divider(&se->avg);
3800
3801 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3802 } while (0);
3803
3804 enqueue_load_avg(cfs_rq, se);
3805 if (se->on_rq) {
3806 place_entity(cfs_rq, se, 0);
3807 update_load_add(&cfs_rq->load, se->load.weight);
3808 if (!curr)
3809 __enqueue_entity(cfs_rq, se);
3810 cfs_rq->nr_queued++;
3811
3812 /*
3813 * The entity's vruntime has been adjusted, so let's check
3814 * whether the rq-wide min_vruntime needs updated too. Since
3815 * the calculations above require stable min_vruntime rather
3816 * than up-to-date one, we do the update at the end of the
3817 * reweight process.
3818 */
3819 update_min_vruntime(cfs_rq);
3820 }
3821 }
3822
reweight_task_fair(struct rq * rq,struct task_struct * p,const struct load_weight * lw)3823 static void reweight_task_fair(struct rq *rq, struct task_struct *p,
3824 const struct load_weight *lw)
3825 {
3826 struct sched_entity *se = &p->se;
3827 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3828 struct load_weight *load = &se->load;
3829
3830 reweight_entity(cfs_rq, se, lw->weight);
3831 load->inv_weight = lw->inv_weight;
3832 }
3833
3834 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3835
3836 #ifdef CONFIG_FAIR_GROUP_SCHED
3837 /*
3838 * All this does is approximate the hierarchical proportion which includes that
3839 * global sum we all love to hate.
3840 *
3841 * That is, the weight of a group entity, is the proportional share of the
3842 * group weight based on the group runqueue weights. That is:
3843 *
3844 * tg->weight * grq->load.weight
3845 * ge->load.weight = ----------------------------- (1)
3846 * \Sum grq->load.weight
3847 *
3848 * Now, because computing that sum is prohibitively expensive to compute (been
3849 * there, done that) we approximate it with this average stuff. The average
3850 * moves slower and therefore the approximation is cheaper and more stable.
3851 *
3852 * So instead of the above, we substitute:
3853 *
3854 * grq->load.weight -> grq->avg.load_avg (2)
3855 *
3856 * which yields the following:
3857 *
3858 * tg->weight * grq->avg.load_avg
3859 * ge->load.weight = ------------------------------ (3)
3860 * tg->load_avg
3861 *
3862 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3863 *
3864 * That is shares_avg, and it is right (given the approximation (2)).
3865 *
3866 * The problem with it is that because the average is slow -- it was designed
3867 * to be exactly that of course -- this leads to transients in boundary
3868 * conditions. In specific, the case where the group was idle and we start the
3869 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3870 * yielding bad latency etc..
3871 *
3872 * Now, in that special case (1) reduces to:
3873 *
3874 * tg->weight * grq->load.weight
3875 * ge->load.weight = ----------------------------- = tg->weight (4)
3876 * grp->load.weight
3877 *
3878 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3879 *
3880 * So what we do is modify our approximation (3) to approach (4) in the (near)
3881 * UP case, like:
3882 *
3883 * ge->load.weight =
3884 *
3885 * tg->weight * grq->load.weight
3886 * --------------------------------------------------- (5)
3887 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3888 *
3889 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3890 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3891 *
3892 *
3893 * tg->weight * grq->load.weight
3894 * ge->load.weight = ----------------------------- (6)
3895 * tg_load_avg'
3896 *
3897 * Where:
3898 *
3899 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3900 * max(grq->load.weight, grq->avg.load_avg)
3901 *
3902 * And that is shares_weight and is icky. In the (near) UP case it approaches
3903 * (4) while in the normal case it approaches (3). It consistently
3904 * overestimates the ge->load.weight and therefore:
3905 *
3906 * \Sum ge->load.weight >= tg->weight
3907 *
3908 * hence icky!
3909 */
calc_group_shares(struct cfs_rq * cfs_rq)3910 static long calc_group_shares(struct cfs_rq *cfs_rq)
3911 {
3912 long tg_weight, tg_shares, load, shares;
3913 struct task_group *tg = cfs_rq->tg;
3914
3915 tg_shares = READ_ONCE(tg->shares);
3916
3917 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3918
3919 tg_weight = atomic_long_read(&tg->load_avg);
3920
3921 /* Ensure tg_weight >= load */
3922 tg_weight -= cfs_rq->tg_load_avg_contrib;
3923 tg_weight += load;
3924
3925 shares = (tg_shares * load);
3926 if (tg_weight)
3927 shares /= tg_weight;
3928
3929 /*
3930 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3931 * of a group with small tg->shares value. It is a floor value which is
3932 * assigned as a minimum load.weight to the sched_entity representing
3933 * the group on a CPU.
3934 *
3935 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3936 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3937 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3938 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3939 * instead of 0.
3940 */
3941 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3942 }
3943
3944 /*
3945 * Recomputes the group entity based on the current state of its group
3946 * runqueue.
3947 */
update_cfs_group(struct sched_entity * se)3948 static void update_cfs_group(struct sched_entity *se)
3949 {
3950 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3951 long shares;
3952
3953 /*
3954 * When a group becomes empty, preserve its weight. This matters for
3955 * DELAY_DEQUEUE.
3956 */
3957 if (!gcfs_rq || !gcfs_rq->load.weight)
3958 return;
3959
3960 shares = calc_group_shares(gcfs_rq);
3961 if (unlikely(se->load.weight != shares))
3962 reweight_entity(cfs_rq_of(se), se, shares);
3963 }
3964
3965 #else /* !CONFIG_FAIR_GROUP_SCHED: */
update_cfs_group(struct sched_entity * se)3966 static inline void update_cfs_group(struct sched_entity *se)
3967 {
3968 }
3969 #endif /* !CONFIG_FAIR_GROUP_SCHED */
3970
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)3971 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3972 {
3973 struct rq *rq = rq_of(cfs_rq);
3974
3975 if (&rq->cfs == cfs_rq) {
3976 /*
3977 * There are a few boundary cases this might miss but it should
3978 * get called often enough that that should (hopefully) not be
3979 * a real problem.
3980 *
3981 * It will not get called when we go idle, because the idle
3982 * thread is a different class (!fair), nor will the utilization
3983 * number include things like RT tasks.
3984 *
3985 * As is, the util number is not freq-invariant (we'd have to
3986 * implement arch_scale_freq_capacity() for that).
3987 *
3988 * See cpu_util_cfs().
3989 */
3990 cpufreq_update_util(rq, flags);
3991 }
3992 }
3993
load_avg_is_decayed(struct sched_avg * sa)3994 static inline bool load_avg_is_decayed(struct sched_avg *sa)
3995 {
3996 if (sa->load_sum)
3997 return false;
3998
3999 if (sa->util_sum)
4000 return false;
4001
4002 if (sa->runnable_sum)
4003 return false;
4004
4005 /*
4006 * _avg must be null when _sum are null because _avg = _sum / divider
4007 * Make sure that rounding and/or propagation of PELT values never
4008 * break this.
4009 */
4010 WARN_ON_ONCE(sa->load_avg ||
4011 sa->util_avg ||
4012 sa->runnable_avg);
4013
4014 return true;
4015 }
4016
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)4017 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4018 {
4019 return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4020 cfs_rq->last_update_time_copy);
4021 }
4022 #ifdef CONFIG_FAIR_GROUP_SCHED
4023 /*
4024 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4025 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4026 * bottom-up, we only have to test whether the cfs_rq before us on the list
4027 * is our child.
4028 * If cfs_rq is not on the list, test whether a child needs its to be added to
4029 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
4030 */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)4031 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4032 {
4033 struct cfs_rq *prev_cfs_rq;
4034 struct list_head *prev;
4035 struct rq *rq = rq_of(cfs_rq);
4036
4037 if (cfs_rq->on_list) {
4038 prev = cfs_rq->leaf_cfs_rq_list.prev;
4039 } else {
4040 prev = rq->tmp_alone_branch;
4041 }
4042
4043 if (prev == &rq->leaf_cfs_rq_list)
4044 return false;
4045
4046 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4047
4048 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4049 }
4050
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4051 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4052 {
4053 if (cfs_rq->load.weight)
4054 return false;
4055
4056 if (!load_avg_is_decayed(&cfs_rq->avg))
4057 return false;
4058
4059 if (child_cfs_rq_on_list(cfs_rq))
4060 return false;
4061
4062 return true;
4063 }
4064
4065 /**
4066 * update_tg_load_avg - update the tg's load avg
4067 * @cfs_rq: the cfs_rq whose avg changed
4068 *
4069 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4070 * However, because tg->load_avg is a global value there are performance
4071 * considerations.
4072 *
4073 * In order to avoid having to look at the other cfs_rq's, we use a
4074 * differential update where we store the last value we propagated. This in
4075 * turn allows skipping updates if the differential is 'small'.
4076 *
4077 * Updating tg's load_avg is necessary before update_cfs_share().
4078 */
update_tg_load_avg(struct cfs_rq * cfs_rq)4079 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4080 {
4081 long delta;
4082 u64 now;
4083
4084 /*
4085 * No need to update load_avg for root_task_group as it is not used.
4086 */
4087 if (cfs_rq->tg == &root_task_group)
4088 return;
4089
4090 /* rq has been offline and doesn't contribute to the share anymore: */
4091 if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4092 return;
4093
4094 /*
4095 * For migration heavy workloads, access to tg->load_avg can be
4096 * unbound. Limit the update rate to at most once per ms.
4097 */
4098 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4099 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4100 return;
4101
4102 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4103 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4104 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4105 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4106 cfs_rq->last_update_tg_load_avg = now;
4107 }
4108 }
4109
clear_tg_load_avg(struct cfs_rq * cfs_rq)4110 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4111 {
4112 long delta;
4113 u64 now;
4114
4115 /*
4116 * No need to update load_avg for root_task_group, as it is not used.
4117 */
4118 if (cfs_rq->tg == &root_task_group)
4119 return;
4120
4121 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4122 delta = 0 - cfs_rq->tg_load_avg_contrib;
4123 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4124 cfs_rq->tg_load_avg_contrib = 0;
4125 cfs_rq->last_update_tg_load_avg = now;
4126 }
4127
4128 /* CPU offline callback: */
clear_tg_offline_cfs_rqs(struct rq * rq)4129 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4130 {
4131 struct task_group *tg;
4132
4133 lockdep_assert_rq_held(rq);
4134
4135 /*
4136 * The rq clock has already been updated in
4137 * set_rq_offline(), so we should skip updating
4138 * the rq clock again in unthrottle_cfs_rq().
4139 */
4140 rq_clock_start_loop_update(rq);
4141
4142 rcu_read_lock();
4143 list_for_each_entry_rcu(tg, &task_groups, list) {
4144 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4145
4146 clear_tg_load_avg(cfs_rq);
4147 }
4148 rcu_read_unlock();
4149
4150 rq_clock_stop_loop_update(rq);
4151 }
4152
4153 /*
4154 * Called within set_task_rq() right before setting a task's CPU. The
4155 * caller only guarantees p->pi_lock is held; no other assumptions,
4156 * including the state of rq->lock, should be made.
4157 */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)4158 void set_task_rq_fair(struct sched_entity *se,
4159 struct cfs_rq *prev, struct cfs_rq *next)
4160 {
4161 u64 p_last_update_time;
4162 u64 n_last_update_time;
4163
4164 if (!sched_feat(ATTACH_AGE_LOAD))
4165 return;
4166
4167 /*
4168 * We are supposed to update the task to "current" time, then its up to
4169 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4170 * getting what current time is, so simply throw away the out-of-date
4171 * time. This will result in the wakee task is less decayed, but giving
4172 * the wakee more load sounds not bad.
4173 */
4174 if (!(se->avg.last_update_time && prev))
4175 return;
4176
4177 p_last_update_time = cfs_rq_last_update_time(prev);
4178 n_last_update_time = cfs_rq_last_update_time(next);
4179
4180 __update_load_avg_blocked_se(p_last_update_time, se);
4181 se->avg.last_update_time = n_last_update_time;
4182 }
4183
4184 /*
4185 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4186 * propagate its contribution. The key to this propagation is the invariant
4187 * that for each group:
4188 *
4189 * ge->avg == grq->avg (1)
4190 *
4191 * _IFF_ we look at the pure running and runnable sums. Because they
4192 * represent the very same entity, just at different points in the hierarchy.
4193 *
4194 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4195 * and simply copies the running/runnable sum over (but still wrong, because
4196 * the group entity and group rq do not have their PELT windows aligned).
4197 *
4198 * However, update_tg_cfs_load() is more complex. So we have:
4199 *
4200 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
4201 *
4202 * And since, like util, the runnable part should be directly transferable,
4203 * the following would _appear_ to be the straight forward approach:
4204 *
4205 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
4206 *
4207 * And per (1) we have:
4208 *
4209 * ge->avg.runnable_avg == grq->avg.runnable_avg
4210 *
4211 * Which gives:
4212 *
4213 * ge->load.weight * grq->avg.load_avg
4214 * ge->avg.load_avg = ----------------------------------- (4)
4215 * grq->load.weight
4216 *
4217 * Except that is wrong!
4218 *
4219 * Because while for entities historical weight is not important and we
4220 * really only care about our future and therefore can consider a pure
4221 * runnable sum, runqueues can NOT do this.
4222 *
4223 * We specifically want runqueues to have a load_avg that includes
4224 * historical weights. Those represent the blocked load, the load we expect
4225 * to (shortly) return to us. This only works by keeping the weights as
4226 * integral part of the sum. We therefore cannot decompose as per (3).
4227 *
4228 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4229 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4230 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4231 * runnable section of these tasks overlap (or not). If they were to perfectly
4232 * align the rq as a whole would be runnable 2/3 of the time. If however we
4233 * always have at least 1 runnable task, the rq as a whole is always runnable.
4234 *
4235 * So we'll have to approximate.. :/
4236 *
4237 * Given the constraint:
4238 *
4239 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4240 *
4241 * We can construct a rule that adds runnable to a rq by assuming minimal
4242 * overlap.
4243 *
4244 * On removal, we'll assume each task is equally runnable; which yields:
4245 *
4246 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4247 *
4248 * XXX: only do this for the part of runnable > running ?
4249 *
4250 */
4251 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4252 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4253 {
4254 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4255 u32 new_sum, divider;
4256
4257 /* Nothing to update */
4258 if (!delta_avg)
4259 return;
4260
4261 /*
4262 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4263 * See ___update_load_avg() for details.
4264 */
4265 divider = get_pelt_divider(&cfs_rq->avg);
4266
4267
4268 /* Set new sched_entity's utilization */
4269 se->avg.util_avg = gcfs_rq->avg.util_avg;
4270 new_sum = se->avg.util_avg * divider;
4271 delta_sum = (long)new_sum - (long)se->avg.util_sum;
4272 se->avg.util_sum = new_sum;
4273
4274 /* Update parent cfs_rq utilization */
4275 add_positive(&cfs_rq->avg.util_avg, delta_avg);
4276 add_positive(&cfs_rq->avg.util_sum, delta_sum);
4277
4278 /* See update_cfs_rq_load_avg() */
4279 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4280 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4281 }
4282
4283 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4284 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4285 {
4286 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4287 u32 new_sum, divider;
4288
4289 /* Nothing to update */
4290 if (!delta_avg)
4291 return;
4292
4293 /*
4294 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4295 * See ___update_load_avg() for details.
4296 */
4297 divider = get_pelt_divider(&cfs_rq->avg);
4298
4299 /* Set new sched_entity's runnable */
4300 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4301 new_sum = se->avg.runnable_avg * divider;
4302 delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4303 se->avg.runnable_sum = new_sum;
4304
4305 /* Update parent cfs_rq runnable */
4306 add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4307 add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4308 /* See update_cfs_rq_load_avg() */
4309 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4310 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4311 }
4312
4313 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4314 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4315 {
4316 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4317 unsigned long load_avg;
4318 u64 load_sum = 0;
4319 s64 delta_sum;
4320 u32 divider;
4321
4322 if (!runnable_sum)
4323 return;
4324
4325 gcfs_rq->prop_runnable_sum = 0;
4326
4327 /*
4328 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4329 * See ___update_load_avg() for details.
4330 */
4331 divider = get_pelt_divider(&cfs_rq->avg);
4332
4333 if (runnable_sum >= 0) {
4334 /*
4335 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4336 * the CPU is saturated running == runnable.
4337 */
4338 runnable_sum += se->avg.load_sum;
4339 runnable_sum = min_t(long, runnable_sum, divider);
4340 } else {
4341 /*
4342 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4343 * assuming all tasks are equally runnable.
4344 */
4345 if (scale_load_down(gcfs_rq->load.weight)) {
4346 load_sum = div_u64(gcfs_rq->avg.load_sum,
4347 scale_load_down(gcfs_rq->load.weight));
4348 }
4349
4350 /* But make sure to not inflate se's runnable */
4351 runnable_sum = min(se->avg.load_sum, load_sum);
4352 }
4353
4354 /*
4355 * runnable_sum can't be lower than running_sum
4356 * Rescale running sum to be in the same range as runnable sum
4357 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
4358 * runnable_sum is in [0 : LOAD_AVG_MAX]
4359 */
4360 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4361 runnable_sum = max(runnable_sum, running_sum);
4362
4363 load_sum = se_weight(se) * runnable_sum;
4364 load_avg = div_u64(load_sum, divider);
4365
4366 delta_avg = load_avg - se->avg.load_avg;
4367 if (!delta_avg)
4368 return;
4369
4370 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4371
4372 se->avg.load_sum = runnable_sum;
4373 se->avg.load_avg = load_avg;
4374 add_positive(&cfs_rq->avg.load_avg, delta_avg);
4375 add_positive(&cfs_rq->avg.load_sum, delta_sum);
4376 /* See update_cfs_rq_load_avg() */
4377 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4378 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4379 }
4380
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4381 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4382 {
4383 cfs_rq->propagate = 1;
4384 cfs_rq->prop_runnable_sum += runnable_sum;
4385 }
4386
4387 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)4388 static inline int propagate_entity_load_avg(struct sched_entity *se)
4389 {
4390 struct cfs_rq *cfs_rq, *gcfs_rq;
4391
4392 if (entity_is_task(se))
4393 return 0;
4394
4395 gcfs_rq = group_cfs_rq(se);
4396 if (!gcfs_rq->propagate)
4397 return 0;
4398
4399 gcfs_rq->propagate = 0;
4400
4401 cfs_rq = cfs_rq_of(se);
4402
4403 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4404
4405 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4406 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4407 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4408
4409 trace_pelt_cfs_tp(cfs_rq);
4410 trace_pelt_se_tp(se);
4411
4412 return 1;
4413 }
4414
4415 /*
4416 * Check if we need to update the load and the utilization of a blocked
4417 * group_entity:
4418 */
skip_blocked_update(struct sched_entity * se)4419 static inline bool skip_blocked_update(struct sched_entity *se)
4420 {
4421 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4422
4423 /*
4424 * If sched_entity still have not zero load or utilization, we have to
4425 * decay it:
4426 */
4427 if (se->avg.load_avg || se->avg.util_avg)
4428 return false;
4429
4430 /*
4431 * If there is a pending propagation, we have to update the load and
4432 * the utilization of the sched_entity:
4433 */
4434 if (gcfs_rq->propagate)
4435 return false;
4436
4437 /*
4438 * Otherwise, the load and the utilization of the sched_entity is
4439 * already zero and there is no pending propagation, so it will be a
4440 * waste of time to try to decay it:
4441 */
4442 return true;
4443 }
4444
4445 #else /* !CONFIG_FAIR_GROUP_SCHED: */
4446
update_tg_load_avg(struct cfs_rq * cfs_rq)4447 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4448
clear_tg_offline_cfs_rqs(struct rq * rq)4449 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4450
propagate_entity_load_avg(struct sched_entity * se)4451 static inline int propagate_entity_load_avg(struct sched_entity *se)
4452 {
4453 return 0;
4454 }
4455
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4456 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4457
4458 #endif /* !CONFIG_FAIR_GROUP_SCHED */
4459
4460 #ifdef CONFIG_NO_HZ_COMMON
migrate_se_pelt_lag(struct sched_entity * se)4461 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4462 {
4463 u64 throttled = 0, now, lut;
4464 struct cfs_rq *cfs_rq;
4465 struct rq *rq;
4466 bool is_idle;
4467
4468 if (load_avg_is_decayed(&se->avg))
4469 return;
4470
4471 cfs_rq = cfs_rq_of(se);
4472 rq = rq_of(cfs_rq);
4473
4474 rcu_read_lock();
4475 is_idle = is_idle_task(rcu_dereference(rq->curr));
4476 rcu_read_unlock();
4477
4478 /*
4479 * The lag estimation comes with a cost we don't want to pay all the
4480 * time. Hence, limiting to the case where the source CPU is idle and
4481 * we know we are at the greatest risk to have an outdated clock.
4482 */
4483 if (!is_idle)
4484 return;
4485
4486 /*
4487 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4488 *
4489 * last_update_time (the cfs_rq's last_update_time)
4490 * = cfs_rq_clock_pelt()@cfs_rq_idle
4491 * = rq_clock_pelt()@cfs_rq_idle
4492 * - cfs->throttled_clock_pelt_time@cfs_rq_idle
4493 *
4494 * cfs_idle_lag (delta between rq's update and cfs_rq's update)
4495 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4496 *
4497 * rq_idle_lag (delta between now and rq's update)
4498 * = sched_clock_cpu() - rq_clock()@rq_idle
4499 *
4500 * We can then write:
4501 *
4502 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4503 * sched_clock_cpu() - rq_clock()@rq_idle
4504 * Where:
4505 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4506 * rq_clock()@rq_idle is rq->clock_idle
4507 * cfs->throttled_clock_pelt_time@cfs_rq_idle
4508 * is cfs_rq->throttled_pelt_idle
4509 */
4510
4511 #ifdef CONFIG_CFS_BANDWIDTH
4512 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4513 /* The clock has been stopped for throttling */
4514 if (throttled == U64_MAX)
4515 return;
4516 #endif
4517 now = u64_u32_load(rq->clock_pelt_idle);
4518 /*
4519 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4520 * is observed the old clock_pelt_idle value and the new clock_idle,
4521 * which lead to an underestimation. The opposite would lead to an
4522 * overestimation.
4523 */
4524 smp_rmb();
4525 lut = cfs_rq_last_update_time(cfs_rq);
4526
4527 now -= throttled;
4528 if (now < lut)
4529 /*
4530 * cfs_rq->avg.last_update_time is more recent than our
4531 * estimation, let's use it.
4532 */
4533 now = lut;
4534 else
4535 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4536
4537 __update_load_avg_blocked_se(now, se);
4538 }
4539 #else /* !CONFIG_NO_HZ_COMMON: */
migrate_se_pelt_lag(struct sched_entity * se)4540 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4541 #endif /* !CONFIG_NO_HZ_COMMON */
4542
4543 /**
4544 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4545 * @now: current time, as per cfs_rq_clock_pelt()
4546 * @cfs_rq: cfs_rq to update
4547 *
4548 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4549 * avg. The immediate corollary is that all (fair) tasks must be attached.
4550 *
4551 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4552 *
4553 * Return: true if the load decayed or we removed load.
4554 *
4555 * Since both these conditions indicate a changed cfs_rq->avg.load we should
4556 * call update_tg_load_avg() when this function returns true.
4557 */
4558 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)4559 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4560 {
4561 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4562 struct sched_avg *sa = &cfs_rq->avg;
4563 int decayed = 0;
4564
4565 if (cfs_rq->removed.nr) {
4566 unsigned long r;
4567 u32 divider = get_pelt_divider(&cfs_rq->avg);
4568
4569 raw_spin_lock(&cfs_rq->removed.lock);
4570 swap(cfs_rq->removed.util_avg, removed_util);
4571 swap(cfs_rq->removed.load_avg, removed_load);
4572 swap(cfs_rq->removed.runnable_avg, removed_runnable);
4573 cfs_rq->removed.nr = 0;
4574 raw_spin_unlock(&cfs_rq->removed.lock);
4575
4576 r = removed_load;
4577 sub_positive(&sa->load_avg, r);
4578 sub_positive(&sa->load_sum, r * divider);
4579 /* See sa->util_sum below */
4580 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4581
4582 r = removed_util;
4583 sub_positive(&sa->util_avg, r);
4584 sub_positive(&sa->util_sum, r * divider);
4585 /*
4586 * Because of rounding, se->util_sum might ends up being +1 more than
4587 * cfs->util_sum. Although this is not a problem by itself, detaching
4588 * a lot of tasks with the rounding problem between 2 updates of
4589 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4590 * cfs_util_avg is not.
4591 * Check that util_sum is still above its lower bound for the new
4592 * util_avg. Given that period_contrib might have moved since the last
4593 * sync, we are only sure that util_sum must be above or equal to
4594 * util_avg * minimum possible divider
4595 */
4596 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4597
4598 r = removed_runnable;
4599 sub_positive(&sa->runnable_avg, r);
4600 sub_positive(&sa->runnable_sum, r * divider);
4601 /* See sa->util_sum above */
4602 sa->runnable_sum = max_t(u32, sa->runnable_sum,
4603 sa->runnable_avg * PELT_MIN_DIVIDER);
4604
4605 /*
4606 * removed_runnable is the unweighted version of removed_load so we
4607 * can use it to estimate removed_load_sum.
4608 */
4609 add_tg_cfs_propagate(cfs_rq,
4610 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4611
4612 decayed = 1;
4613 }
4614
4615 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4616 u64_u32_store_copy(sa->last_update_time,
4617 cfs_rq->last_update_time_copy,
4618 sa->last_update_time);
4619 return decayed;
4620 }
4621
4622 /**
4623 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4624 * @cfs_rq: cfs_rq to attach to
4625 * @se: sched_entity to attach
4626 *
4627 * Must call update_cfs_rq_load_avg() before this, since we rely on
4628 * cfs_rq->avg.last_update_time being current.
4629 */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4630 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4631 {
4632 /*
4633 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4634 * See ___update_load_avg() for details.
4635 */
4636 u32 divider = get_pelt_divider(&cfs_rq->avg);
4637
4638 /*
4639 * When we attach the @se to the @cfs_rq, we must align the decay
4640 * window because without that, really weird and wonderful things can
4641 * happen.
4642 *
4643 * XXX illustrate
4644 */
4645 se->avg.last_update_time = cfs_rq->avg.last_update_time;
4646 se->avg.period_contrib = cfs_rq->avg.period_contrib;
4647
4648 /*
4649 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4650 * period_contrib. This isn't strictly correct, but since we're
4651 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4652 * _sum a little.
4653 */
4654 se->avg.util_sum = se->avg.util_avg * divider;
4655
4656 se->avg.runnable_sum = se->avg.runnable_avg * divider;
4657
4658 se->avg.load_sum = se->avg.load_avg * divider;
4659 if (se_weight(se) < se->avg.load_sum)
4660 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4661 else
4662 se->avg.load_sum = 1;
4663
4664 enqueue_load_avg(cfs_rq, se);
4665 cfs_rq->avg.util_avg += se->avg.util_avg;
4666 cfs_rq->avg.util_sum += se->avg.util_sum;
4667 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4668 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4669
4670 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4671
4672 cfs_rq_util_change(cfs_rq, 0);
4673
4674 trace_pelt_cfs_tp(cfs_rq);
4675 }
4676
4677 /**
4678 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4679 * @cfs_rq: cfs_rq to detach from
4680 * @se: sched_entity to detach
4681 *
4682 * Must call update_cfs_rq_load_avg() before this, since we rely on
4683 * cfs_rq->avg.last_update_time being current.
4684 */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4685 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4686 {
4687 dequeue_load_avg(cfs_rq, se);
4688 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4689 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4690 /* See update_cfs_rq_load_avg() */
4691 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4692 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4693
4694 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4695 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4696 /* See update_cfs_rq_load_avg() */
4697 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4698 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4699
4700 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4701
4702 cfs_rq_util_change(cfs_rq, 0);
4703
4704 trace_pelt_cfs_tp(cfs_rq);
4705 }
4706
4707 /*
4708 * Optional action to be done while updating the load average
4709 */
4710 #define UPDATE_TG 0x1
4711 #define SKIP_AGE_LOAD 0x2
4712 #define DO_ATTACH 0x4
4713 #define DO_DETACH 0x8
4714
4715 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4716 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4717 {
4718 u64 now = cfs_rq_clock_pelt(cfs_rq);
4719 int decayed;
4720
4721 /*
4722 * Track task load average for carrying it to new CPU after migrated, and
4723 * track group sched_entity load average for task_h_load calculation in migration
4724 */
4725 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4726 __update_load_avg_se(now, cfs_rq, se);
4727
4728 decayed = update_cfs_rq_load_avg(now, cfs_rq);
4729 decayed |= propagate_entity_load_avg(se);
4730
4731 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4732
4733 /*
4734 * DO_ATTACH means we're here from enqueue_entity().
4735 * !last_update_time means we've passed through
4736 * migrate_task_rq_fair() indicating we migrated.
4737 *
4738 * IOW we're enqueueing a task on a new CPU.
4739 */
4740 attach_entity_load_avg(cfs_rq, se);
4741 update_tg_load_avg(cfs_rq);
4742
4743 } else if (flags & DO_DETACH) {
4744 /*
4745 * DO_DETACH means we're here from dequeue_entity()
4746 * and we are migrating task out of the CPU.
4747 */
4748 detach_entity_load_avg(cfs_rq, se);
4749 update_tg_load_avg(cfs_rq);
4750 } else if (decayed) {
4751 cfs_rq_util_change(cfs_rq, 0);
4752
4753 if (flags & UPDATE_TG)
4754 update_tg_load_avg(cfs_rq);
4755 }
4756 }
4757
4758 /*
4759 * Synchronize entity load avg of dequeued entity without locking
4760 * the previous rq.
4761 */
sync_entity_load_avg(struct sched_entity * se)4762 static void sync_entity_load_avg(struct sched_entity *se)
4763 {
4764 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4765 u64 last_update_time;
4766
4767 last_update_time = cfs_rq_last_update_time(cfs_rq);
4768 __update_load_avg_blocked_se(last_update_time, se);
4769 }
4770
4771 /*
4772 * Task first catches up with cfs_rq, and then subtract
4773 * itself from the cfs_rq (task must be off the queue now).
4774 */
remove_entity_load_avg(struct sched_entity * se)4775 static void remove_entity_load_avg(struct sched_entity *se)
4776 {
4777 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4778 unsigned long flags;
4779
4780 /*
4781 * tasks cannot exit without having gone through wake_up_new_task() ->
4782 * enqueue_task_fair() which will have added things to the cfs_rq,
4783 * so we can remove unconditionally.
4784 */
4785
4786 sync_entity_load_avg(se);
4787
4788 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4789 ++cfs_rq->removed.nr;
4790 cfs_rq->removed.util_avg += se->avg.util_avg;
4791 cfs_rq->removed.load_avg += se->avg.load_avg;
4792 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
4793 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4794 }
4795
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)4796 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4797 {
4798 return cfs_rq->avg.runnable_avg;
4799 }
4800
cfs_rq_load_avg(struct cfs_rq * cfs_rq)4801 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4802 {
4803 return cfs_rq->avg.load_avg;
4804 }
4805
4806 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4807
task_util(struct task_struct * p)4808 static inline unsigned long task_util(struct task_struct *p)
4809 {
4810 return READ_ONCE(p->se.avg.util_avg);
4811 }
4812
task_runnable(struct task_struct * p)4813 static inline unsigned long task_runnable(struct task_struct *p)
4814 {
4815 return READ_ONCE(p->se.avg.runnable_avg);
4816 }
4817
_task_util_est(struct task_struct * p)4818 static inline unsigned long _task_util_est(struct task_struct *p)
4819 {
4820 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4821 }
4822
task_util_est(struct task_struct * p)4823 static inline unsigned long task_util_est(struct task_struct *p)
4824 {
4825 return max(task_util(p), _task_util_est(p));
4826 }
4827
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4828 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4829 struct task_struct *p)
4830 {
4831 unsigned int enqueued;
4832
4833 if (!sched_feat(UTIL_EST))
4834 return;
4835
4836 /* Update root cfs_rq's estimated utilization */
4837 enqueued = cfs_rq->avg.util_est;
4838 enqueued += _task_util_est(p);
4839 WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4840
4841 trace_sched_util_est_cfs_tp(cfs_rq);
4842 }
4843
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4844 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4845 struct task_struct *p)
4846 {
4847 unsigned int enqueued;
4848
4849 if (!sched_feat(UTIL_EST))
4850 return;
4851
4852 /* Update root cfs_rq's estimated utilization */
4853 enqueued = cfs_rq->avg.util_est;
4854 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4855 WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4856
4857 trace_sched_util_est_cfs_tp(cfs_rq);
4858 }
4859
4860 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4861
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4862 static inline void util_est_update(struct cfs_rq *cfs_rq,
4863 struct task_struct *p,
4864 bool task_sleep)
4865 {
4866 unsigned int ewma, dequeued, last_ewma_diff;
4867
4868 if (!sched_feat(UTIL_EST))
4869 return;
4870
4871 /*
4872 * Skip update of task's estimated utilization when the task has not
4873 * yet completed an activation, e.g. being migrated.
4874 */
4875 if (!task_sleep)
4876 return;
4877
4878 /* Get current estimate of utilization */
4879 ewma = READ_ONCE(p->se.avg.util_est);
4880
4881 /*
4882 * If the PELT values haven't changed since enqueue time,
4883 * skip the util_est update.
4884 */
4885 if (ewma & UTIL_AVG_UNCHANGED)
4886 return;
4887
4888 /* Get utilization at dequeue */
4889 dequeued = task_util(p);
4890
4891 /*
4892 * Reset EWMA on utilization increases, the moving average is used only
4893 * to smooth utilization decreases.
4894 */
4895 if (ewma <= dequeued) {
4896 ewma = dequeued;
4897 goto done;
4898 }
4899
4900 /*
4901 * Skip update of task's estimated utilization when its members are
4902 * already ~1% close to its last activation value.
4903 */
4904 last_ewma_diff = ewma - dequeued;
4905 if (last_ewma_diff < UTIL_EST_MARGIN)
4906 goto done;
4907
4908 /*
4909 * To avoid underestimate of task utilization, skip updates of EWMA if
4910 * we cannot grant that thread got all CPU time it wanted.
4911 */
4912 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
4913 goto done;
4914
4915
4916 /*
4917 * Update Task's estimated utilization
4918 *
4919 * When *p completes an activation we can consolidate another sample
4920 * of the task size. This is done by using this value to update the
4921 * Exponential Weighted Moving Average (EWMA):
4922 *
4923 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4924 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4925 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4926 * = w * ( -last_ewma_diff ) + ewma(t-1)
4927 * = w * (-last_ewma_diff + ewma(t-1) / w)
4928 *
4929 * Where 'w' is the weight of new samples, which is configured to be
4930 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4931 */
4932 ewma <<= UTIL_EST_WEIGHT_SHIFT;
4933 ewma -= last_ewma_diff;
4934 ewma >>= UTIL_EST_WEIGHT_SHIFT;
4935 done:
4936 ewma |= UTIL_AVG_UNCHANGED;
4937 WRITE_ONCE(p->se.avg.util_est, ewma);
4938
4939 trace_sched_util_est_se_tp(&p->se);
4940 }
4941
get_actual_cpu_capacity(int cpu)4942 static inline unsigned long get_actual_cpu_capacity(int cpu)
4943 {
4944 unsigned long capacity = arch_scale_cpu_capacity(cpu);
4945
4946 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
4947
4948 return capacity;
4949 }
4950
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)4951 static inline int util_fits_cpu(unsigned long util,
4952 unsigned long uclamp_min,
4953 unsigned long uclamp_max,
4954 int cpu)
4955 {
4956 unsigned long capacity = capacity_of(cpu);
4957 unsigned long capacity_orig;
4958 bool fits, uclamp_max_fits;
4959
4960 /*
4961 * Check if the real util fits without any uclamp boost/cap applied.
4962 */
4963 fits = fits_capacity(util, capacity);
4964
4965 if (!uclamp_is_used())
4966 return fits;
4967
4968 /*
4969 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
4970 * uclamp_max. We only care about capacity pressure (by using
4971 * capacity_of()) for comparing against the real util.
4972 *
4973 * If a task is boosted to 1024 for example, we don't want a tiny
4974 * pressure to skew the check whether it fits a CPU or not.
4975 *
4976 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
4977 * should fit a little cpu even if there's some pressure.
4978 *
4979 * Only exception is for HW or cpufreq pressure since it has a direct impact
4980 * on available OPP of the system.
4981 *
4982 * We honour it for uclamp_min only as a drop in performance level
4983 * could result in not getting the requested minimum performance level.
4984 *
4985 * For uclamp_max, we can tolerate a drop in performance level as the
4986 * goal is to cap the task. So it's okay if it's getting less.
4987 */
4988 capacity_orig = arch_scale_cpu_capacity(cpu);
4989
4990 /*
4991 * We want to force a task to fit a cpu as implied by uclamp_max.
4992 * But we do have some corner cases to cater for..
4993 *
4994 *
4995 * C=z
4996 * | ___
4997 * | C=y | |
4998 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4999 * | C=x | | | |
5000 * | ___ | | | |
5001 * | | | | | | | (util somewhere in this region)
5002 * | | | | | | |
5003 * | | | | | | |
5004 * +----------------------------------------
5005 * CPU0 CPU1 CPU2
5006 *
5007 * In the above example if a task is capped to a specific performance
5008 * point, y, then when:
5009 *
5010 * * util = 80% of x then it does not fit on CPU0 and should migrate
5011 * to CPU1
5012 * * util = 80% of y then it is forced to fit on CPU1 to honour
5013 * uclamp_max request.
5014 *
5015 * which is what we're enforcing here. A task always fits if
5016 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5017 * the normal upmigration rules should withhold still.
5018 *
5019 * Only exception is when we are on max capacity, then we need to be
5020 * careful not to block overutilized state. This is so because:
5021 *
5022 * 1. There's no concept of capping at max_capacity! We can't go
5023 * beyond this performance level anyway.
5024 * 2. The system is being saturated when we're operating near
5025 * max capacity, it doesn't make sense to block overutilized.
5026 */
5027 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5028 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5029 fits = fits || uclamp_max_fits;
5030
5031 /*
5032 *
5033 * C=z
5034 * | ___ (region a, capped, util >= uclamp_max)
5035 * | C=y | |
5036 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5037 * | C=x | | | |
5038 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
5039 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5040 * | | | | | | |
5041 * | | | | | | | (region c, boosted, util < uclamp_min)
5042 * +----------------------------------------
5043 * CPU0 CPU1 CPU2
5044 *
5045 * a) If util > uclamp_max, then we're capped, we don't care about
5046 * actual fitness value here. We only care if uclamp_max fits
5047 * capacity without taking margin/pressure into account.
5048 * See comment above.
5049 *
5050 * b) If uclamp_min <= util <= uclamp_max, then the normal
5051 * fits_capacity() rules apply. Except we need to ensure that we
5052 * enforce we remain within uclamp_max, see comment above.
5053 *
5054 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5055 * need to take into account the boosted value fits the CPU without
5056 * taking margin/pressure into account.
5057 *
5058 * Cases (a) and (b) are handled in the 'fits' variable already. We
5059 * just need to consider an extra check for case (c) after ensuring we
5060 * handle the case uclamp_min > uclamp_max.
5061 */
5062 uclamp_min = min(uclamp_min, uclamp_max);
5063 if (fits && (util < uclamp_min) &&
5064 (uclamp_min > get_actual_cpu_capacity(cpu)))
5065 return -1;
5066
5067 return fits;
5068 }
5069
task_fits_cpu(struct task_struct * p,int cpu)5070 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5071 {
5072 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5073 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5074 unsigned long util = task_util_est(p);
5075 /*
5076 * Return true only if the cpu fully fits the task requirements, which
5077 * include the utilization but also the performance hints.
5078 */
5079 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5080 }
5081
update_misfit_status(struct task_struct * p,struct rq * rq)5082 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5083 {
5084 int cpu = cpu_of(rq);
5085
5086 if (!sched_asym_cpucap_active())
5087 return;
5088
5089 /*
5090 * Affinity allows us to go somewhere higher? Or are we on biggest
5091 * available CPU already? Or do we fit into this CPU ?
5092 */
5093 if (!p || (p->nr_cpus_allowed == 1) ||
5094 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5095 task_fits_cpu(p, cpu)) {
5096
5097 rq->misfit_task_load = 0;
5098 return;
5099 }
5100
5101 /*
5102 * Make sure that misfit_task_load will not be null even if
5103 * task_h_load() returns 0.
5104 */
5105 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5106 }
5107
__setparam_fair(struct task_struct * p,const struct sched_attr * attr)5108 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr)
5109 {
5110 struct sched_entity *se = &p->se;
5111
5112 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5113 if (attr->sched_runtime) {
5114 se->custom_slice = 1;
5115 se->slice = clamp_t(u64, attr->sched_runtime,
5116 NSEC_PER_MSEC/10, /* HZ=1000 * 10 */
5117 NSEC_PER_MSEC*100); /* HZ=100 / 10 */
5118 } else {
5119 se->custom_slice = 0;
5120 se->slice = sysctl_sched_base_slice;
5121 }
5122 }
5123
5124 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5125 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5126 {
5127 u64 vslice, vruntime = avg_vruntime(cfs_rq);
5128 s64 lag = 0;
5129
5130 if (!se->custom_slice)
5131 se->slice = sysctl_sched_base_slice;
5132 vslice = calc_delta_fair(se->slice, se);
5133
5134 /*
5135 * Due to how V is constructed as the weighted average of entities,
5136 * adding tasks with positive lag, or removing tasks with negative lag
5137 * will move 'time' backwards, this can screw around with the lag of
5138 * other tasks.
5139 *
5140 * EEVDF: placement strategy #1 / #2
5141 */
5142 if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) {
5143 struct sched_entity *curr = cfs_rq->curr;
5144 unsigned long load;
5145
5146 lag = se->vlag;
5147
5148 /*
5149 * If we want to place a task and preserve lag, we have to
5150 * consider the effect of the new entity on the weighted
5151 * average and compensate for this, otherwise lag can quickly
5152 * evaporate.
5153 *
5154 * Lag is defined as:
5155 *
5156 * lag_i = S - s_i = w_i * (V - v_i)
5157 *
5158 * To avoid the 'w_i' term all over the place, we only track
5159 * the virtual lag:
5160 *
5161 * vl_i = V - v_i <=> v_i = V - vl_i
5162 *
5163 * And we take V to be the weighted average of all v:
5164 *
5165 * V = (\Sum w_j*v_j) / W
5166 *
5167 * Where W is: \Sum w_j
5168 *
5169 * Then, the weighted average after adding an entity with lag
5170 * vl_i is given by:
5171 *
5172 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5173 * = (W*V + w_i*(V - vl_i)) / (W + w_i)
5174 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5175 * = (V*(W + w_i) - w_i*vl_i) / (W + w_i)
5176 * = V - w_i*vl_i / (W + w_i)
5177 *
5178 * And the actual lag after adding an entity with vl_i is:
5179 *
5180 * vl'_i = V' - v_i
5181 * = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5182 * = vl_i - w_i*vl_i / (W + w_i)
5183 *
5184 * Which is strictly less than vl_i. So in order to preserve lag
5185 * we should inflate the lag before placement such that the
5186 * effective lag after placement comes out right.
5187 *
5188 * As such, invert the above relation for vl'_i to get the vl_i
5189 * we need to use such that the lag after placement is the lag
5190 * we computed before dequeue.
5191 *
5192 * vl'_i = vl_i - w_i*vl_i / (W + w_i)
5193 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5194 *
5195 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5196 * = W*vl_i
5197 *
5198 * vl_i = (W + w_i)*vl'_i / W
5199 */
5200 load = cfs_rq->avg_load;
5201 if (curr && curr->on_rq)
5202 load += scale_load_down(curr->load.weight);
5203
5204 lag *= load + scale_load_down(se->load.weight);
5205 if (WARN_ON_ONCE(!load))
5206 load = 1;
5207 lag = div_s64(lag, load);
5208 }
5209
5210 se->vruntime = vruntime - lag;
5211
5212 if (se->rel_deadline) {
5213 se->deadline += se->vruntime;
5214 se->rel_deadline = 0;
5215 return;
5216 }
5217
5218 /*
5219 * When joining the competition; the existing tasks will be,
5220 * on average, halfway through their slice, as such start tasks
5221 * off with half a slice to ease into the competition.
5222 */
5223 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5224 vslice /= 2;
5225
5226 /*
5227 * EEVDF: vd_i = ve_i + r_i/w_i
5228 */
5229 se->deadline = se->vruntime + vslice;
5230 }
5231
5232 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5233 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5234
5235 static void
5236 requeue_delayed_entity(struct sched_entity *se);
5237
5238 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5239 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5240 {
5241 bool curr = cfs_rq->curr == se;
5242
5243 /*
5244 * If we're the current task, we must renormalise before calling
5245 * update_curr().
5246 */
5247 if (curr)
5248 place_entity(cfs_rq, se, flags);
5249
5250 update_curr(cfs_rq);
5251
5252 /*
5253 * When enqueuing a sched_entity, we must:
5254 * - Update loads to have both entity and cfs_rq synced with now.
5255 * - For group_entity, update its runnable_weight to reflect the new
5256 * h_nr_runnable of its group cfs_rq.
5257 * - For group_entity, update its weight to reflect the new share of
5258 * its group cfs_rq
5259 * - Add its new weight to cfs_rq->load.weight
5260 */
5261 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5262 se_update_runnable(se);
5263 /*
5264 * XXX update_load_avg() above will have attached us to the pelt sum;
5265 * but update_cfs_group() here will re-adjust the weight and have to
5266 * undo/redo all that. Seems wasteful.
5267 */
5268 update_cfs_group(se);
5269
5270 /*
5271 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5272 * we can place the entity.
5273 */
5274 if (!curr)
5275 place_entity(cfs_rq, se, flags);
5276
5277 account_entity_enqueue(cfs_rq, se);
5278
5279 /* Entity has migrated, no longer consider this task hot */
5280 if (flags & ENQUEUE_MIGRATED)
5281 se->exec_start = 0;
5282
5283 check_schedstat_required();
5284 update_stats_enqueue_fair(cfs_rq, se, flags);
5285 if (!curr)
5286 __enqueue_entity(cfs_rq, se);
5287 se->on_rq = 1;
5288
5289 if (cfs_rq->nr_queued == 1) {
5290 check_enqueue_throttle(cfs_rq);
5291 list_add_leaf_cfs_rq(cfs_rq);
5292 #ifdef CONFIG_CFS_BANDWIDTH
5293 if (cfs_rq->pelt_clock_throttled) {
5294 struct rq *rq = rq_of(cfs_rq);
5295
5296 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5297 cfs_rq->throttled_clock_pelt;
5298 cfs_rq->pelt_clock_throttled = 0;
5299 }
5300 #endif
5301 }
5302 }
5303
__clear_buddies_next(struct sched_entity * se)5304 static void __clear_buddies_next(struct sched_entity *se)
5305 {
5306 for_each_sched_entity(se) {
5307 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5308 if (cfs_rq->next != se)
5309 break;
5310
5311 cfs_rq->next = NULL;
5312 }
5313 }
5314
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)5315 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5316 {
5317 if (cfs_rq->next == se)
5318 __clear_buddies_next(se);
5319 }
5320
5321 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5322
set_delayed(struct sched_entity * se)5323 static void set_delayed(struct sched_entity *se)
5324 {
5325 se->sched_delayed = 1;
5326
5327 /*
5328 * Delayed se of cfs_rq have no tasks queued on them.
5329 * Do not adjust h_nr_runnable since dequeue_entities()
5330 * will account it for blocked tasks.
5331 */
5332 if (!entity_is_task(se))
5333 return;
5334
5335 for_each_sched_entity(se) {
5336 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5337
5338 cfs_rq->h_nr_runnable--;
5339 }
5340 }
5341
clear_delayed(struct sched_entity * se)5342 static void clear_delayed(struct sched_entity *se)
5343 {
5344 se->sched_delayed = 0;
5345
5346 /*
5347 * Delayed se of cfs_rq have no tasks queued on them.
5348 * Do not adjust h_nr_runnable since a dequeue has
5349 * already accounted for it or an enqueue of a task
5350 * below it will account for it in enqueue_task_fair().
5351 */
5352 if (!entity_is_task(se))
5353 return;
5354
5355 for_each_sched_entity(se) {
5356 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5357
5358 cfs_rq->h_nr_runnable++;
5359 }
5360 }
5361
finish_delayed_dequeue_entity(struct sched_entity * se)5362 static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
5363 {
5364 clear_delayed(se);
5365 if (sched_feat(DELAY_ZERO) && se->vlag > 0)
5366 se->vlag = 0;
5367 }
5368
5369 static bool
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5370 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5371 {
5372 bool sleep = flags & DEQUEUE_SLEEP;
5373 int action = UPDATE_TG;
5374
5375 update_curr(cfs_rq);
5376 clear_buddies(cfs_rq, se);
5377
5378 if (flags & DEQUEUE_DELAYED) {
5379 WARN_ON_ONCE(!se->sched_delayed);
5380 } else {
5381 bool delay = sleep;
5382 /*
5383 * DELAY_DEQUEUE relies on spurious wakeups, special task
5384 * states must not suffer spurious wakeups, excempt them.
5385 */
5386 if (flags & (DEQUEUE_SPECIAL | DEQUEUE_THROTTLE))
5387 delay = false;
5388
5389 WARN_ON_ONCE(delay && se->sched_delayed);
5390
5391 if (sched_feat(DELAY_DEQUEUE) && delay &&
5392 !entity_eligible(cfs_rq, se)) {
5393 update_load_avg(cfs_rq, se, 0);
5394 set_delayed(se);
5395 return false;
5396 }
5397 }
5398
5399 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5400 action |= DO_DETACH;
5401
5402 /*
5403 * When dequeuing a sched_entity, we must:
5404 * - Update loads to have both entity and cfs_rq synced with now.
5405 * - For group_entity, update its runnable_weight to reflect the new
5406 * h_nr_runnable of its group cfs_rq.
5407 * - Subtract its previous weight from cfs_rq->load.weight.
5408 * - For group entity, update its weight to reflect the new share
5409 * of its group cfs_rq.
5410 */
5411 update_load_avg(cfs_rq, se, action);
5412 se_update_runnable(se);
5413
5414 update_stats_dequeue_fair(cfs_rq, se, flags);
5415
5416 update_entity_lag(cfs_rq, se);
5417 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
5418 se->deadline -= se->vruntime;
5419 se->rel_deadline = 1;
5420 }
5421
5422 if (se != cfs_rq->curr)
5423 __dequeue_entity(cfs_rq, se);
5424 se->on_rq = 0;
5425 account_entity_dequeue(cfs_rq, se);
5426
5427 /* return excess runtime on last dequeue */
5428 return_cfs_rq_runtime(cfs_rq);
5429
5430 update_cfs_group(se);
5431
5432 /*
5433 * Now advance min_vruntime if @se was the entity holding it back,
5434 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5435 * put back on, and if we advance min_vruntime, we'll be placed back
5436 * further than we started -- i.e. we'll be penalized.
5437 */
5438 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5439 update_min_vruntime(cfs_rq);
5440
5441 if (flags & DEQUEUE_DELAYED)
5442 finish_delayed_dequeue_entity(se);
5443
5444 if (cfs_rq->nr_queued == 0) {
5445 update_idle_cfs_rq_clock_pelt(cfs_rq);
5446 #ifdef CONFIG_CFS_BANDWIDTH
5447 if (throttled_hierarchy(cfs_rq)) {
5448 struct rq *rq = rq_of(cfs_rq);
5449
5450 list_del_leaf_cfs_rq(cfs_rq);
5451 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5452 cfs_rq->pelt_clock_throttled = 1;
5453 }
5454 #endif
5455 }
5456
5457 return true;
5458 }
5459
5460 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)5461 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5462 {
5463 clear_buddies(cfs_rq, se);
5464
5465 /* 'current' is not kept within the tree. */
5466 if (se->on_rq) {
5467 /*
5468 * Any task has to be enqueued before it get to execute on
5469 * a CPU. So account for the time it spent waiting on the
5470 * runqueue.
5471 */
5472 update_stats_wait_end_fair(cfs_rq, se);
5473 __dequeue_entity(cfs_rq, se);
5474 update_load_avg(cfs_rq, se, UPDATE_TG);
5475
5476 set_protect_slice(cfs_rq, se);
5477 }
5478
5479 update_stats_curr_start(cfs_rq, se);
5480 WARN_ON_ONCE(cfs_rq->curr);
5481 cfs_rq->curr = se;
5482
5483 /*
5484 * Track our maximum slice length, if the CPU's load is at
5485 * least twice that of our own weight (i.e. don't track it
5486 * when there are only lesser-weight tasks around):
5487 */
5488 if (schedstat_enabled() &&
5489 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5490 struct sched_statistics *stats;
5491
5492 stats = __schedstats_from_se(se);
5493 __schedstat_set(stats->slice_max,
5494 max((u64)stats->slice_max,
5495 se->sum_exec_runtime - se->prev_sum_exec_runtime));
5496 }
5497
5498 se->prev_sum_exec_runtime = se->sum_exec_runtime;
5499 }
5500
5501 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
5502
5503 /*
5504 * Pick the next process, keeping these things in mind, in this order:
5505 * 1) keep things fair between processes/task groups
5506 * 2) pick the "next" process, since someone really wants that to run
5507 * 3) pick the "last" process, for cache locality
5508 * 4) do not run the "skip" process, if something else is available
5509 */
5510 static struct sched_entity *
pick_next_entity(struct rq * rq,struct cfs_rq * cfs_rq)5511 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
5512 {
5513 struct sched_entity *se;
5514
5515 /*
5516 * Picking the ->next buddy will affect latency but not fairness.
5517 */
5518 if (sched_feat(PICK_BUDDY) &&
5519 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
5520 /* ->next will never be delayed */
5521 WARN_ON_ONCE(cfs_rq->next->sched_delayed);
5522 return cfs_rq->next;
5523 }
5524
5525 se = pick_eevdf(cfs_rq);
5526 if (se->sched_delayed) {
5527 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5528 /*
5529 * Must not reference @se again, see __block_task().
5530 */
5531 return NULL;
5532 }
5533 return se;
5534 }
5535
5536 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5537
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)5538 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5539 {
5540 /*
5541 * If still on the runqueue then deactivate_task()
5542 * was not called and update_curr() has to be done:
5543 */
5544 if (prev->on_rq)
5545 update_curr(cfs_rq);
5546
5547 /* throttle cfs_rqs exceeding runtime */
5548 check_cfs_rq_runtime(cfs_rq);
5549
5550 if (prev->on_rq) {
5551 update_stats_wait_start_fair(cfs_rq, prev);
5552 /* Put 'current' back into the tree. */
5553 __enqueue_entity(cfs_rq, prev);
5554 /* in !on_rq case, update occurred at dequeue */
5555 update_load_avg(cfs_rq, prev, 0);
5556 }
5557 WARN_ON_ONCE(cfs_rq->curr != prev);
5558 cfs_rq->curr = NULL;
5559 }
5560
5561 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)5562 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5563 {
5564 /*
5565 * Update run-time statistics of the 'current'.
5566 */
5567 update_curr(cfs_rq);
5568
5569 /*
5570 * Ensure that runnable average is periodically updated.
5571 */
5572 update_load_avg(cfs_rq, curr, UPDATE_TG);
5573 update_cfs_group(curr);
5574
5575 #ifdef CONFIG_SCHED_HRTICK
5576 /*
5577 * queued ticks are scheduled to match the slice, so don't bother
5578 * validating it and just reschedule.
5579 */
5580 if (queued) {
5581 resched_curr_lazy(rq_of(cfs_rq));
5582 return;
5583 }
5584 #endif
5585 }
5586
5587
5588 /**************************************************
5589 * CFS bandwidth control machinery
5590 */
5591
5592 #ifdef CONFIG_CFS_BANDWIDTH
5593
5594 #ifdef CONFIG_JUMP_LABEL
5595 static struct static_key __cfs_bandwidth_used;
5596
cfs_bandwidth_used(void)5597 static inline bool cfs_bandwidth_used(void)
5598 {
5599 return static_key_false(&__cfs_bandwidth_used);
5600 }
5601
cfs_bandwidth_usage_inc(void)5602 void cfs_bandwidth_usage_inc(void)
5603 {
5604 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5605 }
5606
cfs_bandwidth_usage_dec(void)5607 void cfs_bandwidth_usage_dec(void)
5608 {
5609 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5610 }
5611 #else /* !CONFIG_JUMP_LABEL: */
cfs_bandwidth_used(void)5612 static bool cfs_bandwidth_used(void)
5613 {
5614 return true;
5615 }
5616
cfs_bandwidth_usage_inc(void)5617 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)5618 void cfs_bandwidth_usage_dec(void) {}
5619 #endif /* !CONFIG_JUMP_LABEL */
5620
sched_cfs_bandwidth_slice(void)5621 static inline u64 sched_cfs_bandwidth_slice(void)
5622 {
5623 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5624 }
5625
5626 /*
5627 * Replenish runtime according to assigned quota. We use sched_clock_cpu
5628 * directly instead of rq->clock to avoid adding additional synchronization
5629 * around rq->lock.
5630 *
5631 * requires cfs_b->lock
5632 */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)5633 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5634 {
5635 s64 runtime;
5636
5637 if (unlikely(cfs_b->quota == RUNTIME_INF))
5638 return;
5639
5640 cfs_b->runtime += cfs_b->quota;
5641 runtime = cfs_b->runtime_snap - cfs_b->runtime;
5642 if (runtime > 0) {
5643 cfs_b->burst_time += runtime;
5644 cfs_b->nr_burst++;
5645 }
5646
5647 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5648 cfs_b->runtime_snap = cfs_b->runtime;
5649 }
5650
tg_cfs_bandwidth(struct task_group * tg)5651 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5652 {
5653 return &tg->cfs_bandwidth;
5654 }
5655
5656 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)5657 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5658 struct cfs_rq *cfs_rq, u64 target_runtime)
5659 {
5660 u64 min_amount, amount = 0;
5661
5662 lockdep_assert_held(&cfs_b->lock);
5663
5664 /* note: this is a positive sum as runtime_remaining <= 0 */
5665 min_amount = target_runtime - cfs_rq->runtime_remaining;
5666
5667 if (cfs_b->quota == RUNTIME_INF)
5668 amount = min_amount;
5669 else {
5670 start_cfs_bandwidth(cfs_b);
5671
5672 if (cfs_b->runtime > 0) {
5673 amount = min(cfs_b->runtime, min_amount);
5674 cfs_b->runtime -= amount;
5675 cfs_b->idle = 0;
5676 }
5677 }
5678
5679 cfs_rq->runtime_remaining += amount;
5680
5681 return cfs_rq->runtime_remaining > 0;
5682 }
5683
5684 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)5685 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5686 {
5687 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5688 int ret;
5689
5690 raw_spin_lock(&cfs_b->lock);
5691 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5692 raw_spin_unlock(&cfs_b->lock);
5693
5694 return ret;
5695 }
5696
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5697 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5698 {
5699 /* dock delta_exec before expiring quota (as it could span periods) */
5700 cfs_rq->runtime_remaining -= delta_exec;
5701
5702 if (likely(cfs_rq->runtime_remaining > 0))
5703 return;
5704
5705 if (cfs_rq->throttled)
5706 return;
5707 /*
5708 * if we're unable to extend our runtime we resched so that the active
5709 * hierarchy can be throttled
5710 */
5711 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5712 resched_curr(rq_of(cfs_rq));
5713 }
5714
5715 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5716 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5717 {
5718 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5719 return;
5720
5721 __account_cfs_rq_runtime(cfs_rq, delta_exec);
5722 }
5723
cfs_rq_throttled(struct cfs_rq * cfs_rq)5724 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5725 {
5726 return cfs_bandwidth_used() && cfs_rq->throttled;
5727 }
5728
cfs_rq_pelt_clock_throttled(struct cfs_rq * cfs_rq)5729 static inline bool cfs_rq_pelt_clock_throttled(struct cfs_rq *cfs_rq)
5730 {
5731 return cfs_bandwidth_used() && cfs_rq->pelt_clock_throttled;
5732 }
5733
5734 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)5735 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5736 {
5737 return cfs_bandwidth_used() && cfs_rq->throttle_count;
5738 }
5739
lb_throttled_hierarchy(struct task_struct * p,int dst_cpu)5740 static inline int lb_throttled_hierarchy(struct task_struct *p, int dst_cpu)
5741 {
5742 return throttled_hierarchy(task_group(p)->cfs_rq[dst_cpu]);
5743 }
5744
task_is_throttled(struct task_struct * p)5745 static inline bool task_is_throttled(struct task_struct *p)
5746 {
5747 return cfs_bandwidth_used() && p->throttled;
5748 }
5749
5750 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags);
throttle_cfs_rq_work(struct callback_head * work)5751 static void throttle_cfs_rq_work(struct callback_head *work)
5752 {
5753 struct task_struct *p = container_of(work, struct task_struct, sched_throttle_work);
5754 struct sched_entity *se;
5755 struct cfs_rq *cfs_rq;
5756 struct rq *rq;
5757
5758 WARN_ON_ONCE(p != current);
5759 p->sched_throttle_work.next = &p->sched_throttle_work;
5760
5761 /*
5762 * If task is exiting, then there won't be a return to userspace, so we
5763 * don't have to bother with any of this.
5764 */
5765 if ((p->flags & PF_EXITING))
5766 return;
5767
5768 scoped_guard(task_rq_lock, p) {
5769 se = &p->se;
5770 cfs_rq = cfs_rq_of(se);
5771
5772 /* Raced, forget */
5773 if (p->sched_class != &fair_sched_class)
5774 return;
5775
5776 /*
5777 * If not in limbo, then either replenish has happened or this
5778 * task got migrated out of the throttled cfs_rq, move along.
5779 */
5780 if (!cfs_rq->throttle_count)
5781 return;
5782 rq = scope.rq;
5783 update_rq_clock(rq);
5784 WARN_ON_ONCE(p->throttled || !list_empty(&p->throttle_node));
5785 dequeue_task_fair(rq, p, DEQUEUE_SLEEP | DEQUEUE_THROTTLE);
5786 list_add(&p->throttle_node, &cfs_rq->throttled_limbo_list);
5787 /*
5788 * Must not set throttled before dequeue or dequeue will
5789 * mistakenly regard this task as an already throttled one.
5790 */
5791 p->throttled = true;
5792 resched_curr(rq);
5793 }
5794 }
5795
init_cfs_throttle_work(struct task_struct * p)5796 void init_cfs_throttle_work(struct task_struct *p)
5797 {
5798 init_task_work(&p->sched_throttle_work, throttle_cfs_rq_work);
5799 /* Protect against double add, see throttle_cfs_rq() and throttle_cfs_rq_work() */
5800 p->sched_throttle_work.next = &p->sched_throttle_work;
5801 INIT_LIST_HEAD(&p->throttle_node);
5802 }
5803
5804 /*
5805 * Task is throttled and someone wants to dequeue it again:
5806 * it could be sched/core when core needs to do things like
5807 * task affinity change, task group change, task sched class
5808 * change etc. and in these cases, DEQUEUE_SLEEP is not set;
5809 * or the task is blocked after throttled due to freezer etc.
5810 * and in these cases, DEQUEUE_SLEEP is set.
5811 */
5812 static void detach_task_cfs_rq(struct task_struct *p);
dequeue_throttled_task(struct task_struct * p,int flags)5813 static void dequeue_throttled_task(struct task_struct *p, int flags)
5814 {
5815 WARN_ON_ONCE(p->se.on_rq);
5816 list_del_init(&p->throttle_node);
5817
5818 /* task blocked after throttled */
5819 if (flags & DEQUEUE_SLEEP) {
5820 p->throttled = false;
5821 return;
5822 }
5823
5824 /*
5825 * task is migrating off its old cfs_rq, detach
5826 * the task's load from its old cfs_rq.
5827 */
5828 if (task_on_rq_migrating(p))
5829 detach_task_cfs_rq(p);
5830 }
5831
enqueue_throttled_task(struct task_struct * p)5832 static bool enqueue_throttled_task(struct task_struct *p)
5833 {
5834 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5835
5836 /* @p should have gone through dequeue_throttled_task() first */
5837 WARN_ON_ONCE(!list_empty(&p->throttle_node));
5838
5839 /*
5840 * If the throttled task @p is enqueued to a throttled cfs_rq,
5841 * take the fast path by directly putting the task on the
5842 * target cfs_rq's limbo list.
5843 *
5844 * Do not do that when @p is current because the following race can
5845 * cause @p's group_node to be incorectly re-insterted in its rq's
5846 * cfs_tasks list, despite being throttled:
5847 *
5848 * cpuX cpuY
5849 * p ret2user
5850 * throttle_cfs_rq_work() sched_move_task(p)
5851 * LOCK task_rq_lock
5852 * dequeue_task_fair(p)
5853 * UNLOCK task_rq_lock
5854 * LOCK task_rq_lock
5855 * task_current_donor(p) == true
5856 * task_on_rq_queued(p) == true
5857 * dequeue_task(p)
5858 * put_prev_task(p)
5859 * sched_change_group()
5860 * enqueue_task(p) -> p's new cfs_rq
5861 * is throttled, go
5862 * fast path and skip
5863 * actual enqueue
5864 * set_next_task(p)
5865 * list_move(&se->group_node, &rq->cfs_tasks); // bug
5866 * schedule()
5867 *
5868 * In the above race case, @p current cfs_rq is in the same rq as
5869 * its previous cfs_rq because sched_move_task() only moves a task
5870 * to a different group from the same rq, so we can use its current
5871 * cfs_rq to derive rq and test if the task is current.
5872 */
5873 if (throttled_hierarchy(cfs_rq) &&
5874 !task_current_donor(rq_of(cfs_rq), p)) {
5875 list_add(&p->throttle_node, &cfs_rq->throttled_limbo_list);
5876 return true;
5877 }
5878
5879 /* we can't take the fast path, do an actual enqueue*/
5880 p->throttled = false;
5881 return false;
5882 }
5883
5884 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags);
tg_unthrottle_up(struct task_group * tg,void * data)5885 static int tg_unthrottle_up(struct task_group *tg, void *data)
5886 {
5887 struct rq *rq = data;
5888 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5889 struct task_struct *p, *tmp;
5890
5891 if (--cfs_rq->throttle_count)
5892 return 0;
5893
5894 if (cfs_rq->pelt_clock_throttled) {
5895 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5896 cfs_rq->throttled_clock_pelt;
5897 cfs_rq->pelt_clock_throttled = 0;
5898 }
5899
5900 if (cfs_rq->throttled_clock_self) {
5901 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5902
5903 cfs_rq->throttled_clock_self = 0;
5904
5905 if (WARN_ON_ONCE((s64)delta < 0))
5906 delta = 0;
5907
5908 cfs_rq->throttled_clock_self_time += delta;
5909 }
5910
5911 /* Re-enqueue the tasks that have been throttled at this level. */
5912 list_for_each_entry_safe(p, tmp, &cfs_rq->throttled_limbo_list, throttle_node) {
5913 list_del_init(&p->throttle_node);
5914 p->throttled = false;
5915 enqueue_task_fair(rq_of(cfs_rq), p, ENQUEUE_WAKEUP);
5916 }
5917
5918 /* Add cfs_rq with load or one or more already running entities to the list */
5919 if (!cfs_rq_is_decayed(cfs_rq))
5920 list_add_leaf_cfs_rq(cfs_rq);
5921
5922 return 0;
5923 }
5924
task_has_throttle_work(struct task_struct * p)5925 static inline bool task_has_throttle_work(struct task_struct *p)
5926 {
5927 return p->sched_throttle_work.next != &p->sched_throttle_work;
5928 }
5929
task_throttle_setup_work(struct task_struct * p)5930 static inline void task_throttle_setup_work(struct task_struct *p)
5931 {
5932 if (task_has_throttle_work(p))
5933 return;
5934
5935 /*
5936 * Kthreads and exiting tasks don't return to userspace, so adding the
5937 * work is pointless
5938 */
5939 if ((p->flags & (PF_EXITING | PF_KTHREAD)))
5940 return;
5941
5942 task_work_add(p, &p->sched_throttle_work, TWA_RESUME);
5943 }
5944
record_throttle_clock(struct cfs_rq * cfs_rq)5945 static void record_throttle_clock(struct cfs_rq *cfs_rq)
5946 {
5947 struct rq *rq = rq_of(cfs_rq);
5948
5949 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5950 cfs_rq->throttled_clock = rq_clock(rq);
5951
5952 if (!cfs_rq->throttled_clock_self)
5953 cfs_rq->throttled_clock_self = rq_clock(rq);
5954 }
5955
tg_throttle_down(struct task_group * tg,void * data)5956 static int tg_throttle_down(struct task_group *tg, void *data)
5957 {
5958 struct rq *rq = data;
5959 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5960
5961 if (cfs_rq->throttle_count++)
5962 return 0;
5963
5964 /*
5965 * For cfs_rqs that still have entities enqueued, PELT clock
5966 * stop happens at dequeue time when all entities are dequeued.
5967 */
5968 if (!cfs_rq->nr_queued) {
5969 list_del_leaf_cfs_rq(cfs_rq);
5970 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5971 cfs_rq->pelt_clock_throttled = 1;
5972 }
5973
5974 WARN_ON_ONCE(cfs_rq->throttled_clock_self);
5975 WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_limbo_list));
5976 return 0;
5977 }
5978
throttle_cfs_rq(struct cfs_rq * cfs_rq)5979 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5980 {
5981 struct rq *rq = rq_of(cfs_rq);
5982 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5983 int dequeue = 1;
5984
5985 raw_spin_lock(&cfs_b->lock);
5986 /* This will start the period timer if necessary */
5987 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5988 /*
5989 * We have raced with bandwidth becoming available, and if we
5990 * actually throttled the timer might not unthrottle us for an
5991 * entire period. We additionally needed to make sure that any
5992 * subsequent check_cfs_rq_runtime calls agree not to throttle
5993 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5994 * for 1ns of runtime rather than just check cfs_b.
5995 */
5996 dequeue = 0;
5997 } else {
5998 list_add_tail_rcu(&cfs_rq->throttled_list,
5999 &cfs_b->throttled_cfs_rq);
6000 }
6001 raw_spin_unlock(&cfs_b->lock);
6002
6003 if (!dequeue)
6004 return false; /* Throttle no longer required. */
6005
6006 /* freeze hierarchy runnable averages while throttled */
6007 rcu_read_lock();
6008 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
6009 rcu_read_unlock();
6010
6011 /*
6012 * Note: distribution will already see us throttled via the
6013 * throttled-list. rq->lock protects completion.
6014 */
6015 cfs_rq->throttled = 1;
6016 WARN_ON_ONCE(cfs_rq->throttled_clock);
6017 return true;
6018 }
6019
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)6020 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
6021 {
6022 struct rq *rq = rq_of(cfs_rq);
6023 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6024 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6025
6026 /*
6027 * It's possible we are called with runtime_remaining < 0 due to things
6028 * like async unthrottled us with a positive runtime_remaining but other
6029 * still running entities consumed those runtime before we reached here.
6030 *
6031 * We can't unthrottle this cfs_rq without any runtime remaining because
6032 * any enqueue in tg_unthrottle_up() will immediately trigger a throttle,
6033 * which is not supposed to happen on unthrottle path.
6034 */
6035 if (cfs_rq->runtime_enabled && cfs_rq->runtime_remaining <= 0)
6036 return;
6037
6038 cfs_rq->throttled = 0;
6039
6040 update_rq_clock(rq);
6041
6042 raw_spin_lock(&cfs_b->lock);
6043 if (cfs_rq->throttled_clock) {
6044 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
6045 cfs_rq->throttled_clock = 0;
6046 }
6047 list_del_rcu(&cfs_rq->throttled_list);
6048 raw_spin_unlock(&cfs_b->lock);
6049
6050 /* update hierarchical throttle state */
6051 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
6052
6053 if (!cfs_rq->load.weight) {
6054 if (!cfs_rq->on_list)
6055 return;
6056 /*
6057 * Nothing to run but something to decay (on_list)?
6058 * Complete the branch.
6059 */
6060 for_each_sched_entity(se) {
6061 if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
6062 break;
6063 }
6064 }
6065
6066 assert_list_leaf_cfs_rq(rq);
6067
6068 /* Determine whether we need to wake up potentially idle CPU: */
6069 if (rq->curr == rq->idle && rq->cfs.nr_queued)
6070 resched_curr(rq);
6071 }
6072
__cfsb_csd_unthrottle(void * arg)6073 static void __cfsb_csd_unthrottle(void *arg)
6074 {
6075 struct cfs_rq *cursor, *tmp;
6076 struct rq *rq = arg;
6077 struct rq_flags rf;
6078
6079 rq_lock(rq, &rf);
6080
6081 /*
6082 * Iterating over the list can trigger several call to
6083 * update_rq_clock() in unthrottle_cfs_rq().
6084 * Do it once and skip the potential next ones.
6085 */
6086 update_rq_clock(rq);
6087 rq_clock_start_loop_update(rq);
6088
6089 /*
6090 * Since we hold rq lock we're safe from concurrent manipulation of
6091 * the CSD list. However, this RCU critical section annotates the
6092 * fact that we pair with sched_free_group_rcu(), so that we cannot
6093 * race with group being freed in the window between removing it
6094 * from the list and advancing to the next entry in the list.
6095 */
6096 rcu_read_lock();
6097
6098 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6099 throttled_csd_list) {
6100 list_del_init(&cursor->throttled_csd_list);
6101
6102 if (cfs_rq_throttled(cursor))
6103 unthrottle_cfs_rq(cursor);
6104 }
6105
6106 rcu_read_unlock();
6107
6108 rq_clock_stop_loop_update(rq);
6109 rq_unlock(rq, &rf);
6110 }
6111
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6112 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6113 {
6114 struct rq *rq = rq_of(cfs_rq);
6115 bool first;
6116
6117 if (rq == this_rq()) {
6118 unthrottle_cfs_rq(cfs_rq);
6119 return;
6120 }
6121
6122 /* Already enqueued */
6123 if (WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_csd_list)))
6124 return;
6125
6126 first = list_empty(&rq->cfsb_csd_list);
6127 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6128 if (first)
6129 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6130 }
6131
unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6132 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6133 {
6134 lockdep_assert_rq_held(rq_of(cfs_rq));
6135
6136 if (WARN_ON_ONCE(!cfs_rq_throttled(cfs_rq) ||
6137 cfs_rq->runtime_remaining <= 0))
6138 return;
6139
6140 __unthrottle_cfs_rq_async(cfs_rq);
6141 }
6142
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)6143 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6144 {
6145 int this_cpu = smp_processor_id();
6146 u64 runtime, remaining = 1;
6147 bool throttled = false;
6148 struct cfs_rq *cfs_rq, *tmp;
6149 struct rq_flags rf;
6150 struct rq *rq;
6151 LIST_HEAD(local_unthrottle);
6152
6153 rcu_read_lock();
6154 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6155 throttled_list) {
6156 rq = rq_of(cfs_rq);
6157
6158 if (!remaining) {
6159 throttled = true;
6160 break;
6161 }
6162
6163 rq_lock_irqsave(rq, &rf);
6164 if (!cfs_rq_throttled(cfs_rq))
6165 goto next;
6166
6167 /* Already queued for async unthrottle */
6168 if (!list_empty(&cfs_rq->throttled_csd_list))
6169 goto next;
6170
6171 /* By the above checks, this should never be true */
6172 WARN_ON_ONCE(cfs_rq->runtime_remaining > 0);
6173
6174 raw_spin_lock(&cfs_b->lock);
6175 runtime = -cfs_rq->runtime_remaining + 1;
6176 if (runtime > cfs_b->runtime)
6177 runtime = cfs_b->runtime;
6178 cfs_b->runtime -= runtime;
6179 remaining = cfs_b->runtime;
6180 raw_spin_unlock(&cfs_b->lock);
6181
6182 cfs_rq->runtime_remaining += runtime;
6183
6184 /* we check whether we're throttled above */
6185 if (cfs_rq->runtime_remaining > 0) {
6186 if (cpu_of(rq) != this_cpu) {
6187 unthrottle_cfs_rq_async(cfs_rq);
6188 } else {
6189 /*
6190 * We currently only expect to be unthrottling
6191 * a single cfs_rq locally.
6192 */
6193 WARN_ON_ONCE(!list_empty(&local_unthrottle));
6194 list_add_tail(&cfs_rq->throttled_csd_list,
6195 &local_unthrottle);
6196 }
6197 } else {
6198 throttled = true;
6199 }
6200
6201 next:
6202 rq_unlock_irqrestore(rq, &rf);
6203 }
6204
6205 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6206 throttled_csd_list) {
6207 struct rq *rq = rq_of(cfs_rq);
6208
6209 rq_lock_irqsave(rq, &rf);
6210
6211 list_del_init(&cfs_rq->throttled_csd_list);
6212
6213 if (cfs_rq_throttled(cfs_rq))
6214 unthrottle_cfs_rq(cfs_rq);
6215
6216 rq_unlock_irqrestore(rq, &rf);
6217 }
6218 WARN_ON_ONCE(!list_empty(&local_unthrottle));
6219
6220 rcu_read_unlock();
6221
6222 return throttled;
6223 }
6224
6225 /*
6226 * Responsible for refilling a task_group's bandwidth and unthrottling its
6227 * cfs_rqs as appropriate. If there has been no activity within the last
6228 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6229 * used to track this state.
6230 */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)6231 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6232 {
6233 int throttled;
6234
6235 /* no need to continue the timer with no bandwidth constraint */
6236 if (cfs_b->quota == RUNTIME_INF)
6237 goto out_deactivate;
6238
6239 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6240 cfs_b->nr_periods += overrun;
6241
6242 /* Refill extra burst quota even if cfs_b->idle */
6243 __refill_cfs_bandwidth_runtime(cfs_b);
6244
6245 /*
6246 * idle depends on !throttled (for the case of a large deficit), and if
6247 * we're going inactive then everything else can be deferred
6248 */
6249 if (cfs_b->idle && !throttled)
6250 goto out_deactivate;
6251
6252 if (!throttled) {
6253 /* mark as potentially idle for the upcoming period */
6254 cfs_b->idle = 1;
6255 return 0;
6256 }
6257
6258 /* account preceding periods in which throttling occurred */
6259 cfs_b->nr_throttled += overrun;
6260
6261 /*
6262 * This check is repeated as we release cfs_b->lock while we unthrottle.
6263 */
6264 while (throttled && cfs_b->runtime > 0) {
6265 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6266 /* we can't nest cfs_b->lock while distributing bandwidth */
6267 throttled = distribute_cfs_runtime(cfs_b);
6268 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6269 }
6270
6271 /*
6272 * While we are ensured activity in the period following an
6273 * unthrottle, this also covers the case in which the new bandwidth is
6274 * insufficient to cover the existing bandwidth deficit. (Forcing the
6275 * timer to remain active while there are any throttled entities.)
6276 */
6277 cfs_b->idle = 0;
6278
6279 return 0;
6280
6281 out_deactivate:
6282 return 1;
6283 }
6284
6285 /* a cfs_rq won't donate quota below this amount */
6286 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6287 /* minimum remaining period time to redistribute slack quota */
6288 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6289 /* how long we wait to gather additional slack before distributing */
6290 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6291
6292 /*
6293 * Are we near the end of the current quota period?
6294 *
6295 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6296 * hrtimer base being cleared by hrtimer_start. In the case of
6297 * migrate_hrtimers, base is never cleared, so we are fine.
6298 */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)6299 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6300 {
6301 struct hrtimer *refresh_timer = &cfs_b->period_timer;
6302 s64 remaining;
6303
6304 /* if the call-back is running a quota refresh is already occurring */
6305 if (hrtimer_callback_running(refresh_timer))
6306 return 1;
6307
6308 /* is a quota refresh about to occur? */
6309 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6310 if (remaining < (s64)min_expire)
6311 return 1;
6312
6313 return 0;
6314 }
6315
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)6316 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6317 {
6318 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6319
6320 /* if there's a quota refresh soon don't bother with slack */
6321 if (runtime_refresh_within(cfs_b, min_left))
6322 return;
6323
6324 /* don't push forwards an existing deferred unthrottle */
6325 if (cfs_b->slack_started)
6326 return;
6327 cfs_b->slack_started = true;
6328
6329 hrtimer_start(&cfs_b->slack_timer,
6330 ns_to_ktime(cfs_bandwidth_slack_period),
6331 HRTIMER_MODE_REL);
6332 }
6333
6334 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6335 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6336 {
6337 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6338 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6339
6340 if (slack_runtime <= 0)
6341 return;
6342
6343 raw_spin_lock(&cfs_b->lock);
6344 if (cfs_b->quota != RUNTIME_INF) {
6345 cfs_b->runtime += slack_runtime;
6346
6347 /* we are under rq->lock, defer unthrottling using a timer */
6348 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6349 !list_empty(&cfs_b->throttled_cfs_rq))
6350 start_cfs_slack_bandwidth(cfs_b);
6351 }
6352 raw_spin_unlock(&cfs_b->lock);
6353
6354 /* even if it's not valid for return we don't want to try again */
6355 cfs_rq->runtime_remaining -= slack_runtime;
6356 }
6357
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6358 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6359 {
6360 if (!cfs_bandwidth_used())
6361 return;
6362
6363 if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued)
6364 return;
6365
6366 __return_cfs_rq_runtime(cfs_rq);
6367 }
6368
6369 /*
6370 * This is done with a timer (instead of inline with bandwidth return) since
6371 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6372 */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)6373 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6374 {
6375 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6376 unsigned long flags;
6377
6378 /* confirm we're still not at a refresh boundary */
6379 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6380 cfs_b->slack_started = false;
6381
6382 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6383 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6384 return;
6385 }
6386
6387 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6388 runtime = cfs_b->runtime;
6389
6390 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6391
6392 if (!runtime)
6393 return;
6394
6395 distribute_cfs_runtime(cfs_b);
6396 }
6397
6398 /*
6399 * When a group wakes up we want to make sure that its quota is not already
6400 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6401 * runtime as update_curr() throttling can not trigger until it's on-rq.
6402 */
check_enqueue_throttle(struct cfs_rq * cfs_rq)6403 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6404 {
6405 if (!cfs_bandwidth_used())
6406 return;
6407
6408 /* an active group must be handled by the update_curr()->put() path */
6409 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6410 return;
6411
6412 /* ensure the group is not already throttled */
6413 if (cfs_rq_throttled(cfs_rq))
6414 return;
6415
6416 /* update runtime allocation */
6417 account_cfs_rq_runtime(cfs_rq, 0);
6418 if (cfs_rq->runtime_remaining <= 0)
6419 throttle_cfs_rq(cfs_rq);
6420 }
6421
sync_throttle(struct task_group * tg,int cpu)6422 static void sync_throttle(struct task_group *tg, int cpu)
6423 {
6424 struct cfs_rq *pcfs_rq, *cfs_rq;
6425
6426 if (!cfs_bandwidth_used())
6427 return;
6428
6429 if (!tg->parent)
6430 return;
6431
6432 cfs_rq = tg->cfs_rq[cpu];
6433 pcfs_rq = tg->parent->cfs_rq[cpu];
6434
6435 cfs_rq->throttle_count = pcfs_rq->throttle_count;
6436 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6437
6438 /*
6439 * It is not enough to sync the "pelt_clock_throttled" indicator
6440 * with the parent cfs_rq when the hierarchy is not queued.
6441 * Always join a throttled hierarchy with PELT clock throttled
6442 * and leaf it to the first enqueue, or distribution to
6443 * unthrottle the PELT clock.
6444 */
6445 if (cfs_rq->throttle_count)
6446 cfs_rq->pelt_clock_throttled = 1;
6447 }
6448
6449 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6450 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6451 {
6452 if (!cfs_bandwidth_used())
6453 return false;
6454
6455 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6456 return false;
6457
6458 /*
6459 * it's possible for a throttled entity to be forced into a running
6460 * state (e.g. set_curr_task), in this case we're finished.
6461 */
6462 if (cfs_rq_throttled(cfs_rq))
6463 return true;
6464
6465 return throttle_cfs_rq(cfs_rq);
6466 }
6467
sched_cfs_slack_timer(struct hrtimer * timer)6468 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6469 {
6470 struct cfs_bandwidth *cfs_b =
6471 container_of(timer, struct cfs_bandwidth, slack_timer);
6472
6473 do_sched_cfs_slack_timer(cfs_b);
6474
6475 return HRTIMER_NORESTART;
6476 }
6477
sched_cfs_period_timer(struct hrtimer * timer)6478 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6479 {
6480 struct cfs_bandwidth *cfs_b =
6481 container_of(timer, struct cfs_bandwidth, period_timer);
6482 unsigned long flags;
6483 int overrun;
6484 int idle = 0;
6485 int count = 0;
6486
6487 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6488 for (;;) {
6489 overrun = hrtimer_forward_now(timer, cfs_b->period);
6490 if (!overrun)
6491 break;
6492
6493 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6494
6495 if (++count > 3) {
6496 u64 new, old = ktime_to_ns(cfs_b->period);
6497
6498 /*
6499 * Grow period by a factor of 2 to avoid losing precision.
6500 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6501 * to fail.
6502 */
6503 new = old * 2;
6504 if (new < max_bw_quota_period_us * NSEC_PER_USEC) {
6505 cfs_b->period = ns_to_ktime(new);
6506 cfs_b->quota *= 2;
6507 cfs_b->burst *= 2;
6508
6509 pr_warn_ratelimited(
6510 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6511 smp_processor_id(),
6512 div_u64(new, NSEC_PER_USEC),
6513 div_u64(cfs_b->quota, NSEC_PER_USEC));
6514 } else {
6515 pr_warn_ratelimited(
6516 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6517 smp_processor_id(),
6518 div_u64(old, NSEC_PER_USEC),
6519 div_u64(cfs_b->quota, NSEC_PER_USEC));
6520 }
6521
6522 /* reset count so we don't come right back in here */
6523 count = 0;
6524 }
6525 }
6526 if (idle)
6527 cfs_b->period_active = 0;
6528 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6529
6530 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6531 }
6532
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6533 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6534 {
6535 raw_spin_lock_init(&cfs_b->lock);
6536 cfs_b->runtime = 0;
6537 cfs_b->quota = RUNTIME_INF;
6538 cfs_b->period = us_to_ktime(default_bw_period_us());
6539 cfs_b->burst = 0;
6540 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6541
6542 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6543 hrtimer_setup(&cfs_b->period_timer, sched_cfs_period_timer, CLOCK_MONOTONIC,
6544 HRTIMER_MODE_ABS_PINNED);
6545
6546 /* Add a random offset so that timers interleave */
6547 hrtimer_set_expires(&cfs_b->period_timer,
6548 get_random_u32_below(cfs_b->period));
6549 hrtimer_setup(&cfs_b->slack_timer, sched_cfs_slack_timer, CLOCK_MONOTONIC,
6550 HRTIMER_MODE_REL);
6551 cfs_b->slack_started = false;
6552 }
6553
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6554 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6555 {
6556 cfs_rq->runtime_enabled = 0;
6557 INIT_LIST_HEAD(&cfs_rq->throttled_list);
6558 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6559 INIT_LIST_HEAD(&cfs_rq->throttled_limbo_list);
6560 }
6561
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6562 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6563 {
6564 lockdep_assert_held(&cfs_b->lock);
6565
6566 if (cfs_b->period_active)
6567 return;
6568
6569 cfs_b->period_active = 1;
6570 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6571 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6572 }
6573
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6574 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6575 {
6576 int __maybe_unused i;
6577
6578 /* init_cfs_bandwidth() was not called */
6579 if (!cfs_b->throttled_cfs_rq.next)
6580 return;
6581
6582 hrtimer_cancel(&cfs_b->period_timer);
6583 hrtimer_cancel(&cfs_b->slack_timer);
6584
6585 /*
6586 * It is possible that we still have some cfs_rq's pending on a CSD
6587 * list, though this race is very rare. In order for this to occur, we
6588 * must have raced with the last task leaving the group while there
6589 * exist throttled cfs_rq(s), and the period_timer must have queued the
6590 * CSD item but the remote cpu has not yet processed it. To handle this,
6591 * we can simply flush all pending CSD work inline here. We're
6592 * guaranteed at this point that no additional cfs_rq of this group can
6593 * join a CSD list.
6594 */
6595 for_each_possible_cpu(i) {
6596 struct rq *rq = cpu_rq(i);
6597 unsigned long flags;
6598
6599 if (list_empty(&rq->cfsb_csd_list))
6600 continue;
6601
6602 local_irq_save(flags);
6603 __cfsb_csd_unthrottle(rq);
6604 local_irq_restore(flags);
6605 }
6606 }
6607
6608 /*
6609 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6610 *
6611 * The race is harmless, since modifying bandwidth settings of unhooked group
6612 * bits doesn't do much.
6613 */
6614
6615 /* cpu online callback */
update_runtime_enabled(struct rq * rq)6616 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6617 {
6618 struct task_group *tg;
6619
6620 lockdep_assert_rq_held(rq);
6621
6622 rcu_read_lock();
6623 list_for_each_entry_rcu(tg, &task_groups, list) {
6624 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6625 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6626
6627 raw_spin_lock(&cfs_b->lock);
6628 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6629 raw_spin_unlock(&cfs_b->lock);
6630 }
6631 rcu_read_unlock();
6632 }
6633
6634 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)6635 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6636 {
6637 struct task_group *tg;
6638
6639 lockdep_assert_rq_held(rq);
6640
6641 // Do not unthrottle for an active CPU
6642 if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask))
6643 return;
6644
6645 /*
6646 * The rq clock has already been updated in the
6647 * set_rq_offline(), so we should skip updating
6648 * the rq clock again in unthrottle_cfs_rq().
6649 */
6650 rq_clock_start_loop_update(rq);
6651
6652 rcu_read_lock();
6653 list_for_each_entry_rcu(tg, &task_groups, list) {
6654 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6655
6656 if (!cfs_rq->runtime_enabled)
6657 continue;
6658
6659 /*
6660 * Offline rq is schedulable till CPU is completely disabled
6661 * in take_cpu_down(), so we prevent new cfs throttling here.
6662 */
6663 cfs_rq->runtime_enabled = 0;
6664
6665 if (!cfs_rq_throttled(cfs_rq))
6666 continue;
6667
6668 /*
6669 * clock_task is not advancing so we just need to make sure
6670 * there's some valid quota amount
6671 */
6672 cfs_rq->runtime_remaining = 1;
6673 unthrottle_cfs_rq(cfs_rq);
6674 }
6675 rcu_read_unlock();
6676
6677 rq_clock_stop_loop_update(rq);
6678 }
6679
cfs_task_bw_constrained(struct task_struct * p)6680 bool cfs_task_bw_constrained(struct task_struct *p)
6681 {
6682 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6683
6684 if (!cfs_bandwidth_used())
6685 return false;
6686
6687 if (cfs_rq->runtime_enabled ||
6688 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6689 return true;
6690
6691 return false;
6692 }
6693
6694 #ifdef CONFIG_NO_HZ_FULL
6695 /* called from pick_next_task_fair() */
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6696 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6697 {
6698 int cpu = cpu_of(rq);
6699
6700 if (!cfs_bandwidth_used())
6701 return;
6702
6703 if (!tick_nohz_full_cpu(cpu))
6704 return;
6705
6706 if (rq->nr_running != 1)
6707 return;
6708
6709 /*
6710 * We know there is only one task runnable and we've just picked it. The
6711 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6712 * be otherwise able to stop the tick. Just need to check if we are using
6713 * bandwidth control.
6714 */
6715 if (cfs_task_bw_constrained(p))
6716 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6717 }
6718 #endif /* CONFIG_NO_HZ_FULL */
6719
6720 #else /* !CONFIG_CFS_BANDWIDTH: */
6721
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)6722 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6723 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)6724 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)6725 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6726 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
task_throttle_setup_work(struct task_struct * p)6727 static void task_throttle_setup_work(struct task_struct *p) {}
task_is_throttled(struct task_struct * p)6728 static bool task_is_throttled(struct task_struct *p) { return false; }
dequeue_throttled_task(struct task_struct * p,int flags)6729 static void dequeue_throttled_task(struct task_struct *p, int flags) {}
enqueue_throttled_task(struct task_struct * p)6730 static bool enqueue_throttled_task(struct task_struct *p) { return false; }
record_throttle_clock(struct cfs_rq * cfs_rq)6731 static void record_throttle_clock(struct cfs_rq *cfs_rq) {}
6732
cfs_rq_throttled(struct cfs_rq * cfs_rq)6733 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6734 {
6735 return 0;
6736 }
6737
cfs_rq_pelt_clock_throttled(struct cfs_rq * cfs_rq)6738 static inline bool cfs_rq_pelt_clock_throttled(struct cfs_rq *cfs_rq)
6739 {
6740 return false;
6741 }
6742
throttled_hierarchy(struct cfs_rq * cfs_rq)6743 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6744 {
6745 return 0;
6746 }
6747
lb_throttled_hierarchy(struct task_struct * p,int dst_cpu)6748 static inline int lb_throttled_hierarchy(struct task_struct *p, int dst_cpu)
6749 {
6750 return 0;
6751 }
6752
6753 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6754 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6755 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6756 #endif
6757
tg_cfs_bandwidth(struct task_group * tg)6758 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6759 {
6760 return NULL;
6761 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6762 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)6763 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)6764 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6765 #ifdef CONFIG_CGROUP_SCHED
cfs_task_bw_constrained(struct task_struct * p)6766 bool cfs_task_bw_constrained(struct task_struct *p)
6767 {
6768 return false;
6769 }
6770 #endif
6771 #endif /* !CONFIG_CFS_BANDWIDTH */
6772
6773 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6774 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6775 #endif
6776
6777 /**************************************************
6778 * CFS operations on tasks:
6779 */
6780
6781 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)6782 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6783 {
6784 struct sched_entity *se = &p->se;
6785
6786 WARN_ON_ONCE(task_rq(p) != rq);
6787
6788 if (rq->cfs.h_nr_queued > 1) {
6789 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6790 u64 slice = se->slice;
6791 s64 delta = slice - ran;
6792
6793 if (delta < 0) {
6794 if (task_current_donor(rq, p))
6795 resched_curr(rq);
6796 return;
6797 }
6798 hrtick_start(rq, delta);
6799 }
6800 }
6801
6802 /*
6803 * called from enqueue/dequeue and updates the hrtick when the
6804 * current task is from our class and nr_running is low enough
6805 * to matter.
6806 */
hrtick_update(struct rq * rq)6807 static void hrtick_update(struct rq *rq)
6808 {
6809 struct task_struct *donor = rq->donor;
6810
6811 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class)
6812 return;
6813
6814 hrtick_start_fair(rq, donor);
6815 }
6816 #else /* !CONFIG_SCHED_HRTICK: */
6817 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)6818 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6819 {
6820 }
6821
hrtick_update(struct rq * rq)6822 static inline void hrtick_update(struct rq *rq)
6823 {
6824 }
6825 #endif /* !CONFIG_SCHED_HRTICK */
6826
cpu_overutilized(int cpu)6827 static inline bool cpu_overutilized(int cpu)
6828 {
6829 unsigned long rq_util_min, rq_util_max;
6830
6831 if (!sched_energy_enabled())
6832 return false;
6833
6834 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6835 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6836
6837 /* Return true only if the utilization doesn't fit CPU's capacity */
6838 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6839 }
6840
6841 /*
6842 * overutilized value make sense only if EAS is enabled
6843 */
is_rd_overutilized(struct root_domain * rd)6844 static inline bool is_rd_overutilized(struct root_domain *rd)
6845 {
6846 return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6847 }
6848
set_rd_overutilized(struct root_domain * rd,bool flag)6849 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6850 {
6851 if (!sched_energy_enabled())
6852 return;
6853
6854 WRITE_ONCE(rd->overutilized, flag);
6855 trace_sched_overutilized_tp(rd, flag);
6856 }
6857
check_update_overutilized_status(struct rq * rq)6858 static inline void check_update_overutilized_status(struct rq *rq)
6859 {
6860 /*
6861 * overutilized field is used for load balancing decisions only
6862 * if energy aware scheduler is being used
6863 */
6864
6865 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6866 set_rd_overutilized(rq->rd, 1);
6867 }
6868
6869 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)6870 static int sched_idle_rq(struct rq *rq)
6871 {
6872 return unlikely(rq->nr_running == rq->cfs.h_nr_idle &&
6873 rq->nr_running);
6874 }
6875
sched_idle_cpu(int cpu)6876 static int sched_idle_cpu(int cpu)
6877 {
6878 return sched_idle_rq(cpu_rq(cpu));
6879 }
6880
6881 static void
requeue_delayed_entity(struct sched_entity * se)6882 requeue_delayed_entity(struct sched_entity *se)
6883 {
6884 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6885
6886 /*
6887 * se->sched_delayed should imply: se->on_rq == 1.
6888 * Because a delayed entity is one that is still on
6889 * the runqueue competing until elegibility.
6890 */
6891 WARN_ON_ONCE(!se->sched_delayed);
6892 WARN_ON_ONCE(!se->on_rq);
6893
6894 if (sched_feat(DELAY_ZERO)) {
6895 update_entity_lag(cfs_rq, se);
6896 if (se->vlag > 0) {
6897 cfs_rq->nr_queued--;
6898 if (se != cfs_rq->curr)
6899 __dequeue_entity(cfs_rq, se);
6900 se->vlag = 0;
6901 place_entity(cfs_rq, se, 0);
6902 if (se != cfs_rq->curr)
6903 __enqueue_entity(cfs_rq, se);
6904 cfs_rq->nr_queued++;
6905 }
6906 }
6907
6908 update_load_avg(cfs_rq, se, 0);
6909 clear_delayed(se);
6910 }
6911
6912 /*
6913 * The enqueue_task method is called before nr_running is
6914 * increased. Here we update the fair scheduling stats and
6915 * then put the task into the rbtree:
6916 */
6917 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)6918 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6919 {
6920 struct cfs_rq *cfs_rq;
6921 struct sched_entity *se = &p->se;
6922 int h_nr_idle = task_has_idle_policy(p);
6923 int h_nr_runnable = 1;
6924 int task_new = !(flags & ENQUEUE_WAKEUP);
6925 int rq_h_nr_queued = rq->cfs.h_nr_queued;
6926 u64 slice = 0;
6927
6928 if (task_is_throttled(p) && enqueue_throttled_task(p))
6929 return;
6930
6931 /*
6932 * The code below (indirectly) updates schedutil which looks at
6933 * the cfs_rq utilization to select a frequency.
6934 * Let's add the task's estimated utilization to the cfs_rq's
6935 * estimated utilization, before we update schedutil.
6936 */
6937 if (!p->se.sched_delayed || (flags & ENQUEUE_DELAYED))
6938 util_est_enqueue(&rq->cfs, p);
6939
6940 if (flags & ENQUEUE_DELAYED) {
6941 requeue_delayed_entity(se);
6942 return;
6943 }
6944
6945 /*
6946 * If in_iowait is set, the code below may not trigger any cpufreq
6947 * utilization updates, so do it here explicitly with the IOWAIT flag
6948 * passed.
6949 */
6950 if (p->in_iowait)
6951 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6952
6953 if (task_new && se->sched_delayed)
6954 h_nr_runnable = 0;
6955
6956 for_each_sched_entity(se) {
6957 if (se->on_rq) {
6958 if (se->sched_delayed)
6959 requeue_delayed_entity(se);
6960 break;
6961 }
6962 cfs_rq = cfs_rq_of(se);
6963
6964 /*
6965 * Basically set the slice of group entries to the min_slice of
6966 * their respective cfs_rq. This ensures the group can service
6967 * its entities in the desired time-frame.
6968 */
6969 if (slice) {
6970 se->slice = slice;
6971 se->custom_slice = 1;
6972 }
6973 enqueue_entity(cfs_rq, se, flags);
6974 slice = cfs_rq_min_slice(cfs_rq);
6975
6976 cfs_rq->h_nr_runnable += h_nr_runnable;
6977 cfs_rq->h_nr_queued++;
6978 cfs_rq->h_nr_idle += h_nr_idle;
6979
6980 if (cfs_rq_is_idle(cfs_rq))
6981 h_nr_idle = 1;
6982
6983 flags = ENQUEUE_WAKEUP;
6984 }
6985
6986 for_each_sched_entity(se) {
6987 cfs_rq = cfs_rq_of(se);
6988
6989 update_load_avg(cfs_rq, se, UPDATE_TG);
6990 se_update_runnable(se);
6991 update_cfs_group(se);
6992
6993 se->slice = slice;
6994 if (se != cfs_rq->curr)
6995 min_vruntime_cb_propagate(&se->run_node, NULL);
6996 slice = cfs_rq_min_slice(cfs_rq);
6997
6998 cfs_rq->h_nr_runnable += h_nr_runnable;
6999 cfs_rq->h_nr_queued++;
7000 cfs_rq->h_nr_idle += h_nr_idle;
7001
7002 if (cfs_rq_is_idle(cfs_rq))
7003 h_nr_idle = 1;
7004 }
7005
7006 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) {
7007 /* Account for idle runtime */
7008 if (!rq->nr_running)
7009 dl_server_update_idle_time(rq, rq->curr);
7010 dl_server_start(&rq->fair_server);
7011 }
7012
7013 /* At this point se is NULL and we are at root level*/
7014 add_nr_running(rq, 1);
7015
7016 /*
7017 * Since new tasks are assigned an initial util_avg equal to
7018 * half of the spare capacity of their CPU, tiny tasks have the
7019 * ability to cross the overutilized threshold, which will
7020 * result in the load balancer ruining all the task placement
7021 * done by EAS. As a way to mitigate that effect, do not account
7022 * for the first enqueue operation of new tasks during the
7023 * overutilized flag detection.
7024 *
7025 * A better way of solving this problem would be to wait for
7026 * the PELT signals of tasks to converge before taking them
7027 * into account, but that is not straightforward to implement,
7028 * and the following generally works well enough in practice.
7029 */
7030 if (!task_new)
7031 check_update_overutilized_status(rq);
7032
7033 assert_list_leaf_cfs_rq(rq);
7034
7035 hrtick_update(rq);
7036 }
7037
7038 static void set_next_buddy(struct sched_entity *se);
7039
7040 /*
7041 * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
7042 * failing half-way through and resume the dequeue later.
7043 *
7044 * Returns:
7045 * -1 - dequeue delayed
7046 * 0 - dequeue throttled
7047 * 1 - dequeue complete
7048 */
dequeue_entities(struct rq * rq,struct sched_entity * se,int flags)7049 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
7050 {
7051 bool was_sched_idle = sched_idle_rq(rq);
7052 bool task_sleep = flags & DEQUEUE_SLEEP;
7053 bool task_delayed = flags & DEQUEUE_DELAYED;
7054 bool task_throttled = flags & DEQUEUE_THROTTLE;
7055 struct task_struct *p = NULL;
7056 int h_nr_idle = 0;
7057 int h_nr_queued = 0;
7058 int h_nr_runnable = 0;
7059 struct cfs_rq *cfs_rq;
7060 u64 slice = 0;
7061
7062 if (entity_is_task(se)) {
7063 p = task_of(se);
7064 h_nr_queued = 1;
7065 h_nr_idle = task_has_idle_policy(p);
7066 if (task_sleep || task_delayed || !se->sched_delayed)
7067 h_nr_runnable = 1;
7068 }
7069
7070 for_each_sched_entity(se) {
7071 cfs_rq = cfs_rq_of(se);
7072
7073 if (!dequeue_entity(cfs_rq, se, flags)) {
7074 if (p && &p->se == se)
7075 return -1;
7076
7077 slice = cfs_rq_min_slice(cfs_rq);
7078 break;
7079 }
7080
7081 cfs_rq->h_nr_runnable -= h_nr_runnable;
7082 cfs_rq->h_nr_queued -= h_nr_queued;
7083 cfs_rq->h_nr_idle -= h_nr_idle;
7084
7085 if (cfs_rq_is_idle(cfs_rq))
7086 h_nr_idle = h_nr_queued;
7087
7088 if (throttled_hierarchy(cfs_rq) && task_throttled)
7089 record_throttle_clock(cfs_rq);
7090
7091 /* Don't dequeue parent if it has other entities besides us */
7092 if (cfs_rq->load.weight) {
7093 slice = cfs_rq_min_slice(cfs_rq);
7094
7095 /* Avoid re-evaluating load for this entity: */
7096 se = parent_entity(se);
7097 /*
7098 * Bias pick_next to pick a task from this cfs_rq, as
7099 * p is sleeping when it is within its sched_slice.
7100 */
7101 if (task_sleep && se)
7102 set_next_buddy(se);
7103 break;
7104 }
7105 flags |= DEQUEUE_SLEEP;
7106 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
7107 }
7108
7109 for_each_sched_entity(se) {
7110 cfs_rq = cfs_rq_of(se);
7111
7112 update_load_avg(cfs_rq, se, UPDATE_TG);
7113 se_update_runnable(se);
7114 update_cfs_group(se);
7115
7116 se->slice = slice;
7117 if (se != cfs_rq->curr)
7118 min_vruntime_cb_propagate(&se->run_node, NULL);
7119 slice = cfs_rq_min_slice(cfs_rq);
7120
7121 cfs_rq->h_nr_runnable -= h_nr_runnable;
7122 cfs_rq->h_nr_queued -= h_nr_queued;
7123 cfs_rq->h_nr_idle -= h_nr_idle;
7124
7125 if (cfs_rq_is_idle(cfs_rq))
7126 h_nr_idle = h_nr_queued;
7127
7128 if (throttled_hierarchy(cfs_rq) && task_throttled)
7129 record_throttle_clock(cfs_rq);
7130 }
7131
7132 sub_nr_running(rq, h_nr_queued);
7133
7134 /* balance early to pull high priority tasks */
7135 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7136 rq->next_balance = jiffies;
7137
7138 if (p && task_delayed) {
7139 WARN_ON_ONCE(!task_sleep);
7140 WARN_ON_ONCE(p->on_rq != 1);
7141
7142 /* Fix-up what dequeue_task_fair() skipped */
7143 hrtick_update(rq);
7144
7145 /*
7146 * Fix-up what block_task() skipped.
7147 *
7148 * Must be last, @p might not be valid after this.
7149 */
7150 __block_task(rq, p);
7151 }
7152
7153 return 1;
7154 }
7155
7156 /*
7157 * The dequeue_task method is called before nr_running is
7158 * decreased. We remove the task from the rbtree and
7159 * update the fair scheduling stats:
7160 */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)7161 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7162 {
7163 if (task_is_throttled(p)) {
7164 dequeue_throttled_task(p, flags);
7165 return true;
7166 }
7167
7168 if (!p->se.sched_delayed)
7169 util_est_dequeue(&rq->cfs, p);
7170
7171 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
7172 if (dequeue_entities(rq, &p->se, flags) < 0)
7173 return false;
7174
7175 /*
7176 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED).
7177 */
7178
7179 hrtick_update(rq);
7180 return true;
7181 }
7182
cfs_h_nr_delayed(struct rq * rq)7183 static inline unsigned int cfs_h_nr_delayed(struct rq *rq)
7184 {
7185 return (rq->cfs.h_nr_queued - rq->cfs.h_nr_runnable);
7186 }
7187
7188 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7189 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7190 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7191 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7192
7193 #ifdef CONFIG_NO_HZ_COMMON
7194
7195 static struct {
7196 cpumask_var_t idle_cpus_mask;
7197 atomic_t nr_cpus;
7198 int has_blocked; /* Idle CPUS has blocked load */
7199 int needs_update; /* Newly idle CPUs need their next_balance collated */
7200 unsigned long next_balance; /* in jiffy units */
7201 unsigned long next_blocked; /* Next update of blocked load in jiffies */
7202 } nohz ____cacheline_aligned;
7203
7204 #endif /* CONFIG_NO_HZ_COMMON */
7205
cpu_load(struct rq * rq)7206 static unsigned long cpu_load(struct rq *rq)
7207 {
7208 return cfs_rq_load_avg(&rq->cfs);
7209 }
7210
7211 /*
7212 * cpu_load_without - compute CPU load without any contributions from *p
7213 * @cpu: the CPU which load is requested
7214 * @p: the task which load should be discounted
7215 *
7216 * The load of a CPU is defined by the load of tasks currently enqueued on that
7217 * CPU as well as tasks which are currently sleeping after an execution on that
7218 * CPU.
7219 *
7220 * This method returns the load of the specified CPU by discounting the load of
7221 * the specified task, whenever the task is currently contributing to the CPU
7222 * load.
7223 */
cpu_load_without(struct rq * rq,struct task_struct * p)7224 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7225 {
7226 struct cfs_rq *cfs_rq;
7227 unsigned int load;
7228
7229 /* Task has no contribution or is new */
7230 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7231 return cpu_load(rq);
7232
7233 cfs_rq = &rq->cfs;
7234 load = READ_ONCE(cfs_rq->avg.load_avg);
7235
7236 /* Discount task's util from CPU's util */
7237 lsub_positive(&load, task_h_load(p));
7238
7239 return load;
7240 }
7241
cpu_runnable(struct rq * rq)7242 static unsigned long cpu_runnable(struct rq *rq)
7243 {
7244 return cfs_rq_runnable_avg(&rq->cfs);
7245 }
7246
cpu_runnable_without(struct rq * rq,struct task_struct * p)7247 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7248 {
7249 struct cfs_rq *cfs_rq;
7250 unsigned int runnable;
7251
7252 /* Task has no contribution or is new */
7253 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7254 return cpu_runnable(rq);
7255
7256 cfs_rq = &rq->cfs;
7257 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7258
7259 /* Discount task's runnable from CPU's runnable */
7260 lsub_positive(&runnable, p->se.avg.runnable_avg);
7261
7262 return runnable;
7263 }
7264
capacity_of(int cpu)7265 static unsigned long capacity_of(int cpu)
7266 {
7267 return cpu_rq(cpu)->cpu_capacity;
7268 }
7269
record_wakee(struct task_struct * p)7270 static void record_wakee(struct task_struct *p)
7271 {
7272 /*
7273 * Only decay a single time; tasks that have less then 1 wakeup per
7274 * jiffy will not have built up many flips.
7275 */
7276 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7277 current->wakee_flips >>= 1;
7278 current->wakee_flip_decay_ts = jiffies;
7279 }
7280
7281 if (current->last_wakee != p) {
7282 current->last_wakee = p;
7283 current->wakee_flips++;
7284 }
7285 }
7286
7287 /*
7288 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7289 *
7290 * A waker of many should wake a different task than the one last awakened
7291 * at a frequency roughly N times higher than one of its wakees.
7292 *
7293 * In order to determine whether we should let the load spread vs consolidating
7294 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7295 * partner, and a factor of lls_size higher frequency in the other.
7296 *
7297 * With both conditions met, we can be relatively sure that the relationship is
7298 * non-monogamous, with partner count exceeding socket size.
7299 *
7300 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7301 * whatever is irrelevant, spread criteria is apparent partner count exceeds
7302 * socket size.
7303 */
wake_wide(struct task_struct * p)7304 static int wake_wide(struct task_struct *p)
7305 {
7306 unsigned int master = current->wakee_flips;
7307 unsigned int slave = p->wakee_flips;
7308 int factor = __this_cpu_read(sd_llc_size);
7309
7310 if (master < slave)
7311 swap(master, slave);
7312 if (slave < factor || master < slave * factor)
7313 return 0;
7314 return 1;
7315 }
7316
7317 /*
7318 * The purpose of wake_affine() is to quickly determine on which CPU we can run
7319 * soonest. For the purpose of speed we only consider the waking and previous
7320 * CPU.
7321 *
7322 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7323 * cache-affine and is (or will be) idle.
7324 *
7325 * wake_affine_weight() - considers the weight to reflect the average
7326 * scheduling latency of the CPUs. This seems to work
7327 * for the overloaded case.
7328 */
7329 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)7330 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7331 {
7332 /*
7333 * If this_cpu is idle, it implies the wakeup is from interrupt
7334 * context. Only allow the move if cache is shared. Otherwise an
7335 * interrupt intensive workload could force all tasks onto one
7336 * node depending on the IO topology or IRQ affinity settings.
7337 *
7338 * If the prev_cpu is idle and cache affine then avoid a migration.
7339 * There is no guarantee that the cache hot data from an interrupt
7340 * is more important than cache hot data on the prev_cpu and from
7341 * a cpufreq perspective, it's better to have higher utilisation
7342 * on one CPU.
7343 */
7344 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7345 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7346
7347 if (sync) {
7348 struct rq *rq = cpu_rq(this_cpu);
7349
7350 if ((rq->nr_running - cfs_h_nr_delayed(rq)) == 1)
7351 return this_cpu;
7352 }
7353
7354 if (available_idle_cpu(prev_cpu))
7355 return prev_cpu;
7356
7357 return nr_cpumask_bits;
7358 }
7359
7360 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7361 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7362 int this_cpu, int prev_cpu, int sync)
7363 {
7364 s64 this_eff_load, prev_eff_load;
7365 unsigned long task_load;
7366
7367 this_eff_load = cpu_load(cpu_rq(this_cpu));
7368
7369 if (sync) {
7370 unsigned long current_load = task_h_load(current);
7371
7372 if (current_load > this_eff_load)
7373 return this_cpu;
7374
7375 this_eff_load -= current_load;
7376 }
7377
7378 task_load = task_h_load(p);
7379
7380 this_eff_load += task_load;
7381 if (sched_feat(WA_BIAS))
7382 this_eff_load *= 100;
7383 this_eff_load *= capacity_of(prev_cpu);
7384
7385 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7386 prev_eff_load -= task_load;
7387 if (sched_feat(WA_BIAS))
7388 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7389 prev_eff_load *= capacity_of(this_cpu);
7390
7391 /*
7392 * If sync, adjust the weight of prev_eff_load such that if
7393 * prev_eff == this_eff that select_idle_sibling() will consider
7394 * stacking the wakee on top of the waker if no other CPU is
7395 * idle.
7396 */
7397 if (sync)
7398 prev_eff_load += 1;
7399
7400 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7401 }
7402
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7403 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7404 int this_cpu, int prev_cpu, int sync)
7405 {
7406 int target = nr_cpumask_bits;
7407
7408 if (sched_feat(WA_IDLE))
7409 target = wake_affine_idle(this_cpu, prev_cpu, sync);
7410
7411 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7412 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7413
7414 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7415 if (target != this_cpu)
7416 return prev_cpu;
7417
7418 schedstat_inc(sd->ttwu_move_affine);
7419 schedstat_inc(p->stats.nr_wakeups_affine);
7420 return target;
7421 }
7422
7423 static struct sched_group *
7424 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7425
7426 /*
7427 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7428 */
7429 static int
sched_balance_find_dst_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)7430 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7431 {
7432 unsigned long load, min_load = ULONG_MAX;
7433 unsigned int min_exit_latency = UINT_MAX;
7434 u64 latest_idle_timestamp = 0;
7435 int least_loaded_cpu = this_cpu;
7436 int shallowest_idle_cpu = -1;
7437 int i;
7438
7439 /* Check if we have any choice: */
7440 if (group->group_weight == 1)
7441 return cpumask_first(sched_group_span(group));
7442
7443 /* Traverse only the allowed CPUs */
7444 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7445 struct rq *rq = cpu_rq(i);
7446
7447 if (!sched_core_cookie_match(rq, p))
7448 continue;
7449
7450 if (sched_idle_cpu(i))
7451 return i;
7452
7453 if (available_idle_cpu(i)) {
7454 struct cpuidle_state *idle = idle_get_state(rq);
7455 if (idle && idle->exit_latency < min_exit_latency) {
7456 /*
7457 * We give priority to a CPU whose idle state
7458 * has the smallest exit latency irrespective
7459 * of any idle timestamp.
7460 */
7461 min_exit_latency = idle->exit_latency;
7462 latest_idle_timestamp = rq->idle_stamp;
7463 shallowest_idle_cpu = i;
7464 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
7465 rq->idle_stamp > latest_idle_timestamp) {
7466 /*
7467 * If equal or no active idle state, then
7468 * the most recently idled CPU might have
7469 * a warmer cache.
7470 */
7471 latest_idle_timestamp = rq->idle_stamp;
7472 shallowest_idle_cpu = i;
7473 }
7474 } else if (shallowest_idle_cpu == -1) {
7475 load = cpu_load(cpu_rq(i));
7476 if (load < min_load) {
7477 min_load = load;
7478 least_loaded_cpu = i;
7479 }
7480 }
7481 }
7482
7483 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7484 }
7485
sched_balance_find_dst_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)7486 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7487 int cpu, int prev_cpu, int sd_flag)
7488 {
7489 int new_cpu = cpu;
7490
7491 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7492 return prev_cpu;
7493
7494 /*
7495 * We need task's util for cpu_util_without, sync it up to
7496 * prev_cpu's last_update_time.
7497 */
7498 if (!(sd_flag & SD_BALANCE_FORK))
7499 sync_entity_load_avg(&p->se);
7500
7501 while (sd) {
7502 struct sched_group *group;
7503 struct sched_domain *tmp;
7504 int weight;
7505
7506 if (!(sd->flags & sd_flag)) {
7507 sd = sd->child;
7508 continue;
7509 }
7510
7511 group = sched_balance_find_dst_group(sd, p, cpu);
7512 if (!group) {
7513 sd = sd->child;
7514 continue;
7515 }
7516
7517 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7518 if (new_cpu == cpu) {
7519 /* Now try balancing at a lower domain level of 'cpu': */
7520 sd = sd->child;
7521 continue;
7522 }
7523
7524 /* Now try balancing at a lower domain level of 'new_cpu': */
7525 cpu = new_cpu;
7526 weight = sd->span_weight;
7527 sd = NULL;
7528 for_each_domain(cpu, tmp) {
7529 if (weight <= tmp->span_weight)
7530 break;
7531 if (tmp->flags & sd_flag)
7532 sd = tmp;
7533 }
7534 }
7535
7536 return new_cpu;
7537 }
7538
__select_idle_cpu(int cpu,struct task_struct * p)7539 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7540 {
7541 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7542 sched_cpu_cookie_match(cpu_rq(cpu), p))
7543 return cpu;
7544
7545 return -1;
7546 }
7547
7548 #ifdef CONFIG_SCHED_SMT
7549 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7550 EXPORT_SYMBOL_GPL(sched_smt_present);
7551
set_idle_cores(int cpu,int val)7552 static inline void set_idle_cores(int cpu, int val)
7553 {
7554 struct sched_domain_shared *sds;
7555
7556 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7557 if (sds)
7558 WRITE_ONCE(sds->has_idle_cores, val);
7559 }
7560
test_idle_cores(int cpu)7561 static inline bool test_idle_cores(int cpu)
7562 {
7563 struct sched_domain_shared *sds;
7564
7565 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7566 if (sds)
7567 return READ_ONCE(sds->has_idle_cores);
7568
7569 return false;
7570 }
7571
7572 /*
7573 * Scans the local SMT mask to see if the entire core is idle, and records this
7574 * information in sd_llc_shared->has_idle_cores.
7575 *
7576 * Since SMT siblings share all cache levels, inspecting this limited remote
7577 * state should be fairly cheap.
7578 */
__update_idle_core(struct rq * rq)7579 void __update_idle_core(struct rq *rq)
7580 {
7581 int core = cpu_of(rq);
7582 int cpu;
7583
7584 rcu_read_lock();
7585 if (test_idle_cores(core))
7586 goto unlock;
7587
7588 for_each_cpu(cpu, cpu_smt_mask(core)) {
7589 if (cpu == core)
7590 continue;
7591
7592 if (!available_idle_cpu(cpu))
7593 goto unlock;
7594 }
7595
7596 set_idle_cores(core, 1);
7597 unlock:
7598 rcu_read_unlock();
7599 }
7600
7601 /*
7602 * Scan the entire LLC domain for idle cores; this dynamically switches off if
7603 * there are no idle cores left in the system; tracked through
7604 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7605 */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7606 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7607 {
7608 bool idle = true;
7609 int cpu;
7610
7611 for_each_cpu(cpu, cpu_smt_mask(core)) {
7612 if (!available_idle_cpu(cpu)) {
7613 idle = false;
7614 if (*idle_cpu == -1) {
7615 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7616 *idle_cpu = cpu;
7617 break;
7618 }
7619 continue;
7620 }
7621 break;
7622 }
7623 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7624 *idle_cpu = cpu;
7625 }
7626
7627 if (idle)
7628 return core;
7629
7630 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7631 return -1;
7632 }
7633
7634 /*
7635 * Scan the local SMT mask for idle CPUs.
7636 */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7637 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7638 {
7639 int cpu;
7640
7641 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7642 if (cpu == target)
7643 continue;
7644 /*
7645 * Check if the CPU is in the LLC scheduling domain of @target.
7646 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7647 */
7648 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7649 continue;
7650 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7651 return cpu;
7652 }
7653
7654 return -1;
7655 }
7656
7657 #else /* !CONFIG_SCHED_SMT: */
7658
set_idle_cores(int cpu,int val)7659 static inline void set_idle_cores(int cpu, int val)
7660 {
7661 }
7662
test_idle_cores(int cpu)7663 static inline bool test_idle_cores(int cpu)
7664 {
7665 return false;
7666 }
7667
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7668 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7669 {
7670 return __select_idle_cpu(core, p);
7671 }
7672
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7673 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7674 {
7675 return -1;
7676 }
7677
7678 #endif /* !CONFIG_SCHED_SMT */
7679
7680 /*
7681 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7682 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7683 * average idle time for this rq (as found in rq->avg_idle).
7684 */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)7685 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7686 {
7687 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7688 int i, cpu, idle_cpu = -1, nr = INT_MAX;
7689 struct sched_domain_shared *sd_share;
7690
7691 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7692
7693 if (sched_feat(SIS_UTIL)) {
7694 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7695 if (sd_share) {
7696 /* because !--nr is the condition to stop scan */
7697 nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7698 /* overloaded LLC is unlikely to have idle cpu/core */
7699 if (nr == 1)
7700 return -1;
7701 }
7702 }
7703
7704 if (static_branch_unlikely(&sched_cluster_active)) {
7705 struct sched_group *sg = sd->groups;
7706
7707 if (sg->flags & SD_CLUSTER) {
7708 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7709 if (!cpumask_test_cpu(cpu, cpus))
7710 continue;
7711
7712 if (has_idle_core) {
7713 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7714 if ((unsigned int)i < nr_cpumask_bits)
7715 return i;
7716 } else {
7717 if (--nr <= 0)
7718 return -1;
7719 idle_cpu = __select_idle_cpu(cpu, p);
7720 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7721 return idle_cpu;
7722 }
7723 }
7724 cpumask_andnot(cpus, cpus, sched_group_span(sg));
7725 }
7726 }
7727
7728 for_each_cpu_wrap(cpu, cpus, target + 1) {
7729 if (has_idle_core) {
7730 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7731 if ((unsigned int)i < nr_cpumask_bits)
7732 return i;
7733
7734 } else {
7735 if (--nr <= 0)
7736 return -1;
7737 idle_cpu = __select_idle_cpu(cpu, p);
7738 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7739 break;
7740 }
7741 }
7742
7743 if (has_idle_core)
7744 set_idle_cores(target, false);
7745
7746 return idle_cpu;
7747 }
7748
7749 /*
7750 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7751 * the task fits. If no CPU is big enough, but there are idle ones, try to
7752 * maximize capacity.
7753 */
7754 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)7755 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7756 {
7757 unsigned long task_util, util_min, util_max, best_cap = 0;
7758 int fits, best_fits = 0;
7759 int cpu, best_cpu = -1;
7760 struct cpumask *cpus;
7761
7762 cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7763 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7764
7765 task_util = task_util_est(p);
7766 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7767 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7768
7769 for_each_cpu_wrap(cpu, cpus, target) {
7770 unsigned long cpu_cap = capacity_of(cpu);
7771
7772 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7773 continue;
7774
7775 fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7776
7777 /* This CPU fits with all requirements */
7778 if (fits > 0)
7779 return cpu;
7780 /*
7781 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7782 * Look for the CPU with best capacity.
7783 */
7784 else if (fits < 0)
7785 cpu_cap = get_actual_cpu_capacity(cpu);
7786
7787 /*
7788 * First, select CPU which fits better (-1 being better than 0).
7789 * Then, select the one with best capacity at same level.
7790 */
7791 if ((fits < best_fits) ||
7792 ((fits == best_fits) && (cpu_cap > best_cap))) {
7793 best_cap = cpu_cap;
7794 best_cpu = cpu;
7795 best_fits = fits;
7796 }
7797 }
7798
7799 return best_cpu;
7800 }
7801
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)7802 static inline bool asym_fits_cpu(unsigned long util,
7803 unsigned long util_min,
7804 unsigned long util_max,
7805 int cpu)
7806 {
7807 if (sched_asym_cpucap_active())
7808 /*
7809 * Return true only if the cpu fully fits the task requirements
7810 * which include the utilization and the performance hints.
7811 */
7812 return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7813
7814 return true;
7815 }
7816
7817 /*
7818 * Try and locate an idle core/thread in the LLC cache domain.
7819 */
select_idle_sibling(struct task_struct * p,int prev,int target)7820 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7821 {
7822 bool has_idle_core = false;
7823 struct sched_domain *sd;
7824 unsigned long task_util, util_min, util_max;
7825 int i, recent_used_cpu, prev_aff = -1;
7826
7827 /*
7828 * On asymmetric system, update task utilization because we will check
7829 * that the task fits with CPU's capacity.
7830 */
7831 if (sched_asym_cpucap_active()) {
7832 sync_entity_load_avg(&p->se);
7833 task_util = task_util_est(p);
7834 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7835 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7836 }
7837
7838 /*
7839 * per-cpu select_rq_mask usage
7840 */
7841 lockdep_assert_irqs_disabled();
7842
7843 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7844 asym_fits_cpu(task_util, util_min, util_max, target))
7845 return target;
7846
7847 /*
7848 * If the previous CPU is cache affine and idle, don't be stupid:
7849 */
7850 if (prev != target && cpus_share_cache(prev, target) &&
7851 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7852 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7853
7854 if (!static_branch_unlikely(&sched_cluster_active) ||
7855 cpus_share_resources(prev, target))
7856 return prev;
7857
7858 prev_aff = prev;
7859 }
7860
7861 /*
7862 * Allow a per-cpu kthread to stack with the wakee if the
7863 * kworker thread and the tasks previous CPUs are the same.
7864 * The assumption is that the wakee queued work for the
7865 * per-cpu kthread that is now complete and the wakeup is
7866 * essentially a sync wakeup. An obvious example of this
7867 * pattern is IO completions.
7868 */
7869 if (is_per_cpu_kthread(current) &&
7870 in_task() &&
7871 prev == smp_processor_id() &&
7872 this_rq()->nr_running <= 1 &&
7873 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7874 return prev;
7875 }
7876
7877 /* Check a recently used CPU as a potential idle candidate: */
7878 recent_used_cpu = p->recent_used_cpu;
7879 p->recent_used_cpu = prev;
7880 if (recent_used_cpu != prev &&
7881 recent_used_cpu != target &&
7882 cpus_share_cache(recent_used_cpu, target) &&
7883 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7884 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7885 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7886
7887 if (!static_branch_unlikely(&sched_cluster_active) ||
7888 cpus_share_resources(recent_used_cpu, target))
7889 return recent_used_cpu;
7890
7891 } else {
7892 recent_used_cpu = -1;
7893 }
7894
7895 /*
7896 * For asymmetric CPU capacity systems, our domain of interest is
7897 * sd_asym_cpucapacity rather than sd_llc.
7898 */
7899 if (sched_asym_cpucap_active()) {
7900 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7901 /*
7902 * On an asymmetric CPU capacity system where an exclusive
7903 * cpuset defines a symmetric island (i.e. one unique
7904 * capacity_orig value through the cpuset), the key will be set
7905 * but the CPUs within that cpuset will not have a domain with
7906 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7907 * capacity path.
7908 */
7909 if (sd) {
7910 i = select_idle_capacity(p, sd, target);
7911 return ((unsigned)i < nr_cpumask_bits) ? i : target;
7912 }
7913 }
7914
7915 sd = rcu_dereference(per_cpu(sd_llc, target));
7916 if (!sd)
7917 return target;
7918
7919 if (sched_smt_active()) {
7920 has_idle_core = test_idle_cores(target);
7921
7922 if (!has_idle_core && cpus_share_cache(prev, target)) {
7923 i = select_idle_smt(p, sd, prev);
7924 if ((unsigned int)i < nr_cpumask_bits)
7925 return i;
7926 }
7927 }
7928
7929 i = select_idle_cpu(p, sd, has_idle_core, target);
7930 if ((unsigned)i < nr_cpumask_bits)
7931 return i;
7932
7933 /*
7934 * For cluster machines which have lower sharing cache like L2 or
7935 * LLC Tag, we tend to find an idle CPU in the target's cluster
7936 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7937 * use them if possible when no idle CPU found in select_idle_cpu().
7938 */
7939 if ((unsigned int)prev_aff < nr_cpumask_bits)
7940 return prev_aff;
7941 if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7942 return recent_used_cpu;
7943
7944 return target;
7945 }
7946
7947 /**
7948 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7949 * @cpu: the CPU to get the utilization for
7950 * @p: task for which the CPU utilization should be predicted or NULL
7951 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7952 * @boost: 1 to enable boosting, otherwise 0
7953 *
7954 * The unit of the return value must be the same as the one of CPU capacity
7955 * so that CPU utilization can be compared with CPU capacity.
7956 *
7957 * CPU utilization is the sum of running time of runnable tasks plus the
7958 * recent utilization of currently non-runnable tasks on that CPU.
7959 * It represents the amount of CPU capacity currently used by CFS tasks in
7960 * the range [0..max CPU capacity] with max CPU capacity being the CPU
7961 * capacity at f_max.
7962 *
7963 * The estimated CPU utilization is defined as the maximum between CPU
7964 * utilization and sum of the estimated utilization of the currently
7965 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7966 * previously-executed tasks, which helps better deduce how busy a CPU will
7967 * be when a long-sleeping task wakes up. The contribution to CPU utilization
7968 * of such a task would be significantly decayed at this point of time.
7969 *
7970 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7971 * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7972 * utilization. Boosting is implemented in cpu_util() so that internal
7973 * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7974 * latter via cpu_util_cfs_boost().
7975 *
7976 * CPU utilization can be higher than the current CPU capacity
7977 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7978 * of rounding errors as well as task migrations or wakeups of new tasks.
7979 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7980 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7981 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7982 * capacity. CPU utilization is allowed to overshoot current CPU capacity
7983 * though since this is useful for predicting the CPU capacity required
7984 * after task migrations (scheduler-driven DVFS).
7985 *
7986 * Return: (Boosted) (estimated) utilization for the specified CPU.
7987 */
7988 static unsigned long
cpu_util(int cpu,struct task_struct * p,int dst_cpu,int boost)7989 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7990 {
7991 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7992 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7993 unsigned long runnable;
7994
7995 if (boost) {
7996 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7997 util = max(util, runnable);
7998 }
7999
8000 /*
8001 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
8002 * contribution. If @p migrates from another CPU to @cpu add its
8003 * contribution. In all the other cases @cpu is not impacted by the
8004 * migration so its util_avg is already correct.
8005 */
8006 if (p && task_cpu(p) == cpu && dst_cpu != cpu)
8007 lsub_positive(&util, task_util(p));
8008 else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
8009 util += task_util(p);
8010
8011 if (sched_feat(UTIL_EST)) {
8012 unsigned long util_est;
8013
8014 util_est = READ_ONCE(cfs_rq->avg.util_est);
8015
8016 /*
8017 * During wake-up @p isn't enqueued yet and doesn't contribute
8018 * to any cpu_rq(cpu)->cfs.avg.util_est.
8019 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
8020 * has been enqueued.
8021 *
8022 * During exec (@dst_cpu = -1) @p is enqueued and does
8023 * contribute to cpu_rq(cpu)->cfs.util_est.
8024 * Remove it to "simulate" cpu_util without @p's contribution.
8025 *
8026 * Despite the task_on_rq_queued(@p) check there is still a
8027 * small window for a possible race when an exec
8028 * select_task_rq_fair() races with LB's detach_task().
8029 *
8030 * detach_task()
8031 * deactivate_task()
8032 * p->on_rq = TASK_ON_RQ_MIGRATING;
8033 * -------------------------------- A
8034 * dequeue_task() \
8035 * dequeue_task_fair() + Race Time
8036 * util_est_dequeue() /
8037 * -------------------------------- B
8038 *
8039 * The additional check "current == p" is required to further
8040 * reduce the race window.
8041 */
8042 if (dst_cpu == cpu)
8043 util_est += _task_util_est(p);
8044 else if (p && unlikely(task_on_rq_queued(p) || current == p))
8045 lsub_positive(&util_est, _task_util_est(p));
8046
8047 util = max(util, util_est);
8048 }
8049
8050 return min(util, arch_scale_cpu_capacity(cpu));
8051 }
8052
cpu_util_cfs(int cpu)8053 unsigned long cpu_util_cfs(int cpu)
8054 {
8055 return cpu_util(cpu, NULL, -1, 0);
8056 }
8057
cpu_util_cfs_boost(int cpu)8058 unsigned long cpu_util_cfs_boost(int cpu)
8059 {
8060 return cpu_util(cpu, NULL, -1, 1);
8061 }
8062
8063 /*
8064 * cpu_util_without: compute cpu utilization without any contributions from *p
8065 * @cpu: the CPU which utilization is requested
8066 * @p: the task which utilization should be discounted
8067 *
8068 * The utilization of a CPU is defined by the utilization of tasks currently
8069 * enqueued on that CPU as well as tasks which are currently sleeping after an
8070 * execution on that CPU.
8071 *
8072 * This method returns the utilization of the specified CPU by discounting the
8073 * utilization of the specified task, whenever the task is currently
8074 * contributing to the CPU utilization.
8075 */
cpu_util_without(int cpu,struct task_struct * p)8076 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
8077 {
8078 /* Task has no contribution or is new */
8079 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8080 p = NULL;
8081
8082 return cpu_util(cpu, p, -1, 0);
8083 }
8084
8085 /*
8086 * This function computes an effective utilization for the given CPU, to be
8087 * used for frequency selection given the linear relation: f = u * f_max.
8088 *
8089 * The scheduler tracks the following metrics:
8090 *
8091 * cpu_util_{cfs,rt,dl,irq}()
8092 * cpu_bw_dl()
8093 *
8094 * Where the cfs,rt and dl util numbers are tracked with the same metric and
8095 * synchronized windows and are thus directly comparable.
8096 *
8097 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8098 * which excludes things like IRQ and steal-time. These latter are then accrued
8099 * in the IRQ utilization.
8100 *
8101 * The DL bandwidth number OTOH is not a measured metric but a value computed
8102 * based on the task model parameters and gives the minimal utilization
8103 * required to meet deadlines.
8104 */
effective_cpu_util(int cpu,unsigned long util_cfs,unsigned long * min,unsigned long * max)8105 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
8106 unsigned long *min,
8107 unsigned long *max)
8108 {
8109 unsigned long util, irq, scale;
8110 struct rq *rq = cpu_rq(cpu);
8111
8112 scale = arch_scale_cpu_capacity(cpu);
8113
8114 /*
8115 * Early check to see if IRQ/steal time saturates the CPU, can be
8116 * because of inaccuracies in how we track these -- see
8117 * update_irq_load_avg().
8118 */
8119 irq = cpu_util_irq(rq);
8120 if (unlikely(irq >= scale)) {
8121 if (min)
8122 *min = scale;
8123 if (max)
8124 *max = scale;
8125 return scale;
8126 }
8127
8128 if (min) {
8129 /*
8130 * The minimum utilization returns the highest level between:
8131 * - the computed DL bandwidth needed with the IRQ pressure which
8132 * steals time to the deadline task.
8133 * - The minimum performance requirement for CFS and/or RT.
8134 */
8135 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
8136
8137 /*
8138 * When an RT task is runnable and uclamp is not used, we must
8139 * ensure that the task will run at maximum compute capacity.
8140 */
8141 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
8142 *min = max(*min, scale);
8143 }
8144
8145 /*
8146 * Because the time spend on RT/DL tasks is visible as 'lost' time to
8147 * CFS tasks and we use the same metric to track the effective
8148 * utilization (PELT windows are synchronized) we can directly add them
8149 * to obtain the CPU's actual utilization.
8150 */
8151 util = util_cfs + cpu_util_rt(rq);
8152 util += cpu_util_dl(rq);
8153
8154 /*
8155 * The maximum hint is a soft bandwidth requirement, which can be lower
8156 * than the actual utilization because of uclamp_max requirements.
8157 */
8158 if (max)
8159 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
8160
8161 if (util >= scale)
8162 return scale;
8163
8164 /*
8165 * There is still idle time; further improve the number by using the
8166 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
8167 * need to scale the task numbers:
8168 *
8169 * max - irq
8170 * U' = irq + --------- * U
8171 * max
8172 */
8173 util = scale_irq_capacity(util, irq, scale);
8174 util += irq;
8175
8176 return min(scale, util);
8177 }
8178
sched_cpu_util(int cpu)8179 unsigned long sched_cpu_util(int cpu)
8180 {
8181 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
8182 }
8183
8184 /*
8185 * energy_env - Utilization landscape for energy estimation.
8186 * @task_busy_time: Utilization contribution by the task for which we test the
8187 * placement. Given by eenv_task_busy_time().
8188 * @pd_busy_time: Utilization of the whole perf domain without the task
8189 * contribution. Given by eenv_pd_busy_time().
8190 * @cpu_cap: Maximum CPU capacity for the perf domain.
8191 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8192 */
8193 struct energy_env {
8194 unsigned long task_busy_time;
8195 unsigned long pd_busy_time;
8196 unsigned long cpu_cap;
8197 unsigned long pd_cap;
8198 };
8199
8200 /*
8201 * Compute the task busy time for compute_energy(). This time cannot be
8202 * injected directly into effective_cpu_util() because of the IRQ scaling.
8203 * The latter only makes sense with the most recent CPUs where the task has
8204 * run.
8205 */
eenv_task_busy_time(struct energy_env * eenv,struct task_struct * p,int prev_cpu)8206 static inline void eenv_task_busy_time(struct energy_env *eenv,
8207 struct task_struct *p, int prev_cpu)
8208 {
8209 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8210 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8211
8212 if (unlikely(irq >= max_cap))
8213 busy_time = max_cap;
8214 else
8215 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8216
8217 eenv->task_busy_time = busy_time;
8218 }
8219
8220 /*
8221 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8222 * utilization for each @pd_cpus, it however doesn't take into account
8223 * clamping since the ratio (utilization / cpu_capacity) is already enough to
8224 * scale the EM reported power consumption at the (eventually clamped)
8225 * cpu_capacity.
8226 *
8227 * The contribution of the task @p for which we want to estimate the
8228 * energy cost is removed (by cpu_util()) and must be calculated
8229 * separately (see eenv_task_busy_time). This ensures:
8230 *
8231 * - A stable PD utilization, no matter which CPU of that PD we want to place
8232 * the task on.
8233 *
8234 * - A fair comparison between CPUs as the task contribution (task_util())
8235 * will always be the same no matter which CPU utilization we rely on
8236 * (util_avg or util_est).
8237 *
8238 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8239 * exceed @eenv->pd_cap.
8240 */
eenv_pd_busy_time(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p)8241 static inline void eenv_pd_busy_time(struct energy_env *eenv,
8242 struct cpumask *pd_cpus,
8243 struct task_struct *p)
8244 {
8245 unsigned long busy_time = 0;
8246 int cpu;
8247
8248 for_each_cpu(cpu, pd_cpus) {
8249 unsigned long util = cpu_util(cpu, p, -1, 0);
8250
8251 busy_time += effective_cpu_util(cpu, util, NULL, NULL);
8252 }
8253
8254 eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8255 }
8256
8257 /*
8258 * Compute the maximum utilization for compute_energy() when the task @p
8259 * is placed on the cpu @dst_cpu.
8260 *
8261 * Returns the maximum utilization among @eenv->cpus. This utilization can't
8262 * exceed @eenv->cpu_cap.
8263 */
8264 static inline unsigned long
eenv_pd_max_util(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8265 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8266 struct task_struct *p, int dst_cpu)
8267 {
8268 unsigned long max_util = 0;
8269 int cpu;
8270
8271 for_each_cpu(cpu, pd_cpus) {
8272 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8273 unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8274 unsigned long eff_util, min, max;
8275
8276 /*
8277 * Performance domain frequency: utilization clamping
8278 * must be considered since it affects the selection
8279 * of the performance domain frequency.
8280 * NOTE: in case RT tasks are running, by default the min
8281 * utilization can be max OPP.
8282 */
8283 eff_util = effective_cpu_util(cpu, util, &min, &max);
8284
8285 /* Task's uclamp can modify min and max value */
8286 if (tsk && uclamp_is_used()) {
8287 min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
8288
8289 /*
8290 * If there is no active max uclamp constraint,
8291 * directly use task's one, otherwise keep max.
8292 */
8293 if (uclamp_rq_is_idle(cpu_rq(cpu)))
8294 max = uclamp_eff_value(p, UCLAMP_MAX);
8295 else
8296 max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
8297 }
8298
8299 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
8300 max_util = max(max_util, eff_util);
8301 }
8302
8303 return min(max_util, eenv->cpu_cap);
8304 }
8305
8306 /*
8307 * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8308 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8309 * contribution is ignored.
8310 */
8311 static inline unsigned long
compute_energy(struct energy_env * eenv,struct perf_domain * pd,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8312 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8313 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8314 {
8315 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8316 unsigned long busy_time = eenv->pd_busy_time;
8317 unsigned long energy;
8318
8319 if (dst_cpu >= 0)
8320 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8321
8322 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8323
8324 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
8325
8326 return energy;
8327 }
8328
8329 /*
8330 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8331 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8332 * spare capacity in each performance domain and uses it as a potential
8333 * candidate to execute the task. Then, it uses the Energy Model to figure
8334 * out which of the CPU candidates is the most energy-efficient.
8335 *
8336 * The rationale for this heuristic is as follows. In a performance domain,
8337 * all the most energy efficient CPU candidates (according to the Energy
8338 * Model) are those for which we'll request a low frequency. When there are
8339 * several CPUs for which the frequency request will be the same, we don't
8340 * have enough data to break the tie between them, because the Energy Model
8341 * only includes active power costs. With this model, if we assume that
8342 * frequency requests follow utilization (e.g. using schedutil), the CPU with
8343 * the maximum spare capacity in a performance domain is guaranteed to be among
8344 * the best candidates of the performance domain.
8345 *
8346 * In practice, it could be preferable from an energy standpoint to pack
8347 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8348 * but that could also hurt our chances to go cluster idle, and we have no
8349 * ways to tell with the current Energy Model if this is actually a good
8350 * idea or not. So, find_energy_efficient_cpu() basically favors
8351 * cluster-packing, and spreading inside a cluster. That should at least be
8352 * a good thing for latency, and this is consistent with the idea that most
8353 * of the energy savings of EAS come from the asymmetry of the system, and
8354 * not so much from breaking the tie between identical CPUs. That's also the
8355 * reason why EAS is enabled in the topology code only for systems where
8356 * SD_ASYM_CPUCAPACITY is set.
8357 *
8358 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8359 * they don't have any useful utilization data yet and it's not possible to
8360 * forecast their impact on energy consumption. Consequently, they will be
8361 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8362 * to be energy-inefficient in some use-cases. The alternative would be to
8363 * bias new tasks towards specific types of CPUs first, or to try to infer
8364 * their util_avg from the parent task, but those heuristics could hurt
8365 * other use-cases too. So, until someone finds a better way to solve this,
8366 * let's keep things simple by re-using the existing slow path.
8367 */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)8368 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
8369 {
8370 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8371 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8372 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8373 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8374 struct root_domain *rd = this_rq()->rd;
8375 int cpu, best_energy_cpu, target = -1;
8376 int prev_fits = -1, best_fits = -1;
8377 unsigned long best_actual_cap = 0;
8378 unsigned long prev_actual_cap = 0;
8379 struct sched_domain *sd;
8380 struct perf_domain *pd;
8381 struct energy_env eenv;
8382
8383 rcu_read_lock();
8384 pd = rcu_dereference(rd->pd);
8385 if (!pd)
8386 goto unlock;
8387
8388 /*
8389 * Energy-aware wake-up happens on the lowest sched_domain starting
8390 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8391 */
8392 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8393 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8394 sd = sd->parent;
8395 if (!sd)
8396 goto unlock;
8397
8398 target = prev_cpu;
8399
8400 sync_entity_load_avg(&p->se);
8401 if (!task_util_est(p) && p_util_min == 0)
8402 goto unlock;
8403
8404 eenv_task_busy_time(&eenv, p, prev_cpu);
8405
8406 for (; pd; pd = pd->next) {
8407 unsigned long util_min = p_util_min, util_max = p_util_max;
8408 unsigned long cpu_cap, cpu_actual_cap, util;
8409 long prev_spare_cap = -1, max_spare_cap = -1;
8410 unsigned long rq_util_min, rq_util_max;
8411 unsigned long cur_delta, base_energy;
8412 int max_spare_cap_cpu = -1;
8413 int fits, max_fits = -1;
8414
8415 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8416
8417 if (cpumask_empty(cpus))
8418 continue;
8419
8420 /* Account external pressure for the energy estimation */
8421 cpu = cpumask_first(cpus);
8422 cpu_actual_cap = get_actual_cpu_capacity(cpu);
8423
8424 eenv.cpu_cap = cpu_actual_cap;
8425 eenv.pd_cap = 0;
8426
8427 for_each_cpu(cpu, cpus) {
8428 struct rq *rq = cpu_rq(cpu);
8429
8430 eenv.pd_cap += cpu_actual_cap;
8431
8432 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8433 continue;
8434
8435 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8436 continue;
8437
8438 util = cpu_util(cpu, p, cpu, 0);
8439 cpu_cap = capacity_of(cpu);
8440
8441 /*
8442 * Skip CPUs that cannot satisfy the capacity request.
8443 * IOW, placing the task there would make the CPU
8444 * overutilized. Take uclamp into account to see how
8445 * much capacity we can get out of the CPU; this is
8446 * aligned with sched_cpu_util().
8447 */
8448 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8449 /*
8450 * Open code uclamp_rq_util_with() except for
8451 * the clamp() part. I.e.: apply max aggregation
8452 * only. util_fits_cpu() logic requires to
8453 * operate on non clamped util but must use the
8454 * max-aggregated uclamp_{min, max}.
8455 */
8456 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8457 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8458
8459 util_min = max(rq_util_min, p_util_min);
8460 util_max = max(rq_util_max, p_util_max);
8461 }
8462
8463 fits = util_fits_cpu(util, util_min, util_max, cpu);
8464 if (!fits)
8465 continue;
8466
8467 lsub_positive(&cpu_cap, util);
8468
8469 if (cpu == prev_cpu) {
8470 /* Always use prev_cpu as a candidate. */
8471 prev_spare_cap = cpu_cap;
8472 prev_fits = fits;
8473 } else if ((fits > max_fits) ||
8474 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8475 /*
8476 * Find the CPU with the maximum spare capacity
8477 * among the remaining CPUs in the performance
8478 * domain.
8479 */
8480 max_spare_cap = cpu_cap;
8481 max_spare_cap_cpu = cpu;
8482 max_fits = fits;
8483 }
8484 }
8485
8486 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8487 continue;
8488
8489 eenv_pd_busy_time(&eenv, cpus, p);
8490 /* Compute the 'base' energy of the pd, without @p */
8491 base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8492
8493 /* Evaluate the energy impact of using prev_cpu. */
8494 if (prev_spare_cap > -1) {
8495 prev_delta = compute_energy(&eenv, pd, cpus, p,
8496 prev_cpu);
8497 /* CPU utilization has changed */
8498 if (prev_delta < base_energy)
8499 goto unlock;
8500 prev_delta -= base_energy;
8501 prev_actual_cap = cpu_actual_cap;
8502 best_delta = min(best_delta, prev_delta);
8503 }
8504
8505 /* Evaluate the energy impact of using max_spare_cap_cpu. */
8506 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8507 /* Current best energy cpu fits better */
8508 if (max_fits < best_fits)
8509 continue;
8510
8511 /*
8512 * Both don't fit performance hint (i.e. uclamp_min)
8513 * but best energy cpu has better capacity.
8514 */
8515 if ((max_fits < 0) &&
8516 (cpu_actual_cap <= best_actual_cap))
8517 continue;
8518
8519 cur_delta = compute_energy(&eenv, pd, cpus, p,
8520 max_spare_cap_cpu);
8521 /* CPU utilization has changed */
8522 if (cur_delta < base_energy)
8523 goto unlock;
8524 cur_delta -= base_energy;
8525
8526 /*
8527 * Both fit for the task but best energy cpu has lower
8528 * energy impact.
8529 */
8530 if ((max_fits > 0) && (best_fits > 0) &&
8531 (cur_delta >= best_delta))
8532 continue;
8533
8534 best_delta = cur_delta;
8535 best_energy_cpu = max_spare_cap_cpu;
8536 best_fits = max_fits;
8537 best_actual_cap = cpu_actual_cap;
8538 }
8539 }
8540 rcu_read_unlock();
8541
8542 if ((best_fits > prev_fits) ||
8543 ((best_fits > 0) && (best_delta < prev_delta)) ||
8544 ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8545 target = best_energy_cpu;
8546
8547 return target;
8548
8549 unlock:
8550 rcu_read_unlock();
8551
8552 return target;
8553 }
8554
8555 /*
8556 * select_task_rq_fair: Select target runqueue for the waking task in domains
8557 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8558 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8559 *
8560 * Balances load by selecting the idlest CPU in the idlest group, or under
8561 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8562 *
8563 * Returns the target CPU number.
8564 */
8565 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)8566 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8567 {
8568 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8569 struct sched_domain *tmp, *sd = NULL;
8570 int cpu = smp_processor_id();
8571 int new_cpu = prev_cpu;
8572 int want_affine = 0;
8573 /* SD_flags and WF_flags share the first nibble */
8574 int sd_flag = wake_flags & 0xF;
8575
8576 /*
8577 * required for stable ->cpus_allowed
8578 */
8579 lockdep_assert_held(&p->pi_lock);
8580 if (wake_flags & WF_TTWU) {
8581 record_wakee(p);
8582
8583 if ((wake_flags & WF_CURRENT_CPU) &&
8584 cpumask_test_cpu(cpu, p->cpus_ptr))
8585 return cpu;
8586
8587 if (!is_rd_overutilized(this_rq()->rd)) {
8588 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8589 if (new_cpu >= 0)
8590 return new_cpu;
8591 new_cpu = prev_cpu;
8592 }
8593
8594 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8595 }
8596
8597 rcu_read_lock();
8598 for_each_domain(cpu, tmp) {
8599 /*
8600 * If both 'cpu' and 'prev_cpu' are part of this domain,
8601 * cpu is a valid SD_WAKE_AFFINE target.
8602 */
8603 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8604 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8605 if (cpu != prev_cpu)
8606 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8607
8608 sd = NULL; /* Prefer wake_affine over balance flags */
8609 break;
8610 }
8611
8612 /*
8613 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8614 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8615 * will usually go to the fast path.
8616 */
8617 if (tmp->flags & sd_flag)
8618 sd = tmp;
8619 else if (!want_affine)
8620 break;
8621 }
8622
8623 if (unlikely(sd)) {
8624 /* Slow path */
8625 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8626 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
8627 /* Fast path */
8628 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8629 }
8630 rcu_read_unlock();
8631
8632 return new_cpu;
8633 }
8634
8635 /*
8636 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8637 * cfs_rq_of(p) references at time of call are still valid and identify the
8638 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8639 */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)8640 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8641 {
8642 struct sched_entity *se = &p->se;
8643
8644 if (!task_on_rq_migrating(p)) {
8645 remove_entity_load_avg(se);
8646
8647 /*
8648 * Here, the task's PELT values have been updated according to
8649 * the current rq's clock. But if that clock hasn't been
8650 * updated in a while, a substantial idle time will be missed,
8651 * leading to an inflation after wake-up on the new rq.
8652 *
8653 * Estimate the missing time from the cfs_rq last_update_time
8654 * and update sched_avg to improve the PELT continuity after
8655 * migration.
8656 */
8657 migrate_se_pelt_lag(se);
8658 }
8659
8660 /* Tell new CPU we are migrated */
8661 se->avg.last_update_time = 0;
8662
8663 update_scan_period(p, new_cpu);
8664 }
8665
task_dead_fair(struct task_struct * p)8666 static void task_dead_fair(struct task_struct *p)
8667 {
8668 struct sched_entity *se = &p->se;
8669
8670 if (se->sched_delayed) {
8671 struct rq_flags rf;
8672 struct rq *rq;
8673
8674 rq = task_rq_lock(p, &rf);
8675 if (se->sched_delayed) {
8676 update_rq_clock(rq);
8677 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
8678 }
8679 task_rq_unlock(rq, p, &rf);
8680 }
8681
8682 remove_entity_load_avg(se);
8683 }
8684
8685 /*
8686 * Set the max capacity the task is allowed to run at for misfit detection.
8687 */
set_task_max_allowed_capacity(struct task_struct * p)8688 static void set_task_max_allowed_capacity(struct task_struct *p)
8689 {
8690 struct asym_cap_data *entry;
8691
8692 if (!sched_asym_cpucap_active())
8693 return;
8694
8695 rcu_read_lock();
8696 list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8697 cpumask_t *cpumask;
8698
8699 cpumask = cpu_capacity_span(entry);
8700 if (!cpumask_intersects(p->cpus_ptr, cpumask))
8701 continue;
8702
8703 p->max_allowed_capacity = entry->capacity;
8704 break;
8705 }
8706 rcu_read_unlock();
8707 }
8708
set_cpus_allowed_fair(struct task_struct * p,struct affinity_context * ctx)8709 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8710 {
8711 set_cpus_allowed_common(p, ctx);
8712 set_task_max_allowed_capacity(p);
8713 }
8714
8715 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8716 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8717 {
8718 if (sched_fair_runnable(rq))
8719 return 1;
8720
8721 return sched_balance_newidle(rq, rf) != 0;
8722 }
8723
set_next_buddy(struct sched_entity * se)8724 static void set_next_buddy(struct sched_entity *se)
8725 {
8726 for_each_sched_entity(se) {
8727 if (WARN_ON_ONCE(!se->on_rq))
8728 return;
8729 if (se_is_idle(se))
8730 return;
8731 cfs_rq_of(se)->next = se;
8732 }
8733 }
8734
8735 /*
8736 * Preempt the current task with a newly woken task if needed:
8737 */
check_preempt_wakeup_fair(struct rq * rq,struct task_struct * p,int wake_flags)8738 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8739 {
8740 struct task_struct *donor = rq->donor;
8741 struct sched_entity *se = &donor->se, *pse = &p->se;
8742 struct cfs_rq *cfs_rq = task_cfs_rq(donor);
8743 int cse_is_idle, pse_is_idle;
8744 bool do_preempt_short = false;
8745
8746 if (unlikely(se == pse))
8747 return;
8748
8749 /*
8750 * This is possible from callers such as attach_tasks(), in which we
8751 * unconditionally wakeup_preempt() after an enqueue (which may have
8752 * lead to a throttle). This both saves work and prevents false
8753 * next-buddy nomination below.
8754 */
8755 if (task_is_throttled(p))
8756 return;
8757
8758 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) {
8759 set_next_buddy(pse);
8760 }
8761
8762 /*
8763 * We can come here with TIF_NEED_RESCHED already set from new task
8764 * wake up path.
8765 *
8766 * Note: this also catches the edge-case of curr being in a throttled
8767 * group (e.g. via set_curr_task), since update_curr() (in the
8768 * enqueue of curr) will have resulted in resched being set. This
8769 * prevents us from potentially nominating it as a false LAST_BUDDY
8770 * below.
8771 */
8772 if (test_tsk_need_resched(rq->curr))
8773 return;
8774
8775 if (!sched_feat(WAKEUP_PREEMPTION))
8776 return;
8777
8778 find_matching_se(&se, &pse);
8779 WARN_ON_ONCE(!pse);
8780
8781 cse_is_idle = se_is_idle(se);
8782 pse_is_idle = se_is_idle(pse);
8783
8784 /*
8785 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8786 * in the inverse case).
8787 */
8788 if (cse_is_idle && !pse_is_idle) {
8789 /*
8790 * When non-idle entity preempt an idle entity,
8791 * don't give idle entity slice protection.
8792 */
8793 do_preempt_short = true;
8794 goto preempt;
8795 }
8796
8797 if (cse_is_idle != pse_is_idle)
8798 return;
8799
8800 /*
8801 * BATCH and IDLE tasks do not preempt others.
8802 */
8803 if (unlikely(!normal_policy(p->policy)))
8804 return;
8805
8806 cfs_rq = cfs_rq_of(se);
8807 update_curr(cfs_rq);
8808 /*
8809 * If @p has a shorter slice than current and @p is eligible, override
8810 * current's slice protection in order to allow preemption.
8811 */
8812 do_preempt_short = sched_feat(PREEMPT_SHORT) && (pse->slice < se->slice);
8813
8814 /*
8815 * If @p has become the most eligible task, force preemption.
8816 */
8817 if (__pick_eevdf(cfs_rq, !do_preempt_short) == pse)
8818 goto preempt;
8819
8820 if (sched_feat(RUN_TO_PARITY) && do_preempt_short)
8821 update_protect_slice(cfs_rq, se);
8822
8823 return;
8824
8825 preempt:
8826 if (do_preempt_short)
8827 cancel_protect_slice(se);
8828
8829 resched_curr_lazy(rq);
8830 }
8831
pick_task_fair(struct rq * rq)8832 static struct task_struct *pick_task_fair(struct rq *rq)
8833 {
8834 struct sched_entity *se;
8835 struct cfs_rq *cfs_rq;
8836 struct task_struct *p;
8837 bool throttled;
8838
8839 again:
8840 cfs_rq = &rq->cfs;
8841 if (!cfs_rq->nr_queued)
8842 return NULL;
8843
8844 throttled = false;
8845
8846 do {
8847 /* Might not have done put_prev_entity() */
8848 if (cfs_rq->curr && cfs_rq->curr->on_rq)
8849 update_curr(cfs_rq);
8850
8851 throttled |= check_cfs_rq_runtime(cfs_rq);
8852
8853 se = pick_next_entity(rq, cfs_rq);
8854 if (!se)
8855 goto again;
8856 cfs_rq = group_cfs_rq(se);
8857 } while (cfs_rq);
8858
8859 p = task_of(se);
8860 if (unlikely(throttled))
8861 task_throttle_setup_work(p);
8862 return p;
8863 }
8864
8865 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8866 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8867
8868 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8869 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8870 {
8871 struct sched_entity *se;
8872 struct task_struct *p;
8873 int new_tasks;
8874
8875 again:
8876 p = pick_task_fair(rq);
8877 if (!p)
8878 goto idle;
8879 se = &p->se;
8880
8881 #ifdef CONFIG_FAIR_GROUP_SCHED
8882 if (prev->sched_class != &fair_sched_class)
8883 goto simple;
8884
8885 __put_prev_set_next_dl_server(rq, prev, p);
8886
8887 /*
8888 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8889 * likely that a next task is from the same cgroup as the current.
8890 *
8891 * Therefore attempt to avoid putting and setting the entire cgroup
8892 * hierarchy, only change the part that actually changes.
8893 *
8894 * Since we haven't yet done put_prev_entity and if the selected task
8895 * is a different task than we started out with, try and touch the
8896 * least amount of cfs_rqs.
8897 */
8898 if (prev != p) {
8899 struct sched_entity *pse = &prev->se;
8900 struct cfs_rq *cfs_rq;
8901
8902 while (!(cfs_rq = is_same_group(se, pse))) {
8903 int se_depth = se->depth;
8904 int pse_depth = pse->depth;
8905
8906 if (se_depth <= pse_depth) {
8907 put_prev_entity(cfs_rq_of(pse), pse);
8908 pse = parent_entity(pse);
8909 }
8910 if (se_depth >= pse_depth) {
8911 set_next_entity(cfs_rq_of(se), se);
8912 se = parent_entity(se);
8913 }
8914 }
8915
8916 put_prev_entity(cfs_rq, pse);
8917 set_next_entity(cfs_rq, se);
8918
8919 __set_next_task_fair(rq, p, true);
8920 }
8921
8922 return p;
8923
8924 simple:
8925 #endif /* CONFIG_FAIR_GROUP_SCHED */
8926 put_prev_set_next_task(rq, prev, p);
8927 return p;
8928
8929 idle:
8930 if (rf) {
8931 new_tasks = sched_balance_newidle(rq, rf);
8932
8933 /*
8934 * Because sched_balance_newidle() releases (and re-acquires)
8935 * rq->lock, it is possible for any higher priority task to
8936 * appear. In that case we must re-start the pick_next_entity()
8937 * loop.
8938 */
8939 if (new_tasks < 0)
8940 return RETRY_TASK;
8941
8942 if (new_tasks > 0)
8943 goto again;
8944 }
8945
8946 /*
8947 * rq is about to be idle, check if we need to update the
8948 * lost_idle_time of clock_pelt
8949 */
8950 update_idle_rq_clock_pelt(rq);
8951
8952 return NULL;
8953 }
8954
__pick_next_task_fair(struct rq * rq,struct task_struct * prev)8955 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
8956 {
8957 return pick_next_task_fair(rq, prev, NULL);
8958 }
8959
fair_server_pick_task(struct sched_dl_entity * dl_se)8960 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
8961 {
8962 return pick_task_fair(dl_se->rq);
8963 }
8964
fair_server_init(struct rq * rq)8965 void fair_server_init(struct rq *rq)
8966 {
8967 struct sched_dl_entity *dl_se = &rq->fair_server;
8968
8969 init_dl_entity(dl_se);
8970
8971 dl_server_init(dl_se, rq, fair_server_pick_task);
8972 }
8973
8974 /*
8975 * Account for a descheduled task:
8976 */
put_prev_task_fair(struct rq * rq,struct task_struct * prev,struct task_struct * next)8977 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
8978 {
8979 struct sched_entity *se = &prev->se;
8980 struct cfs_rq *cfs_rq;
8981
8982 for_each_sched_entity(se) {
8983 cfs_rq = cfs_rq_of(se);
8984 put_prev_entity(cfs_rq, se);
8985 }
8986 }
8987
8988 /*
8989 * sched_yield() is very simple
8990 */
yield_task_fair(struct rq * rq)8991 static void yield_task_fair(struct rq *rq)
8992 {
8993 struct task_struct *curr = rq->curr;
8994 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8995 struct sched_entity *se = &curr->se;
8996
8997 /*
8998 * Are we the only task in the tree?
8999 */
9000 if (unlikely(rq->nr_running == 1))
9001 return;
9002
9003 clear_buddies(cfs_rq, se);
9004
9005 update_rq_clock(rq);
9006 /*
9007 * Update run-time statistics of the 'current'.
9008 */
9009 update_curr(cfs_rq);
9010 /*
9011 * Tell update_rq_clock() that we've just updated,
9012 * so we don't do microscopic update in schedule()
9013 * and double the fastpath cost.
9014 */
9015 rq_clock_skip_update(rq);
9016
9017 se->deadline += calc_delta_fair(se->slice, se);
9018 }
9019
yield_to_task_fair(struct rq * rq,struct task_struct * p)9020 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
9021 {
9022 struct sched_entity *se = &p->se;
9023
9024 /* !se->on_rq also covers throttled task */
9025 if (!se->on_rq)
9026 return false;
9027
9028 /* Tell the scheduler that we'd really like se to run next. */
9029 set_next_buddy(se);
9030
9031 yield_task_fair(rq);
9032
9033 return true;
9034 }
9035
9036 /**************************************************
9037 * Fair scheduling class load-balancing methods.
9038 *
9039 * BASICS
9040 *
9041 * The purpose of load-balancing is to achieve the same basic fairness the
9042 * per-CPU scheduler provides, namely provide a proportional amount of compute
9043 * time to each task. This is expressed in the following equation:
9044 *
9045 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
9046 *
9047 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
9048 * W_i,0 is defined as:
9049 *
9050 * W_i,0 = \Sum_j w_i,j (2)
9051 *
9052 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
9053 * is derived from the nice value as per sched_prio_to_weight[].
9054 *
9055 * The weight average is an exponential decay average of the instantaneous
9056 * weight:
9057 *
9058 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
9059 *
9060 * C_i is the compute capacity of CPU i, typically it is the
9061 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
9062 * can also include other factors [XXX].
9063 *
9064 * To achieve this balance we define a measure of imbalance which follows
9065 * directly from (1):
9066 *
9067 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
9068 *
9069 * We them move tasks around to minimize the imbalance. In the continuous
9070 * function space it is obvious this converges, in the discrete case we get
9071 * a few fun cases generally called infeasible weight scenarios.
9072 *
9073 * [XXX expand on:
9074 * - infeasible weights;
9075 * - local vs global optima in the discrete case. ]
9076 *
9077 *
9078 * SCHED DOMAINS
9079 *
9080 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
9081 * for all i,j solution, we create a tree of CPUs that follows the hardware
9082 * topology where each level pairs two lower groups (or better). This results
9083 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
9084 * tree to only the first of the previous level and we decrease the frequency
9085 * of load-balance at each level inversely proportional to the number of CPUs in
9086 * the groups.
9087 *
9088 * This yields:
9089 *
9090 * log_2 n 1 n
9091 * \Sum { --- * --- * 2^i } = O(n) (5)
9092 * i = 0 2^i 2^i
9093 * `- size of each group
9094 * | | `- number of CPUs doing load-balance
9095 * | `- freq
9096 * `- sum over all levels
9097 *
9098 * Coupled with a limit on how many tasks we can migrate every balance pass,
9099 * this makes (5) the runtime complexity of the balancer.
9100 *
9101 * An important property here is that each CPU is still (indirectly) connected
9102 * to every other CPU in at most O(log n) steps:
9103 *
9104 * The adjacency matrix of the resulting graph is given by:
9105 *
9106 * log_2 n
9107 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
9108 * k = 0
9109 *
9110 * And you'll find that:
9111 *
9112 * A^(log_2 n)_i,j != 0 for all i,j (7)
9113 *
9114 * Showing there's indeed a path between every CPU in at most O(log n) steps.
9115 * The task movement gives a factor of O(m), giving a convergence complexity
9116 * of:
9117 *
9118 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
9119 *
9120 *
9121 * WORK CONSERVING
9122 *
9123 * In order to avoid CPUs going idle while there's still work to do, new idle
9124 * balancing is more aggressive and has the newly idle CPU iterate up the domain
9125 * tree itself instead of relying on other CPUs to bring it work.
9126 *
9127 * This adds some complexity to both (5) and (8) but it reduces the total idle
9128 * time.
9129 *
9130 * [XXX more?]
9131 *
9132 *
9133 * CGROUPS
9134 *
9135 * Cgroups make a horror show out of (2), instead of a simple sum we get:
9136 *
9137 * s_k,i
9138 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
9139 * S_k
9140 *
9141 * Where
9142 *
9143 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
9144 *
9145 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9146 *
9147 * The big problem is S_k, its a global sum needed to compute a local (W_i)
9148 * property.
9149 *
9150 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9151 * rewrite all of this once again.]
9152 */
9153
9154 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
9155
9156 enum fbq_type { regular, remote, all };
9157
9158 /*
9159 * 'group_type' describes the group of CPUs at the moment of load balancing.
9160 *
9161 * The enum is ordered by pulling priority, with the group with lowest priority
9162 * first so the group_type can simply be compared when selecting the busiest
9163 * group. See update_sd_pick_busiest().
9164 */
9165 enum group_type {
9166 /* The group has spare capacity that can be used to run more tasks. */
9167 group_has_spare = 0,
9168 /*
9169 * The group is fully used and the tasks don't compete for more CPU
9170 * cycles. Nevertheless, some tasks might wait before running.
9171 */
9172 group_fully_busy,
9173 /*
9174 * One task doesn't fit with CPU's capacity and must be migrated to a
9175 * more powerful CPU.
9176 */
9177 group_misfit_task,
9178 /*
9179 * Balance SMT group that's fully busy. Can benefit from migration
9180 * a task on SMT with busy sibling to another CPU on idle core.
9181 */
9182 group_smt_balance,
9183 /*
9184 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9185 * and the task should be migrated to it instead of running on the
9186 * current CPU.
9187 */
9188 group_asym_packing,
9189 /*
9190 * The tasks' affinity constraints previously prevented the scheduler
9191 * from balancing the load across the system.
9192 */
9193 group_imbalanced,
9194 /*
9195 * The CPU is overloaded and can't provide expected CPU cycles to all
9196 * tasks.
9197 */
9198 group_overloaded
9199 };
9200
9201 enum migration_type {
9202 migrate_load = 0,
9203 migrate_util,
9204 migrate_task,
9205 migrate_misfit
9206 };
9207
9208 #define LBF_ALL_PINNED 0x01
9209 #define LBF_NEED_BREAK 0x02
9210 #define LBF_DST_PINNED 0x04
9211 #define LBF_SOME_PINNED 0x08
9212 #define LBF_ACTIVE_LB 0x10
9213
9214 struct lb_env {
9215 struct sched_domain *sd;
9216
9217 struct rq *src_rq;
9218 int src_cpu;
9219
9220 int dst_cpu;
9221 struct rq *dst_rq;
9222
9223 struct cpumask *dst_grpmask;
9224 int new_dst_cpu;
9225 enum cpu_idle_type idle;
9226 long imbalance;
9227 /* The set of CPUs under consideration for load-balancing */
9228 struct cpumask *cpus;
9229
9230 unsigned int flags;
9231
9232 unsigned int loop;
9233 unsigned int loop_break;
9234 unsigned int loop_max;
9235
9236 enum fbq_type fbq_type;
9237 enum migration_type migration_type;
9238 struct list_head tasks;
9239 };
9240
9241 /*
9242 * Is this task likely cache-hot:
9243 */
task_hot(struct task_struct * p,struct lb_env * env)9244 static int task_hot(struct task_struct *p, struct lb_env *env)
9245 {
9246 s64 delta;
9247
9248 lockdep_assert_rq_held(env->src_rq);
9249
9250 if (p->sched_class != &fair_sched_class)
9251 return 0;
9252
9253 if (unlikely(task_has_idle_policy(p)))
9254 return 0;
9255
9256 /* SMT siblings share cache */
9257 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9258 return 0;
9259
9260 /*
9261 * Buddy candidates are cache hot:
9262 */
9263 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9264 (&p->se == cfs_rq_of(&p->se)->next))
9265 return 1;
9266
9267 if (sysctl_sched_migration_cost == -1)
9268 return 1;
9269
9270 /*
9271 * Don't migrate task if the task's cookie does not match
9272 * with the destination CPU's core cookie.
9273 */
9274 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9275 return 1;
9276
9277 if (sysctl_sched_migration_cost == 0)
9278 return 0;
9279
9280 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9281
9282 return delta < (s64)sysctl_sched_migration_cost;
9283 }
9284
9285 #ifdef CONFIG_NUMA_BALANCING
9286 /*
9287 * Returns a positive value, if task migration degrades locality.
9288 * Returns 0, if task migration is not affected by locality.
9289 * Returns a negative value, if task migration improves locality i.e migration preferred.
9290 */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9291 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9292 {
9293 struct numa_group *numa_group = rcu_dereference(p->numa_group);
9294 unsigned long src_weight, dst_weight;
9295 int src_nid, dst_nid, dist;
9296
9297 if (!static_branch_likely(&sched_numa_balancing))
9298 return 0;
9299
9300 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9301 return 0;
9302
9303 src_nid = cpu_to_node(env->src_cpu);
9304 dst_nid = cpu_to_node(env->dst_cpu);
9305
9306 if (src_nid == dst_nid)
9307 return 0;
9308
9309 /* Migrating away from the preferred node is always bad. */
9310 if (src_nid == p->numa_preferred_nid) {
9311 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9312 return 1;
9313 else
9314 return 0;
9315 }
9316
9317 /* Encourage migration to the preferred node. */
9318 if (dst_nid == p->numa_preferred_nid)
9319 return -1;
9320
9321 /* Leaving a core idle is often worse than degrading locality. */
9322 if (env->idle == CPU_IDLE)
9323 return 0;
9324
9325 dist = node_distance(src_nid, dst_nid);
9326 if (numa_group) {
9327 src_weight = group_weight(p, src_nid, dist);
9328 dst_weight = group_weight(p, dst_nid, dist);
9329 } else {
9330 src_weight = task_weight(p, src_nid, dist);
9331 dst_weight = task_weight(p, dst_nid, dist);
9332 }
9333
9334 return src_weight - dst_weight;
9335 }
9336
9337 #else /* !CONFIG_NUMA_BALANCING: */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9338 static inline long migrate_degrades_locality(struct task_struct *p,
9339 struct lb_env *env)
9340 {
9341 return 0;
9342 }
9343 #endif /* !CONFIG_NUMA_BALANCING */
9344
9345 /*
9346 * Check whether the task is ineligible on the destination cpu
9347 *
9348 * When the PLACE_LAG scheduling feature is enabled and
9349 * dst_cfs_rq->nr_queued is greater than 1, if the task
9350 * is ineligible, it will also be ineligible when
9351 * it is migrated to the destination cpu.
9352 */
task_is_ineligible_on_dst_cpu(struct task_struct * p,int dest_cpu)9353 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu)
9354 {
9355 struct cfs_rq *dst_cfs_rq;
9356
9357 #ifdef CONFIG_FAIR_GROUP_SCHED
9358 dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu];
9359 #else
9360 dst_cfs_rq = &cpu_rq(dest_cpu)->cfs;
9361 #endif
9362 if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued &&
9363 !entity_eligible(task_cfs_rq(p), &p->se))
9364 return 1;
9365
9366 return 0;
9367 }
9368
9369 /*
9370 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9371 */
9372 static
can_migrate_task(struct task_struct * p,struct lb_env * env)9373 int can_migrate_task(struct task_struct *p, struct lb_env *env)
9374 {
9375 long degrades, hot;
9376
9377 lockdep_assert_rq_held(env->src_rq);
9378 if (p->sched_task_hot)
9379 p->sched_task_hot = 0;
9380
9381 /*
9382 * We do not migrate tasks that are:
9383 * 1) delayed dequeued unless we migrate load, or
9384 * 2) target cfs_rq is in throttled hierarchy, or
9385 * 3) cannot be migrated to this CPU due to cpus_ptr, or
9386 * 4) running (obviously), or
9387 * 5) are cache-hot on their current CPU, or
9388 * 6) are blocked on mutexes (if SCHED_PROXY_EXEC is enabled)
9389 */
9390 if ((p->se.sched_delayed) && (env->migration_type != migrate_load))
9391 return 0;
9392
9393 if (lb_throttled_hierarchy(p, env->dst_cpu))
9394 return 0;
9395
9396 /*
9397 * We want to prioritize the migration of eligible tasks.
9398 * For ineligible tasks we soft-limit them and only allow
9399 * them to migrate when nr_balance_failed is non-zero to
9400 * avoid load-balancing trying very hard to balance the load.
9401 */
9402 if (!env->sd->nr_balance_failed &&
9403 task_is_ineligible_on_dst_cpu(p, env->dst_cpu))
9404 return 0;
9405
9406 /* Disregard percpu kthreads; they are where they need to be. */
9407 if (kthread_is_per_cpu(p))
9408 return 0;
9409
9410 if (task_is_blocked(p))
9411 return 0;
9412
9413 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9414 int cpu;
9415
9416 schedstat_inc(p->stats.nr_failed_migrations_affine);
9417
9418 env->flags |= LBF_SOME_PINNED;
9419
9420 /*
9421 * Remember if this task can be migrated to any other CPU in
9422 * our sched_group. We may want to revisit it if we couldn't
9423 * meet load balance goals by pulling other tasks on src_cpu.
9424 *
9425 * Avoid computing new_dst_cpu
9426 * - for NEWLY_IDLE
9427 * - if we have already computed one in current iteration
9428 * - if it's an active balance
9429 */
9430 if (env->idle == CPU_NEWLY_IDLE ||
9431 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9432 return 0;
9433
9434 /* Prevent to re-select dst_cpu via env's CPUs: */
9435 cpu = cpumask_first_and_and(env->dst_grpmask, env->cpus, p->cpus_ptr);
9436
9437 if (cpu < nr_cpu_ids) {
9438 env->flags |= LBF_DST_PINNED;
9439 env->new_dst_cpu = cpu;
9440 }
9441
9442 return 0;
9443 }
9444
9445 /* Record that we found at least one task that could run on dst_cpu */
9446 env->flags &= ~LBF_ALL_PINNED;
9447
9448 if (task_on_cpu(env->src_rq, p) ||
9449 task_current_donor(env->src_rq, p)) {
9450 schedstat_inc(p->stats.nr_failed_migrations_running);
9451 return 0;
9452 }
9453
9454 /*
9455 * Aggressive migration if:
9456 * 1) active balance
9457 * 2) destination numa is preferred
9458 * 3) task is cache cold, or
9459 * 4) too many balance attempts have failed.
9460 */
9461 if (env->flags & LBF_ACTIVE_LB)
9462 return 1;
9463
9464 degrades = migrate_degrades_locality(p, env);
9465 if (!degrades)
9466 hot = task_hot(p, env);
9467 else
9468 hot = degrades > 0;
9469
9470 if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9471 if (hot)
9472 p->sched_task_hot = 1;
9473 return 1;
9474 }
9475
9476 schedstat_inc(p->stats.nr_failed_migrations_hot);
9477 return 0;
9478 }
9479
9480 /*
9481 * detach_task() -- detach the task for the migration specified in env
9482 */
detach_task(struct task_struct * p,struct lb_env * env)9483 static void detach_task(struct task_struct *p, struct lb_env *env)
9484 {
9485 lockdep_assert_rq_held(env->src_rq);
9486
9487 if (p->sched_task_hot) {
9488 p->sched_task_hot = 0;
9489 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9490 schedstat_inc(p->stats.nr_forced_migrations);
9491 }
9492
9493 WARN_ON(task_current(env->src_rq, p));
9494 WARN_ON(task_current_donor(env->src_rq, p));
9495
9496 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9497 set_task_cpu(p, env->dst_cpu);
9498 }
9499
9500 /*
9501 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9502 * part of active balancing operations within "domain".
9503 *
9504 * Returns a task if successful and NULL otherwise.
9505 */
detach_one_task(struct lb_env * env)9506 static struct task_struct *detach_one_task(struct lb_env *env)
9507 {
9508 struct task_struct *p;
9509
9510 lockdep_assert_rq_held(env->src_rq);
9511
9512 list_for_each_entry_reverse(p,
9513 &env->src_rq->cfs_tasks, se.group_node) {
9514 if (!can_migrate_task(p, env))
9515 continue;
9516
9517 detach_task(p, env);
9518
9519 /*
9520 * Right now, this is only the second place where
9521 * lb_gained[env->idle] is updated (other is detach_tasks)
9522 * so we can safely collect stats here rather than
9523 * inside detach_tasks().
9524 */
9525 schedstat_inc(env->sd->lb_gained[env->idle]);
9526 return p;
9527 }
9528 return NULL;
9529 }
9530
9531 /*
9532 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9533 * busiest_rq, as part of a balancing operation within domain "sd".
9534 *
9535 * Returns number of detached tasks if successful and 0 otherwise.
9536 */
detach_tasks(struct lb_env * env)9537 static int detach_tasks(struct lb_env *env)
9538 {
9539 struct list_head *tasks = &env->src_rq->cfs_tasks;
9540 unsigned long util, load;
9541 struct task_struct *p;
9542 int detached = 0;
9543
9544 lockdep_assert_rq_held(env->src_rq);
9545
9546 /*
9547 * Source run queue has been emptied by another CPU, clear
9548 * LBF_ALL_PINNED flag as we will not test any task.
9549 */
9550 if (env->src_rq->nr_running <= 1) {
9551 env->flags &= ~LBF_ALL_PINNED;
9552 return 0;
9553 }
9554
9555 if (env->imbalance <= 0)
9556 return 0;
9557
9558 while (!list_empty(tasks)) {
9559 /*
9560 * We don't want to steal all, otherwise we may be treated likewise,
9561 * which could at worst lead to a livelock crash.
9562 */
9563 if (env->idle && env->src_rq->nr_running <= 1)
9564 break;
9565
9566 env->loop++;
9567 /* We've more or less seen every task there is, call it quits */
9568 if (env->loop > env->loop_max)
9569 break;
9570
9571 /* take a breather every nr_migrate tasks */
9572 if (env->loop > env->loop_break) {
9573 env->loop_break += SCHED_NR_MIGRATE_BREAK;
9574 env->flags |= LBF_NEED_BREAK;
9575 break;
9576 }
9577
9578 p = list_last_entry(tasks, struct task_struct, se.group_node);
9579
9580 if (!can_migrate_task(p, env))
9581 goto next;
9582
9583 switch (env->migration_type) {
9584 case migrate_load:
9585 /*
9586 * Depending of the number of CPUs and tasks and the
9587 * cgroup hierarchy, task_h_load() can return a null
9588 * value. Make sure that env->imbalance decreases
9589 * otherwise detach_tasks() will stop only after
9590 * detaching up to loop_max tasks.
9591 */
9592 load = max_t(unsigned long, task_h_load(p), 1);
9593
9594 if (sched_feat(LB_MIN) &&
9595 load < 16 && !env->sd->nr_balance_failed)
9596 goto next;
9597
9598 /*
9599 * Make sure that we don't migrate too much load.
9600 * Nevertheless, let relax the constraint if
9601 * scheduler fails to find a good waiting task to
9602 * migrate.
9603 */
9604 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9605 goto next;
9606
9607 env->imbalance -= load;
9608 break;
9609
9610 case migrate_util:
9611 util = task_util_est(p);
9612
9613 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9614 goto next;
9615
9616 env->imbalance -= util;
9617 break;
9618
9619 case migrate_task:
9620 env->imbalance--;
9621 break;
9622
9623 case migrate_misfit:
9624 /* This is not a misfit task */
9625 if (task_fits_cpu(p, env->src_cpu))
9626 goto next;
9627
9628 env->imbalance = 0;
9629 break;
9630 }
9631
9632 detach_task(p, env);
9633 list_add(&p->se.group_node, &env->tasks);
9634
9635 detached++;
9636
9637 #ifdef CONFIG_PREEMPTION
9638 /*
9639 * NEWIDLE balancing is a source of latency, so preemptible
9640 * kernels will stop after the first task is detached to minimize
9641 * the critical section.
9642 */
9643 if (env->idle == CPU_NEWLY_IDLE)
9644 break;
9645 #endif
9646
9647 /*
9648 * We only want to steal up to the prescribed amount of
9649 * load/util/tasks.
9650 */
9651 if (env->imbalance <= 0)
9652 break;
9653
9654 continue;
9655 next:
9656 if (p->sched_task_hot)
9657 schedstat_inc(p->stats.nr_failed_migrations_hot);
9658
9659 list_move(&p->se.group_node, tasks);
9660 }
9661
9662 /*
9663 * Right now, this is one of only two places we collect this stat
9664 * so we can safely collect detach_one_task() stats here rather
9665 * than inside detach_one_task().
9666 */
9667 schedstat_add(env->sd->lb_gained[env->idle], detached);
9668
9669 return detached;
9670 }
9671
9672 /*
9673 * attach_task() -- attach the task detached by detach_task() to its new rq.
9674 */
attach_task(struct rq * rq,struct task_struct * p)9675 static void attach_task(struct rq *rq, struct task_struct *p)
9676 {
9677 lockdep_assert_rq_held(rq);
9678
9679 WARN_ON_ONCE(task_rq(p) != rq);
9680 activate_task(rq, p, ENQUEUE_NOCLOCK);
9681 wakeup_preempt(rq, p, 0);
9682 }
9683
9684 /*
9685 * attach_one_task() -- attaches the task returned from detach_one_task() to
9686 * its new rq.
9687 */
attach_one_task(struct rq * rq,struct task_struct * p)9688 static void attach_one_task(struct rq *rq, struct task_struct *p)
9689 {
9690 struct rq_flags rf;
9691
9692 rq_lock(rq, &rf);
9693 update_rq_clock(rq);
9694 attach_task(rq, p);
9695 rq_unlock(rq, &rf);
9696 }
9697
9698 /*
9699 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9700 * new rq.
9701 */
attach_tasks(struct lb_env * env)9702 static void attach_tasks(struct lb_env *env)
9703 {
9704 struct list_head *tasks = &env->tasks;
9705 struct task_struct *p;
9706 struct rq_flags rf;
9707
9708 rq_lock(env->dst_rq, &rf);
9709 update_rq_clock(env->dst_rq);
9710
9711 while (!list_empty(tasks)) {
9712 p = list_first_entry(tasks, struct task_struct, se.group_node);
9713 list_del_init(&p->se.group_node);
9714
9715 attach_task(env->dst_rq, p);
9716 }
9717
9718 rq_unlock(env->dst_rq, &rf);
9719 }
9720
9721 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9722 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9723 {
9724 if (cfs_rq->avg.load_avg)
9725 return true;
9726
9727 if (cfs_rq->avg.util_avg)
9728 return true;
9729
9730 return false;
9731 }
9732
others_have_blocked(struct rq * rq)9733 static inline bool others_have_blocked(struct rq *rq)
9734 {
9735 if (cpu_util_rt(rq))
9736 return true;
9737
9738 if (cpu_util_dl(rq))
9739 return true;
9740
9741 if (hw_load_avg(rq))
9742 return true;
9743
9744 if (cpu_util_irq(rq))
9745 return true;
9746
9747 return false;
9748 }
9749
update_blocked_load_tick(struct rq * rq)9750 static inline void update_blocked_load_tick(struct rq *rq)
9751 {
9752 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9753 }
9754
update_blocked_load_status(struct rq * rq,bool has_blocked)9755 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9756 {
9757 if (!has_blocked)
9758 rq->has_blocked_load = 0;
9759 }
9760 #else /* !CONFIG_NO_HZ_COMMON: */
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9761 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)9762 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)9763 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)9764 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9765 #endif /* !CONFIG_NO_HZ_COMMON */
9766
__update_blocked_others(struct rq * rq,bool * done)9767 static bool __update_blocked_others(struct rq *rq, bool *done)
9768 {
9769 bool updated;
9770
9771 /*
9772 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9773 * DL and IRQ signals have been updated before updating CFS.
9774 */
9775 updated = update_other_load_avgs(rq);
9776
9777 if (others_have_blocked(rq))
9778 *done = false;
9779
9780 return updated;
9781 }
9782
9783 #ifdef CONFIG_FAIR_GROUP_SCHED
9784
__update_blocked_fair(struct rq * rq,bool * done)9785 static bool __update_blocked_fair(struct rq *rq, bool *done)
9786 {
9787 struct cfs_rq *cfs_rq, *pos;
9788 bool decayed = false;
9789 int cpu = cpu_of(rq);
9790
9791 /*
9792 * Iterates the task_group tree in a bottom up fashion, see
9793 * list_add_leaf_cfs_rq() for details.
9794 */
9795 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9796 struct sched_entity *se;
9797
9798 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9799 update_tg_load_avg(cfs_rq);
9800
9801 if (cfs_rq->nr_queued == 0)
9802 update_idle_cfs_rq_clock_pelt(cfs_rq);
9803
9804 if (cfs_rq == &rq->cfs)
9805 decayed = true;
9806 }
9807
9808 /* Propagate pending load changes to the parent, if any: */
9809 se = cfs_rq->tg->se[cpu];
9810 if (se && !skip_blocked_update(se))
9811 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9812
9813 /*
9814 * There can be a lot of idle CPU cgroups. Don't let fully
9815 * decayed cfs_rqs linger on the list.
9816 */
9817 if (cfs_rq_is_decayed(cfs_rq))
9818 list_del_leaf_cfs_rq(cfs_rq);
9819
9820 /* Don't need periodic decay once load/util_avg are null */
9821 if (cfs_rq_has_blocked(cfs_rq))
9822 *done = false;
9823 }
9824
9825 return decayed;
9826 }
9827
9828 /*
9829 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9830 * This needs to be done in a top-down fashion because the load of a child
9831 * group is a fraction of its parents load.
9832 */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)9833 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9834 {
9835 struct rq *rq = rq_of(cfs_rq);
9836 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9837 unsigned long now = jiffies;
9838 unsigned long load;
9839
9840 if (cfs_rq->last_h_load_update == now)
9841 return;
9842
9843 WRITE_ONCE(cfs_rq->h_load_next, NULL);
9844 for_each_sched_entity(se) {
9845 cfs_rq = cfs_rq_of(se);
9846 WRITE_ONCE(cfs_rq->h_load_next, se);
9847 if (cfs_rq->last_h_load_update == now)
9848 break;
9849 }
9850
9851 if (!se) {
9852 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9853 cfs_rq->last_h_load_update = now;
9854 }
9855
9856 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9857 load = cfs_rq->h_load;
9858 load = div64_ul(load * se->avg.load_avg,
9859 cfs_rq_load_avg(cfs_rq) + 1);
9860 cfs_rq = group_cfs_rq(se);
9861 cfs_rq->h_load = load;
9862 cfs_rq->last_h_load_update = now;
9863 }
9864 }
9865
task_h_load(struct task_struct * p)9866 static unsigned long task_h_load(struct task_struct *p)
9867 {
9868 struct cfs_rq *cfs_rq = task_cfs_rq(p);
9869
9870 update_cfs_rq_h_load(cfs_rq);
9871 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9872 cfs_rq_load_avg(cfs_rq) + 1);
9873 }
9874 #else /* !CONFIG_FAIR_GROUP_SCHED: */
__update_blocked_fair(struct rq * rq,bool * done)9875 static bool __update_blocked_fair(struct rq *rq, bool *done)
9876 {
9877 struct cfs_rq *cfs_rq = &rq->cfs;
9878 bool decayed;
9879
9880 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9881 if (cfs_rq_has_blocked(cfs_rq))
9882 *done = false;
9883
9884 return decayed;
9885 }
9886
task_h_load(struct task_struct * p)9887 static unsigned long task_h_load(struct task_struct *p)
9888 {
9889 return p->se.avg.load_avg;
9890 }
9891 #endif /* !CONFIG_FAIR_GROUP_SCHED */
9892
sched_balance_update_blocked_averages(int cpu)9893 static void sched_balance_update_blocked_averages(int cpu)
9894 {
9895 bool decayed = false, done = true;
9896 struct rq *rq = cpu_rq(cpu);
9897 struct rq_flags rf;
9898
9899 rq_lock_irqsave(rq, &rf);
9900 update_blocked_load_tick(rq);
9901 update_rq_clock(rq);
9902
9903 decayed |= __update_blocked_others(rq, &done);
9904 decayed |= __update_blocked_fair(rq, &done);
9905
9906 update_blocked_load_status(rq, !done);
9907 if (decayed)
9908 cpufreq_update_util(rq, 0);
9909 rq_unlock_irqrestore(rq, &rf);
9910 }
9911
9912 /********** Helpers for sched_balance_find_src_group ************************/
9913
9914 /*
9915 * sg_lb_stats - stats of a sched_group required for load-balancing:
9916 */
9917 struct sg_lb_stats {
9918 unsigned long avg_load; /* Avg load over the CPUs of the group */
9919 unsigned long group_load; /* Total load over the CPUs of the group */
9920 unsigned long group_capacity; /* Capacity over the CPUs of the group */
9921 unsigned long group_util; /* Total utilization over the CPUs of the group */
9922 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9923 unsigned int sum_nr_running; /* Nr of all tasks running in the group */
9924 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9925 unsigned int idle_cpus; /* Nr of idle CPUs in the group */
9926 unsigned int group_weight;
9927 enum group_type group_type;
9928 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9929 unsigned int group_smt_balance; /* Task on busy SMT be moved */
9930 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9931 #ifdef CONFIG_NUMA_BALANCING
9932 unsigned int nr_numa_running;
9933 unsigned int nr_preferred_running;
9934 #endif
9935 };
9936
9937 /*
9938 * sd_lb_stats - stats of a sched_domain required for load-balancing:
9939 */
9940 struct sd_lb_stats {
9941 struct sched_group *busiest; /* Busiest group in this sd */
9942 struct sched_group *local; /* Local group in this sd */
9943 unsigned long total_load; /* Total load of all groups in sd */
9944 unsigned long total_capacity; /* Total capacity of all groups in sd */
9945 unsigned long avg_load; /* Average load across all groups in sd */
9946 unsigned int prefer_sibling; /* Tasks should go to sibling first */
9947
9948 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */
9949 struct sg_lb_stats local_stat; /* Statistics of the local group */
9950 };
9951
init_sd_lb_stats(struct sd_lb_stats * sds)9952 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9953 {
9954 /*
9955 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9956 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9957 * We must however set busiest_stat::group_type and
9958 * busiest_stat::idle_cpus to the worst busiest group because
9959 * update_sd_pick_busiest() reads these before assignment.
9960 */
9961 *sds = (struct sd_lb_stats){
9962 .busiest = NULL,
9963 .local = NULL,
9964 .total_load = 0UL,
9965 .total_capacity = 0UL,
9966 .busiest_stat = {
9967 .idle_cpus = UINT_MAX,
9968 .group_type = group_has_spare,
9969 },
9970 };
9971 }
9972
scale_rt_capacity(int cpu)9973 static unsigned long scale_rt_capacity(int cpu)
9974 {
9975 unsigned long max = get_actual_cpu_capacity(cpu);
9976 struct rq *rq = cpu_rq(cpu);
9977 unsigned long used, free;
9978 unsigned long irq;
9979
9980 irq = cpu_util_irq(rq);
9981
9982 if (unlikely(irq >= max))
9983 return 1;
9984
9985 /*
9986 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9987 * (running and not running) with weights 0 and 1024 respectively.
9988 */
9989 used = cpu_util_rt(rq);
9990 used += cpu_util_dl(rq);
9991
9992 if (unlikely(used >= max))
9993 return 1;
9994
9995 free = max - used;
9996
9997 return scale_irq_capacity(free, irq, max);
9998 }
9999
update_cpu_capacity(struct sched_domain * sd,int cpu)10000 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
10001 {
10002 unsigned long capacity = scale_rt_capacity(cpu);
10003 struct sched_group *sdg = sd->groups;
10004
10005 if (!capacity)
10006 capacity = 1;
10007
10008 cpu_rq(cpu)->cpu_capacity = capacity;
10009 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
10010
10011 sdg->sgc->capacity = capacity;
10012 sdg->sgc->min_capacity = capacity;
10013 sdg->sgc->max_capacity = capacity;
10014 }
10015
update_group_capacity(struct sched_domain * sd,int cpu)10016 void update_group_capacity(struct sched_domain *sd, int cpu)
10017 {
10018 struct sched_domain *child = sd->child;
10019 struct sched_group *group, *sdg = sd->groups;
10020 unsigned long capacity, min_capacity, max_capacity;
10021 unsigned long interval;
10022
10023 interval = msecs_to_jiffies(sd->balance_interval);
10024 interval = clamp(interval, 1UL, max_load_balance_interval);
10025 sdg->sgc->next_update = jiffies + interval;
10026
10027 if (!child) {
10028 update_cpu_capacity(sd, cpu);
10029 return;
10030 }
10031
10032 capacity = 0;
10033 min_capacity = ULONG_MAX;
10034 max_capacity = 0;
10035
10036 if (child->flags & SD_NUMA) {
10037 /*
10038 * SD_NUMA domains cannot assume that child groups
10039 * span the current group.
10040 */
10041
10042 for_each_cpu(cpu, sched_group_span(sdg)) {
10043 unsigned long cpu_cap = capacity_of(cpu);
10044
10045 capacity += cpu_cap;
10046 min_capacity = min(cpu_cap, min_capacity);
10047 max_capacity = max(cpu_cap, max_capacity);
10048 }
10049 } else {
10050 /*
10051 * !SD_NUMA domains can assume that child groups
10052 * span the current group.
10053 */
10054
10055 group = child->groups;
10056 do {
10057 struct sched_group_capacity *sgc = group->sgc;
10058
10059 capacity += sgc->capacity;
10060 min_capacity = min(sgc->min_capacity, min_capacity);
10061 max_capacity = max(sgc->max_capacity, max_capacity);
10062 group = group->next;
10063 } while (group != child->groups);
10064 }
10065
10066 sdg->sgc->capacity = capacity;
10067 sdg->sgc->min_capacity = min_capacity;
10068 sdg->sgc->max_capacity = max_capacity;
10069 }
10070
10071 /*
10072 * Check whether the capacity of the rq has been noticeably reduced by side
10073 * activity. The imbalance_pct is used for the threshold.
10074 * Return true is the capacity is reduced
10075 */
10076 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)10077 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
10078 {
10079 return ((rq->cpu_capacity * sd->imbalance_pct) <
10080 (arch_scale_cpu_capacity(cpu_of(rq)) * 100));
10081 }
10082
10083 /* Check if the rq has a misfit task */
check_misfit_status(struct rq * rq)10084 static inline bool check_misfit_status(struct rq *rq)
10085 {
10086 return rq->misfit_task_load;
10087 }
10088
10089 /*
10090 * Group imbalance indicates (and tries to solve) the problem where balancing
10091 * groups is inadequate due to ->cpus_ptr constraints.
10092 *
10093 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
10094 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
10095 * Something like:
10096 *
10097 * { 0 1 2 3 } { 4 5 6 7 }
10098 * * * * *
10099 *
10100 * If we were to balance group-wise we'd place two tasks in the first group and
10101 * two tasks in the second group. Clearly this is undesired as it will overload
10102 * cpu 3 and leave one of the CPUs in the second group unused.
10103 *
10104 * The current solution to this issue is detecting the skew in the first group
10105 * by noticing the lower domain failed to reach balance and had difficulty
10106 * moving tasks due to affinity constraints.
10107 *
10108 * When this is so detected; this group becomes a candidate for busiest; see
10109 * update_sd_pick_busiest(). And calculate_imbalance() and
10110 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
10111 * to create an effective group imbalance.
10112 *
10113 * This is a somewhat tricky proposition since the next run might not find the
10114 * group imbalance and decide the groups need to be balanced again. A most
10115 * subtle and fragile situation.
10116 */
10117
sg_imbalanced(struct sched_group * group)10118 static inline int sg_imbalanced(struct sched_group *group)
10119 {
10120 return group->sgc->imbalance;
10121 }
10122
10123 /*
10124 * group_has_capacity returns true if the group has spare capacity that could
10125 * be used by some tasks.
10126 * We consider that a group has spare capacity if the number of task is
10127 * smaller than the number of CPUs or if the utilization is lower than the
10128 * available capacity for CFS tasks.
10129 * For the latter, we use a threshold to stabilize the state, to take into
10130 * account the variance of the tasks' load and to return true if the available
10131 * capacity in meaningful for the load balancer.
10132 * As an example, an available capacity of 1% can appear but it doesn't make
10133 * any benefit for the load balance.
10134 */
10135 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10136 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10137 {
10138 if (sgs->sum_nr_running < sgs->group_weight)
10139 return true;
10140
10141 if ((sgs->group_capacity * imbalance_pct) <
10142 (sgs->group_runnable * 100))
10143 return false;
10144
10145 if ((sgs->group_capacity * 100) >
10146 (sgs->group_util * imbalance_pct))
10147 return true;
10148
10149 return false;
10150 }
10151
10152 /*
10153 * group_is_overloaded returns true if the group has more tasks than it can
10154 * handle.
10155 * group_is_overloaded is not equals to !group_has_capacity because a group
10156 * with the exact right number of tasks, has no more spare capacity but is not
10157 * overloaded so both group_has_capacity and group_is_overloaded return
10158 * false.
10159 */
10160 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10161 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10162 {
10163 if (sgs->sum_nr_running <= sgs->group_weight)
10164 return false;
10165
10166 if ((sgs->group_capacity * 100) <
10167 (sgs->group_util * imbalance_pct))
10168 return true;
10169
10170 if ((sgs->group_capacity * imbalance_pct) <
10171 (sgs->group_runnable * 100))
10172 return true;
10173
10174 return false;
10175 }
10176
10177 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)10178 group_type group_classify(unsigned int imbalance_pct,
10179 struct sched_group *group,
10180 struct sg_lb_stats *sgs)
10181 {
10182 if (group_is_overloaded(imbalance_pct, sgs))
10183 return group_overloaded;
10184
10185 if (sg_imbalanced(group))
10186 return group_imbalanced;
10187
10188 if (sgs->group_asym_packing)
10189 return group_asym_packing;
10190
10191 if (sgs->group_smt_balance)
10192 return group_smt_balance;
10193
10194 if (sgs->group_misfit_task_load)
10195 return group_misfit_task;
10196
10197 if (!group_has_capacity(imbalance_pct, sgs))
10198 return group_fully_busy;
10199
10200 return group_has_spare;
10201 }
10202
10203 /**
10204 * sched_use_asym_prio - Check whether asym_packing priority must be used
10205 * @sd: The scheduling domain of the load balancing
10206 * @cpu: A CPU
10207 *
10208 * Always use CPU priority when balancing load between SMT siblings. When
10209 * balancing load between cores, it is not sufficient that @cpu is idle. Only
10210 * use CPU priority if the whole core is idle.
10211 *
10212 * Returns: True if the priority of @cpu must be followed. False otherwise.
10213 */
sched_use_asym_prio(struct sched_domain * sd,int cpu)10214 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10215 {
10216 if (!(sd->flags & SD_ASYM_PACKING))
10217 return false;
10218
10219 if (!sched_smt_active())
10220 return true;
10221
10222 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10223 }
10224
sched_asym(struct sched_domain * sd,int dst_cpu,int src_cpu)10225 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
10226 {
10227 /*
10228 * First check if @dst_cpu can do asym_packing load balance. Only do it
10229 * if it has higher priority than @src_cpu.
10230 */
10231 return sched_use_asym_prio(sd, dst_cpu) &&
10232 sched_asym_prefer(dst_cpu, src_cpu);
10233 }
10234
10235 /**
10236 * sched_group_asym - Check if the destination CPU can do asym_packing balance
10237 * @env: The load balancing environment
10238 * @sgs: Load-balancing statistics of the candidate busiest group
10239 * @group: The candidate busiest group
10240 *
10241 * @env::dst_cpu can do asym_packing if it has higher priority than the
10242 * preferred CPU of @group.
10243 *
10244 * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10245 * otherwise.
10246 */
10247 static inline bool
sched_group_asym(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10248 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
10249 {
10250 /*
10251 * CPU priorities do not make sense for SMT cores with more than one
10252 * busy sibling.
10253 */
10254 if ((group->flags & SD_SHARE_CPUCAPACITY) &&
10255 (sgs->group_weight - sgs->idle_cpus != 1))
10256 return false;
10257
10258 return sched_asym(env->sd, env->dst_cpu, READ_ONCE(group->asym_prefer_cpu));
10259 }
10260
10261 /* One group has more than one SMT CPU while the other group does not */
smt_vs_nonsmt_groups(struct sched_group * sg1,struct sched_group * sg2)10262 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10263 struct sched_group *sg2)
10264 {
10265 if (!sg1 || !sg2)
10266 return false;
10267
10268 return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10269 (sg2->flags & SD_SHARE_CPUCAPACITY);
10270 }
10271
smt_balance(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10272 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10273 struct sched_group *group)
10274 {
10275 if (!env->idle)
10276 return false;
10277
10278 /*
10279 * For SMT source group, it is better to move a task
10280 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10281 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10282 * will not be on.
10283 */
10284 if (group->flags & SD_SHARE_CPUCAPACITY &&
10285 sgs->sum_h_nr_running > 1)
10286 return true;
10287
10288 return false;
10289 }
10290
sibling_imbalance(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * busiest,struct sg_lb_stats * local)10291 static inline long sibling_imbalance(struct lb_env *env,
10292 struct sd_lb_stats *sds,
10293 struct sg_lb_stats *busiest,
10294 struct sg_lb_stats *local)
10295 {
10296 int ncores_busiest, ncores_local;
10297 long imbalance;
10298
10299 if (!env->idle || !busiest->sum_nr_running)
10300 return 0;
10301
10302 ncores_busiest = sds->busiest->cores;
10303 ncores_local = sds->local->cores;
10304
10305 if (ncores_busiest == ncores_local) {
10306 imbalance = busiest->sum_nr_running;
10307 lsub_positive(&imbalance, local->sum_nr_running);
10308 return imbalance;
10309 }
10310
10311 /* Balance such that nr_running/ncores ratio are same on both groups */
10312 imbalance = ncores_local * busiest->sum_nr_running;
10313 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10314 /* Normalize imbalance and do rounding on normalization */
10315 imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10316 imbalance /= ncores_local + ncores_busiest;
10317
10318 /* Take advantage of resource in an empty sched group */
10319 if (imbalance <= 1 && local->sum_nr_running == 0 &&
10320 busiest->sum_nr_running > 1)
10321 imbalance = 2;
10322
10323 return imbalance;
10324 }
10325
10326 static inline bool
sched_reduced_capacity(struct rq * rq,struct sched_domain * sd)10327 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10328 {
10329 /*
10330 * When there is more than 1 task, the group_overloaded case already
10331 * takes care of cpu with reduced capacity
10332 */
10333 if (rq->cfs.h_nr_runnable != 1)
10334 return false;
10335
10336 return check_cpu_capacity(rq, sd);
10337 }
10338
10339 /**
10340 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10341 * @env: The load balancing environment.
10342 * @sds: Load-balancing data with statistics of the local group.
10343 * @group: sched_group whose statistics are to be updated.
10344 * @sgs: variable to hold the statistics for this group.
10345 * @sg_overloaded: sched_group is overloaded
10346 * @sg_overutilized: sched_group is overutilized
10347 */
update_sg_lb_stats(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * group,struct sg_lb_stats * sgs,bool * sg_overloaded,bool * sg_overutilized)10348 static inline void update_sg_lb_stats(struct lb_env *env,
10349 struct sd_lb_stats *sds,
10350 struct sched_group *group,
10351 struct sg_lb_stats *sgs,
10352 bool *sg_overloaded,
10353 bool *sg_overutilized)
10354 {
10355 int i, nr_running, local_group, sd_flags = env->sd->flags;
10356 bool balancing_at_rd = !env->sd->parent;
10357
10358 memset(sgs, 0, sizeof(*sgs));
10359
10360 local_group = group == sds->local;
10361
10362 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10363 struct rq *rq = cpu_rq(i);
10364 unsigned long load = cpu_load(rq);
10365
10366 sgs->group_load += load;
10367 sgs->group_util += cpu_util_cfs(i);
10368 sgs->group_runnable += cpu_runnable(rq);
10369 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable;
10370
10371 nr_running = rq->nr_running;
10372 sgs->sum_nr_running += nr_running;
10373
10374 if (cpu_overutilized(i))
10375 *sg_overutilized = 1;
10376
10377 /*
10378 * No need to call idle_cpu() if nr_running is not 0
10379 */
10380 if (!nr_running && idle_cpu(i)) {
10381 sgs->idle_cpus++;
10382 /* Idle cpu can't have misfit task */
10383 continue;
10384 }
10385
10386 /* Overload indicator is only updated at root domain */
10387 if (balancing_at_rd && nr_running > 1)
10388 *sg_overloaded = 1;
10389
10390 #ifdef CONFIG_NUMA_BALANCING
10391 /* Only fbq_classify_group() uses this to classify NUMA groups */
10392 if (sd_flags & SD_NUMA) {
10393 sgs->nr_numa_running += rq->nr_numa_running;
10394 sgs->nr_preferred_running += rq->nr_preferred_running;
10395 }
10396 #endif
10397 if (local_group)
10398 continue;
10399
10400 if (sd_flags & SD_ASYM_CPUCAPACITY) {
10401 /* Check for a misfit task on the cpu */
10402 if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10403 sgs->group_misfit_task_load = rq->misfit_task_load;
10404 *sg_overloaded = 1;
10405 }
10406 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10407 /* Check for a task running on a CPU with reduced capacity */
10408 if (sgs->group_misfit_task_load < load)
10409 sgs->group_misfit_task_load = load;
10410 }
10411 }
10412
10413 sgs->group_capacity = group->sgc->capacity;
10414
10415 sgs->group_weight = group->group_weight;
10416
10417 /* Check if dst CPU is idle and preferred to this group */
10418 if (!local_group && env->idle && sgs->sum_h_nr_running &&
10419 sched_group_asym(env, sgs, group))
10420 sgs->group_asym_packing = 1;
10421
10422 /* Check for loaded SMT group to be balanced to dst CPU */
10423 if (!local_group && smt_balance(env, sgs, group))
10424 sgs->group_smt_balance = 1;
10425
10426 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10427
10428 /* Computing avg_load makes sense only when group is overloaded */
10429 if (sgs->group_type == group_overloaded)
10430 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10431 sgs->group_capacity;
10432 }
10433
10434 /**
10435 * update_sd_pick_busiest - return 1 on busiest group
10436 * @env: The load balancing environment.
10437 * @sds: sched_domain statistics
10438 * @sg: sched_group candidate to be checked for being the busiest
10439 * @sgs: sched_group statistics
10440 *
10441 * Determine if @sg is a busier group than the previously selected
10442 * busiest group.
10443 *
10444 * Return: %true if @sg is a busier group than the previously selected
10445 * busiest group. %false otherwise.
10446 */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)10447 static bool update_sd_pick_busiest(struct lb_env *env,
10448 struct sd_lb_stats *sds,
10449 struct sched_group *sg,
10450 struct sg_lb_stats *sgs)
10451 {
10452 struct sg_lb_stats *busiest = &sds->busiest_stat;
10453
10454 /* Make sure that there is at least one task to pull */
10455 if (!sgs->sum_h_nr_running)
10456 return false;
10457
10458 /*
10459 * Don't try to pull misfit tasks we can't help.
10460 * We can use max_capacity here as reduction in capacity on some
10461 * CPUs in the group should either be possible to resolve
10462 * internally or be covered by avg_load imbalance (eventually).
10463 */
10464 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10465 (sgs->group_type == group_misfit_task) &&
10466 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10467 sds->local_stat.group_type != group_has_spare))
10468 return false;
10469
10470 if (sgs->group_type > busiest->group_type)
10471 return true;
10472
10473 if (sgs->group_type < busiest->group_type)
10474 return false;
10475
10476 /*
10477 * The candidate and the current busiest group are the same type of
10478 * group. Let check which one is the busiest according to the type.
10479 */
10480
10481 switch (sgs->group_type) {
10482 case group_overloaded:
10483 /* Select the overloaded group with highest avg_load. */
10484 return sgs->avg_load > busiest->avg_load;
10485
10486 case group_imbalanced:
10487 /*
10488 * Select the 1st imbalanced group as we don't have any way to
10489 * choose one more than another.
10490 */
10491 return false;
10492
10493 case group_asym_packing:
10494 /* Prefer to move from lowest priority CPU's work */
10495 return sched_asym_prefer(READ_ONCE(sds->busiest->asym_prefer_cpu),
10496 READ_ONCE(sg->asym_prefer_cpu));
10497
10498 case group_misfit_task:
10499 /*
10500 * If we have more than one misfit sg go with the biggest
10501 * misfit.
10502 */
10503 return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10504
10505 case group_smt_balance:
10506 /*
10507 * Check if we have spare CPUs on either SMT group to
10508 * choose has spare or fully busy handling.
10509 */
10510 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10511 goto has_spare;
10512
10513 fallthrough;
10514
10515 case group_fully_busy:
10516 /*
10517 * Select the fully busy group with highest avg_load. In
10518 * theory, there is no need to pull task from such kind of
10519 * group because tasks have all compute capacity that they need
10520 * but we can still improve the overall throughput by reducing
10521 * contention when accessing shared HW resources.
10522 *
10523 * XXX for now avg_load is not computed and always 0 so we
10524 * select the 1st one, except if @sg is composed of SMT
10525 * siblings.
10526 */
10527
10528 if (sgs->avg_load < busiest->avg_load)
10529 return false;
10530
10531 if (sgs->avg_load == busiest->avg_load) {
10532 /*
10533 * SMT sched groups need more help than non-SMT groups.
10534 * If @sg happens to also be SMT, either choice is good.
10535 */
10536 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10537 return false;
10538 }
10539
10540 break;
10541
10542 case group_has_spare:
10543 /*
10544 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10545 * as we do not want to pull task off SMT core with one task
10546 * and make the core idle.
10547 */
10548 if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10549 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10550 return false;
10551 else
10552 return true;
10553 }
10554 has_spare:
10555
10556 /*
10557 * Select not overloaded group with lowest number of idle CPUs
10558 * and highest number of running tasks. We could also compare
10559 * the spare capacity which is more stable but it can end up
10560 * that the group has less spare capacity but finally more idle
10561 * CPUs which means less opportunity to pull tasks.
10562 */
10563 if (sgs->idle_cpus > busiest->idle_cpus)
10564 return false;
10565 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10566 (sgs->sum_nr_running <= busiest->sum_nr_running))
10567 return false;
10568
10569 break;
10570 }
10571
10572 /*
10573 * Candidate sg has no more than one task per CPU and has higher
10574 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10575 * throughput. Maximize throughput, power/energy consequences are not
10576 * considered.
10577 */
10578 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10579 (sgs->group_type <= group_fully_busy) &&
10580 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10581 return false;
10582
10583 return true;
10584 }
10585
10586 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)10587 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10588 {
10589 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10590 return regular;
10591 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10592 return remote;
10593 return all;
10594 }
10595
fbq_classify_rq(struct rq * rq)10596 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10597 {
10598 if (rq->nr_running > rq->nr_numa_running)
10599 return regular;
10600 if (rq->nr_running > rq->nr_preferred_running)
10601 return remote;
10602 return all;
10603 }
10604 #else /* !CONFIG_NUMA_BALANCING: */
fbq_classify_group(struct sg_lb_stats * sgs)10605 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10606 {
10607 return all;
10608 }
10609
fbq_classify_rq(struct rq * rq)10610 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10611 {
10612 return regular;
10613 }
10614 #endif /* !CONFIG_NUMA_BALANCING */
10615
10616
10617 struct sg_lb_stats;
10618
10619 /*
10620 * task_running_on_cpu - return 1 if @p is running on @cpu.
10621 */
10622
task_running_on_cpu(int cpu,struct task_struct * p)10623 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10624 {
10625 /* Task has no contribution or is new */
10626 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10627 return 0;
10628
10629 if (task_on_rq_queued(p))
10630 return 1;
10631
10632 return 0;
10633 }
10634
10635 /**
10636 * idle_cpu_without - would a given CPU be idle without p ?
10637 * @cpu: the processor on which idleness is tested.
10638 * @p: task which should be ignored.
10639 *
10640 * Return: 1 if the CPU would be idle. 0 otherwise.
10641 */
idle_cpu_without(int cpu,struct task_struct * p)10642 static int idle_cpu_without(int cpu, struct task_struct *p)
10643 {
10644 struct rq *rq = cpu_rq(cpu);
10645
10646 if (rq->curr != rq->idle && rq->curr != p)
10647 return 0;
10648
10649 /*
10650 * rq->nr_running can't be used but an updated version without the
10651 * impact of p on cpu must be used instead. The updated nr_running
10652 * be computed and tested before calling idle_cpu_without().
10653 */
10654
10655 if (rq->ttwu_pending)
10656 return 0;
10657
10658 return 1;
10659 }
10660
10661 /*
10662 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10663 * @sd: The sched_domain level to look for idlest group.
10664 * @group: sched_group whose statistics are to be updated.
10665 * @sgs: variable to hold the statistics for this group.
10666 * @p: The task for which we look for the idlest group/CPU.
10667 */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)10668 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10669 struct sched_group *group,
10670 struct sg_lb_stats *sgs,
10671 struct task_struct *p)
10672 {
10673 int i, nr_running;
10674
10675 memset(sgs, 0, sizeof(*sgs));
10676
10677 /* Assume that task can't fit any CPU of the group */
10678 if (sd->flags & SD_ASYM_CPUCAPACITY)
10679 sgs->group_misfit_task_load = 1;
10680
10681 for_each_cpu(i, sched_group_span(group)) {
10682 struct rq *rq = cpu_rq(i);
10683 unsigned int local;
10684
10685 sgs->group_load += cpu_load_without(rq, p);
10686 sgs->group_util += cpu_util_without(i, p);
10687 sgs->group_runnable += cpu_runnable_without(rq, p);
10688 local = task_running_on_cpu(i, p);
10689 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local;
10690
10691 nr_running = rq->nr_running - local;
10692 sgs->sum_nr_running += nr_running;
10693
10694 /*
10695 * No need to call idle_cpu_without() if nr_running is not 0
10696 */
10697 if (!nr_running && idle_cpu_without(i, p))
10698 sgs->idle_cpus++;
10699
10700 /* Check if task fits in the CPU */
10701 if (sd->flags & SD_ASYM_CPUCAPACITY &&
10702 sgs->group_misfit_task_load &&
10703 task_fits_cpu(p, i))
10704 sgs->group_misfit_task_load = 0;
10705
10706 }
10707
10708 sgs->group_capacity = group->sgc->capacity;
10709
10710 sgs->group_weight = group->group_weight;
10711
10712 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10713
10714 /*
10715 * Computing avg_load makes sense only when group is fully busy or
10716 * overloaded
10717 */
10718 if (sgs->group_type == group_fully_busy ||
10719 sgs->group_type == group_overloaded)
10720 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10721 sgs->group_capacity;
10722 }
10723
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)10724 static bool update_pick_idlest(struct sched_group *idlest,
10725 struct sg_lb_stats *idlest_sgs,
10726 struct sched_group *group,
10727 struct sg_lb_stats *sgs)
10728 {
10729 if (sgs->group_type < idlest_sgs->group_type)
10730 return true;
10731
10732 if (sgs->group_type > idlest_sgs->group_type)
10733 return false;
10734
10735 /*
10736 * The candidate and the current idlest group are the same type of
10737 * group. Let check which one is the idlest according to the type.
10738 */
10739
10740 switch (sgs->group_type) {
10741 case group_overloaded:
10742 case group_fully_busy:
10743 /* Select the group with lowest avg_load. */
10744 if (idlest_sgs->avg_load <= sgs->avg_load)
10745 return false;
10746 break;
10747
10748 case group_imbalanced:
10749 case group_asym_packing:
10750 case group_smt_balance:
10751 /* Those types are not used in the slow wakeup path */
10752 return false;
10753
10754 case group_misfit_task:
10755 /* Select group with the highest max capacity */
10756 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10757 return false;
10758 break;
10759
10760 case group_has_spare:
10761 /* Select group with most idle CPUs */
10762 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10763 return false;
10764
10765 /* Select group with lowest group_util */
10766 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10767 idlest_sgs->group_util <= sgs->group_util)
10768 return false;
10769
10770 break;
10771 }
10772
10773 return true;
10774 }
10775
10776 /*
10777 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10778 * domain.
10779 *
10780 * Assumes p is allowed on at least one CPU in sd.
10781 */
10782 static struct sched_group *
sched_balance_find_dst_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)10783 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10784 {
10785 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10786 struct sg_lb_stats local_sgs, tmp_sgs;
10787 struct sg_lb_stats *sgs;
10788 unsigned long imbalance;
10789 struct sg_lb_stats idlest_sgs = {
10790 .avg_load = UINT_MAX,
10791 .group_type = group_overloaded,
10792 };
10793
10794 do {
10795 int local_group;
10796
10797 /* Skip over this group if it has no CPUs allowed */
10798 if (!cpumask_intersects(sched_group_span(group),
10799 p->cpus_ptr))
10800 continue;
10801
10802 /* Skip over this group if no cookie matched */
10803 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10804 continue;
10805
10806 local_group = cpumask_test_cpu(this_cpu,
10807 sched_group_span(group));
10808
10809 if (local_group) {
10810 sgs = &local_sgs;
10811 local = group;
10812 } else {
10813 sgs = &tmp_sgs;
10814 }
10815
10816 update_sg_wakeup_stats(sd, group, sgs, p);
10817
10818 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10819 idlest = group;
10820 idlest_sgs = *sgs;
10821 }
10822
10823 } while (group = group->next, group != sd->groups);
10824
10825
10826 /* There is no idlest group to push tasks to */
10827 if (!idlest)
10828 return NULL;
10829
10830 /* The local group has been skipped because of CPU affinity */
10831 if (!local)
10832 return idlest;
10833
10834 /*
10835 * If the local group is idler than the selected idlest group
10836 * don't try and push the task.
10837 */
10838 if (local_sgs.group_type < idlest_sgs.group_type)
10839 return NULL;
10840
10841 /*
10842 * If the local group is busier than the selected idlest group
10843 * try and push the task.
10844 */
10845 if (local_sgs.group_type > idlest_sgs.group_type)
10846 return idlest;
10847
10848 switch (local_sgs.group_type) {
10849 case group_overloaded:
10850 case group_fully_busy:
10851
10852 /* Calculate allowed imbalance based on load */
10853 imbalance = scale_load_down(NICE_0_LOAD) *
10854 (sd->imbalance_pct-100) / 100;
10855
10856 /*
10857 * When comparing groups across NUMA domains, it's possible for
10858 * the local domain to be very lightly loaded relative to the
10859 * remote domains but "imbalance" skews the comparison making
10860 * remote CPUs look much more favourable. When considering
10861 * cross-domain, add imbalance to the load on the remote node
10862 * and consider staying local.
10863 */
10864
10865 if ((sd->flags & SD_NUMA) &&
10866 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10867 return NULL;
10868
10869 /*
10870 * If the local group is less loaded than the selected
10871 * idlest group don't try and push any tasks.
10872 */
10873 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10874 return NULL;
10875
10876 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10877 return NULL;
10878 break;
10879
10880 case group_imbalanced:
10881 case group_asym_packing:
10882 case group_smt_balance:
10883 /* Those type are not used in the slow wakeup path */
10884 return NULL;
10885
10886 case group_misfit_task:
10887 /* Select group with the highest max capacity */
10888 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10889 return NULL;
10890 break;
10891
10892 case group_has_spare:
10893 #ifdef CONFIG_NUMA
10894 if (sd->flags & SD_NUMA) {
10895 int imb_numa_nr = sd->imb_numa_nr;
10896 #ifdef CONFIG_NUMA_BALANCING
10897 int idlest_cpu;
10898 /*
10899 * If there is spare capacity at NUMA, try to select
10900 * the preferred node
10901 */
10902 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10903 return NULL;
10904
10905 idlest_cpu = cpumask_first(sched_group_span(idlest));
10906 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10907 return idlest;
10908 #endif /* CONFIG_NUMA_BALANCING */
10909 /*
10910 * Otherwise, keep the task close to the wakeup source
10911 * and improve locality if the number of running tasks
10912 * would remain below threshold where an imbalance is
10913 * allowed while accounting for the possibility the
10914 * task is pinned to a subset of CPUs. If there is a
10915 * real need of migration, periodic load balance will
10916 * take care of it.
10917 */
10918 if (p->nr_cpus_allowed != NR_CPUS) {
10919 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10920
10921 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10922 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10923 }
10924
10925 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10926 if (!adjust_numa_imbalance(imbalance,
10927 local_sgs.sum_nr_running + 1,
10928 imb_numa_nr)) {
10929 return NULL;
10930 }
10931 }
10932 #endif /* CONFIG_NUMA */
10933
10934 /*
10935 * Select group with highest number of idle CPUs. We could also
10936 * compare the utilization which is more stable but it can end
10937 * up that the group has less spare capacity but finally more
10938 * idle CPUs which means more opportunity to run task.
10939 */
10940 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10941 return NULL;
10942 break;
10943 }
10944
10945 return idlest;
10946 }
10947
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)10948 static void update_idle_cpu_scan(struct lb_env *env,
10949 unsigned long sum_util)
10950 {
10951 struct sched_domain_shared *sd_share;
10952 int llc_weight, pct;
10953 u64 x, y, tmp;
10954 /*
10955 * Update the number of CPUs to scan in LLC domain, which could
10956 * be used as a hint in select_idle_cpu(). The update of sd_share
10957 * could be expensive because it is within a shared cache line.
10958 * So the write of this hint only occurs during periodic load
10959 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10960 * can fire way more frequently than the former.
10961 */
10962 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10963 return;
10964
10965 llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10966 if (env->sd->span_weight != llc_weight)
10967 return;
10968
10969 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10970 if (!sd_share)
10971 return;
10972
10973 /*
10974 * The number of CPUs to search drops as sum_util increases, when
10975 * sum_util hits 85% or above, the scan stops.
10976 * The reason to choose 85% as the threshold is because this is the
10977 * imbalance_pct(117) when a LLC sched group is overloaded.
10978 *
10979 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
10980 * and y'= y / SCHED_CAPACITY_SCALE
10981 *
10982 * x is the ratio of sum_util compared to the CPU capacity:
10983 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10984 * y' is the ratio of CPUs to be scanned in the LLC domain,
10985 * and the number of CPUs to scan is calculated by:
10986 *
10987 * nr_scan = llc_weight * y' [2]
10988 *
10989 * When x hits the threshold of overloaded, AKA, when
10990 * x = 100 / pct, y drops to 0. According to [1],
10991 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10992 *
10993 * Scale x by SCHED_CAPACITY_SCALE:
10994 * x' = sum_util / llc_weight; [3]
10995 *
10996 * and finally [1] becomes:
10997 * y = SCHED_CAPACITY_SCALE -
10998 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
10999 *
11000 */
11001 /* equation [3] */
11002 x = sum_util;
11003 do_div(x, llc_weight);
11004
11005 /* equation [4] */
11006 pct = env->sd->imbalance_pct;
11007 tmp = x * x * pct * pct;
11008 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
11009 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
11010 y = SCHED_CAPACITY_SCALE - tmp;
11011
11012 /* equation [2] */
11013 y *= llc_weight;
11014 do_div(y, SCHED_CAPACITY_SCALE);
11015 if ((int)y != sd_share->nr_idle_scan)
11016 WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
11017 }
11018
11019 /**
11020 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
11021 * @env: The load balancing environment.
11022 * @sds: variable to hold the statistics for this sched_domain.
11023 */
11024
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)11025 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
11026 {
11027 struct sched_group *sg = env->sd->groups;
11028 struct sg_lb_stats *local = &sds->local_stat;
11029 struct sg_lb_stats tmp_sgs;
11030 unsigned long sum_util = 0;
11031 bool sg_overloaded = 0, sg_overutilized = 0;
11032
11033 do {
11034 struct sg_lb_stats *sgs = &tmp_sgs;
11035 int local_group;
11036
11037 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
11038 if (local_group) {
11039 sds->local = sg;
11040 sgs = local;
11041
11042 if (env->idle != CPU_NEWLY_IDLE ||
11043 time_after_eq(jiffies, sg->sgc->next_update))
11044 update_group_capacity(env->sd, env->dst_cpu);
11045 }
11046
11047 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
11048
11049 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
11050 sds->busiest = sg;
11051 sds->busiest_stat = *sgs;
11052 }
11053
11054 /* Now, start updating sd_lb_stats */
11055 sds->total_load += sgs->group_load;
11056 sds->total_capacity += sgs->group_capacity;
11057
11058 sum_util += sgs->group_util;
11059 sg = sg->next;
11060 } while (sg != env->sd->groups);
11061
11062 /*
11063 * Indicate that the child domain of the busiest group prefers tasks
11064 * go to a child's sibling domains first. NB the flags of a sched group
11065 * are those of the child domain.
11066 */
11067 if (sds->busiest)
11068 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
11069
11070
11071 if (env->sd->flags & SD_NUMA)
11072 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
11073
11074 if (!env->sd->parent) {
11075 /* update overload indicator if we are at root domain */
11076 set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
11077
11078 /* Update over-utilization (tipping point, U >= 0) indicator */
11079 set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11080 } else if (sg_overutilized) {
11081 set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11082 }
11083
11084 update_idle_cpu_scan(env, sum_util);
11085 }
11086
11087 /**
11088 * calculate_imbalance - Calculate the amount of imbalance present within the
11089 * groups of a given sched_domain during load balance.
11090 * @env: load balance environment
11091 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
11092 */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)11093 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
11094 {
11095 struct sg_lb_stats *local, *busiest;
11096
11097 local = &sds->local_stat;
11098 busiest = &sds->busiest_stat;
11099
11100 if (busiest->group_type == group_misfit_task) {
11101 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
11102 /* Set imbalance to allow misfit tasks to be balanced. */
11103 env->migration_type = migrate_misfit;
11104 env->imbalance = 1;
11105 } else {
11106 /*
11107 * Set load imbalance to allow moving task from cpu
11108 * with reduced capacity.
11109 */
11110 env->migration_type = migrate_load;
11111 env->imbalance = busiest->group_misfit_task_load;
11112 }
11113 return;
11114 }
11115
11116 if (busiest->group_type == group_asym_packing) {
11117 /*
11118 * In case of asym capacity, we will try to migrate all load to
11119 * the preferred CPU.
11120 */
11121 env->migration_type = migrate_task;
11122 env->imbalance = busiest->sum_h_nr_running;
11123 return;
11124 }
11125
11126 if (busiest->group_type == group_smt_balance) {
11127 /* Reduce number of tasks sharing CPU capacity */
11128 env->migration_type = migrate_task;
11129 env->imbalance = 1;
11130 return;
11131 }
11132
11133 if (busiest->group_type == group_imbalanced) {
11134 /*
11135 * In the group_imb case we cannot rely on group-wide averages
11136 * to ensure CPU-load equilibrium, try to move any task to fix
11137 * the imbalance. The next load balance will take care of
11138 * balancing back the system.
11139 */
11140 env->migration_type = migrate_task;
11141 env->imbalance = 1;
11142 return;
11143 }
11144
11145 /*
11146 * Try to use spare capacity of local group without overloading it or
11147 * emptying busiest.
11148 */
11149 if (local->group_type == group_has_spare) {
11150 if ((busiest->group_type > group_fully_busy) &&
11151 !(env->sd->flags & SD_SHARE_LLC)) {
11152 /*
11153 * If busiest is overloaded, try to fill spare
11154 * capacity. This might end up creating spare capacity
11155 * in busiest or busiest still being overloaded but
11156 * there is no simple way to directly compute the
11157 * amount of load to migrate in order to balance the
11158 * system.
11159 */
11160 env->migration_type = migrate_util;
11161 env->imbalance = max(local->group_capacity, local->group_util) -
11162 local->group_util;
11163
11164 /*
11165 * In some cases, the group's utilization is max or even
11166 * higher than capacity because of migrations but the
11167 * local CPU is (newly) idle. There is at least one
11168 * waiting task in this overloaded busiest group. Let's
11169 * try to pull it.
11170 */
11171 if (env->idle && env->imbalance == 0) {
11172 env->migration_type = migrate_task;
11173 env->imbalance = 1;
11174 }
11175
11176 return;
11177 }
11178
11179 if (busiest->group_weight == 1 || sds->prefer_sibling) {
11180 /*
11181 * When prefer sibling, evenly spread running tasks on
11182 * groups.
11183 */
11184 env->migration_type = migrate_task;
11185 env->imbalance = sibling_imbalance(env, sds, busiest, local);
11186 } else {
11187
11188 /*
11189 * If there is no overload, we just want to even the number of
11190 * idle CPUs.
11191 */
11192 env->migration_type = migrate_task;
11193 env->imbalance = max_t(long, 0,
11194 (local->idle_cpus - busiest->idle_cpus));
11195 }
11196
11197 #ifdef CONFIG_NUMA
11198 /* Consider allowing a small imbalance between NUMA groups */
11199 if (env->sd->flags & SD_NUMA) {
11200 env->imbalance = adjust_numa_imbalance(env->imbalance,
11201 local->sum_nr_running + 1,
11202 env->sd->imb_numa_nr);
11203 }
11204 #endif
11205
11206 /* Number of tasks to move to restore balance */
11207 env->imbalance >>= 1;
11208
11209 return;
11210 }
11211
11212 /*
11213 * Local is fully busy but has to take more load to relieve the
11214 * busiest group
11215 */
11216 if (local->group_type < group_overloaded) {
11217 /*
11218 * Local will become overloaded so the avg_load metrics are
11219 * finally needed.
11220 */
11221
11222 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11223 local->group_capacity;
11224
11225 /*
11226 * If the local group is more loaded than the selected
11227 * busiest group don't try to pull any tasks.
11228 */
11229 if (local->avg_load >= busiest->avg_load) {
11230 env->imbalance = 0;
11231 return;
11232 }
11233
11234 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11235 sds->total_capacity;
11236
11237 /*
11238 * If the local group is more loaded than the average system
11239 * load, don't try to pull any tasks.
11240 */
11241 if (local->avg_load >= sds->avg_load) {
11242 env->imbalance = 0;
11243 return;
11244 }
11245
11246 }
11247
11248 /*
11249 * Both group are or will become overloaded and we're trying to get all
11250 * the CPUs to the average_load, so we don't want to push ourselves
11251 * above the average load, nor do we wish to reduce the max loaded CPU
11252 * below the average load. At the same time, we also don't want to
11253 * reduce the group load below the group capacity. Thus we look for
11254 * the minimum possible imbalance.
11255 */
11256 env->migration_type = migrate_load;
11257 env->imbalance = min(
11258 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11259 (sds->avg_load - local->avg_load) * local->group_capacity
11260 ) / SCHED_CAPACITY_SCALE;
11261 }
11262
11263 /******* sched_balance_find_src_group() helpers end here *********************/
11264
11265 /*
11266 * Decision matrix according to the local and busiest group type:
11267 *
11268 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11269 * has_spare nr_idle balanced N/A N/A balanced balanced
11270 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
11271 * misfit_task force N/A N/A N/A N/A N/A
11272 * asym_packing force force N/A N/A force force
11273 * imbalanced force force N/A N/A force force
11274 * overloaded force force N/A N/A force avg_load
11275 *
11276 * N/A : Not Applicable because already filtered while updating
11277 * statistics.
11278 * balanced : The system is balanced for these 2 groups.
11279 * force : Calculate the imbalance as load migration is probably needed.
11280 * avg_load : Only if imbalance is significant enough.
11281 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
11282 * different in groups.
11283 */
11284
11285 /**
11286 * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11287 * if there is an imbalance.
11288 * @env: The load balancing environment.
11289 *
11290 * Also calculates the amount of runnable load which should be moved
11291 * to restore balance.
11292 *
11293 * Return: - The busiest group if imbalance exists.
11294 */
sched_balance_find_src_group(struct lb_env * env)11295 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
11296 {
11297 struct sg_lb_stats *local, *busiest;
11298 struct sd_lb_stats sds;
11299
11300 init_sd_lb_stats(&sds);
11301
11302 /*
11303 * Compute the various statistics relevant for load balancing at
11304 * this level.
11305 */
11306 update_sd_lb_stats(env, &sds);
11307
11308 /* There is no busy sibling group to pull tasks from */
11309 if (!sds.busiest)
11310 goto out_balanced;
11311
11312 busiest = &sds.busiest_stat;
11313
11314 /* Misfit tasks should be dealt with regardless of the avg load */
11315 if (busiest->group_type == group_misfit_task)
11316 goto force_balance;
11317
11318 if (!is_rd_overutilized(env->dst_rq->rd) &&
11319 rcu_dereference(env->dst_rq->rd->pd))
11320 goto out_balanced;
11321
11322 /* ASYM feature bypasses nice load balance check */
11323 if (busiest->group_type == group_asym_packing)
11324 goto force_balance;
11325
11326 /*
11327 * If the busiest group is imbalanced the below checks don't
11328 * work because they assume all things are equal, which typically
11329 * isn't true due to cpus_ptr constraints and the like.
11330 */
11331 if (busiest->group_type == group_imbalanced)
11332 goto force_balance;
11333
11334 local = &sds.local_stat;
11335 /*
11336 * If the local group is busier than the selected busiest group
11337 * don't try and pull any tasks.
11338 */
11339 if (local->group_type > busiest->group_type)
11340 goto out_balanced;
11341
11342 /*
11343 * When groups are overloaded, use the avg_load to ensure fairness
11344 * between tasks.
11345 */
11346 if (local->group_type == group_overloaded) {
11347 /*
11348 * If the local group is more loaded than the selected
11349 * busiest group don't try to pull any tasks.
11350 */
11351 if (local->avg_load >= busiest->avg_load)
11352 goto out_balanced;
11353
11354 /* XXX broken for overlapping NUMA groups */
11355 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11356 sds.total_capacity;
11357
11358 /*
11359 * Don't pull any tasks if this group is already above the
11360 * domain average load.
11361 */
11362 if (local->avg_load >= sds.avg_load)
11363 goto out_balanced;
11364
11365 /*
11366 * If the busiest group is more loaded, use imbalance_pct to be
11367 * conservative.
11368 */
11369 if (100 * busiest->avg_load <=
11370 env->sd->imbalance_pct * local->avg_load)
11371 goto out_balanced;
11372 }
11373
11374 /*
11375 * Try to move all excess tasks to a sibling domain of the busiest
11376 * group's child domain.
11377 */
11378 if (sds.prefer_sibling && local->group_type == group_has_spare &&
11379 sibling_imbalance(env, &sds, busiest, local) > 1)
11380 goto force_balance;
11381
11382 if (busiest->group_type != group_overloaded) {
11383 if (!env->idle) {
11384 /*
11385 * If the busiest group is not overloaded (and as a
11386 * result the local one too) but this CPU is already
11387 * busy, let another idle CPU try to pull task.
11388 */
11389 goto out_balanced;
11390 }
11391
11392 if (busiest->group_type == group_smt_balance &&
11393 smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11394 /* Let non SMT CPU pull from SMT CPU sharing with sibling */
11395 goto force_balance;
11396 }
11397
11398 if (busiest->group_weight > 1 &&
11399 local->idle_cpus <= (busiest->idle_cpus + 1)) {
11400 /*
11401 * If the busiest group is not overloaded
11402 * and there is no imbalance between this and busiest
11403 * group wrt idle CPUs, it is balanced. The imbalance
11404 * becomes significant if the diff is greater than 1
11405 * otherwise we might end up to just move the imbalance
11406 * on another group. Of course this applies only if
11407 * there is more than 1 CPU per group.
11408 */
11409 goto out_balanced;
11410 }
11411
11412 if (busiest->sum_h_nr_running == 1) {
11413 /*
11414 * busiest doesn't have any tasks waiting to run
11415 */
11416 goto out_balanced;
11417 }
11418 }
11419
11420 force_balance:
11421 /* Looks like there is an imbalance. Compute it */
11422 calculate_imbalance(env, &sds);
11423 return env->imbalance ? sds.busiest : NULL;
11424
11425 out_balanced:
11426 env->imbalance = 0;
11427 return NULL;
11428 }
11429
11430 /*
11431 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11432 */
sched_balance_find_src_rq(struct lb_env * env,struct sched_group * group)11433 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11434 struct sched_group *group)
11435 {
11436 struct rq *busiest = NULL, *rq;
11437 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11438 unsigned int busiest_nr = 0;
11439 int i;
11440
11441 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11442 unsigned long capacity, load, util;
11443 unsigned int nr_running;
11444 enum fbq_type rt;
11445
11446 rq = cpu_rq(i);
11447 rt = fbq_classify_rq(rq);
11448
11449 /*
11450 * We classify groups/runqueues into three groups:
11451 * - regular: there are !numa tasks
11452 * - remote: there are numa tasks that run on the 'wrong' node
11453 * - all: there is no distinction
11454 *
11455 * In order to avoid migrating ideally placed numa tasks,
11456 * ignore those when there's better options.
11457 *
11458 * If we ignore the actual busiest queue to migrate another
11459 * task, the next balance pass can still reduce the busiest
11460 * queue by moving tasks around inside the node.
11461 *
11462 * If we cannot move enough load due to this classification
11463 * the next pass will adjust the group classification and
11464 * allow migration of more tasks.
11465 *
11466 * Both cases only affect the total convergence complexity.
11467 */
11468 if (rt > env->fbq_type)
11469 continue;
11470
11471 nr_running = rq->cfs.h_nr_runnable;
11472 if (!nr_running)
11473 continue;
11474
11475 capacity = capacity_of(i);
11476
11477 /*
11478 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11479 * eventually lead to active_balancing high->low capacity.
11480 * Higher per-CPU capacity is considered better than balancing
11481 * average load.
11482 */
11483 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11484 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11485 nr_running == 1)
11486 continue;
11487
11488 /*
11489 * Make sure we only pull tasks from a CPU of lower priority
11490 * when balancing between SMT siblings.
11491 *
11492 * If balancing between cores, let lower priority CPUs help
11493 * SMT cores with more than one busy sibling.
11494 */
11495 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11496 continue;
11497
11498 switch (env->migration_type) {
11499 case migrate_load:
11500 /*
11501 * When comparing with load imbalance, use cpu_load()
11502 * which is not scaled with the CPU capacity.
11503 */
11504 load = cpu_load(rq);
11505
11506 if (nr_running == 1 && load > env->imbalance &&
11507 !check_cpu_capacity(rq, env->sd))
11508 break;
11509
11510 /*
11511 * For the load comparisons with the other CPUs,
11512 * consider the cpu_load() scaled with the CPU
11513 * capacity, so that the load can be moved away
11514 * from the CPU that is potentially running at a
11515 * lower capacity.
11516 *
11517 * Thus we're looking for max(load_i / capacity_i),
11518 * crosswise multiplication to rid ourselves of the
11519 * division works out to:
11520 * load_i * capacity_j > load_j * capacity_i;
11521 * where j is our previous maximum.
11522 */
11523 if (load * busiest_capacity > busiest_load * capacity) {
11524 busiest_load = load;
11525 busiest_capacity = capacity;
11526 busiest = rq;
11527 }
11528 break;
11529
11530 case migrate_util:
11531 util = cpu_util_cfs_boost(i);
11532
11533 /*
11534 * Don't try to pull utilization from a CPU with one
11535 * running task. Whatever its utilization, we will fail
11536 * detach the task.
11537 */
11538 if (nr_running <= 1)
11539 continue;
11540
11541 if (busiest_util < util) {
11542 busiest_util = util;
11543 busiest = rq;
11544 }
11545 break;
11546
11547 case migrate_task:
11548 if (busiest_nr < nr_running) {
11549 busiest_nr = nr_running;
11550 busiest = rq;
11551 }
11552 break;
11553
11554 case migrate_misfit:
11555 /*
11556 * For ASYM_CPUCAPACITY domains with misfit tasks we
11557 * simply seek the "biggest" misfit task.
11558 */
11559 if (rq->misfit_task_load > busiest_load) {
11560 busiest_load = rq->misfit_task_load;
11561 busiest = rq;
11562 }
11563
11564 break;
11565
11566 }
11567 }
11568
11569 return busiest;
11570 }
11571
11572 /*
11573 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11574 * so long as it is large enough.
11575 */
11576 #define MAX_PINNED_INTERVAL 512
11577
11578 static inline bool
asym_active_balance(struct lb_env * env)11579 asym_active_balance(struct lb_env *env)
11580 {
11581 /*
11582 * ASYM_PACKING needs to force migrate tasks from busy but lower
11583 * priority CPUs in order to pack all tasks in the highest priority
11584 * CPUs. When done between cores, do it only if the whole core if the
11585 * whole core is idle.
11586 *
11587 * If @env::src_cpu is an SMT core with busy siblings, let
11588 * the lower priority @env::dst_cpu help it. Do not follow
11589 * CPU priority.
11590 */
11591 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11592 (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11593 !sched_use_asym_prio(env->sd, env->src_cpu));
11594 }
11595
11596 static inline bool
imbalanced_active_balance(struct lb_env * env)11597 imbalanced_active_balance(struct lb_env *env)
11598 {
11599 struct sched_domain *sd = env->sd;
11600
11601 /*
11602 * The imbalanced case includes the case of pinned tasks preventing a fair
11603 * distribution of the load on the system but also the even distribution of the
11604 * threads on a system with spare capacity
11605 */
11606 if ((env->migration_type == migrate_task) &&
11607 (sd->nr_balance_failed > sd->cache_nice_tries+2))
11608 return 1;
11609
11610 return 0;
11611 }
11612
need_active_balance(struct lb_env * env)11613 static int need_active_balance(struct lb_env *env)
11614 {
11615 struct sched_domain *sd = env->sd;
11616
11617 if (asym_active_balance(env))
11618 return 1;
11619
11620 if (imbalanced_active_balance(env))
11621 return 1;
11622
11623 /*
11624 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11625 * It's worth migrating the task if the src_cpu's capacity is reduced
11626 * because of other sched_class or IRQs if more capacity stays
11627 * available on dst_cpu.
11628 */
11629 if (env->idle &&
11630 (env->src_rq->cfs.h_nr_runnable == 1)) {
11631 if ((check_cpu_capacity(env->src_rq, sd)) &&
11632 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11633 return 1;
11634 }
11635
11636 if (env->migration_type == migrate_misfit)
11637 return 1;
11638
11639 return 0;
11640 }
11641
11642 static int active_load_balance_cpu_stop(void *data);
11643
should_we_balance(struct lb_env * env)11644 static int should_we_balance(struct lb_env *env)
11645 {
11646 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11647 struct sched_group *sg = env->sd->groups;
11648 int cpu, idle_smt = -1;
11649
11650 /*
11651 * Ensure the balancing environment is consistent; can happen
11652 * when the softirq triggers 'during' hotplug.
11653 */
11654 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11655 return 0;
11656
11657 /*
11658 * In the newly idle case, we will allow all the CPUs
11659 * to do the newly idle load balance.
11660 *
11661 * However, we bail out if we already have tasks or a wakeup pending,
11662 * to optimize wakeup latency.
11663 */
11664 if (env->idle == CPU_NEWLY_IDLE) {
11665 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11666 return 0;
11667 return 1;
11668 }
11669
11670 cpumask_copy(swb_cpus, group_balance_mask(sg));
11671 /* Try to find first idle CPU */
11672 for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11673 if (!idle_cpu(cpu))
11674 continue;
11675
11676 /*
11677 * Don't balance to idle SMT in busy core right away when
11678 * balancing cores, but remember the first idle SMT CPU for
11679 * later consideration. Find CPU on an idle core first.
11680 */
11681 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11682 if (idle_smt == -1)
11683 idle_smt = cpu;
11684 /*
11685 * If the core is not idle, and first SMT sibling which is
11686 * idle has been found, then its not needed to check other
11687 * SMT siblings for idleness:
11688 */
11689 #ifdef CONFIG_SCHED_SMT
11690 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11691 #endif
11692 continue;
11693 }
11694
11695 /*
11696 * Are we the first idle core in a non-SMT domain or higher,
11697 * or the first idle CPU in a SMT domain?
11698 */
11699 return cpu == env->dst_cpu;
11700 }
11701
11702 /* Are we the first idle CPU with busy siblings? */
11703 if (idle_smt != -1)
11704 return idle_smt == env->dst_cpu;
11705
11706 /* Are we the first CPU of this group ? */
11707 return group_balance_cpu(sg) == env->dst_cpu;
11708 }
11709
update_lb_imbalance_stat(struct lb_env * env,struct sched_domain * sd,enum cpu_idle_type idle)11710 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd,
11711 enum cpu_idle_type idle)
11712 {
11713 if (!schedstat_enabled())
11714 return;
11715
11716 switch (env->migration_type) {
11717 case migrate_load:
11718 __schedstat_add(sd->lb_imbalance_load[idle], env->imbalance);
11719 break;
11720 case migrate_util:
11721 __schedstat_add(sd->lb_imbalance_util[idle], env->imbalance);
11722 break;
11723 case migrate_task:
11724 __schedstat_add(sd->lb_imbalance_task[idle], env->imbalance);
11725 break;
11726 case migrate_misfit:
11727 __schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance);
11728 break;
11729 }
11730 }
11731
11732 /*
11733 * Check this_cpu to ensure it is balanced within domain. Attempt to move
11734 * tasks if there is an imbalance.
11735 */
sched_balance_rq(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)11736 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11737 struct sched_domain *sd, enum cpu_idle_type idle,
11738 int *continue_balancing)
11739 {
11740 int ld_moved, cur_ld_moved, active_balance = 0;
11741 struct sched_domain *sd_parent = sd->parent;
11742 struct sched_group *group;
11743 struct rq *busiest;
11744 struct rq_flags rf;
11745 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11746 struct lb_env env = {
11747 .sd = sd,
11748 .dst_cpu = this_cpu,
11749 .dst_rq = this_rq,
11750 .dst_grpmask = group_balance_mask(sd->groups),
11751 .idle = idle,
11752 .loop_break = SCHED_NR_MIGRATE_BREAK,
11753 .cpus = cpus,
11754 .fbq_type = all,
11755 .tasks = LIST_HEAD_INIT(env.tasks),
11756 };
11757
11758 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11759
11760 schedstat_inc(sd->lb_count[idle]);
11761
11762 redo:
11763 if (!should_we_balance(&env)) {
11764 *continue_balancing = 0;
11765 goto out_balanced;
11766 }
11767
11768 group = sched_balance_find_src_group(&env);
11769 if (!group) {
11770 schedstat_inc(sd->lb_nobusyg[idle]);
11771 goto out_balanced;
11772 }
11773
11774 busiest = sched_balance_find_src_rq(&env, group);
11775 if (!busiest) {
11776 schedstat_inc(sd->lb_nobusyq[idle]);
11777 goto out_balanced;
11778 }
11779
11780 WARN_ON_ONCE(busiest == env.dst_rq);
11781
11782 update_lb_imbalance_stat(&env, sd, idle);
11783
11784 env.src_cpu = busiest->cpu;
11785 env.src_rq = busiest;
11786
11787 ld_moved = 0;
11788 /* Clear this flag as soon as we find a pullable task */
11789 env.flags |= LBF_ALL_PINNED;
11790 if (busiest->nr_running > 1) {
11791 /*
11792 * Attempt to move tasks. If sched_balance_find_src_group has found
11793 * an imbalance but busiest->nr_running <= 1, the group is
11794 * still unbalanced. ld_moved simply stays zero, so it is
11795 * correctly treated as an imbalance.
11796 */
11797 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
11798
11799 more_balance:
11800 rq_lock_irqsave(busiest, &rf);
11801 update_rq_clock(busiest);
11802
11803 /*
11804 * cur_ld_moved - load moved in current iteration
11805 * ld_moved - cumulative load moved across iterations
11806 */
11807 cur_ld_moved = detach_tasks(&env);
11808
11809 /*
11810 * We've detached some tasks from busiest_rq. Every
11811 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11812 * unlock busiest->lock, and we are able to be sure
11813 * that nobody can manipulate the tasks in parallel.
11814 * See task_rq_lock() family for the details.
11815 */
11816
11817 rq_unlock(busiest, &rf);
11818
11819 if (cur_ld_moved) {
11820 attach_tasks(&env);
11821 ld_moved += cur_ld_moved;
11822 }
11823
11824 local_irq_restore(rf.flags);
11825
11826 if (env.flags & LBF_NEED_BREAK) {
11827 env.flags &= ~LBF_NEED_BREAK;
11828 goto more_balance;
11829 }
11830
11831 /*
11832 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11833 * us and move them to an alternate dst_cpu in our sched_group
11834 * where they can run. The upper limit on how many times we
11835 * iterate on same src_cpu is dependent on number of CPUs in our
11836 * sched_group.
11837 *
11838 * This changes load balance semantics a bit on who can move
11839 * load to a given_cpu. In addition to the given_cpu itself
11840 * (or a ilb_cpu acting on its behalf where given_cpu is
11841 * nohz-idle), we now have balance_cpu in a position to move
11842 * load to given_cpu. In rare situations, this may cause
11843 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11844 * _independently_ and at _same_ time to move some load to
11845 * given_cpu) causing excess load to be moved to given_cpu.
11846 * This however should not happen so much in practice and
11847 * moreover subsequent load balance cycles should correct the
11848 * excess load moved.
11849 */
11850 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11851
11852 /* Prevent to re-select dst_cpu via env's CPUs */
11853 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
11854
11855 env.dst_rq = cpu_rq(env.new_dst_cpu);
11856 env.dst_cpu = env.new_dst_cpu;
11857 env.flags &= ~LBF_DST_PINNED;
11858 env.loop = 0;
11859 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11860
11861 /*
11862 * Go back to "more_balance" rather than "redo" since we
11863 * need to continue with same src_cpu.
11864 */
11865 goto more_balance;
11866 }
11867
11868 /*
11869 * We failed to reach balance because of affinity.
11870 */
11871 if (sd_parent) {
11872 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11873
11874 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11875 *group_imbalance = 1;
11876 }
11877
11878 /* All tasks on this runqueue were pinned by CPU affinity */
11879 if (unlikely(env.flags & LBF_ALL_PINNED)) {
11880 __cpumask_clear_cpu(cpu_of(busiest), cpus);
11881 /*
11882 * Attempting to continue load balancing at the current
11883 * sched_domain level only makes sense if there are
11884 * active CPUs remaining as possible busiest CPUs to
11885 * pull load from which are not contained within the
11886 * destination group that is receiving any migrated
11887 * load.
11888 */
11889 if (!cpumask_subset(cpus, env.dst_grpmask)) {
11890 env.loop = 0;
11891 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11892 goto redo;
11893 }
11894 goto out_all_pinned;
11895 }
11896 }
11897
11898 if (!ld_moved) {
11899 schedstat_inc(sd->lb_failed[idle]);
11900 /*
11901 * Increment the failure counter only on periodic balance.
11902 * We do not want newidle balance, which can be very
11903 * frequent, pollute the failure counter causing
11904 * excessive cache_hot migrations and active balances.
11905 *
11906 * Similarly for migration_misfit which is not related to
11907 * load/util migration, don't pollute nr_balance_failed.
11908 */
11909 if (idle != CPU_NEWLY_IDLE &&
11910 env.migration_type != migrate_misfit)
11911 sd->nr_balance_failed++;
11912
11913 if (need_active_balance(&env)) {
11914 unsigned long flags;
11915
11916 raw_spin_rq_lock_irqsave(busiest, flags);
11917
11918 /*
11919 * Don't kick the active_load_balance_cpu_stop,
11920 * if the curr task on busiest CPU can't be
11921 * moved to this_cpu:
11922 */
11923 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11924 raw_spin_rq_unlock_irqrestore(busiest, flags);
11925 goto out_one_pinned;
11926 }
11927
11928 /* Record that we found at least one task that could run on this_cpu */
11929 env.flags &= ~LBF_ALL_PINNED;
11930
11931 /*
11932 * ->active_balance synchronizes accesses to
11933 * ->active_balance_work. Once set, it's cleared
11934 * only after active load balance is finished.
11935 */
11936 if (!busiest->active_balance) {
11937 busiest->active_balance = 1;
11938 busiest->push_cpu = this_cpu;
11939 active_balance = 1;
11940 }
11941
11942 preempt_disable();
11943 raw_spin_rq_unlock_irqrestore(busiest, flags);
11944 if (active_balance) {
11945 stop_one_cpu_nowait(cpu_of(busiest),
11946 active_load_balance_cpu_stop, busiest,
11947 &busiest->active_balance_work);
11948 }
11949 preempt_enable();
11950 }
11951 } else {
11952 sd->nr_balance_failed = 0;
11953 }
11954
11955 if (likely(!active_balance) || need_active_balance(&env)) {
11956 /* We were unbalanced, so reset the balancing interval */
11957 sd->balance_interval = sd->min_interval;
11958 }
11959
11960 goto out;
11961
11962 out_balanced:
11963 /*
11964 * We reach balance although we may have faced some affinity
11965 * constraints. Clear the imbalance flag only if other tasks got
11966 * a chance to move and fix the imbalance.
11967 */
11968 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11969 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11970
11971 if (*group_imbalance)
11972 *group_imbalance = 0;
11973 }
11974
11975 out_all_pinned:
11976 /*
11977 * We reach balance because all tasks are pinned at this level so
11978 * we can't migrate them. Let the imbalance flag set so parent level
11979 * can try to migrate them.
11980 */
11981 schedstat_inc(sd->lb_balanced[idle]);
11982
11983 sd->nr_balance_failed = 0;
11984
11985 out_one_pinned:
11986 ld_moved = 0;
11987
11988 /*
11989 * sched_balance_newidle() disregards balance intervals, so we could
11990 * repeatedly reach this code, which would lead to balance_interval
11991 * skyrocketing in a short amount of time. Skip the balance_interval
11992 * increase logic to avoid that.
11993 *
11994 * Similarly misfit migration which is not necessarily an indication of
11995 * the system being busy and requires lb to backoff to let it settle
11996 * down.
11997 */
11998 if (env.idle == CPU_NEWLY_IDLE ||
11999 env.migration_type == migrate_misfit)
12000 goto out;
12001
12002 /* tune up the balancing interval */
12003 if ((env.flags & LBF_ALL_PINNED &&
12004 sd->balance_interval < MAX_PINNED_INTERVAL) ||
12005 sd->balance_interval < sd->max_interval)
12006 sd->balance_interval *= 2;
12007 out:
12008 return ld_moved;
12009 }
12010
12011 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)12012 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
12013 {
12014 unsigned long interval = sd->balance_interval;
12015
12016 if (cpu_busy)
12017 interval *= sd->busy_factor;
12018
12019 /* scale ms to jiffies */
12020 interval = msecs_to_jiffies(interval);
12021
12022 /*
12023 * Reduce likelihood of busy balancing at higher domains racing with
12024 * balancing at lower domains by preventing their balancing periods
12025 * from being multiples of each other.
12026 */
12027 if (cpu_busy)
12028 interval -= 1;
12029
12030 interval = clamp(interval, 1UL, max_load_balance_interval);
12031
12032 return interval;
12033 }
12034
12035 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)12036 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
12037 {
12038 unsigned long interval, next;
12039
12040 /* used by idle balance, so cpu_busy = 0 */
12041 interval = get_sd_balance_interval(sd, 0);
12042 next = sd->last_balance + interval;
12043
12044 if (time_after(*next_balance, next))
12045 *next_balance = next;
12046 }
12047
12048 /*
12049 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
12050 * running tasks off the busiest CPU onto idle CPUs. It requires at
12051 * least 1 task to be running on each physical CPU where possible, and
12052 * avoids physical / logical imbalances.
12053 */
active_load_balance_cpu_stop(void * data)12054 static int active_load_balance_cpu_stop(void *data)
12055 {
12056 struct rq *busiest_rq = data;
12057 int busiest_cpu = cpu_of(busiest_rq);
12058 int target_cpu = busiest_rq->push_cpu;
12059 struct rq *target_rq = cpu_rq(target_cpu);
12060 struct sched_domain *sd;
12061 struct task_struct *p = NULL;
12062 struct rq_flags rf;
12063
12064 rq_lock_irq(busiest_rq, &rf);
12065 /*
12066 * Between queueing the stop-work and running it is a hole in which
12067 * CPUs can become inactive. We should not move tasks from or to
12068 * inactive CPUs.
12069 */
12070 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
12071 goto out_unlock;
12072
12073 /* Make sure the requested CPU hasn't gone down in the meantime: */
12074 if (unlikely(busiest_cpu != smp_processor_id() ||
12075 !busiest_rq->active_balance))
12076 goto out_unlock;
12077
12078 /* Is there any task to move? */
12079 if (busiest_rq->nr_running <= 1)
12080 goto out_unlock;
12081
12082 /*
12083 * This condition is "impossible", if it occurs
12084 * we need to fix it. Originally reported by
12085 * Bjorn Helgaas on a 128-CPU setup.
12086 */
12087 WARN_ON_ONCE(busiest_rq == target_rq);
12088
12089 /* Search for an sd spanning us and the target CPU. */
12090 rcu_read_lock();
12091 for_each_domain(target_cpu, sd) {
12092 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
12093 break;
12094 }
12095
12096 if (likely(sd)) {
12097 struct lb_env env = {
12098 .sd = sd,
12099 .dst_cpu = target_cpu,
12100 .dst_rq = target_rq,
12101 .src_cpu = busiest_rq->cpu,
12102 .src_rq = busiest_rq,
12103 .idle = CPU_IDLE,
12104 .flags = LBF_ACTIVE_LB,
12105 };
12106
12107 schedstat_inc(sd->alb_count);
12108 update_rq_clock(busiest_rq);
12109
12110 p = detach_one_task(&env);
12111 if (p) {
12112 schedstat_inc(sd->alb_pushed);
12113 /* Active balancing done, reset the failure counter. */
12114 sd->nr_balance_failed = 0;
12115 } else {
12116 schedstat_inc(sd->alb_failed);
12117 }
12118 }
12119 rcu_read_unlock();
12120 out_unlock:
12121 busiest_rq->active_balance = 0;
12122 rq_unlock(busiest_rq, &rf);
12123
12124 if (p)
12125 attach_one_task(target_rq, p);
12126
12127 local_irq_enable();
12128
12129 return 0;
12130 }
12131
12132 /*
12133 * This flag serializes load-balancing passes over large domains
12134 * (above the NODE topology level) - only one load-balancing instance
12135 * may run at a time, to reduce overhead on very large systems with
12136 * lots of CPUs and large NUMA distances.
12137 *
12138 * - Note that load-balancing passes triggered while another one
12139 * is executing are skipped and not re-tried.
12140 *
12141 * - Also note that this does not serialize rebalance_domains()
12142 * execution, as non-SD_SERIALIZE domains will still be
12143 * load-balanced in parallel.
12144 */
12145 static atomic_t sched_balance_running = ATOMIC_INIT(0);
12146
12147 /*
12148 * Scale the max sched_balance_rq interval with the number of CPUs in the system.
12149 * This trades load-balance latency on larger machines for less cross talk.
12150 */
update_max_interval(void)12151 void update_max_interval(void)
12152 {
12153 max_load_balance_interval = HZ*num_online_cpus()/10;
12154 }
12155
update_newidle_cost(struct sched_domain * sd,u64 cost)12156 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
12157 {
12158 if (cost > sd->max_newidle_lb_cost) {
12159 /*
12160 * Track max cost of a domain to make sure to not delay the
12161 * next wakeup on the CPU.
12162 *
12163 * sched_balance_newidle() bumps the cost whenever newidle
12164 * balance fails, and we don't want things to grow out of
12165 * control. Use the sysctl_sched_migration_cost as the upper
12166 * limit, plus a litle extra to avoid off by ones.
12167 */
12168 sd->max_newidle_lb_cost =
12169 min(cost, sysctl_sched_migration_cost + 200);
12170 sd->last_decay_max_lb_cost = jiffies;
12171 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
12172 /*
12173 * Decay the newidle max times by ~1% per second to ensure that
12174 * it is not outdated and the current max cost is actually
12175 * shorter.
12176 */
12177 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
12178 sd->last_decay_max_lb_cost = jiffies;
12179
12180 return true;
12181 }
12182
12183 return false;
12184 }
12185
12186 /*
12187 * It checks each scheduling domain to see if it is due to be balanced,
12188 * and initiates a balancing operation if so.
12189 *
12190 * Balancing parameters are set up in init_sched_domains.
12191 */
sched_balance_domains(struct rq * rq,enum cpu_idle_type idle)12192 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
12193 {
12194 int continue_balancing = 1;
12195 int cpu = rq->cpu;
12196 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12197 unsigned long interval;
12198 struct sched_domain *sd;
12199 /* Earliest time when we have to do rebalance again */
12200 unsigned long next_balance = jiffies + 60*HZ;
12201 int update_next_balance = 0;
12202 int need_serialize, need_decay = 0;
12203 u64 max_cost = 0;
12204
12205 rcu_read_lock();
12206 for_each_domain(cpu, sd) {
12207 /*
12208 * Decay the newidle max times here because this is a regular
12209 * visit to all the domains.
12210 */
12211 need_decay = update_newidle_cost(sd, 0);
12212 max_cost += sd->max_newidle_lb_cost;
12213
12214 /*
12215 * Stop the load balance at this level. There is another
12216 * CPU in our sched group which is doing load balancing more
12217 * actively.
12218 */
12219 if (!continue_balancing) {
12220 if (need_decay)
12221 continue;
12222 break;
12223 }
12224
12225 interval = get_sd_balance_interval(sd, busy);
12226
12227 need_serialize = sd->flags & SD_SERIALIZE;
12228 if (need_serialize) {
12229 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
12230 goto out;
12231 }
12232
12233 if (time_after_eq(jiffies, sd->last_balance + interval)) {
12234 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
12235 /*
12236 * The LBF_DST_PINNED logic could have changed
12237 * env->dst_cpu, so we can't know our idle
12238 * state even if we migrated tasks. Update it.
12239 */
12240 idle = idle_cpu(cpu);
12241 busy = !idle && !sched_idle_cpu(cpu);
12242 }
12243 sd->last_balance = jiffies;
12244 interval = get_sd_balance_interval(sd, busy);
12245 }
12246 if (need_serialize)
12247 atomic_set_release(&sched_balance_running, 0);
12248 out:
12249 if (time_after(next_balance, sd->last_balance + interval)) {
12250 next_balance = sd->last_balance + interval;
12251 update_next_balance = 1;
12252 }
12253 }
12254 if (need_decay) {
12255 /*
12256 * Ensure the rq-wide value also decays but keep it at a
12257 * reasonable floor to avoid funnies with rq->avg_idle.
12258 */
12259 rq->max_idle_balance_cost =
12260 max((u64)sysctl_sched_migration_cost, max_cost);
12261 }
12262 rcu_read_unlock();
12263
12264 /*
12265 * next_balance will be updated only when there is a need.
12266 * When the cpu is attached to null domain for ex, it will not be
12267 * updated.
12268 */
12269 if (likely(update_next_balance))
12270 rq->next_balance = next_balance;
12271
12272 }
12273
on_null_domain(struct rq * rq)12274 static inline int on_null_domain(struct rq *rq)
12275 {
12276 return unlikely(!rcu_dereference_sched(rq->sd));
12277 }
12278
12279 #ifdef CONFIG_NO_HZ_COMMON
12280 /*
12281 * NOHZ idle load balancing (ILB) details:
12282 *
12283 * - When one of the busy CPUs notices that there may be an idle rebalancing
12284 * needed, they will kick the idle load balancer, which then does idle
12285 * load balancing for all the idle CPUs.
12286 */
find_new_ilb(void)12287 static inline int find_new_ilb(void)
12288 {
12289 const struct cpumask *hk_mask;
12290 int ilb_cpu;
12291
12292 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
12293
12294 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
12295
12296 if (ilb_cpu == smp_processor_id())
12297 continue;
12298
12299 if (idle_cpu(ilb_cpu))
12300 return ilb_cpu;
12301 }
12302
12303 return -1;
12304 }
12305
12306 /*
12307 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12308 * SMP function call (IPI).
12309 *
12310 * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set
12311 * (if there is one).
12312 */
kick_ilb(unsigned int flags)12313 static void kick_ilb(unsigned int flags)
12314 {
12315 int ilb_cpu;
12316
12317 /*
12318 * Increase nohz.next_balance only when if full ilb is triggered but
12319 * not if we only update stats.
12320 */
12321 if (flags & NOHZ_BALANCE_KICK)
12322 nohz.next_balance = jiffies+1;
12323
12324 ilb_cpu = find_new_ilb();
12325 if (ilb_cpu < 0)
12326 return;
12327
12328 /*
12329 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12330 * i.e. all bits in flags are already set in ilb_cpu.
12331 */
12332 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
12333 return;
12334
12335 /*
12336 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12337 * the first flag owns it; cleared by nohz_csd_func().
12338 */
12339 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12340 if (flags & NOHZ_KICK_MASK)
12341 return;
12342
12343 /*
12344 * This way we generate an IPI on the target CPU which
12345 * is idle, and the softirq performing NOHZ idle load balancing
12346 * will be run before returning from the IPI.
12347 */
12348 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12349 }
12350
12351 /*
12352 * Current decision point for kicking the idle load balancer in the presence
12353 * of idle CPUs in the system.
12354 */
nohz_balancer_kick(struct rq * rq)12355 static void nohz_balancer_kick(struct rq *rq)
12356 {
12357 unsigned long now = jiffies;
12358 struct sched_domain_shared *sds;
12359 struct sched_domain *sd;
12360 int nr_busy, i, cpu = rq->cpu;
12361 unsigned int flags = 0;
12362
12363 if (unlikely(rq->idle_balance))
12364 return;
12365
12366 /*
12367 * We may be recently in ticked or tickless idle mode. At the first
12368 * busy tick after returning from idle, we will update the busy stats.
12369 */
12370 nohz_balance_exit_idle(rq);
12371
12372 /*
12373 * None are in tickless mode and hence no need for NOHZ idle load
12374 * balancing:
12375 */
12376 if (likely(!atomic_read(&nohz.nr_cpus)))
12377 return;
12378
12379 if (READ_ONCE(nohz.has_blocked) &&
12380 time_after(now, READ_ONCE(nohz.next_blocked)))
12381 flags = NOHZ_STATS_KICK;
12382
12383 if (time_before(now, nohz.next_balance))
12384 goto out;
12385
12386 if (rq->nr_running >= 2) {
12387 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12388 goto out;
12389 }
12390
12391 rcu_read_lock();
12392
12393 sd = rcu_dereference(rq->sd);
12394 if (sd) {
12395 /*
12396 * If there's a runnable CFS task and the current CPU has reduced
12397 * capacity, kick the ILB to see if there's a better CPU to run on:
12398 */
12399 if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) {
12400 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12401 goto unlock;
12402 }
12403 }
12404
12405 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12406 if (sd) {
12407 /*
12408 * When ASYM_PACKING; see if there's a more preferred CPU
12409 * currently idle; in which case, kick the ILB to move tasks
12410 * around.
12411 *
12412 * When balancing between cores, all the SMT siblings of the
12413 * preferred CPU must be idle.
12414 */
12415 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
12416 if (sched_asym(sd, i, cpu)) {
12417 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12418 goto unlock;
12419 }
12420 }
12421 }
12422
12423 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12424 if (sd) {
12425 /*
12426 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12427 * to run the misfit task on.
12428 */
12429 if (check_misfit_status(rq)) {
12430 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12431 goto unlock;
12432 }
12433
12434 /*
12435 * For asymmetric systems, we do not want to nicely balance
12436 * cache use, instead we want to embrace asymmetry and only
12437 * ensure tasks have enough CPU capacity.
12438 *
12439 * Skip the LLC logic because it's not relevant in that case.
12440 */
12441 goto unlock;
12442 }
12443
12444 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12445 if (sds) {
12446 /*
12447 * If there is an imbalance between LLC domains (IOW we could
12448 * increase the overall cache utilization), we need a less-loaded LLC
12449 * domain to pull some load from. Likewise, we may need to spread
12450 * load within the current LLC domain (e.g. packed SMT cores but
12451 * other CPUs are idle). We can't really know from here how busy
12452 * the others are - so just get a NOHZ balance going if it looks
12453 * like this LLC domain has tasks we could move.
12454 */
12455 nr_busy = atomic_read(&sds->nr_busy_cpus);
12456 if (nr_busy > 1) {
12457 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12458 goto unlock;
12459 }
12460 }
12461 unlock:
12462 rcu_read_unlock();
12463 out:
12464 if (READ_ONCE(nohz.needs_update))
12465 flags |= NOHZ_NEXT_KICK;
12466
12467 if (flags)
12468 kick_ilb(flags);
12469 }
12470
set_cpu_sd_state_busy(int cpu)12471 static void set_cpu_sd_state_busy(int cpu)
12472 {
12473 struct sched_domain *sd;
12474
12475 rcu_read_lock();
12476 sd = rcu_dereference(per_cpu(sd_llc, cpu));
12477
12478 if (!sd || !sd->nohz_idle)
12479 goto unlock;
12480 sd->nohz_idle = 0;
12481
12482 atomic_inc(&sd->shared->nr_busy_cpus);
12483 unlock:
12484 rcu_read_unlock();
12485 }
12486
nohz_balance_exit_idle(struct rq * rq)12487 void nohz_balance_exit_idle(struct rq *rq)
12488 {
12489 WARN_ON_ONCE(rq != this_rq());
12490
12491 if (likely(!rq->nohz_tick_stopped))
12492 return;
12493
12494 rq->nohz_tick_stopped = 0;
12495 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12496 atomic_dec(&nohz.nr_cpus);
12497
12498 set_cpu_sd_state_busy(rq->cpu);
12499 }
12500
set_cpu_sd_state_idle(int cpu)12501 static void set_cpu_sd_state_idle(int cpu)
12502 {
12503 struct sched_domain *sd;
12504
12505 rcu_read_lock();
12506 sd = rcu_dereference(per_cpu(sd_llc, cpu));
12507
12508 if (!sd || sd->nohz_idle)
12509 goto unlock;
12510 sd->nohz_idle = 1;
12511
12512 atomic_dec(&sd->shared->nr_busy_cpus);
12513 unlock:
12514 rcu_read_unlock();
12515 }
12516
12517 /*
12518 * This routine will record that the CPU is going idle with tick stopped.
12519 * This info will be used in performing idle load balancing in the future.
12520 */
nohz_balance_enter_idle(int cpu)12521 void nohz_balance_enter_idle(int cpu)
12522 {
12523 struct rq *rq = cpu_rq(cpu);
12524
12525 WARN_ON_ONCE(cpu != smp_processor_id());
12526
12527 /* If this CPU is going down, then nothing needs to be done: */
12528 if (!cpu_active(cpu))
12529 return;
12530
12531 /*
12532 * Can be set safely without rq->lock held
12533 * If a clear happens, it will have evaluated last additions because
12534 * rq->lock is held during the check and the clear
12535 */
12536 rq->has_blocked_load = 1;
12537
12538 /*
12539 * The tick is still stopped but load could have been added in the
12540 * meantime. We set the nohz.has_blocked flag to trig a check of the
12541 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12542 * of nohz.has_blocked can only happen after checking the new load
12543 */
12544 if (rq->nohz_tick_stopped)
12545 goto out;
12546
12547 /* If we're a completely isolated CPU, we don't play: */
12548 if (on_null_domain(rq))
12549 return;
12550
12551 rq->nohz_tick_stopped = 1;
12552
12553 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12554 atomic_inc(&nohz.nr_cpus);
12555
12556 /*
12557 * Ensures that if nohz_idle_balance() fails to observe our
12558 * @idle_cpus_mask store, it must observe the @has_blocked
12559 * and @needs_update stores.
12560 */
12561 smp_mb__after_atomic();
12562
12563 set_cpu_sd_state_idle(cpu);
12564
12565 WRITE_ONCE(nohz.needs_update, 1);
12566 out:
12567 /*
12568 * Each time a cpu enter idle, we assume that it has blocked load and
12569 * enable the periodic update of the load of idle CPUs
12570 */
12571 WRITE_ONCE(nohz.has_blocked, 1);
12572 }
12573
update_nohz_stats(struct rq * rq)12574 static bool update_nohz_stats(struct rq *rq)
12575 {
12576 unsigned int cpu = rq->cpu;
12577
12578 if (!rq->has_blocked_load)
12579 return false;
12580
12581 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12582 return false;
12583
12584 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12585 return true;
12586
12587 sched_balance_update_blocked_averages(cpu);
12588
12589 return rq->has_blocked_load;
12590 }
12591
12592 /*
12593 * Internal function that runs load balance for all idle CPUs. The load balance
12594 * can be a simple update of blocked load or a complete load balance with
12595 * tasks movement depending of flags.
12596 */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags)12597 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12598 {
12599 /* Earliest time when we have to do rebalance again */
12600 unsigned long now = jiffies;
12601 unsigned long next_balance = now + 60*HZ;
12602 bool has_blocked_load = false;
12603 int update_next_balance = 0;
12604 int this_cpu = this_rq->cpu;
12605 int balance_cpu;
12606 struct rq *rq;
12607
12608 WARN_ON_ONCE((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12609
12610 /*
12611 * We assume there will be no idle load after this update and clear
12612 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12613 * set the has_blocked flag and trigger another update of idle load.
12614 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12615 * setting the flag, we are sure to not clear the state and not
12616 * check the load of an idle cpu.
12617 *
12618 * Same applies to idle_cpus_mask vs needs_update.
12619 */
12620 if (flags & NOHZ_STATS_KICK)
12621 WRITE_ONCE(nohz.has_blocked, 0);
12622 if (flags & NOHZ_NEXT_KICK)
12623 WRITE_ONCE(nohz.needs_update, 0);
12624
12625 /*
12626 * Ensures that if we miss the CPU, we must see the has_blocked
12627 * store from nohz_balance_enter_idle().
12628 */
12629 smp_mb();
12630
12631 /*
12632 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12633 * chance for other idle cpu to pull load.
12634 */
12635 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
12636 if (!idle_cpu(balance_cpu))
12637 continue;
12638
12639 /*
12640 * If this CPU gets work to do, stop the load balancing
12641 * work being done for other CPUs. Next load
12642 * balancing owner will pick it up.
12643 */
12644 if (!idle_cpu(this_cpu) && need_resched()) {
12645 if (flags & NOHZ_STATS_KICK)
12646 has_blocked_load = true;
12647 if (flags & NOHZ_NEXT_KICK)
12648 WRITE_ONCE(nohz.needs_update, 1);
12649 goto abort;
12650 }
12651
12652 rq = cpu_rq(balance_cpu);
12653
12654 if (flags & NOHZ_STATS_KICK)
12655 has_blocked_load |= update_nohz_stats(rq);
12656
12657 /*
12658 * If time for next balance is due,
12659 * do the balance.
12660 */
12661 if (time_after_eq(jiffies, rq->next_balance)) {
12662 struct rq_flags rf;
12663
12664 rq_lock_irqsave(rq, &rf);
12665 update_rq_clock(rq);
12666 rq_unlock_irqrestore(rq, &rf);
12667
12668 if (flags & NOHZ_BALANCE_KICK)
12669 sched_balance_domains(rq, CPU_IDLE);
12670 }
12671
12672 if (time_after(next_balance, rq->next_balance)) {
12673 next_balance = rq->next_balance;
12674 update_next_balance = 1;
12675 }
12676 }
12677
12678 /*
12679 * next_balance will be updated only when there is a need.
12680 * When the CPU is attached to null domain for ex, it will not be
12681 * updated.
12682 */
12683 if (likely(update_next_balance))
12684 nohz.next_balance = next_balance;
12685
12686 if (flags & NOHZ_STATS_KICK)
12687 WRITE_ONCE(nohz.next_blocked,
12688 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12689
12690 abort:
12691 /* There is still blocked load, enable periodic update */
12692 if (has_blocked_load)
12693 WRITE_ONCE(nohz.has_blocked, 1);
12694 }
12695
12696 /*
12697 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12698 * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12699 */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12700 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12701 {
12702 unsigned int flags = this_rq->nohz_idle_balance;
12703
12704 if (!flags)
12705 return false;
12706
12707 this_rq->nohz_idle_balance = 0;
12708
12709 if (idle != CPU_IDLE)
12710 return false;
12711
12712 _nohz_idle_balance(this_rq, flags);
12713
12714 return true;
12715 }
12716
12717 /*
12718 * Check if we need to directly run the ILB for updating blocked load before
12719 * entering idle state. Here we run ILB directly without issuing IPIs.
12720 *
12721 * Note that when this function is called, the tick may not yet be stopped on
12722 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12723 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12724 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12725 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12726 * called from this function on (this) CPU that's not yet in the mask. That's
12727 * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12728 * updating the blocked load of already idle CPUs without waking up one of
12729 * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12730 * cpu about to enter idle, because it can take a long time.
12731 */
nohz_run_idle_balance(int cpu)12732 void nohz_run_idle_balance(int cpu)
12733 {
12734 unsigned int flags;
12735
12736 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12737
12738 /*
12739 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12740 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12741 */
12742 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12743 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12744 }
12745
nohz_newidle_balance(struct rq * this_rq)12746 static void nohz_newidle_balance(struct rq *this_rq)
12747 {
12748 int this_cpu = this_rq->cpu;
12749
12750 /* Will wake up very soon. No time for doing anything else*/
12751 if (this_rq->avg_idle < sysctl_sched_migration_cost)
12752 return;
12753
12754 /* Don't need to update blocked load of idle CPUs*/
12755 if (!READ_ONCE(nohz.has_blocked) ||
12756 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12757 return;
12758
12759 /*
12760 * Set the need to trigger ILB in order to update blocked load
12761 * before entering idle state.
12762 */
12763 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12764 }
12765
12766 #else /* !CONFIG_NO_HZ_COMMON: */
nohz_balancer_kick(struct rq * rq)12767 static inline void nohz_balancer_kick(struct rq *rq) { }
12768
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12769 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12770 {
12771 return false;
12772 }
12773
nohz_newidle_balance(struct rq * this_rq)12774 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12775 #endif /* !CONFIG_NO_HZ_COMMON */
12776
12777 /*
12778 * sched_balance_newidle is called by schedule() if this_cpu is about to become
12779 * idle. Attempts to pull tasks from other CPUs.
12780 *
12781 * Returns:
12782 * < 0 - we released the lock and there are !fair tasks present
12783 * 0 - failed, no new tasks
12784 * > 0 - success, new (fair) tasks present
12785 */
sched_balance_newidle(struct rq * this_rq,struct rq_flags * rf)12786 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12787 {
12788 unsigned long next_balance = jiffies + HZ;
12789 int this_cpu = this_rq->cpu;
12790 int continue_balancing = 1;
12791 u64 t0, t1, curr_cost = 0;
12792 struct sched_domain *sd;
12793 int pulled_task = 0;
12794
12795 update_misfit_status(NULL, this_rq);
12796
12797 /*
12798 * There is a task waiting to run. No need to search for one.
12799 * Return 0; the task will be enqueued when switching to idle.
12800 */
12801 if (this_rq->ttwu_pending)
12802 return 0;
12803
12804 /*
12805 * We must set idle_stamp _before_ calling sched_balance_rq()
12806 * for CPU_NEWLY_IDLE, such that we measure the this duration
12807 * as idle time.
12808 */
12809 this_rq->idle_stamp = rq_clock(this_rq);
12810
12811 /*
12812 * Do not pull tasks towards !active CPUs...
12813 */
12814 if (!cpu_active(this_cpu))
12815 return 0;
12816
12817 /*
12818 * This is OK, because current is on_cpu, which avoids it being picked
12819 * for load-balance and preemption/IRQs are still disabled avoiding
12820 * further scheduler activity on it and we're being very careful to
12821 * re-start the picking loop.
12822 */
12823 rq_unpin_lock(this_rq, rf);
12824
12825 rcu_read_lock();
12826 sd = rcu_dereference_check_sched_domain(this_rq->sd);
12827
12828 if (!get_rd_overloaded(this_rq->rd) ||
12829 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12830
12831 if (sd)
12832 update_next_balance(sd, &next_balance);
12833 rcu_read_unlock();
12834
12835 goto out;
12836 }
12837 rcu_read_unlock();
12838
12839 raw_spin_rq_unlock(this_rq);
12840
12841 t0 = sched_clock_cpu(this_cpu);
12842 sched_balance_update_blocked_averages(this_cpu);
12843
12844 rcu_read_lock();
12845 for_each_domain(this_cpu, sd) {
12846 u64 domain_cost;
12847
12848 update_next_balance(sd, &next_balance);
12849
12850 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12851 break;
12852
12853 if (sd->flags & SD_BALANCE_NEWIDLE) {
12854
12855 pulled_task = sched_balance_rq(this_cpu, this_rq,
12856 sd, CPU_NEWLY_IDLE,
12857 &continue_balancing);
12858
12859 t1 = sched_clock_cpu(this_cpu);
12860 domain_cost = t1 - t0;
12861 curr_cost += domain_cost;
12862 t0 = t1;
12863
12864 /*
12865 * Failing newidle means it is not effective;
12866 * bump the cost so we end up doing less of it.
12867 */
12868 if (!pulled_task)
12869 domain_cost = (3 * sd->max_newidle_lb_cost) / 2;
12870
12871 update_newidle_cost(sd, domain_cost);
12872 }
12873
12874 /*
12875 * Stop searching for tasks to pull if there are
12876 * now runnable tasks on this rq.
12877 */
12878 if (pulled_task || !continue_balancing)
12879 break;
12880 }
12881 rcu_read_unlock();
12882
12883 raw_spin_rq_lock(this_rq);
12884
12885 if (curr_cost > this_rq->max_idle_balance_cost)
12886 this_rq->max_idle_balance_cost = curr_cost;
12887
12888 /*
12889 * While browsing the domains, we released the rq lock, a task could
12890 * have been enqueued in the meantime. Since we're not going idle,
12891 * pretend we pulled a task.
12892 */
12893 if (this_rq->cfs.h_nr_queued && !pulled_task)
12894 pulled_task = 1;
12895
12896 /* Is there a task of a high priority class? */
12897 if (this_rq->nr_running != this_rq->cfs.h_nr_queued)
12898 pulled_task = -1;
12899
12900 out:
12901 /* Move the next balance forward */
12902 if (time_after(this_rq->next_balance, next_balance))
12903 this_rq->next_balance = next_balance;
12904
12905 if (pulled_task)
12906 this_rq->idle_stamp = 0;
12907 else
12908 nohz_newidle_balance(this_rq);
12909
12910 rq_repin_lock(this_rq, rf);
12911
12912 return pulled_task;
12913 }
12914
12915 /*
12916 * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12917 *
12918 * - directly from the local sched_tick() for periodic load balancing
12919 *
12920 * - indirectly from a remote sched_tick() for NOHZ idle balancing
12921 * through the SMP cross-call nohz_csd_func()
12922 */
sched_balance_softirq(void)12923 static __latent_entropy void sched_balance_softirq(void)
12924 {
12925 struct rq *this_rq = this_rq();
12926 enum cpu_idle_type idle = this_rq->idle_balance;
12927 /*
12928 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12929 * balancing on behalf of the other idle CPUs whose ticks are
12930 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12931 * give the idle CPUs a chance to load balance. Else we may
12932 * load balance only within the local sched_domain hierarchy
12933 * and abort nohz_idle_balance altogether if we pull some load.
12934 */
12935 if (nohz_idle_balance(this_rq, idle))
12936 return;
12937
12938 /* normal load balance */
12939 sched_balance_update_blocked_averages(this_rq->cpu);
12940 sched_balance_domains(this_rq, idle);
12941 }
12942
12943 /*
12944 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12945 */
sched_balance_trigger(struct rq * rq)12946 void sched_balance_trigger(struct rq *rq)
12947 {
12948 /*
12949 * Don't need to rebalance while attached to NULL domain or
12950 * runqueue CPU is not active
12951 */
12952 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12953 return;
12954
12955 if (time_after_eq(jiffies, rq->next_balance))
12956 raise_softirq(SCHED_SOFTIRQ);
12957
12958 nohz_balancer_kick(rq);
12959 }
12960
rq_online_fair(struct rq * rq)12961 static void rq_online_fair(struct rq *rq)
12962 {
12963 update_sysctl();
12964
12965 update_runtime_enabled(rq);
12966 }
12967
rq_offline_fair(struct rq * rq)12968 static void rq_offline_fair(struct rq *rq)
12969 {
12970 update_sysctl();
12971
12972 /* Ensure any throttled groups are reachable by pick_next_task */
12973 unthrottle_offline_cfs_rqs(rq);
12974
12975 /* Ensure that we remove rq contribution to group share: */
12976 clear_tg_offline_cfs_rqs(rq);
12977 }
12978
12979 #ifdef CONFIG_SCHED_CORE
12980 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)12981 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12982 {
12983 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12984 u64 slice = se->slice;
12985
12986 return (rtime * min_nr_tasks > slice);
12987 }
12988
12989 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
task_tick_core(struct rq * rq,struct task_struct * curr)12990 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12991 {
12992 if (!sched_core_enabled(rq))
12993 return;
12994
12995 /*
12996 * If runqueue has only one task which used up its slice and
12997 * if the sibling is forced idle, then trigger schedule to
12998 * give forced idle task a chance.
12999 *
13000 * sched_slice() considers only this active rq and it gets the
13001 * whole slice. But during force idle, we have siblings acting
13002 * like a single runqueue and hence we need to consider runnable
13003 * tasks on this CPU and the forced idle CPU. Ideally, we should
13004 * go through the forced idle rq, but that would be a perf hit.
13005 * We can assume that the forced idle CPU has at least
13006 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
13007 * if we need to give up the CPU.
13008 */
13009 if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 &&
13010 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
13011 resched_curr(rq);
13012 }
13013
13014 /*
13015 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
13016 */
se_fi_update(const struct sched_entity * se,unsigned int fi_seq,bool forceidle)13017 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
13018 bool forceidle)
13019 {
13020 for_each_sched_entity(se) {
13021 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13022
13023 if (forceidle) {
13024 if (cfs_rq->forceidle_seq == fi_seq)
13025 break;
13026 cfs_rq->forceidle_seq = fi_seq;
13027 }
13028
13029 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
13030 }
13031 }
13032
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)13033 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
13034 {
13035 struct sched_entity *se = &p->se;
13036
13037 if (p->sched_class != &fair_sched_class)
13038 return;
13039
13040 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
13041 }
13042
cfs_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)13043 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
13044 bool in_fi)
13045 {
13046 struct rq *rq = task_rq(a);
13047 const struct sched_entity *sea = &a->se;
13048 const struct sched_entity *seb = &b->se;
13049 struct cfs_rq *cfs_rqa;
13050 struct cfs_rq *cfs_rqb;
13051 s64 delta;
13052
13053 WARN_ON_ONCE(task_rq(b)->core != rq->core);
13054
13055 #ifdef CONFIG_FAIR_GROUP_SCHED
13056 /*
13057 * Find an se in the hierarchy for tasks a and b, such that the se's
13058 * are immediate siblings.
13059 */
13060 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
13061 int sea_depth = sea->depth;
13062 int seb_depth = seb->depth;
13063
13064 if (sea_depth >= seb_depth)
13065 sea = parent_entity(sea);
13066 if (sea_depth <= seb_depth)
13067 seb = parent_entity(seb);
13068 }
13069
13070 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
13071 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
13072
13073 cfs_rqa = sea->cfs_rq;
13074 cfs_rqb = seb->cfs_rq;
13075 #else /* !CONFIG_FAIR_GROUP_SCHED: */
13076 cfs_rqa = &task_rq(a)->cfs;
13077 cfs_rqb = &task_rq(b)->cfs;
13078 #endif /* !CONFIG_FAIR_GROUP_SCHED */
13079
13080 /*
13081 * Find delta after normalizing se's vruntime with its cfs_rq's
13082 * min_vruntime_fi, which would have been updated in prior calls
13083 * to se_fi_update().
13084 */
13085 delta = (s64)(sea->vruntime - seb->vruntime) +
13086 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
13087
13088 return delta > 0;
13089 }
13090
task_is_throttled_fair(struct task_struct * p,int cpu)13091 static int task_is_throttled_fair(struct task_struct *p, int cpu)
13092 {
13093 struct cfs_rq *cfs_rq;
13094
13095 #ifdef CONFIG_FAIR_GROUP_SCHED
13096 cfs_rq = task_group(p)->cfs_rq[cpu];
13097 #else
13098 cfs_rq = &cpu_rq(cpu)->cfs;
13099 #endif
13100 return throttled_hierarchy(cfs_rq);
13101 }
13102 #else /* !CONFIG_SCHED_CORE: */
task_tick_core(struct rq * rq,struct task_struct * curr)13103 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
13104 #endif /* !CONFIG_SCHED_CORE */
13105
13106 /*
13107 * scheduler tick hitting a task of our scheduling class.
13108 *
13109 * NOTE: This function can be called remotely by the tick offload that
13110 * goes along full dynticks. Therefore no local assumption can be made
13111 * and everything must be accessed through the @rq and @curr passed in
13112 * parameters.
13113 */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)13114 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
13115 {
13116 struct cfs_rq *cfs_rq;
13117 struct sched_entity *se = &curr->se;
13118
13119 for_each_sched_entity(se) {
13120 cfs_rq = cfs_rq_of(se);
13121 entity_tick(cfs_rq, se, queued);
13122 }
13123
13124 if (static_branch_unlikely(&sched_numa_balancing))
13125 task_tick_numa(rq, curr);
13126
13127 update_misfit_status(curr, rq);
13128 check_update_overutilized_status(task_rq(curr));
13129
13130 task_tick_core(rq, curr);
13131 }
13132
13133 /*
13134 * called on fork with the child task as argument from the parent's context
13135 * - child not yet on the tasklist
13136 * - preemption disabled
13137 */
task_fork_fair(struct task_struct * p)13138 static void task_fork_fair(struct task_struct *p)
13139 {
13140 set_task_max_allowed_capacity(p);
13141 }
13142
13143 /*
13144 * Priority of the task has changed. Check to see if we preempt
13145 * the current task.
13146 */
13147 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)13148 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
13149 {
13150 if (!task_on_rq_queued(p))
13151 return;
13152
13153 if (rq->cfs.nr_queued == 1)
13154 return;
13155
13156 /*
13157 * Reschedule if we are currently running on this runqueue and
13158 * our priority decreased, or if we are not currently running on
13159 * this runqueue and our priority is higher than the current's
13160 */
13161 if (task_current_donor(rq, p)) {
13162 if (p->prio > oldprio)
13163 resched_curr(rq);
13164 } else
13165 wakeup_preempt(rq, p, 0);
13166 }
13167
13168 #ifdef CONFIG_FAIR_GROUP_SCHED
13169 /*
13170 * Propagate the changes of the sched_entity across the tg tree to make it
13171 * visible to the root
13172 */
propagate_entity_cfs_rq(struct sched_entity * se)13173 static void propagate_entity_cfs_rq(struct sched_entity *se)
13174 {
13175 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13176
13177 /*
13178 * If a task gets attached to this cfs_rq and before being queued,
13179 * it gets migrated to another CPU due to reasons like affinity
13180 * change, make sure this cfs_rq stays on leaf cfs_rq list to have
13181 * that removed load decayed or it can cause faireness problem.
13182 */
13183 if (!cfs_rq_pelt_clock_throttled(cfs_rq))
13184 list_add_leaf_cfs_rq(cfs_rq);
13185
13186 /* Start to propagate at parent */
13187 se = se->parent;
13188
13189 for_each_sched_entity(se) {
13190 cfs_rq = cfs_rq_of(se);
13191
13192 update_load_avg(cfs_rq, se, UPDATE_TG);
13193
13194 if (!cfs_rq_pelt_clock_throttled(cfs_rq))
13195 list_add_leaf_cfs_rq(cfs_rq);
13196 }
13197
13198 assert_list_leaf_cfs_rq(rq_of(cfs_rq));
13199 }
13200 #else /* !CONFIG_FAIR_GROUP_SCHED: */
propagate_entity_cfs_rq(struct sched_entity * se)13201 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13202 #endif /* !CONFIG_FAIR_GROUP_SCHED */
13203
detach_entity_cfs_rq(struct sched_entity * se)13204 static void detach_entity_cfs_rq(struct sched_entity *se)
13205 {
13206 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13207
13208 /*
13209 * In case the task sched_avg hasn't been attached:
13210 * - A forked task which hasn't been woken up by wake_up_new_task().
13211 * - A task which has been woken up by try_to_wake_up() but is
13212 * waiting for actually being woken up by sched_ttwu_pending().
13213 */
13214 if (!se->avg.last_update_time)
13215 return;
13216
13217 /* Catch up with the cfs_rq and remove our load when we leave */
13218 update_load_avg(cfs_rq, se, 0);
13219 detach_entity_load_avg(cfs_rq, se);
13220 update_tg_load_avg(cfs_rq);
13221 propagate_entity_cfs_rq(se);
13222 }
13223
attach_entity_cfs_rq(struct sched_entity * se)13224 static void attach_entity_cfs_rq(struct sched_entity *se)
13225 {
13226 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13227
13228 /* Synchronize entity with its cfs_rq */
13229 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13230 attach_entity_load_avg(cfs_rq, se);
13231 update_tg_load_avg(cfs_rq);
13232 propagate_entity_cfs_rq(se);
13233 }
13234
detach_task_cfs_rq(struct task_struct * p)13235 static void detach_task_cfs_rq(struct task_struct *p)
13236 {
13237 struct sched_entity *se = &p->se;
13238
13239 detach_entity_cfs_rq(se);
13240 }
13241
attach_task_cfs_rq(struct task_struct * p)13242 static void attach_task_cfs_rq(struct task_struct *p)
13243 {
13244 struct sched_entity *se = &p->se;
13245
13246 attach_entity_cfs_rq(se);
13247 }
13248
switched_from_fair(struct rq * rq,struct task_struct * p)13249 static void switched_from_fair(struct rq *rq, struct task_struct *p)
13250 {
13251 detach_task_cfs_rq(p);
13252 }
13253
switched_to_fair(struct rq * rq,struct task_struct * p)13254 static void switched_to_fair(struct rq *rq, struct task_struct *p)
13255 {
13256 WARN_ON_ONCE(p->se.sched_delayed);
13257
13258 attach_task_cfs_rq(p);
13259
13260 set_task_max_allowed_capacity(p);
13261
13262 if (task_on_rq_queued(p)) {
13263 /*
13264 * We were most likely switched from sched_rt, so
13265 * kick off the schedule if running, otherwise just see
13266 * if we can still preempt the current task.
13267 */
13268 if (task_current_donor(rq, p))
13269 resched_curr(rq);
13270 else
13271 wakeup_preempt(rq, p, 0);
13272 }
13273 }
13274
__set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13275 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13276 {
13277 struct sched_entity *se = &p->se;
13278
13279 if (task_on_rq_queued(p)) {
13280 /*
13281 * Move the next running task to the front of the list, so our
13282 * cfs_tasks list becomes MRU one.
13283 */
13284 list_move(&se->group_node, &rq->cfs_tasks);
13285 }
13286 if (!first)
13287 return;
13288
13289 WARN_ON_ONCE(se->sched_delayed);
13290
13291 if (hrtick_enabled_fair(rq))
13292 hrtick_start_fair(rq, p);
13293
13294 update_misfit_status(p, rq);
13295 sched_fair_update_stop_tick(rq, p);
13296 }
13297
13298 /*
13299 * Account for a task changing its policy or group.
13300 *
13301 * This routine is mostly called to set cfs_rq->curr field when a task
13302 * migrates between groups/classes.
13303 */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13304 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13305 {
13306 struct sched_entity *se = &p->se;
13307
13308 for_each_sched_entity(se) {
13309 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13310
13311 set_next_entity(cfs_rq, se);
13312 /* ensure bandwidth has been allocated on our new cfs_rq */
13313 account_cfs_rq_runtime(cfs_rq, 0);
13314 }
13315
13316 __set_next_task_fair(rq, p, first);
13317 }
13318
init_cfs_rq(struct cfs_rq * cfs_rq)13319 void init_cfs_rq(struct cfs_rq *cfs_rq)
13320 {
13321 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13322 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
13323 raw_spin_lock_init(&cfs_rq->removed.lock);
13324 }
13325
13326 #ifdef CONFIG_FAIR_GROUP_SCHED
task_change_group_fair(struct task_struct * p)13327 static void task_change_group_fair(struct task_struct *p)
13328 {
13329 /*
13330 * We couldn't detach or attach a forked task which
13331 * hasn't been woken up by wake_up_new_task().
13332 */
13333 if (READ_ONCE(p->__state) == TASK_NEW)
13334 return;
13335
13336 detach_task_cfs_rq(p);
13337
13338 /* Tell se's cfs_rq has been changed -- migrated */
13339 p->se.avg.last_update_time = 0;
13340 set_task_rq(p, task_cpu(p));
13341 attach_task_cfs_rq(p);
13342 }
13343
free_fair_sched_group(struct task_group * tg)13344 void free_fair_sched_group(struct task_group *tg)
13345 {
13346 int i;
13347
13348 for_each_possible_cpu(i) {
13349 if (tg->cfs_rq)
13350 kfree(tg->cfs_rq[i]);
13351 if (tg->se)
13352 kfree(tg->se[i]);
13353 }
13354
13355 kfree(tg->cfs_rq);
13356 kfree(tg->se);
13357 }
13358
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)13359 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13360 {
13361 struct sched_entity *se;
13362 struct cfs_rq *cfs_rq;
13363 int i;
13364
13365 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13366 if (!tg->cfs_rq)
13367 goto err;
13368 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13369 if (!tg->se)
13370 goto err;
13371
13372 tg->shares = NICE_0_LOAD;
13373
13374 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13375
13376 for_each_possible_cpu(i) {
13377 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13378 GFP_KERNEL, cpu_to_node(i));
13379 if (!cfs_rq)
13380 goto err;
13381
13382 se = kzalloc_node(sizeof(struct sched_entity_stats),
13383 GFP_KERNEL, cpu_to_node(i));
13384 if (!se)
13385 goto err_free_rq;
13386
13387 init_cfs_rq(cfs_rq);
13388 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13389 init_entity_runnable_average(se);
13390 }
13391
13392 return 1;
13393
13394 err_free_rq:
13395 kfree(cfs_rq);
13396 err:
13397 return 0;
13398 }
13399
online_fair_sched_group(struct task_group * tg)13400 void online_fair_sched_group(struct task_group *tg)
13401 {
13402 struct sched_entity *se;
13403 struct rq_flags rf;
13404 struct rq *rq;
13405 int i;
13406
13407 for_each_possible_cpu(i) {
13408 rq = cpu_rq(i);
13409 se = tg->se[i];
13410 rq_lock_irq(rq, &rf);
13411 update_rq_clock(rq);
13412 attach_entity_cfs_rq(se);
13413 sync_throttle(tg, i);
13414 rq_unlock_irq(rq, &rf);
13415 }
13416 }
13417
unregister_fair_sched_group(struct task_group * tg)13418 void unregister_fair_sched_group(struct task_group *tg)
13419 {
13420 int cpu;
13421
13422 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13423
13424 for_each_possible_cpu(cpu) {
13425 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
13426 struct sched_entity *se = tg->se[cpu];
13427 struct rq *rq = cpu_rq(cpu);
13428
13429 if (se) {
13430 if (se->sched_delayed) {
13431 guard(rq_lock_irqsave)(rq);
13432 if (se->sched_delayed) {
13433 update_rq_clock(rq);
13434 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
13435 }
13436 list_del_leaf_cfs_rq(cfs_rq);
13437 }
13438 remove_entity_load_avg(se);
13439 }
13440
13441 /*
13442 * Only empty task groups can be destroyed; so we can speculatively
13443 * check on_list without danger of it being re-added.
13444 */
13445 if (cfs_rq->on_list) {
13446 guard(rq_lock_irqsave)(rq);
13447 list_del_leaf_cfs_rq(cfs_rq);
13448 }
13449 }
13450 }
13451
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)13452 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13453 struct sched_entity *se, int cpu,
13454 struct sched_entity *parent)
13455 {
13456 struct rq *rq = cpu_rq(cpu);
13457
13458 cfs_rq->tg = tg;
13459 cfs_rq->rq = rq;
13460 init_cfs_rq_runtime(cfs_rq);
13461
13462 tg->cfs_rq[cpu] = cfs_rq;
13463 tg->se[cpu] = se;
13464
13465 /* se could be NULL for root_task_group */
13466 if (!se)
13467 return;
13468
13469 if (!parent) {
13470 se->cfs_rq = &rq->cfs;
13471 se->depth = 0;
13472 } else {
13473 se->cfs_rq = parent->my_q;
13474 se->depth = parent->depth + 1;
13475 }
13476
13477 se->my_q = cfs_rq;
13478 /* guarantee group entities always have weight */
13479 update_load_set(&se->load, NICE_0_LOAD);
13480 se->parent = parent;
13481 }
13482
13483 static DEFINE_MUTEX(shares_mutex);
13484
__sched_group_set_shares(struct task_group * tg,unsigned long shares)13485 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13486 {
13487 int i;
13488
13489 lockdep_assert_held(&shares_mutex);
13490
13491 /*
13492 * We can't change the weight of the root cgroup.
13493 */
13494 if (!tg->se[0])
13495 return -EINVAL;
13496
13497 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13498
13499 if (tg->shares == shares)
13500 return 0;
13501
13502 tg->shares = shares;
13503 for_each_possible_cpu(i) {
13504 struct rq *rq = cpu_rq(i);
13505 struct sched_entity *se = tg->se[i];
13506 struct rq_flags rf;
13507
13508 /* Propagate contribution to hierarchy */
13509 rq_lock_irqsave(rq, &rf);
13510 update_rq_clock(rq);
13511 for_each_sched_entity(se) {
13512 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13513 update_cfs_group(se);
13514 }
13515 rq_unlock_irqrestore(rq, &rf);
13516 }
13517
13518 return 0;
13519 }
13520
sched_group_set_shares(struct task_group * tg,unsigned long shares)13521 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13522 {
13523 int ret;
13524
13525 mutex_lock(&shares_mutex);
13526 if (tg_is_idle(tg))
13527 ret = -EINVAL;
13528 else
13529 ret = __sched_group_set_shares(tg, shares);
13530 mutex_unlock(&shares_mutex);
13531
13532 return ret;
13533 }
13534
sched_group_set_idle(struct task_group * tg,long idle)13535 int sched_group_set_idle(struct task_group *tg, long idle)
13536 {
13537 int i;
13538
13539 if (tg == &root_task_group)
13540 return -EINVAL;
13541
13542 if (idle < 0 || idle > 1)
13543 return -EINVAL;
13544
13545 mutex_lock(&shares_mutex);
13546
13547 if (tg->idle == idle) {
13548 mutex_unlock(&shares_mutex);
13549 return 0;
13550 }
13551
13552 tg->idle = idle;
13553
13554 for_each_possible_cpu(i) {
13555 struct rq *rq = cpu_rq(i);
13556 struct sched_entity *se = tg->se[i];
13557 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i];
13558 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13559 long idle_task_delta;
13560 struct rq_flags rf;
13561
13562 rq_lock_irqsave(rq, &rf);
13563
13564 grp_cfs_rq->idle = idle;
13565 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13566 goto next_cpu;
13567
13568 idle_task_delta = grp_cfs_rq->h_nr_queued -
13569 grp_cfs_rq->h_nr_idle;
13570 if (!cfs_rq_is_idle(grp_cfs_rq))
13571 idle_task_delta *= -1;
13572
13573 for_each_sched_entity(se) {
13574 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13575
13576 if (!se->on_rq)
13577 break;
13578
13579 cfs_rq->h_nr_idle += idle_task_delta;
13580
13581 /* Already accounted at parent level and above. */
13582 if (cfs_rq_is_idle(cfs_rq))
13583 break;
13584 }
13585
13586 next_cpu:
13587 rq_unlock_irqrestore(rq, &rf);
13588 }
13589
13590 /* Idle groups have minimum weight. */
13591 if (tg_is_idle(tg))
13592 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13593 else
13594 __sched_group_set_shares(tg, NICE_0_LOAD);
13595
13596 mutex_unlock(&shares_mutex);
13597 return 0;
13598 }
13599
13600 #endif /* CONFIG_FAIR_GROUP_SCHED */
13601
13602
get_rr_interval_fair(struct rq * rq,struct task_struct * task)13603 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13604 {
13605 struct sched_entity *se = &task->se;
13606 unsigned int rr_interval = 0;
13607
13608 /*
13609 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13610 * idle runqueue:
13611 */
13612 if (rq->cfs.load.weight)
13613 rr_interval = NS_TO_JIFFIES(se->slice);
13614
13615 return rr_interval;
13616 }
13617
13618 /*
13619 * All the scheduling class methods:
13620 */
13621 DEFINE_SCHED_CLASS(fair) = {
13622
13623 .enqueue_task = enqueue_task_fair,
13624 .dequeue_task = dequeue_task_fair,
13625 .yield_task = yield_task_fair,
13626 .yield_to_task = yield_to_task_fair,
13627
13628 .wakeup_preempt = check_preempt_wakeup_fair,
13629
13630 .pick_task = pick_task_fair,
13631 .pick_next_task = __pick_next_task_fair,
13632 .put_prev_task = put_prev_task_fair,
13633 .set_next_task = set_next_task_fair,
13634
13635 .balance = balance_fair,
13636 .select_task_rq = select_task_rq_fair,
13637 .migrate_task_rq = migrate_task_rq_fair,
13638
13639 .rq_online = rq_online_fair,
13640 .rq_offline = rq_offline_fair,
13641
13642 .task_dead = task_dead_fair,
13643 .set_cpus_allowed = set_cpus_allowed_fair,
13644
13645 .task_tick = task_tick_fair,
13646 .task_fork = task_fork_fair,
13647
13648 .reweight_task = reweight_task_fair,
13649 .prio_changed = prio_changed_fair,
13650 .switched_from = switched_from_fair,
13651 .switched_to = switched_to_fair,
13652
13653 .get_rr_interval = get_rr_interval_fair,
13654
13655 .update_curr = update_curr_fair,
13656
13657 #ifdef CONFIG_FAIR_GROUP_SCHED
13658 .task_change_group = task_change_group_fair,
13659 #endif
13660
13661 #ifdef CONFIG_SCHED_CORE
13662 .task_is_throttled = task_is_throttled_fair,
13663 #endif
13664
13665 #ifdef CONFIG_UCLAMP_TASK
13666 .uclamp_enabled = 1,
13667 #endif
13668 };
13669
print_cfs_stats(struct seq_file * m,int cpu)13670 void print_cfs_stats(struct seq_file *m, int cpu)
13671 {
13672 struct cfs_rq *cfs_rq, *pos;
13673
13674 rcu_read_lock();
13675 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13676 print_cfs_rq(m, cpu, cfs_rq);
13677 rcu_read_unlock();
13678 }
13679
13680 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)13681 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13682 {
13683 int node;
13684 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13685 struct numa_group *ng;
13686
13687 rcu_read_lock();
13688 ng = rcu_dereference(p->numa_group);
13689 for_each_online_node(node) {
13690 if (p->numa_faults) {
13691 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13692 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13693 }
13694 if (ng) {
13695 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13696 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13697 }
13698 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13699 }
13700 rcu_read_unlock();
13701 }
13702 #endif /* CONFIG_NUMA_BALANCING */
13703
init_sched_fair_class(void)13704 __init void init_sched_fair_class(void)
13705 {
13706 int i;
13707
13708 for_each_possible_cpu(i) {
13709 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13710 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i));
13711 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13712 GFP_KERNEL, cpu_to_node(i));
13713
13714 #ifdef CONFIG_CFS_BANDWIDTH
13715 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13716 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13717 #endif
13718 }
13719
13720 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13721
13722 #ifdef CONFIG_NO_HZ_COMMON
13723 nohz.next_balance = jiffies;
13724 nohz.next_blocked = jiffies;
13725 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13726 #endif
13727 }
13728