xref: /linux/net/wireless/reg.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2025 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/device/faux.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <linux/units.h>
61 
62 #include <net/cfg80211.h>
63 #include "core.h"
64 #include "reg.h"
65 #include "rdev-ops.h"
66 #include "nl80211.h"
67 
68 /*
69  * Grace period we give before making sure all current interfaces reside on
70  * channels allowed by the current regulatory domain.
71  */
72 #define REG_ENFORCE_GRACE_MS 60000
73 
74 /**
75  * enum reg_request_treatment - regulatory request treatment
76  *
77  * @REG_REQ_OK: continue processing the regulatory request
78  * @REG_REQ_IGNORE: ignore the regulatory request
79  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
80  *	be intersected with the current one.
81  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
82  *	regulatory settings, and no further processing is required.
83  */
84 enum reg_request_treatment {
85 	REG_REQ_OK,
86 	REG_REQ_IGNORE,
87 	REG_REQ_INTERSECT,
88 	REG_REQ_ALREADY_SET,
89 };
90 
91 static struct regulatory_request core_request_world = {
92 	.initiator = NL80211_REGDOM_SET_BY_CORE,
93 	.alpha2[0] = '0',
94 	.alpha2[1] = '0',
95 	.intersect = false,
96 	.processed = true,
97 	.country_ie_env = ENVIRON_ANY,
98 };
99 
100 /*
101  * Receipt of information from last regulatory request,
102  * protected by RTNL (and can be accessed with RCU protection)
103  */
104 static struct regulatory_request __rcu *last_request =
105 	(void __force __rcu *)&core_request_world;
106 
107 /* To trigger userspace events and load firmware */
108 static struct faux_device *reg_fdev;
109 
110 /*
111  * Central wireless core regulatory domains, we only need two,
112  * the current one and a world regulatory domain in case we have no
113  * information to give us an alpha2.
114  * (protected by RTNL, can be read under RCU)
115  */
116 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117 
118 /*
119  * Number of devices that registered to the core
120  * that support cellular base station regulatory hints
121  * (protected by RTNL)
122  */
123 static int reg_num_devs_support_basehint;
124 
125 /*
126  * State variable indicating if the platform on which the devices
127  * are attached is operating in an indoor environment. The state variable
128  * is relevant for all registered devices.
129  */
130 static bool reg_is_indoor;
131 static DEFINE_SPINLOCK(reg_indoor_lock);
132 
133 /* Used to track the userspace process controlling the indoor setting */
134 static u32 reg_is_indoor_portid;
135 
136 static void restore_regulatory_settings(bool reset_user, bool cached);
137 static void print_regdomain(const struct ieee80211_regdomain *rd);
138 static void reg_process_hint(struct regulatory_request *reg_request);
139 
140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142 	return rcu_dereference_rtnl(cfg80211_regdomain);
143 }
144 
145 /*
146  * Returns the regulatory domain associated with the wiphy.
147  *
148  * Requires any of RTNL, wiphy mutex or RCU protection.
149  */
150 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
151 {
152 	return rcu_dereference_check(wiphy->regd,
153 				     lockdep_is_held(&wiphy->mtx) ||
154 				     lockdep_rtnl_is_held());
155 }
156 EXPORT_SYMBOL(get_wiphy_regdom);
157 
158 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
159 {
160 	switch (dfs_region) {
161 	case NL80211_DFS_UNSET:
162 		return "unset";
163 	case NL80211_DFS_FCC:
164 		return "FCC";
165 	case NL80211_DFS_ETSI:
166 		return "ETSI";
167 	case NL80211_DFS_JP:
168 		return "JP";
169 	}
170 	return "Unknown";
171 }
172 
173 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
174 {
175 	const struct ieee80211_regdomain *regd = NULL;
176 	const struct ieee80211_regdomain *wiphy_regd = NULL;
177 	enum nl80211_dfs_regions dfs_region;
178 
179 	rcu_read_lock();
180 	regd = get_cfg80211_regdom();
181 	dfs_region = regd->dfs_region;
182 
183 	if (!wiphy)
184 		goto out;
185 
186 	wiphy_regd = get_wiphy_regdom(wiphy);
187 	if (!wiphy_regd)
188 		goto out;
189 
190 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
191 		dfs_region = wiphy_regd->dfs_region;
192 		goto out;
193 	}
194 
195 	if (wiphy_regd->dfs_region == regd->dfs_region)
196 		goto out;
197 
198 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
199 		 dev_name(&wiphy->dev),
200 		 reg_dfs_region_str(wiphy_regd->dfs_region),
201 		 reg_dfs_region_str(regd->dfs_region));
202 
203 out:
204 	rcu_read_unlock();
205 
206 	return dfs_region;
207 }
208 
209 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
210 {
211 	if (!r)
212 		return;
213 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
214 }
215 
216 static struct regulatory_request *get_last_request(void)
217 {
218 	return rcu_dereference_rtnl(last_request);
219 }
220 
221 /* Used to queue up regulatory hints */
222 static LIST_HEAD(reg_requests_list);
223 static DEFINE_SPINLOCK(reg_requests_lock);
224 
225 /* Used to queue up beacon hints for review */
226 static LIST_HEAD(reg_pending_beacons);
227 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
228 
229 /* Used to keep track of processed beacon hints */
230 static LIST_HEAD(reg_beacon_list);
231 
232 struct reg_beacon {
233 	struct list_head list;
234 	struct ieee80211_channel chan;
235 };
236 
237 static void reg_check_chans_work(struct work_struct *work);
238 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
239 
240 static void reg_todo(struct work_struct *work);
241 static DECLARE_WORK(reg_work, reg_todo);
242 
243 /* We keep a static world regulatory domain in case of the absence of CRDA */
244 static const struct ieee80211_regdomain world_regdom = {
245 	.n_reg_rules = 8,
246 	.alpha2 =  "00",
247 	.reg_rules = {
248 		/* IEEE 802.11b/g, channels 1..11 */
249 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
250 		/* IEEE 802.11b/g, channels 12..13. */
251 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
252 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
253 		/* IEEE 802.11 channel 14 - Only JP enables
254 		 * this and for 802.11b only */
255 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
256 			NL80211_RRF_NO_IR |
257 			NL80211_RRF_NO_OFDM),
258 		/* IEEE 802.11a, channel 36..48 */
259 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
260                         NL80211_RRF_NO_IR |
261                         NL80211_RRF_AUTO_BW),
262 
263 		/* IEEE 802.11a, channel 52..64 - DFS required */
264 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
265 			NL80211_RRF_NO_IR |
266 			NL80211_RRF_AUTO_BW |
267 			NL80211_RRF_DFS),
268 
269 		/* IEEE 802.11a, channel 100..144 - DFS required */
270 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
271 			NL80211_RRF_NO_IR |
272 			NL80211_RRF_DFS),
273 
274 		/* IEEE 802.11a, channel 149..165 */
275 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
276 			NL80211_RRF_NO_IR),
277 
278 		/* IEEE 802.11ad (60GHz), channels 1..3 */
279 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
280 	}
281 };
282 
283 /* protected by RTNL */
284 static const struct ieee80211_regdomain *cfg80211_world_regdom =
285 	&world_regdom;
286 
287 static char *ieee80211_regdom = "00";
288 static char user_alpha2[2];
289 static const struct ieee80211_regdomain *cfg80211_user_regdom;
290 
291 module_param(ieee80211_regdom, charp, 0444);
292 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
293 
294 static void reg_free_request(struct regulatory_request *request)
295 {
296 	if (request == &core_request_world)
297 		return;
298 
299 	if (request != get_last_request())
300 		kfree(request);
301 }
302 
303 static void reg_free_last_request(void)
304 {
305 	struct regulatory_request *lr = get_last_request();
306 
307 	if (lr != &core_request_world && lr)
308 		kfree_rcu(lr, rcu_head);
309 }
310 
311 static void reg_update_last_request(struct regulatory_request *request)
312 {
313 	struct regulatory_request *lr;
314 
315 	lr = get_last_request();
316 	if (lr == request)
317 		return;
318 
319 	reg_free_last_request();
320 	rcu_assign_pointer(last_request, request);
321 }
322 
323 static void reset_regdomains(bool full_reset,
324 			     const struct ieee80211_regdomain *new_regdom)
325 {
326 	const struct ieee80211_regdomain *r;
327 
328 	ASSERT_RTNL();
329 
330 	r = get_cfg80211_regdom();
331 
332 	/* avoid freeing static information or freeing something twice */
333 	if (r == cfg80211_world_regdom)
334 		r = NULL;
335 	if (cfg80211_world_regdom == &world_regdom)
336 		cfg80211_world_regdom = NULL;
337 	if (r == &world_regdom)
338 		r = NULL;
339 
340 	rcu_free_regdom(r);
341 	rcu_free_regdom(cfg80211_world_regdom);
342 
343 	cfg80211_world_regdom = &world_regdom;
344 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
345 
346 	if (!full_reset)
347 		return;
348 
349 	reg_update_last_request(&core_request_world);
350 }
351 
352 /*
353  * Dynamic world regulatory domain requested by the wireless
354  * core upon initialization
355  */
356 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
357 {
358 	struct regulatory_request *lr;
359 
360 	lr = get_last_request();
361 
362 	WARN_ON(!lr);
363 
364 	reset_regdomains(false, rd);
365 
366 	cfg80211_world_regdom = rd;
367 }
368 
369 bool is_world_regdom(const char *alpha2)
370 {
371 	if (!alpha2)
372 		return false;
373 	return alpha2[0] == '0' && alpha2[1] == '0';
374 }
375 
376 static bool is_alpha2_set(const char *alpha2)
377 {
378 	if (!alpha2)
379 		return false;
380 	return alpha2[0] && alpha2[1];
381 }
382 
383 static bool is_unknown_alpha2(const char *alpha2)
384 {
385 	if (!alpha2)
386 		return false;
387 	/*
388 	 * Special case where regulatory domain was built by driver
389 	 * but a specific alpha2 cannot be determined
390 	 */
391 	return alpha2[0] == '9' && alpha2[1] == '9';
392 }
393 
394 static bool is_intersected_alpha2(const char *alpha2)
395 {
396 	if (!alpha2)
397 		return false;
398 	/*
399 	 * Special case where regulatory domain is the
400 	 * result of an intersection between two regulatory domain
401 	 * structures
402 	 */
403 	return alpha2[0] == '9' && alpha2[1] == '8';
404 }
405 
406 static bool is_an_alpha2(const char *alpha2)
407 {
408 	if (!alpha2)
409 		return false;
410 	return isascii(alpha2[0]) && isalpha(alpha2[0]) &&
411 	       isascii(alpha2[1]) && isalpha(alpha2[1]);
412 }
413 
414 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
415 {
416 	if (!alpha2_x || !alpha2_y)
417 		return false;
418 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
419 }
420 
421 static bool regdom_changes(const char *alpha2)
422 {
423 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
424 
425 	if (!r)
426 		return true;
427 	return !alpha2_equal(r->alpha2, alpha2);
428 }
429 
430 /*
431  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
432  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
433  * has ever been issued.
434  */
435 static bool is_user_regdom_saved(void)
436 {
437 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
438 		return false;
439 
440 	/* This would indicate a mistake on the design */
441 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
442 		 "Unexpected user alpha2: %c%c\n",
443 		 user_alpha2[0], user_alpha2[1]))
444 		return false;
445 
446 	return true;
447 }
448 
449 static const struct ieee80211_regdomain *
450 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
451 {
452 	struct ieee80211_regdomain *regd;
453 	unsigned int i;
454 
455 	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
456 		       GFP_KERNEL);
457 	if (!regd)
458 		return ERR_PTR(-ENOMEM);
459 
460 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
461 
462 	for (i = 0; i < src_regd->n_reg_rules; i++)
463 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
464 		       sizeof(struct ieee80211_reg_rule));
465 
466 	return regd;
467 }
468 
469 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
470 {
471 	ASSERT_RTNL();
472 
473 	if (!IS_ERR(cfg80211_user_regdom))
474 		kfree(cfg80211_user_regdom);
475 	cfg80211_user_regdom = reg_copy_regd(rd);
476 }
477 
478 struct reg_regdb_apply_request {
479 	struct list_head list;
480 	const struct ieee80211_regdomain *regdom;
481 };
482 
483 static LIST_HEAD(reg_regdb_apply_list);
484 static DEFINE_MUTEX(reg_regdb_apply_mutex);
485 
486 static void reg_regdb_apply(struct work_struct *work)
487 {
488 	struct reg_regdb_apply_request *request;
489 
490 	rtnl_lock();
491 
492 	mutex_lock(&reg_regdb_apply_mutex);
493 	while (!list_empty(&reg_regdb_apply_list)) {
494 		request = list_first_entry(&reg_regdb_apply_list,
495 					   struct reg_regdb_apply_request,
496 					   list);
497 		list_del(&request->list);
498 
499 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
500 		kfree(request);
501 	}
502 	mutex_unlock(&reg_regdb_apply_mutex);
503 
504 	rtnl_unlock();
505 }
506 
507 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
508 
509 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
510 {
511 	struct reg_regdb_apply_request *request;
512 
513 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
514 	if (!request) {
515 		kfree(regdom);
516 		return -ENOMEM;
517 	}
518 
519 	request->regdom = regdom;
520 
521 	mutex_lock(&reg_regdb_apply_mutex);
522 	list_add_tail(&request->list, &reg_regdb_apply_list);
523 	mutex_unlock(&reg_regdb_apply_mutex);
524 
525 	schedule_work(&reg_regdb_work);
526 	return 0;
527 }
528 
529 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
530 /* Max number of consecutive attempts to communicate with CRDA  */
531 #define REG_MAX_CRDA_TIMEOUTS 10
532 
533 static u32 reg_crda_timeouts;
534 
535 static void crda_timeout_work(struct work_struct *work);
536 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
537 
538 static void crda_timeout_work(struct work_struct *work)
539 {
540 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
541 	rtnl_lock();
542 	reg_crda_timeouts++;
543 	restore_regulatory_settings(true, false);
544 	rtnl_unlock();
545 }
546 
547 static void cancel_crda_timeout(void)
548 {
549 	cancel_delayed_work(&crda_timeout);
550 }
551 
552 static void cancel_crda_timeout_sync(void)
553 {
554 	cancel_delayed_work_sync(&crda_timeout);
555 }
556 
557 static void reset_crda_timeouts(void)
558 {
559 	reg_crda_timeouts = 0;
560 }
561 
562 /*
563  * This lets us keep regulatory code which is updated on a regulatory
564  * basis in userspace.
565  */
566 static int call_crda(const char *alpha2)
567 {
568 	char country[12];
569 	char *env[] = { country, NULL };
570 	int ret;
571 
572 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
573 		 alpha2[0], alpha2[1]);
574 
575 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
576 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
577 		return -EINVAL;
578 	}
579 
580 	if (!is_world_regdom((char *) alpha2))
581 		pr_debug("Calling CRDA for country: %c%c\n",
582 			 alpha2[0], alpha2[1]);
583 	else
584 		pr_debug("Calling CRDA to update world regulatory domain\n");
585 
586 	ret = kobject_uevent_env(&reg_fdev->dev.kobj, KOBJ_CHANGE, env);
587 	if (ret)
588 		return ret;
589 
590 	queue_delayed_work(system_power_efficient_wq,
591 			   &crda_timeout, msecs_to_jiffies(3142));
592 	return 0;
593 }
594 #else
595 static inline void cancel_crda_timeout(void) {}
596 static inline void cancel_crda_timeout_sync(void) {}
597 static inline void reset_crda_timeouts(void) {}
598 static inline int call_crda(const char *alpha2)
599 {
600 	return -ENODATA;
601 }
602 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
603 
604 /* code to directly load a firmware database through request_firmware */
605 static const struct fwdb_header *regdb;
606 
607 struct fwdb_country {
608 	u8 alpha2[2];
609 	__be16 coll_ptr;
610 	/* this struct cannot be extended */
611 } __packed __aligned(4);
612 
613 struct fwdb_collection {
614 	u8 len;
615 	u8 n_rules;
616 	u8 dfs_region;
617 	/* no optional data yet */
618 	/* aligned to 2, then followed by __be16 array of rule pointers */
619 } __packed __aligned(4);
620 
621 enum fwdb_flags {
622 	FWDB_FLAG_NO_OFDM	= BIT(0),
623 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
624 	FWDB_FLAG_DFS		= BIT(2),
625 	FWDB_FLAG_NO_IR		= BIT(3),
626 	FWDB_FLAG_AUTO_BW	= BIT(4),
627 };
628 
629 struct fwdb_wmm_ac {
630 	u8 ecw;
631 	u8 aifsn;
632 	__be16 cot;
633 } __packed;
634 
635 struct fwdb_wmm_rule {
636 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
637 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
638 } __packed;
639 
640 struct fwdb_rule {
641 	u8 len;
642 	u8 flags;
643 	__be16 max_eirp;
644 	__be32 start, end, max_bw;
645 	/* start of optional data */
646 	__be16 cac_timeout;
647 	__be16 wmm_ptr;
648 } __packed __aligned(4);
649 
650 #define FWDB_MAGIC 0x52474442
651 #define FWDB_VERSION 20
652 
653 struct fwdb_header {
654 	__be32 magic;
655 	__be32 version;
656 	struct fwdb_country country[];
657 } __packed __aligned(4);
658 
659 static int ecw2cw(int ecw)
660 {
661 	return (1 << ecw) - 1;
662 }
663 
664 static bool valid_wmm(struct fwdb_wmm_rule *rule)
665 {
666 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
667 	int i;
668 
669 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
670 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
671 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
672 		u8 aifsn = ac[i].aifsn;
673 
674 		if (cw_min >= cw_max)
675 			return false;
676 
677 		if (aifsn < 1)
678 			return false;
679 	}
680 
681 	return true;
682 }
683 
684 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
685 {
686 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
687 
688 	if ((u8 *)rule + sizeof(rule->len) > data + size)
689 		return false;
690 
691 	/* mandatory fields */
692 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
693 		return false;
694 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
695 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
696 		struct fwdb_wmm_rule *wmm;
697 
698 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
699 			return false;
700 
701 		wmm = (void *)(data + wmm_ptr);
702 
703 		if (!valid_wmm(wmm))
704 			return false;
705 	}
706 	return true;
707 }
708 
709 static bool valid_country(const u8 *data, unsigned int size,
710 			  const struct fwdb_country *country)
711 {
712 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
713 	struct fwdb_collection *coll = (void *)(data + ptr);
714 	__be16 *rules_ptr;
715 	unsigned int i;
716 
717 	/* make sure we can read len/n_rules */
718 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
719 		return false;
720 
721 	/* make sure base struct and all rules fit */
722 	if ((u8 *)coll + ALIGN(coll->len, 2) +
723 	    (coll->n_rules * 2) > data + size)
724 		return false;
725 
726 	/* mandatory fields must exist */
727 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
728 		return false;
729 
730 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
731 
732 	for (i = 0; i < coll->n_rules; i++) {
733 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
734 
735 		if (!valid_rule(data, size, rule_ptr))
736 			return false;
737 	}
738 
739 	return true;
740 }
741 
742 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
743 #include <keys/asymmetric-type.h>
744 
745 static struct key *builtin_regdb_keys;
746 
747 static int __init load_builtin_regdb_keys(void)
748 {
749 	builtin_regdb_keys =
750 		keyring_alloc(".builtin_regdb_keys",
751 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
752 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
753 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
754 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
755 	if (IS_ERR(builtin_regdb_keys))
756 		return PTR_ERR(builtin_regdb_keys);
757 
758 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
759 
760 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
761 	x509_load_certificate_list(shipped_regdb_certs,
762 				   shipped_regdb_certs_len,
763 				   builtin_regdb_keys);
764 #endif
765 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
766 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
767 		x509_load_certificate_list(extra_regdb_certs,
768 					   extra_regdb_certs_len,
769 					   builtin_regdb_keys);
770 #endif
771 
772 	return 0;
773 }
774 
775 MODULE_FIRMWARE("regulatory.db.p7s");
776 
777 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
778 {
779 	const struct firmware *sig;
780 	bool result;
781 
782 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_fdev->dev))
783 		return false;
784 
785 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
786 					builtin_regdb_keys,
787 					VERIFYING_UNSPECIFIED_SIGNATURE,
788 					NULL, NULL) == 0;
789 
790 	release_firmware(sig);
791 
792 	return result;
793 }
794 
795 static void free_regdb_keyring(void)
796 {
797 	key_put(builtin_regdb_keys);
798 }
799 #else
800 static int load_builtin_regdb_keys(void)
801 {
802 	return 0;
803 }
804 
805 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
806 {
807 	return true;
808 }
809 
810 static void free_regdb_keyring(void)
811 {
812 }
813 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
814 
815 static bool valid_regdb(const u8 *data, unsigned int size)
816 {
817 	const struct fwdb_header *hdr = (void *)data;
818 	const struct fwdb_country *country;
819 
820 	if (size < sizeof(*hdr))
821 		return false;
822 
823 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
824 		return false;
825 
826 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
827 		return false;
828 
829 	if (!regdb_has_valid_signature(data, size))
830 		return false;
831 
832 	country = &hdr->country[0];
833 	while ((u8 *)(country + 1) <= data + size) {
834 		if (!country->coll_ptr)
835 			break;
836 		if (!valid_country(data, size, country))
837 			return false;
838 		country++;
839 	}
840 
841 	return true;
842 }
843 
844 static void set_wmm_rule(const struct fwdb_header *db,
845 			 const struct fwdb_country *country,
846 			 const struct fwdb_rule *rule,
847 			 struct ieee80211_reg_rule *rrule)
848 {
849 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
850 	struct fwdb_wmm_rule *wmm;
851 	unsigned int i, wmm_ptr;
852 
853 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
854 	wmm = (void *)((u8 *)db + wmm_ptr);
855 
856 	if (!valid_wmm(wmm)) {
857 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
858 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
859 		       country->alpha2[0], country->alpha2[1]);
860 		return;
861 	}
862 
863 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
864 		wmm_rule->client[i].cw_min =
865 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
866 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
867 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
868 		wmm_rule->client[i].cot =
869 			1000 * be16_to_cpu(wmm->client[i].cot);
870 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
871 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
872 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
873 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
874 	}
875 
876 	rrule->has_wmm = true;
877 }
878 
879 static int __regdb_query_wmm(const struct fwdb_header *db,
880 			     const struct fwdb_country *country, int freq,
881 			     struct ieee80211_reg_rule *rrule)
882 {
883 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
884 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
885 	int i;
886 
887 	for (i = 0; i < coll->n_rules; i++) {
888 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
889 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
890 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
891 
892 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
893 			continue;
894 
895 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
896 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
897 			set_wmm_rule(db, country, rule, rrule);
898 			return 0;
899 		}
900 	}
901 
902 	return -ENODATA;
903 }
904 
905 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
906 {
907 	const struct fwdb_header *hdr = regdb;
908 	const struct fwdb_country *country;
909 
910 	if (!regdb)
911 		return -ENODATA;
912 
913 	if (IS_ERR(regdb))
914 		return PTR_ERR(regdb);
915 
916 	country = &hdr->country[0];
917 	while (country->coll_ptr) {
918 		if (alpha2_equal(alpha2, country->alpha2))
919 			return __regdb_query_wmm(regdb, country, freq, rule);
920 
921 		country++;
922 	}
923 
924 	return -ENODATA;
925 }
926 EXPORT_SYMBOL(reg_query_regdb_wmm);
927 
928 static int regdb_query_country(const struct fwdb_header *db,
929 			       const struct fwdb_country *country)
930 {
931 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
932 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
933 	struct ieee80211_regdomain *regdom;
934 	unsigned int i;
935 
936 	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
937 			 GFP_KERNEL);
938 	if (!regdom)
939 		return -ENOMEM;
940 
941 	regdom->n_reg_rules = coll->n_rules;
942 	regdom->alpha2[0] = country->alpha2[0];
943 	regdom->alpha2[1] = country->alpha2[1];
944 	regdom->dfs_region = coll->dfs_region;
945 
946 	for (i = 0; i < regdom->n_reg_rules; i++) {
947 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
948 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
949 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
950 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
951 
952 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
953 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
954 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
955 
956 		rrule->power_rule.max_antenna_gain = 0;
957 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
958 
959 		rrule->flags = 0;
960 		if (rule->flags & FWDB_FLAG_NO_OFDM)
961 			rrule->flags |= NL80211_RRF_NO_OFDM;
962 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
963 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
964 		if (rule->flags & FWDB_FLAG_DFS)
965 			rrule->flags |= NL80211_RRF_DFS;
966 		if (rule->flags & FWDB_FLAG_NO_IR)
967 			rrule->flags |= NL80211_RRF_NO_IR;
968 		if (rule->flags & FWDB_FLAG_AUTO_BW)
969 			rrule->flags |= NL80211_RRF_AUTO_BW;
970 
971 		rrule->dfs_cac_ms = 0;
972 
973 		/* handle optional data */
974 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
975 			rrule->dfs_cac_ms =
976 				1000 * be16_to_cpu(rule->cac_timeout);
977 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
978 			set_wmm_rule(db, country, rule, rrule);
979 	}
980 
981 	return reg_schedule_apply(regdom);
982 }
983 
984 static int query_regdb(const char *alpha2)
985 {
986 	const struct fwdb_header *hdr = regdb;
987 	const struct fwdb_country *country;
988 
989 	ASSERT_RTNL();
990 
991 	if (IS_ERR(regdb))
992 		return PTR_ERR(regdb);
993 
994 	country = &hdr->country[0];
995 	while (country->coll_ptr) {
996 		if (alpha2_equal(alpha2, country->alpha2))
997 			return regdb_query_country(regdb, country);
998 		country++;
999 	}
1000 
1001 	return -ENODATA;
1002 }
1003 
1004 static void regdb_fw_cb(const struct firmware *fw, void *context)
1005 {
1006 	int set_error = 0;
1007 	bool restore = true;
1008 	void *db;
1009 
1010 	if (!fw) {
1011 		pr_info("failed to load regulatory.db\n");
1012 		set_error = -ENODATA;
1013 	} else if (!valid_regdb(fw->data, fw->size)) {
1014 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1015 		set_error = -EINVAL;
1016 	}
1017 
1018 	rtnl_lock();
1019 	if (regdb && !IS_ERR(regdb)) {
1020 		/* negative case - a bug
1021 		 * positive case - can happen due to race in case of multiple cb's in
1022 		 * queue, due to usage of asynchronous callback
1023 		 *
1024 		 * Either case, just restore and free new db.
1025 		 */
1026 	} else if (set_error) {
1027 		regdb = ERR_PTR(set_error);
1028 	} else if (fw) {
1029 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1030 		if (db) {
1031 			regdb = db;
1032 			restore = context && query_regdb(context);
1033 		} else {
1034 			restore = true;
1035 		}
1036 	}
1037 
1038 	if (restore)
1039 		restore_regulatory_settings(true, false);
1040 
1041 	rtnl_unlock();
1042 
1043 	kfree(context);
1044 
1045 	release_firmware(fw);
1046 }
1047 
1048 MODULE_FIRMWARE("regulatory.db");
1049 
1050 static int query_regdb_file(const char *alpha2)
1051 {
1052 	int err;
1053 
1054 	ASSERT_RTNL();
1055 
1056 	if (regdb)
1057 		return query_regdb(alpha2);
1058 
1059 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1060 	if (!alpha2)
1061 		return -ENOMEM;
1062 
1063 	err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1064 				      &reg_fdev->dev, GFP_KERNEL,
1065 				      (void *)alpha2, regdb_fw_cb);
1066 	if (err)
1067 		kfree(alpha2);
1068 
1069 	return err;
1070 }
1071 
1072 int reg_reload_regdb(void)
1073 {
1074 	const struct firmware *fw;
1075 	void *db;
1076 	int err;
1077 	const struct ieee80211_regdomain *current_regdomain;
1078 	struct regulatory_request *request;
1079 
1080 	err = request_firmware(&fw, "regulatory.db", &reg_fdev->dev);
1081 	if (err)
1082 		return err;
1083 
1084 	if (!valid_regdb(fw->data, fw->size)) {
1085 		err = -ENODATA;
1086 		goto out;
1087 	}
1088 
1089 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1090 	if (!db) {
1091 		err = -ENOMEM;
1092 		goto out;
1093 	}
1094 
1095 	rtnl_lock();
1096 	if (!IS_ERR_OR_NULL(regdb))
1097 		kfree(regdb);
1098 	regdb = db;
1099 
1100 	/* reset regulatory domain */
1101 	current_regdomain = get_cfg80211_regdom();
1102 
1103 	request = kzalloc(sizeof(*request), GFP_KERNEL);
1104 	if (!request) {
1105 		err = -ENOMEM;
1106 		goto out_unlock;
1107 	}
1108 
1109 	request->wiphy_idx = WIPHY_IDX_INVALID;
1110 	request->alpha2[0] = current_regdomain->alpha2[0];
1111 	request->alpha2[1] = current_regdomain->alpha2[1];
1112 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1113 	request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1114 
1115 	reg_process_hint(request);
1116 
1117 out_unlock:
1118 	rtnl_unlock();
1119  out:
1120 	release_firmware(fw);
1121 	return err;
1122 }
1123 
1124 static bool reg_query_database(struct regulatory_request *request)
1125 {
1126 	if (query_regdb_file(request->alpha2) == 0)
1127 		return true;
1128 
1129 	if (call_crda(request->alpha2) == 0)
1130 		return true;
1131 
1132 	return false;
1133 }
1134 
1135 bool reg_is_valid_request(const char *alpha2)
1136 {
1137 	struct regulatory_request *lr = get_last_request();
1138 
1139 	if (!lr || lr->processed)
1140 		return false;
1141 
1142 	return alpha2_equal(lr->alpha2, alpha2);
1143 }
1144 
1145 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1146 {
1147 	struct regulatory_request *lr = get_last_request();
1148 
1149 	/*
1150 	 * Follow the driver's regulatory domain, if present, unless a country
1151 	 * IE has been processed or a user wants to help compliance further
1152 	 */
1153 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1154 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1155 	    wiphy->regd)
1156 		return get_wiphy_regdom(wiphy);
1157 
1158 	return get_cfg80211_regdom();
1159 }
1160 
1161 static unsigned int
1162 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1163 				 const struct ieee80211_reg_rule *rule)
1164 {
1165 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1166 	const struct ieee80211_freq_range *freq_range_tmp;
1167 	const struct ieee80211_reg_rule *tmp;
1168 	u32 start_freq, end_freq, idx, no;
1169 
1170 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1171 		if (rule == &rd->reg_rules[idx])
1172 			break;
1173 
1174 	if (idx == rd->n_reg_rules)
1175 		return 0;
1176 
1177 	/* get start_freq */
1178 	no = idx;
1179 
1180 	while (no) {
1181 		tmp = &rd->reg_rules[--no];
1182 		freq_range_tmp = &tmp->freq_range;
1183 
1184 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1185 			break;
1186 
1187 		freq_range = freq_range_tmp;
1188 	}
1189 
1190 	start_freq = freq_range->start_freq_khz;
1191 
1192 	/* get end_freq */
1193 	freq_range = &rule->freq_range;
1194 	no = idx;
1195 
1196 	while (no < rd->n_reg_rules - 1) {
1197 		tmp = &rd->reg_rules[++no];
1198 		freq_range_tmp = &tmp->freq_range;
1199 
1200 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1201 			break;
1202 
1203 		freq_range = freq_range_tmp;
1204 	}
1205 
1206 	end_freq = freq_range->end_freq_khz;
1207 
1208 	return end_freq - start_freq;
1209 }
1210 
1211 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1212 				   const struct ieee80211_reg_rule *rule)
1213 {
1214 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1215 
1216 	if (rule->flags & NL80211_RRF_NO_320MHZ)
1217 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1218 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1219 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1220 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1221 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1222 
1223 	/*
1224 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1225 	 * are not allowed.
1226 	 */
1227 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1228 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1229 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1230 
1231 	return bw;
1232 }
1233 
1234 /* Sanity check on a regulatory rule */
1235 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1236 {
1237 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1238 	u32 freq_diff;
1239 
1240 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1241 		return false;
1242 
1243 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1244 		return false;
1245 
1246 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1247 
1248 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1249 	    freq_range->max_bandwidth_khz > freq_diff)
1250 		return false;
1251 
1252 	return true;
1253 }
1254 
1255 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1256 {
1257 	const struct ieee80211_reg_rule *reg_rule = NULL;
1258 	unsigned int i;
1259 
1260 	if (!rd->n_reg_rules)
1261 		return false;
1262 
1263 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1264 		return false;
1265 
1266 	for (i = 0; i < rd->n_reg_rules; i++) {
1267 		reg_rule = &rd->reg_rules[i];
1268 		if (!is_valid_reg_rule(reg_rule))
1269 			return false;
1270 	}
1271 
1272 	return true;
1273 }
1274 
1275 /**
1276  * freq_in_rule_band - tells us if a frequency is in a frequency band
1277  * @freq_range: frequency rule we want to query
1278  * @freq_khz: frequency we are inquiring about
1279  *
1280  * This lets us know if a specific frequency rule is or is not relevant to
1281  * a specific frequency's band. Bands are device specific and artificial
1282  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1283  * however it is safe for now to assume that a frequency rule should not be
1284  * part of a frequency's band if the start freq or end freq are off by more
1285  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1286  * 60 GHz band.
1287  * This resolution can be lowered and should be considered as we add
1288  * regulatory rule support for other "bands".
1289  *
1290  * Returns: whether or not the frequency is in the range
1291  */
1292 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1293 			      u32 freq_khz)
1294 {
1295 	/*
1296 	 * From 802.11ad: directional multi-gigabit (DMG):
1297 	 * Pertaining to operation in a frequency band containing a channel
1298 	 * with the Channel starting frequency above 45 GHz.
1299 	 */
1300 	u32 limit = freq_khz > 45 * KHZ_PER_GHZ ? 20 * KHZ_PER_GHZ : 2 * KHZ_PER_GHZ;
1301 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1302 		return true;
1303 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1304 		return true;
1305 	return false;
1306 }
1307 
1308 /*
1309  * Later on we can perhaps use the more restrictive DFS
1310  * region but we don't have information for that yet so
1311  * for now simply disallow conflicts.
1312  */
1313 static enum nl80211_dfs_regions
1314 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1315 			 const enum nl80211_dfs_regions dfs_region2)
1316 {
1317 	if (dfs_region1 != dfs_region2)
1318 		return NL80211_DFS_UNSET;
1319 	return dfs_region1;
1320 }
1321 
1322 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1323 				    const struct ieee80211_wmm_ac *wmm_ac2,
1324 				    struct ieee80211_wmm_ac *intersect)
1325 {
1326 	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1327 	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1328 	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1329 	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1330 }
1331 
1332 /*
1333  * Helper for regdom_intersect(), this does the real
1334  * mathematical intersection fun
1335  */
1336 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1337 			       const struct ieee80211_regdomain *rd2,
1338 			       const struct ieee80211_reg_rule *rule1,
1339 			       const struct ieee80211_reg_rule *rule2,
1340 			       struct ieee80211_reg_rule *intersected_rule)
1341 {
1342 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1343 	struct ieee80211_freq_range *freq_range;
1344 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1345 	struct ieee80211_power_rule *power_rule;
1346 	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1347 	struct ieee80211_wmm_rule *wmm_rule;
1348 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1349 
1350 	freq_range1 = &rule1->freq_range;
1351 	freq_range2 = &rule2->freq_range;
1352 	freq_range = &intersected_rule->freq_range;
1353 
1354 	power_rule1 = &rule1->power_rule;
1355 	power_rule2 = &rule2->power_rule;
1356 	power_rule = &intersected_rule->power_rule;
1357 
1358 	wmm_rule1 = &rule1->wmm_rule;
1359 	wmm_rule2 = &rule2->wmm_rule;
1360 	wmm_rule = &intersected_rule->wmm_rule;
1361 
1362 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1363 					 freq_range2->start_freq_khz);
1364 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1365 				       freq_range2->end_freq_khz);
1366 
1367 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1368 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1369 
1370 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1371 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1372 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1373 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1374 
1375 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1376 
1377 	intersected_rule->flags = rule1->flags | rule2->flags;
1378 
1379 	/*
1380 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1381 	 * set AUTO_BW in intersected rule also. Next we will
1382 	 * calculate BW correctly in handle_channel function.
1383 	 * In other case remove AUTO_BW flag while we calculate
1384 	 * maximum bandwidth correctly and auto calculation is
1385 	 * not required.
1386 	 */
1387 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1388 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1389 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1390 	else
1391 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1392 
1393 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1394 	if (freq_range->max_bandwidth_khz > freq_diff)
1395 		freq_range->max_bandwidth_khz = freq_diff;
1396 
1397 	power_rule->max_eirp = min(power_rule1->max_eirp,
1398 		power_rule2->max_eirp);
1399 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1400 		power_rule2->max_antenna_gain);
1401 
1402 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1403 					   rule2->dfs_cac_ms);
1404 
1405 	if (rule1->has_wmm && rule2->has_wmm) {
1406 		u8 ac;
1407 
1408 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1409 			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1410 						&wmm_rule2->client[ac],
1411 						&wmm_rule->client[ac]);
1412 			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1413 						&wmm_rule2->ap[ac],
1414 						&wmm_rule->ap[ac]);
1415 		}
1416 
1417 		intersected_rule->has_wmm = true;
1418 	} else if (rule1->has_wmm) {
1419 		*wmm_rule = *wmm_rule1;
1420 		intersected_rule->has_wmm = true;
1421 	} else if (rule2->has_wmm) {
1422 		*wmm_rule = *wmm_rule2;
1423 		intersected_rule->has_wmm = true;
1424 	} else {
1425 		intersected_rule->has_wmm = false;
1426 	}
1427 
1428 	if (!is_valid_reg_rule(intersected_rule))
1429 		return -EINVAL;
1430 
1431 	return 0;
1432 }
1433 
1434 /* check whether old rule contains new rule */
1435 static bool rule_contains(struct ieee80211_reg_rule *r1,
1436 			  struct ieee80211_reg_rule *r2)
1437 {
1438 	/* for simplicity, currently consider only same flags */
1439 	if (r1->flags != r2->flags)
1440 		return false;
1441 
1442 	/* verify r1 is more restrictive */
1443 	if ((r1->power_rule.max_antenna_gain >
1444 	     r2->power_rule.max_antenna_gain) ||
1445 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1446 		return false;
1447 
1448 	/* make sure r2's range is contained within r1 */
1449 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1450 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1451 		return false;
1452 
1453 	/* and finally verify that r1.max_bw >= r2.max_bw */
1454 	if (r1->freq_range.max_bandwidth_khz <
1455 	    r2->freq_range.max_bandwidth_khz)
1456 		return false;
1457 
1458 	return true;
1459 }
1460 
1461 /* add or extend current rules. do nothing if rule is already contained */
1462 static void add_rule(struct ieee80211_reg_rule *rule,
1463 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1464 {
1465 	struct ieee80211_reg_rule *tmp_rule;
1466 	int i;
1467 
1468 	for (i = 0; i < *n_rules; i++) {
1469 		tmp_rule = &reg_rules[i];
1470 		/* rule is already contained - do nothing */
1471 		if (rule_contains(tmp_rule, rule))
1472 			return;
1473 
1474 		/* extend rule if possible */
1475 		if (rule_contains(rule, tmp_rule)) {
1476 			memcpy(tmp_rule, rule, sizeof(*rule));
1477 			return;
1478 		}
1479 	}
1480 
1481 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1482 	(*n_rules)++;
1483 }
1484 
1485 /**
1486  * regdom_intersect - do the intersection between two regulatory domains
1487  * @rd1: first regulatory domain
1488  * @rd2: second regulatory domain
1489  *
1490  * Use this function to get the intersection between two regulatory domains.
1491  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1492  * as no one single alpha2 can represent this regulatory domain.
1493  *
1494  * Returns a pointer to the regulatory domain structure which will hold the
1495  * resulting intersection of rules between rd1 and rd2. We will
1496  * kzalloc() this structure for you.
1497  *
1498  * Returns: the intersected regdomain
1499  */
1500 static struct ieee80211_regdomain *
1501 regdom_intersect(const struct ieee80211_regdomain *rd1,
1502 		 const struct ieee80211_regdomain *rd2)
1503 {
1504 	int r;
1505 	unsigned int x, y;
1506 	unsigned int num_rules = 0;
1507 	const struct ieee80211_reg_rule *rule1, *rule2;
1508 	struct ieee80211_reg_rule intersected_rule;
1509 	struct ieee80211_regdomain *rd;
1510 
1511 	if (!rd1 || !rd2)
1512 		return NULL;
1513 
1514 	/*
1515 	 * First we get a count of the rules we'll need, then we actually
1516 	 * build them. This is to so we can malloc() and free() a
1517 	 * regdomain once. The reason we use reg_rules_intersect() here
1518 	 * is it will return -EINVAL if the rule computed makes no sense.
1519 	 * All rules that do check out OK are valid.
1520 	 */
1521 
1522 	for (x = 0; x < rd1->n_reg_rules; x++) {
1523 		rule1 = &rd1->reg_rules[x];
1524 		for (y = 0; y < rd2->n_reg_rules; y++) {
1525 			rule2 = &rd2->reg_rules[y];
1526 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1527 						 &intersected_rule))
1528 				num_rules++;
1529 		}
1530 	}
1531 
1532 	if (!num_rules)
1533 		return NULL;
1534 
1535 	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1536 	if (!rd)
1537 		return NULL;
1538 
1539 	for (x = 0; x < rd1->n_reg_rules; x++) {
1540 		rule1 = &rd1->reg_rules[x];
1541 		for (y = 0; y < rd2->n_reg_rules; y++) {
1542 			rule2 = &rd2->reg_rules[y];
1543 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1544 						&intersected_rule);
1545 			/*
1546 			 * No need to memset here the intersected rule here as
1547 			 * we're not using the stack anymore
1548 			 */
1549 			if (r)
1550 				continue;
1551 
1552 			add_rule(&intersected_rule, rd->reg_rules,
1553 				 &rd->n_reg_rules);
1554 		}
1555 	}
1556 
1557 	rd->alpha2[0] = '9';
1558 	rd->alpha2[1] = '8';
1559 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1560 						  rd2->dfs_region);
1561 
1562 	return rd;
1563 }
1564 
1565 /*
1566  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1567  * want to just have the channel structure use these
1568  */
1569 static u32 map_regdom_flags(u32 rd_flags)
1570 {
1571 	u32 channel_flags = 0;
1572 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1573 		channel_flags |= IEEE80211_CHAN_NO_IR;
1574 	if (rd_flags & NL80211_RRF_DFS)
1575 		channel_flags |= IEEE80211_CHAN_RADAR;
1576 	if (rd_flags & NL80211_RRF_NO_OFDM)
1577 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1578 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1579 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1580 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1581 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1582 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1583 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1584 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1585 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1586 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1587 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1588 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1589 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1590 	if (rd_flags & NL80211_RRF_NO_HE)
1591 		channel_flags |= IEEE80211_CHAN_NO_HE;
1592 	if (rd_flags & NL80211_RRF_NO_320MHZ)
1593 		channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1594 	if (rd_flags & NL80211_RRF_NO_EHT)
1595 		channel_flags |= IEEE80211_CHAN_NO_EHT;
1596 	if (rd_flags & NL80211_RRF_DFS_CONCURRENT)
1597 		channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT;
1598 	if (rd_flags & NL80211_RRF_NO_6GHZ_VLP_CLIENT)
1599 		channel_flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
1600 	if (rd_flags & NL80211_RRF_NO_6GHZ_AFC_CLIENT)
1601 		channel_flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
1602 	if (rd_flags & NL80211_RRF_PSD)
1603 		channel_flags |= IEEE80211_CHAN_PSD;
1604 	if (rd_flags & NL80211_RRF_ALLOW_6GHZ_VLP_AP)
1605 		channel_flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP;
1606 	if (rd_flags & NL80211_RRF_ALLOW_20MHZ_ACTIVITY)
1607 		channel_flags |= IEEE80211_CHAN_ALLOW_20MHZ_ACTIVITY;
1608 	return channel_flags;
1609 }
1610 
1611 static const struct ieee80211_reg_rule *
1612 freq_reg_info_regd(u32 center_freq,
1613 		   const struct ieee80211_regdomain *regd, u32 bw)
1614 {
1615 	int i;
1616 	bool band_rule_found = false;
1617 	bool bw_fits = false;
1618 
1619 	if (!regd)
1620 		return ERR_PTR(-EINVAL);
1621 
1622 	for (i = 0; i < regd->n_reg_rules; i++) {
1623 		const struct ieee80211_reg_rule *rr;
1624 		const struct ieee80211_freq_range *fr = NULL;
1625 
1626 		rr = &regd->reg_rules[i];
1627 		fr = &rr->freq_range;
1628 
1629 		/*
1630 		 * We only need to know if one frequency rule was
1631 		 * in center_freq's band, that's enough, so let's
1632 		 * not overwrite it once found
1633 		 */
1634 		if (!band_rule_found)
1635 			band_rule_found = freq_in_rule_band(fr, center_freq);
1636 
1637 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1638 
1639 		if (band_rule_found && bw_fits)
1640 			return rr;
1641 	}
1642 
1643 	if (!band_rule_found)
1644 		return ERR_PTR(-ERANGE);
1645 
1646 	return ERR_PTR(-EINVAL);
1647 }
1648 
1649 static const struct ieee80211_reg_rule *
1650 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1651 {
1652 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1653 	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1654 	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1655 	int i = ARRAY_SIZE(bws) - 1;
1656 	u32 bw;
1657 
1658 	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1659 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1660 		if (!IS_ERR(reg_rule))
1661 			return reg_rule;
1662 	}
1663 
1664 	return reg_rule;
1665 }
1666 
1667 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1668 					       u32 center_freq)
1669 {
1670 	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1671 
1672 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1673 }
1674 EXPORT_SYMBOL(freq_reg_info);
1675 
1676 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1677 {
1678 	switch (initiator) {
1679 	case NL80211_REGDOM_SET_BY_CORE:
1680 		return "core";
1681 	case NL80211_REGDOM_SET_BY_USER:
1682 		return "user";
1683 	case NL80211_REGDOM_SET_BY_DRIVER:
1684 		return "driver";
1685 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1686 		return "country element";
1687 	default:
1688 		WARN_ON(1);
1689 		return "bug";
1690 	}
1691 }
1692 EXPORT_SYMBOL(reg_initiator_name);
1693 
1694 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1695 					  const struct ieee80211_reg_rule *reg_rule,
1696 					  const struct ieee80211_channel *chan)
1697 {
1698 	const struct ieee80211_freq_range *freq_range = NULL;
1699 	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1700 	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1701 
1702 	freq_range = &reg_rule->freq_range;
1703 
1704 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1705 	center_freq_khz = ieee80211_channel_to_khz(chan);
1706 	/* Check if auto calculation requested */
1707 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1708 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1709 
1710 	if (is_s1g) {
1711 		if (max_bandwidth_khz < MHZ_TO_KHZ(16))
1712 			bw_flags |= IEEE80211_CHAN_NO_16MHZ;
1713 		if (max_bandwidth_khz < MHZ_TO_KHZ(8))
1714 			bw_flags |= IEEE80211_CHAN_NO_8MHZ;
1715 		if (max_bandwidth_khz < MHZ_TO_KHZ(4))
1716 			bw_flags |= IEEE80211_CHAN_NO_4MHZ;
1717 		return bw_flags;
1718 	}
1719 
1720 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1721 	if (!cfg80211_does_bw_fit_range(freq_range,
1722 					center_freq_khz,
1723 					MHZ_TO_KHZ(10)))
1724 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1725 	if (!cfg80211_does_bw_fit_range(freq_range,
1726 					center_freq_khz,
1727 					MHZ_TO_KHZ(20)))
1728 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1729 
1730 	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1731 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1732 	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1733 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1734 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1735 		bw_flags |= IEEE80211_CHAN_NO_HT40;
1736 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1737 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1738 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1739 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1740 	if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1741 		bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1742 
1743 	return bw_flags;
1744 }
1745 
1746 static void handle_channel_single_rule(struct wiphy *wiphy,
1747 				       enum nl80211_reg_initiator initiator,
1748 				       struct ieee80211_channel *chan,
1749 				       u32 flags,
1750 				       struct regulatory_request *lr,
1751 				       struct wiphy *request_wiphy,
1752 				       const struct ieee80211_reg_rule *reg_rule)
1753 {
1754 	u32 bw_flags = 0;
1755 	const struct ieee80211_power_rule *power_rule = NULL;
1756 	const struct ieee80211_regdomain *regd;
1757 
1758 	regd = reg_get_regdomain(wiphy);
1759 
1760 	power_rule = &reg_rule->power_rule;
1761 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1762 
1763 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1764 	    request_wiphy && request_wiphy == wiphy &&
1765 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1766 		/*
1767 		 * This guarantees the driver's requested regulatory domain
1768 		 * will always be used as a base for further regulatory
1769 		 * settings
1770 		 */
1771 		chan->flags = chan->orig_flags =
1772 			map_regdom_flags(reg_rule->flags) | bw_flags;
1773 		chan->max_antenna_gain = chan->orig_mag =
1774 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1775 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1776 			(int) MBM_TO_DBM(power_rule->max_eirp);
1777 
1778 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1779 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1780 			if (reg_rule->dfs_cac_ms)
1781 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1782 		}
1783 
1784 		if (chan->flags & IEEE80211_CHAN_PSD)
1785 			chan->psd = reg_rule->psd;
1786 
1787 		return;
1788 	}
1789 
1790 	chan->dfs_state = NL80211_DFS_USABLE;
1791 	chan->dfs_state_entered = jiffies;
1792 
1793 	chan->beacon_found = false;
1794 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1795 	chan->max_antenna_gain =
1796 		min_t(int, chan->orig_mag,
1797 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1798 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1799 
1800 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1801 		if (reg_rule->dfs_cac_ms)
1802 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1803 		else
1804 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1805 	}
1806 
1807 	if (chan->flags & IEEE80211_CHAN_PSD)
1808 		chan->psd = reg_rule->psd;
1809 
1810 	if (chan->orig_mpwr) {
1811 		/*
1812 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1813 		 * will always follow the passed country IE power settings.
1814 		 */
1815 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1816 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1817 			chan->max_power = chan->max_reg_power;
1818 		else
1819 			chan->max_power = min(chan->orig_mpwr,
1820 					      chan->max_reg_power);
1821 	} else
1822 		chan->max_power = chan->max_reg_power;
1823 }
1824 
1825 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1826 					  enum nl80211_reg_initiator initiator,
1827 					  struct ieee80211_channel *chan,
1828 					  u32 flags,
1829 					  struct regulatory_request *lr,
1830 					  struct wiphy *request_wiphy,
1831 					  const struct ieee80211_reg_rule *rrule1,
1832 					  const struct ieee80211_reg_rule *rrule2,
1833 					  struct ieee80211_freq_range *comb_range)
1834 {
1835 	u32 bw_flags1 = 0;
1836 	u32 bw_flags2 = 0;
1837 	const struct ieee80211_power_rule *power_rule1 = NULL;
1838 	const struct ieee80211_power_rule *power_rule2 = NULL;
1839 	const struct ieee80211_regdomain *regd;
1840 
1841 	regd = reg_get_regdomain(wiphy);
1842 
1843 	power_rule1 = &rrule1->power_rule;
1844 	power_rule2 = &rrule2->power_rule;
1845 	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1846 	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1847 
1848 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1849 	    request_wiphy && request_wiphy == wiphy &&
1850 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1851 		/* This guarantees the driver's requested regulatory domain
1852 		 * will always be used as a base for further regulatory
1853 		 * settings
1854 		 */
1855 		chan->flags =
1856 			map_regdom_flags(rrule1->flags) |
1857 			map_regdom_flags(rrule2->flags) |
1858 			bw_flags1 |
1859 			bw_flags2;
1860 		chan->orig_flags = chan->flags;
1861 		chan->max_antenna_gain =
1862 			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1863 			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1864 		chan->orig_mag = chan->max_antenna_gain;
1865 		chan->max_reg_power =
1866 			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1867 			      MBM_TO_DBM(power_rule2->max_eirp));
1868 		chan->max_power = chan->max_reg_power;
1869 		chan->orig_mpwr = chan->max_reg_power;
1870 
1871 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1872 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1873 			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1874 				chan->dfs_cac_ms = max_t(unsigned int,
1875 							 rrule1->dfs_cac_ms,
1876 							 rrule2->dfs_cac_ms);
1877 		}
1878 
1879 		if ((rrule1->flags & NL80211_RRF_PSD) &&
1880 		    (rrule2->flags & NL80211_RRF_PSD))
1881 			chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1882 		else
1883 			chan->flags &= ~NL80211_RRF_PSD;
1884 
1885 		return;
1886 	}
1887 
1888 	chan->dfs_state = NL80211_DFS_USABLE;
1889 	chan->dfs_state_entered = jiffies;
1890 
1891 	chan->beacon_found = false;
1892 	chan->flags = flags | bw_flags1 | bw_flags2 |
1893 		      map_regdom_flags(rrule1->flags) |
1894 		      map_regdom_flags(rrule2->flags);
1895 
1896 	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1897 	 * (otherwise no adj. rule case), recheck therefore
1898 	 */
1899 	if (cfg80211_does_bw_fit_range(comb_range,
1900 				       ieee80211_channel_to_khz(chan),
1901 				       MHZ_TO_KHZ(10)))
1902 		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1903 	if (cfg80211_does_bw_fit_range(comb_range,
1904 				       ieee80211_channel_to_khz(chan),
1905 				       MHZ_TO_KHZ(20)))
1906 		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1907 
1908 	chan->max_antenna_gain =
1909 		min_t(int, chan->orig_mag,
1910 		      min_t(int,
1911 			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1912 			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1913 	chan->max_reg_power = min_t(int,
1914 				    MBM_TO_DBM(power_rule1->max_eirp),
1915 				    MBM_TO_DBM(power_rule2->max_eirp));
1916 
1917 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1918 		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1919 			chan->dfs_cac_ms = max_t(unsigned int,
1920 						 rrule1->dfs_cac_ms,
1921 						 rrule2->dfs_cac_ms);
1922 		else
1923 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1924 	}
1925 
1926 	if (chan->orig_mpwr) {
1927 		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1928 		 * will always follow the passed country IE power settings.
1929 		 */
1930 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1931 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1932 			chan->max_power = chan->max_reg_power;
1933 		else
1934 			chan->max_power = min(chan->orig_mpwr,
1935 					      chan->max_reg_power);
1936 	} else {
1937 		chan->max_power = chan->max_reg_power;
1938 	}
1939 }
1940 
1941 /* Note that right now we assume the desired channel bandwidth
1942  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1943  * per channel, the primary and the extension channel).
1944  */
1945 static void handle_channel(struct wiphy *wiphy,
1946 			   enum nl80211_reg_initiator initiator,
1947 			   struct ieee80211_channel *chan)
1948 {
1949 	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1950 	struct regulatory_request *lr = get_last_request();
1951 	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1952 	const struct ieee80211_reg_rule *rrule = NULL;
1953 	const struct ieee80211_reg_rule *rrule1 = NULL;
1954 	const struct ieee80211_reg_rule *rrule2 = NULL;
1955 
1956 	u32 flags = chan->orig_flags;
1957 
1958 	rrule = freq_reg_info(wiphy, orig_chan_freq);
1959 	if (IS_ERR(rrule)) {
1960 		/* check for adjacent match, therefore get rules for
1961 		 * chan - 20 MHz and chan + 20 MHz and test
1962 		 * if reg rules are adjacent
1963 		 */
1964 		rrule1 = freq_reg_info(wiphy,
1965 				       orig_chan_freq - MHZ_TO_KHZ(20));
1966 		rrule2 = freq_reg_info(wiphy,
1967 				       orig_chan_freq + MHZ_TO_KHZ(20));
1968 		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1969 			struct ieee80211_freq_range comb_range;
1970 
1971 			if (rrule1->freq_range.end_freq_khz !=
1972 			    rrule2->freq_range.start_freq_khz)
1973 				goto disable_chan;
1974 
1975 			comb_range.start_freq_khz =
1976 				rrule1->freq_range.start_freq_khz;
1977 			comb_range.end_freq_khz =
1978 				rrule2->freq_range.end_freq_khz;
1979 			comb_range.max_bandwidth_khz =
1980 				min_t(u32,
1981 				      rrule1->freq_range.max_bandwidth_khz,
1982 				      rrule2->freq_range.max_bandwidth_khz);
1983 
1984 			if (!cfg80211_does_bw_fit_range(&comb_range,
1985 							orig_chan_freq,
1986 							MHZ_TO_KHZ(20)))
1987 				goto disable_chan;
1988 
1989 			handle_channel_adjacent_rules(wiphy, initiator, chan,
1990 						      flags, lr, request_wiphy,
1991 						      rrule1, rrule2,
1992 						      &comb_range);
1993 			return;
1994 		}
1995 
1996 disable_chan:
1997 		/* We will disable all channels that do not match our
1998 		 * received regulatory rule unless the hint is coming
1999 		 * from a Country IE and the Country IE had no information
2000 		 * about a band. The IEEE 802.11 spec allows for an AP
2001 		 * to send only a subset of the regulatory rules allowed,
2002 		 * so an AP in the US that only supports 2.4 GHz may only send
2003 		 * a country IE with information for the 2.4 GHz band
2004 		 * while 5 GHz is still supported.
2005 		 */
2006 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2007 		    PTR_ERR(rrule) == -ERANGE)
2008 			return;
2009 
2010 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2011 		    request_wiphy && request_wiphy == wiphy &&
2012 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2013 			pr_debug("Disabling freq %d.%03d MHz for good\n",
2014 				 chan->center_freq, chan->freq_offset);
2015 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2016 			chan->flags = chan->orig_flags;
2017 		} else {
2018 			pr_debug("Disabling freq %d.%03d MHz\n",
2019 				 chan->center_freq, chan->freq_offset);
2020 			chan->flags |= IEEE80211_CHAN_DISABLED;
2021 		}
2022 		return;
2023 	}
2024 
2025 	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2026 				   request_wiphy, rrule);
2027 }
2028 
2029 static void handle_band(struct wiphy *wiphy,
2030 			enum nl80211_reg_initiator initiator,
2031 			struct ieee80211_supported_band *sband)
2032 {
2033 	unsigned int i;
2034 
2035 	if (!sband)
2036 		return;
2037 
2038 	for (i = 0; i < sband->n_channels; i++)
2039 		handle_channel(wiphy, initiator, &sband->channels[i]);
2040 }
2041 
2042 static bool reg_request_cell_base(struct regulatory_request *request)
2043 {
2044 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2045 		return false;
2046 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2047 }
2048 
2049 bool reg_last_request_cell_base(void)
2050 {
2051 	return reg_request_cell_base(get_last_request());
2052 }
2053 
2054 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2055 /* Core specific check */
2056 static enum reg_request_treatment
2057 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2058 {
2059 	struct regulatory_request *lr = get_last_request();
2060 
2061 	if (!reg_num_devs_support_basehint)
2062 		return REG_REQ_IGNORE;
2063 
2064 	if (reg_request_cell_base(lr) &&
2065 	    !regdom_changes(pending_request->alpha2))
2066 		return REG_REQ_ALREADY_SET;
2067 
2068 	return REG_REQ_OK;
2069 }
2070 
2071 /* Device specific check */
2072 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2073 {
2074 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2075 }
2076 #else
2077 static enum reg_request_treatment
2078 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2079 {
2080 	return REG_REQ_IGNORE;
2081 }
2082 
2083 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2084 {
2085 	return true;
2086 }
2087 #endif
2088 
2089 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2090 {
2091 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2092 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2093 		return true;
2094 	return false;
2095 }
2096 
2097 static bool ignore_reg_update(struct wiphy *wiphy,
2098 			      enum nl80211_reg_initiator initiator)
2099 {
2100 	struct regulatory_request *lr = get_last_request();
2101 
2102 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2103 		return true;
2104 
2105 	if (!lr) {
2106 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2107 			 reg_initiator_name(initiator));
2108 		return true;
2109 	}
2110 
2111 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2112 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2113 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2114 			 reg_initiator_name(initiator));
2115 		return true;
2116 	}
2117 
2118 	/*
2119 	 * wiphy->regd will be set once the device has its own
2120 	 * desired regulatory domain set
2121 	 */
2122 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2123 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2124 	    !is_world_regdom(lr->alpha2)) {
2125 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2126 			 reg_initiator_name(initiator));
2127 		return true;
2128 	}
2129 
2130 	if (reg_request_cell_base(lr))
2131 		return reg_dev_ignore_cell_hint(wiphy);
2132 
2133 	return false;
2134 }
2135 
2136 static bool reg_is_world_roaming(struct wiphy *wiphy)
2137 {
2138 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2139 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2140 	struct regulatory_request *lr = get_last_request();
2141 
2142 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2143 		return true;
2144 
2145 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2146 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2147 		return true;
2148 
2149 	return false;
2150 }
2151 
2152 static void reg_call_notifier(struct wiphy *wiphy,
2153 			      struct regulatory_request *request)
2154 {
2155 	if (wiphy->reg_notifier)
2156 		wiphy->reg_notifier(wiphy, request);
2157 }
2158 
2159 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2160 			      struct reg_beacon *reg_beacon)
2161 {
2162 	struct ieee80211_supported_band *sband;
2163 	struct ieee80211_channel *chan;
2164 	bool channel_changed = false;
2165 	struct ieee80211_channel chan_before;
2166 	struct regulatory_request *lr = get_last_request();
2167 
2168 	sband = wiphy->bands[reg_beacon->chan.band];
2169 	chan = &sband->channels[chan_idx];
2170 
2171 	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2172 		return;
2173 
2174 	if (chan->beacon_found)
2175 		return;
2176 
2177 	chan->beacon_found = true;
2178 
2179 	if (!reg_is_world_roaming(wiphy))
2180 		return;
2181 
2182 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2183 		return;
2184 
2185 	chan_before = *chan;
2186 
2187 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2188 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2189 		channel_changed = true;
2190 	}
2191 
2192 	if (channel_changed) {
2193 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2194 		if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2195 			reg_call_notifier(wiphy, lr);
2196 	}
2197 }
2198 
2199 /*
2200  * Called when a scan on a wiphy finds a beacon on
2201  * new channel
2202  */
2203 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2204 				    struct reg_beacon *reg_beacon)
2205 {
2206 	unsigned int i;
2207 	struct ieee80211_supported_band *sband;
2208 
2209 	if (!wiphy->bands[reg_beacon->chan.band])
2210 		return;
2211 
2212 	sband = wiphy->bands[reg_beacon->chan.band];
2213 
2214 	for (i = 0; i < sband->n_channels; i++)
2215 		handle_reg_beacon(wiphy, i, reg_beacon);
2216 }
2217 
2218 /*
2219  * Called upon reg changes or a new wiphy is added
2220  */
2221 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2222 {
2223 	unsigned int i;
2224 	struct ieee80211_supported_band *sband;
2225 	struct reg_beacon *reg_beacon;
2226 
2227 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2228 		if (!wiphy->bands[reg_beacon->chan.band])
2229 			continue;
2230 		sband = wiphy->bands[reg_beacon->chan.band];
2231 		for (i = 0; i < sband->n_channels; i++)
2232 			handle_reg_beacon(wiphy, i, reg_beacon);
2233 	}
2234 }
2235 
2236 /* Reap the advantages of previously found beacons */
2237 static void reg_process_beacons(struct wiphy *wiphy)
2238 {
2239 	/*
2240 	 * Means we are just firing up cfg80211, so no beacons would
2241 	 * have been processed yet.
2242 	 */
2243 	if (!last_request)
2244 		return;
2245 	wiphy_update_beacon_reg(wiphy);
2246 }
2247 
2248 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2249 {
2250 	if (!chan)
2251 		return false;
2252 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2253 		return false;
2254 	/* This would happen when regulatory rules disallow HT40 completely */
2255 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2256 		return false;
2257 	return true;
2258 }
2259 
2260 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2261 					 struct ieee80211_channel *channel)
2262 {
2263 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2264 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2265 	const struct ieee80211_regdomain *regd;
2266 	unsigned int i;
2267 	u32 flags;
2268 
2269 	if (!is_ht40_allowed(channel)) {
2270 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2271 		return;
2272 	}
2273 
2274 	/*
2275 	 * We need to ensure the extension channels exist to
2276 	 * be able to use HT40- or HT40+, this finds them (or not)
2277 	 */
2278 	for (i = 0; i < sband->n_channels; i++) {
2279 		struct ieee80211_channel *c = &sband->channels[i];
2280 
2281 		if (c->center_freq == (channel->center_freq - 20))
2282 			channel_before = c;
2283 		if (c->center_freq == (channel->center_freq + 20))
2284 			channel_after = c;
2285 	}
2286 
2287 	flags = 0;
2288 	regd = get_wiphy_regdom(wiphy);
2289 	if (regd) {
2290 		const struct ieee80211_reg_rule *reg_rule =
2291 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2292 					   regd, MHZ_TO_KHZ(20));
2293 
2294 		if (!IS_ERR(reg_rule))
2295 			flags = reg_rule->flags;
2296 	}
2297 
2298 	/*
2299 	 * Please note that this assumes target bandwidth is 20 MHz,
2300 	 * if that ever changes we also need to change the below logic
2301 	 * to include that as well.
2302 	 */
2303 	if (!is_ht40_allowed(channel_before) ||
2304 	    flags & NL80211_RRF_NO_HT40MINUS)
2305 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2306 	else
2307 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2308 
2309 	if (!is_ht40_allowed(channel_after) ||
2310 	    flags & NL80211_RRF_NO_HT40PLUS)
2311 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2312 	else
2313 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2314 }
2315 
2316 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2317 				      struct ieee80211_supported_band *sband)
2318 {
2319 	unsigned int i;
2320 
2321 	if (!sband)
2322 		return;
2323 
2324 	for (i = 0; i < sband->n_channels; i++)
2325 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2326 }
2327 
2328 static void reg_process_ht_flags(struct wiphy *wiphy)
2329 {
2330 	enum nl80211_band band;
2331 
2332 	if (!wiphy)
2333 		return;
2334 
2335 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2336 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2337 }
2338 
2339 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2340 {
2341 	struct cfg80211_chan_def chandef = {};
2342 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2343 	enum nl80211_iftype iftype;
2344 	bool ret;
2345 	int link;
2346 
2347 	iftype = wdev->iftype;
2348 
2349 	/* make sure the interface is active */
2350 	if (!wdev->netdev || !netif_running(wdev->netdev))
2351 		return true;
2352 
2353 	for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2354 		struct ieee80211_channel *chan;
2355 
2356 		if (!wdev->valid_links && link > 0)
2357 			break;
2358 		if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2359 			continue;
2360 		switch (iftype) {
2361 		case NL80211_IFTYPE_AP:
2362 		case NL80211_IFTYPE_P2P_GO:
2363 			if (!wdev->links[link].ap.beacon_interval)
2364 				continue;
2365 			chandef = wdev->links[link].ap.chandef;
2366 			break;
2367 		case NL80211_IFTYPE_MESH_POINT:
2368 			if (!wdev->u.mesh.beacon_interval)
2369 				continue;
2370 			chandef = wdev->u.mesh.chandef;
2371 			break;
2372 		case NL80211_IFTYPE_ADHOC:
2373 			if (!wdev->u.ibss.ssid_len)
2374 				continue;
2375 			chandef = wdev->u.ibss.chandef;
2376 			break;
2377 		case NL80211_IFTYPE_STATION:
2378 		case NL80211_IFTYPE_P2P_CLIENT:
2379 			/* Maybe we could consider disabling that link only? */
2380 			if (!wdev->links[link].client.current_bss)
2381 				continue;
2382 
2383 			chan = wdev->links[link].client.current_bss->pub.channel;
2384 			if (!chan)
2385 				continue;
2386 
2387 			if (!rdev->ops->get_channel ||
2388 			    rdev_get_channel(rdev, wdev, link, &chandef))
2389 				cfg80211_chandef_create(&chandef, chan,
2390 							NL80211_CHAN_NO_HT);
2391 			break;
2392 		case NL80211_IFTYPE_MONITOR:
2393 		case NL80211_IFTYPE_AP_VLAN:
2394 		case NL80211_IFTYPE_P2P_DEVICE:
2395 			/* no enforcement required */
2396 			break;
2397 		case NL80211_IFTYPE_OCB:
2398 			if (!wdev->u.ocb.chandef.chan)
2399 				continue;
2400 			chandef = wdev->u.ocb.chandef;
2401 			break;
2402 		case NL80211_IFTYPE_NAN:
2403 			/* we have no info, but NAN is also pretty universal */
2404 			continue;
2405 		default:
2406 			/* others not implemented for now */
2407 			WARN_ON_ONCE(1);
2408 			break;
2409 		}
2410 
2411 		switch (iftype) {
2412 		case NL80211_IFTYPE_AP:
2413 		case NL80211_IFTYPE_P2P_GO:
2414 		case NL80211_IFTYPE_ADHOC:
2415 		case NL80211_IFTYPE_MESH_POINT:
2416 			ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2417 							    iftype);
2418 			if (!ret)
2419 				return ret;
2420 			break;
2421 		case NL80211_IFTYPE_STATION:
2422 		case NL80211_IFTYPE_P2P_CLIENT:
2423 			ret = cfg80211_chandef_usable(wiphy, &chandef,
2424 						      IEEE80211_CHAN_DISABLED);
2425 			if (!ret)
2426 				return ret;
2427 			break;
2428 		default:
2429 			break;
2430 		}
2431 	}
2432 
2433 	return true;
2434 }
2435 
2436 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2437 {
2438 	struct wireless_dev *wdev;
2439 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2440 
2441 	guard(wiphy)(wiphy);
2442 
2443 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2444 		if (!reg_wdev_chan_valid(wiphy, wdev))
2445 			cfg80211_leave(rdev, wdev);
2446 }
2447 
2448 static void reg_check_chans_work(struct work_struct *work)
2449 {
2450 	struct cfg80211_registered_device *rdev;
2451 
2452 	pr_debug("Verifying active interfaces after reg change\n");
2453 	rtnl_lock();
2454 
2455 	for_each_rdev(rdev)
2456 		reg_leave_invalid_chans(&rdev->wiphy);
2457 
2458 	rtnl_unlock();
2459 }
2460 
2461 void reg_check_channels(void)
2462 {
2463 	/*
2464 	 * Give usermode a chance to do something nicer (move to another
2465 	 * channel, orderly disconnection), before forcing a disconnection.
2466 	 */
2467 	mod_delayed_work(system_power_efficient_wq,
2468 			 &reg_check_chans,
2469 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2470 }
2471 
2472 static void wiphy_update_regulatory(struct wiphy *wiphy,
2473 				    enum nl80211_reg_initiator initiator)
2474 {
2475 	enum nl80211_band band;
2476 	struct regulatory_request *lr = get_last_request();
2477 
2478 	if (ignore_reg_update(wiphy, initiator)) {
2479 		/*
2480 		 * Regulatory updates set by CORE are ignored for custom
2481 		 * regulatory cards. Let us notify the changes to the driver,
2482 		 * as some drivers used this to restore its orig_* reg domain.
2483 		 */
2484 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2485 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2486 		    !(wiphy->regulatory_flags &
2487 		      REGULATORY_WIPHY_SELF_MANAGED))
2488 			reg_call_notifier(wiphy, lr);
2489 		return;
2490 	}
2491 
2492 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2493 
2494 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2495 		handle_band(wiphy, initiator, wiphy->bands[band]);
2496 
2497 	reg_process_beacons(wiphy);
2498 	reg_process_ht_flags(wiphy);
2499 	reg_call_notifier(wiphy, lr);
2500 }
2501 
2502 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2503 {
2504 	struct cfg80211_registered_device *rdev;
2505 	struct wiphy *wiphy;
2506 
2507 	ASSERT_RTNL();
2508 
2509 	for_each_rdev(rdev) {
2510 		wiphy = &rdev->wiphy;
2511 		wiphy_update_regulatory(wiphy, initiator);
2512 	}
2513 
2514 	reg_check_channels();
2515 }
2516 
2517 static void handle_channel_custom(struct wiphy *wiphy,
2518 				  struct ieee80211_channel *chan,
2519 				  const struct ieee80211_regdomain *regd,
2520 				  u32 min_bw)
2521 {
2522 	u32 bw_flags = 0;
2523 	const struct ieee80211_reg_rule *reg_rule = NULL;
2524 	const struct ieee80211_power_rule *power_rule = NULL;
2525 	u32 bw, center_freq_khz;
2526 
2527 	center_freq_khz = ieee80211_channel_to_khz(chan);
2528 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2529 		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2530 		if (!IS_ERR(reg_rule))
2531 			break;
2532 	}
2533 
2534 	if (IS_ERR_OR_NULL(reg_rule)) {
2535 		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2536 			 chan->center_freq, chan->freq_offset);
2537 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2538 			chan->flags |= IEEE80211_CHAN_DISABLED;
2539 		} else {
2540 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2541 			chan->flags = chan->orig_flags;
2542 		}
2543 		return;
2544 	}
2545 
2546 	power_rule = &reg_rule->power_rule;
2547 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2548 
2549 	chan->dfs_state_entered = jiffies;
2550 	chan->dfs_state = NL80211_DFS_USABLE;
2551 
2552 	chan->beacon_found = false;
2553 
2554 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2555 		chan->flags = chan->orig_flags | bw_flags |
2556 			      map_regdom_flags(reg_rule->flags);
2557 	else
2558 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2559 
2560 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2561 	chan->max_reg_power = chan->max_power =
2562 		(int) MBM_TO_DBM(power_rule->max_eirp);
2563 
2564 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2565 		if (reg_rule->dfs_cac_ms)
2566 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2567 		else
2568 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2569 	}
2570 
2571 	if (chan->flags & IEEE80211_CHAN_PSD)
2572 		chan->psd = reg_rule->psd;
2573 
2574 	chan->max_power = chan->max_reg_power;
2575 }
2576 
2577 static void handle_band_custom(struct wiphy *wiphy,
2578 			       struct ieee80211_supported_band *sband,
2579 			       const struct ieee80211_regdomain *regd)
2580 {
2581 	unsigned int i;
2582 
2583 	if (!sband)
2584 		return;
2585 
2586 	/*
2587 	 * We currently assume that you always want at least 20 MHz,
2588 	 * otherwise channel 12 might get enabled if this rule is
2589 	 * compatible to US, which permits 2402 - 2472 MHz.
2590 	 */
2591 	for (i = 0; i < sband->n_channels; i++)
2592 		handle_channel_custom(wiphy, &sband->channels[i], regd,
2593 				      MHZ_TO_KHZ(20));
2594 }
2595 
2596 /* Used by drivers prior to wiphy registration */
2597 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2598 				   const struct ieee80211_regdomain *regd)
2599 {
2600 	const struct ieee80211_regdomain *new_regd, *tmp;
2601 	enum nl80211_band band;
2602 	unsigned int bands_set = 0;
2603 
2604 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2605 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2606 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2607 
2608 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2609 		if (!wiphy->bands[band])
2610 			continue;
2611 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2612 		bands_set++;
2613 	}
2614 
2615 	/*
2616 	 * no point in calling this if it won't have any effect
2617 	 * on your device's supported bands.
2618 	 */
2619 	WARN_ON(!bands_set);
2620 	new_regd = reg_copy_regd(regd);
2621 	if (IS_ERR(new_regd))
2622 		return;
2623 
2624 	rtnl_lock();
2625 	scoped_guard(wiphy, wiphy) {
2626 		tmp = get_wiphy_regdom(wiphy);
2627 		rcu_assign_pointer(wiphy->regd, new_regd);
2628 		rcu_free_regdom(tmp);
2629 	}
2630 	rtnl_unlock();
2631 }
2632 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2633 
2634 static void reg_set_request_processed(void)
2635 {
2636 	bool need_more_processing = false;
2637 	struct regulatory_request *lr = get_last_request();
2638 
2639 	lr->processed = true;
2640 
2641 	spin_lock(&reg_requests_lock);
2642 	if (!list_empty(&reg_requests_list))
2643 		need_more_processing = true;
2644 	spin_unlock(&reg_requests_lock);
2645 
2646 	cancel_crda_timeout();
2647 
2648 	if (need_more_processing)
2649 		schedule_work(&reg_work);
2650 }
2651 
2652 /**
2653  * reg_process_hint_core - process core regulatory requests
2654  * @core_request: a pending core regulatory request
2655  *
2656  * The wireless subsystem can use this function to process
2657  * a regulatory request issued by the regulatory core.
2658  *
2659  * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2660  *	hint was processed or ignored
2661  */
2662 static enum reg_request_treatment
2663 reg_process_hint_core(struct regulatory_request *core_request)
2664 {
2665 	if (reg_query_database(core_request)) {
2666 		core_request->intersect = false;
2667 		core_request->processed = false;
2668 		reg_update_last_request(core_request);
2669 		return REG_REQ_OK;
2670 	}
2671 
2672 	return REG_REQ_IGNORE;
2673 }
2674 
2675 static enum reg_request_treatment
2676 __reg_process_hint_user(struct regulatory_request *user_request)
2677 {
2678 	struct regulatory_request *lr = get_last_request();
2679 
2680 	if (reg_request_cell_base(user_request))
2681 		return reg_ignore_cell_hint(user_request);
2682 
2683 	if (reg_request_cell_base(lr))
2684 		return REG_REQ_IGNORE;
2685 
2686 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2687 		return REG_REQ_INTERSECT;
2688 	/*
2689 	 * If the user knows better the user should set the regdom
2690 	 * to their country before the IE is picked up
2691 	 */
2692 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2693 	    lr->intersect)
2694 		return REG_REQ_IGNORE;
2695 	/*
2696 	 * Process user requests only after previous user/driver/core
2697 	 * requests have been processed
2698 	 */
2699 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2700 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2701 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2702 	    regdom_changes(lr->alpha2))
2703 		return REG_REQ_IGNORE;
2704 
2705 	if (!regdom_changes(user_request->alpha2))
2706 		return REG_REQ_ALREADY_SET;
2707 
2708 	return REG_REQ_OK;
2709 }
2710 
2711 /**
2712  * reg_process_hint_user - process user regulatory requests
2713  * @user_request: a pending user regulatory request
2714  *
2715  * The wireless subsystem can use this function to process
2716  * a regulatory request initiated by userspace.
2717  *
2718  * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2719  *	hint was processed or ignored
2720  */
2721 static enum reg_request_treatment
2722 reg_process_hint_user(struct regulatory_request *user_request)
2723 {
2724 	enum reg_request_treatment treatment;
2725 
2726 	treatment = __reg_process_hint_user(user_request);
2727 	if (treatment == REG_REQ_IGNORE ||
2728 	    treatment == REG_REQ_ALREADY_SET)
2729 		return REG_REQ_IGNORE;
2730 
2731 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2732 	user_request->processed = false;
2733 
2734 	if (reg_query_database(user_request)) {
2735 		reg_update_last_request(user_request);
2736 		user_alpha2[0] = user_request->alpha2[0];
2737 		user_alpha2[1] = user_request->alpha2[1];
2738 		return REG_REQ_OK;
2739 	}
2740 
2741 	return REG_REQ_IGNORE;
2742 }
2743 
2744 static enum reg_request_treatment
2745 __reg_process_hint_driver(struct regulatory_request *driver_request)
2746 {
2747 	struct regulatory_request *lr = get_last_request();
2748 
2749 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2750 		if (regdom_changes(driver_request->alpha2))
2751 			return REG_REQ_OK;
2752 		return REG_REQ_ALREADY_SET;
2753 	}
2754 
2755 	/*
2756 	 * This would happen if you unplug and plug your card
2757 	 * back in or if you add a new device for which the previously
2758 	 * loaded card also agrees on the regulatory domain.
2759 	 */
2760 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2761 	    !regdom_changes(driver_request->alpha2))
2762 		return REG_REQ_ALREADY_SET;
2763 
2764 	return REG_REQ_INTERSECT;
2765 }
2766 
2767 /**
2768  * reg_process_hint_driver - process driver regulatory requests
2769  * @wiphy: the wireless device for the regulatory request
2770  * @driver_request: a pending driver regulatory request
2771  *
2772  * The wireless subsystem can use this function to process
2773  * a regulatory request issued by an 802.11 driver.
2774  *
2775  * Returns: one of the different reg request treatment values.
2776  */
2777 static enum reg_request_treatment
2778 reg_process_hint_driver(struct wiphy *wiphy,
2779 			struct regulatory_request *driver_request)
2780 {
2781 	const struct ieee80211_regdomain *regd, *tmp;
2782 	enum reg_request_treatment treatment;
2783 
2784 	treatment = __reg_process_hint_driver(driver_request);
2785 
2786 	switch (treatment) {
2787 	case REG_REQ_OK:
2788 		break;
2789 	case REG_REQ_IGNORE:
2790 		return REG_REQ_IGNORE;
2791 	case REG_REQ_INTERSECT:
2792 	case REG_REQ_ALREADY_SET:
2793 		regd = reg_copy_regd(get_cfg80211_regdom());
2794 		if (IS_ERR(regd))
2795 			return REG_REQ_IGNORE;
2796 
2797 		tmp = get_wiphy_regdom(wiphy);
2798 		ASSERT_RTNL();
2799 		scoped_guard(wiphy, wiphy) {
2800 			rcu_assign_pointer(wiphy->regd, regd);
2801 		}
2802 		rcu_free_regdom(tmp);
2803 	}
2804 
2805 
2806 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2807 	driver_request->processed = false;
2808 
2809 	/*
2810 	 * Since CRDA will not be called in this case as we already
2811 	 * have applied the requested regulatory domain before we just
2812 	 * inform userspace we have processed the request
2813 	 */
2814 	if (treatment == REG_REQ_ALREADY_SET) {
2815 		nl80211_send_reg_change_event(driver_request);
2816 		reg_update_last_request(driver_request);
2817 		reg_set_request_processed();
2818 		return REG_REQ_ALREADY_SET;
2819 	}
2820 
2821 	if (reg_query_database(driver_request)) {
2822 		reg_update_last_request(driver_request);
2823 		return REG_REQ_OK;
2824 	}
2825 
2826 	return REG_REQ_IGNORE;
2827 }
2828 
2829 static enum reg_request_treatment
2830 __reg_process_hint_country_ie(struct wiphy *wiphy,
2831 			      struct regulatory_request *country_ie_request)
2832 {
2833 	struct wiphy *last_wiphy = NULL;
2834 	struct regulatory_request *lr = get_last_request();
2835 
2836 	if (reg_request_cell_base(lr)) {
2837 		/* Trust a Cell base station over the AP's country IE */
2838 		if (regdom_changes(country_ie_request->alpha2))
2839 			return REG_REQ_IGNORE;
2840 		return REG_REQ_ALREADY_SET;
2841 	} else {
2842 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2843 			return REG_REQ_IGNORE;
2844 	}
2845 
2846 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2847 		return -EINVAL;
2848 
2849 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2850 		return REG_REQ_OK;
2851 
2852 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2853 
2854 	if (last_wiphy != wiphy) {
2855 		/*
2856 		 * Two cards with two APs claiming different
2857 		 * Country IE alpha2s. We could
2858 		 * intersect them, but that seems unlikely
2859 		 * to be correct. Reject second one for now.
2860 		 */
2861 		if (regdom_changes(country_ie_request->alpha2))
2862 			return REG_REQ_IGNORE;
2863 		return REG_REQ_ALREADY_SET;
2864 	}
2865 
2866 	if (regdom_changes(country_ie_request->alpha2))
2867 		return REG_REQ_OK;
2868 	return REG_REQ_ALREADY_SET;
2869 }
2870 
2871 /**
2872  * reg_process_hint_country_ie - process regulatory requests from country IEs
2873  * @wiphy: the wireless device for the regulatory request
2874  * @country_ie_request: a regulatory request from a country IE
2875  *
2876  * The wireless subsystem can use this function to process
2877  * a regulatory request issued by a country Information Element.
2878  *
2879  * Returns: one of the different reg request treatment values.
2880  */
2881 static enum reg_request_treatment
2882 reg_process_hint_country_ie(struct wiphy *wiphy,
2883 			    struct regulatory_request *country_ie_request)
2884 {
2885 	enum reg_request_treatment treatment;
2886 
2887 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2888 
2889 	switch (treatment) {
2890 	case REG_REQ_OK:
2891 		break;
2892 	case REG_REQ_IGNORE:
2893 		return REG_REQ_IGNORE;
2894 	case REG_REQ_ALREADY_SET:
2895 		reg_free_request(country_ie_request);
2896 		return REG_REQ_ALREADY_SET;
2897 	case REG_REQ_INTERSECT:
2898 		/*
2899 		 * This doesn't happen yet, not sure we
2900 		 * ever want to support it for this case.
2901 		 */
2902 		WARN_ONCE(1, "Unexpected intersection for country elements");
2903 		return REG_REQ_IGNORE;
2904 	}
2905 
2906 	country_ie_request->intersect = false;
2907 	country_ie_request->processed = false;
2908 
2909 	if (reg_query_database(country_ie_request)) {
2910 		reg_update_last_request(country_ie_request);
2911 		return REG_REQ_OK;
2912 	}
2913 
2914 	return REG_REQ_IGNORE;
2915 }
2916 
2917 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2918 {
2919 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2920 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2921 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2922 	bool dfs_domain_same;
2923 
2924 	rcu_read_lock();
2925 
2926 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2927 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2928 	if (!wiphy1_regd)
2929 		wiphy1_regd = cfg80211_regd;
2930 
2931 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2932 	if (!wiphy2_regd)
2933 		wiphy2_regd = cfg80211_regd;
2934 
2935 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2936 
2937 	rcu_read_unlock();
2938 
2939 	return dfs_domain_same;
2940 }
2941 
2942 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2943 				    struct ieee80211_channel *src_chan)
2944 {
2945 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2946 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2947 		return;
2948 
2949 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2950 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2951 		return;
2952 
2953 	if (src_chan->center_freq == dst_chan->center_freq &&
2954 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2955 		dst_chan->dfs_state = src_chan->dfs_state;
2956 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2957 	}
2958 }
2959 
2960 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2961 				       struct wiphy *src_wiphy)
2962 {
2963 	struct ieee80211_supported_band *src_sband, *dst_sband;
2964 	struct ieee80211_channel *src_chan, *dst_chan;
2965 	int i, j, band;
2966 
2967 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2968 		return;
2969 
2970 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2971 		dst_sband = dst_wiphy->bands[band];
2972 		src_sband = src_wiphy->bands[band];
2973 		if (!dst_sband || !src_sband)
2974 			continue;
2975 
2976 		for (i = 0; i < dst_sband->n_channels; i++) {
2977 			dst_chan = &dst_sband->channels[i];
2978 			for (j = 0; j < src_sband->n_channels; j++) {
2979 				src_chan = &src_sband->channels[j];
2980 				reg_copy_dfs_chan_state(dst_chan, src_chan);
2981 			}
2982 		}
2983 	}
2984 }
2985 
2986 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2987 {
2988 	struct cfg80211_registered_device *rdev;
2989 
2990 	ASSERT_RTNL();
2991 
2992 	for_each_rdev(rdev) {
2993 		if (wiphy == &rdev->wiphy)
2994 			continue;
2995 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2996 	}
2997 }
2998 
2999 /* This processes *all* regulatory hints */
3000 static void reg_process_hint(struct regulatory_request *reg_request)
3001 {
3002 	struct wiphy *wiphy = NULL;
3003 	enum reg_request_treatment treatment;
3004 	enum nl80211_reg_initiator initiator = reg_request->initiator;
3005 
3006 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3007 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3008 
3009 	switch (initiator) {
3010 	case NL80211_REGDOM_SET_BY_CORE:
3011 		treatment = reg_process_hint_core(reg_request);
3012 		break;
3013 	case NL80211_REGDOM_SET_BY_USER:
3014 		treatment = reg_process_hint_user(reg_request);
3015 		break;
3016 	case NL80211_REGDOM_SET_BY_DRIVER:
3017 		if (!wiphy)
3018 			goto out_free;
3019 		treatment = reg_process_hint_driver(wiphy, reg_request);
3020 		break;
3021 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3022 		if (!wiphy)
3023 			goto out_free;
3024 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
3025 		break;
3026 	default:
3027 		WARN(1, "invalid initiator %d\n", initiator);
3028 		goto out_free;
3029 	}
3030 
3031 	if (treatment == REG_REQ_IGNORE)
3032 		goto out_free;
3033 
3034 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3035 	     "unexpected treatment value %d\n", treatment);
3036 
3037 	/* This is required so that the orig_* parameters are saved.
3038 	 * NOTE: treatment must be set for any case that reaches here!
3039 	 */
3040 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3041 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3042 		wiphy_update_regulatory(wiphy, initiator);
3043 		wiphy_all_share_dfs_chan_state(wiphy);
3044 		reg_check_channels();
3045 	}
3046 
3047 	return;
3048 
3049 out_free:
3050 	reg_free_request(reg_request);
3051 }
3052 
3053 static void notify_self_managed_wiphys(struct regulatory_request *request)
3054 {
3055 	struct cfg80211_registered_device *rdev;
3056 	struct wiphy *wiphy;
3057 
3058 	for_each_rdev(rdev) {
3059 		wiphy = &rdev->wiphy;
3060 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3061 		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3062 			reg_call_notifier(wiphy, request);
3063 	}
3064 }
3065 
3066 /*
3067  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3068  * Regulatory hints come on a first come first serve basis and we
3069  * must process each one atomically.
3070  */
3071 static void reg_process_pending_hints(void)
3072 {
3073 	struct regulatory_request *reg_request, *lr;
3074 
3075 	lr = get_last_request();
3076 
3077 	/* When last_request->processed becomes true this will be rescheduled */
3078 	if (lr && !lr->processed) {
3079 		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3080 		return;
3081 	}
3082 
3083 	spin_lock(&reg_requests_lock);
3084 
3085 	if (list_empty(&reg_requests_list)) {
3086 		spin_unlock(&reg_requests_lock);
3087 		return;
3088 	}
3089 
3090 	reg_request = list_first_entry(&reg_requests_list,
3091 				       struct regulatory_request,
3092 				       list);
3093 	list_del_init(&reg_request->list);
3094 
3095 	spin_unlock(&reg_requests_lock);
3096 
3097 	notify_self_managed_wiphys(reg_request);
3098 
3099 	reg_process_hint(reg_request);
3100 
3101 	lr = get_last_request();
3102 
3103 	spin_lock(&reg_requests_lock);
3104 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3105 		schedule_work(&reg_work);
3106 	spin_unlock(&reg_requests_lock);
3107 }
3108 
3109 /* Processes beacon hints -- this has nothing to do with country IEs */
3110 static void reg_process_pending_beacon_hints(void)
3111 {
3112 	struct cfg80211_registered_device *rdev;
3113 	struct reg_beacon *pending_beacon, *tmp;
3114 
3115 	/* This goes through the _pending_ beacon list */
3116 	spin_lock_bh(&reg_pending_beacons_lock);
3117 
3118 	list_for_each_entry_safe(pending_beacon, tmp,
3119 				 &reg_pending_beacons, list) {
3120 		list_del_init(&pending_beacon->list);
3121 
3122 		/* Applies the beacon hint to current wiphys */
3123 		for_each_rdev(rdev)
3124 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3125 
3126 		/* Remembers the beacon hint for new wiphys or reg changes */
3127 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3128 	}
3129 
3130 	spin_unlock_bh(&reg_pending_beacons_lock);
3131 }
3132 
3133 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3134 {
3135 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3136 	const struct ieee80211_regdomain *tmp;
3137 	const struct ieee80211_regdomain *regd;
3138 	enum nl80211_band band;
3139 	struct regulatory_request request = {};
3140 
3141 	ASSERT_RTNL();
3142 	lockdep_assert_wiphy(wiphy);
3143 
3144 	spin_lock(&reg_requests_lock);
3145 	regd = rdev->requested_regd;
3146 	rdev->requested_regd = NULL;
3147 	spin_unlock(&reg_requests_lock);
3148 
3149 	if (!regd)
3150 		return;
3151 
3152 	tmp = get_wiphy_regdom(wiphy);
3153 	rcu_assign_pointer(wiphy->regd, regd);
3154 	rcu_free_regdom(tmp);
3155 
3156 	for (band = 0; band < NUM_NL80211_BANDS; band++)
3157 		handle_band_custom(wiphy, wiphy->bands[band], regd);
3158 
3159 	reg_process_ht_flags(wiphy);
3160 
3161 	request.wiphy_idx = get_wiphy_idx(wiphy);
3162 	request.alpha2[0] = regd->alpha2[0];
3163 	request.alpha2[1] = regd->alpha2[1];
3164 	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3165 
3166 	if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3167 		reg_call_notifier(wiphy, &request);
3168 
3169 	nl80211_send_wiphy_reg_change_event(&request);
3170 }
3171 
3172 static void reg_process_self_managed_hints(void)
3173 {
3174 	struct cfg80211_registered_device *rdev;
3175 
3176 	ASSERT_RTNL();
3177 
3178 	for_each_rdev(rdev) {
3179 		guard(wiphy)(&rdev->wiphy);
3180 
3181 		reg_process_self_managed_hint(&rdev->wiphy);
3182 	}
3183 
3184 	reg_check_channels();
3185 }
3186 
3187 static void reg_todo(struct work_struct *work)
3188 {
3189 	rtnl_lock();
3190 	reg_process_pending_hints();
3191 	reg_process_pending_beacon_hints();
3192 	reg_process_self_managed_hints();
3193 	rtnl_unlock();
3194 }
3195 
3196 static void queue_regulatory_request(struct regulatory_request *request)
3197 {
3198 	request->alpha2[0] = toupper(request->alpha2[0]);
3199 	request->alpha2[1] = toupper(request->alpha2[1]);
3200 
3201 	spin_lock(&reg_requests_lock);
3202 	list_add_tail(&request->list, &reg_requests_list);
3203 	spin_unlock(&reg_requests_lock);
3204 
3205 	schedule_work(&reg_work);
3206 }
3207 
3208 /*
3209  * Core regulatory hint -- happens during cfg80211_init()
3210  * and when we restore regulatory settings.
3211  */
3212 static int regulatory_hint_core(const char *alpha2)
3213 {
3214 	struct regulatory_request *request;
3215 
3216 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3217 	if (!request)
3218 		return -ENOMEM;
3219 
3220 	request->alpha2[0] = alpha2[0];
3221 	request->alpha2[1] = alpha2[1];
3222 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3223 	request->wiphy_idx = WIPHY_IDX_INVALID;
3224 
3225 	queue_regulatory_request(request);
3226 
3227 	return 0;
3228 }
3229 
3230 /* User hints */
3231 int regulatory_hint_user(const char *alpha2,
3232 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3233 {
3234 	struct regulatory_request *request;
3235 
3236 	if (WARN_ON(!alpha2))
3237 		return -EINVAL;
3238 
3239 	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3240 		return -EINVAL;
3241 
3242 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3243 	if (!request)
3244 		return -ENOMEM;
3245 
3246 	request->wiphy_idx = WIPHY_IDX_INVALID;
3247 	request->alpha2[0] = alpha2[0];
3248 	request->alpha2[1] = alpha2[1];
3249 	request->initiator = NL80211_REGDOM_SET_BY_USER;
3250 	request->user_reg_hint_type = user_reg_hint_type;
3251 
3252 	/* Allow calling CRDA again */
3253 	reset_crda_timeouts();
3254 
3255 	queue_regulatory_request(request);
3256 
3257 	return 0;
3258 }
3259 
3260 void regulatory_hint_indoor(bool is_indoor, u32 portid)
3261 {
3262 	spin_lock(&reg_indoor_lock);
3263 
3264 	/* It is possible that more than one user space process is trying to
3265 	 * configure the indoor setting. To handle such cases, clear the indoor
3266 	 * setting in case that some process does not think that the device
3267 	 * is operating in an indoor environment. In addition, if a user space
3268 	 * process indicates that it is controlling the indoor setting, save its
3269 	 * portid, i.e., make it the owner.
3270 	 */
3271 	reg_is_indoor = is_indoor;
3272 	if (reg_is_indoor) {
3273 		if (!reg_is_indoor_portid)
3274 			reg_is_indoor_portid = portid;
3275 	} else {
3276 		reg_is_indoor_portid = 0;
3277 	}
3278 
3279 	spin_unlock(&reg_indoor_lock);
3280 
3281 	if (!is_indoor)
3282 		reg_check_channels();
3283 }
3284 
3285 void regulatory_netlink_notify(u32 portid)
3286 {
3287 	spin_lock(&reg_indoor_lock);
3288 
3289 	if (reg_is_indoor_portid != portid) {
3290 		spin_unlock(&reg_indoor_lock);
3291 		return;
3292 	}
3293 
3294 	reg_is_indoor = false;
3295 	reg_is_indoor_portid = 0;
3296 
3297 	spin_unlock(&reg_indoor_lock);
3298 
3299 	reg_check_channels();
3300 }
3301 
3302 /* Driver hints */
3303 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3304 {
3305 	struct regulatory_request *request;
3306 
3307 	if (WARN_ON(!alpha2 || !wiphy))
3308 		return -EINVAL;
3309 
3310 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3311 
3312 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3313 	if (!request)
3314 		return -ENOMEM;
3315 
3316 	request->wiphy_idx = get_wiphy_idx(wiphy);
3317 
3318 	request->alpha2[0] = alpha2[0];
3319 	request->alpha2[1] = alpha2[1];
3320 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3321 
3322 	/* Allow calling CRDA again */
3323 	reset_crda_timeouts();
3324 
3325 	queue_regulatory_request(request);
3326 
3327 	return 0;
3328 }
3329 EXPORT_SYMBOL(regulatory_hint);
3330 
3331 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3332 				const u8 *country_ie, u8 country_ie_len)
3333 {
3334 	char alpha2[2];
3335 	enum environment_cap env = ENVIRON_ANY;
3336 	struct regulatory_request *request = NULL, *lr;
3337 
3338 	/* IE len must be evenly divisible by 2 */
3339 	if (country_ie_len & 0x01)
3340 		return;
3341 
3342 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3343 		return;
3344 
3345 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3346 	if (!request)
3347 		return;
3348 
3349 	alpha2[0] = country_ie[0];
3350 	alpha2[1] = country_ie[1];
3351 
3352 	if (country_ie[2] == 'I')
3353 		env = ENVIRON_INDOOR;
3354 	else if (country_ie[2] == 'O')
3355 		env = ENVIRON_OUTDOOR;
3356 
3357 	rcu_read_lock();
3358 	lr = get_last_request();
3359 
3360 	if (unlikely(!lr))
3361 		goto out;
3362 
3363 	/*
3364 	 * We will run this only upon a successful connection on cfg80211.
3365 	 * We leave conflict resolution to the workqueue, where can hold
3366 	 * the RTNL.
3367 	 */
3368 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3369 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3370 		goto out;
3371 
3372 	request->wiphy_idx = get_wiphy_idx(wiphy);
3373 	request->alpha2[0] = alpha2[0];
3374 	request->alpha2[1] = alpha2[1];
3375 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3376 	request->country_ie_env = env;
3377 
3378 	/* Allow calling CRDA again */
3379 	reset_crda_timeouts();
3380 
3381 	queue_regulatory_request(request);
3382 	request = NULL;
3383 out:
3384 	kfree(request);
3385 	rcu_read_unlock();
3386 }
3387 
3388 static void restore_alpha2(char *alpha2, bool reset_user)
3389 {
3390 	/* indicates there is no alpha2 to consider for restoration */
3391 	alpha2[0] = '9';
3392 	alpha2[1] = '7';
3393 
3394 	/* The user setting has precedence over the module parameter */
3395 	if (is_user_regdom_saved()) {
3396 		/* Unless we're asked to ignore it and reset it */
3397 		if (reset_user) {
3398 			pr_debug("Restoring regulatory settings including user preference\n");
3399 			user_alpha2[0] = '9';
3400 			user_alpha2[1] = '7';
3401 
3402 			/*
3403 			 * If we're ignoring user settings, we still need to
3404 			 * check the module parameter to ensure we put things
3405 			 * back as they were for a full restore.
3406 			 */
3407 			if (!is_world_regdom(ieee80211_regdom)) {
3408 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3409 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3410 				alpha2[0] = ieee80211_regdom[0];
3411 				alpha2[1] = ieee80211_regdom[1];
3412 			}
3413 		} else {
3414 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3415 				 user_alpha2[0], user_alpha2[1]);
3416 			alpha2[0] = user_alpha2[0];
3417 			alpha2[1] = user_alpha2[1];
3418 		}
3419 	} else if (!is_world_regdom(ieee80211_regdom)) {
3420 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3421 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3422 		alpha2[0] = ieee80211_regdom[0];
3423 		alpha2[1] = ieee80211_regdom[1];
3424 	} else
3425 		pr_debug("Restoring regulatory settings\n");
3426 }
3427 
3428 static void restore_custom_reg_settings(struct wiphy *wiphy)
3429 {
3430 	struct ieee80211_supported_band *sband;
3431 	enum nl80211_band band;
3432 	struct ieee80211_channel *chan;
3433 	int i;
3434 
3435 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3436 		sband = wiphy->bands[band];
3437 		if (!sband)
3438 			continue;
3439 		for (i = 0; i < sband->n_channels; i++) {
3440 			chan = &sband->channels[i];
3441 			chan->flags = chan->orig_flags;
3442 			chan->max_antenna_gain = chan->orig_mag;
3443 			chan->max_power = chan->orig_mpwr;
3444 			chan->beacon_found = false;
3445 		}
3446 	}
3447 }
3448 
3449 /*
3450  * Restoring regulatory settings involves ignoring any
3451  * possibly stale country IE information and user regulatory
3452  * settings if so desired, this includes any beacon hints
3453  * learned as we could have traveled outside to another country
3454  * after disconnection. To restore regulatory settings we do
3455  * exactly what we did at bootup:
3456  *
3457  *   - send a core regulatory hint
3458  *   - send a user regulatory hint if applicable
3459  *
3460  * Device drivers that send a regulatory hint for a specific country
3461  * keep their own regulatory domain on wiphy->regd so that does
3462  * not need to be remembered.
3463  */
3464 static void restore_regulatory_settings(bool reset_user, bool cached)
3465 {
3466 	char alpha2[2];
3467 	char world_alpha2[2];
3468 	struct reg_beacon *reg_beacon, *btmp;
3469 	LIST_HEAD(tmp_reg_req_list);
3470 	struct cfg80211_registered_device *rdev;
3471 
3472 	ASSERT_RTNL();
3473 
3474 	/*
3475 	 * Clear the indoor setting in case that it is not controlled by user
3476 	 * space, as otherwise there is no guarantee that the device is still
3477 	 * operating in an indoor environment.
3478 	 */
3479 	spin_lock(&reg_indoor_lock);
3480 	if (reg_is_indoor && !reg_is_indoor_portid) {
3481 		reg_is_indoor = false;
3482 		reg_check_channels();
3483 	}
3484 	spin_unlock(&reg_indoor_lock);
3485 
3486 	reset_regdomains(true, &world_regdom);
3487 	restore_alpha2(alpha2, reset_user);
3488 
3489 	/*
3490 	 * If there's any pending requests we simply
3491 	 * stash them to a temporary pending queue and
3492 	 * add then after we've restored regulatory
3493 	 * settings.
3494 	 */
3495 	spin_lock(&reg_requests_lock);
3496 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3497 	spin_unlock(&reg_requests_lock);
3498 
3499 	/* Clear beacon hints */
3500 	spin_lock_bh(&reg_pending_beacons_lock);
3501 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3502 		list_del(&reg_beacon->list);
3503 		kfree(reg_beacon);
3504 	}
3505 	spin_unlock_bh(&reg_pending_beacons_lock);
3506 
3507 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3508 		list_del(&reg_beacon->list);
3509 		kfree(reg_beacon);
3510 	}
3511 
3512 	/* First restore to the basic regulatory settings */
3513 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3514 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3515 
3516 	for_each_rdev(rdev) {
3517 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3518 			continue;
3519 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3520 			restore_custom_reg_settings(&rdev->wiphy);
3521 	}
3522 
3523 	if (cached && (!is_an_alpha2(alpha2) ||
3524 		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3525 		reset_regdomains(false, cfg80211_world_regdom);
3526 		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3527 		print_regdomain(get_cfg80211_regdom());
3528 		nl80211_send_reg_change_event(&core_request_world);
3529 		reg_set_request_processed();
3530 
3531 		if (is_an_alpha2(alpha2) &&
3532 		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3533 			struct regulatory_request *ureq;
3534 
3535 			spin_lock(&reg_requests_lock);
3536 			ureq = list_last_entry(&reg_requests_list,
3537 					       struct regulatory_request,
3538 					       list);
3539 			list_del(&ureq->list);
3540 			spin_unlock(&reg_requests_lock);
3541 
3542 			notify_self_managed_wiphys(ureq);
3543 			reg_update_last_request(ureq);
3544 			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3545 				   REGD_SOURCE_CACHED);
3546 		}
3547 	} else {
3548 		regulatory_hint_core(world_alpha2);
3549 
3550 		/*
3551 		 * This restores the ieee80211_regdom module parameter
3552 		 * preference or the last user requested regulatory
3553 		 * settings, user regulatory settings takes precedence.
3554 		 */
3555 		if (is_an_alpha2(alpha2))
3556 			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3557 	}
3558 
3559 	spin_lock(&reg_requests_lock);
3560 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3561 	spin_unlock(&reg_requests_lock);
3562 
3563 	pr_debug("Kicking the queue\n");
3564 
3565 	schedule_work(&reg_work);
3566 }
3567 
3568 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3569 {
3570 	struct cfg80211_registered_device *rdev;
3571 	struct wireless_dev *wdev;
3572 
3573 	for_each_rdev(rdev) {
3574 		guard(wiphy)(&rdev->wiphy);
3575 
3576 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3577 			if (!(wdev->wiphy->regulatory_flags & flag))
3578 				return false;
3579 		}
3580 	}
3581 
3582 	return true;
3583 }
3584 
3585 void regulatory_hint_disconnect(void)
3586 {
3587 	/* Restore of regulatory settings is not required when wiphy(s)
3588 	 * ignore IE from connected access point but clearance of beacon hints
3589 	 * is required when wiphy(s) supports beacon hints.
3590 	 */
3591 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3592 		struct reg_beacon *reg_beacon, *btmp;
3593 
3594 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3595 			return;
3596 
3597 		spin_lock_bh(&reg_pending_beacons_lock);
3598 		list_for_each_entry_safe(reg_beacon, btmp,
3599 					 &reg_pending_beacons, list) {
3600 			list_del(&reg_beacon->list);
3601 			kfree(reg_beacon);
3602 		}
3603 		spin_unlock_bh(&reg_pending_beacons_lock);
3604 
3605 		list_for_each_entry_safe(reg_beacon, btmp,
3606 					 &reg_beacon_list, list) {
3607 			list_del(&reg_beacon->list);
3608 			kfree(reg_beacon);
3609 		}
3610 
3611 		return;
3612 	}
3613 
3614 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3615 	restore_regulatory_settings(false, true);
3616 }
3617 
3618 static bool freq_is_chan_12_13_14(u32 freq)
3619 {
3620 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3621 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3622 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3623 		return true;
3624 	return false;
3625 }
3626 
3627 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3628 {
3629 	struct reg_beacon *pending_beacon;
3630 
3631 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3632 		if (ieee80211_channel_equal(beacon_chan,
3633 					    &pending_beacon->chan))
3634 			return true;
3635 	return false;
3636 }
3637 
3638 void regulatory_hint_found_beacon(struct wiphy *wiphy,
3639 				  struct ieee80211_channel *beacon_chan,
3640 				  gfp_t gfp)
3641 {
3642 	struct reg_beacon *reg_beacon;
3643 	bool processing;
3644 
3645 	if (beacon_chan->beacon_found ||
3646 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3647 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3648 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3649 		return;
3650 
3651 	spin_lock_bh(&reg_pending_beacons_lock);
3652 	processing = pending_reg_beacon(beacon_chan);
3653 	spin_unlock_bh(&reg_pending_beacons_lock);
3654 
3655 	if (processing)
3656 		return;
3657 
3658 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3659 	if (!reg_beacon)
3660 		return;
3661 
3662 	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3663 		 beacon_chan->center_freq, beacon_chan->freq_offset,
3664 		 ieee80211_freq_khz_to_channel(
3665 			 ieee80211_channel_to_khz(beacon_chan)),
3666 		 wiphy_name(wiphy));
3667 
3668 	memcpy(&reg_beacon->chan, beacon_chan,
3669 	       sizeof(struct ieee80211_channel));
3670 
3671 	/*
3672 	 * Since we can be called from BH or and non-BH context
3673 	 * we must use spin_lock_bh()
3674 	 */
3675 	spin_lock_bh(&reg_pending_beacons_lock);
3676 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3677 	spin_unlock_bh(&reg_pending_beacons_lock);
3678 
3679 	schedule_work(&reg_work);
3680 }
3681 
3682 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3683 {
3684 	unsigned int i;
3685 	const struct ieee80211_reg_rule *reg_rule = NULL;
3686 	const struct ieee80211_freq_range *freq_range = NULL;
3687 	const struct ieee80211_power_rule *power_rule = NULL;
3688 	char bw[32], cac_time[32];
3689 
3690 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3691 
3692 	for (i = 0; i < rd->n_reg_rules; i++) {
3693 		reg_rule = &rd->reg_rules[i];
3694 		freq_range = &reg_rule->freq_range;
3695 		power_rule = &reg_rule->power_rule;
3696 
3697 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3698 			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3699 				 freq_range->max_bandwidth_khz,
3700 				 reg_get_max_bandwidth(rd, reg_rule));
3701 		else
3702 			snprintf(bw, sizeof(bw), "%d KHz",
3703 				 freq_range->max_bandwidth_khz);
3704 
3705 		if (reg_rule->flags & NL80211_RRF_DFS)
3706 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3707 				  reg_rule->dfs_cac_ms/1000);
3708 		else
3709 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3710 
3711 
3712 		/*
3713 		 * There may not be documentation for max antenna gain
3714 		 * in certain regions
3715 		 */
3716 		if (power_rule->max_antenna_gain)
3717 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3718 				freq_range->start_freq_khz,
3719 				freq_range->end_freq_khz,
3720 				bw,
3721 				power_rule->max_antenna_gain,
3722 				power_rule->max_eirp,
3723 				cac_time);
3724 		else
3725 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3726 				freq_range->start_freq_khz,
3727 				freq_range->end_freq_khz,
3728 				bw,
3729 				power_rule->max_eirp,
3730 				cac_time);
3731 	}
3732 }
3733 
3734 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3735 {
3736 	switch (dfs_region) {
3737 	case NL80211_DFS_UNSET:
3738 	case NL80211_DFS_FCC:
3739 	case NL80211_DFS_ETSI:
3740 	case NL80211_DFS_JP:
3741 		return true;
3742 	default:
3743 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3744 		return false;
3745 	}
3746 }
3747 
3748 static void print_regdomain(const struct ieee80211_regdomain *rd)
3749 {
3750 	struct regulatory_request *lr = get_last_request();
3751 
3752 	if (is_intersected_alpha2(rd->alpha2)) {
3753 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3754 			struct cfg80211_registered_device *rdev;
3755 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3756 			if (rdev) {
3757 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3758 					rdev->country_ie_alpha2[0],
3759 					rdev->country_ie_alpha2[1]);
3760 			} else
3761 				pr_debug("Current regulatory domain intersected:\n");
3762 		} else
3763 			pr_debug("Current regulatory domain intersected:\n");
3764 	} else if (is_world_regdom(rd->alpha2)) {
3765 		pr_debug("World regulatory domain updated:\n");
3766 	} else {
3767 		if (is_unknown_alpha2(rd->alpha2))
3768 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3769 		else {
3770 			if (reg_request_cell_base(lr))
3771 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3772 					rd->alpha2[0], rd->alpha2[1]);
3773 			else
3774 				pr_debug("Regulatory domain changed to country: %c%c\n",
3775 					rd->alpha2[0], rd->alpha2[1]);
3776 		}
3777 	}
3778 
3779 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3780 	print_rd_rules(rd);
3781 }
3782 
3783 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3784 {
3785 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3786 	print_rd_rules(rd);
3787 }
3788 
3789 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3790 {
3791 	if (!is_world_regdom(rd->alpha2))
3792 		return -EINVAL;
3793 	update_world_regdomain(rd);
3794 	return 0;
3795 }
3796 
3797 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3798 			   struct regulatory_request *user_request)
3799 {
3800 	const struct ieee80211_regdomain *intersected_rd = NULL;
3801 
3802 	if (!regdom_changes(rd->alpha2))
3803 		return -EALREADY;
3804 
3805 	if (!is_valid_rd(rd)) {
3806 		pr_err("Invalid regulatory domain detected: %c%c\n",
3807 		       rd->alpha2[0], rd->alpha2[1]);
3808 		print_regdomain_info(rd);
3809 		return -EINVAL;
3810 	}
3811 
3812 	if (!user_request->intersect) {
3813 		reset_regdomains(false, rd);
3814 		return 0;
3815 	}
3816 
3817 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3818 	if (!intersected_rd)
3819 		return -EINVAL;
3820 
3821 	kfree(rd);
3822 	rd = NULL;
3823 	reset_regdomains(false, intersected_rd);
3824 
3825 	return 0;
3826 }
3827 
3828 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3829 			     struct regulatory_request *driver_request)
3830 {
3831 	const struct ieee80211_regdomain *regd;
3832 	const struct ieee80211_regdomain *intersected_rd = NULL;
3833 	const struct ieee80211_regdomain *tmp = NULL;
3834 	struct wiphy *request_wiphy;
3835 
3836 	if (is_world_regdom(rd->alpha2))
3837 		return -EINVAL;
3838 
3839 	if (!regdom_changes(rd->alpha2))
3840 		return -EALREADY;
3841 
3842 	if (!is_valid_rd(rd)) {
3843 		pr_err("Invalid regulatory domain detected: %c%c\n",
3844 		       rd->alpha2[0], rd->alpha2[1]);
3845 		print_regdomain_info(rd);
3846 		return -EINVAL;
3847 	}
3848 
3849 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3850 	if (!request_wiphy)
3851 		return -ENODEV;
3852 
3853 	if (!driver_request->intersect) {
3854 		ASSERT_RTNL();
3855 		scoped_guard(wiphy, request_wiphy) {
3856 			if (request_wiphy->regd)
3857 				tmp = get_wiphy_regdom(request_wiphy);
3858 
3859 			regd = reg_copy_regd(rd);
3860 			if (IS_ERR(regd))
3861 				return PTR_ERR(regd);
3862 
3863 			rcu_assign_pointer(request_wiphy->regd, regd);
3864 			rcu_free_regdom(tmp);
3865 		}
3866 
3867 		reset_regdomains(false, rd);
3868 		return 0;
3869 	}
3870 
3871 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3872 	if (!intersected_rd)
3873 		return -EINVAL;
3874 
3875 	/*
3876 	 * We can trash what CRDA provided now.
3877 	 * However if a driver requested this specific regulatory
3878 	 * domain we keep it for its private use
3879 	 */
3880 	tmp = get_wiphy_regdom(request_wiphy);
3881 	rcu_assign_pointer(request_wiphy->regd, rd);
3882 	rcu_free_regdom(tmp);
3883 
3884 	rd = NULL;
3885 
3886 	reset_regdomains(false, intersected_rd);
3887 
3888 	return 0;
3889 }
3890 
3891 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3892 				 struct regulatory_request *country_ie_request)
3893 {
3894 	struct wiphy *request_wiphy;
3895 
3896 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3897 	    !is_unknown_alpha2(rd->alpha2))
3898 		return -EINVAL;
3899 
3900 	/*
3901 	 * Lets only bother proceeding on the same alpha2 if the current
3902 	 * rd is non static (it means CRDA was present and was used last)
3903 	 * and the pending request came in from a country IE
3904 	 */
3905 
3906 	if (!is_valid_rd(rd)) {
3907 		pr_err("Invalid regulatory domain detected: %c%c\n",
3908 		       rd->alpha2[0], rd->alpha2[1]);
3909 		print_regdomain_info(rd);
3910 		return -EINVAL;
3911 	}
3912 
3913 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3914 	if (!request_wiphy)
3915 		return -ENODEV;
3916 
3917 	if (country_ie_request->intersect)
3918 		return -EINVAL;
3919 
3920 	reset_regdomains(false, rd);
3921 	return 0;
3922 }
3923 
3924 /*
3925  * Use this call to set the current regulatory domain. Conflicts with
3926  * multiple drivers can be ironed out later. Caller must've already
3927  * kmalloc'd the rd structure.
3928  */
3929 int set_regdom(const struct ieee80211_regdomain *rd,
3930 	       enum ieee80211_regd_source regd_src)
3931 {
3932 	struct regulatory_request *lr;
3933 	bool user_reset = false;
3934 	int r;
3935 
3936 	if (IS_ERR_OR_NULL(rd))
3937 		return -ENODATA;
3938 
3939 	if (!reg_is_valid_request(rd->alpha2)) {
3940 		kfree(rd);
3941 		return -EINVAL;
3942 	}
3943 
3944 	if (regd_src == REGD_SOURCE_CRDA)
3945 		reset_crda_timeouts();
3946 
3947 	lr = get_last_request();
3948 
3949 	/* Note that this doesn't update the wiphys, this is done below */
3950 	switch (lr->initiator) {
3951 	case NL80211_REGDOM_SET_BY_CORE:
3952 		r = reg_set_rd_core(rd);
3953 		break;
3954 	case NL80211_REGDOM_SET_BY_USER:
3955 		cfg80211_save_user_regdom(rd);
3956 		r = reg_set_rd_user(rd, lr);
3957 		user_reset = true;
3958 		break;
3959 	case NL80211_REGDOM_SET_BY_DRIVER:
3960 		r = reg_set_rd_driver(rd, lr);
3961 		break;
3962 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3963 		r = reg_set_rd_country_ie(rd, lr);
3964 		break;
3965 	default:
3966 		WARN(1, "invalid initiator %d\n", lr->initiator);
3967 		kfree(rd);
3968 		return -EINVAL;
3969 	}
3970 
3971 	if (r) {
3972 		switch (r) {
3973 		case -EALREADY:
3974 			reg_set_request_processed();
3975 			break;
3976 		default:
3977 			/* Back to world regulatory in case of errors */
3978 			restore_regulatory_settings(user_reset, false);
3979 		}
3980 
3981 		kfree(rd);
3982 		return r;
3983 	}
3984 
3985 	/* This would make this whole thing pointless */
3986 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3987 		return -EINVAL;
3988 
3989 	/* update all wiphys now with the new established regulatory domain */
3990 	update_all_wiphy_regulatory(lr->initiator);
3991 
3992 	print_regdomain(get_cfg80211_regdom());
3993 
3994 	nl80211_send_reg_change_event(lr);
3995 
3996 	reg_set_request_processed();
3997 
3998 	return 0;
3999 }
4000 
4001 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4002 				       struct ieee80211_regdomain *rd)
4003 {
4004 	const struct ieee80211_regdomain *regd;
4005 	const struct ieee80211_regdomain *prev_regd;
4006 	struct cfg80211_registered_device *rdev;
4007 
4008 	if (WARN_ON(!wiphy || !rd))
4009 		return -EINVAL;
4010 
4011 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4012 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4013 		return -EPERM;
4014 
4015 	if (WARN(!is_valid_rd(rd),
4016 		 "Invalid regulatory domain detected: %c%c\n",
4017 		 rd->alpha2[0], rd->alpha2[1])) {
4018 		print_regdomain_info(rd);
4019 		return -EINVAL;
4020 	}
4021 
4022 	regd = reg_copy_regd(rd);
4023 	if (IS_ERR(regd))
4024 		return PTR_ERR(regd);
4025 
4026 	rdev = wiphy_to_rdev(wiphy);
4027 
4028 	spin_lock(&reg_requests_lock);
4029 	prev_regd = rdev->requested_regd;
4030 	rdev->requested_regd = regd;
4031 	spin_unlock(&reg_requests_lock);
4032 
4033 	kfree(prev_regd);
4034 	return 0;
4035 }
4036 
4037 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4038 			      struct ieee80211_regdomain *rd)
4039 {
4040 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4041 
4042 	if (ret)
4043 		return ret;
4044 
4045 	schedule_work(&reg_work);
4046 	return 0;
4047 }
4048 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4049 
4050 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4051 				   struct ieee80211_regdomain *rd)
4052 {
4053 	int ret;
4054 
4055 	ASSERT_RTNL();
4056 
4057 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4058 	if (ret)
4059 		return ret;
4060 
4061 	/* process the request immediately */
4062 	reg_process_self_managed_hint(wiphy);
4063 	reg_check_channels();
4064 	return 0;
4065 }
4066 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4067 
4068 void wiphy_regulatory_register(struct wiphy *wiphy)
4069 {
4070 	struct regulatory_request *lr = get_last_request();
4071 
4072 	/* self-managed devices ignore beacon hints and country IE */
4073 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4074 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4075 					   REGULATORY_COUNTRY_IE_IGNORE;
4076 
4077 		/*
4078 		 * The last request may have been received before this
4079 		 * registration call. Call the driver notifier if
4080 		 * initiator is USER.
4081 		 */
4082 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4083 			reg_call_notifier(wiphy, lr);
4084 	}
4085 
4086 	if (!reg_dev_ignore_cell_hint(wiphy))
4087 		reg_num_devs_support_basehint++;
4088 
4089 	wiphy_update_regulatory(wiphy, lr->initiator);
4090 	wiphy_all_share_dfs_chan_state(wiphy);
4091 	reg_process_self_managed_hints();
4092 }
4093 
4094 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4095 {
4096 	struct wiphy *request_wiphy = NULL;
4097 	struct regulatory_request *lr;
4098 
4099 	lr = get_last_request();
4100 
4101 	if (!reg_dev_ignore_cell_hint(wiphy))
4102 		reg_num_devs_support_basehint--;
4103 
4104 	rcu_free_regdom(get_wiphy_regdom(wiphy));
4105 	RCU_INIT_POINTER(wiphy->regd, NULL);
4106 
4107 	if (lr)
4108 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4109 
4110 	if (!request_wiphy || request_wiphy != wiphy)
4111 		return;
4112 
4113 	lr->wiphy_idx = WIPHY_IDX_INVALID;
4114 	lr->country_ie_env = ENVIRON_ANY;
4115 }
4116 
4117 /*
4118  * See FCC notices for UNII band definitions
4119  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4120  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4121  */
4122 int cfg80211_get_unii(int freq)
4123 {
4124 	/* UNII-1 */
4125 	if (freq >= 5150 && freq <= 5250)
4126 		return 0;
4127 
4128 	/* UNII-2A */
4129 	if (freq > 5250 && freq <= 5350)
4130 		return 1;
4131 
4132 	/* UNII-2B */
4133 	if (freq > 5350 && freq <= 5470)
4134 		return 2;
4135 
4136 	/* UNII-2C */
4137 	if (freq > 5470 && freq <= 5725)
4138 		return 3;
4139 
4140 	/* UNII-3 */
4141 	if (freq > 5725 && freq <= 5825)
4142 		return 4;
4143 
4144 	/* UNII-5 */
4145 	if (freq > 5925 && freq <= 6425)
4146 		return 5;
4147 
4148 	/* UNII-6 */
4149 	if (freq > 6425 && freq <= 6525)
4150 		return 6;
4151 
4152 	/* UNII-7 */
4153 	if (freq > 6525 && freq <= 6875)
4154 		return 7;
4155 
4156 	/* UNII-8 */
4157 	if (freq > 6875 && freq <= 7125)
4158 		return 8;
4159 
4160 	return -EINVAL;
4161 }
4162 
4163 bool regulatory_indoor_allowed(void)
4164 {
4165 	return reg_is_indoor;
4166 }
4167 
4168 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4169 {
4170 	const struct ieee80211_regdomain *regd = NULL;
4171 	const struct ieee80211_regdomain *wiphy_regd = NULL;
4172 	bool pre_cac_allowed = false;
4173 
4174 	rcu_read_lock();
4175 
4176 	regd = rcu_dereference(cfg80211_regdomain);
4177 	wiphy_regd = rcu_dereference(wiphy->regd);
4178 	if (!wiphy_regd) {
4179 		if (regd->dfs_region == NL80211_DFS_ETSI)
4180 			pre_cac_allowed = true;
4181 
4182 		rcu_read_unlock();
4183 
4184 		return pre_cac_allowed;
4185 	}
4186 
4187 	if (regd->dfs_region == wiphy_regd->dfs_region &&
4188 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4189 		pre_cac_allowed = true;
4190 
4191 	rcu_read_unlock();
4192 
4193 	return pre_cac_allowed;
4194 }
4195 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4196 
4197 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4198 {
4199 	struct wireless_dev *wdev;
4200 	unsigned int link_id;
4201 
4202 	guard(wiphy)(&rdev->wiphy);
4203 
4204 	/* If we finished CAC or received radar, we should end any
4205 	 * CAC running on the same channels.
4206 	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4207 	 * either all channels are available - those the CAC_FINISHED
4208 	 * event has effected another wdev state, or there is a channel
4209 	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4210 	 * event has effected another wdev state.
4211 	 * In both cases we should end the CAC on the wdev.
4212 	 */
4213 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4214 		struct cfg80211_chan_def *chandef;
4215 
4216 		for_each_valid_link(wdev, link_id) {
4217 			if (!wdev->links[link_id].cac_started)
4218 				continue;
4219 
4220 			chandef = wdev_chandef(wdev, link_id);
4221 			if (!chandef)
4222 				continue;
4223 
4224 			if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4225 				rdev_end_cac(rdev, wdev->netdev, link_id);
4226 		}
4227 	}
4228 }
4229 
4230 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4231 				    struct cfg80211_chan_def *chandef,
4232 				    enum nl80211_dfs_state dfs_state,
4233 				    enum nl80211_radar_event event)
4234 {
4235 	struct cfg80211_registered_device *rdev;
4236 
4237 	ASSERT_RTNL();
4238 
4239 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4240 		return;
4241 
4242 	for_each_rdev(rdev) {
4243 		if (wiphy == &rdev->wiphy)
4244 			continue;
4245 
4246 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4247 			continue;
4248 
4249 		if (!ieee80211_get_channel(&rdev->wiphy,
4250 					   chandef->chan->center_freq))
4251 			continue;
4252 
4253 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4254 
4255 		if (event == NL80211_RADAR_DETECTED ||
4256 		    event == NL80211_RADAR_CAC_FINISHED) {
4257 			cfg80211_sched_dfs_chan_update(rdev);
4258 			cfg80211_check_and_end_cac(rdev);
4259 		}
4260 
4261 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4262 	}
4263 }
4264 
4265 static int __init regulatory_init_db(void)
4266 {
4267 	int err;
4268 
4269 	/*
4270 	 * It's possible that - due to other bugs/issues - cfg80211
4271 	 * never called regulatory_init() below, or that it failed;
4272 	 * in that case, don't try to do any further work here as
4273 	 * it's doomed to lead to crashes.
4274 	 */
4275 	if (!reg_fdev)
4276 		return -EINVAL;
4277 
4278 	err = load_builtin_regdb_keys();
4279 	if (err) {
4280 		faux_device_destroy(reg_fdev);
4281 		return err;
4282 	}
4283 
4284 	/* We always try to get an update for the static regdomain */
4285 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4286 	if (err) {
4287 		if (err == -ENOMEM) {
4288 			faux_device_destroy(reg_fdev);
4289 			return err;
4290 		}
4291 		/*
4292 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4293 		 * memory which is handled and propagated appropriately above
4294 		 * but it can also fail during a netlink_broadcast() or during
4295 		 * early boot for call_usermodehelper(). For now treat these
4296 		 * errors as non-fatal.
4297 		 */
4298 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4299 	}
4300 
4301 	/*
4302 	 * Finally, if the user set the module parameter treat it
4303 	 * as a user hint.
4304 	 */
4305 	if (!is_world_regdom(ieee80211_regdom))
4306 		regulatory_hint_user(ieee80211_regdom,
4307 				     NL80211_USER_REG_HINT_USER);
4308 
4309 	return 0;
4310 }
4311 #ifndef MODULE
4312 late_initcall(regulatory_init_db);
4313 #endif
4314 
4315 int __init regulatory_init(void)
4316 {
4317 	reg_fdev = faux_device_create("regulatory", NULL, NULL);
4318 	if (!reg_fdev)
4319 		return -ENODEV;
4320 
4321 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4322 
4323 	user_alpha2[0] = '9';
4324 	user_alpha2[1] = '7';
4325 
4326 #ifdef MODULE
4327 	return regulatory_init_db();
4328 #else
4329 	return 0;
4330 #endif
4331 }
4332 
4333 void regulatory_exit(void)
4334 {
4335 	struct regulatory_request *reg_request, *tmp;
4336 	struct reg_beacon *reg_beacon, *btmp;
4337 
4338 	cancel_work_sync(&reg_work);
4339 	cancel_crda_timeout_sync();
4340 	cancel_delayed_work_sync(&reg_check_chans);
4341 
4342 	/* Lock to suppress warnings */
4343 	rtnl_lock();
4344 	reset_regdomains(true, NULL);
4345 	rtnl_unlock();
4346 
4347 	dev_set_uevent_suppress(&reg_fdev->dev, true);
4348 
4349 	faux_device_destroy(reg_fdev);
4350 
4351 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4352 		list_del(&reg_beacon->list);
4353 		kfree(reg_beacon);
4354 	}
4355 
4356 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4357 		list_del(&reg_beacon->list);
4358 		kfree(reg_beacon);
4359 	}
4360 
4361 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4362 		list_del(&reg_request->list);
4363 		kfree(reg_request);
4364 	}
4365 
4366 	if (!IS_ERR_OR_NULL(regdb))
4367 		kfree(regdb);
4368 	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4369 		kfree(cfg80211_user_regdom);
4370 
4371 	free_regdb_keyring();
4372 }
4373