1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_MMU_INTERNAL_H
3 #define __KVM_X86_MMU_INTERNAL_H
4
5 #include <linux/types.h>
6 #include <linux/kvm_host.h>
7 #include <asm/kvm_host.h>
8
9 #include "mmu.h"
10
11 #ifdef CONFIG_KVM_PROVE_MMU
12 #define KVM_MMU_WARN_ON(x) WARN_ON_ONCE(x)
13 #else
14 #define KVM_MMU_WARN_ON(x) BUILD_BUG_ON_INVALID(x)
15 #endif
16
17 /* Page table builder macros common to shadow (host) PTEs and guest PTEs. */
18 #define __PT_BASE_ADDR_MASK GENMASK_ULL(51, 12)
19 #define __PT_LEVEL_SHIFT(level, bits_per_level) \
20 (PAGE_SHIFT + ((level) - 1) * (bits_per_level))
21 #define __PT_INDEX(address, level, bits_per_level) \
22 (((address) >> __PT_LEVEL_SHIFT(level, bits_per_level)) & ((1 << (bits_per_level)) - 1))
23
24 #define __PT_LVL_ADDR_MASK(base_addr_mask, level, bits_per_level) \
25 ((base_addr_mask) & ~((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1))
26
27 #define __PT_LVL_OFFSET_MASK(base_addr_mask, level, bits_per_level) \
28 ((base_addr_mask) & ((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1))
29
30 #define __PT_ENT_PER_PAGE(bits_per_level) (1 << (bits_per_level))
31
32 /*
33 * Unlike regular MMU roots, PAE "roots", a.k.a. PDPTEs/PDPTRs, have a PRESENT
34 * bit, and thus are guaranteed to be non-zero when valid. And, when a guest
35 * PDPTR is !PRESENT, its corresponding PAE root cannot be set to INVALID_PAGE,
36 * as the CPU would treat that as PRESENT PDPTR with reserved bits set. Use
37 * '0' instead of INVALID_PAGE to indicate an invalid PAE root.
38 */
39 #define INVALID_PAE_ROOT 0
40 #define IS_VALID_PAE_ROOT(x) (!!(x))
41
42 typedef u64 __rcu *tdp_ptep_t;
43
44 struct kvm_mmu_page {
45 /*
46 * Note, "link" through "spt" fit in a single 64 byte cache line on
47 * 64-bit kernels, keep it that way unless there's a reason not to.
48 */
49 struct list_head link;
50 struct hlist_node hash_link;
51
52 bool tdp_mmu_page;
53 bool unsync;
54 union {
55 u8 mmu_valid_gen;
56
57 /* Only accessed under slots_lock. */
58 bool tdp_mmu_scheduled_root_to_zap;
59 };
60
61 /*
62 * The shadow page can't be replaced by an equivalent huge page
63 * because it is being used to map an executable page in the guest
64 * and the NX huge page mitigation is enabled.
65 */
66 bool nx_huge_page_disallowed;
67
68 /*
69 * The following two entries are used to key the shadow page in the
70 * hash table.
71 */
72 union kvm_mmu_page_role role;
73 gfn_t gfn;
74
75 u64 *spt;
76
77 /*
78 * Stores the result of the guest translation being shadowed by each
79 * SPTE. KVM shadows two types of guest translations: nGPA -> GPA
80 * (shadow EPT/NPT) and GVA -> GPA (traditional shadow paging). In both
81 * cases the result of the translation is a GPA and a set of access
82 * constraints.
83 *
84 * The GFN is stored in the upper bits (PAGE_SHIFT) and the shadowed
85 * access permissions are stored in the lower bits. Note, for
86 * convenience and uniformity across guests, the access permissions are
87 * stored in KVM format (e.g. ACC_EXEC_MASK) not the raw guest format.
88 */
89 u64 *shadowed_translation;
90
91 /* Currently serving as active root */
92 union {
93 int root_count;
94 refcount_t tdp_mmu_root_count;
95 };
96
97 bool has_mapped_host_mmio;
98
99 union {
100 /* These two members aren't used for TDP MMU */
101 struct {
102 unsigned int unsync_children;
103 /*
104 * Number of writes since the last time traversal
105 * visited this page.
106 */
107 atomic_t write_flooding_count;
108 };
109 /*
110 * Page table page of external PT.
111 * Passed to TDX module, not accessed by KVM.
112 */
113 void *external_spt;
114 };
115 union {
116 struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */
117 tdp_ptep_t ptep;
118 };
119 DECLARE_BITMAP(unsync_child_bitmap, 512);
120
121 /*
122 * Tracks shadow pages that, if zapped, would allow KVM to create an NX
123 * huge page. A shadow page will have nx_huge_page_disallowed set but
124 * not be on the list if a huge page is disallowed for other reasons,
125 * e.g. because KVM is shadowing a PTE at the same gfn, the memslot
126 * isn't properly aligned, etc...
127 */
128 struct list_head possible_nx_huge_page_link;
129 #ifdef CONFIG_X86_32
130 /*
131 * Used out of the mmu-lock to avoid reading spte values while an
132 * update is in progress; see the comments in __get_spte_lockless().
133 */
134 int clear_spte_count;
135 #endif
136
137 #ifdef CONFIG_X86_64
138 /* Used for freeing the page asynchronously if it is a TDP MMU page. */
139 struct rcu_head rcu_head;
140 #endif
141 };
142
143 extern struct kmem_cache *mmu_page_header_cache;
144
kvm_mmu_role_as_id(union kvm_mmu_page_role role)145 static inline int kvm_mmu_role_as_id(union kvm_mmu_page_role role)
146 {
147 return role.smm ? 1 : 0;
148 }
149
kvm_mmu_page_as_id(struct kvm_mmu_page * sp)150 static inline int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
151 {
152 return kvm_mmu_role_as_id(sp->role);
153 }
154
is_mirror_sp(const struct kvm_mmu_page * sp)155 static inline bool is_mirror_sp(const struct kvm_mmu_page *sp)
156 {
157 return sp->role.is_mirror;
158 }
159
kvm_mmu_alloc_external_spt(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)160 static inline void kvm_mmu_alloc_external_spt(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
161 {
162 /*
163 * external_spt is allocated for TDX module to hold private EPT mappings,
164 * TDX module will initialize the page by itself.
165 * Therefore, KVM does not need to initialize or access external_spt.
166 * KVM only interacts with sp->spt for private EPT operations.
167 */
168 sp->external_spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_external_spt_cache);
169 }
170
kvm_gfn_root_bits(const struct kvm * kvm,const struct kvm_mmu_page * root)171 static inline gfn_t kvm_gfn_root_bits(const struct kvm *kvm, const struct kvm_mmu_page *root)
172 {
173 /*
174 * Since mirror SPs are used only for TDX, which maps private memory
175 * at its "natural" GFN, no mask needs to be applied to them - and, dually,
176 * we expect that the bits is only used for the shared PT.
177 */
178 if (is_mirror_sp(root))
179 return 0;
180 return kvm_gfn_direct_bits(kvm);
181 }
182
kvm_mmu_page_ad_need_write_protect(struct kvm * kvm,struct kvm_mmu_page * sp)183 static inline bool kvm_mmu_page_ad_need_write_protect(struct kvm *kvm,
184 struct kvm_mmu_page *sp)
185 {
186 /*
187 * When using the EPT page-modification log, the GPAs in the CPU dirty
188 * log would come from L2 rather than L1. Therefore, we need to rely
189 * on write protection to record dirty pages, which bypasses PML, since
190 * writes now result in a vmexit. Note, the check on CPU dirty logging
191 * being enabled is mandatory as the bits used to denote WP-only SPTEs
192 * are reserved for PAE paging (32-bit KVM).
193 */
194 return kvm->arch.cpu_dirty_log_size && sp->role.guest_mode;
195 }
196
gfn_round_for_level(gfn_t gfn,int level)197 static inline gfn_t gfn_round_for_level(gfn_t gfn, int level)
198 {
199 return gfn & -KVM_PAGES_PER_HPAGE(level);
200 }
201
202 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
203 gfn_t gfn, bool synchronizing, bool prefetch);
204
205 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn);
206 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn);
207 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
208 struct kvm_memory_slot *slot, u64 gfn,
209 int min_level);
210
211 /* Flush the given page (huge or not) of guest memory. */
kvm_flush_remote_tlbs_gfn(struct kvm * kvm,gfn_t gfn,int level)212 static inline void kvm_flush_remote_tlbs_gfn(struct kvm *kvm, gfn_t gfn, int level)
213 {
214 kvm_flush_remote_tlbs_range(kvm, gfn_round_for_level(gfn, level),
215 KVM_PAGES_PER_HPAGE(level));
216 }
217
218 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head);
219
220 extern int nx_huge_pages;
is_nx_huge_page_enabled(struct kvm * kvm)221 static inline bool is_nx_huge_page_enabled(struct kvm *kvm)
222 {
223 return READ_ONCE(nx_huge_pages) && !kvm->arch.disable_nx_huge_pages;
224 }
225
226 struct kvm_page_fault {
227 /* arguments to kvm_mmu_do_page_fault. */
228 const gpa_t addr;
229 const u64 error_code;
230 const bool prefetch;
231
232 /* Derived from error_code. */
233 const bool exec;
234 const bool write;
235 const bool present;
236 const bool rsvd;
237 const bool user;
238
239 /* Derived from mmu and global state. */
240 const bool is_tdp;
241 const bool is_private;
242 const bool nx_huge_page_workaround_enabled;
243
244 /*
245 * Whether a >4KB mapping can be created or is forbidden due to NX
246 * hugepages.
247 */
248 bool huge_page_disallowed;
249
250 /*
251 * Maximum page size that can be created for this fault; input to
252 * FNAME(fetch), direct_map() and kvm_tdp_mmu_map().
253 */
254 u8 max_level;
255
256 /*
257 * Page size that can be created based on the max_level and the
258 * page size used by the host mapping.
259 */
260 u8 req_level;
261
262 /*
263 * Page size that will be created based on the req_level and
264 * huge_page_disallowed.
265 */
266 u8 goal_level;
267
268 /*
269 * Shifted addr, or result of guest page table walk if addr is a gva. In
270 * the case of VM where memslot's can be mapped at multiple GPA aliases
271 * (i.e. TDX), the gfn field does not contain the bit that selects between
272 * the aliases (i.e. the shared bit for TDX).
273 */
274 gfn_t gfn;
275
276 /* The memslot containing gfn. May be NULL. */
277 struct kvm_memory_slot *slot;
278
279 /* Outputs of kvm_mmu_faultin_pfn(). */
280 unsigned long mmu_seq;
281 kvm_pfn_t pfn;
282 struct page *refcounted_page;
283 bool map_writable;
284
285 /*
286 * Indicates the guest is trying to write a gfn that contains one or
287 * more of the PTEs used to translate the write itself, i.e. the access
288 * is changing its own translation in the guest page tables.
289 */
290 bool write_fault_to_shadow_pgtable;
291 };
292
293 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
294
295 /*
296 * Return values of handle_mmio_page_fault(), mmu.page_fault(), fast_page_fault(),
297 * and of course kvm_mmu_do_page_fault().
298 *
299 * RET_PF_CONTINUE: So far, so good, keep handling the page fault.
300 * RET_PF_RETRY: let CPU fault again on the address.
301 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
302 * RET_PF_WRITE_PROTECTED: the gfn is write-protected, either unprotected the
303 * gfn and retry, or emulate the instruction directly.
304 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
305 * RET_PF_FIXED: The faulting entry has been fixed.
306 * RET_PF_SPURIOUS: The faulting entry was already fixed, e.g. by another vCPU.
307 *
308 * Any names added to this enum should be exported to userspace for use in
309 * tracepoints via TRACE_DEFINE_ENUM() in mmutrace.h
310 *
311 * Note, all values must be greater than or equal to zero so as not to encroach
312 * on -errno return values.
313 */
314 enum {
315 RET_PF_CONTINUE = 0,
316 RET_PF_RETRY,
317 RET_PF_EMULATE,
318 RET_PF_WRITE_PROTECTED,
319 RET_PF_INVALID,
320 RET_PF_FIXED,
321 RET_PF_SPURIOUS,
322 };
323
324 /*
325 * Define RET_PF_CONTINUE as 0 to allow for
326 * - efficient machine code when checking for CONTINUE, e.g.
327 * "TEST %rax, %rax, JNZ", as all "stop!" values are non-zero,
328 * - kvm_mmu_do_page_fault() to return other RET_PF_* as a positive value.
329 */
330 static_assert(RET_PF_CONTINUE == 0);
331
kvm_mmu_prepare_memory_fault_exit(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)332 static inline void kvm_mmu_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
333 struct kvm_page_fault *fault)
334 {
335 kvm_prepare_memory_fault_exit(vcpu, fault->gfn << PAGE_SHIFT,
336 PAGE_SIZE, fault->write, fault->exec,
337 fault->is_private);
338 }
339
kvm_mmu_do_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u64 err,bool prefetch,int * emulation_type,u8 * level)340 static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
341 u64 err, bool prefetch,
342 int *emulation_type, u8 *level)
343 {
344 struct kvm_page_fault fault = {
345 .addr = cr2_or_gpa,
346 .error_code = err,
347 .exec = err & PFERR_FETCH_MASK,
348 .write = err & PFERR_WRITE_MASK,
349 .present = err & PFERR_PRESENT_MASK,
350 .rsvd = err & PFERR_RSVD_MASK,
351 .user = err & PFERR_USER_MASK,
352 .prefetch = prefetch,
353 .is_tdp = likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault),
354 .nx_huge_page_workaround_enabled =
355 is_nx_huge_page_enabled(vcpu->kvm),
356
357 .max_level = KVM_MAX_HUGEPAGE_LEVEL,
358 .req_level = PG_LEVEL_4K,
359 .goal_level = PG_LEVEL_4K,
360 .is_private = err & PFERR_PRIVATE_ACCESS,
361
362 .pfn = KVM_PFN_ERR_FAULT,
363 };
364 int r;
365
366 if (vcpu->arch.mmu->root_role.direct) {
367 /*
368 * Things like memslots don't understand the concept of a shared
369 * bit. Strip it so that the GFN can be used like normal, and the
370 * fault.addr can be used when the shared bit is needed.
371 */
372 fault.gfn = gpa_to_gfn(fault.addr) & ~kvm_gfn_direct_bits(vcpu->kvm);
373 fault.slot = kvm_vcpu_gfn_to_memslot(vcpu, fault.gfn);
374 }
375
376 /*
377 * With retpoline being active an indirect call is rather expensive,
378 * so do a direct call in the most common case.
379 */
380 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && fault.is_tdp)
381 r = kvm_tdp_page_fault(vcpu, &fault);
382 else
383 r = vcpu->arch.mmu->page_fault(vcpu, &fault);
384
385 /*
386 * Not sure what's happening, but punt to userspace and hope that
387 * they can fix it by changing memory to shared, or they can
388 * provide a better error.
389 */
390 if (r == RET_PF_EMULATE && fault.is_private) {
391 pr_warn_ratelimited("kvm: unexpected emulation request on private memory\n");
392 kvm_mmu_prepare_memory_fault_exit(vcpu, &fault);
393 return -EFAULT;
394 }
395
396 if (fault.write_fault_to_shadow_pgtable && emulation_type)
397 *emulation_type |= EMULTYPE_WRITE_PF_TO_SP;
398 if (level)
399 *level = fault.goal_level;
400
401 return r;
402 }
403
404 int kvm_mmu_max_mapping_level(struct kvm *kvm, struct kvm_page_fault *fault,
405 const struct kvm_memory_slot *slot, gfn_t gfn);
406 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
407 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level);
408
409 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
410 enum kvm_mmu_type mmu_type);
411 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
412 enum kvm_mmu_type mmu_type);
413
414 #endif /* __KVM_X86_MMU_INTERNAL_H */
415