xref: /linux/arch/x86/kvm/mmu/mmu_internal.h (revision 51d90a15fedf8366cb96ef68d0ea2d0bf15417d2)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_MMU_INTERNAL_H
3 #define __KVM_X86_MMU_INTERNAL_H
4 
5 #include <linux/types.h>
6 #include <linux/kvm_host.h>
7 #include <asm/kvm_host.h>
8 
9 #include "mmu.h"
10 
11 #ifdef CONFIG_KVM_PROVE_MMU
12 #define KVM_MMU_WARN_ON(x) WARN_ON_ONCE(x)
13 #else
14 #define KVM_MMU_WARN_ON(x) BUILD_BUG_ON_INVALID(x)
15 #endif
16 
17 /* Page table builder macros common to shadow (host) PTEs and guest PTEs. */
18 #define __PT_BASE_ADDR_MASK GENMASK_ULL(51, 12)
19 #define __PT_LEVEL_SHIFT(level, bits_per_level)	\
20 	(PAGE_SHIFT + ((level) - 1) * (bits_per_level))
21 #define __PT_INDEX(address, level, bits_per_level) \
22 	(((address) >> __PT_LEVEL_SHIFT(level, bits_per_level)) & ((1 << (bits_per_level)) - 1))
23 
24 #define __PT_LVL_ADDR_MASK(base_addr_mask, level, bits_per_level) \
25 	((base_addr_mask) & ~((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1))
26 
27 #define __PT_LVL_OFFSET_MASK(base_addr_mask, level, bits_per_level) \
28 	((base_addr_mask) & ((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1))
29 
30 #define __PT_ENT_PER_PAGE(bits_per_level)  (1 << (bits_per_level))
31 
32 /*
33  * Unlike regular MMU roots, PAE "roots", a.k.a. PDPTEs/PDPTRs, have a PRESENT
34  * bit, and thus are guaranteed to be non-zero when valid.  And, when a guest
35  * PDPTR is !PRESENT, its corresponding PAE root cannot be set to INVALID_PAGE,
36  * as the CPU would treat that as PRESENT PDPTR with reserved bits set.  Use
37  * '0' instead of INVALID_PAGE to indicate an invalid PAE root.
38  */
39 #define INVALID_PAE_ROOT	0
40 #define IS_VALID_PAE_ROOT(x)	(!!(x))
41 
42 typedef u64 __rcu *tdp_ptep_t;
43 
44 struct kvm_mmu_page {
45 	/*
46 	 * Note, "link" through "spt" fit in a single 64 byte cache line on
47 	 * 64-bit kernels, keep it that way unless there's a reason not to.
48 	 */
49 	struct list_head link;
50 	struct hlist_node hash_link;
51 
52 	bool tdp_mmu_page;
53 	bool unsync;
54 	union {
55 		u8 mmu_valid_gen;
56 
57 		/* Only accessed under slots_lock.  */
58 		bool tdp_mmu_scheduled_root_to_zap;
59 	};
60 
61 	 /*
62 	  * The shadow page can't be replaced by an equivalent huge page
63 	  * because it is being used to map an executable page in the guest
64 	  * and the NX huge page mitigation is enabled.
65 	  */
66 	bool nx_huge_page_disallowed;
67 
68 	/*
69 	 * The following two entries are used to key the shadow page in the
70 	 * hash table.
71 	 */
72 	union kvm_mmu_page_role role;
73 	gfn_t gfn;
74 
75 	u64 *spt;
76 
77 	/*
78 	 * Stores the result of the guest translation being shadowed by each
79 	 * SPTE.  KVM shadows two types of guest translations: nGPA -> GPA
80 	 * (shadow EPT/NPT) and GVA -> GPA (traditional shadow paging). In both
81 	 * cases the result of the translation is a GPA and a set of access
82 	 * constraints.
83 	 *
84 	 * The GFN is stored in the upper bits (PAGE_SHIFT) and the shadowed
85 	 * access permissions are stored in the lower bits. Note, for
86 	 * convenience and uniformity across guests, the access permissions are
87 	 * stored in KVM format (e.g.  ACC_EXEC_MASK) not the raw guest format.
88 	 */
89 	u64 *shadowed_translation;
90 
91 	/* Currently serving as active root */
92 	union {
93 		int root_count;
94 		refcount_t tdp_mmu_root_count;
95 	};
96 
97 	bool has_mapped_host_mmio;
98 
99 	union {
100 		/* These two members aren't used for TDP MMU */
101 		struct {
102 			unsigned int unsync_children;
103 			/*
104 			 * Number of writes since the last time traversal
105 			 * visited this page.
106 			 */
107 			atomic_t write_flooding_count;
108 		};
109 		/*
110 		 * Page table page of external PT.
111 		 * Passed to TDX module, not accessed by KVM.
112 		 */
113 		void *external_spt;
114 	};
115 	union {
116 		struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */
117 		tdp_ptep_t ptep;
118 	};
119 	DECLARE_BITMAP(unsync_child_bitmap, 512);
120 
121 	/*
122 	 * Tracks shadow pages that, if zapped, would allow KVM to create an NX
123 	 * huge page.  A shadow page will have nx_huge_page_disallowed set but
124 	 * not be on the list if a huge page is disallowed for other reasons,
125 	 * e.g. because KVM is shadowing a PTE at the same gfn, the memslot
126 	 * isn't properly aligned, etc...
127 	 */
128 	struct list_head possible_nx_huge_page_link;
129 #ifdef CONFIG_X86_32
130 	/*
131 	 * Used out of the mmu-lock to avoid reading spte values while an
132 	 * update is in progress; see the comments in __get_spte_lockless().
133 	 */
134 	int clear_spte_count;
135 #endif
136 
137 #ifdef CONFIG_X86_64
138 	/* Used for freeing the page asynchronously if it is a TDP MMU page. */
139 	struct rcu_head rcu_head;
140 #endif
141 };
142 
143 extern struct kmem_cache *mmu_page_header_cache;
144 
kvm_mmu_role_as_id(union kvm_mmu_page_role role)145 static inline int kvm_mmu_role_as_id(union kvm_mmu_page_role role)
146 {
147 	return role.smm ? 1 : 0;
148 }
149 
kvm_mmu_page_as_id(struct kvm_mmu_page * sp)150 static inline int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
151 {
152 	return kvm_mmu_role_as_id(sp->role);
153 }
154 
is_mirror_sp(const struct kvm_mmu_page * sp)155 static inline bool is_mirror_sp(const struct kvm_mmu_page *sp)
156 {
157 	return sp->role.is_mirror;
158 }
159 
kvm_mmu_alloc_external_spt(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)160 static inline void kvm_mmu_alloc_external_spt(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
161 {
162 	/*
163 	 * external_spt is allocated for TDX module to hold private EPT mappings,
164 	 * TDX module will initialize the page by itself.
165 	 * Therefore, KVM does not need to initialize or access external_spt.
166 	 * KVM only interacts with sp->spt for private EPT operations.
167 	 */
168 	sp->external_spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_external_spt_cache);
169 }
170 
kvm_gfn_root_bits(const struct kvm * kvm,const struct kvm_mmu_page * root)171 static inline gfn_t kvm_gfn_root_bits(const struct kvm *kvm, const struct kvm_mmu_page *root)
172 {
173 	/*
174 	 * Since mirror SPs are used only for TDX, which maps private memory
175 	 * at its "natural" GFN, no mask needs to be applied to them - and, dually,
176 	 * we expect that the bits is only used for the shared PT.
177 	 */
178 	if (is_mirror_sp(root))
179 		return 0;
180 	return kvm_gfn_direct_bits(kvm);
181 }
182 
kvm_mmu_page_ad_need_write_protect(struct kvm * kvm,struct kvm_mmu_page * sp)183 static inline bool kvm_mmu_page_ad_need_write_protect(struct kvm *kvm,
184 						      struct kvm_mmu_page *sp)
185 {
186 	/*
187 	 * When using the EPT page-modification log, the GPAs in the CPU dirty
188 	 * log would come from L2 rather than L1.  Therefore, we need to rely
189 	 * on write protection to record dirty pages, which bypasses PML, since
190 	 * writes now result in a vmexit.  Note, the check on CPU dirty logging
191 	 * being enabled is mandatory as the bits used to denote WP-only SPTEs
192 	 * are reserved for PAE paging (32-bit KVM).
193 	 */
194 	return kvm->arch.cpu_dirty_log_size && sp->role.guest_mode;
195 }
196 
gfn_round_for_level(gfn_t gfn,int level)197 static inline gfn_t gfn_round_for_level(gfn_t gfn, int level)
198 {
199 	return gfn & -KVM_PAGES_PER_HPAGE(level);
200 }
201 
202 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
203 			    gfn_t gfn, bool synchronizing, bool prefetch);
204 
205 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn);
206 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn);
207 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
208 				    struct kvm_memory_slot *slot, u64 gfn,
209 				    int min_level);
210 
211 /* Flush the given page (huge or not) of guest memory. */
kvm_flush_remote_tlbs_gfn(struct kvm * kvm,gfn_t gfn,int level)212 static inline void kvm_flush_remote_tlbs_gfn(struct kvm *kvm, gfn_t gfn, int level)
213 {
214 	kvm_flush_remote_tlbs_range(kvm, gfn_round_for_level(gfn, level),
215 				    KVM_PAGES_PER_HPAGE(level));
216 }
217 
218 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head);
219 
220 extern int nx_huge_pages;
is_nx_huge_page_enabled(struct kvm * kvm)221 static inline bool is_nx_huge_page_enabled(struct kvm *kvm)
222 {
223 	return READ_ONCE(nx_huge_pages) && !kvm->arch.disable_nx_huge_pages;
224 }
225 
226 struct kvm_page_fault {
227 	/* arguments to kvm_mmu_do_page_fault.  */
228 	const gpa_t addr;
229 	const u64 error_code;
230 	const bool prefetch;
231 
232 	/* Derived from error_code.  */
233 	const bool exec;
234 	const bool write;
235 	const bool present;
236 	const bool rsvd;
237 	const bool user;
238 
239 	/* Derived from mmu and global state.  */
240 	const bool is_tdp;
241 	const bool is_private;
242 	const bool nx_huge_page_workaround_enabled;
243 
244 	/*
245 	 * Whether a >4KB mapping can be created or is forbidden due to NX
246 	 * hugepages.
247 	 */
248 	bool huge_page_disallowed;
249 
250 	/*
251 	 * Maximum page size that can be created for this fault; input to
252 	 * FNAME(fetch), direct_map() and kvm_tdp_mmu_map().
253 	 */
254 	u8 max_level;
255 
256 	/*
257 	 * Page size that can be created based on the max_level and the
258 	 * page size used by the host mapping.
259 	 */
260 	u8 req_level;
261 
262 	/*
263 	 * Page size that will be created based on the req_level and
264 	 * huge_page_disallowed.
265 	 */
266 	u8 goal_level;
267 
268 	/*
269 	 * Shifted addr, or result of guest page table walk if addr is a gva. In
270 	 * the case of VM where memslot's can be mapped at multiple GPA aliases
271 	 * (i.e. TDX), the gfn field does not contain the bit that selects between
272 	 * the aliases (i.e. the shared bit for TDX).
273 	 */
274 	gfn_t gfn;
275 
276 	/* The memslot containing gfn. May be NULL. */
277 	struct kvm_memory_slot *slot;
278 
279 	/* Outputs of kvm_mmu_faultin_pfn().  */
280 	unsigned long mmu_seq;
281 	kvm_pfn_t pfn;
282 	struct page *refcounted_page;
283 	bool map_writable;
284 
285 	/*
286 	 * Indicates the guest is trying to write a gfn that contains one or
287 	 * more of the PTEs used to translate the write itself, i.e. the access
288 	 * is changing its own translation in the guest page tables.
289 	 */
290 	bool write_fault_to_shadow_pgtable;
291 };
292 
293 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
294 
295 /*
296  * Return values of handle_mmio_page_fault(), mmu.page_fault(), fast_page_fault(),
297  * and of course kvm_mmu_do_page_fault().
298  *
299  * RET_PF_CONTINUE: So far, so good, keep handling the page fault.
300  * RET_PF_RETRY: let CPU fault again on the address.
301  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
302  * RET_PF_WRITE_PROTECTED: the gfn is write-protected, either unprotected the
303  *                         gfn and retry, or emulate the instruction directly.
304  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
305  * RET_PF_FIXED: The faulting entry has been fixed.
306  * RET_PF_SPURIOUS: The faulting entry was already fixed, e.g. by another vCPU.
307  *
308  * Any names added to this enum should be exported to userspace for use in
309  * tracepoints via TRACE_DEFINE_ENUM() in mmutrace.h
310  *
311  * Note, all values must be greater than or equal to zero so as not to encroach
312  * on -errno return values.
313  */
314 enum {
315 	RET_PF_CONTINUE = 0,
316 	RET_PF_RETRY,
317 	RET_PF_EMULATE,
318 	RET_PF_WRITE_PROTECTED,
319 	RET_PF_INVALID,
320 	RET_PF_FIXED,
321 	RET_PF_SPURIOUS,
322 };
323 
324 /*
325  * Define RET_PF_CONTINUE as 0 to allow for
326  * - efficient machine code when checking for CONTINUE, e.g.
327  *   "TEST %rax, %rax, JNZ", as all "stop!" values are non-zero,
328  * - kvm_mmu_do_page_fault() to return other RET_PF_* as a positive value.
329  */
330 static_assert(RET_PF_CONTINUE == 0);
331 
kvm_mmu_prepare_memory_fault_exit(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)332 static inline void kvm_mmu_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
333 						     struct kvm_page_fault *fault)
334 {
335 	kvm_prepare_memory_fault_exit(vcpu, fault->gfn << PAGE_SHIFT,
336 				      PAGE_SIZE, fault->write, fault->exec,
337 				      fault->is_private);
338 }
339 
kvm_mmu_do_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u64 err,bool prefetch,int * emulation_type,u8 * level)340 static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
341 					u64 err, bool prefetch,
342 					int *emulation_type, u8 *level)
343 {
344 	struct kvm_page_fault fault = {
345 		.addr = cr2_or_gpa,
346 		.error_code = err,
347 		.exec = err & PFERR_FETCH_MASK,
348 		.write = err & PFERR_WRITE_MASK,
349 		.present = err & PFERR_PRESENT_MASK,
350 		.rsvd = err & PFERR_RSVD_MASK,
351 		.user = err & PFERR_USER_MASK,
352 		.prefetch = prefetch,
353 		.is_tdp = likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault),
354 		.nx_huge_page_workaround_enabled =
355 			is_nx_huge_page_enabled(vcpu->kvm),
356 
357 		.max_level = KVM_MAX_HUGEPAGE_LEVEL,
358 		.req_level = PG_LEVEL_4K,
359 		.goal_level = PG_LEVEL_4K,
360 		.is_private = err & PFERR_PRIVATE_ACCESS,
361 
362 		.pfn = KVM_PFN_ERR_FAULT,
363 	};
364 	int r;
365 
366 	if (vcpu->arch.mmu->root_role.direct) {
367 		/*
368 		 * Things like memslots don't understand the concept of a shared
369 		 * bit. Strip it so that the GFN can be used like normal, and the
370 		 * fault.addr can be used when the shared bit is needed.
371 		 */
372 		fault.gfn = gpa_to_gfn(fault.addr) & ~kvm_gfn_direct_bits(vcpu->kvm);
373 		fault.slot = kvm_vcpu_gfn_to_memslot(vcpu, fault.gfn);
374 	}
375 
376 	/*
377 	 * With retpoline being active an indirect call is rather expensive,
378 	 * so do a direct call in the most common case.
379 	 */
380 	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && fault.is_tdp)
381 		r = kvm_tdp_page_fault(vcpu, &fault);
382 	else
383 		r = vcpu->arch.mmu->page_fault(vcpu, &fault);
384 
385 	/*
386 	 * Not sure what's happening, but punt to userspace and hope that
387 	 * they can fix it by changing memory to shared, or they can
388 	 * provide a better error.
389 	 */
390 	if (r == RET_PF_EMULATE && fault.is_private) {
391 		pr_warn_ratelimited("kvm: unexpected emulation request on private memory\n");
392 		kvm_mmu_prepare_memory_fault_exit(vcpu, &fault);
393 		return -EFAULT;
394 	}
395 
396 	if (fault.write_fault_to_shadow_pgtable && emulation_type)
397 		*emulation_type |= EMULTYPE_WRITE_PF_TO_SP;
398 	if (level)
399 		*level = fault.goal_level;
400 
401 	return r;
402 }
403 
404 int kvm_mmu_max_mapping_level(struct kvm *kvm, struct kvm_page_fault *fault,
405 			      const struct kvm_memory_slot *slot, gfn_t gfn);
406 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
407 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level);
408 
409 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
410 				 enum kvm_mmu_type mmu_type);
411 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
412 				   enum kvm_mmu_type mmu_type);
413 
414 #endif /* __KVM_X86_MMU_INTERNAL_H */
415