xref: /linux/mm/memory-failure.c (revision 8804d970fab45726b3c7cd7f240b31122aa94219)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
63 #include "swap.h"
64 #include "internal.h"
65 #include "ras/ras_event.h"
66 
67 static int sysctl_memory_failure_early_kill __read_mostly;
68 
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
70 
71 static int sysctl_enable_soft_offline __read_mostly = 1;
72 
73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
74 
75 static bool hw_memory_failure __read_mostly = false;
76 
77 static DEFINE_MUTEX(mf_mutex);
78 
num_poisoned_pages_inc(unsigned long pfn)79 void num_poisoned_pages_inc(unsigned long pfn)
80 {
81 	atomic_long_inc(&num_poisoned_pages);
82 	memblk_nr_poison_inc(pfn);
83 }
84 
num_poisoned_pages_sub(unsigned long pfn,long i)85 void num_poisoned_pages_sub(unsigned long pfn, long i)
86 {
87 	atomic_long_sub(i, &num_poisoned_pages);
88 	if (pfn != -1UL)
89 		memblk_nr_poison_sub(pfn, i);
90 }
91 
92 /**
93  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
94  * @_name: name of the file in the per NUMA sysfs directory.
95  */
96 #define MF_ATTR_RO(_name)					\
97 static ssize_t _name##_show(struct device *dev,			\
98 			    struct device_attribute *attr,	\
99 			    char *buf)				\
100 {								\
101 	struct memory_failure_stats *mf_stats =			\
102 		&NODE_DATA(dev->id)->mf_stats;			\
103 	return sysfs_emit(buf, "%lu\n", mf_stats->_name);	\
104 }								\
105 static DEVICE_ATTR_RO(_name)
106 
107 MF_ATTR_RO(total);
108 MF_ATTR_RO(ignored);
109 MF_ATTR_RO(failed);
110 MF_ATTR_RO(delayed);
111 MF_ATTR_RO(recovered);
112 
113 static struct attribute *memory_failure_attr[] = {
114 	&dev_attr_total.attr,
115 	&dev_attr_ignored.attr,
116 	&dev_attr_failed.attr,
117 	&dev_attr_delayed.attr,
118 	&dev_attr_recovered.attr,
119 	NULL,
120 };
121 
122 const struct attribute_group memory_failure_attr_group = {
123 	.name = "memory_failure",
124 	.attrs = memory_failure_attr,
125 };
126 
127 static const struct ctl_table memory_failure_table[] = {
128 	{
129 		.procname	= "memory_failure_early_kill",
130 		.data		= &sysctl_memory_failure_early_kill,
131 		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
132 		.mode		= 0644,
133 		.proc_handler	= proc_dointvec_minmax,
134 		.extra1		= SYSCTL_ZERO,
135 		.extra2		= SYSCTL_ONE,
136 	},
137 	{
138 		.procname	= "memory_failure_recovery",
139 		.data		= &sysctl_memory_failure_recovery,
140 		.maxlen		= sizeof(sysctl_memory_failure_recovery),
141 		.mode		= 0644,
142 		.proc_handler	= proc_dointvec_minmax,
143 		.extra1		= SYSCTL_ZERO,
144 		.extra2		= SYSCTL_ONE,
145 	},
146 	{
147 		.procname	= "enable_soft_offline",
148 		.data		= &sysctl_enable_soft_offline,
149 		.maxlen		= sizeof(sysctl_enable_soft_offline),
150 		.mode		= 0644,
151 		.proc_handler	= proc_dointvec_minmax,
152 		.extra1		= SYSCTL_ZERO,
153 		.extra2		= SYSCTL_ONE,
154 	}
155 };
156 
157 /*
158  * Return values:
159  *   1:   the page is dissolved (if needed) and taken off from buddy,
160  *   0:   the page is dissolved (if needed) and not taken off from buddy,
161  *   < 0: failed to dissolve.
162  */
__page_handle_poison(struct page * page)163 static int __page_handle_poison(struct page *page)
164 {
165 	int ret;
166 
167 	/*
168 	 * zone_pcp_disable() can't be used here. It will
169 	 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
170 	 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
171 	 * optimization is enabled. This will break current lock dependency
172 	 * chain and leads to deadlock.
173 	 * Disabling pcp before dissolving the page was a deterministic
174 	 * approach because we made sure that those pages cannot end up in any
175 	 * PCP list. Draining PCP lists expels those pages to the buddy system,
176 	 * but nothing guarantees that those pages do not get back to a PCP
177 	 * queue if we need to refill those.
178 	 */
179 	ret = dissolve_free_hugetlb_folio(page_folio(page));
180 	if (!ret) {
181 		drain_all_pages(page_zone(page));
182 		ret = take_page_off_buddy(page);
183 	}
184 
185 	return ret;
186 }
187 
page_handle_poison(struct page * page,bool hugepage_or_freepage,bool release)188 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
189 {
190 	if (hugepage_or_freepage) {
191 		/*
192 		 * Doing this check for free pages is also fine since
193 		 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
194 		 */
195 		if (__page_handle_poison(page) <= 0)
196 			/*
197 			 * We could fail to take off the target page from buddy
198 			 * for example due to racy page allocation, but that's
199 			 * acceptable because soft-offlined page is not broken
200 			 * and if someone really want to use it, they should
201 			 * take it.
202 			 */
203 			return false;
204 	}
205 
206 	SetPageHWPoison(page);
207 	if (release)
208 		put_page(page);
209 	page_ref_inc(page);
210 	num_poisoned_pages_inc(page_to_pfn(page));
211 
212 	return true;
213 }
214 
215 static hwpoison_filter_func_t __rcu *hwpoison_filter_func __read_mostly;
216 
hwpoison_filter_register(hwpoison_filter_func_t * filter)217 void hwpoison_filter_register(hwpoison_filter_func_t *filter)
218 {
219 	rcu_assign_pointer(hwpoison_filter_func, filter);
220 }
221 EXPORT_SYMBOL_GPL(hwpoison_filter_register);
222 
hwpoison_filter_unregister(void)223 void hwpoison_filter_unregister(void)
224 {
225 	RCU_INIT_POINTER(hwpoison_filter_func, NULL);
226 	synchronize_rcu();
227 }
228 EXPORT_SYMBOL_GPL(hwpoison_filter_unregister);
229 
hwpoison_filter(struct page * p)230 static int hwpoison_filter(struct page *p)
231 {
232 	int ret = 0;
233 	hwpoison_filter_func_t *filter;
234 
235 	rcu_read_lock();
236 	filter = rcu_dereference(hwpoison_filter_func);
237 	if (filter)
238 		ret = filter(p);
239 	rcu_read_unlock();
240 
241 	return ret;
242 }
243 
244 /*
245  * Kill all processes that have a poisoned page mapped and then isolate
246  * the page.
247  *
248  * General strategy:
249  * Find all processes having the page mapped and kill them.
250  * But we keep a page reference around so that the page is not
251  * actually freed yet.
252  * Then stash the page away
253  *
254  * There's no convenient way to get back to mapped processes
255  * from the VMAs. So do a brute-force search over all
256  * running processes.
257  *
258  * Remember that machine checks are not common (or rather
259  * if they are common you have other problems), so this shouldn't
260  * be a performance issue.
261  *
262  * Also there are some races possible while we get from the
263  * error detection to actually handle it.
264  */
265 
266 struct to_kill {
267 	struct list_head nd;
268 	struct task_struct *tsk;
269 	unsigned long addr;
270 	short size_shift;
271 };
272 
273 /*
274  * Send all the processes who have the page mapped a signal.
275  * ``action optional'' if they are not immediately affected by the error
276  * ``action required'' if error happened in current execution context
277  */
kill_proc(struct to_kill * tk,unsigned long pfn,int flags)278 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
279 {
280 	struct task_struct *t = tk->tsk;
281 	short addr_lsb = tk->size_shift;
282 	int ret = 0;
283 
284 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
285 			pfn, t->comm, task_pid_nr(t));
286 
287 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
288 		ret = force_sig_mceerr(BUS_MCEERR_AR,
289 				 (void __user *)tk->addr, addr_lsb);
290 	else
291 		/*
292 		 * Signal other processes sharing the page if they have
293 		 * PF_MCE_EARLY set.
294 		 * Don't use force here, it's convenient if the signal
295 		 * can be temporarily blocked.
296 		 */
297 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
298 				      addr_lsb, t);
299 	if (ret < 0)
300 		pr_info("Error sending signal to %s:%d: %d\n",
301 			t->comm, task_pid_nr(t), ret);
302 	return ret;
303 }
304 
305 /*
306  * Unknown page type encountered. Try to check whether it can turn PageLRU by
307  * lru_add_drain_all.
308  */
shake_folio(struct folio * folio)309 void shake_folio(struct folio *folio)
310 {
311 	if (folio_test_hugetlb(folio))
312 		return;
313 	/*
314 	 * TODO: Could shrink slab caches here if a lightweight range-based
315 	 * shrinker will be available.
316 	 */
317 	if (folio_test_slab(folio))
318 		return;
319 
320 	lru_add_drain_all();
321 }
322 EXPORT_SYMBOL_GPL(shake_folio);
323 
shake_page(struct page * page)324 static void shake_page(struct page *page)
325 {
326 	shake_folio(page_folio(page));
327 }
328 
dev_pagemap_mapping_shift(struct vm_area_struct * vma,unsigned long address)329 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
330 		unsigned long address)
331 {
332 	unsigned long ret = 0;
333 	pgd_t *pgd;
334 	p4d_t *p4d;
335 	pud_t *pud;
336 	pmd_t *pmd;
337 	pte_t *pte;
338 	pte_t ptent;
339 
340 	VM_BUG_ON_VMA(address == -EFAULT, vma);
341 	pgd = pgd_offset(vma->vm_mm, address);
342 	if (!pgd_present(*pgd))
343 		return 0;
344 	p4d = p4d_offset(pgd, address);
345 	if (!p4d_present(*p4d))
346 		return 0;
347 	pud = pud_offset(p4d, address);
348 	if (!pud_present(*pud))
349 		return 0;
350 	if (pud_trans_huge(*pud))
351 		return PUD_SHIFT;
352 	pmd = pmd_offset(pud, address);
353 	if (!pmd_present(*pmd))
354 		return 0;
355 	if (pmd_trans_huge(*pmd))
356 		return PMD_SHIFT;
357 	pte = pte_offset_map(pmd, address);
358 	if (!pte)
359 		return 0;
360 	ptent = ptep_get(pte);
361 	if (pte_present(ptent))
362 		ret = PAGE_SHIFT;
363 	pte_unmap(pte);
364 	return ret;
365 }
366 
367 /*
368  * Failure handling: if we can't find or can't kill a process there's
369  * not much we can do.	We just print a message and ignore otherwise.
370  */
371 
372 /*
373  * Schedule a process for later kill.
374  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
375  */
__add_to_kill(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)376 static void __add_to_kill(struct task_struct *tsk, const struct page *p,
377 			  struct vm_area_struct *vma, struct list_head *to_kill,
378 			  unsigned long addr)
379 {
380 	struct to_kill *tk;
381 
382 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
383 	if (!tk) {
384 		pr_err("Out of memory while machine check handling\n");
385 		return;
386 	}
387 
388 	tk->addr = addr;
389 	if (is_zone_device_page(p))
390 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
391 	else
392 		tk->size_shift = folio_shift(page_folio(p));
393 
394 	/*
395 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
396 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
397 	 * so "tk->size_shift == 0" effectively checks no mapping on
398 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
399 	 * to a process' address space, it's possible not all N VMAs
400 	 * contain mappings for the page, but at least one VMA does.
401 	 * Only deliver SIGBUS with payload derived from the VMA that
402 	 * has a mapping for the page.
403 	 */
404 	if (tk->addr == -EFAULT) {
405 		pr_info("Unable to find user space address %lx in %s\n",
406 			page_to_pfn(p), tsk->comm);
407 	} else if (tk->size_shift == 0) {
408 		kfree(tk);
409 		return;
410 	}
411 
412 	get_task_struct(tsk);
413 	tk->tsk = tsk;
414 	list_add_tail(&tk->nd, to_kill);
415 }
416 
add_to_kill_anon_file(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)417 static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p,
418 		struct vm_area_struct *vma, struct list_head *to_kill,
419 		unsigned long addr)
420 {
421 	if (addr == -EFAULT)
422 		return;
423 	__add_to_kill(tsk, p, vma, to_kill, addr);
424 }
425 
426 #ifdef CONFIG_KSM
task_in_to_kill_list(struct list_head * to_kill,struct task_struct * tsk)427 static bool task_in_to_kill_list(struct list_head *to_kill,
428 				 struct task_struct *tsk)
429 {
430 	struct to_kill *tk, *next;
431 
432 	list_for_each_entry_safe(tk, next, to_kill, nd) {
433 		if (tk->tsk == tsk)
434 			return true;
435 	}
436 
437 	return false;
438 }
439 
add_to_kill_ksm(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)440 void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
441 		     struct vm_area_struct *vma, struct list_head *to_kill,
442 		     unsigned long addr)
443 {
444 	if (!task_in_to_kill_list(to_kill, tsk))
445 		__add_to_kill(tsk, p, vma, to_kill, addr);
446 }
447 #endif
448 /*
449  * Kill the processes that have been collected earlier.
450  *
451  * Only do anything when FORCEKILL is set, otherwise just free the
452  * list (this is used for clean pages which do not need killing)
453  */
kill_procs(struct list_head * to_kill,int forcekill,unsigned long pfn,int flags)454 static void kill_procs(struct list_head *to_kill, int forcekill,
455 		unsigned long pfn, int flags)
456 {
457 	struct to_kill *tk, *next;
458 
459 	list_for_each_entry_safe(tk, next, to_kill, nd) {
460 		if (forcekill) {
461 			if (tk->addr == -EFAULT) {
462 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
463 				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
464 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
465 						 tk->tsk, PIDTYPE_PID);
466 			}
467 
468 			/*
469 			 * In theory the process could have mapped
470 			 * something else on the address in-between. We could
471 			 * check for that, but we need to tell the
472 			 * process anyways.
473 			 */
474 			else if (kill_proc(tk, pfn, flags) < 0)
475 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
476 				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
477 		}
478 		list_del(&tk->nd);
479 		put_task_struct(tk->tsk);
480 		kfree(tk);
481 	}
482 }
483 
484 /*
485  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
486  * on behalf of the thread group. Return task_struct of the (first found)
487  * dedicated thread if found, and return NULL otherwise.
488  *
489  * We already hold rcu lock in the caller, so we don't have to call
490  * rcu_read_lock/unlock() in this function.
491  */
find_early_kill_thread(struct task_struct * tsk)492 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
493 {
494 	struct task_struct *t;
495 
496 	for_each_thread(tsk, t) {
497 		if (t->flags & PF_MCE_PROCESS) {
498 			if (t->flags & PF_MCE_EARLY)
499 				return t;
500 		} else {
501 			if (sysctl_memory_failure_early_kill)
502 				return t;
503 		}
504 	}
505 	return NULL;
506 }
507 
508 /*
509  * Determine whether a given process is "early kill" process which expects
510  * to be signaled when some page under the process is hwpoisoned.
511  * Return task_struct of the dedicated thread (main thread unless explicitly
512  * specified) if the process is "early kill" and otherwise returns NULL.
513  *
514  * Note that the above is true for Action Optional case. For Action Required
515  * case, it's only meaningful to the current thread which need to be signaled
516  * with SIGBUS, this error is Action Optional for other non current
517  * processes sharing the same error page,if the process is "early kill", the
518  * task_struct of the dedicated thread will also be returned.
519  */
task_early_kill(struct task_struct * tsk,int force_early)520 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
521 {
522 	if (!tsk->mm)
523 		return NULL;
524 	/*
525 	 * Comparing ->mm here because current task might represent
526 	 * a subthread, while tsk always points to the main thread.
527 	 */
528 	if (force_early && tsk->mm == current->mm)
529 		return current;
530 
531 	return find_early_kill_thread(tsk);
532 }
533 
534 /*
535  * Collect processes when the error hit an anonymous page.
536  */
collect_procs_anon(const struct folio * folio,const struct page * page,struct list_head * to_kill,int force_early)537 static void collect_procs_anon(const struct folio *folio,
538 		const struct page *page, struct list_head *to_kill,
539 		int force_early)
540 {
541 	struct task_struct *tsk;
542 	struct anon_vma *av;
543 	pgoff_t pgoff;
544 
545 	av = folio_lock_anon_vma_read(folio, NULL);
546 	if (av == NULL)	/* Not actually mapped anymore */
547 		return;
548 
549 	pgoff = page_pgoff(folio, page);
550 	rcu_read_lock();
551 	for_each_process(tsk) {
552 		struct vm_area_struct *vma;
553 		struct anon_vma_chain *vmac;
554 		struct task_struct *t = task_early_kill(tsk, force_early);
555 		unsigned long addr;
556 
557 		if (!t)
558 			continue;
559 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
560 					       pgoff, pgoff) {
561 			vma = vmac->vma;
562 			if (vma->vm_mm != t->mm)
563 				continue;
564 			addr = page_mapped_in_vma(page, vma);
565 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
566 		}
567 	}
568 	rcu_read_unlock();
569 	anon_vma_unlock_read(av);
570 }
571 
572 /*
573  * Collect processes when the error hit a file mapped page.
574  */
collect_procs_file(const struct folio * folio,const struct page * page,struct list_head * to_kill,int force_early)575 static void collect_procs_file(const struct folio *folio,
576 		const struct page *page, struct list_head *to_kill,
577 		int force_early)
578 {
579 	struct vm_area_struct *vma;
580 	struct task_struct *tsk;
581 	struct address_space *mapping = folio->mapping;
582 	pgoff_t pgoff;
583 
584 	i_mmap_lock_read(mapping);
585 	rcu_read_lock();
586 	pgoff = page_pgoff(folio, page);
587 	for_each_process(tsk) {
588 		struct task_struct *t = task_early_kill(tsk, force_early);
589 		unsigned long addr;
590 
591 		if (!t)
592 			continue;
593 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
594 				      pgoff) {
595 			/*
596 			 * Send early kill signal to tasks where a vma covers
597 			 * the page but the corrupted page is not necessarily
598 			 * mapped in its pte.
599 			 * Assume applications who requested early kill want
600 			 * to be informed of all such data corruptions.
601 			 */
602 			if (vma->vm_mm != t->mm)
603 				continue;
604 			addr = page_address_in_vma(folio, page, vma);
605 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
606 		}
607 	}
608 	rcu_read_unlock();
609 	i_mmap_unlock_read(mapping);
610 }
611 
612 #ifdef CONFIG_FS_DAX
add_to_kill_fsdax(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,pgoff_t pgoff)613 static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p,
614 			      struct vm_area_struct *vma,
615 			      struct list_head *to_kill, pgoff_t pgoff)
616 {
617 	unsigned long addr = vma_address(vma, pgoff, 1);
618 	__add_to_kill(tsk, p, vma, to_kill, addr);
619 }
620 
621 /*
622  * Collect processes when the error hit a fsdax page.
623  */
collect_procs_fsdax(const struct page * page,struct address_space * mapping,pgoff_t pgoff,struct list_head * to_kill,bool pre_remove)624 static void collect_procs_fsdax(const struct page *page,
625 		struct address_space *mapping, pgoff_t pgoff,
626 		struct list_head *to_kill, bool pre_remove)
627 {
628 	struct vm_area_struct *vma;
629 	struct task_struct *tsk;
630 
631 	i_mmap_lock_read(mapping);
632 	rcu_read_lock();
633 	for_each_process(tsk) {
634 		struct task_struct *t = tsk;
635 
636 		/*
637 		 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
638 		 * the current may not be the one accessing the fsdax page.
639 		 * Otherwise, search for the current task.
640 		 */
641 		if (!pre_remove)
642 			t = task_early_kill(tsk, true);
643 		if (!t)
644 			continue;
645 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
646 			if (vma->vm_mm == t->mm)
647 				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
648 		}
649 	}
650 	rcu_read_unlock();
651 	i_mmap_unlock_read(mapping);
652 }
653 #endif /* CONFIG_FS_DAX */
654 
655 /*
656  * Collect the processes who have the corrupted page mapped to kill.
657  */
collect_procs(const struct folio * folio,const struct page * page,struct list_head * tokill,int force_early)658 static void collect_procs(const struct folio *folio, const struct page *page,
659 		struct list_head *tokill, int force_early)
660 {
661 	if (!folio->mapping)
662 		return;
663 	if (unlikely(folio_test_ksm(folio)))
664 		collect_procs_ksm(folio, page, tokill, force_early);
665 	else if (folio_test_anon(folio))
666 		collect_procs_anon(folio, page, tokill, force_early);
667 	else
668 		collect_procs_file(folio, page, tokill, force_early);
669 }
670 
671 struct hwpoison_walk {
672 	struct to_kill tk;
673 	unsigned long pfn;
674 	int flags;
675 };
676 
set_to_kill(struct to_kill * tk,unsigned long addr,short shift)677 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
678 {
679 	tk->addr = addr;
680 	tk->size_shift = shift;
681 }
682 
check_hwpoisoned_entry(pte_t pte,unsigned long addr,short shift,unsigned long poisoned_pfn,struct to_kill * tk)683 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
684 				unsigned long poisoned_pfn, struct to_kill *tk)
685 {
686 	unsigned long pfn = 0;
687 
688 	if (pte_present(pte)) {
689 		pfn = pte_pfn(pte);
690 	} else {
691 		swp_entry_t swp = pte_to_swp_entry(pte);
692 
693 		if (is_hwpoison_entry(swp))
694 			pfn = swp_offset_pfn(swp);
695 	}
696 
697 	if (!pfn || pfn != poisoned_pfn)
698 		return 0;
699 
700 	set_to_kill(tk, addr, shift);
701 	return 1;
702 }
703 
704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)705 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
706 				      struct hwpoison_walk *hwp)
707 {
708 	pmd_t pmd = *pmdp;
709 	unsigned long pfn;
710 	unsigned long hwpoison_vaddr;
711 
712 	if (!pmd_present(pmd))
713 		return 0;
714 	pfn = pmd_pfn(pmd);
715 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
716 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
717 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
718 		return 1;
719 	}
720 	return 0;
721 }
722 #else
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)723 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
724 				      struct hwpoison_walk *hwp)
725 {
726 	return 0;
727 }
728 #endif
729 
hwpoison_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)730 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
731 			      unsigned long end, struct mm_walk *walk)
732 {
733 	struct hwpoison_walk *hwp = walk->private;
734 	int ret = 0;
735 	pte_t *ptep, *mapped_pte;
736 	spinlock_t *ptl;
737 
738 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
739 	if (ptl) {
740 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
741 		spin_unlock(ptl);
742 		goto out;
743 	}
744 
745 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
746 						addr, &ptl);
747 	if (!ptep)
748 		goto out;
749 
750 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
751 		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
752 					     hwp->pfn, &hwp->tk);
753 		if (ret == 1)
754 			break;
755 	}
756 	pte_unmap_unlock(mapped_pte, ptl);
757 out:
758 	cond_resched();
759 	return ret;
760 }
761 
762 #ifdef CONFIG_HUGETLB_PAGE
hwpoison_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)763 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
764 			    unsigned long addr, unsigned long end,
765 			    struct mm_walk *walk)
766 {
767 	struct hwpoison_walk *hwp = walk->private;
768 	struct hstate *h = hstate_vma(walk->vma);
769 	spinlock_t *ptl;
770 	pte_t pte;
771 	int ret;
772 
773 	ptl = huge_pte_lock(h, walk->mm, ptep);
774 	pte = huge_ptep_get(walk->mm, addr, ptep);
775 	ret = check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
776 					hwp->pfn, &hwp->tk);
777 	spin_unlock(ptl);
778 	return ret;
779 }
780 #else
781 #define hwpoison_hugetlb_range	NULL
782 #endif
783 
hwpoison_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)784 static int hwpoison_test_walk(unsigned long start, unsigned long end,
785 			     struct mm_walk *walk)
786 {
787 	/* We also want to consider pages mapped into VM_PFNMAP. */
788 	return 0;
789 }
790 
791 static const struct mm_walk_ops hwpoison_walk_ops = {
792 	.pmd_entry = hwpoison_pte_range,
793 	.hugetlb_entry = hwpoison_hugetlb_range,
794 	.test_walk = hwpoison_test_walk,
795 	.walk_lock = PGWALK_RDLOCK,
796 };
797 
798 /*
799  * Sends SIGBUS to the current process with error info.
800  *
801  * This function is intended to handle "Action Required" MCEs on already
802  * hardware poisoned pages. They could happen, for example, when
803  * memory_failure() failed to unmap the error page at the first call, or
804  * when multiple local machine checks happened on different CPUs.
805  *
806  * MCE handler currently has no easy access to the error virtual address,
807  * so this function walks page table to find it. The returned virtual address
808  * is proper in most cases, but it could be wrong when the application
809  * process has multiple entries mapping the error page.
810  */
kill_accessing_process(struct task_struct * p,unsigned long pfn,int flags)811 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
812 				  int flags)
813 {
814 	int ret;
815 	struct hwpoison_walk priv = {
816 		.pfn = pfn,
817 	};
818 	priv.tk.tsk = p;
819 
820 	if (!p->mm)
821 		return -EFAULT;
822 
823 	mmap_read_lock(p->mm);
824 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
825 			      (void *)&priv);
826 	/*
827 	 * ret = 1 when CMCI wins, regardless of whether try_to_unmap()
828 	 * succeeds or fails, then kill the process with SIGBUS.
829 	 * ret = 0 when poison page is a clean page and it's dropped, no
830 	 * SIGBUS is needed.
831 	 */
832 	if (ret == 1 && priv.tk.addr)
833 		kill_proc(&priv.tk, pfn, flags);
834 	mmap_read_unlock(p->mm);
835 
836 	return ret > 0 ? -EHWPOISON : 0;
837 }
838 
839 /*
840  * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
841  * But it could not do more to isolate the page from being accessed again,
842  * nor does it kill the process. This is extremely rare and one of the
843  * potential causes is that the page state has been changed due to
844  * underlying race condition. This is the most severe outcomes.
845  *
846  * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
847  * It should have killed the process, but it can't isolate the page,
848  * due to conditions such as extra pin, unmap failure, etc. Accessing
849  * the page again may trigger another MCE and the process will be killed
850  * by the m-f() handler immediately.
851  *
852  * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
853  * The page is unmapped, and is removed from the LRU or file mapping.
854  * An attempt to access the page again will trigger page fault and the
855  * PF handler will kill the process.
856  *
857  * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
858  * The page has been completely isolated, that is, unmapped, taken out of
859  * the buddy system, or hole-punnched out of the file mapping.
860  */
861 static const char *action_name[] = {
862 	[MF_IGNORED] = "Ignored",
863 	[MF_FAILED] = "Failed",
864 	[MF_DELAYED] = "Delayed",
865 	[MF_RECOVERED] = "Recovered",
866 };
867 
868 static const char * const action_page_types[] = {
869 	[MF_MSG_KERNEL]			= "reserved kernel page",
870 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
871 	[MF_MSG_HUGE]			= "huge page",
872 	[MF_MSG_FREE_HUGE]		= "free huge page",
873 	[MF_MSG_GET_HWPOISON]		= "get hwpoison page",
874 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
875 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
876 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
877 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
878 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
879 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
880 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
881 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
882 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
883 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
884 	[MF_MSG_BUDDY]			= "free buddy page",
885 	[MF_MSG_DAX]			= "dax page",
886 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
887 	[MF_MSG_ALREADY_POISONED]	= "already poisoned page",
888 	[MF_MSG_UNKNOWN]		= "unknown page",
889 };
890 
891 /*
892  * XXX: It is possible that a page is isolated from LRU cache,
893  * and then kept in swap cache or failed to remove from page cache.
894  * The page count will stop it from being freed by unpoison.
895  * Stress tests should be aware of this memory leak problem.
896  */
delete_from_lru_cache(struct folio * folio)897 static int delete_from_lru_cache(struct folio *folio)
898 {
899 	if (folio_isolate_lru(folio)) {
900 		/*
901 		 * Clear sensible page flags, so that the buddy system won't
902 		 * complain when the folio is unpoison-and-freed.
903 		 */
904 		folio_clear_active(folio);
905 		folio_clear_unevictable(folio);
906 
907 		/*
908 		 * Poisoned page might never drop its ref count to 0 so we have
909 		 * to uncharge it manually from its memcg.
910 		 */
911 		mem_cgroup_uncharge(folio);
912 
913 		/*
914 		 * drop the refcount elevated by folio_isolate_lru()
915 		 */
916 		folio_put(folio);
917 		return 0;
918 	}
919 	return -EIO;
920 }
921 
truncate_error_folio(struct folio * folio,unsigned long pfn,struct address_space * mapping)922 static int truncate_error_folio(struct folio *folio, unsigned long pfn,
923 				struct address_space *mapping)
924 {
925 	int ret = MF_FAILED;
926 
927 	if (mapping->a_ops->error_remove_folio) {
928 		int err = mapping->a_ops->error_remove_folio(mapping, folio);
929 
930 		if (err != 0)
931 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
932 		else if (!filemap_release_folio(folio, GFP_NOIO))
933 			pr_info("%#lx: failed to release buffers\n", pfn);
934 		else
935 			ret = MF_RECOVERED;
936 	} else {
937 		/*
938 		 * If the file system doesn't support it just invalidate
939 		 * This fails on dirty or anything with private pages
940 		 */
941 		if (mapping_evict_folio(mapping, folio))
942 			ret = MF_RECOVERED;
943 		else
944 			pr_info("%#lx: Failed to invalidate\n",	pfn);
945 	}
946 
947 	return ret;
948 }
949 
950 struct page_state {
951 	unsigned long mask;
952 	unsigned long res;
953 	enum mf_action_page_type type;
954 
955 	/* Callback ->action() has to unlock the relevant page inside it. */
956 	int (*action)(struct page_state *ps, struct page *p);
957 };
958 
959 /*
960  * Return true if page is still referenced by others, otherwise return
961  * false.
962  *
963  * The extra_pins is true when one extra refcount is expected.
964  */
has_extra_refcount(struct page_state * ps,struct page * p,bool extra_pins)965 static bool has_extra_refcount(struct page_state *ps, struct page *p,
966 			       bool extra_pins)
967 {
968 	int count = page_count(p) - 1;
969 
970 	if (extra_pins)
971 		count -= folio_nr_pages(page_folio(p));
972 
973 	if (count > 0) {
974 		pr_err("%#lx: %s still referenced by %d users\n",
975 		       page_to_pfn(p), action_page_types[ps->type], count);
976 		return true;
977 	}
978 
979 	return false;
980 }
981 
982 /*
983  * Error hit kernel page.
984  * Do nothing, try to be lucky and not touch this instead. For a few cases we
985  * could be more sophisticated.
986  */
me_kernel(struct page_state * ps,struct page * p)987 static int me_kernel(struct page_state *ps, struct page *p)
988 {
989 	unlock_page(p);
990 	return MF_IGNORED;
991 }
992 
993 /*
994  * Page in unknown state. Do nothing.
995  * This is a catch-all in case we fail to make sense of the page state.
996  */
me_unknown(struct page_state * ps,struct page * p)997 static int me_unknown(struct page_state *ps, struct page *p)
998 {
999 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1000 	unlock_page(p);
1001 	return MF_IGNORED;
1002 }
1003 
1004 /*
1005  * Clean (or cleaned) page cache page.
1006  */
me_pagecache_clean(struct page_state * ps,struct page * p)1007 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1008 {
1009 	struct folio *folio = page_folio(p);
1010 	int ret;
1011 	struct address_space *mapping;
1012 	bool extra_pins;
1013 
1014 	delete_from_lru_cache(folio);
1015 
1016 	/*
1017 	 * For anonymous folios the only reference left
1018 	 * should be the one m_f() holds.
1019 	 */
1020 	if (folio_test_anon(folio)) {
1021 		ret = MF_RECOVERED;
1022 		goto out;
1023 	}
1024 
1025 	/*
1026 	 * Now truncate the page in the page cache. This is really
1027 	 * more like a "temporary hole punch"
1028 	 * Don't do this for block devices when someone else
1029 	 * has a reference, because it could be file system metadata
1030 	 * and that's not safe to truncate.
1031 	 */
1032 	mapping = folio_mapping(folio);
1033 	if (!mapping) {
1034 		/* Folio has been torn down in the meantime */
1035 		ret = MF_FAILED;
1036 		goto out;
1037 	}
1038 
1039 	/*
1040 	 * The shmem page is kept in page cache instead of truncating
1041 	 * so is expected to have an extra refcount after error-handling.
1042 	 */
1043 	extra_pins = shmem_mapping(mapping);
1044 
1045 	/*
1046 	 * Truncation is a bit tricky. Enable it per file system for now.
1047 	 *
1048 	 * Open: to take i_rwsem or not for this? Right now we don't.
1049 	 */
1050 	ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1051 	if (has_extra_refcount(ps, p, extra_pins))
1052 		ret = MF_FAILED;
1053 
1054 out:
1055 	folio_unlock(folio);
1056 
1057 	return ret;
1058 }
1059 
1060 /*
1061  * Dirty pagecache page
1062  * Issues: when the error hit a hole page the error is not properly
1063  * propagated.
1064  */
me_pagecache_dirty(struct page_state * ps,struct page * p)1065 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1066 {
1067 	struct folio *folio = page_folio(p);
1068 	struct address_space *mapping = folio_mapping(folio);
1069 
1070 	/* TBD: print more information about the file. */
1071 	if (mapping) {
1072 		/*
1073 		 * IO error will be reported by write(), fsync(), etc.
1074 		 * who check the mapping.
1075 		 * This way the application knows that something went
1076 		 * wrong with its dirty file data.
1077 		 */
1078 		mapping_set_error(mapping, -EIO);
1079 	}
1080 
1081 	return me_pagecache_clean(ps, p);
1082 }
1083 
1084 /*
1085  * Clean and dirty swap cache.
1086  *
1087  * Dirty swap cache page is tricky to handle. The page could live both in page
1088  * table and swap cache(ie. page is freshly swapped in). So it could be
1089  * referenced concurrently by 2 types of PTEs:
1090  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1091  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1092  * and then
1093  *      - clear dirty bit to prevent IO
1094  *      - remove from LRU
1095  *      - but keep in the swap cache, so that when we return to it on
1096  *        a later page fault, we know the application is accessing
1097  *        corrupted data and shall be killed (we installed simple
1098  *        interception code in do_swap_page to catch it).
1099  *
1100  * Clean swap cache pages can be directly isolated. A later page fault will
1101  * bring in the known good data from disk.
1102  */
me_swapcache_dirty(struct page_state * ps,struct page * p)1103 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1104 {
1105 	struct folio *folio = page_folio(p);
1106 	int ret;
1107 	bool extra_pins = false;
1108 
1109 	folio_clear_dirty(folio);
1110 	/* Trigger EIO in shmem: */
1111 	folio_clear_uptodate(folio);
1112 
1113 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1114 	folio_unlock(folio);
1115 
1116 	if (ret == MF_DELAYED)
1117 		extra_pins = true;
1118 
1119 	if (has_extra_refcount(ps, p, extra_pins))
1120 		ret = MF_FAILED;
1121 
1122 	return ret;
1123 }
1124 
me_swapcache_clean(struct page_state * ps,struct page * p)1125 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1126 {
1127 	struct folio *folio = page_folio(p);
1128 	int ret;
1129 
1130 	swap_cache_del_folio(folio);
1131 
1132 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1133 	folio_unlock(folio);
1134 
1135 	if (has_extra_refcount(ps, p, false))
1136 		ret = MF_FAILED;
1137 
1138 	return ret;
1139 }
1140 
1141 /*
1142  * Huge pages. Needs work.
1143  * Issues:
1144  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1145  *   To narrow down kill region to one page, we need to break up pmd.
1146  */
me_huge_page(struct page_state * ps,struct page * p)1147 static int me_huge_page(struct page_state *ps, struct page *p)
1148 {
1149 	struct folio *folio = page_folio(p);
1150 	int res;
1151 	struct address_space *mapping;
1152 	bool extra_pins = false;
1153 
1154 	mapping = folio_mapping(folio);
1155 	if (mapping) {
1156 		res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1157 		/* The page is kept in page cache. */
1158 		extra_pins = true;
1159 		folio_unlock(folio);
1160 	} else {
1161 		folio_unlock(folio);
1162 		/*
1163 		 * migration entry prevents later access on error hugepage,
1164 		 * so we can free and dissolve it into buddy to save healthy
1165 		 * subpages.
1166 		 */
1167 		folio_put(folio);
1168 		if (__page_handle_poison(p) > 0) {
1169 			page_ref_inc(p);
1170 			res = MF_RECOVERED;
1171 		} else {
1172 			res = MF_FAILED;
1173 		}
1174 	}
1175 
1176 	if (has_extra_refcount(ps, p, extra_pins))
1177 		res = MF_FAILED;
1178 
1179 	return res;
1180 }
1181 
1182 /*
1183  * Various page states we can handle.
1184  *
1185  * A page state is defined by its current page->flags bits.
1186  * The table matches them in order and calls the right handler.
1187  *
1188  * This is quite tricky because we can access page at any time
1189  * in its live cycle, so all accesses have to be extremely careful.
1190  *
1191  * This is not complete. More states could be added.
1192  * For any missing state don't attempt recovery.
1193  */
1194 
1195 #define dirty		(1UL << PG_dirty)
1196 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1197 #define unevict		(1UL << PG_unevictable)
1198 #define mlock		(1UL << PG_mlocked)
1199 #define lru		(1UL << PG_lru)
1200 #define head		(1UL << PG_head)
1201 #define reserved	(1UL << PG_reserved)
1202 
1203 static struct page_state error_states[] = {
1204 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1205 	/*
1206 	 * free pages are specially detected outside this table:
1207 	 * PG_buddy pages only make a small fraction of all free pages.
1208 	 */
1209 
1210 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1211 
1212 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1213 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1214 
1215 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1216 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1217 
1218 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1219 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1220 
1221 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1222 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1223 
1224 	/*
1225 	 * Catchall entry: must be at end.
1226 	 */
1227 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1228 };
1229 
1230 #undef dirty
1231 #undef sc
1232 #undef unevict
1233 #undef mlock
1234 #undef lru
1235 #undef head
1236 #undef reserved
1237 
update_per_node_mf_stats(unsigned long pfn,enum mf_result result)1238 static void update_per_node_mf_stats(unsigned long pfn,
1239 				     enum mf_result result)
1240 {
1241 	int nid = MAX_NUMNODES;
1242 	struct memory_failure_stats *mf_stats = NULL;
1243 
1244 	nid = pfn_to_nid(pfn);
1245 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1246 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1247 		return;
1248 	}
1249 
1250 	mf_stats = &NODE_DATA(nid)->mf_stats;
1251 	switch (result) {
1252 	case MF_IGNORED:
1253 		++mf_stats->ignored;
1254 		break;
1255 	case MF_FAILED:
1256 		++mf_stats->failed;
1257 		break;
1258 	case MF_DELAYED:
1259 		++mf_stats->delayed;
1260 		break;
1261 	case MF_RECOVERED:
1262 		++mf_stats->recovered;
1263 		break;
1264 	default:
1265 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1266 		break;
1267 	}
1268 	++mf_stats->total;
1269 }
1270 
1271 /*
1272  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1273  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1274  */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)1275 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1276 			 enum mf_result result)
1277 {
1278 	trace_memory_failure_event(pfn, type, result);
1279 
1280 	if (type != MF_MSG_ALREADY_POISONED) {
1281 		num_poisoned_pages_inc(pfn);
1282 		update_per_node_mf_stats(pfn, result);
1283 	}
1284 
1285 	pr_err("%#lx: recovery action for %s: %s\n",
1286 		pfn, action_page_types[type], action_name[result]);
1287 
1288 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1289 }
1290 
page_action(struct page_state * ps,struct page * p,unsigned long pfn)1291 static int page_action(struct page_state *ps, struct page *p,
1292 			unsigned long pfn)
1293 {
1294 	int result;
1295 
1296 	/* page p should be unlocked after returning from ps->action().  */
1297 	result = ps->action(ps, p);
1298 
1299 	/* Could do more checks here if page looks ok */
1300 	/*
1301 	 * Could adjust zone counters here to correct for the missing page.
1302 	 */
1303 
1304 	return action_result(pfn, ps->type, result);
1305 }
1306 
PageHWPoisonTakenOff(struct page * page)1307 static inline bool PageHWPoisonTakenOff(struct page *page)
1308 {
1309 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1310 }
1311 
SetPageHWPoisonTakenOff(struct page * page)1312 void SetPageHWPoisonTakenOff(struct page *page)
1313 {
1314 	set_page_private(page, MAGIC_HWPOISON);
1315 }
1316 
ClearPageHWPoisonTakenOff(struct page * page)1317 void ClearPageHWPoisonTakenOff(struct page *page)
1318 {
1319 	if (PageHWPoison(page))
1320 		set_page_private(page, 0);
1321 }
1322 
1323 /*
1324  * Return true if a page type of a given page is supported by hwpoison
1325  * mechanism (while handling could fail), otherwise false.  This function
1326  * does not return true for hugetlb or device memory pages, so it's assumed
1327  * to be called only in the context where we never have such pages.
1328  */
HWPoisonHandlable(struct page * page,unsigned long flags)1329 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1330 {
1331 	if (PageSlab(page))
1332 		return false;
1333 
1334 	/* Soft offline could migrate movable_ops pages */
1335 	if ((flags & MF_SOFT_OFFLINE) && page_has_movable_ops(page))
1336 		return true;
1337 
1338 	return PageLRU(page) || is_free_buddy_page(page);
1339 }
1340 
__get_hwpoison_page(struct page * page,unsigned long flags)1341 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1342 {
1343 	struct folio *folio = page_folio(page);
1344 	int ret = 0;
1345 	bool hugetlb = false;
1346 
1347 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1348 	if (hugetlb) {
1349 		/* Make sure hugetlb demotion did not happen from under us. */
1350 		if (folio == page_folio(page))
1351 			return ret;
1352 		if (ret > 0) {
1353 			folio_put(folio);
1354 			folio = page_folio(page);
1355 		}
1356 	}
1357 
1358 	/*
1359 	 * This check prevents from calling folio_try_get() for any
1360 	 * unsupported type of folio in order to reduce the risk of unexpected
1361 	 * races caused by taking a folio refcount.
1362 	 */
1363 	if (!HWPoisonHandlable(&folio->page, flags))
1364 		return -EBUSY;
1365 
1366 	if (folio_try_get(folio)) {
1367 		if (folio == page_folio(page))
1368 			return 1;
1369 
1370 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1371 		folio_put(folio);
1372 	}
1373 
1374 	return 0;
1375 }
1376 
1377 #define GET_PAGE_MAX_RETRY_NUM 3
1378 
get_any_page(struct page * p,unsigned long flags)1379 static int get_any_page(struct page *p, unsigned long flags)
1380 {
1381 	int ret = 0, pass = 0;
1382 	bool count_increased = false;
1383 
1384 	if (flags & MF_COUNT_INCREASED)
1385 		count_increased = true;
1386 
1387 try_again:
1388 	if (!count_increased) {
1389 		ret = __get_hwpoison_page(p, flags);
1390 		if (!ret) {
1391 			if (page_count(p)) {
1392 				/* We raced with an allocation, retry. */
1393 				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1394 					goto try_again;
1395 				ret = -EBUSY;
1396 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1397 				/* We raced with put_page, retry. */
1398 				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1399 					goto try_again;
1400 				ret = -EIO;
1401 			}
1402 			goto out;
1403 		} else if (ret == -EBUSY) {
1404 			/*
1405 			 * We raced with (possibly temporary) unhandlable
1406 			 * page, retry.
1407 			 */
1408 			if (pass++ < 3) {
1409 				shake_page(p);
1410 				goto try_again;
1411 			}
1412 			ret = -EIO;
1413 			goto out;
1414 		}
1415 	}
1416 
1417 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1418 		ret = 1;
1419 	} else {
1420 		/*
1421 		 * A page we cannot handle. Check whether we can turn
1422 		 * it into something we can handle.
1423 		 */
1424 		if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
1425 			put_page(p);
1426 			shake_page(p);
1427 			count_increased = false;
1428 			goto try_again;
1429 		}
1430 		put_page(p);
1431 		ret = -EIO;
1432 	}
1433 out:
1434 	if (ret == -EIO)
1435 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1436 
1437 	return ret;
1438 }
1439 
__get_unpoison_page(struct page * page)1440 static int __get_unpoison_page(struct page *page)
1441 {
1442 	struct folio *folio = page_folio(page);
1443 	int ret = 0;
1444 	bool hugetlb = false;
1445 
1446 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1447 	if (hugetlb) {
1448 		/* Make sure hugetlb demotion did not happen from under us. */
1449 		if (folio == page_folio(page))
1450 			return ret;
1451 		if (ret > 0)
1452 			folio_put(folio);
1453 	}
1454 
1455 	/*
1456 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1457 	 * but also isolated from buddy freelist, so need to identify the
1458 	 * state and have to cancel both operations to unpoison.
1459 	 */
1460 	if (PageHWPoisonTakenOff(page))
1461 		return -EHWPOISON;
1462 
1463 	return get_page_unless_zero(page) ? 1 : 0;
1464 }
1465 
1466 /**
1467  * get_hwpoison_page() - Get refcount for memory error handling
1468  * @p:		Raw error page (hit by memory error)
1469  * @flags:	Flags controlling behavior of error handling
1470  *
1471  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1472  * error on it, after checking that the error page is in a well-defined state
1473  * (defined as a page-type we can successfully handle the memory error on it,
1474  * such as LRU page and hugetlb page).
1475  *
1476  * Memory error handling could be triggered at any time on any type of page,
1477  * so it's prone to race with typical memory management lifecycle (like
1478  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1479  * extra care for the error page's state (as done in __get_hwpoison_page()),
1480  * and has some retry logic in get_any_page().
1481  *
1482  * When called from unpoison_memory(), the caller should already ensure that
1483  * the given page has PG_hwpoison. So it's never reused for other page
1484  * allocations, and __get_unpoison_page() never races with them.
1485  *
1486  * Return: 0 on failure or free buddy (hugetlb) page,
1487  *         1 on success for in-use pages in a well-defined state,
1488  *         -EIO for pages on which we can not handle memory errors,
1489  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1490  *         operations like allocation and free,
1491  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1492  */
get_hwpoison_page(struct page * p,unsigned long flags)1493 static int get_hwpoison_page(struct page *p, unsigned long flags)
1494 {
1495 	int ret;
1496 
1497 	zone_pcp_disable(page_zone(p));
1498 	if (flags & MF_UNPOISON)
1499 		ret = __get_unpoison_page(p);
1500 	else
1501 		ret = get_any_page(p, flags);
1502 	zone_pcp_enable(page_zone(p));
1503 
1504 	return ret;
1505 }
1506 
1507 /*
1508  * The caller must guarantee the folio isn't large folio, except hugetlb.
1509  * try_to_unmap() can't handle it.
1510  */
unmap_poisoned_folio(struct folio * folio,unsigned long pfn,bool must_kill)1511 int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
1512 {
1513 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1514 	struct address_space *mapping;
1515 
1516 	if (folio_test_swapcache(folio)) {
1517 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1518 		ttu &= ~TTU_HWPOISON;
1519 	}
1520 
1521 	/*
1522 	 * Propagate the dirty bit from PTEs to struct page first, because we
1523 	 * need this to decide if we should kill or just drop the page.
1524 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1525 	 * be called inside page lock (it's recommended but not enforced).
1526 	 */
1527 	mapping = folio_mapping(folio);
1528 	if (!must_kill && !folio_test_dirty(folio) && mapping &&
1529 	    mapping_can_writeback(mapping)) {
1530 		if (folio_mkclean(folio)) {
1531 			folio_set_dirty(folio);
1532 		} else {
1533 			ttu &= ~TTU_HWPOISON;
1534 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1535 				pfn);
1536 		}
1537 	}
1538 
1539 	if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1540 		/*
1541 		 * For hugetlb folios in shared mappings, try_to_unmap
1542 		 * could potentially call huge_pmd_unshare.  Because of
1543 		 * this, take semaphore in write mode here and set
1544 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1545 		 * at this higher level.
1546 		 */
1547 		mapping = hugetlb_folio_mapping_lock_write(folio);
1548 		if (!mapping) {
1549 			pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
1550 				folio_pfn(folio));
1551 			return -EBUSY;
1552 		}
1553 
1554 		try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1555 		i_mmap_unlock_write(mapping);
1556 	} else {
1557 		try_to_unmap(folio, ttu);
1558 	}
1559 
1560 	return folio_mapped(folio) ? -EBUSY : 0;
1561 }
1562 
1563 /*
1564  * Do all that is necessary to remove user space mappings. Unmap
1565  * the pages and send SIGBUS to the processes if the data was dirty.
1566  */
hwpoison_user_mappings(struct folio * folio,struct page * p,unsigned long pfn,int flags)1567 static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1568 		unsigned long pfn, int flags)
1569 {
1570 	LIST_HEAD(tokill);
1571 	bool unmap_success;
1572 	int forcekill;
1573 	bool mlocked = folio_test_mlocked(folio);
1574 
1575 	/*
1576 	 * Here we are interested only in user-mapped pages, so skip any
1577 	 * other types of pages.
1578 	 */
1579 	if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1580 	    folio_test_pgtable(folio) || folio_test_offline(folio))
1581 		return true;
1582 	if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
1583 		return true;
1584 
1585 	/*
1586 	 * This check implies we don't kill processes if their pages
1587 	 * are in the swap cache early. Those are always late kills.
1588 	 */
1589 	if (!folio_mapped(folio))
1590 		return true;
1591 
1592 	/*
1593 	 * First collect all the processes that have the page
1594 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1595 	 * because ttu takes the rmap data structures down.
1596 	 */
1597 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1598 
1599 	unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL);
1600 	if (!unmap_success)
1601 		pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1602 		       pfn, folio_mapcount(folio));
1603 
1604 	/*
1605 	 * try_to_unmap() might put mlocked page in lru cache, so call
1606 	 * shake_page() again to ensure that it's flushed.
1607 	 */
1608 	if (mlocked)
1609 		shake_folio(folio);
1610 
1611 	/*
1612 	 * Now that the dirty bit has been propagated to the
1613 	 * struct page and all unmaps done we can decide if
1614 	 * killing is needed or not.  Only kill when the page
1615 	 * was dirty or the process is not restartable,
1616 	 * otherwise the tokill list is merely
1617 	 * freed.  When there was a problem unmapping earlier
1618 	 * use a more force-full uncatchable kill to prevent
1619 	 * any accesses to the poisoned memory.
1620 	 */
1621 	forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
1622 		    !unmap_success;
1623 	kill_procs(&tokill, forcekill, pfn, flags);
1624 
1625 	return unmap_success;
1626 }
1627 
identify_page_state(unsigned long pfn,struct page * p,unsigned long page_flags)1628 static int identify_page_state(unsigned long pfn, struct page *p,
1629 				unsigned long page_flags)
1630 {
1631 	struct page_state *ps;
1632 
1633 	/*
1634 	 * The first check uses the current page flags which may not have any
1635 	 * relevant information. The second check with the saved page flags is
1636 	 * carried out only if the first check can't determine the page status.
1637 	 */
1638 	for (ps = error_states;; ps++)
1639 		if ((p->flags.f & ps->mask) == ps->res)
1640 			break;
1641 
1642 	page_flags |= (p->flags.f & (1UL << PG_dirty));
1643 
1644 	if (!ps->mask)
1645 		for (ps = error_states;; ps++)
1646 			if ((page_flags & ps->mask) == ps->res)
1647 				break;
1648 	return page_action(ps, p, pfn);
1649 }
1650 
1651 /*
1652  * When 'release' is 'false', it means that if thp split has failed,
1653  * there is still more to do, hence the page refcount we took earlier
1654  * is still needed.
1655  */
try_to_split_thp_page(struct page * page,bool release)1656 static int try_to_split_thp_page(struct page *page, bool release)
1657 {
1658 	int ret;
1659 
1660 	lock_page(page);
1661 	ret = split_huge_page(page);
1662 	unlock_page(page);
1663 
1664 	if (ret && release)
1665 		put_page(page);
1666 
1667 	return ret;
1668 }
1669 
unmap_and_kill(struct list_head * to_kill,unsigned long pfn,struct address_space * mapping,pgoff_t index,int flags)1670 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1671 		struct address_space *mapping, pgoff_t index, int flags)
1672 {
1673 	struct to_kill *tk;
1674 	unsigned long size = 0;
1675 
1676 	list_for_each_entry(tk, to_kill, nd)
1677 		if (tk->size_shift)
1678 			size = max(size, 1UL << tk->size_shift);
1679 
1680 	if (size) {
1681 		/*
1682 		 * Unmap the largest mapping to avoid breaking up device-dax
1683 		 * mappings which are constant size. The actual size of the
1684 		 * mapping being torn down is communicated in siginfo, see
1685 		 * kill_proc()
1686 		 */
1687 		loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1688 
1689 		unmap_mapping_range(mapping, start, size, 0);
1690 	}
1691 
1692 	kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
1693 }
1694 
1695 /*
1696  * Only dev_pagemap pages get here, such as fsdax when the filesystem
1697  * either do not claim or fails to claim a hwpoison event, or devdax.
1698  * The fsdax pages are initialized per base page, and the devdax pages
1699  * could be initialized either as base pages, or as compound pages with
1700  * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1701  * hwpoison, such that, if a subpage of a compound page is poisoned,
1702  * simply mark the compound head page is by far sufficient.
1703  */
mf_generic_kill_procs(unsigned long long pfn,int flags,struct dev_pagemap * pgmap)1704 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1705 		struct dev_pagemap *pgmap)
1706 {
1707 	struct folio *folio = pfn_folio(pfn);
1708 	LIST_HEAD(to_kill);
1709 	dax_entry_t cookie;
1710 	int rc = 0;
1711 
1712 	/*
1713 	 * Prevent the inode from being freed while we are interrogating
1714 	 * the address_space, typically this would be handled by
1715 	 * lock_page(), but dax pages do not use the page lock. This
1716 	 * also prevents changes to the mapping of this pfn until
1717 	 * poison signaling is complete.
1718 	 */
1719 	cookie = dax_lock_folio(folio);
1720 	if (!cookie)
1721 		return -EBUSY;
1722 
1723 	if (hwpoison_filter(&folio->page)) {
1724 		rc = -EOPNOTSUPP;
1725 		goto unlock;
1726 	}
1727 
1728 	switch (pgmap->type) {
1729 	case MEMORY_DEVICE_PRIVATE:
1730 	case MEMORY_DEVICE_COHERENT:
1731 		/*
1732 		 * TODO: Handle device pages which may need coordination
1733 		 * with device-side memory.
1734 		 */
1735 		rc = -ENXIO;
1736 		goto unlock;
1737 	default:
1738 		break;
1739 	}
1740 
1741 	/*
1742 	 * Use this flag as an indication that the dax page has been
1743 	 * remapped UC to prevent speculative consumption of poison.
1744 	 */
1745 	SetPageHWPoison(&folio->page);
1746 
1747 	/*
1748 	 * Unlike System-RAM there is no possibility to swap in a
1749 	 * different physical page at a given virtual address, so all
1750 	 * userspace consumption of ZONE_DEVICE memory necessitates
1751 	 * SIGBUS (i.e. MF_MUST_KILL)
1752 	 */
1753 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1754 	collect_procs(folio, &folio->page, &to_kill, true);
1755 
1756 	unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1757 unlock:
1758 	dax_unlock_folio(folio, cookie);
1759 	return rc;
1760 }
1761 
1762 #ifdef CONFIG_FS_DAX
1763 /**
1764  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1765  * @mapping:	address_space of the file in use
1766  * @index:	start pgoff of the range within the file
1767  * @count:	length of the range, in unit of PAGE_SIZE
1768  * @mf_flags:	memory failure flags
1769  */
mf_dax_kill_procs(struct address_space * mapping,pgoff_t index,unsigned long count,int mf_flags)1770 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1771 		unsigned long count, int mf_flags)
1772 {
1773 	LIST_HEAD(to_kill);
1774 	dax_entry_t cookie;
1775 	struct page *page;
1776 	size_t end = index + count;
1777 	bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1778 
1779 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1780 
1781 	for (; index < end; index++) {
1782 		page = NULL;
1783 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1784 		if (!cookie)
1785 			return -EBUSY;
1786 		if (!page)
1787 			goto unlock;
1788 
1789 		if (!pre_remove)
1790 			SetPageHWPoison(page);
1791 
1792 		/*
1793 		 * The pre_remove case is revoking access, the memory is still
1794 		 * good and could theoretically be put back into service.
1795 		 */
1796 		collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1797 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1798 				index, mf_flags);
1799 unlock:
1800 		dax_unlock_mapping_entry(mapping, index, cookie);
1801 	}
1802 	return 0;
1803 }
1804 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1805 #endif /* CONFIG_FS_DAX */
1806 
1807 #ifdef CONFIG_HUGETLB_PAGE
1808 
1809 /*
1810  * Struct raw_hwp_page represents information about "raw error page",
1811  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1812  */
1813 struct raw_hwp_page {
1814 	struct llist_node node;
1815 	struct page *page;
1816 };
1817 
raw_hwp_list_head(struct folio * folio)1818 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1819 {
1820 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1821 }
1822 
is_raw_hwpoison_page_in_hugepage(struct page * page)1823 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1824 {
1825 	struct llist_head *raw_hwp_head;
1826 	struct raw_hwp_page *p;
1827 	struct folio *folio = page_folio(page);
1828 	bool ret = false;
1829 
1830 	if (!folio_test_hwpoison(folio))
1831 		return false;
1832 
1833 	if (!folio_test_hugetlb(folio))
1834 		return PageHWPoison(page);
1835 
1836 	/*
1837 	 * When RawHwpUnreliable is set, kernel lost track of which subpages
1838 	 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1839 	 */
1840 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1841 		return true;
1842 
1843 	mutex_lock(&mf_mutex);
1844 
1845 	raw_hwp_head = raw_hwp_list_head(folio);
1846 	llist_for_each_entry(p, raw_hwp_head->first, node) {
1847 		if (page == p->page) {
1848 			ret = true;
1849 			break;
1850 		}
1851 	}
1852 
1853 	mutex_unlock(&mf_mutex);
1854 
1855 	return ret;
1856 }
1857 
__folio_free_raw_hwp(struct folio * folio,bool move_flag)1858 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1859 {
1860 	struct llist_node *head;
1861 	struct raw_hwp_page *p, *next;
1862 	unsigned long count = 0;
1863 
1864 	head = llist_del_all(raw_hwp_list_head(folio));
1865 	llist_for_each_entry_safe(p, next, head, node) {
1866 		if (move_flag)
1867 			SetPageHWPoison(p->page);
1868 		else
1869 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1870 		kfree(p);
1871 		count++;
1872 	}
1873 	return count;
1874 }
1875 
folio_set_hugetlb_hwpoison(struct folio * folio,struct page * page)1876 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1877 {
1878 	struct llist_head *head;
1879 	struct raw_hwp_page *raw_hwp;
1880 	struct raw_hwp_page *p;
1881 	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1882 
1883 	/*
1884 	 * Once the hwpoison hugepage has lost reliable raw error info,
1885 	 * there is little meaning to keep additional error info precisely,
1886 	 * so skip to add additional raw error info.
1887 	 */
1888 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1889 		return -EHWPOISON;
1890 	head = raw_hwp_list_head(folio);
1891 	llist_for_each_entry(p, head->first, node) {
1892 		if (p->page == page)
1893 			return -EHWPOISON;
1894 	}
1895 
1896 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1897 	if (raw_hwp) {
1898 		raw_hwp->page = page;
1899 		llist_add(&raw_hwp->node, head);
1900 		/* the first error event will be counted in action_result(). */
1901 		if (ret)
1902 			num_poisoned_pages_inc(page_to_pfn(page));
1903 	} else {
1904 		/*
1905 		 * Failed to save raw error info.  We no longer trace all
1906 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1907 		 * this hwpoisoned hugepage.
1908 		 */
1909 		folio_set_hugetlb_raw_hwp_unreliable(folio);
1910 		/*
1911 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1912 		 * used any more, so free it.
1913 		 */
1914 		__folio_free_raw_hwp(folio, false);
1915 	}
1916 	return ret;
1917 }
1918 
folio_free_raw_hwp(struct folio * folio,bool move_flag)1919 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1920 {
1921 	/*
1922 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1923 	 * pages for tail pages are required but they don't exist.
1924 	 */
1925 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1926 		return 0;
1927 
1928 	/*
1929 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1930 	 * definition.
1931 	 */
1932 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1933 		return 0;
1934 
1935 	return __folio_free_raw_hwp(folio, move_flag);
1936 }
1937 
folio_clear_hugetlb_hwpoison(struct folio * folio)1938 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1939 {
1940 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1941 		return;
1942 	if (folio_test_hugetlb_vmemmap_optimized(folio))
1943 		return;
1944 	folio_clear_hwpoison(folio);
1945 	folio_free_raw_hwp(folio, true);
1946 }
1947 
1948 /*
1949  * Called from hugetlb code with hugetlb_lock held.
1950  *
1951  * Return values:
1952  *   0             - free hugepage
1953  *   1             - in-use hugepage
1954  *   2             - not a hugepage
1955  *   -EBUSY        - the hugepage is busy (try to retry)
1956  *   -EHWPOISON    - the hugepage is already hwpoisoned
1957  */
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)1958 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1959 				 bool *migratable_cleared)
1960 {
1961 	struct page *page = pfn_to_page(pfn);
1962 	struct folio *folio = page_folio(page);
1963 	int ret = 2;	/* fallback to normal page handling */
1964 	bool count_increased = false;
1965 
1966 	if (!folio_test_hugetlb(folio))
1967 		goto out;
1968 
1969 	if (flags & MF_COUNT_INCREASED) {
1970 		ret = 1;
1971 		count_increased = true;
1972 	} else if (folio_test_hugetlb_freed(folio)) {
1973 		ret = 0;
1974 	} else if (folio_test_hugetlb_migratable(folio)) {
1975 		ret = folio_try_get(folio);
1976 		if (ret)
1977 			count_increased = true;
1978 	} else {
1979 		ret = -EBUSY;
1980 		if (!(flags & MF_NO_RETRY))
1981 			goto out;
1982 	}
1983 
1984 	if (folio_set_hugetlb_hwpoison(folio, page)) {
1985 		ret = -EHWPOISON;
1986 		goto out;
1987 	}
1988 
1989 	/*
1990 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
1991 	 * from being migrated by memory hotremove.
1992 	 */
1993 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
1994 		folio_clear_hugetlb_migratable(folio);
1995 		*migratable_cleared = true;
1996 	}
1997 
1998 	return ret;
1999 out:
2000 	if (count_increased)
2001 		folio_put(folio);
2002 	return ret;
2003 }
2004 
2005 /*
2006  * Taking refcount of hugetlb pages needs extra care about race conditions
2007  * with basic operations like hugepage allocation/free/demotion.
2008  * So some of prechecks for hwpoison (pinning, and testing/setting
2009  * PageHWPoison) should be done in single hugetlb_lock range.
2010  */
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2011 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2012 {
2013 	int res;
2014 	struct page *p = pfn_to_page(pfn);
2015 	struct folio *folio;
2016 	unsigned long page_flags;
2017 	bool migratable_cleared = false;
2018 
2019 	*hugetlb = 1;
2020 retry:
2021 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2022 	if (res == 2) { /* fallback to normal page handling */
2023 		*hugetlb = 0;
2024 		return 0;
2025 	} else if (res == -EHWPOISON) {
2026 		if (flags & MF_ACTION_REQUIRED) {
2027 			folio = page_folio(p);
2028 			res = kill_accessing_process(current, folio_pfn(folio), flags);
2029 		}
2030 		action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2031 		return res;
2032 	} else if (res == -EBUSY) {
2033 		if (!(flags & MF_NO_RETRY)) {
2034 			flags |= MF_NO_RETRY;
2035 			goto retry;
2036 		}
2037 		return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2038 	}
2039 
2040 	folio = page_folio(p);
2041 	folio_lock(folio);
2042 
2043 	if (hwpoison_filter(p)) {
2044 		folio_clear_hugetlb_hwpoison(folio);
2045 		if (migratable_cleared)
2046 			folio_set_hugetlb_migratable(folio);
2047 		folio_unlock(folio);
2048 		if (res == 1)
2049 			folio_put(folio);
2050 		return -EOPNOTSUPP;
2051 	}
2052 
2053 	/*
2054 	 * Handling free hugepage.  The possible race with hugepage allocation
2055 	 * or demotion can be prevented by PageHWPoison flag.
2056 	 */
2057 	if (res == 0) {
2058 		folio_unlock(folio);
2059 		if (__page_handle_poison(p) > 0) {
2060 			page_ref_inc(p);
2061 			res = MF_RECOVERED;
2062 		} else {
2063 			res = MF_FAILED;
2064 		}
2065 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2066 	}
2067 
2068 	page_flags = folio->flags.f;
2069 
2070 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2071 		folio_unlock(folio);
2072 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2073 	}
2074 
2075 	return identify_page_state(pfn, p, page_flags);
2076 }
2077 
2078 #else
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2079 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2080 {
2081 	return 0;
2082 }
2083 
folio_free_raw_hwp(struct folio * folio,bool flag)2084 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2085 {
2086 	return 0;
2087 }
2088 #endif	/* CONFIG_HUGETLB_PAGE */
2089 
2090 /* Drop the extra refcount in case we come from madvise() */
put_ref_page(unsigned long pfn,int flags)2091 static void put_ref_page(unsigned long pfn, int flags)
2092 {
2093 	if (!(flags & MF_COUNT_INCREASED))
2094 		return;
2095 
2096 	put_page(pfn_to_page(pfn));
2097 }
2098 
memory_failure_dev_pagemap(unsigned long pfn,int flags,struct dev_pagemap * pgmap)2099 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2100 		struct dev_pagemap *pgmap)
2101 {
2102 	int rc = -ENXIO;
2103 
2104 	/* device metadata space is not recoverable */
2105 	if (!pgmap_pfn_valid(pgmap, pfn))
2106 		goto out;
2107 
2108 	/*
2109 	 * Call driver's implementation to handle the memory failure, otherwise
2110 	 * fall back to generic handler.
2111 	 */
2112 	if (pgmap_has_memory_failure(pgmap)) {
2113 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2114 		/*
2115 		 * Fall back to generic handler too if operation is not
2116 		 * supported inside the driver/device/filesystem.
2117 		 */
2118 		if (rc != -EOPNOTSUPP)
2119 			goto out;
2120 	}
2121 
2122 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2123 out:
2124 	/* drop pgmap ref acquired in caller */
2125 	put_dev_pagemap(pgmap);
2126 	if (rc != -EOPNOTSUPP)
2127 		action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2128 	return rc;
2129 }
2130 
2131 /*
2132  * The calling condition is as such: thp split failed, page might have
2133  * been RDMA pinned, not much can be done for recovery.
2134  * But a SIGBUS should be delivered with vaddr provided so that the user
2135  * application has a chance to recover. Also, application processes'
2136  * election for MCE early killed will be honored.
2137  */
kill_procs_now(struct page * p,unsigned long pfn,int flags,struct folio * folio)2138 static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
2139 				struct folio *folio)
2140 {
2141 	LIST_HEAD(tokill);
2142 
2143 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
2144 	kill_procs(&tokill, true, pfn, flags);
2145 }
2146 
2147 /**
2148  * memory_failure - Handle memory failure of a page.
2149  * @pfn: Page Number of the corrupted page
2150  * @flags: fine tune action taken
2151  *
2152  * This function is called by the low level machine check code
2153  * of an architecture when it detects hardware memory corruption
2154  * of a page. It tries its best to recover, which includes
2155  * dropping pages, killing processes etc.
2156  *
2157  * The function is primarily of use for corruptions that
2158  * happen outside the current execution context (e.g. when
2159  * detected by a background scrubber)
2160  *
2161  * Must run in process context (e.g. a work queue) with interrupts
2162  * enabled and no spinlocks held.
2163  *
2164  * Return:
2165  *   0             - success,
2166  *   -ENXIO        - memory not managed by the kernel
2167  *   -EOPNOTSUPP   - hwpoison_filter() filtered the error event,
2168  *   -EHWPOISON    - the page was already poisoned, potentially
2169  *                   kill process,
2170  *   other negative values - failure.
2171  */
memory_failure(unsigned long pfn,int flags)2172 int memory_failure(unsigned long pfn, int flags)
2173 {
2174 	struct page *p;
2175 	struct folio *folio;
2176 	struct dev_pagemap *pgmap;
2177 	int res = 0;
2178 	unsigned long page_flags;
2179 	bool retry = true;
2180 	int hugetlb = 0;
2181 
2182 	if (!sysctl_memory_failure_recovery)
2183 		panic("Memory failure on page %lx", pfn);
2184 
2185 	mutex_lock(&mf_mutex);
2186 
2187 	if (!(flags & MF_SW_SIMULATED))
2188 		hw_memory_failure = true;
2189 
2190 	p = pfn_to_online_page(pfn);
2191 	if (!p) {
2192 		res = arch_memory_failure(pfn, flags);
2193 		if (res == 0)
2194 			goto unlock_mutex;
2195 
2196 		if (pfn_valid(pfn)) {
2197 			pgmap = get_dev_pagemap(pfn);
2198 			put_ref_page(pfn, flags);
2199 			if (pgmap) {
2200 				res = memory_failure_dev_pagemap(pfn, flags,
2201 								 pgmap);
2202 				goto unlock_mutex;
2203 			}
2204 		}
2205 		pr_err("%#lx: memory outside kernel control\n", pfn);
2206 		res = -ENXIO;
2207 		goto unlock_mutex;
2208 	}
2209 
2210 try_again:
2211 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2212 	if (hugetlb)
2213 		goto unlock_mutex;
2214 
2215 	if (TestSetPageHWPoison(p)) {
2216 		res = -EHWPOISON;
2217 		if (flags & MF_ACTION_REQUIRED)
2218 			res = kill_accessing_process(current, pfn, flags);
2219 		if (flags & MF_COUNT_INCREASED)
2220 			put_page(p);
2221 		action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2222 		goto unlock_mutex;
2223 	}
2224 
2225 	/*
2226 	 * We need/can do nothing about count=0 pages.
2227 	 * 1) it's a free page, and therefore in safe hand:
2228 	 *    check_new_page() will be the gate keeper.
2229 	 * 2) it's part of a non-compound high order page.
2230 	 *    Implies some kernel user: cannot stop them from
2231 	 *    R/W the page; let's pray that the page has been
2232 	 *    used and will be freed some time later.
2233 	 * In fact it's dangerous to directly bump up page count from 0,
2234 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2235 	 */
2236 	if (!(flags & MF_COUNT_INCREASED)) {
2237 		res = get_hwpoison_page(p, flags);
2238 		if (!res) {
2239 			if (is_free_buddy_page(p)) {
2240 				if (take_page_off_buddy(p)) {
2241 					page_ref_inc(p);
2242 					res = MF_RECOVERED;
2243 				} else {
2244 					/* We lost the race, try again */
2245 					if (retry) {
2246 						ClearPageHWPoison(p);
2247 						retry = false;
2248 						goto try_again;
2249 					}
2250 					res = MF_FAILED;
2251 				}
2252 				res = action_result(pfn, MF_MSG_BUDDY, res);
2253 			} else {
2254 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2255 			}
2256 			goto unlock_mutex;
2257 		} else if (res < 0) {
2258 			res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2259 			goto unlock_mutex;
2260 		}
2261 	}
2262 
2263 	folio = page_folio(p);
2264 
2265 	/* filter pages that are protected from hwpoison test by users */
2266 	folio_lock(folio);
2267 	if (hwpoison_filter(p)) {
2268 		ClearPageHWPoison(p);
2269 		folio_unlock(folio);
2270 		folio_put(folio);
2271 		res = -EOPNOTSUPP;
2272 		goto unlock_mutex;
2273 	}
2274 	folio_unlock(folio);
2275 
2276 	if (folio_test_large(folio)) {
2277 		/*
2278 		 * The flag must be set after the refcount is bumped
2279 		 * otherwise it may race with THP split.
2280 		 * And the flag can't be set in get_hwpoison_page() since
2281 		 * it is called by soft offline too and it is just called
2282 		 * for !MF_COUNT_INCREASED.  So here seems to be the best
2283 		 * place.
2284 		 *
2285 		 * Don't need care about the above error handling paths for
2286 		 * get_hwpoison_page() since they handle either free page
2287 		 * or unhandlable page.  The refcount is bumped iff the
2288 		 * page is a valid handlable page.
2289 		 */
2290 		folio_set_has_hwpoisoned(folio);
2291 		if (try_to_split_thp_page(p, false) < 0) {
2292 			res = -EHWPOISON;
2293 			kill_procs_now(p, pfn, flags, folio);
2294 			put_page(p);
2295 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
2296 			goto unlock_mutex;
2297 		}
2298 		VM_BUG_ON_PAGE(!page_count(p), p);
2299 		folio = page_folio(p);
2300 	}
2301 
2302 	/*
2303 	 * We ignore non-LRU pages for good reasons.
2304 	 * - PG_locked is only well defined for LRU pages and a few others
2305 	 * - to avoid races with __SetPageLocked()
2306 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2307 	 * The check (unnecessarily) ignores LRU pages being isolated and
2308 	 * walked by the page reclaim code, however that's not a big loss.
2309 	 */
2310 	shake_folio(folio);
2311 
2312 	folio_lock(folio);
2313 
2314 	/*
2315 	 * We're only intended to deal with the non-Compound page here.
2316 	 * The page cannot become compound pages again as folio has been
2317 	 * splited and extra refcnt is held.
2318 	 */
2319 	WARN_ON(folio_test_large(folio));
2320 
2321 	/*
2322 	 * We use page flags to determine what action should be taken, but
2323 	 * the flags can be modified by the error containment action.  One
2324 	 * example is an mlocked page, where PG_mlocked is cleared by
2325 	 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2326 	 * status correctly, we save a copy of the page flags at this time.
2327 	 */
2328 	page_flags = folio->flags.f;
2329 
2330 	/*
2331 	 * __munlock_folio() may clear a writeback folio's LRU flag without
2332 	 * the folio lock. We need to wait for writeback completion for this
2333 	 * folio or it may trigger a vfs BUG while evicting inode.
2334 	 */
2335 	if (!folio_test_lru(folio) && !folio_test_writeback(folio))
2336 		goto identify_page_state;
2337 
2338 	/*
2339 	 * It's very difficult to mess with pages currently under IO
2340 	 * and in many cases impossible, so we just avoid it here.
2341 	 */
2342 	folio_wait_writeback(folio);
2343 
2344 	/*
2345 	 * Now take care of user space mappings.
2346 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2347 	 */
2348 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2349 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2350 		goto unlock_page;
2351 	}
2352 
2353 	/*
2354 	 * Torn down by someone else?
2355 	 */
2356 	if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2357 	    folio->mapping == NULL) {
2358 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2359 		goto unlock_page;
2360 	}
2361 
2362 identify_page_state:
2363 	res = identify_page_state(pfn, p, page_flags);
2364 	mutex_unlock(&mf_mutex);
2365 	return res;
2366 unlock_page:
2367 	folio_unlock(folio);
2368 unlock_mutex:
2369 	mutex_unlock(&mf_mutex);
2370 	return res;
2371 }
2372 EXPORT_SYMBOL_GPL(memory_failure);
2373 
2374 #define MEMORY_FAILURE_FIFO_ORDER	4
2375 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2376 
2377 struct memory_failure_entry {
2378 	unsigned long pfn;
2379 	int flags;
2380 };
2381 
2382 struct memory_failure_cpu {
2383 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2384 		      MEMORY_FAILURE_FIFO_SIZE);
2385 	raw_spinlock_t lock;
2386 	struct work_struct work;
2387 };
2388 
2389 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2390 
2391 /**
2392  * memory_failure_queue - Schedule handling memory failure of a page.
2393  * @pfn: Page Number of the corrupted page
2394  * @flags: Flags for memory failure handling
2395  *
2396  * This function is called by the low level hardware error handler
2397  * when it detects hardware memory corruption of a page. It schedules
2398  * the recovering of error page, including dropping pages, killing
2399  * processes etc.
2400  *
2401  * The function is primarily of use for corruptions that
2402  * happen outside the current execution context (e.g. when
2403  * detected by a background scrubber)
2404  *
2405  * Can run in IRQ context.
2406  */
memory_failure_queue(unsigned long pfn,int flags)2407 void memory_failure_queue(unsigned long pfn, int flags)
2408 {
2409 	struct memory_failure_cpu *mf_cpu;
2410 	unsigned long proc_flags;
2411 	bool buffer_overflow;
2412 	struct memory_failure_entry entry = {
2413 		.pfn =		pfn,
2414 		.flags =	flags,
2415 	};
2416 
2417 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2418 	raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2419 	buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2420 	if (!buffer_overflow)
2421 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2422 	raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2423 	put_cpu_var(memory_failure_cpu);
2424 	if (buffer_overflow)
2425 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2426 		       pfn);
2427 }
2428 EXPORT_SYMBOL_GPL(memory_failure_queue);
2429 
memory_failure_work_func(struct work_struct * work)2430 static void memory_failure_work_func(struct work_struct *work)
2431 {
2432 	struct memory_failure_cpu *mf_cpu;
2433 	struct memory_failure_entry entry = { 0, };
2434 	unsigned long proc_flags;
2435 	int gotten;
2436 
2437 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2438 	for (;;) {
2439 		raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2440 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2441 		raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2442 		if (!gotten)
2443 			break;
2444 		if (entry.flags & MF_SOFT_OFFLINE)
2445 			soft_offline_page(entry.pfn, entry.flags);
2446 		else
2447 			memory_failure(entry.pfn, entry.flags);
2448 	}
2449 }
2450 
memory_failure_init(void)2451 static int __init memory_failure_init(void)
2452 {
2453 	struct memory_failure_cpu *mf_cpu;
2454 	int cpu;
2455 
2456 	for_each_possible_cpu(cpu) {
2457 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2458 		raw_spin_lock_init(&mf_cpu->lock);
2459 		INIT_KFIFO(mf_cpu->fifo);
2460 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2461 	}
2462 
2463 	register_sysctl_init("vm", memory_failure_table);
2464 
2465 	return 0;
2466 }
2467 core_initcall(memory_failure_init);
2468 
2469 #undef pr_fmt
2470 #define pr_fmt(fmt)	"Unpoison: " fmt
2471 #define unpoison_pr_info(fmt, pfn, rs)			\
2472 ({							\
2473 	if (__ratelimit(rs))				\
2474 		pr_info(fmt, pfn);			\
2475 })
2476 
2477 /**
2478  * unpoison_memory - Unpoison a previously poisoned page
2479  * @pfn: Page number of the to be unpoisoned page
2480  *
2481  * Software-unpoison a page that has been poisoned by
2482  * memory_failure() earlier.
2483  *
2484  * This is only done on the software-level, so it only works
2485  * for linux injected failures, not real hardware failures
2486  *
2487  * Returns 0 for success, otherwise -errno.
2488  */
unpoison_memory(unsigned long pfn)2489 int unpoison_memory(unsigned long pfn)
2490 {
2491 	struct folio *folio;
2492 	struct page *p;
2493 	int ret = -EBUSY, ghp;
2494 	unsigned long count;
2495 	bool huge = false;
2496 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2497 					DEFAULT_RATELIMIT_BURST);
2498 
2499 	p = pfn_to_online_page(pfn);
2500 	if (!p)
2501 		return -EIO;
2502 	folio = page_folio(p);
2503 
2504 	mutex_lock(&mf_mutex);
2505 
2506 	if (hw_memory_failure) {
2507 		unpoison_pr_info("%#lx: disabled after HW memory failure\n",
2508 				 pfn, &unpoison_rs);
2509 		ret = -EOPNOTSUPP;
2510 		goto unlock_mutex;
2511 	}
2512 
2513 	if (is_huge_zero_folio(folio)) {
2514 		unpoison_pr_info("%#lx: huge zero page is not supported\n",
2515 				 pfn, &unpoison_rs);
2516 		ret = -EOPNOTSUPP;
2517 		goto unlock_mutex;
2518 	}
2519 
2520 	if (!PageHWPoison(p)) {
2521 		unpoison_pr_info("%#lx: page was already unpoisoned\n",
2522 				 pfn, &unpoison_rs);
2523 		goto unlock_mutex;
2524 	}
2525 
2526 	if (folio_ref_count(folio) > 1) {
2527 		unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
2528 				 pfn, &unpoison_rs);
2529 		goto unlock_mutex;
2530 	}
2531 
2532 	if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2533 	    folio_test_reserved(folio) || folio_test_offline(folio))
2534 		goto unlock_mutex;
2535 
2536 	if (folio_mapped(folio)) {
2537 		unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
2538 				 pfn, &unpoison_rs);
2539 		goto unlock_mutex;
2540 	}
2541 
2542 	if (folio_mapping(folio)) {
2543 		unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
2544 				 pfn, &unpoison_rs);
2545 		goto unlock_mutex;
2546 	}
2547 
2548 	ghp = get_hwpoison_page(p, MF_UNPOISON);
2549 	if (!ghp) {
2550 		if (folio_test_hugetlb(folio)) {
2551 			huge = true;
2552 			count = folio_free_raw_hwp(folio, false);
2553 			if (count == 0)
2554 				goto unlock_mutex;
2555 		}
2556 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2557 	} else if (ghp < 0) {
2558 		if (ghp == -EHWPOISON) {
2559 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2560 		} else {
2561 			ret = ghp;
2562 			unpoison_pr_info("%#lx: failed to grab page\n",
2563 					 pfn, &unpoison_rs);
2564 		}
2565 	} else {
2566 		if (folio_test_hugetlb(folio)) {
2567 			huge = true;
2568 			count = folio_free_raw_hwp(folio, false);
2569 			if (count == 0) {
2570 				folio_put(folio);
2571 				goto unlock_mutex;
2572 			}
2573 		}
2574 
2575 		folio_put(folio);
2576 		if (TestClearPageHWPoison(p)) {
2577 			folio_put(folio);
2578 			ret = 0;
2579 		}
2580 	}
2581 
2582 unlock_mutex:
2583 	mutex_unlock(&mf_mutex);
2584 	if (!ret) {
2585 		if (!huge)
2586 			num_poisoned_pages_sub(pfn, 1);
2587 		unpoison_pr_info("%#lx: software-unpoisoned page\n",
2588 				 page_to_pfn(p), &unpoison_rs);
2589 	}
2590 	return ret;
2591 }
2592 EXPORT_SYMBOL(unpoison_memory);
2593 
2594 #undef pr_fmt
2595 #define pr_fmt(fmt) "Soft offline: " fmt
2596 
2597 /*
2598  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2599  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2600  * If the page is mapped, it migrates the contents over.
2601  */
soft_offline_in_use_page(struct page * page)2602 static int soft_offline_in_use_page(struct page *page)
2603 {
2604 	long ret = 0;
2605 	unsigned long pfn = page_to_pfn(page);
2606 	struct folio *folio = page_folio(page);
2607 	char const *msg_page[] = {"page", "hugepage"};
2608 	bool huge = folio_test_hugetlb(folio);
2609 	bool isolated;
2610 	LIST_HEAD(pagelist);
2611 	struct migration_target_control mtc = {
2612 		.nid = NUMA_NO_NODE,
2613 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2614 		.reason = MR_MEMORY_FAILURE,
2615 	};
2616 
2617 	if (!huge && folio_test_large(folio)) {
2618 		if (try_to_split_thp_page(page, true)) {
2619 			pr_info("%#lx: thp split failed\n", pfn);
2620 			return -EBUSY;
2621 		}
2622 		folio = page_folio(page);
2623 	}
2624 
2625 	folio_lock(folio);
2626 	if (!huge)
2627 		folio_wait_writeback(folio);
2628 	if (PageHWPoison(page)) {
2629 		folio_unlock(folio);
2630 		folio_put(folio);
2631 		pr_info("%#lx: page already poisoned\n", pfn);
2632 		return 0;
2633 	}
2634 
2635 	if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2636 		/*
2637 		 * Try to invalidate first. This should work for
2638 		 * non dirty unmapped page cache pages.
2639 		 */
2640 		ret = mapping_evict_folio(folio_mapping(folio), folio);
2641 	folio_unlock(folio);
2642 
2643 	if (ret) {
2644 		pr_info("%#lx: invalidated\n", pfn);
2645 		page_handle_poison(page, false, true);
2646 		return 0;
2647 	}
2648 
2649 	isolated = isolate_folio_to_list(folio, &pagelist);
2650 
2651 	/*
2652 	 * If we succeed to isolate the folio, we grabbed another refcount on
2653 	 * the folio, so we can safely drop the one we got from get_any_page().
2654 	 * If we failed to isolate the folio, it means that we cannot go further
2655 	 * and we will return an error, so drop the reference we got from
2656 	 * get_any_page() as well.
2657 	 */
2658 	folio_put(folio);
2659 
2660 	if (isolated) {
2661 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2662 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2663 		if (!ret) {
2664 			bool release = !huge;
2665 
2666 			if (!page_handle_poison(page, huge, release))
2667 				ret = -EBUSY;
2668 		} else {
2669 			if (!list_empty(&pagelist))
2670 				putback_movable_pages(&pagelist);
2671 
2672 			pr_info("%#lx: %s migration failed %ld, type %pGp\n",
2673 				pfn, msg_page[huge], ret, &page->flags.f);
2674 			if (ret > 0)
2675 				ret = -EBUSY;
2676 		}
2677 	} else {
2678 		pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
2679 			pfn, msg_page[huge], page_count(page), &page->flags.f);
2680 		ret = -EBUSY;
2681 	}
2682 	return ret;
2683 }
2684 
2685 /**
2686  * soft_offline_page - Soft offline a page.
2687  * @pfn: pfn to soft-offline
2688  * @flags: flags. Same as memory_failure().
2689  *
2690  * Returns 0 on success,
2691  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
2692  *         disabled by /proc/sys/vm/enable_soft_offline,
2693  *         < 0 otherwise negated errno.
2694  *
2695  * Soft offline a page, by migration or invalidation,
2696  * without killing anything. This is for the case when
2697  * a page is not corrupted yet (so it's still valid to access),
2698  * but has had a number of corrected errors and is better taken
2699  * out.
2700  *
2701  * The actual policy on when to do that is maintained by
2702  * user space.
2703  *
2704  * This should never impact any application or cause data loss,
2705  * however it might take some time.
2706  *
2707  * This is not a 100% solution for all memory, but tries to be
2708  * ``good enough'' for the majority of memory.
2709  */
soft_offline_page(unsigned long pfn,int flags)2710 int soft_offline_page(unsigned long pfn, int flags)
2711 {
2712 	int ret;
2713 	bool try_again = true;
2714 	struct page *page;
2715 
2716 	if (!pfn_valid(pfn)) {
2717 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2718 		return -ENXIO;
2719 	}
2720 
2721 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2722 	page = pfn_to_online_page(pfn);
2723 	if (!page) {
2724 		put_ref_page(pfn, flags);
2725 		return -EIO;
2726 	}
2727 
2728 	if (!sysctl_enable_soft_offline) {
2729 		pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
2730 		put_ref_page(pfn, flags);
2731 		return -EOPNOTSUPP;
2732 	}
2733 
2734 	mutex_lock(&mf_mutex);
2735 
2736 	if (PageHWPoison(page)) {
2737 		pr_info("%#lx: page already poisoned\n", pfn);
2738 		put_ref_page(pfn, flags);
2739 		mutex_unlock(&mf_mutex);
2740 		return 0;
2741 	}
2742 
2743 retry:
2744 	get_online_mems();
2745 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2746 	put_online_mems();
2747 
2748 	if (hwpoison_filter(page)) {
2749 		if (ret > 0)
2750 			put_page(page);
2751 
2752 		mutex_unlock(&mf_mutex);
2753 		return -EOPNOTSUPP;
2754 	}
2755 
2756 	if (ret > 0) {
2757 		ret = soft_offline_in_use_page(page);
2758 	} else if (ret == 0) {
2759 		if (!page_handle_poison(page, true, false)) {
2760 			if (try_again) {
2761 				try_again = false;
2762 				flags &= ~MF_COUNT_INCREASED;
2763 				goto retry;
2764 			}
2765 			ret = -EBUSY;
2766 		}
2767 	}
2768 
2769 	mutex_unlock(&mf_mutex);
2770 
2771 	return ret;
2772 }
2773