xref: /linux/mm/gup.c (revision f73a058be5d70dd81a43f16b2bbff4b1576a7af8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 #include <linux/shmem_fs.h>
22 
23 #include <asm/mmu_context.h>
24 #include <asm/tlbflush.h>
25 
26 #include "internal.h"
27 
28 struct follow_page_context {
29 	struct dev_pagemap *pgmap;
30 	unsigned int page_mask;
31 };
32 
33 static inline void sanity_check_pinned_pages(struct page **pages,
34 					     unsigned long npages)
35 {
36 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
37 		return;
38 
39 	/*
40 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
41 	 * can no longer turn them possibly shared and PageAnonExclusive() will
42 	 * stick around until the page is freed.
43 	 *
44 	 * We'd like to verify that our pinned anonymous pages are still mapped
45 	 * exclusively. The issue with anon THP is that we don't know how
46 	 * they are/were mapped when pinning them. However, for anon
47 	 * THP we can assume that either the given page (PTE-mapped THP) or
48 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
49 	 * neither is the case, there is certainly something wrong.
50 	 */
51 	for (; npages; npages--, pages++) {
52 		struct page *page = *pages;
53 		struct folio *folio = page_folio(page);
54 
55 		if (is_zero_page(page) ||
56 		    !folio_test_anon(folio))
57 			continue;
58 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
59 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
60 		else
61 			/* Either a PTE-mapped or a PMD-mapped THP. */
62 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
63 				       !PageAnonExclusive(page), page);
64 	}
65 }
66 
67 /*
68  * Return the folio with ref appropriately incremented,
69  * or NULL if that failed.
70  */
71 static inline struct folio *try_get_folio(struct page *page, int refs)
72 {
73 	struct folio *folio;
74 
75 retry:
76 	folio = page_folio(page);
77 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
78 		return NULL;
79 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
80 		return NULL;
81 
82 	/*
83 	 * At this point we have a stable reference to the folio; but it
84 	 * could be that between calling page_folio() and the refcount
85 	 * increment, the folio was split, in which case we'd end up
86 	 * holding a reference on a folio that has nothing to do with the page
87 	 * we were given anymore.
88 	 * So now that the folio is stable, recheck that the page still
89 	 * belongs to this folio.
90 	 */
91 	if (unlikely(page_folio(page) != folio)) {
92 		if (!put_devmap_managed_folio_refs(folio, refs))
93 			folio_put_refs(folio, refs);
94 		goto retry;
95 	}
96 
97 	return folio;
98 }
99 
100 /**
101  * try_grab_folio() - Attempt to get or pin a folio.
102  * @page:  pointer to page to be grabbed
103  * @refs:  the value to (effectively) add to the folio's refcount
104  * @flags: gup flags: these are the FOLL_* flag values.
105  *
106  * "grab" names in this file mean, "look at flags to decide whether to use
107  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
108  *
109  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110  * same time. (That's true throughout the get_user_pages*() and
111  * pin_user_pages*() APIs.) Cases:
112  *
113  *    FOLL_GET: folio's refcount will be incremented by @refs.
114  *
115  *    FOLL_PIN on large folios: folio's refcount will be incremented by
116  *    @refs, and its pincount will be incremented by @refs.
117  *
118  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
119  *    @refs * GUP_PIN_COUNTING_BIAS.
120  *
121  * Return: The folio containing @page (with refcount appropriately
122  * incremented) for success, or NULL upon failure. If neither FOLL_GET
123  * nor FOLL_PIN was set, that's considered failure, and furthermore,
124  * a likely bug in the caller, so a warning is also emitted.
125  */
126 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
127 {
128 	struct folio *folio;
129 
130 	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
131 		return NULL;
132 
133 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
134 		return NULL;
135 
136 	if (flags & FOLL_GET)
137 		return try_get_folio(page, refs);
138 
139 	/* FOLL_PIN is set */
140 
141 	/*
142 	 * Don't take a pin on the zero page - it's not going anywhere
143 	 * and it is used in a *lot* of places.
144 	 */
145 	if (is_zero_page(page))
146 		return page_folio(page);
147 
148 	folio = try_get_folio(page, refs);
149 	if (!folio)
150 		return NULL;
151 
152 	/*
153 	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
154 	 * right zone, so fail and let the caller fall back to the slow
155 	 * path.
156 	 */
157 	if (unlikely((flags & FOLL_LONGTERM) &&
158 		     !folio_is_longterm_pinnable(folio))) {
159 		if (!put_devmap_managed_folio_refs(folio, refs))
160 			folio_put_refs(folio, refs);
161 		return NULL;
162 	}
163 
164 	/*
165 	 * When pinning a large folio, use an exact count to track it.
166 	 *
167 	 * However, be sure to *also* increment the normal folio
168 	 * refcount field at least once, so that the folio really
169 	 * is pinned.  That's why the refcount from the earlier
170 	 * try_get_folio() is left intact.
171 	 */
172 	if (folio_test_large(folio))
173 		atomic_add(refs, &folio->_pincount);
174 	else
175 		folio_ref_add(folio,
176 				refs * (GUP_PIN_COUNTING_BIAS - 1));
177 	/*
178 	 * Adjust the pincount before re-checking the PTE for changes.
179 	 * This is essentially a smp_mb() and is paired with a memory
180 	 * barrier in folio_try_share_anon_rmap_*().
181 	 */
182 	smp_mb__after_atomic();
183 
184 	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
185 
186 	return folio;
187 }
188 
189 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
190 {
191 	if (flags & FOLL_PIN) {
192 		if (is_zero_folio(folio))
193 			return;
194 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
195 		if (folio_test_large(folio))
196 			atomic_sub(refs, &folio->_pincount);
197 		else
198 			refs *= GUP_PIN_COUNTING_BIAS;
199 	}
200 
201 	if (!put_devmap_managed_folio_refs(folio, refs))
202 		folio_put_refs(folio, refs);
203 }
204 
205 /**
206  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
207  * @page:    pointer to page to be grabbed
208  * @flags:   gup flags: these are the FOLL_* flag values.
209  *
210  * This might not do anything at all, depending on the flags argument.
211  *
212  * "grab" names in this file mean, "look at flags to decide whether to use
213  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
214  *
215  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
216  * time. Cases: please see the try_grab_folio() documentation, with
217  * "refs=1".
218  *
219  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
220  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
221  *
222  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the page could not
223  *			be grabbed.
224  */
225 int __must_check try_grab_page(struct page *page, unsigned int flags)
226 {
227 	struct folio *folio = page_folio(page);
228 
229 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
230 		return -ENOMEM;
231 
232 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
233 		return -EREMOTEIO;
234 
235 	if (flags & FOLL_GET)
236 		folio_ref_inc(folio);
237 	else if (flags & FOLL_PIN) {
238 		/*
239 		 * Don't take a pin on the zero page - it's not going anywhere
240 		 * and it is used in a *lot* of places.
241 		 */
242 		if (is_zero_page(page))
243 			return 0;
244 
245 		/*
246 		 * Similar to try_grab_folio(): be sure to *also*
247 		 * increment the normal page refcount field at least once,
248 		 * so that the page really is pinned.
249 		 */
250 		if (folio_test_large(folio)) {
251 			folio_ref_add(folio, 1);
252 			atomic_add(1, &folio->_pincount);
253 		} else {
254 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
255 		}
256 
257 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
258 	}
259 
260 	return 0;
261 }
262 
263 /**
264  * unpin_user_page() - release a dma-pinned page
265  * @page:            pointer to page to be released
266  *
267  * Pages that were pinned via pin_user_pages*() must be released via either
268  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
269  * that such pages can be separately tracked and uniquely handled. In
270  * particular, interactions with RDMA and filesystems need special handling.
271  */
272 void unpin_user_page(struct page *page)
273 {
274 	sanity_check_pinned_pages(&page, 1);
275 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
276 }
277 EXPORT_SYMBOL(unpin_user_page);
278 
279 /**
280  * folio_add_pin - Try to get an additional pin on a pinned folio
281  * @folio: The folio to be pinned
282  *
283  * Get an additional pin on a folio we already have a pin on.  Makes no change
284  * if the folio is a zero_page.
285  */
286 void folio_add_pin(struct folio *folio)
287 {
288 	if (is_zero_folio(folio))
289 		return;
290 
291 	/*
292 	 * Similar to try_grab_folio(): be sure to *also* increment the normal
293 	 * page refcount field at least once, so that the page really is
294 	 * pinned.
295 	 */
296 	if (folio_test_large(folio)) {
297 		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
298 		folio_ref_inc(folio);
299 		atomic_inc(&folio->_pincount);
300 	} else {
301 		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
302 		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
303 	}
304 }
305 
306 static inline struct folio *gup_folio_range_next(struct page *start,
307 		unsigned long npages, unsigned long i, unsigned int *ntails)
308 {
309 	struct page *next = nth_page(start, i);
310 	struct folio *folio = page_folio(next);
311 	unsigned int nr = 1;
312 
313 	if (folio_test_large(folio))
314 		nr = min_t(unsigned int, npages - i,
315 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
316 
317 	*ntails = nr;
318 	return folio;
319 }
320 
321 static inline struct folio *gup_folio_next(struct page **list,
322 		unsigned long npages, unsigned long i, unsigned int *ntails)
323 {
324 	struct folio *folio = page_folio(list[i]);
325 	unsigned int nr;
326 
327 	for (nr = i + 1; nr < npages; nr++) {
328 		if (page_folio(list[nr]) != folio)
329 			break;
330 	}
331 
332 	*ntails = nr - i;
333 	return folio;
334 }
335 
336 /**
337  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
338  * @pages:  array of pages to be maybe marked dirty, and definitely released.
339  * @npages: number of pages in the @pages array.
340  * @make_dirty: whether to mark the pages dirty
341  *
342  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
343  * variants called on that page.
344  *
345  * For each page in the @pages array, make that page (or its head page, if a
346  * compound page) dirty, if @make_dirty is true, and if the page was previously
347  * listed as clean. In any case, releases all pages using unpin_user_page(),
348  * possibly via unpin_user_pages(), for the non-dirty case.
349  *
350  * Please see the unpin_user_page() documentation for details.
351  *
352  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
353  * required, then the caller should a) verify that this is really correct,
354  * because _lock() is usually required, and b) hand code it:
355  * set_page_dirty_lock(), unpin_user_page().
356  *
357  */
358 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
359 				 bool make_dirty)
360 {
361 	unsigned long i;
362 	struct folio *folio;
363 	unsigned int nr;
364 
365 	if (!make_dirty) {
366 		unpin_user_pages(pages, npages);
367 		return;
368 	}
369 
370 	sanity_check_pinned_pages(pages, npages);
371 	for (i = 0; i < npages; i += nr) {
372 		folio = gup_folio_next(pages, npages, i, &nr);
373 		/*
374 		 * Checking PageDirty at this point may race with
375 		 * clear_page_dirty_for_io(), but that's OK. Two key
376 		 * cases:
377 		 *
378 		 * 1) This code sees the page as already dirty, so it
379 		 * skips the call to set_page_dirty(). That could happen
380 		 * because clear_page_dirty_for_io() called
381 		 * page_mkclean(), followed by set_page_dirty().
382 		 * However, now the page is going to get written back,
383 		 * which meets the original intention of setting it
384 		 * dirty, so all is well: clear_page_dirty_for_io() goes
385 		 * on to call TestClearPageDirty(), and write the page
386 		 * back.
387 		 *
388 		 * 2) This code sees the page as clean, so it calls
389 		 * set_page_dirty(). The page stays dirty, despite being
390 		 * written back, so it gets written back again in the
391 		 * next writeback cycle. This is harmless.
392 		 */
393 		if (!folio_test_dirty(folio)) {
394 			folio_lock(folio);
395 			folio_mark_dirty(folio);
396 			folio_unlock(folio);
397 		}
398 		gup_put_folio(folio, nr, FOLL_PIN);
399 	}
400 }
401 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
402 
403 /**
404  * unpin_user_page_range_dirty_lock() - release and optionally dirty
405  * gup-pinned page range
406  *
407  * @page:  the starting page of a range maybe marked dirty, and definitely released.
408  * @npages: number of consecutive pages to release.
409  * @make_dirty: whether to mark the pages dirty
410  *
411  * "gup-pinned page range" refers to a range of pages that has had one of the
412  * pin_user_pages() variants called on that page.
413  *
414  * For the page ranges defined by [page .. page+npages], make that range (or
415  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
416  * page range was previously listed as clean.
417  *
418  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
419  * required, then the caller should a) verify that this is really correct,
420  * because _lock() is usually required, and b) hand code it:
421  * set_page_dirty_lock(), unpin_user_page().
422  *
423  */
424 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
425 				      bool make_dirty)
426 {
427 	unsigned long i;
428 	struct folio *folio;
429 	unsigned int nr;
430 
431 	for (i = 0; i < npages; i += nr) {
432 		folio = gup_folio_range_next(page, npages, i, &nr);
433 		if (make_dirty && !folio_test_dirty(folio)) {
434 			folio_lock(folio);
435 			folio_mark_dirty(folio);
436 			folio_unlock(folio);
437 		}
438 		gup_put_folio(folio, nr, FOLL_PIN);
439 	}
440 }
441 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
442 
443 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
444 {
445 	unsigned long i;
446 	struct folio *folio;
447 	unsigned int nr;
448 
449 	/*
450 	 * Don't perform any sanity checks because we might have raced with
451 	 * fork() and some anonymous pages might now actually be shared --
452 	 * which is why we're unpinning after all.
453 	 */
454 	for (i = 0; i < npages; i += nr) {
455 		folio = gup_folio_next(pages, npages, i, &nr);
456 		gup_put_folio(folio, nr, FOLL_PIN);
457 	}
458 }
459 
460 /**
461  * unpin_user_pages() - release an array of gup-pinned pages.
462  * @pages:  array of pages to be marked dirty and released.
463  * @npages: number of pages in the @pages array.
464  *
465  * For each page in the @pages array, release the page using unpin_user_page().
466  *
467  * Please see the unpin_user_page() documentation for details.
468  */
469 void unpin_user_pages(struct page **pages, unsigned long npages)
470 {
471 	unsigned long i;
472 	struct folio *folio;
473 	unsigned int nr;
474 
475 	/*
476 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
477 	 * leaving them pinned), but probably not. More likely, gup/pup returned
478 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
479 	 */
480 	if (WARN_ON(IS_ERR_VALUE(npages)))
481 		return;
482 
483 	sanity_check_pinned_pages(pages, npages);
484 	for (i = 0; i < npages; i += nr) {
485 		folio = gup_folio_next(pages, npages, i, &nr);
486 		gup_put_folio(folio, nr, FOLL_PIN);
487 	}
488 }
489 EXPORT_SYMBOL(unpin_user_pages);
490 
491 /*
492  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
493  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
494  * cache bouncing on large SMP machines for concurrent pinned gups.
495  */
496 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
497 {
498 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
499 		set_bit(MMF_HAS_PINNED, mm_flags);
500 }
501 
502 #ifdef CONFIG_MMU
503 
504 #if defined(CONFIG_ARCH_HAS_HUGEPD) || defined(CONFIG_HAVE_GUP_FAST)
505 static int record_subpages(struct page *page, unsigned long sz,
506 			   unsigned long addr, unsigned long end,
507 			   struct page **pages)
508 {
509 	struct page *start_page;
510 	int nr;
511 
512 	start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
513 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
514 		pages[nr] = nth_page(start_page, nr);
515 
516 	return nr;
517 }
518 #endif	/* CONFIG_ARCH_HAS_HUGEPD || CONFIG_HAVE_GUP_FAST */
519 
520 #ifdef CONFIG_ARCH_HAS_HUGEPD
521 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
522 				      unsigned long sz)
523 {
524 	unsigned long __boundary = (addr + sz) & ~(sz-1);
525 	return (__boundary - 1 < end - 1) ? __boundary : end;
526 }
527 
528 /*
529  * Returns 1 if succeeded, 0 if failed, -EMLINK if unshare needed.
530  *
531  * NOTE: for the same entry, gup-fast and gup-slow can return different
532  * results (0 v.s. -EMLINK) depending on whether vma is available.  This is
533  * the expected behavior, where we simply want gup-fast to fallback to
534  * gup-slow to take the vma reference first.
535  */
536 static int gup_hugepte(struct vm_area_struct *vma, pte_t *ptep, unsigned long sz,
537 		       unsigned long addr, unsigned long end, unsigned int flags,
538 		       struct page **pages, int *nr)
539 {
540 	unsigned long pte_end;
541 	struct page *page;
542 	struct folio *folio;
543 	pte_t pte;
544 	int refs;
545 
546 	pte_end = (addr + sz) & ~(sz-1);
547 	if (pte_end < end)
548 		end = pte_end;
549 
550 	pte = huge_ptep_get(ptep);
551 
552 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
553 		return 0;
554 
555 	/* hugepages are never "special" */
556 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
557 
558 	page = pte_page(pte);
559 	refs = record_subpages(page, sz, addr, end, pages + *nr);
560 
561 	folio = try_grab_folio(page, refs, flags);
562 	if (!folio)
563 		return 0;
564 
565 	if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
566 		gup_put_folio(folio, refs, flags);
567 		return 0;
568 	}
569 
570 	if (!pte_write(pte) && gup_must_unshare(vma, flags, &folio->page)) {
571 		gup_put_folio(folio, refs, flags);
572 		return -EMLINK;
573 	}
574 
575 	*nr += refs;
576 	folio_set_referenced(folio);
577 	return 1;
578 }
579 
580 /*
581  * NOTE: currently GUP for a hugepd is only possible on hugetlbfs file
582  * systems on Power, which does not have issue with folio writeback against
583  * GUP updates.  When hugepd will be extended to support non-hugetlbfs or
584  * even anonymous memory, we need to do extra check as what we do with most
585  * of the other folios. See writable_file_mapping_allowed() and
586  * gup_fast_folio_allowed() for more information.
587  */
588 static int gup_hugepd(struct vm_area_struct *vma, hugepd_t hugepd,
589 		      unsigned long addr, unsigned int pdshift,
590 		      unsigned long end, unsigned int flags,
591 		      struct page **pages, int *nr)
592 {
593 	pte_t *ptep;
594 	unsigned long sz = 1UL << hugepd_shift(hugepd);
595 	unsigned long next;
596 	int ret;
597 
598 	ptep = hugepte_offset(hugepd, addr, pdshift);
599 	do {
600 		next = hugepte_addr_end(addr, end, sz);
601 		ret = gup_hugepte(vma, ptep, sz, addr, end, flags, pages, nr);
602 		if (ret != 1)
603 			return ret;
604 	} while (ptep++, addr = next, addr != end);
605 
606 	return 1;
607 }
608 
609 static struct page *follow_hugepd(struct vm_area_struct *vma, hugepd_t hugepd,
610 				  unsigned long addr, unsigned int pdshift,
611 				  unsigned int flags,
612 				  struct follow_page_context *ctx)
613 {
614 	struct page *page;
615 	struct hstate *h;
616 	spinlock_t *ptl;
617 	int nr = 0, ret;
618 	pte_t *ptep;
619 
620 	/* Only hugetlb supports hugepd */
621 	if (WARN_ON_ONCE(!is_vm_hugetlb_page(vma)))
622 		return ERR_PTR(-EFAULT);
623 
624 	h = hstate_vma(vma);
625 	ptep = hugepte_offset(hugepd, addr, pdshift);
626 	ptl = huge_pte_lock(h, vma->vm_mm, ptep);
627 	ret = gup_hugepd(vma, hugepd, addr, pdshift, addr + PAGE_SIZE,
628 			 flags, &page, &nr);
629 	spin_unlock(ptl);
630 
631 	if (ret == 1) {
632 		/* GUP succeeded */
633 		WARN_ON_ONCE(nr != 1);
634 		ctx->page_mask = (1U << huge_page_order(h)) - 1;
635 		return page;
636 	}
637 
638 	/* ret can be either 0 (translates to NULL) or negative */
639 	return ERR_PTR(ret);
640 }
641 #else /* CONFIG_ARCH_HAS_HUGEPD */
642 static inline int gup_hugepd(struct vm_area_struct *vma, hugepd_t hugepd,
643 			     unsigned long addr, unsigned int pdshift,
644 			     unsigned long end, unsigned int flags,
645 			     struct page **pages, int *nr)
646 {
647 	return 0;
648 }
649 
650 static struct page *follow_hugepd(struct vm_area_struct *vma, hugepd_t hugepd,
651 				  unsigned long addr, unsigned int pdshift,
652 				  unsigned int flags,
653 				  struct follow_page_context *ctx)
654 {
655 	return NULL;
656 }
657 #endif /* CONFIG_ARCH_HAS_HUGEPD */
658 
659 
660 static struct page *no_page_table(struct vm_area_struct *vma,
661 				  unsigned int flags, unsigned long address)
662 {
663 	if (!(flags & FOLL_DUMP))
664 		return NULL;
665 
666 	/*
667 	 * When core dumping, we don't want to allocate unnecessary pages or
668 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
669 	 * then get_dump_page() will return NULL to leave a hole in the dump.
670 	 * But we can only make this optimization where a hole would surely
671 	 * be zero-filled if handle_mm_fault() actually did handle it.
672 	 */
673 	if (is_vm_hugetlb_page(vma)) {
674 		struct hstate *h = hstate_vma(vma);
675 
676 		if (!hugetlbfs_pagecache_present(h, vma, address))
677 			return ERR_PTR(-EFAULT);
678 	} else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
679 		return ERR_PTR(-EFAULT);
680 	}
681 
682 	return NULL;
683 }
684 
685 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
686 static struct page *follow_huge_pud(struct vm_area_struct *vma,
687 				    unsigned long addr, pud_t *pudp,
688 				    int flags, struct follow_page_context *ctx)
689 {
690 	struct mm_struct *mm = vma->vm_mm;
691 	struct page *page;
692 	pud_t pud = *pudp;
693 	unsigned long pfn = pud_pfn(pud);
694 	int ret;
695 
696 	assert_spin_locked(pud_lockptr(mm, pudp));
697 
698 	if ((flags & FOLL_WRITE) && !pud_write(pud))
699 		return NULL;
700 
701 	if (!pud_present(pud))
702 		return NULL;
703 
704 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
705 
706 	if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
707 	    pud_devmap(pud)) {
708 		/*
709 		 * device mapped pages can only be returned if the caller
710 		 * will manage the page reference count.
711 		 *
712 		 * At least one of FOLL_GET | FOLL_PIN must be set, so
713 		 * assert that here:
714 		 */
715 		if (!(flags & (FOLL_GET | FOLL_PIN)))
716 			return ERR_PTR(-EEXIST);
717 
718 		if (flags & FOLL_TOUCH)
719 			touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
720 
721 		ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
722 		if (!ctx->pgmap)
723 			return ERR_PTR(-EFAULT);
724 	}
725 
726 	page = pfn_to_page(pfn);
727 
728 	if (!pud_devmap(pud) && !pud_write(pud) &&
729 	    gup_must_unshare(vma, flags, page))
730 		return ERR_PTR(-EMLINK);
731 
732 	ret = try_grab_page(page, flags);
733 	if (ret)
734 		page = ERR_PTR(ret);
735 	else
736 		ctx->page_mask = HPAGE_PUD_NR - 1;
737 
738 	return page;
739 }
740 
741 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
742 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
743 					struct vm_area_struct *vma,
744 					unsigned int flags)
745 {
746 	/* If the pmd is writable, we can write to the page. */
747 	if (pmd_write(pmd))
748 		return true;
749 
750 	/* Maybe FOLL_FORCE is set to override it? */
751 	if (!(flags & FOLL_FORCE))
752 		return false;
753 
754 	/* But FOLL_FORCE has no effect on shared mappings */
755 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
756 		return false;
757 
758 	/* ... or read-only private ones */
759 	if (!(vma->vm_flags & VM_MAYWRITE))
760 		return false;
761 
762 	/* ... or already writable ones that just need to take a write fault */
763 	if (vma->vm_flags & VM_WRITE)
764 		return false;
765 
766 	/*
767 	 * See can_change_pte_writable(): we broke COW and could map the page
768 	 * writable if we have an exclusive anonymous page ...
769 	 */
770 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
771 		return false;
772 
773 	/* ... and a write-fault isn't required for other reasons. */
774 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
775 		return false;
776 	return !userfaultfd_huge_pmd_wp(vma, pmd);
777 }
778 
779 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
780 				    unsigned long addr, pmd_t *pmd,
781 				    unsigned int flags,
782 				    struct follow_page_context *ctx)
783 {
784 	struct mm_struct *mm = vma->vm_mm;
785 	pmd_t pmdval = *pmd;
786 	struct page *page;
787 	int ret;
788 
789 	assert_spin_locked(pmd_lockptr(mm, pmd));
790 
791 	page = pmd_page(pmdval);
792 	if ((flags & FOLL_WRITE) &&
793 	    !can_follow_write_pmd(pmdval, page, vma, flags))
794 		return NULL;
795 
796 	/* Avoid dumping huge zero page */
797 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
798 		return ERR_PTR(-EFAULT);
799 
800 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
801 		return NULL;
802 
803 	if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
804 		return ERR_PTR(-EMLINK);
805 
806 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
807 			!PageAnonExclusive(page), page);
808 
809 	ret = try_grab_page(page, flags);
810 	if (ret)
811 		return ERR_PTR(ret);
812 
813 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
814 	if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
815 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
816 #endif	/* CONFIG_TRANSPARENT_HUGEPAGE */
817 
818 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
819 	ctx->page_mask = HPAGE_PMD_NR - 1;
820 
821 	return page;
822 }
823 
824 #else  /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
825 static struct page *follow_huge_pud(struct vm_area_struct *vma,
826 				    unsigned long addr, pud_t *pudp,
827 				    int flags, struct follow_page_context *ctx)
828 {
829 	return NULL;
830 }
831 
832 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
833 				    unsigned long addr, pmd_t *pmd,
834 				    unsigned int flags,
835 				    struct follow_page_context *ctx)
836 {
837 	return NULL;
838 }
839 #endif	/* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
840 
841 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
842 		pte_t *pte, unsigned int flags)
843 {
844 	if (flags & FOLL_TOUCH) {
845 		pte_t orig_entry = ptep_get(pte);
846 		pte_t entry = orig_entry;
847 
848 		if (flags & FOLL_WRITE)
849 			entry = pte_mkdirty(entry);
850 		entry = pte_mkyoung(entry);
851 
852 		if (!pte_same(orig_entry, entry)) {
853 			set_pte_at(vma->vm_mm, address, pte, entry);
854 			update_mmu_cache(vma, address, pte);
855 		}
856 	}
857 
858 	/* Proper page table entry exists, but no corresponding struct page */
859 	return -EEXIST;
860 }
861 
862 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
863 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
864 					struct vm_area_struct *vma,
865 					unsigned int flags)
866 {
867 	/* If the pte is writable, we can write to the page. */
868 	if (pte_write(pte))
869 		return true;
870 
871 	/* Maybe FOLL_FORCE is set to override it? */
872 	if (!(flags & FOLL_FORCE))
873 		return false;
874 
875 	/* But FOLL_FORCE has no effect on shared mappings */
876 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
877 		return false;
878 
879 	/* ... or read-only private ones */
880 	if (!(vma->vm_flags & VM_MAYWRITE))
881 		return false;
882 
883 	/* ... or already writable ones that just need to take a write fault */
884 	if (vma->vm_flags & VM_WRITE)
885 		return false;
886 
887 	/*
888 	 * See can_change_pte_writable(): we broke COW and could map the page
889 	 * writable if we have an exclusive anonymous page ...
890 	 */
891 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
892 		return false;
893 
894 	/* ... and a write-fault isn't required for other reasons. */
895 	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
896 		return false;
897 	return !userfaultfd_pte_wp(vma, pte);
898 }
899 
900 static struct page *follow_page_pte(struct vm_area_struct *vma,
901 		unsigned long address, pmd_t *pmd, unsigned int flags,
902 		struct dev_pagemap **pgmap)
903 {
904 	struct mm_struct *mm = vma->vm_mm;
905 	struct page *page;
906 	spinlock_t *ptl;
907 	pte_t *ptep, pte;
908 	int ret;
909 
910 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
911 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
912 			 (FOLL_PIN | FOLL_GET)))
913 		return ERR_PTR(-EINVAL);
914 
915 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
916 	if (!ptep)
917 		return no_page_table(vma, flags, address);
918 	pte = ptep_get(ptep);
919 	if (!pte_present(pte))
920 		goto no_page;
921 	if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
922 		goto no_page;
923 
924 	page = vm_normal_page(vma, address, pte);
925 
926 	/*
927 	 * We only care about anon pages in can_follow_write_pte() and don't
928 	 * have to worry about pte_devmap() because they are never anon.
929 	 */
930 	if ((flags & FOLL_WRITE) &&
931 	    !can_follow_write_pte(pte, page, vma, flags)) {
932 		page = NULL;
933 		goto out;
934 	}
935 
936 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
937 		/*
938 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
939 		 * case since they are only valid while holding the pgmap
940 		 * reference.
941 		 */
942 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
943 		if (*pgmap)
944 			page = pte_page(pte);
945 		else
946 			goto no_page;
947 	} else if (unlikely(!page)) {
948 		if (flags & FOLL_DUMP) {
949 			/* Avoid special (like zero) pages in core dumps */
950 			page = ERR_PTR(-EFAULT);
951 			goto out;
952 		}
953 
954 		if (is_zero_pfn(pte_pfn(pte))) {
955 			page = pte_page(pte);
956 		} else {
957 			ret = follow_pfn_pte(vma, address, ptep, flags);
958 			page = ERR_PTR(ret);
959 			goto out;
960 		}
961 	}
962 
963 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
964 		page = ERR_PTR(-EMLINK);
965 		goto out;
966 	}
967 
968 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
969 		       !PageAnonExclusive(page), page);
970 
971 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
972 	ret = try_grab_page(page, flags);
973 	if (unlikely(ret)) {
974 		page = ERR_PTR(ret);
975 		goto out;
976 	}
977 
978 	/*
979 	 * We need to make the page accessible if and only if we are going
980 	 * to access its content (the FOLL_PIN case).  Please see
981 	 * Documentation/core-api/pin_user_pages.rst for details.
982 	 */
983 	if (flags & FOLL_PIN) {
984 		ret = arch_make_page_accessible(page);
985 		if (ret) {
986 			unpin_user_page(page);
987 			page = ERR_PTR(ret);
988 			goto out;
989 		}
990 	}
991 	if (flags & FOLL_TOUCH) {
992 		if ((flags & FOLL_WRITE) &&
993 		    !pte_dirty(pte) && !PageDirty(page))
994 			set_page_dirty(page);
995 		/*
996 		 * pte_mkyoung() would be more correct here, but atomic care
997 		 * is needed to avoid losing the dirty bit: it is easier to use
998 		 * mark_page_accessed().
999 		 */
1000 		mark_page_accessed(page);
1001 	}
1002 out:
1003 	pte_unmap_unlock(ptep, ptl);
1004 	return page;
1005 no_page:
1006 	pte_unmap_unlock(ptep, ptl);
1007 	if (!pte_none(pte))
1008 		return NULL;
1009 	return no_page_table(vma, flags, address);
1010 }
1011 
1012 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
1013 				    unsigned long address, pud_t *pudp,
1014 				    unsigned int flags,
1015 				    struct follow_page_context *ctx)
1016 {
1017 	pmd_t *pmd, pmdval;
1018 	spinlock_t *ptl;
1019 	struct page *page;
1020 	struct mm_struct *mm = vma->vm_mm;
1021 
1022 	pmd = pmd_offset(pudp, address);
1023 	pmdval = pmdp_get_lockless(pmd);
1024 	if (pmd_none(pmdval))
1025 		return no_page_table(vma, flags, address);
1026 	if (!pmd_present(pmdval))
1027 		return no_page_table(vma, flags, address);
1028 	if (unlikely(is_hugepd(__hugepd(pmd_val(pmdval)))))
1029 		return follow_hugepd(vma, __hugepd(pmd_val(pmdval)),
1030 				     address, PMD_SHIFT, flags, ctx);
1031 	if (pmd_devmap(pmdval)) {
1032 		ptl = pmd_lock(mm, pmd);
1033 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
1034 		spin_unlock(ptl);
1035 		if (page)
1036 			return page;
1037 		return no_page_table(vma, flags, address);
1038 	}
1039 	if (likely(!pmd_leaf(pmdval)))
1040 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
1041 
1042 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
1043 		return no_page_table(vma, flags, address);
1044 
1045 	ptl = pmd_lock(mm, pmd);
1046 	pmdval = *pmd;
1047 	if (unlikely(!pmd_present(pmdval))) {
1048 		spin_unlock(ptl);
1049 		return no_page_table(vma, flags, address);
1050 	}
1051 	if (unlikely(!pmd_leaf(pmdval))) {
1052 		spin_unlock(ptl);
1053 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
1054 	}
1055 	if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
1056 		spin_unlock(ptl);
1057 		split_huge_pmd(vma, pmd, address);
1058 		/* If pmd was left empty, stuff a page table in there quickly */
1059 		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
1060 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
1061 	}
1062 	page = follow_huge_pmd(vma, address, pmd, flags, ctx);
1063 	spin_unlock(ptl);
1064 	return page;
1065 }
1066 
1067 static struct page *follow_pud_mask(struct vm_area_struct *vma,
1068 				    unsigned long address, p4d_t *p4dp,
1069 				    unsigned int flags,
1070 				    struct follow_page_context *ctx)
1071 {
1072 	pud_t *pudp, pud;
1073 	spinlock_t *ptl;
1074 	struct page *page;
1075 	struct mm_struct *mm = vma->vm_mm;
1076 
1077 	pudp = pud_offset(p4dp, address);
1078 	pud = READ_ONCE(*pudp);
1079 	if (!pud_present(pud))
1080 		return no_page_table(vma, flags, address);
1081 	if (unlikely(is_hugepd(__hugepd(pud_val(pud)))))
1082 		return follow_hugepd(vma, __hugepd(pud_val(pud)),
1083 				     address, PUD_SHIFT, flags, ctx);
1084 	if (pud_leaf(pud)) {
1085 		ptl = pud_lock(mm, pudp);
1086 		page = follow_huge_pud(vma, address, pudp, flags, ctx);
1087 		spin_unlock(ptl);
1088 		if (page)
1089 			return page;
1090 		return no_page_table(vma, flags, address);
1091 	}
1092 	if (unlikely(pud_bad(pud)))
1093 		return no_page_table(vma, flags, address);
1094 
1095 	return follow_pmd_mask(vma, address, pudp, flags, ctx);
1096 }
1097 
1098 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
1099 				    unsigned long address, pgd_t *pgdp,
1100 				    unsigned int flags,
1101 				    struct follow_page_context *ctx)
1102 {
1103 	p4d_t *p4dp, p4d;
1104 
1105 	p4dp = p4d_offset(pgdp, address);
1106 	p4d = READ_ONCE(*p4dp);
1107 	BUILD_BUG_ON(p4d_leaf(p4d));
1108 
1109 	if (unlikely(is_hugepd(__hugepd(p4d_val(p4d)))))
1110 		return follow_hugepd(vma, __hugepd(p4d_val(p4d)),
1111 				     address, P4D_SHIFT, flags, ctx);
1112 
1113 	if (!p4d_present(p4d) || p4d_bad(p4d))
1114 		return no_page_table(vma, flags, address);
1115 
1116 	return follow_pud_mask(vma, address, p4dp, flags, ctx);
1117 }
1118 
1119 /**
1120  * follow_page_mask - look up a page descriptor from a user-virtual address
1121  * @vma: vm_area_struct mapping @address
1122  * @address: virtual address to look up
1123  * @flags: flags modifying lookup behaviour
1124  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1125  *       pointer to output page_mask
1126  *
1127  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1128  *
1129  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1130  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1131  *
1132  * When getting an anonymous page and the caller has to trigger unsharing
1133  * of a shared anonymous page first, -EMLINK is returned. The caller should
1134  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1135  * relevant with FOLL_PIN and !FOLL_WRITE.
1136  *
1137  * On output, the @ctx->page_mask is set according to the size of the page.
1138  *
1139  * Return: the mapped (struct page *), %NULL if no mapping exists, or
1140  * an error pointer if there is a mapping to something not represented
1141  * by a page descriptor (see also vm_normal_page()).
1142  */
1143 static struct page *follow_page_mask(struct vm_area_struct *vma,
1144 			      unsigned long address, unsigned int flags,
1145 			      struct follow_page_context *ctx)
1146 {
1147 	pgd_t *pgd;
1148 	struct mm_struct *mm = vma->vm_mm;
1149 	struct page *page;
1150 
1151 	vma_pgtable_walk_begin(vma);
1152 
1153 	ctx->page_mask = 0;
1154 	pgd = pgd_offset(mm, address);
1155 
1156 	if (unlikely(is_hugepd(__hugepd(pgd_val(*pgd)))))
1157 		page = follow_hugepd(vma, __hugepd(pgd_val(*pgd)),
1158 				     address, PGDIR_SHIFT, flags, ctx);
1159 	else if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1160 		page = no_page_table(vma, flags, address);
1161 	else
1162 		page = follow_p4d_mask(vma, address, pgd, flags, ctx);
1163 
1164 	vma_pgtable_walk_end(vma);
1165 
1166 	return page;
1167 }
1168 
1169 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1170 			 unsigned int foll_flags)
1171 {
1172 	struct follow_page_context ctx = { NULL };
1173 	struct page *page;
1174 
1175 	if (vma_is_secretmem(vma))
1176 		return NULL;
1177 
1178 	if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
1179 		return NULL;
1180 
1181 	/*
1182 	 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect
1183 	 * to fail on PROT_NONE-mapped pages.
1184 	 */
1185 	page = follow_page_mask(vma, address, foll_flags, &ctx);
1186 	if (ctx.pgmap)
1187 		put_dev_pagemap(ctx.pgmap);
1188 	return page;
1189 }
1190 
1191 static int get_gate_page(struct mm_struct *mm, unsigned long address,
1192 		unsigned int gup_flags, struct vm_area_struct **vma,
1193 		struct page **page)
1194 {
1195 	pgd_t *pgd;
1196 	p4d_t *p4d;
1197 	pud_t *pud;
1198 	pmd_t *pmd;
1199 	pte_t *pte;
1200 	pte_t entry;
1201 	int ret = -EFAULT;
1202 
1203 	/* user gate pages are read-only */
1204 	if (gup_flags & FOLL_WRITE)
1205 		return -EFAULT;
1206 	if (address > TASK_SIZE)
1207 		pgd = pgd_offset_k(address);
1208 	else
1209 		pgd = pgd_offset_gate(mm, address);
1210 	if (pgd_none(*pgd))
1211 		return -EFAULT;
1212 	p4d = p4d_offset(pgd, address);
1213 	if (p4d_none(*p4d))
1214 		return -EFAULT;
1215 	pud = pud_offset(p4d, address);
1216 	if (pud_none(*pud))
1217 		return -EFAULT;
1218 	pmd = pmd_offset(pud, address);
1219 	if (!pmd_present(*pmd))
1220 		return -EFAULT;
1221 	pte = pte_offset_map(pmd, address);
1222 	if (!pte)
1223 		return -EFAULT;
1224 	entry = ptep_get(pte);
1225 	if (pte_none(entry))
1226 		goto unmap;
1227 	*vma = get_gate_vma(mm);
1228 	if (!page)
1229 		goto out;
1230 	*page = vm_normal_page(*vma, address, entry);
1231 	if (!*page) {
1232 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1233 			goto unmap;
1234 		*page = pte_page(entry);
1235 	}
1236 	ret = try_grab_page(*page, gup_flags);
1237 	if (unlikely(ret))
1238 		goto unmap;
1239 out:
1240 	ret = 0;
1241 unmap:
1242 	pte_unmap(pte);
1243 	return ret;
1244 }
1245 
1246 /*
1247  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
1248  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
1249  * to 0 and -EBUSY returned.
1250  */
1251 static int faultin_page(struct vm_area_struct *vma,
1252 		unsigned long address, unsigned int *flags, bool unshare,
1253 		int *locked)
1254 {
1255 	unsigned int fault_flags = 0;
1256 	vm_fault_t ret;
1257 
1258 	if (*flags & FOLL_NOFAULT)
1259 		return -EFAULT;
1260 	if (*flags & FOLL_WRITE)
1261 		fault_flags |= FAULT_FLAG_WRITE;
1262 	if (*flags & FOLL_REMOTE)
1263 		fault_flags |= FAULT_FLAG_REMOTE;
1264 	if (*flags & FOLL_UNLOCKABLE) {
1265 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1266 		/*
1267 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1268 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1269 		 * That's because some callers may not be prepared to
1270 		 * handle early exits caused by non-fatal signals.
1271 		 */
1272 		if (*flags & FOLL_INTERRUPTIBLE)
1273 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1274 	}
1275 	if (*flags & FOLL_NOWAIT)
1276 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1277 	if (*flags & FOLL_TRIED) {
1278 		/*
1279 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1280 		 * can co-exist
1281 		 */
1282 		fault_flags |= FAULT_FLAG_TRIED;
1283 	}
1284 	if (unshare) {
1285 		fault_flags |= FAULT_FLAG_UNSHARE;
1286 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1287 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1288 	}
1289 
1290 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1291 
1292 	if (ret & VM_FAULT_COMPLETED) {
1293 		/*
1294 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1295 		 * mmap lock in the page fault handler. Sanity check this.
1296 		 */
1297 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1298 		*locked = 0;
1299 
1300 		/*
1301 		 * We should do the same as VM_FAULT_RETRY, but let's not
1302 		 * return -EBUSY since that's not reflecting the reality of
1303 		 * what has happened - we've just fully completed a page
1304 		 * fault, with the mmap lock released.  Use -EAGAIN to show
1305 		 * that we want to take the mmap lock _again_.
1306 		 */
1307 		return -EAGAIN;
1308 	}
1309 
1310 	if (ret & VM_FAULT_ERROR) {
1311 		int err = vm_fault_to_errno(ret, *flags);
1312 
1313 		if (err)
1314 			return err;
1315 		BUG();
1316 	}
1317 
1318 	if (ret & VM_FAULT_RETRY) {
1319 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1320 			*locked = 0;
1321 		return -EBUSY;
1322 	}
1323 
1324 	return 0;
1325 }
1326 
1327 /*
1328  * Writing to file-backed mappings which require folio dirty tracking using GUP
1329  * is a fundamentally broken operation, as kernel write access to GUP mappings
1330  * do not adhere to the semantics expected by a file system.
1331  *
1332  * Consider the following scenario:-
1333  *
1334  * 1. A folio is written to via GUP which write-faults the memory, notifying
1335  *    the file system and dirtying the folio.
1336  * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1337  *    the PTE being marked read-only.
1338  * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1339  *    direct mapping.
1340  * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1341  *    (though it does not have to).
1342  *
1343  * This results in both data being written to a folio without writenotify, and
1344  * the folio being dirtied unexpectedly (if the caller decides to do so).
1345  */
1346 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1347 					  unsigned long gup_flags)
1348 {
1349 	/*
1350 	 * If we aren't pinning then no problematic write can occur. A long term
1351 	 * pin is the most egregious case so this is the case we disallow.
1352 	 */
1353 	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1354 	    (FOLL_PIN | FOLL_LONGTERM))
1355 		return true;
1356 
1357 	/*
1358 	 * If the VMA does not require dirty tracking then no problematic write
1359 	 * can occur either.
1360 	 */
1361 	return !vma_needs_dirty_tracking(vma);
1362 }
1363 
1364 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1365 {
1366 	vm_flags_t vm_flags = vma->vm_flags;
1367 	int write = (gup_flags & FOLL_WRITE);
1368 	int foreign = (gup_flags & FOLL_REMOTE);
1369 	bool vma_anon = vma_is_anonymous(vma);
1370 
1371 	if (vm_flags & (VM_IO | VM_PFNMAP))
1372 		return -EFAULT;
1373 
1374 	if ((gup_flags & FOLL_ANON) && !vma_anon)
1375 		return -EFAULT;
1376 
1377 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1378 		return -EOPNOTSUPP;
1379 
1380 	if (vma_is_secretmem(vma))
1381 		return -EFAULT;
1382 
1383 	if (write) {
1384 		if (!vma_anon &&
1385 		    !writable_file_mapping_allowed(vma, gup_flags))
1386 			return -EFAULT;
1387 
1388 		if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1389 			if (!(gup_flags & FOLL_FORCE))
1390 				return -EFAULT;
1391 			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1392 			if (is_vm_hugetlb_page(vma))
1393 				return -EFAULT;
1394 			/*
1395 			 * We used to let the write,force case do COW in a
1396 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1397 			 * set a breakpoint in a read-only mapping of an
1398 			 * executable, without corrupting the file (yet only
1399 			 * when that file had been opened for writing!).
1400 			 * Anon pages in shared mappings are surprising: now
1401 			 * just reject it.
1402 			 */
1403 			if (!is_cow_mapping(vm_flags))
1404 				return -EFAULT;
1405 		}
1406 	} else if (!(vm_flags & VM_READ)) {
1407 		if (!(gup_flags & FOLL_FORCE))
1408 			return -EFAULT;
1409 		/*
1410 		 * Is there actually any vma we can reach here which does not
1411 		 * have VM_MAYREAD set?
1412 		 */
1413 		if (!(vm_flags & VM_MAYREAD))
1414 			return -EFAULT;
1415 	}
1416 	/*
1417 	 * gups are always data accesses, not instruction
1418 	 * fetches, so execute=false here
1419 	 */
1420 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1421 		return -EFAULT;
1422 	return 0;
1423 }
1424 
1425 /*
1426  * This is "vma_lookup()", but with a warning if we would have
1427  * historically expanded the stack in the GUP code.
1428  */
1429 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1430 	 unsigned long addr)
1431 {
1432 #ifdef CONFIG_STACK_GROWSUP
1433 	return vma_lookup(mm, addr);
1434 #else
1435 	static volatile unsigned long next_warn;
1436 	struct vm_area_struct *vma;
1437 	unsigned long now, next;
1438 
1439 	vma = find_vma(mm, addr);
1440 	if (!vma || (addr >= vma->vm_start))
1441 		return vma;
1442 
1443 	/* Only warn for half-way relevant accesses */
1444 	if (!(vma->vm_flags & VM_GROWSDOWN))
1445 		return NULL;
1446 	if (vma->vm_start - addr > 65536)
1447 		return NULL;
1448 
1449 	/* Let's not warn more than once an hour.. */
1450 	now = jiffies; next = next_warn;
1451 	if (next && time_before(now, next))
1452 		return NULL;
1453 	next_warn = now + 60*60*HZ;
1454 
1455 	/* Let people know things may have changed. */
1456 	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1457 		current->comm, task_pid_nr(current),
1458 		vma->vm_start, vma->vm_end, addr);
1459 	dump_stack();
1460 	return NULL;
1461 #endif
1462 }
1463 
1464 /**
1465  * __get_user_pages() - pin user pages in memory
1466  * @mm:		mm_struct of target mm
1467  * @start:	starting user address
1468  * @nr_pages:	number of pages from start to pin
1469  * @gup_flags:	flags modifying pin behaviour
1470  * @pages:	array that receives pointers to the pages pinned.
1471  *		Should be at least nr_pages long. Or NULL, if caller
1472  *		only intends to ensure the pages are faulted in.
1473  * @locked:     whether we're still with the mmap_lock held
1474  *
1475  * Returns either number of pages pinned (which may be less than the
1476  * number requested), or an error. Details about the return value:
1477  *
1478  * -- If nr_pages is 0, returns 0.
1479  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1480  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1481  *    pages pinned. Again, this may be less than nr_pages.
1482  * -- 0 return value is possible when the fault would need to be retried.
1483  *
1484  * The caller is responsible for releasing returned @pages, via put_page().
1485  *
1486  * Must be called with mmap_lock held.  It may be released.  See below.
1487  *
1488  * __get_user_pages walks a process's page tables and takes a reference to
1489  * each struct page that each user address corresponds to at a given
1490  * instant. That is, it takes the page that would be accessed if a user
1491  * thread accesses the given user virtual address at that instant.
1492  *
1493  * This does not guarantee that the page exists in the user mappings when
1494  * __get_user_pages returns, and there may even be a completely different
1495  * page there in some cases (eg. if mmapped pagecache has been invalidated
1496  * and subsequently re-faulted). However it does guarantee that the page
1497  * won't be freed completely. And mostly callers simply care that the page
1498  * contains data that was valid *at some point in time*. Typically, an IO
1499  * or similar operation cannot guarantee anything stronger anyway because
1500  * locks can't be held over the syscall boundary.
1501  *
1502  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1503  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1504  * appropriate) must be called after the page is finished with, and
1505  * before put_page is called.
1506  *
1507  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1508  * be released. If this happens *@locked will be set to 0 on return.
1509  *
1510  * A caller using such a combination of @gup_flags must therefore hold the
1511  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1512  * it must be held for either reading or writing and will not be released.
1513  *
1514  * In most cases, get_user_pages or get_user_pages_fast should be used
1515  * instead of __get_user_pages. __get_user_pages should be used only if
1516  * you need some special @gup_flags.
1517  */
1518 static long __get_user_pages(struct mm_struct *mm,
1519 		unsigned long start, unsigned long nr_pages,
1520 		unsigned int gup_flags, struct page **pages,
1521 		int *locked)
1522 {
1523 	long ret = 0, i = 0;
1524 	struct vm_area_struct *vma = NULL;
1525 	struct follow_page_context ctx = { NULL };
1526 
1527 	if (!nr_pages)
1528 		return 0;
1529 
1530 	start = untagged_addr_remote(mm, start);
1531 
1532 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1533 
1534 	do {
1535 		struct page *page;
1536 		unsigned int foll_flags = gup_flags;
1537 		unsigned int page_increm;
1538 
1539 		/* first iteration or cross vma bound */
1540 		if (!vma || start >= vma->vm_end) {
1541 			/*
1542 			 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1543 			 * lookups+error reporting differently.
1544 			 */
1545 			if (gup_flags & FOLL_MADV_POPULATE) {
1546 				vma = vma_lookup(mm, start);
1547 				if (!vma) {
1548 					ret = -ENOMEM;
1549 					goto out;
1550 				}
1551 				if (check_vma_flags(vma, gup_flags)) {
1552 					ret = -EINVAL;
1553 					goto out;
1554 				}
1555 				goto retry;
1556 			}
1557 			vma = gup_vma_lookup(mm, start);
1558 			if (!vma && in_gate_area(mm, start)) {
1559 				ret = get_gate_page(mm, start & PAGE_MASK,
1560 						gup_flags, &vma,
1561 						pages ? &page : NULL);
1562 				if (ret)
1563 					goto out;
1564 				ctx.page_mask = 0;
1565 				goto next_page;
1566 			}
1567 
1568 			if (!vma) {
1569 				ret = -EFAULT;
1570 				goto out;
1571 			}
1572 			ret = check_vma_flags(vma, gup_flags);
1573 			if (ret)
1574 				goto out;
1575 		}
1576 retry:
1577 		/*
1578 		 * If we have a pending SIGKILL, don't keep faulting pages and
1579 		 * potentially allocating memory.
1580 		 */
1581 		if (fatal_signal_pending(current)) {
1582 			ret = -EINTR;
1583 			goto out;
1584 		}
1585 		cond_resched();
1586 
1587 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1588 		if (!page || PTR_ERR(page) == -EMLINK) {
1589 			ret = faultin_page(vma, start, &foll_flags,
1590 					   PTR_ERR(page) == -EMLINK, locked);
1591 			switch (ret) {
1592 			case 0:
1593 				goto retry;
1594 			case -EBUSY:
1595 			case -EAGAIN:
1596 				ret = 0;
1597 				fallthrough;
1598 			case -EFAULT:
1599 			case -ENOMEM:
1600 			case -EHWPOISON:
1601 				goto out;
1602 			}
1603 			BUG();
1604 		} else if (PTR_ERR(page) == -EEXIST) {
1605 			/*
1606 			 * Proper page table entry exists, but no corresponding
1607 			 * struct page. If the caller expects **pages to be
1608 			 * filled in, bail out now, because that can't be done
1609 			 * for this page.
1610 			 */
1611 			if (pages) {
1612 				ret = PTR_ERR(page);
1613 				goto out;
1614 			}
1615 		} else if (IS_ERR(page)) {
1616 			ret = PTR_ERR(page);
1617 			goto out;
1618 		}
1619 next_page:
1620 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1621 		if (page_increm > nr_pages)
1622 			page_increm = nr_pages;
1623 
1624 		if (pages) {
1625 			struct page *subpage;
1626 			unsigned int j;
1627 
1628 			/*
1629 			 * This must be a large folio (and doesn't need to
1630 			 * be the whole folio; it can be part of it), do
1631 			 * the refcount work for all the subpages too.
1632 			 *
1633 			 * NOTE: here the page may not be the head page
1634 			 * e.g. when start addr is not thp-size aligned.
1635 			 * try_grab_folio() should have taken care of tail
1636 			 * pages.
1637 			 */
1638 			if (page_increm > 1) {
1639 				struct folio *folio;
1640 
1641 				/*
1642 				 * Since we already hold refcount on the
1643 				 * large folio, this should never fail.
1644 				 */
1645 				folio = try_grab_folio(page, page_increm - 1,
1646 						       foll_flags);
1647 				if (WARN_ON_ONCE(!folio)) {
1648 					/*
1649 					 * Release the 1st page ref if the
1650 					 * folio is problematic, fail hard.
1651 					 */
1652 					gup_put_folio(page_folio(page), 1,
1653 						      foll_flags);
1654 					ret = -EFAULT;
1655 					goto out;
1656 				}
1657 			}
1658 
1659 			for (j = 0; j < page_increm; j++) {
1660 				subpage = nth_page(page, j);
1661 				pages[i + j] = subpage;
1662 				flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1663 				flush_dcache_page(subpage);
1664 			}
1665 		}
1666 
1667 		i += page_increm;
1668 		start += page_increm * PAGE_SIZE;
1669 		nr_pages -= page_increm;
1670 	} while (nr_pages);
1671 out:
1672 	if (ctx.pgmap)
1673 		put_dev_pagemap(ctx.pgmap);
1674 	return i ? i : ret;
1675 }
1676 
1677 static bool vma_permits_fault(struct vm_area_struct *vma,
1678 			      unsigned int fault_flags)
1679 {
1680 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1681 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1682 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1683 
1684 	if (!(vm_flags & vma->vm_flags))
1685 		return false;
1686 
1687 	/*
1688 	 * The architecture might have a hardware protection
1689 	 * mechanism other than read/write that can deny access.
1690 	 *
1691 	 * gup always represents data access, not instruction
1692 	 * fetches, so execute=false here:
1693 	 */
1694 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1695 		return false;
1696 
1697 	return true;
1698 }
1699 
1700 /**
1701  * fixup_user_fault() - manually resolve a user page fault
1702  * @mm:		mm_struct of target mm
1703  * @address:	user address
1704  * @fault_flags:flags to pass down to handle_mm_fault()
1705  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1706  *		does not allow retry. If NULL, the caller must guarantee
1707  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1708  *
1709  * This is meant to be called in the specific scenario where for locking reasons
1710  * we try to access user memory in atomic context (within a pagefault_disable()
1711  * section), this returns -EFAULT, and we want to resolve the user fault before
1712  * trying again.
1713  *
1714  * Typically this is meant to be used by the futex code.
1715  *
1716  * The main difference with get_user_pages() is that this function will
1717  * unconditionally call handle_mm_fault() which will in turn perform all the
1718  * necessary SW fixup of the dirty and young bits in the PTE, while
1719  * get_user_pages() only guarantees to update these in the struct page.
1720  *
1721  * This is important for some architectures where those bits also gate the
1722  * access permission to the page because they are maintained in software.  On
1723  * such architectures, gup() will not be enough to make a subsequent access
1724  * succeed.
1725  *
1726  * This function will not return with an unlocked mmap_lock. So it has not the
1727  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1728  */
1729 int fixup_user_fault(struct mm_struct *mm,
1730 		     unsigned long address, unsigned int fault_flags,
1731 		     bool *unlocked)
1732 {
1733 	struct vm_area_struct *vma;
1734 	vm_fault_t ret;
1735 
1736 	address = untagged_addr_remote(mm, address);
1737 
1738 	if (unlocked)
1739 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1740 
1741 retry:
1742 	vma = gup_vma_lookup(mm, address);
1743 	if (!vma)
1744 		return -EFAULT;
1745 
1746 	if (!vma_permits_fault(vma, fault_flags))
1747 		return -EFAULT;
1748 
1749 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1750 	    fatal_signal_pending(current))
1751 		return -EINTR;
1752 
1753 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1754 
1755 	if (ret & VM_FAULT_COMPLETED) {
1756 		/*
1757 		 * NOTE: it's a pity that we need to retake the lock here
1758 		 * to pair with the unlock() in the callers. Ideally we
1759 		 * could tell the callers so they do not need to unlock.
1760 		 */
1761 		mmap_read_lock(mm);
1762 		*unlocked = true;
1763 		return 0;
1764 	}
1765 
1766 	if (ret & VM_FAULT_ERROR) {
1767 		int err = vm_fault_to_errno(ret, 0);
1768 
1769 		if (err)
1770 			return err;
1771 		BUG();
1772 	}
1773 
1774 	if (ret & VM_FAULT_RETRY) {
1775 		mmap_read_lock(mm);
1776 		*unlocked = true;
1777 		fault_flags |= FAULT_FLAG_TRIED;
1778 		goto retry;
1779 	}
1780 
1781 	return 0;
1782 }
1783 EXPORT_SYMBOL_GPL(fixup_user_fault);
1784 
1785 /*
1786  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1787  * specified, it'll also respond to generic signals.  The caller of GUP
1788  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1789  */
1790 static bool gup_signal_pending(unsigned int flags)
1791 {
1792 	if (fatal_signal_pending(current))
1793 		return true;
1794 
1795 	if (!(flags & FOLL_INTERRUPTIBLE))
1796 		return false;
1797 
1798 	return signal_pending(current);
1799 }
1800 
1801 /*
1802  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1803  * the caller. This function may drop the mmap_lock. If it does so, then it will
1804  * set (*locked = 0).
1805  *
1806  * (*locked == 0) means that the caller expects this function to acquire and
1807  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1808  * the function returns, even though it may have changed temporarily during
1809  * function execution.
1810  *
1811  * Please note that this function, unlike __get_user_pages(), will not return 0
1812  * for nr_pages > 0, unless FOLL_NOWAIT is used.
1813  */
1814 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1815 						unsigned long start,
1816 						unsigned long nr_pages,
1817 						struct page **pages,
1818 						int *locked,
1819 						unsigned int flags)
1820 {
1821 	long ret, pages_done;
1822 	bool must_unlock = false;
1823 
1824 	if (!nr_pages)
1825 		return 0;
1826 
1827 	/*
1828 	 * The internal caller expects GUP to manage the lock internally and the
1829 	 * lock must be released when this returns.
1830 	 */
1831 	if (!*locked) {
1832 		if (mmap_read_lock_killable(mm))
1833 			return -EAGAIN;
1834 		must_unlock = true;
1835 		*locked = 1;
1836 	}
1837 	else
1838 		mmap_assert_locked(mm);
1839 
1840 	if (flags & FOLL_PIN)
1841 		mm_set_has_pinned_flag(&mm->flags);
1842 
1843 	/*
1844 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1845 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1846 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1847 	 * for FOLL_GET, not for the newer FOLL_PIN.
1848 	 *
1849 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1850 	 * that here, as any failures will be obvious enough.
1851 	 */
1852 	if (pages && !(flags & FOLL_PIN))
1853 		flags |= FOLL_GET;
1854 
1855 	pages_done = 0;
1856 	for (;;) {
1857 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1858 				       locked);
1859 		if (!(flags & FOLL_UNLOCKABLE)) {
1860 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1861 			pages_done = ret;
1862 			break;
1863 		}
1864 
1865 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1866 		if (!*locked) {
1867 			BUG_ON(ret < 0);
1868 			BUG_ON(ret >= nr_pages);
1869 		}
1870 
1871 		if (ret > 0) {
1872 			nr_pages -= ret;
1873 			pages_done += ret;
1874 			if (!nr_pages)
1875 				break;
1876 		}
1877 		if (*locked) {
1878 			/*
1879 			 * VM_FAULT_RETRY didn't trigger or it was a
1880 			 * FOLL_NOWAIT.
1881 			 */
1882 			if (!pages_done)
1883 				pages_done = ret;
1884 			break;
1885 		}
1886 		/*
1887 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1888 		 * For the prefault case (!pages) we only update counts.
1889 		 */
1890 		if (likely(pages))
1891 			pages += ret;
1892 		start += ret << PAGE_SHIFT;
1893 
1894 		/* The lock was temporarily dropped, so we must unlock later */
1895 		must_unlock = true;
1896 
1897 retry:
1898 		/*
1899 		 * Repeat on the address that fired VM_FAULT_RETRY
1900 		 * with both FAULT_FLAG_ALLOW_RETRY and
1901 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1902 		 * by fatal signals of even common signals, depending on
1903 		 * the caller's request. So we need to check it before we
1904 		 * start trying again otherwise it can loop forever.
1905 		 */
1906 		if (gup_signal_pending(flags)) {
1907 			if (!pages_done)
1908 				pages_done = -EINTR;
1909 			break;
1910 		}
1911 
1912 		ret = mmap_read_lock_killable(mm);
1913 		if (ret) {
1914 			BUG_ON(ret > 0);
1915 			if (!pages_done)
1916 				pages_done = ret;
1917 			break;
1918 		}
1919 
1920 		*locked = 1;
1921 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1922 				       pages, locked);
1923 		if (!*locked) {
1924 			/* Continue to retry until we succeeded */
1925 			BUG_ON(ret != 0);
1926 			goto retry;
1927 		}
1928 		if (ret != 1) {
1929 			BUG_ON(ret > 1);
1930 			if (!pages_done)
1931 				pages_done = ret;
1932 			break;
1933 		}
1934 		nr_pages--;
1935 		pages_done++;
1936 		if (!nr_pages)
1937 			break;
1938 		if (likely(pages))
1939 			pages++;
1940 		start += PAGE_SIZE;
1941 	}
1942 	if (must_unlock && *locked) {
1943 		/*
1944 		 * We either temporarily dropped the lock, or the caller
1945 		 * requested that we both acquire and drop the lock. Either way,
1946 		 * we must now unlock, and notify the caller of that state.
1947 		 */
1948 		mmap_read_unlock(mm);
1949 		*locked = 0;
1950 	}
1951 
1952 	/*
1953 	 * Failing to pin anything implies something has gone wrong (except when
1954 	 * FOLL_NOWAIT is specified).
1955 	 */
1956 	if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1957 		return -EFAULT;
1958 
1959 	return pages_done;
1960 }
1961 
1962 /**
1963  * populate_vma_page_range() -  populate a range of pages in the vma.
1964  * @vma:   target vma
1965  * @start: start address
1966  * @end:   end address
1967  * @locked: whether the mmap_lock is still held
1968  *
1969  * This takes care of mlocking the pages too if VM_LOCKED is set.
1970  *
1971  * Return either number of pages pinned in the vma, or a negative error
1972  * code on error.
1973  *
1974  * vma->vm_mm->mmap_lock must be held.
1975  *
1976  * If @locked is NULL, it may be held for read or write and will
1977  * be unperturbed.
1978  *
1979  * If @locked is non-NULL, it must held for read only and may be
1980  * released.  If it's released, *@locked will be set to 0.
1981  */
1982 long populate_vma_page_range(struct vm_area_struct *vma,
1983 		unsigned long start, unsigned long end, int *locked)
1984 {
1985 	struct mm_struct *mm = vma->vm_mm;
1986 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1987 	int local_locked = 1;
1988 	int gup_flags;
1989 	long ret;
1990 
1991 	VM_BUG_ON(!PAGE_ALIGNED(start));
1992 	VM_BUG_ON(!PAGE_ALIGNED(end));
1993 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1994 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1995 	mmap_assert_locked(mm);
1996 
1997 	/*
1998 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1999 	 * faultin_page() to break COW, so it has no work to do here.
2000 	 */
2001 	if (vma->vm_flags & VM_LOCKONFAULT)
2002 		return nr_pages;
2003 
2004 	/* ... similarly, we've never faulted in PROT_NONE pages */
2005 	if (!vma_is_accessible(vma))
2006 		return -EFAULT;
2007 
2008 	gup_flags = FOLL_TOUCH;
2009 	/*
2010 	 * We want to touch writable mappings with a write fault in order
2011 	 * to break COW, except for shared mappings because these don't COW
2012 	 * and we would not want to dirty them for nothing.
2013 	 *
2014 	 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
2015 	 * readable (ie write-only or executable).
2016 	 */
2017 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
2018 		gup_flags |= FOLL_WRITE;
2019 	else
2020 		gup_flags |= FOLL_FORCE;
2021 
2022 	if (locked)
2023 		gup_flags |= FOLL_UNLOCKABLE;
2024 
2025 	/*
2026 	 * We made sure addr is within a VMA, so the following will
2027 	 * not result in a stack expansion that recurses back here.
2028 	 */
2029 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
2030 			       NULL, locked ? locked : &local_locked);
2031 	lru_add_drain();
2032 	return ret;
2033 }
2034 
2035 /*
2036  * faultin_page_range() - populate (prefault) page tables inside the
2037  *			  given range readable/writable
2038  *
2039  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
2040  *
2041  * @mm: the mm to populate page tables in
2042  * @start: start address
2043  * @end: end address
2044  * @write: whether to prefault readable or writable
2045  * @locked: whether the mmap_lock is still held
2046  *
2047  * Returns either number of processed pages in the MM, or a negative error
2048  * code on error (see __get_user_pages()). Note that this function reports
2049  * errors related to VMAs, such as incompatible mappings, as expected by
2050  * MADV_POPULATE_(READ|WRITE).
2051  *
2052  * The range must be page-aligned.
2053  *
2054  * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
2055  */
2056 long faultin_page_range(struct mm_struct *mm, unsigned long start,
2057 			unsigned long end, bool write, int *locked)
2058 {
2059 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
2060 	int gup_flags;
2061 	long ret;
2062 
2063 	VM_BUG_ON(!PAGE_ALIGNED(start));
2064 	VM_BUG_ON(!PAGE_ALIGNED(end));
2065 	mmap_assert_locked(mm);
2066 
2067 	/*
2068 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
2069 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
2070 	 *	       difference with !FOLL_FORCE, because the page is writable
2071 	 *	       in the page table.
2072 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
2073 	 *		  a poisoned page.
2074 	 * !FOLL_FORCE: Require proper access permissions.
2075 	 */
2076 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
2077 		    FOLL_MADV_POPULATE;
2078 	if (write)
2079 		gup_flags |= FOLL_WRITE;
2080 
2081 	ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
2082 				      gup_flags);
2083 	lru_add_drain();
2084 	return ret;
2085 }
2086 
2087 /*
2088  * __mm_populate - populate and/or mlock pages within a range of address space.
2089  *
2090  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
2091  * flags. VMAs must be already marked with the desired vm_flags, and
2092  * mmap_lock must not be held.
2093  */
2094 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
2095 {
2096 	struct mm_struct *mm = current->mm;
2097 	unsigned long end, nstart, nend;
2098 	struct vm_area_struct *vma = NULL;
2099 	int locked = 0;
2100 	long ret = 0;
2101 
2102 	end = start + len;
2103 
2104 	for (nstart = start; nstart < end; nstart = nend) {
2105 		/*
2106 		 * We want to fault in pages for [nstart; end) address range.
2107 		 * Find first corresponding VMA.
2108 		 */
2109 		if (!locked) {
2110 			locked = 1;
2111 			mmap_read_lock(mm);
2112 			vma = find_vma_intersection(mm, nstart, end);
2113 		} else if (nstart >= vma->vm_end)
2114 			vma = find_vma_intersection(mm, vma->vm_end, end);
2115 
2116 		if (!vma)
2117 			break;
2118 		/*
2119 		 * Set [nstart; nend) to intersection of desired address
2120 		 * range with the first VMA. Also, skip undesirable VMA types.
2121 		 */
2122 		nend = min(end, vma->vm_end);
2123 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
2124 			continue;
2125 		if (nstart < vma->vm_start)
2126 			nstart = vma->vm_start;
2127 		/*
2128 		 * Now fault in a range of pages. populate_vma_page_range()
2129 		 * double checks the vma flags, so that it won't mlock pages
2130 		 * if the vma was already munlocked.
2131 		 */
2132 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
2133 		if (ret < 0) {
2134 			if (ignore_errors) {
2135 				ret = 0;
2136 				continue;	/* continue at next VMA */
2137 			}
2138 			break;
2139 		}
2140 		nend = nstart + ret * PAGE_SIZE;
2141 		ret = 0;
2142 	}
2143 	if (locked)
2144 		mmap_read_unlock(mm);
2145 	return ret;	/* 0 or negative error code */
2146 }
2147 #else /* CONFIG_MMU */
2148 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
2149 		unsigned long nr_pages, struct page **pages,
2150 		int *locked, unsigned int foll_flags)
2151 {
2152 	struct vm_area_struct *vma;
2153 	bool must_unlock = false;
2154 	unsigned long vm_flags;
2155 	long i;
2156 
2157 	if (!nr_pages)
2158 		return 0;
2159 
2160 	/*
2161 	 * The internal caller expects GUP to manage the lock internally and the
2162 	 * lock must be released when this returns.
2163 	 */
2164 	if (!*locked) {
2165 		if (mmap_read_lock_killable(mm))
2166 			return -EAGAIN;
2167 		must_unlock = true;
2168 		*locked = 1;
2169 	}
2170 
2171 	/* calculate required read or write permissions.
2172 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
2173 	 */
2174 	vm_flags  = (foll_flags & FOLL_WRITE) ?
2175 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2176 	vm_flags &= (foll_flags & FOLL_FORCE) ?
2177 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2178 
2179 	for (i = 0; i < nr_pages; i++) {
2180 		vma = find_vma(mm, start);
2181 		if (!vma)
2182 			break;
2183 
2184 		/* protect what we can, including chardevs */
2185 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2186 		    !(vm_flags & vma->vm_flags))
2187 			break;
2188 
2189 		if (pages) {
2190 			pages[i] = virt_to_page((void *)start);
2191 			if (pages[i])
2192 				get_page(pages[i]);
2193 		}
2194 
2195 		start = (start + PAGE_SIZE) & PAGE_MASK;
2196 	}
2197 
2198 	if (must_unlock && *locked) {
2199 		mmap_read_unlock(mm);
2200 		*locked = 0;
2201 	}
2202 
2203 	return i ? : -EFAULT;
2204 }
2205 #endif /* !CONFIG_MMU */
2206 
2207 /**
2208  * fault_in_writeable - fault in userspace address range for writing
2209  * @uaddr: start of address range
2210  * @size: size of address range
2211  *
2212  * Returns the number of bytes not faulted in (like copy_to_user() and
2213  * copy_from_user()).
2214  */
2215 size_t fault_in_writeable(char __user *uaddr, size_t size)
2216 {
2217 	char __user *start = uaddr, *end;
2218 
2219 	if (unlikely(size == 0))
2220 		return 0;
2221 	if (!user_write_access_begin(uaddr, size))
2222 		return size;
2223 	if (!PAGE_ALIGNED(uaddr)) {
2224 		unsafe_put_user(0, uaddr, out);
2225 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
2226 	}
2227 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
2228 	if (unlikely(end < start))
2229 		end = NULL;
2230 	while (uaddr != end) {
2231 		unsafe_put_user(0, uaddr, out);
2232 		uaddr += PAGE_SIZE;
2233 	}
2234 
2235 out:
2236 	user_write_access_end();
2237 	if (size > uaddr - start)
2238 		return size - (uaddr - start);
2239 	return 0;
2240 }
2241 EXPORT_SYMBOL(fault_in_writeable);
2242 
2243 /**
2244  * fault_in_subpage_writeable - fault in an address range for writing
2245  * @uaddr: start of address range
2246  * @size: size of address range
2247  *
2248  * Fault in a user address range for writing while checking for permissions at
2249  * sub-page granularity (e.g. arm64 MTE). This function should be used when
2250  * the caller cannot guarantee forward progress of a copy_to_user() loop.
2251  *
2252  * Returns the number of bytes not faulted in (like copy_to_user() and
2253  * copy_from_user()).
2254  */
2255 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2256 {
2257 	size_t faulted_in;
2258 
2259 	/*
2260 	 * Attempt faulting in at page granularity first for page table
2261 	 * permission checking. The arch-specific probe_subpage_writeable()
2262 	 * functions may not check for this.
2263 	 */
2264 	faulted_in = size - fault_in_writeable(uaddr, size);
2265 	if (faulted_in)
2266 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2267 
2268 	return size - faulted_in;
2269 }
2270 EXPORT_SYMBOL(fault_in_subpage_writeable);
2271 
2272 /*
2273  * fault_in_safe_writeable - fault in an address range for writing
2274  * @uaddr: start of address range
2275  * @size: length of address range
2276  *
2277  * Faults in an address range for writing.  This is primarily useful when we
2278  * already know that some or all of the pages in the address range aren't in
2279  * memory.
2280  *
2281  * Unlike fault_in_writeable(), this function is non-destructive.
2282  *
2283  * Note that we don't pin or otherwise hold the pages referenced that we fault
2284  * in.  There's no guarantee that they'll stay in memory for any duration of
2285  * time.
2286  *
2287  * Returns the number of bytes not faulted in, like copy_to_user() and
2288  * copy_from_user().
2289  */
2290 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2291 {
2292 	unsigned long start = (unsigned long)uaddr, end;
2293 	struct mm_struct *mm = current->mm;
2294 	bool unlocked = false;
2295 
2296 	if (unlikely(size == 0))
2297 		return 0;
2298 	end = PAGE_ALIGN(start + size);
2299 	if (end < start)
2300 		end = 0;
2301 
2302 	mmap_read_lock(mm);
2303 	do {
2304 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
2305 			break;
2306 		start = (start + PAGE_SIZE) & PAGE_MASK;
2307 	} while (start != end);
2308 	mmap_read_unlock(mm);
2309 
2310 	if (size > (unsigned long)uaddr - start)
2311 		return size - ((unsigned long)uaddr - start);
2312 	return 0;
2313 }
2314 EXPORT_SYMBOL(fault_in_safe_writeable);
2315 
2316 /**
2317  * fault_in_readable - fault in userspace address range for reading
2318  * @uaddr: start of user address range
2319  * @size: size of user address range
2320  *
2321  * Returns the number of bytes not faulted in (like copy_to_user() and
2322  * copy_from_user()).
2323  */
2324 size_t fault_in_readable(const char __user *uaddr, size_t size)
2325 {
2326 	const char __user *start = uaddr, *end;
2327 	volatile char c;
2328 
2329 	if (unlikely(size == 0))
2330 		return 0;
2331 	if (!user_read_access_begin(uaddr, size))
2332 		return size;
2333 	if (!PAGE_ALIGNED(uaddr)) {
2334 		unsafe_get_user(c, uaddr, out);
2335 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
2336 	}
2337 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
2338 	if (unlikely(end < start))
2339 		end = NULL;
2340 	while (uaddr != end) {
2341 		unsafe_get_user(c, uaddr, out);
2342 		uaddr += PAGE_SIZE;
2343 	}
2344 
2345 out:
2346 	user_read_access_end();
2347 	(void)c;
2348 	if (size > uaddr - start)
2349 		return size - (uaddr - start);
2350 	return 0;
2351 }
2352 EXPORT_SYMBOL(fault_in_readable);
2353 
2354 /**
2355  * get_dump_page() - pin user page in memory while writing it to core dump
2356  * @addr: user address
2357  *
2358  * Returns struct page pointer of user page pinned for dump,
2359  * to be freed afterwards by put_page().
2360  *
2361  * Returns NULL on any kind of failure - a hole must then be inserted into
2362  * the corefile, to preserve alignment with its headers; and also returns
2363  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2364  * allowing a hole to be left in the corefile to save disk space.
2365  *
2366  * Called without mmap_lock (takes and releases the mmap_lock by itself).
2367  */
2368 #ifdef CONFIG_ELF_CORE
2369 struct page *get_dump_page(unsigned long addr)
2370 {
2371 	struct page *page;
2372 	int locked = 0;
2373 	int ret;
2374 
2375 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
2376 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2377 	return (ret == 1) ? page : NULL;
2378 }
2379 #endif /* CONFIG_ELF_CORE */
2380 
2381 #ifdef CONFIG_MIGRATION
2382 /*
2383  * Returns the number of collected pages. Return value is always >= 0.
2384  */
2385 static unsigned long collect_longterm_unpinnable_pages(
2386 					struct list_head *movable_page_list,
2387 					unsigned long nr_pages,
2388 					struct page **pages)
2389 {
2390 	unsigned long i, collected = 0;
2391 	struct folio *prev_folio = NULL;
2392 	bool drain_allow = true;
2393 
2394 	for (i = 0; i < nr_pages; i++) {
2395 		struct folio *folio = page_folio(pages[i]);
2396 
2397 		if (folio == prev_folio)
2398 			continue;
2399 		prev_folio = folio;
2400 
2401 		if (folio_is_longterm_pinnable(folio))
2402 			continue;
2403 
2404 		collected++;
2405 
2406 		if (folio_is_device_coherent(folio))
2407 			continue;
2408 
2409 		if (folio_test_hugetlb(folio)) {
2410 			isolate_hugetlb(folio, movable_page_list);
2411 			continue;
2412 		}
2413 
2414 		if (!folio_test_lru(folio) && drain_allow) {
2415 			lru_add_drain_all();
2416 			drain_allow = false;
2417 		}
2418 
2419 		if (!folio_isolate_lru(folio))
2420 			continue;
2421 
2422 		list_add_tail(&folio->lru, movable_page_list);
2423 		node_stat_mod_folio(folio,
2424 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
2425 				    folio_nr_pages(folio));
2426 	}
2427 
2428 	return collected;
2429 }
2430 
2431 /*
2432  * Unpins all pages and migrates device coherent pages and movable_page_list.
2433  * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2434  * (or partial success).
2435  */
2436 static int migrate_longterm_unpinnable_pages(
2437 					struct list_head *movable_page_list,
2438 					unsigned long nr_pages,
2439 					struct page **pages)
2440 {
2441 	int ret;
2442 	unsigned long i;
2443 
2444 	for (i = 0; i < nr_pages; i++) {
2445 		struct folio *folio = page_folio(pages[i]);
2446 
2447 		if (folio_is_device_coherent(folio)) {
2448 			/*
2449 			 * Migration will fail if the page is pinned, so convert
2450 			 * the pin on the source page to a normal reference.
2451 			 */
2452 			pages[i] = NULL;
2453 			folio_get(folio);
2454 			gup_put_folio(folio, 1, FOLL_PIN);
2455 
2456 			if (migrate_device_coherent_page(&folio->page)) {
2457 				ret = -EBUSY;
2458 				goto err;
2459 			}
2460 
2461 			continue;
2462 		}
2463 
2464 		/*
2465 		 * We can't migrate pages with unexpected references, so drop
2466 		 * the reference obtained by __get_user_pages_locked().
2467 		 * Migrating pages have been added to movable_page_list after
2468 		 * calling folio_isolate_lru() which takes a reference so the
2469 		 * page won't be freed if it's migrating.
2470 		 */
2471 		unpin_user_page(pages[i]);
2472 		pages[i] = NULL;
2473 	}
2474 
2475 	if (!list_empty(movable_page_list)) {
2476 		struct migration_target_control mtc = {
2477 			.nid = NUMA_NO_NODE,
2478 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2479 			.reason = MR_LONGTERM_PIN,
2480 		};
2481 
2482 		if (migrate_pages(movable_page_list, alloc_migration_target,
2483 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2484 				  MR_LONGTERM_PIN, NULL)) {
2485 			ret = -ENOMEM;
2486 			goto err;
2487 		}
2488 	}
2489 
2490 	putback_movable_pages(movable_page_list);
2491 
2492 	return -EAGAIN;
2493 
2494 err:
2495 	for (i = 0; i < nr_pages; i++)
2496 		if (pages[i])
2497 			unpin_user_page(pages[i]);
2498 	putback_movable_pages(movable_page_list);
2499 
2500 	return ret;
2501 }
2502 
2503 /*
2504  * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2505  * pages in the range are required to be pinned via FOLL_PIN, before calling
2506  * this routine.
2507  *
2508  * If any pages in the range are not allowed to be pinned, then this routine
2509  * will migrate those pages away, unpin all the pages in the range and return
2510  * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2511  * call this routine again.
2512  *
2513  * If an error other than -EAGAIN occurs, this indicates a migration failure.
2514  * The caller should give up, and propagate the error back up the call stack.
2515  *
2516  * If everything is OK and all pages in the range are allowed to be pinned, then
2517  * this routine leaves all pages pinned and returns zero for success.
2518  */
2519 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2520 					    struct page **pages)
2521 {
2522 	unsigned long collected;
2523 	LIST_HEAD(movable_page_list);
2524 
2525 	collected = collect_longterm_unpinnable_pages(&movable_page_list,
2526 						nr_pages, pages);
2527 	if (!collected)
2528 		return 0;
2529 
2530 	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2531 						pages);
2532 }
2533 #else
2534 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2535 					    struct page **pages)
2536 {
2537 	return 0;
2538 }
2539 #endif /* CONFIG_MIGRATION */
2540 
2541 /*
2542  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2543  * allows us to process the FOLL_LONGTERM flag.
2544  */
2545 static long __gup_longterm_locked(struct mm_struct *mm,
2546 				  unsigned long start,
2547 				  unsigned long nr_pages,
2548 				  struct page **pages,
2549 				  int *locked,
2550 				  unsigned int gup_flags)
2551 {
2552 	unsigned int flags;
2553 	long rc, nr_pinned_pages;
2554 
2555 	if (!(gup_flags & FOLL_LONGTERM))
2556 		return __get_user_pages_locked(mm, start, nr_pages, pages,
2557 					       locked, gup_flags);
2558 
2559 	flags = memalloc_pin_save();
2560 	do {
2561 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2562 							  pages, locked,
2563 							  gup_flags);
2564 		if (nr_pinned_pages <= 0) {
2565 			rc = nr_pinned_pages;
2566 			break;
2567 		}
2568 
2569 		/* FOLL_LONGTERM implies FOLL_PIN */
2570 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2571 	} while (rc == -EAGAIN);
2572 	memalloc_pin_restore(flags);
2573 	return rc ? rc : nr_pinned_pages;
2574 }
2575 
2576 /*
2577  * Check that the given flags are valid for the exported gup/pup interface, and
2578  * update them with the required flags that the caller must have set.
2579  */
2580 static bool is_valid_gup_args(struct page **pages, int *locked,
2581 			      unsigned int *gup_flags_p, unsigned int to_set)
2582 {
2583 	unsigned int gup_flags = *gup_flags_p;
2584 
2585 	/*
2586 	 * These flags not allowed to be specified externally to the gup
2587 	 * interfaces:
2588 	 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2589 	 * - FOLL_REMOTE is internal only and used on follow_page()
2590 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2591 	 */
2592 	if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2593 		return false;
2594 
2595 	gup_flags |= to_set;
2596 	if (locked) {
2597 		/* At the external interface locked must be set */
2598 		if (WARN_ON_ONCE(*locked != 1))
2599 			return false;
2600 
2601 		gup_flags |= FOLL_UNLOCKABLE;
2602 	}
2603 
2604 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2605 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2606 			 (FOLL_PIN | FOLL_GET)))
2607 		return false;
2608 
2609 	/* LONGTERM can only be specified when pinning */
2610 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2611 		return false;
2612 
2613 	/* Pages input must be given if using GET/PIN */
2614 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2615 		return false;
2616 
2617 	/* We want to allow the pgmap to be hot-unplugged at all times */
2618 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2619 			 (gup_flags & FOLL_PCI_P2PDMA)))
2620 		return false;
2621 
2622 	*gup_flags_p = gup_flags;
2623 	return true;
2624 }
2625 
2626 #ifdef CONFIG_MMU
2627 /**
2628  * get_user_pages_remote() - pin user pages in memory
2629  * @mm:		mm_struct of target mm
2630  * @start:	starting user address
2631  * @nr_pages:	number of pages from start to pin
2632  * @gup_flags:	flags modifying lookup behaviour
2633  * @pages:	array that receives pointers to the pages pinned.
2634  *		Should be at least nr_pages long. Or NULL, if caller
2635  *		only intends to ensure the pages are faulted in.
2636  * @locked:	pointer to lock flag indicating whether lock is held and
2637  *		subsequently whether VM_FAULT_RETRY functionality can be
2638  *		utilised. Lock must initially be held.
2639  *
2640  * Returns either number of pages pinned (which may be less than the
2641  * number requested), or an error. Details about the return value:
2642  *
2643  * -- If nr_pages is 0, returns 0.
2644  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2645  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2646  *    pages pinned. Again, this may be less than nr_pages.
2647  *
2648  * The caller is responsible for releasing returned @pages, via put_page().
2649  *
2650  * Must be called with mmap_lock held for read or write.
2651  *
2652  * get_user_pages_remote walks a process's page tables and takes a reference
2653  * to each struct page that each user address corresponds to at a given
2654  * instant. That is, it takes the page that would be accessed if a user
2655  * thread accesses the given user virtual address at that instant.
2656  *
2657  * This does not guarantee that the page exists in the user mappings when
2658  * get_user_pages_remote returns, and there may even be a completely different
2659  * page there in some cases (eg. if mmapped pagecache has been invalidated
2660  * and subsequently re-faulted). However it does guarantee that the page
2661  * won't be freed completely. And mostly callers simply care that the page
2662  * contains data that was valid *at some point in time*. Typically, an IO
2663  * or similar operation cannot guarantee anything stronger anyway because
2664  * locks can't be held over the syscall boundary.
2665  *
2666  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2667  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2668  * be called after the page is finished with, and before put_page is called.
2669  *
2670  * get_user_pages_remote is typically used for fewer-copy IO operations,
2671  * to get a handle on the memory by some means other than accesses
2672  * via the user virtual addresses. The pages may be submitted for
2673  * DMA to devices or accessed via their kernel linear mapping (via the
2674  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2675  *
2676  * See also get_user_pages_fast, for performance critical applications.
2677  *
2678  * get_user_pages_remote should be phased out in favor of
2679  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2680  * should use get_user_pages_remote because it cannot pass
2681  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2682  */
2683 long get_user_pages_remote(struct mm_struct *mm,
2684 		unsigned long start, unsigned long nr_pages,
2685 		unsigned int gup_flags, struct page **pages,
2686 		int *locked)
2687 {
2688 	int local_locked = 1;
2689 
2690 	if (!is_valid_gup_args(pages, locked, &gup_flags,
2691 			       FOLL_TOUCH | FOLL_REMOTE))
2692 		return -EINVAL;
2693 
2694 	return __get_user_pages_locked(mm, start, nr_pages, pages,
2695 				       locked ? locked : &local_locked,
2696 				       gup_flags);
2697 }
2698 EXPORT_SYMBOL(get_user_pages_remote);
2699 
2700 #else /* CONFIG_MMU */
2701 long get_user_pages_remote(struct mm_struct *mm,
2702 			   unsigned long start, unsigned long nr_pages,
2703 			   unsigned int gup_flags, struct page **pages,
2704 			   int *locked)
2705 {
2706 	return 0;
2707 }
2708 #endif /* !CONFIG_MMU */
2709 
2710 /**
2711  * get_user_pages() - pin user pages in memory
2712  * @start:      starting user address
2713  * @nr_pages:   number of pages from start to pin
2714  * @gup_flags:  flags modifying lookup behaviour
2715  * @pages:      array that receives pointers to the pages pinned.
2716  *              Should be at least nr_pages long. Or NULL, if caller
2717  *              only intends to ensure the pages are faulted in.
2718  *
2719  * This is the same as get_user_pages_remote(), just with a less-flexible
2720  * calling convention where we assume that the mm being operated on belongs to
2721  * the current task, and doesn't allow passing of a locked parameter.  We also
2722  * obviously don't pass FOLL_REMOTE in here.
2723  */
2724 long get_user_pages(unsigned long start, unsigned long nr_pages,
2725 		    unsigned int gup_flags, struct page **pages)
2726 {
2727 	int locked = 1;
2728 
2729 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2730 		return -EINVAL;
2731 
2732 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2733 				       &locked, gup_flags);
2734 }
2735 EXPORT_SYMBOL(get_user_pages);
2736 
2737 /*
2738  * get_user_pages_unlocked() is suitable to replace the form:
2739  *
2740  *      mmap_read_lock(mm);
2741  *      get_user_pages(mm, ..., pages, NULL);
2742  *      mmap_read_unlock(mm);
2743  *
2744  *  with:
2745  *
2746  *      get_user_pages_unlocked(mm, ..., pages);
2747  *
2748  * It is functionally equivalent to get_user_pages_fast so
2749  * get_user_pages_fast should be used instead if specific gup_flags
2750  * (e.g. FOLL_FORCE) are not required.
2751  */
2752 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2753 			     struct page **pages, unsigned int gup_flags)
2754 {
2755 	int locked = 0;
2756 
2757 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2758 			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2759 		return -EINVAL;
2760 
2761 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2762 				       &locked, gup_flags);
2763 }
2764 EXPORT_SYMBOL(get_user_pages_unlocked);
2765 
2766 /*
2767  * GUP-fast
2768  *
2769  * get_user_pages_fast attempts to pin user pages by walking the page
2770  * tables directly and avoids taking locks. Thus the walker needs to be
2771  * protected from page table pages being freed from under it, and should
2772  * block any THP splits.
2773  *
2774  * One way to achieve this is to have the walker disable interrupts, and
2775  * rely on IPIs from the TLB flushing code blocking before the page table
2776  * pages are freed. This is unsuitable for architectures that do not need
2777  * to broadcast an IPI when invalidating TLBs.
2778  *
2779  * Another way to achieve this is to batch up page table containing pages
2780  * belonging to more than one mm_user, then rcu_sched a callback to free those
2781  * pages. Disabling interrupts will allow the gup_fast() walker to both block
2782  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2783  * (which is a relatively rare event). The code below adopts this strategy.
2784  *
2785  * Before activating this code, please be aware that the following assumptions
2786  * are currently made:
2787  *
2788  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2789  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2790  *
2791  *  *) ptes can be read atomically by the architecture.
2792  *
2793  *  *) access_ok is sufficient to validate userspace address ranges.
2794  *
2795  * The last two assumptions can be relaxed by the addition of helper functions.
2796  *
2797  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2798  */
2799 #ifdef CONFIG_HAVE_GUP_FAST
2800 
2801 /*
2802  * Used in the GUP-fast path to determine whether GUP is permitted to work on
2803  * a specific folio.
2804  *
2805  * This call assumes the caller has pinned the folio, that the lowest page table
2806  * level still points to this folio, and that interrupts have been disabled.
2807  *
2808  * GUP-fast must reject all secretmem folios.
2809  *
2810  * Writing to pinned file-backed dirty tracked folios is inherently problematic
2811  * (see comment describing the writable_file_mapping_allowed() function). We
2812  * therefore try to avoid the most egregious case of a long-term mapping doing
2813  * so.
2814  *
2815  * This function cannot be as thorough as that one as the VMA is not available
2816  * in the fast path, so instead we whitelist known good cases and if in doubt,
2817  * fall back to the slow path.
2818  */
2819 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2820 {
2821 	bool reject_file_backed = false;
2822 	struct address_space *mapping;
2823 	bool check_secretmem = false;
2824 	unsigned long mapping_flags;
2825 
2826 	/*
2827 	 * If we aren't pinning then no problematic write can occur. A long term
2828 	 * pin is the most egregious case so this is the one we disallow.
2829 	 */
2830 	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2831 	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2832 		reject_file_backed = true;
2833 
2834 	/* We hold a folio reference, so we can safely access folio fields. */
2835 
2836 	/* secretmem folios are always order-0 folios. */
2837 	if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2838 		check_secretmem = true;
2839 
2840 	if (!reject_file_backed && !check_secretmem)
2841 		return true;
2842 
2843 	if (WARN_ON_ONCE(folio_test_slab(folio)))
2844 		return false;
2845 
2846 	/* hugetlb neither requires dirty-tracking nor can be secretmem. */
2847 	if (folio_test_hugetlb(folio))
2848 		return true;
2849 
2850 	/*
2851 	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2852 	 * cannot proceed, which means no actions performed under RCU can
2853 	 * proceed either.
2854 	 *
2855 	 * inodes and thus their mappings are freed under RCU, which means the
2856 	 * mapping cannot be freed beneath us and thus we can safely dereference
2857 	 * it.
2858 	 */
2859 	lockdep_assert_irqs_disabled();
2860 
2861 	/*
2862 	 * However, there may be operations which _alter_ the mapping, so ensure
2863 	 * we read it once and only once.
2864 	 */
2865 	mapping = READ_ONCE(folio->mapping);
2866 
2867 	/*
2868 	 * The mapping may have been truncated, in any case we cannot determine
2869 	 * if this mapping is safe - fall back to slow path to determine how to
2870 	 * proceed.
2871 	 */
2872 	if (!mapping)
2873 		return false;
2874 
2875 	/* Anonymous folios pose no problem. */
2876 	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2877 	if (mapping_flags)
2878 		return mapping_flags & PAGE_MAPPING_ANON;
2879 
2880 	/*
2881 	 * At this point, we know the mapping is non-null and points to an
2882 	 * address_space object.
2883 	 */
2884 	if (check_secretmem && secretmem_mapping(mapping))
2885 		return false;
2886 	/* The only remaining allowed file system is shmem. */
2887 	return !reject_file_backed || shmem_mapping(mapping);
2888 }
2889 
2890 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2891 		unsigned int flags, struct page **pages)
2892 {
2893 	while ((*nr) - nr_start) {
2894 		struct folio *folio = page_folio(pages[--(*nr)]);
2895 
2896 		folio_clear_referenced(folio);
2897 		gup_put_folio(folio, 1, flags);
2898 	}
2899 }
2900 
2901 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2902 /*
2903  * GUP-fast relies on pte change detection to avoid concurrent pgtable
2904  * operations.
2905  *
2906  * To pin the page, GUP-fast needs to do below in order:
2907  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2908  *
2909  * For the rest of pgtable operations where pgtable updates can be racy
2910  * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2911  * is pinned.
2912  *
2913  * Above will work for all pte-level operations, including THP split.
2914  *
2915  * For THP collapse, it's a bit more complicated because GUP-fast may be
2916  * walking a pgtable page that is being freed (pte is still valid but pmd
2917  * can be cleared already).  To avoid race in such condition, we need to
2918  * also check pmd here to make sure pmd doesn't change (corresponds to
2919  * pmdp_collapse_flush() in the THP collapse code path).
2920  */
2921 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2922 		unsigned long end, unsigned int flags, struct page **pages,
2923 		int *nr)
2924 {
2925 	struct dev_pagemap *pgmap = NULL;
2926 	int nr_start = *nr, ret = 0;
2927 	pte_t *ptep, *ptem;
2928 
2929 	ptem = ptep = pte_offset_map(&pmd, addr);
2930 	if (!ptep)
2931 		return 0;
2932 	do {
2933 		pte_t pte = ptep_get_lockless(ptep);
2934 		struct page *page;
2935 		struct folio *folio;
2936 
2937 		/*
2938 		 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2939 		 * pte_access_permitted() better should reject these pages
2940 		 * either way: otherwise, GUP-fast might succeed in
2941 		 * cases where ordinary GUP would fail due to VMA access
2942 		 * permissions.
2943 		 */
2944 		if (pte_protnone(pte))
2945 			goto pte_unmap;
2946 
2947 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2948 			goto pte_unmap;
2949 
2950 		if (pte_devmap(pte)) {
2951 			if (unlikely(flags & FOLL_LONGTERM))
2952 				goto pte_unmap;
2953 
2954 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2955 			if (unlikely(!pgmap)) {
2956 				gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2957 				goto pte_unmap;
2958 			}
2959 		} else if (pte_special(pte))
2960 			goto pte_unmap;
2961 
2962 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2963 		page = pte_page(pte);
2964 
2965 		folio = try_grab_folio(page, 1, flags);
2966 		if (!folio)
2967 			goto pte_unmap;
2968 
2969 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2970 		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2971 			gup_put_folio(folio, 1, flags);
2972 			goto pte_unmap;
2973 		}
2974 
2975 		if (!gup_fast_folio_allowed(folio, flags)) {
2976 			gup_put_folio(folio, 1, flags);
2977 			goto pte_unmap;
2978 		}
2979 
2980 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2981 			gup_put_folio(folio, 1, flags);
2982 			goto pte_unmap;
2983 		}
2984 
2985 		/*
2986 		 * We need to make the page accessible if and only if we are
2987 		 * going to access its content (the FOLL_PIN case).  Please
2988 		 * see Documentation/core-api/pin_user_pages.rst for
2989 		 * details.
2990 		 */
2991 		if (flags & FOLL_PIN) {
2992 			ret = arch_make_page_accessible(page);
2993 			if (ret) {
2994 				gup_put_folio(folio, 1, flags);
2995 				goto pte_unmap;
2996 			}
2997 		}
2998 		folio_set_referenced(folio);
2999 		pages[*nr] = page;
3000 		(*nr)++;
3001 	} while (ptep++, addr += PAGE_SIZE, addr != end);
3002 
3003 	ret = 1;
3004 
3005 pte_unmap:
3006 	if (pgmap)
3007 		put_dev_pagemap(pgmap);
3008 	pte_unmap(ptem);
3009 	return ret;
3010 }
3011 #else
3012 
3013 /*
3014  * If we can't determine whether or not a pte is special, then fail immediately
3015  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
3016  * to be special.
3017  *
3018  * For a futex to be placed on a THP tail page, get_futex_key requires a
3019  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
3020  * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
3021  */
3022 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
3023 		unsigned long end, unsigned int flags, struct page **pages,
3024 		int *nr)
3025 {
3026 	return 0;
3027 }
3028 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
3029 
3030 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
3031 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr,
3032 	unsigned long end, unsigned int flags, struct page **pages, int *nr)
3033 {
3034 	int nr_start = *nr;
3035 	struct dev_pagemap *pgmap = NULL;
3036 
3037 	do {
3038 		struct folio *folio;
3039 		struct page *page = pfn_to_page(pfn);
3040 
3041 		pgmap = get_dev_pagemap(pfn, pgmap);
3042 		if (unlikely(!pgmap)) {
3043 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3044 			break;
3045 		}
3046 
3047 		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
3048 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3049 			break;
3050 		}
3051 
3052 		folio = try_grab_folio(page, 1, flags);
3053 		if (!folio) {
3054 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3055 			break;
3056 		}
3057 		folio_set_referenced(folio);
3058 		pages[*nr] = page;
3059 		(*nr)++;
3060 		pfn++;
3061 	} while (addr += PAGE_SIZE, addr != end);
3062 
3063 	put_dev_pagemap(pgmap);
3064 	return addr == end;
3065 }
3066 
3067 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3068 		unsigned long end, unsigned int flags, struct page **pages,
3069 		int *nr)
3070 {
3071 	unsigned long fault_pfn;
3072 	int nr_start = *nr;
3073 
3074 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
3075 	if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3076 		return 0;
3077 
3078 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3079 		gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3080 		return 0;
3081 	}
3082 	return 1;
3083 }
3084 
3085 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3086 		unsigned long end, unsigned int flags, struct page **pages,
3087 		int *nr)
3088 {
3089 	unsigned long fault_pfn;
3090 	int nr_start = *nr;
3091 
3092 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
3093 	if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3094 		return 0;
3095 
3096 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3097 		gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3098 		return 0;
3099 	}
3100 	return 1;
3101 }
3102 #else
3103 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3104 		unsigned long end, unsigned int flags, struct page **pages,
3105 		int *nr)
3106 {
3107 	BUILD_BUG();
3108 	return 0;
3109 }
3110 
3111 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr,
3112 		unsigned long end, unsigned int flags, struct page **pages,
3113 		int *nr)
3114 {
3115 	BUILD_BUG();
3116 	return 0;
3117 }
3118 #endif
3119 
3120 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3121 		unsigned long end, unsigned int flags, struct page **pages,
3122 		int *nr)
3123 {
3124 	struct page *page;
3125 	struct folio *folio;
3126 	int refs;
3127 
3128 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
3129 		return 0;
3130 
3131 	if (pmd_devmap(orig)) {
3132 		if (unlikely(flags & FOLL_LONGTERM))
3133 			return 0;
3134 		return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags,
3135 					        pages, nr);
3136 	}
3137 
3138 	page = pmd_page(orig);
3139 	refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
3140 
3141 	folio = try_grab_folio(page, refs, flags);
3142 	if (!folio)
3143 		return 0;
3144 
3145 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3146 		gup_put_folio(folio, refs, flags);
3147 		return 0;
3148 	}
3149 
3150 	if (!gup_fast_folio_allowed(folio, flags)) {
3151 		gup_put_folio(folio, refs, flags);
3152 		return 0;
3153 	}
3154 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3155 		gup_put_folio(folio, refs, flags);
3156 		return 0;
3157 	}
3158 
3159 	*nr += refs;
3160 	folio_set_referenced(folio);
3161 	return 1;
3162 }
3163 
3164 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3165 		unsigned long end, unsigned int flags, struct page **pages,
3166 		int *nr)
3167 {
3168 	struct page *page;
3169 	struct folio *folio;
3170 	int refs;
3171 
3172 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
3173 		return 0;
3174 
3175 	if (pud_devmap(orig)) {
3176 		if (unlikely(flags & FOLL_LONGTERM))
3177 			return 0;
3178 		return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags,
3179 					        pages, nr);
3180 	}
3181 
3182 	page = pud_page(orig);
3183 	refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
3184 
3185 	folio = try_grab_folio(page, refs, flags);
3186 	if (!folio)
3187 		return 0;
3188 
3189 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3190 		gup_put_folio(folio, refs, flags);
3191 		return 0;
3192 	}
3193 
3194 	if (!gup_fast_folio_allowed(folio, flags)) {
3195 		gup_put_folio(folio, refs, flags);
3196 		return 0;
3197 	}
3198 
3199 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3200 		gup_put_folio(folio, refs, flags);
3201 		return 0;
3202 	}
3203 
3204 	*nr += refs;
3205 	folio_set_referenced(folio);
3206 	return 1;
3207 }
3208 
3209 static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr,
3210 		unsigned long end, unsigned int flags, struct page **pages,
3211 		int *nr)
3212 {
3213 	int refs;
3214 	struct page *page;
3215 	struct folio *folio;
3216 
3217 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
3218 		return 0;
3219 
3220 	BUILD_BUG_ON(pgd_devmap(orig));
3221 
3222 	page = pgd_page(orig);
3223 	refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr);
3224 
3225 	folio = try_grab_folio(page, refs, flags);
3226 	if (!folio)
3227 		return 0;
3228 
3229 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3230 		gup_put_folio(folio, refs, flags);
3231 		return 0;
3232 	}
3233 
3234 	if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3235 		gup_put_folio(folio, refs, flags);
3236 		return 0;
3237 	}
3238 
3239 	if (!gup_fast_folio_allowed(folio, flags)) {
3240 		gup_put_folio(folio, refs, flags);
3241 		return 0;
3242 	}
3243 
3244 	*nr += refs;
3245 	folio_set_referenced(folio);
3246 	return 1;
3247 }
3248 
3249 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3250 		unsigned long end, unsigned int flags, struct page **pages,
3251 		int *nr)
3252 {
3253 	unsigned long next;
3254 	pmd_t *pmdp;
3255 
3256 	pmdp = pmd_offset_lockless(pudp, pud, addr);
3257 	do {
3258 		pmd_t pmd = pmdp_get_lockless(pmdp);
3259 
3260 		next = pmd_addr_end(addr, end);
3261 		if (!pmd_present(pmd))
3262 			return 0;
3263 
3264 		if (unlikely(pmd_leaf(pmd))) {
3265 			/* See gup_fast_pte_range() */
3266 			if (pmd_protnone(pmd))
3267 				return 0;
3268 
3269 			if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
3270 				pages, nr))
3271 				return 0;
3272 
3273 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
3274 			/*
3275 			 * architecture have different format for hugetlbfs
3276 			 * pmd format and THP pmd format
3277 			 */
3278 			if (gup_hugepd(NULL, __hugepd(pmd_val(pmd)), addr,
3279 				       PMD_SHIFT, next, flags, pages, nr) != 1)
3280 				return 0;
3281 		} else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3282 					       pages, nr))
3283 			return 0;
3284 	} while (pmdp++, addr = next, addr != end);
3285 
3286 	return 1;
3287 }
3288 
3289 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3290 		unsigned long end, unsigned int flags, struct page **pages,
3291 		int *nr)
3292 {
3293 	unsigned long next;
3294 	pud_t *pudp;
3295 
3296 	pudp = pud_offset_lockless(p4dp, p4d, addr);
3297 	do {
3298 		pud_t pud = READ_ONCE(*pudp);
3299 
3300 		next = pud_addr_end(addr, end);
3301 		if (unlikely(!pud_present(pud)))
3302 			return 0;
3303 		if (unlikely(pud_leaf(pud))) {
3304 			if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3305 					       pages, nr))
3306 				return 0;
3307 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
3308 			if (gup_hugepd(NULL, __hugepd(pud_val(pud)), addr,
3309 				       PUD_SHIFT, next, flags, pages, nr) != 1)
3310 				return 0;
3311 		} else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3312 					       pages, nr))
3313 			return 0;
3314 	} while (pudp++, addr = next, addr != end);
3315 
3316 	return 1;
3317 }
3318 
3319 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3320 		unsigned long end, unsigned int flags, struct page **pages,
3321 		int *nr)
3322 {
3323 	unsigned long next;
3324 	p4d_t *p4dp;
3325 
3326 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3327 	do {
3328 		p4d_t p4d = READ_ONCE(*p4dp);
3329 
3330 		next = p4d_addr_end(addr, end);
3331 		if (!p4d_present(p4d))
3332 			return 0;
3333 		BUILD_BUG_ON(p4d_leaf(p4d));
3334 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
3335 			if (gup_hugepd(NULL, __hugepd(p4d_val(p4d)), addr,
3336 				       P4D_SHIFT, next, flags, pages, nr) != 1)
3337 				return 0;
3338 		} else if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3339 					       pages, nr))
3340 			return 0;
3341 	} while (p4dp++, addr = next, addr != end);
3342 
3343 	return 1;
3344 }
3345 
3346 static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3347 		unsigned int flags, struct page **pages, int *nr)
3348 {
3349 	unsigned long next;
3350 	pgd_t *pgdp;
3351 
3352 	pgdp = pgd_offset(current->mm, addr);
3353 	do {
3354 		pgd_t pgd = READ_ONCE(*pgdp);
3355 
3356 		next = pgd_addr_end(addr, end);
3357 		if (pgd_none(pgd))
3358 			return;
3359 		if (unlikely(pgd_leaf(pgd))) {
3360 			if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags,
3361 					       pages, nr))
3362 				return;
3363 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
3364 			if (gup_hugepd(NULL, __hugepd(pgd_val(pgd)), addr,
3365 				       PGDIR_SHIFT, next, flags, pages, nr) != 1)
3366 				return;
3367 		} else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3368 					       pages, nr))
3369 			return;
3370 	} while (pgdp++, addr = next, addr != end);
3371 }
3372 #else
3373 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3374 		unsigned int flags, struct page **pages, int *nr)
3375 {
3376 }
3377 #endif /* CONFIG_HAVE_GUP_FAST */
3378 
3379 #ifndef gup_fast_permitted
3380 /*
3381  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3382  * we need to fall back to the slow version:
3383  */
3384 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3385 {
3386 	return true;
3387 }
3388 #endif
3389 
3390 static unsigned long gup_fast(unsigned long start, unsigned long end,
3391 		unsigned int gup_flags, struct page **pages)
3392 {
3393 	unsigned long flags;
3394 	int nr_pinned = 0;
3395 	unsigned seq;
3396 
3397 	if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
3398 	    !gup_fast_permitted(start, end))
3399 		return 0;
3400 
3401 	if (gup_flags & FOLL_PIN) {
3402 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
3403 		if (seq & 1)
3404 			return 0;
3405 	}
3406 
3407 	/*
3408 	 * Disable interrupts. The nested form is used, in order to allow full,
3409 	 * general purpose use of this routine.
3410 	 *
3411 	 * With interrupts disabled, we block page table pages from being freed
3412 	 * from under us. See struct mmu_table_batch comments in
3413 	 * include/asm-generic/tlb.h for more details.
3414 	 *
3415 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3416 	 * that come from THPs splitting.
3417 	 */
3418 	local_irq_save(flags);
3419 	gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3420 	local_irq_restore(flags);
3421 
3422 	/*
3423 	 * When pinning pages for DMA there could be a concurrent write protect
3424 	 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3425 	 */
3426 	if (gup_flags & FOLL_PIN) {
3427 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3428 			gup_fast_unpin_user_pages(pages, nr_pinned);
3429 			return 0;
3430 		} else {
3431 			sanity_check_pinned_pages(pages, nr_pinned);
3432 		}
3433 	}
3434 	return nr_pinned;
3435 }
3436 
3437 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3438 		unsigned int gup_flags, struct page **pages)
3439 {
3440 	unsigned long len, end;
3441 	unsigned long nr_pinned;
3442 	int locked = 0;
3443 	int ret;
3444 
3445 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3446 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3447 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3448 				       FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3449 		return -EINVAL;
3450 
3451 	if (gup_flags & FOLL_PIN)
3452 		mm_set_has_pinned_flag(&current->mm->flags);
3453 
3454 	if (!(gup_flags & FOLL_FAST_ONLY))
3455 		might_lock_read(&current->mm->mmap_lock);
3456 
3457 	start = untagged_addr(start) & PAGE_MASK;
3458 	len = nr_pages << PAGE_SHIFT;
3459 	if (check_add_overflow(start, len, &end))
3460 		return -EOVERFLOW;
3461 	if (end > TASK_SIZE_MAX)
3462 		return -EFAULT;
3463 	if (unlikely(!access_ok((void __user *)start, len)))
3464 		return -EFAULT;
3465 
3466 	nr_pinned = gup_fast(start, end, gup_flags, pages);
3467 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3468 		return nr_pinned;
3469 
3470 	/* Slow path: try to get the remaining pages with get_user_pages */
3471 	start += nr_pinned << PAGE_SHIFT;
3472 	pages += nr_pinned;
3473 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3474 				    pages, &locked,
3475 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3476 	if (ret < 0) {
3477 		/*
3478 		 * The caller has to unpin the pages we already pinned so
3479 		 * returning -errno is not an option
3480 		 */
3481 		if (nr_pinned)
3482 			return nr_pinned;
3483 		return ret;
3484 	}
3485 	return ret + nr_pinned;
3486 }
3487 
3488 /**
3489  * get_user_pages_fast_only() - pin user pages in memory
3490  * @start:      starting user address
3491  * @nr_pages:   number of pages from start to pin
3492  * @gup_flags:  flags modifying pin behaviour
3493  * @pages:      array that receives pointers to the pages pinned.
3494  *              Should be at least nr_pages long.
3495  *
3496  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3497  * the regular GUP.
3498  *
3499  * If the architecture does not support this function, simply return with no
3500  * pages pinned.
3501  *
3502  * Careful, careful! COW breaking can go either way, so a non-write
3503  * access can get ambiguous page results. If you call this function without
3504  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3505  */
3506 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3507 			     unsigned int gup_flags, struct page **pages)
3508 {
3509 	/*
3510 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3511 	 * because gup fast is always a "pin with a +1 page refcount" request.
3512 	 *
3513 	 * FOLL_FAST_ONLY is required in order to match the API description of
3514 	 * this routine: no fall back to regular ("slow") GUP.
3515 	 */
3516 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3517 			       FOLL_GET | FOLL_FAST_ONLY))
3518 		return -EINVAL;
3519 
3520 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3521 }
3522 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3523 
3524 /**
3525  * get_user_pages_fast() - pin user pages in memory
3526  * @start:      starting user address
3527  * @nr_pages:   number of pages from start to pin
3528  * @gup_flags:  flags modifying pin behaviour
3529  * @pages:      array that receives pointers to the pages pinned.
3530  *              Should be at least nr_pages long.
3531  *
3532  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3533  * If not successful, it will fall back to taking the lock and
3534  * calling get_user_pages().
3535  *
3536  * Returns number of pages pinned. This may be fewer than the number requested.
3537  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3538  * -errno.
3539  */
3540 int get_user_pages_fast(unsigned long start, int nr_pages,
3541 			unsigned int gup_flags, struct page **pages)
3542 {
3543 	/*
3544 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3545 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3546 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3547 	 * request.
3548 	 */
3549 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3550 		return -EINVAL;
3551 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3552 }
3553 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3554 
3555 /**
3556  * pin_user_pages_fast() - pin user pages in memory without taking locks
3557  *
3558  * @start:      starting user address
3559  * @nr_pages:   number of pages from start to pin
3560  * @gup_flags:  flags modifying pin behaviour
3561  * @pages:      array that receives pointers to the pages pinned.
3562  *              Should be at least nr_pages long.
3563  *
3564  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3565  * get_user_pages_fast() for documentation on the function arguments, because
3566  * the arguments here are identical.
3567  *
3568  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3569  * see Documentation/core-api/pin_user_pages.rst for further details.
3570  *
3571  * Note that if a zero_page is amongst the returned pages, it will not have
3572  * pins in it and unpin_user_page() will not remove pins from it.
3573  */
3574 int pin_user_pages_fast(unsigned long start, int nr_pages,
3575 			unsigned int gup_flags, struct page **pages)
3576 {
3577 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3578 		return -EINVAL;
3579 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3580 }
3581 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3582 
3583 /**
3584  * pin_user_pages_remote() - pin pages of a remote process
3585  *
3586  * @mm:		mm_struct of target mm
3587  * @start:	starting user address
3588  * @nr_pages:	number of pages from start to pin
3589  * @gup_flags:	flags modifying lookup behaviour
3590  * @pages:	array that receives pointers to the pages pinned.
3591  *		Should be at least nr_pages long.
3592  * @locked:	pointer to lock flag indicating whether lock is held and
3593  *		subsequently whether VM_FAULT_RETRY functionality can be
3594  *		utilised. Lock must initially be held.
3595  *
3596  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3597  * get_user_pages_remote() for documentation on the function arguments, because
3598  * the arguments here are identical.
3599  *
3600  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3601  * see Documentation/core-api/pin_user_pages.rst for details.
3602  *
3603  * Note that if a zero_page is amongst the returned pages, it will not have
3604  * pins in it and unpin_user_page*() will not remove pins from it.
3605  */
3606 long pin_user_pages_remote(struct mm_struct *mm,
3607 			   unsigned long start, unsigned long nr_pages,
3608 			   unsigned int gup_flags, struct page **pages,
3609 			   int *locked)
3610 {
3611 	int local_locked = 1;
3612 
3613 	if (!is_valid_gup_args(pages, locked, &gup_flags,
3614 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3615 		return 0;
3616 	return __gup_longterm_locked(mm, start, nr_pages, pages,
3617 				     locked ? locked : &local_locked,
3618 				     gup_flags);
3619 }
3620 EXPORT_SYMBOL(pin_user_pages_remote);
3621 
3622 /**
3623  * pin_user_pages() - pin user pages in memory for use by other devices
3624  *
3625  * @start:	starting user address
3626  * @nr_pages:	number of pages from start to pin
3627  * @gup_flags:	flags modifying lookup behaviour
3628  * @pages:	array that receives pointers to the pages pinned.
3629  *		Should be at least nr_pages long.
3630  *
3631  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3632  * FOLL_PIN is set.
3633  *
3634  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3635  * see Documentation/core-api/pin_user_pages.rst for details.
3636  *
3637  * Note that if a zero_page is amongst the returned pages, it will not have
3638  * pins in it and unpin_user_page*() will not remove pins from it.
3639  */
3640 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3641 		    unsigned int gup_flags, struct page **pages)
3642 {
3643 	int locked = 1;
3644 
3645 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3646 		return 0;
3647 	return __gup_longterm_locked(current->mm, start, nr_pages,
3648 				     pages, &locked, gup_flags);
3649 }
3650 EXPORT_SYMBOL(pin_user_pages);
3651 
3652 /*
3653  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3654  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3655  * FOLL_PIN and rejects FOLL_GET.
3656  *
3657  * Note that if a zero_page is amongst the returned pages, it will not have
3658  * pins in it and unpin_user_page*() will not remove pins from it.
3659  */
3660 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3661 			     struct page **pages, unsigned int gup_flags)
3662 {
3663 	int locked = 0;
3664 
3665 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3666 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3667 		return 0;
3668 
3669 	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3670 				     &locked, gup_flags);
3671 }
3672 EXPORT_SYMBOL(pin_user_pages_unlocked);
3673