xref: /linux/drivers/vfio/vfio_iommu_type1.c (revision 3fd6c59042dbba50391e30862beac979491145fe)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VFIO: IOMMU DMA mapping support for Type1 IOMMU
4  *
5  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
6  *     Author: Alex Williamson <alex.williamson@redhat.com>
7  *
8  * Derived from original vfio:
9  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
10  * Author: Tom Lyon, pugs@cisco.com
11  *
12  * We arbitrarily define a Type1 IOMMU as one matching the below code.
13  * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
14  * VT-d, but that makes it harder to re-use as theoretically anyone
15  * implementing a similar IOMMU could make use of this.  We expect the
16  * IOMMU to support the IOMMU API and have few to no restrictions around
17  * the IOVA range that can be mapped.  The Type1 IOMMU is currently
18  * optimized for relatively static mappings of a userspace process with
19  * userspace pages pinned into memory.  We also assume devices and IOMMU
20  * domains are PCI based as the IOMMU API is still centered around a
21  * device/bus interface rather than a group interface.
22  */
23 
24 #include <linux/compat.h>
25 #include <linux/device.h>
26 #include <linux/fs.h>
27 #include <linux/highmem.h>
28 #include <linux/iommu.h>
29 #include <linux/module.h>
30 #include <linux/mm.h>
31 #include <linux/kthread.h>
32 #include <linux/rbtree.h>
33 #include <linux/sched/signal.h>
34 #include <linux/sched/mm.h>
35 #include <linux/slab.h>
36 #include <linux/uaccess.h>
37 #include <linux/vfio.h>
38 #include <linux/workqueue.h>
39 #include <linux/notifier.h>
40 #include "vfio.h"
41 
42 #define DRIVER_VERSION  "0.2"
43 #define DRIVER_AUTHOR   "Alex Williamson <alex.williamson@redhat.com>"
44 #define DRIVER_DESC     "Type1 IOMMU driver for VFIO"
45 
46 static bool allow_unsafe_interrupts;
47 module_param_named(allow_unsafe_interrupts,
48 		   allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
49 MODULE_PARM_DESC(allow_unsafe_interrupts,
50 		 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
51 
52 static bool disable_hugepages;
53 module_param_named(disable_hugepages,
54 		   disable_hugepages, bool, S_IRUGO | S_IWUSR);
55 MODULE_PARM_DESC(disable_hugepages,
56 		 "Disable VFIO IOMMU support for IOMMU hugepages.");
57 
58 static unsigned int dma_entry_limit __read_mostly = U16_MAX;
59 module_param_named(dma_entry_limit, dma_entry_limit, uint, 0644);
60 MODULE_PARM_DESC(dma_entry_limit,
61 		 "Maximum number of user DMA mappings per container (65535).");
62 
63 struct vfio_iommu {
64 	struct list_head	domain_list;
65 	struct list_head	iova_list;
66 	struct mutex		lock;
67 	struct rb_root		dma_list;
68 	struct list_head	device_list;
69 	struct mutex		device_list_lock;
70 	unsigned int		dma_avail;
71 	unsigned int		vaddr_invalid_count;
72 	uint64_t		pgsize_bitmap;
73 	uint64_t		num_non_pinned_groups;
74 	bool			v2;
75 	bool			dirty_page_tracking;
76 	struct list_head	emulated_iommu_groups;
77 };
78 
79 struct vfio_domain {
80 	struct iommu_domain	*domain;
81 	struct list_head	next;
82 	struct list_head	group_list;
83 	bool			fgsp : 1;	/* Fine-grained super pages */
84 	bool			enforce_cache_coherency : 1;
85 };
86 
87 struct vfio_dma {
88 	struct rb_node		node;
89 	dma_addr_t		iova;		/* Device address */
90 	unsigned long		vaddr;		/* Process virtual addr */
91 	size_t			size;		/* Map size (bytes) */
92 	int			prot;		/* IOMMU_READ/WRITE */
93 	bool			iommu_mapped;
94 	bool			lock_cap;	/* capable(CAP_IPC_LOCK) */
95 	bool			vaddr_invalid;
96 	struct task_struct	*task;
97 	struct rb_root		pfn_list;	/* Ex-user pinned pfn list */
98 	unsigned long		*bitmap;
99 	struct mm_struct	*mm;
100 	size_t			locked_vm;
101 };
102 
103 struct vfio_batch {
104 	struct page		**pages;	/* for pin_user_pages_remote */
105 	struct page		*fallback_page; /* if pages alloc fails */
106 	int			capacity;	/* length of pages array */
107 	int			size;		/* of batch currently */
108 	int			offset;		/* of next entry in pages */
109 };
110 
111 struct vfio_iommu_group {
112 	struct iommu_group	*iommu_group;
113 	struct list_head	next;
114 	bool			pinned_page_dirty_scope;
115 };
116 
117 struct vfio_iova {
118 	struct list_head	list;
119 	dma_addr_t		start;
120 	dma_addr_t		end;
121 };
122 
123 /*
124  * Guest RAM pinning working set or DMA target
125  */
126 struct vfio_pfn {
127 	struct rb_node		node;
128 	dma_addr_t		iova;		/* Device address */
129 	unsigned long		pfn;		/* Host pfn */
130 	unsigned int		ref_count;
131 };
132 
133 struct vfio_regions {
134 	struct list_head list;
135 	dma_addr_t iova;
136 	phys_addr_t phys;
137 	size_t len;
138 };
139 
140 #define DIRTY_BITMAP_BYTES(n)	(ALIGN(n, BITS_PER_TYPE(u64)) / BITS_PER_BYTE)
141 
142 /*
143  * Input argument of number of bits to bitmap_set() is unsigned integer, which
144  * further casts to signed integer for unaligned multi-bit operation,
145  * __bitmap_set().
146  * Then maximum bitmap size supported is 2^31 bits divided by 2^3 bits/byte,
147  * that is 2^28 (256 MB) which maps to 2^31 * 2^12 = 2^43 (8TB) on 4K page
148  * system.
149  */
150 #define DIRTY_BITMAP_PAGES_MAX	 ((u64)INT_MAX)
151 #define DIRTY_BITMAP_SIZE_MAX	 DIRTY_BITMAP_BYTES(DIRTY_BITMAP_PAGES_MAX)
152 
153 static int put_pfn(unsigned long pfn, int prot);
154 
155 static struct vfio_iommu_group*
156 vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
157 			    struct iommu_group *iommu_group);
158 
159 /*
160  * This code handles mapping and unmapping of user data buffers
161  * into DMA'ble space using the IOMMU
162  */
163 
vfio_find_dma(struct vfio_iommu * iommu,dma_addr_t start,size_t size)164 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
165 				      dma_addr_t start, size_t size)
166 {
167 	struct rb_node *node = iommu->dma_list.rb_node;
168 
169 	while (node) {
170 		struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
171 
172 		if (start + size <= dma->iova)
173 			node = node->rb_left;
174 		else if (start >= dma->iova + dma->size)
175 			node = node->rb_right;
176 		else
177 			return dma;
178 	}
179 
180 	return NULL;
181 }
182 
vfio_find_dma_first_node(struct vfio_iommu * iommu,dma_addr_t start,u64 size)183 static struct rb_node *vfio_find_dma_first_node(struct vfio_iommu *iommu,
184 						dma_addr_t start, u64 size)
185 {
186 	struct rb_node *res = NULL;
187 	struct rb_node *node = iommu->dma_list.rb_node;
188 	struct vfio_dma *dma_res = NULL;
189 
190 	while (node) {
191 		struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
192 
193 		if (start < dma->iova + dma->size) {
194 			res = node;
195 			dma_res = dma;
196 			if (start >= dma->iova)
197 				break;
198 			node = node->rb_left;
199 		} else {
200 			node = node->rb_right;
201 		}
202 	}
203 	if (res && size && dma_res->iova >= start + size)
204 		res = NULL;
205 	return res;
206 }
207 
vfio_link_dma(struct vfio_iommu * iommu,struct vfio_dma * new)208 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
209 {
210 	struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
211 	struct vfio_dma *dma;
212 
213 	while (*link) {
214 		parent = *link;
215 		dma = rb_entry(parent, struct vfio_dma, node);
216 
217 		if (new->iova + new->size <= dma->iova)
218 			link = &(*link)->rb_left;
219 		else
220 			link = &(*link)->rb_right;
221 	}
222 
223 	rb_link_node(&new->node, parent, link);
224 	rb_insert_color(&new->node, &iommu->dma_list);
225 }
226 
vfio_unlink_dma(struct vfio_iommu * iommu,struct vfio_dma * old)227 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
228 {
229 	rb_erase(&old->node, &iommu->dma_list);
230 }
231 
232 
vfio_dma_bitmap_alloc(struct vfio_dma * dma,size_t pgsize)233 static int vfio_dma_bitmap_alloc(struct vfio_dma *dma, size_t pgsize)
234 {
235 	uint64_t npages = dma->size / pgsize;
236 
237 	if (npages > DIRTY_BITMAP_PAGES_MAX)
238 		return -EINVAL;
239 
240 	/*
241 	 * Allocate extra 64 bits that are used to calculate shift required for
242 	 * bitmap_shift_left() to manipulate and club unaligned number of pages
243 	 * in adjacent vfio_dma ranges.
244 	 */
245 	dma->bitmap = kvzalloc(DIRTY_BITMAP_BYTES(npages) + sizeof(u64),
246 			       GFP_KERNEL);
247 	if (!dma->bitmap)
248 		return -ENOMEM;
249 
250 	return 0;
251 }
252 
vfio_dma_bitmap_free(struct vfio_dma * dma)253 static void vfio_dma_bitmap_free(struct vfio_dma *dma)
254 {
255 	kvfree(dma->bitmap);
256 	dma->bitmap = NULL;
257 }
258 
vfio_dma_populate_bitmap(struct vfio_dma * dma,size_t pgsize)259 static void vfio_dma_populate_bitmap(struct vfio_dma *dma, size_t pgsize)
260 {
261 	struct rb_node *p;
262 	unsigned long pgshift = __ffs(pgsize);
263 
264 	for (p = rb_first(&dma->pfn_list); p; p = rb_next(p)) {
265 		struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn, node);
266 
267 		bitmap_set(dma->bitmap, (vpfn->iova - dma->iova) >> pgshift, 1);
268 	}
269 }
270 
vfio_iommu_populate_bitmap_full(struct vfio_iommu * iommu)271 static void vfio_iommu_populate_bitmap_full(struct vfio_iommu *iommu)
272 {
273 	struct rb_node *n;
274 	unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
275 
276 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
277 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
278 
279 		bitmap_set(dma->bitmap, 0, dma->size >> pgshift);
280 	}
281 }
282 
vfio_dma_bitmap_alloc_all(struct vfio_iommu * iommu,size_t pgsize)283 static int vfio_dma_bitmap_alloc_all(struct vfio_iommu *iommu, size_t pgsize)
284 {
285 	struct rb_node *n;
286 
287 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
288 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
289 		int ret;
290 
291 		ret = vfio_dma_bitmap_alloc(dma, pgsize);
292 		if (ret) {
293 			struct rb_node *p;
294 
295 			for (p = rb_prev(n); p; p = rb_prev(p)) {
296 				struct vfio_dma *dma = rb_entry(n,
297 							struct vfio_dma, node);
298 
299 				vfio_dma_bitmap_free(dma);
300 			}
301 			return ret;
302 		}
303 		vfio_dma_populate_bitmap(dma, pgsize);
304 	}
305 	return 0;
306 }
307 
vfio_dma_bitmap_free_all(struct vfio_iommu * iommu)308 static void vfio_dma_bitmap_free_all(struct vfio_iommu *iommu)
309 {
310 	struct rb_node *n;
311 
312 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
313 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
314 
315 		vfio_dma_bitmap_free(dma);
316 	}
317 }
318 
319 /*
320  * Helper Functions for host iova-pfn list
321  */
vfio_find_vpfn(struct vfio_dma * dma,dma_addr_t iova)322 static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
323 {
324 	struct vfio_pfn *vpfn;
325 	struct rb_node *node = dma->pfn_list.rb_node;
326 
327 	while (node) {
328 		vpfn = rb_entry(node, struct vfio_pfn, node);
329 
330 		if (iova < vpfn->iova)
331 			node = node->rb_left;
332 		else if (iova > vpfn->iova)
333 			node = node->rb_right;
334 		else
335 			return vpfn;
336 	}
337 	return NULL;
338 }
339 
vfio_link_pfn(struct vfio_dma * dma,struct vfio_pfn * new)340 static void vfio_link_pfn(struct vfio_dma *dma,
341 			  struct vfio_pfn *new)
342 {
343 	struct rb_node **link, *parent = NULL;
344 	struct vfio_pfn *vpfn;
345 
346 	link = &dma->pfn_list.rb_node;
347 	while (*link) {
348 		parent = *link;
349 		vpfn = rb_entry(parent, struct vfio_pfn, node);
350 
351 		if (new->iova < vpfn->iova)
352 			link = &(*link)->rb_left;
353 		else
354 			link = &(*link)->rb_right;
355 	}
356 
357 	rb_link_node(&new->node, parent, link);
358 	rb_insert_color(&new->node, &dma->pfn_list);
359 }
360 
vfio_unlink_pfn(struct vfio_dma * dma,struct vfio_pfn * old)361 static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
362 {
363 	rb_erase(&old->node, &dma->pfn_list);
364 }
365 
vfio_add_to_pfn_list(struct vfio_dma * dma,dma_addr_t iova,unsigned long pfn)366 static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
367 				unsigned long pfn)
368 {
369 	struct vfio_pfn *vpfn;
370 
371 	vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL);
372 	if (!vpfn)
373 		return -ENOMEM;
374 
375 	vpfn->iova = iova;
376 	vpfn->pfn = pfn;
377 	vpfn->ref_count = 1;
378 	vfio_link_pfn(dma, vpfn);
379 	return 0;
380 }
381 
vfio_remove_from_pfn_list(struct vfio_dma * dma,struct vfio_pfn * vpfn)382 static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
383 				      struct vfio_pfn *vpfn)
384 {
385 	vfio_unlink_pfn(dma, vpfn);
386 	kfree(vpfn);
387 }
388 
vfio_iova_get_vfio_pfn(struct vfio_dma * dma,unsigned long iova)389 static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
390 					       unsigned long iova)
391 {
392 	struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
393 
394 	if (vpfn)
395 		vpfn->ref_count++;
396 	return vpfn;
397 }
398 
vfio_iova_put_vfio_pfn(struct vfio_dma * dma,struct vfio_pfn * vpfn)399 static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
400 {
401 	int ret = 0;
402 
403 	vpfn->ref_count--;
404 	if (!vpfn->ref_count) {
405 		ret = put_pfn(vpfn->pfn, dma->prot);
406 		vfio_remove_from_pfn_list(dma, vpfn);
407 	}
408 	return ret;
409 }
410 
mm_lock_acct(struct task_struct * task,struct mm_struct * mm,bool lock_cap,long npage)411 static int mm_lock_acct(struct task_struct *task, struct mm_struct *mm,
412 			bool lock_cap, long npage)
413 {
414 	int ret = mmap_write_lock_killable(mm);
415 
416 	if (ret)
417 		return ret;
418 
419 	ret = __account_locked_vm(mm, abs(npage), npage > 0, task, lock_cap);
420 	mmap_write_unlock(mm);
421 	return ret;
422 }
423 
vfio_lock_acct(struct vfio_dma * dma,long npage,bool async)424 static int vfio_lock_acct(struct vfio_dma *dma, long npage, bool async)
425 {
426 	struct mm_struct *mm;
427 	int ret;
428 
429 	if (!npage)
430 		return 0;
431 
432 	mm = dma->mm;
433 	if (async && !mmget_not_zero(mm))
434 		return -ESRCH; /* process exited */
435 
436 	ret = mm_lock_acct(dma->task, mm, dma->lock_cap, npage);
437 	if (!ret)
438 		dma->locked_vm += npage;
439 
440 	if (async)
441 		mmput(mm);
442 
443 	return ret;
444 }
445 
446 /*
447  * Some mappings aren't backed by a struct page, for example an mmap'd
448  * MMIO range for our own or another device.  These use a different
449  * pfn conversion and shouldn't be tracked as locked pages.
450  * For compound pages, any driver that sets the reserved bit in head
451  * page needs to set the reserved bit in all subpages to be safe.
452  */
is_invalid_reserved_pfn(unsigned long pfn)453 static bool is_invalid_reserved_pfn(unsigned long pfn)
454 {
455 	if (pfn_valid(pfn))
456 		return PageReserved(pfn_to_page(pfn));
457 
458 	return true;
459 }
460 
put_pfn(unsigned long pfn,int prot)461 static int put_pfn(unsigned long pfn, int prot)
462 {
463 	if (!is_invalid_reserved_pfn(pfn)) {
464 		struct page *page = pfn_to_page(pfn);
465 
466 		unpin_user_pages_dirty_lock(&page, 1, prot & IOMMU_WRITE);
467 		return 1;
468 	}
469 	return 0;
470 }
471 
472 #define VFIO_BATCH_MAX_CAPACITY (PAGE_SIZE / sizeof(struct page *))
473 
vfio_batch_init(struct vfio_batch * batch)474 static void vfio_batch_init(struct vfio_batch *batch)
475 {
476 	batch->size = 0;
477 	batch->offset = 0;
478 
479 	if (unlikely(disable_hugepages))
480 		goto fallback;
481 
482 	batch->pages = (struct page **) __get_free_page(GFP_KERNEL);
483 	if (!batch->pages)
484 		goto fallback;
485 
486 	batch->capacity = VFIO_BATCH_MAX_CAPACITY;
487 	return;
488 
489 fallback:
490 	batch->pages = &batch->fallback_page;
491 	batch->capacity = 1;
492 }
493 
vfio_batch_unpin(struct vfio_batch * batch,struct vfio_dma * dma)494 static void vfio_batch_unpin(struct vfio_batch *batch, struct vfio_dma *dma)
495 {
496 	while (batch->size) {
497 		unsigned long pfn = page_to_pfn(batch->pages[batch->offset]);
498 
499 		put_pfn(pfn, dma->prot);
500 		batch->offset++;
501 		batch->size--;
502 	}
503 }
504 
vfio_batch_fini(struct vfio_batch * batch)505 static void vfio_batch_fini(struct vfio_batch *batch)
506 {
507 	if (batch->capacity == VFIO_BATCH_MAX_CAPACITY)
508 		free_page((unsigned long)batch->pages);
509 }
510 
follow_fault_pfn(struct vm_area_struct * vma,struct mm_struct * mm,unsigned long vaddr,unsigned long * pfn,bool write_fault)511 static int follow_fault_pfn(struct vm_area_struct *vma, struct mm_struct *mm,
512 			    unsigned long vaddr, unsigned long *pfn,
513 			    bool write_fault)
514 {
515 	struct follow_pfnmap_args args = { .vma = vma, .address = vaddr };
516 	int ret;
517 
518 	ret = follow_pfnmap_start(&args);
519 	if (ret) {
520 		bool unlocked = false;
521 
522 		ret = fixup_user_fault(mm, vaddr,
523 				       FAULT_FLAG_REMOTE |
524 				       (write_fault ?  FAULT_FLAG_WRITE : 0),
525 				       &unlocked);
526 		if (unlocked)
527 			return -EAGAIN;
528 
529 		if (ret)
530 			return ret;
531 
532 		ret = follow_pfnmap_start(&args);
533 		if (ret)
534 			return ret;
535 	}
536 
537 	if (write_fault && !args.writable)
538 		ret = -EFAULT;
539 	else
540 		*pfn = args.pfn;
541 
542 	follow_pfnmap_end(&args);
543 	return ret;
544 }
545 
546 /*
547  * Returns the positive number of pfns successfully obtained or a negative
548  * error code.
549  */
vaddr_get_pfns(struct mm_struct * mm,unsigned long vaddr,long npages,int prot,unsigned long * pfn,struct page ** pages)550 static int vaddr_get_pfns(struct mm_struct *mm, unsigned long vaddr,
551 			  long npages, int prot, unsigned long *pfn,
552 			  struct page **pages)
553 {
554 	struct vm_area_struct *vma;
555 	unsigned int flags = 0;
556 	int ret;
557 
558 	if (prot & IOMMU_WRITE)
559 		flags |= FOLL_WRITE;
560 
561 	mmap_read_lock(mm);
562 	ret = pin_user_pages_remote(mm, vaddr, npages, flags | FOLL_LONGTERM,
563 				    pages, NULL);
564 	if (ret > 0) {
565 		*pfn = page_to_pfn(pages[0]);
566 		goto done;
567 	}
568 
569 	vaddr = untagged_addr_remote(mm, vaddr);
570 
571 retry:
572 	vma = vma_lookup(mm, vaddr);
573 
574 	if (vma && vma->vm_flags & VM_PFNMAP) {
575 		ret = follow_fault_pfn(vma, mm, vaddr, pfn, prot & IOMMU_WRITE);
576 		if (ret == -EAGAIN)
577 			goto retry;
578 
579 		if (!ret) {
580 			if (is_invalid_reserved_pfn(*pfn))
581 				ret = 1;
582 			else
583 				ret = -EFAULT;
584 		}
585 	}
586 done:
587 	mmap_read_unlock(mm);
588 	return ret;
589 }
590 
591 /*
592  * Attempt to pin pages.  We really don't want to track all the pfns and
593  * the iommu can only map chunks of consecutive pfns anyway, so get the
594  * first page and all consecutive pages with the same locking.
595  */
vfio_pin_pages_remote(struct vfio_dma * dma,unsigned long vaddr,long npage,unsigned long * pfn_base,unsigned long limit,struct vfio_batch * batch)596 static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
597 				  long npage, unsigned long *pfn_base,
598 				  unsigned long limit, struct vfio_batch *batch)
599 {
600 	unsigned long pfn;
601 	struct mm_struct *mm = current->mm;
602 	long ret, pinned = 0, lock_acct = 0;
603 	bool rsvd;
604 	dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
605 
606 	/* This code path is only user initiated */
607 	if (!mm)
608 		return -ENODEV;
609 
610 	if (batch->size) {
611 		/* Leftover pages in batch from an earlier call. */
612 		*pfn_base = page_to_pfn(batch->pages[batch->offset]);
613 		pfn = *pfn_base;
614 		rsvd = is_invalid_reserved_pfn(*pfn_base);
615 	} else {
616 		*pfn_base = 0;
617 	}
618 
619 	while (npage) {
620 		if (!batch->size) {
621 			/* Empty batch, so refill it. */
622 			long req_pages = min_t(long, npage, batch->capacity);
623 
624 			ret = vaddr_get_pfns(mm, vaddr, req_pages, dma->prot,
625 					     &pfn, batch->pages);
626 			if (ret < 0)
627 				goto unpin_out;
628 
629 			batch->size = ret;
630 			batch->offset = 0;
631 
632 			if (!*pfn_base) {
633 				*pfn_base = pfn;
634 				rsvd = is_invalid_reserved_pfn(*pfn_base);
635 			}
636 		}
637 
638 		/*
639 		 * pfn is preset for the first iteration of this inner loop and
640 		 * updated at the end to handle a VM_PFNMAP pfn.  In that case,
641 		 * batch->pages isn't valid (there's no struct page), so allow
642 		 * batch->pages to be touched only when there's more than one
643 		 * pfn to check, which guarantees the pfns are from a
644 		 * !VM_PFNMAP vma.
645 		 */
646 		while (true) {
647 			if (pfn != *pfn_base + pinned ||
648 			    rsvd != is_invalid_reserved_pfn(pfn))
649 				goto out;
650 
651 			/*
652 			 * Reserved pages aren't counted against the user,
653 			 * externally pinned pages are already counted against
654 			 * the user.
655 			 */
656 			if (!rsvd && !vfio_find_vpfn(dma, iova)) {
657 				if (!dma->lock_cap &&
658 				    mm->locked_vm + lock_acct + 1 > limit) {
659 					pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
660 						__func__, limit << PAGE_SHIFT);
661 					ret = -ENOMEM;
662 					goto unpin_out;
663 				}
664 				lock_acct++;
665 			}
666 
667 			pinned++;
668 			npage--;
669 			vaddr += PAGE_SIZE;
670 			iova += PAGE_SIZE;
671 			batch->offset++;
672 			batch->size--;
673 
674 			if (!batch->size)
675 				break;
676 
677 			pfn = page_to_pfn(batch->pages[batch->offset]);
678 		}
679 
680 		if (unlikely(disable_hugepages))
681 			break;
682 	}
683 
684 out:
685 	ret = vfio_lock_acct(dma, lock_acct, false);
686 
687 unpin_out:
688 	if (batch->size == 1 && !batch->offset) {
689 		/* May be a VM_PFNMAP pfn, which the batch can't remember. */
690 		put_pfn(pfn, dma->prot);
691 		batch->size = 0;
692 	}
693 
694 	if (ret < 0) {
695 		if (pinned && !rsvd) {
696 			for (pfn = *pfn_base ; pinned ; pfn++, pinned--)
697 				put_pfn(pfn, dma->prot);
698 		}
699 		vfio_batch_unpin(batch, dma);
700 
701 		return ret;
702 	}
703 
704 	return pinned;
705 }
706 
vfio_unpin_pages_remote(struct vfio_dma * dma,dma_addr_t iova,unsigned long pfn,long npage,bool do_accounting)707 static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
708 				    unsigned long pfn, long npage,
709 				    bool do_accounting)
710 {
711 	long unlocked = 0, locked = 0;
712 	long i;
713 
714 	for (i = 0; i < npage; i++, iova += PAGE_SIZE) {
715 		if (put_pfn(pfn++, dma->prot)) {
716 			unlocked++;
717 			if (vfio_find_vpfn(dma, iova))
718 				locked++;
719 		}
720 	}
721 
722 	if (do_accounting)
723 		vfio_lock_acct(dma, locked - unlocked, true);
724 
725 	return unlocked;
726 }
727 
vfio_pin_page_external(struct vfio_dma * dma,unsigned long vaddr,unsigned long * pfn_base,bool do_accounting)728 static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
729 				  unsigned long *pfn_base, bool do_accounting)
730 {
731 	struct page *pages[1];
732 	struct mm_struct *mm;
733 	int ret;
734 
735 	mm = dma->mm;
736 	if (!mmget_not_zero(mm))
737 		return -ENODEV;
738 
739 	ret = vaddr_get_pfns(mm, vaddr, 1, dma->prot, pfn_base, pages);
740 	if (ret != 1)
741 		goto out;
742 
743 	ret = 0;
744 
745 	if (do_accounting && !is_invalid_reserved_pfn(*pfn_base)) {
746 		ret = vfio_lock_acct(dma, 1, false);
747 		if (ret) {
748 			put_pfn(*pfn_base, dma->prot);
749 			if (ret == -ENOMEM)
750 				pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK "
751 					"(%ld) exceeded\n", __func__,
752 					dma->task->comm, task_pid_nr(dma->task),
753 					task_rlimit(dma->task, RLIMIT_MEMLOCK));
754 		}
755 	}
756 
757 out:
758 	mmput(mm);
759 	return ret;
760 }
761 
vfio_unpin_page_external(struct vfio_dma * dma,dma_addr_t iova,bool do_accounting)762 static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
763 				    bool do_accounting)
764 {
765 	int unlocked;
766 	struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
767 
768 	if (!vpfn)
769 		return 0;
770 
771 	unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
772 
773 	if (do_accounting)
774 		vfio_lock_acct(dma, -unlocked, true);
775 
776 	return unlocked;
777 }
778 
vfio_iommu_type1_pin_pages(void * iommu_data,struct iommu_group * iommu_group,dma_addr_t user_iova,int npage,int prot,struct page ** pages)779 static int vfio_iommu_type1_pin_pages(void *iommu_data,
780 				      struct iommu_group *iommu_group,
781 				      dma_addr_t user_iova,
782 				      int npage, int prot,
783 				      struct page **pages)
784 {
785 	struct vfio_iommu *iommu = iommu_data;
786 	struct vfio_iommu_group *group;
787 	int i, j, ret;
788 	unsigned long remote_vaddr;
789 	struct vfio_dma *dma;
790 	bool do_accounting;
791 
792 	if (!iommu || !pages)
793 		return -EINVAL;
794 
795 	/* Supported for v2 version only */
796 	if (!iommu->v2)
797 		return -EACCES;
798 
799 	mutex_lock(&iommu->lock);
800 
801 	if (WARN_ONCE(iommu->vaddr_invalid_count,
802 		      "vfio_pin_pages not allowed with VFIO_UPDATE_VADDR\n")) {
803 		ret = -EBUSY;
804 		goto pin_done;
805 	}
806 
807 	/* Fail if no dma_umap notifier is registered */
808 	if (list_empty(&iommu->device_list)) {
809 		ret = -EINVAL;
810 		goto pin_done;
811 	}
812 
813 	/*
814 	 * If iommu capable domain exist in the container then all pages are
815 	 * already pinned and accounted. Accounting should be done if there is no
816 	 * iommu capable domain in the container.
817 	 */
818 	do_accounting = list_empty(&iommu->domain_list);
819 
820 	for (i = 0; i < npage; i++) {
821 		unsigned long phys_pfn;
822 		dma_addr_t iova;
823 		struct vfio_pfn *vpfn;
824 
825 		iova = user_iova + PAGE_SIZE * i;
826 		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
827 		if (!dma) {
828 			ret = -EINVAL;
829 			goto pin_unwind;
830 		}
831 
832 		if ((dma->prot & prot) != prot) {
833 			ret = -EPERM;
834 			goto pin_unwind;
835 		}
836 
837 		vpfn = vfio_iova_get_vfio_pfn(dma, iova);
838 		if (vpfn) {
839 			pages[i] = pfn_to_page(vpfn->pfn);
840 			continue;
841 		}
842 
843 		remote_vaddr = dma->vaddr + (iova - dma->iova);
844 		ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn,
845 					     do_accounting);
846 		if (ret)
847 			goto pin_unwind;
848 
849 		if (!pfn_valid(phys_pfn)) {
850 			ret = -EINVAL;
851 			goto pin_unwind;
852 		}
853 
854 		ret = vfio_add_to_pfn_list(dma, iova, phys_pfn);
855 		if (ret) {
856 			if (put_pfn(phys_pfn, dma->prot) && do_accounting)
857 				vfio_lock_acct(dma, -1, true);
858 			goto pin_unwind;
859 		}
860 
861 		pages[i] = pfn_to_page(phys_pfn);
862 
863 		if (iommu->dirty_page_tracking) {
864 			unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
865 
866 			/*
867 			 * Bitmap populated with the smallest supported page
868 			 * size
869 			 */
870 			bitmap_set(dma->bitmap,
871 				   (iova - dma->iova) >> pgshift, 1);
872 		}
873 	}
874 	ret = i;
875 
876 	group = vfio_iommu_find_iommu_group(iommu, iommu_group);
877 	if (!group->pinned_page_dirty_scope) {
878 		group->pinned_page_dirty_scope = true;
879 		iommu->num_non_pinned_groups--;
880 	}
881 
882 	goto pin_done;
883 
884 pin_unwind:
885 	pages[i] = NULL;
886 	for (j = 0; j < i; j++) {
887 		dma_addr_t iova;
888 
889 		iova = user_iova + PAGE_SIZE * j;
890 		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
891 		vfio_unpin_page_external(dma, iova, do_accounting);
892 		pages[j] = NULL;
893 	}
894 pin_done:
895 	mutex_unlock(&iommu->lock);
896 	return ret;
897 }
898 
vfio_iommu_type1_unpin_pages(void * iommu_data,dma_addr_t user_iova,int npage)899 static void vfio_iommu_type1_unpin_pages(void *iommu_data,
900 					 dma_addr_t user_iova, int npage)
901 {
902 	struct vfio_iommu *iommu = iommu_data;
903 	bool do_accounting;
904 	int i;
905 
906 	/* Supported for v2 version only */
907 	if (WARN_ON(!iommu->v2))
908 		return;
909 
910 	mutex_lock(&iommu->lock);
911 
912 	do_accounting = list_empty(&iommu->domain_list);
913 	for (i = 0; i < npage; i++) {
914 		dma_addr_t iova = user_iova + PAGE_SIZE * i;
915 		struct vfio_dma *dma;
916 
917 		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
918 		if (!dma)
919 			break;
920 
921 		vfio_unpin_page_external(dma, iova, do_accounting);
922 	}
923 
924 	mutex_unlock(&iommu->lock);
925 
926 	WARN_ON(i != npage);
927 }
928 
vfio_sync_unpin(struct vfio_dma * dma,struct vfio_domain * domain,struct list_head * regions,struct iommu_iotlb_gather * iotlb_gather)929 static long vfio_sync_unpin(struct vfio_dma *dma, struct vfio_domain *domain,
930 			    struct list_head *regions,
931 			    struct iommu_iotlb_gather *iotlb_gather)
932 {
933 	long unlocked = 0;
934 	struct vfio_regions *entry, *next;
935 
936 	iommu_iotlb_sync(domain->domain, iotlb_gather);
937 
938 	list_for_each_entry_safe(entry, next, regions, list) {
939 		unlocked += vfio_unpin_pages_remote(dma,
940 						    entry->iova,
941 						    entry->phys >> PAGE_SHIFT,
942 						    entry->len >> PAGE_SHIFT,
943 						    false);
944 		list_del(&entry->list);
945 		kfree(entry);
946 	}
947 
948 	cond_resched();
949 
950 	return unlocked;
951 }
952 
953 /*
954  * Generally, VFIO needs to unpin remote pages after each IOTLB flush.
955  * Therefore, when using IOTLB flush sync interface, VFIO need to keep track
956  * of these regions (currently using a list).
957  *
958  * This value specifies maximum number of regions for each IOTLB flush sync.
959  */
960 #define VFIO_IOMMU_TLB_SYNC_MAX		512
961 
unmap_unpin_fast(struct vfio_domain * domain,struct vfio_dma * dma,dma_addr_t * iova,size_t len,phys_addr_t phys,long * unlocked,struct list_head * unmapped_list,int * unmapped_cnt,struct iommu_iotlb_gather * iotlb_gather)962 static size_t unmap_unpin_fast(struct vfio_domain *domain,
963 			       struct vfio_dma *dma, dma_addr_t *iova,
964 			       size_t len, phys_addr_t phys, long *unlocked,
965 			       struct list_head *unmapped_list,
966 			       int *unmapped_cnt,
967 			       struct iommu_iotlb_gather *iotlb_gather)
968 {
969 	size_t unmapped = 0;
970 	struct vfio_regions *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
971 
972 	if (entry) {
973 		unmapped = iommu_unmap_fast(domain->domain, *iova, len,
974 					    iotlb_gather);
975 
976 		if (!unmapped) {
977 			kfree(entry);
978 		} else {
979 			entry->iova = *iova;
980 			entry->phys = phys;
981 			entry->len  = unmapped;
982 			list_add_tail(&entry->list, unmapped_list);
983 
984 			*iova += unmapped;
985 			(*unmapped_cnt)++;
986 		}
987 	}
988 
989 	/*
990 	 * Sync if the number of fast-unmap regions hits the limit
991 	 * or in case of errors.
992 	 */
993 	if (*unmapped_cnt >= VFIO_IOMMU_TLB_SYNC_MAX || !unmapped) {
994 		*unlocked += vfio_sync_unpin(dma, domain, unmapped_list,
995 					     iotlb_gather);
996 		*unmapped_cnt = 0;
997 	}
998 
999 	return unmapped;
1000 }
1001 
unmap_unpin_slow(struct vfio_domain * domain,struct vfio_dma * dma,dma_addr_t * iova,size_t len,phys_addr_t phys,long * unlocked)1002 static size_t unmap_unpin_slow(struct vfio_domain *domain,
1003 			       struct vfio_dma *dma, dma_addr_t *iova,
1004 			       size_t len, phys_addr_t phys,
1005 			       long *unlocked)
1006 {
1007 	size_t unmapped = iommu_unmap(domain->domain, *iova, len);
1008 
1009 	if (unmapped) {
1010 		*unlocked += vfio_unpin_pages_remote(dma, *iova,
1011 						     phys >> PAGE_SHIFT,
1012 						     unmapped >> PAGE_SHIFT,
1013 						     false);
1014 		*iova += unmapped;
1015 		cond_resched();
1016 	}
1017 	return unmapped;
1018 }
1019 
vfio_unmap_unpin(struct vfio_iommu * iommu,struct vfio_dma * dma,bool do_accounting)1020 static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
1021 			     bool do_accounting)
1022 {
1023 	dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
1024 	struct vfio_domain *domain, *d;
1025 	LIST_HEAD(unmapped_region_list);
1026 	struct iommu_iotlb_gather iotlb_gather;
1027 	int unmapped_region_cnt = 0;
1028 	long unlocked = 0;
1029 
1030 	if (!dma->size)
1031 		return 0;
1032 
1033 	if (list_empty(&iommu->domain_list))
1034 		return 0;
1035 
1036 	/*
1037 	 * We use the IOMMU to track the physical addresses, otherwise we'd
1038 	 * need a much more complicated tracking system.  Unfortunately that
1039 	 * means we need to use one of the iommu domains to figure out the
1040 	 * pfns to unpin.  The rest need to be unmapped in advance so we have
1041 	 * no iommu translations remaining when the pages are unpinned.
1042 	 */
1043 	domain = d = list_first_entry(&iommu->domain_list,
1044 				      struct vfio_domain, next);
1045 
1046 	list_for_each_entry_continue(d, &iommu->domain_list, next) {
1047 		iommu_unmap(d->domain, dma->iova, dma->size);
1048 		cond_resched();
1049 	}
1050 
1051 	iommu_iotlb_gather_init(&iotlb_gather);
1052 	while (iova < end) {
1053 		size_t unmapped, len;
1054 		phys_addr_t phys, next;
1055 
1056 		phys = iommu_iova_to_phys(domain->domain, iova);
1057 		if (WARN_ON(!phys)) {
1058 			iova += PAGE_SIZE;
1059 			continue;
1060 		}
1061 
1062 		/*
1063 		 * To optimize for fewer iommu_unmap() calls, each of which
1064 		 * may require hardware cache flushing, try to find the
1065 		 * largest contiguous physical memory chunk to unmap.
1066 		 */
1067 		for (len = PAGE_SIZE;
1068 		     !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
1069 			next = iommu_iova_to_phys(domain->domain, iova + len);
1070 			if (next != phys + len)
1071 				break;
1072 		}
1073 
1074 		/*
1075 		 * First, try to use fast unmap/unpin. In case of failure,
1076 		 * switch to slow unmap/unpin path.
1077 		 */
1078 		unmapped = unmap_unpin_fast(domain, dma, &iova, len, phys,
1079 					    &unlocked, &unmapped_region_list,
1080 					    &unmapped_region_cnt,
1081 					    &iotlb_gather);
1082 		if (!unmapped) {
1083 			unmapped = unmap_unpin_slow(domain, dma, &iova, len,
1084 						    phys, &unlocked);
1085 			if (WARN_ON(!unmapped))
1086 				break;
1087 		}
1088 	}
1089 
1090 	dma->iommu_mapped = false;
1091 
1092 	if (unmapped_region_cnt) {
1093 		unlocked += vfio_sync_unpin(dma, domain, &unmapped_region_list,
1094 					    &iotlb_gather);
1095 	}
1096 
1097 	if (do_accounting) {
1098 		vfio_lock_acct(dma, -unlocked, true);
1099 		return 0;
1100 	}
1101 	return unlocked;
1102 }
1103 
vfio_remove_dma(struct vfio_iommu * iommu,struct vfio_dma * dma)1104 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
1105 {
1106 	WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list));
1107 	vfio_unmap_unpin(iommu, dma, true);
1108 	vfio_unlink_dma(iommu, dma);
1109 	put_task_struct(dma->task);
1110 	mmdrop(dma->mm);
1111 	vfio_dma_bitmap_free(dma);
1112 	if (dma->vaddr_invalid)
1113 		iommu->vaddr_invalid_count--;
1114 	kfree(dma);
1115 	iommu->dma_avail++;
1116 }
1117 
vfio_update_pgsize_bitmap(struct vfio_iommu * iommu)1118 static void vfio_update_pgsize_bitmap(struct vfio_iommu *iommu)
1119 {
1120 	struct vfio_domain *domain;
1121 
1122 	iommu->pgsize_bitmap = ULONG_MAX;
1123 
1124 	list_for_each_entry(domain, &iommu->domain_list, next)
1125 		iommu->pgsize_bitmap &= domain->domain->pgsize_bitmap;
1126 
1127 	/*
1128 	 * In case the IOMMU supports page sizes smaller than PAGE_SIZE
1129 	 * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
1130 	 * That way the user will be able to map/unmap buffers whose size/
1131 	 * start address is aligned with PAGE_SIZE. Pinning code uses that
1132 	 * granularity while iommu driver can use the sub-PAGE_SIZE size
1133 	 * to map the buffer.
1134 	 */
1135 	if (iommu->pgsize_bitmap & ~PAGE_MASK) {
1136 		iommu->pgsize_bitmap &= PAGE_MASK;
1137 		iommu->pgsize_bitmap |= PAGE_SIZE;
1138 	}
1139 }
1140 
update_user_bitmap(u64 __user * bitmap,struct vfio_iommu * iommu,struct vfio_dma * dma,dma_addr_t base_iova,size_t pgsize)1141 static int update_user_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1142 			      struct vfio_dma *dma, dma_addr_t base_iova,
1143 			      size_t pgsize)
1144 {
1145 	unsigned long pgshift = __ffs(pgsize);
1146 	unsigned long nbits = dma->size >> pgshift;
1147 	unsigned long bit_offset = (dma->iova - base_iova) >> pgshift;
1148 	unsigned long copy_offset = bit_offset / BITS_PER_LONG;
1149 	unsigned long shift = bit_offset % BITS_PER_LONG;
1150 	unsigned long leftover;
1151 
1152 	/*
1153 	 * mark all pages dirty if any IOMMU capable device is not able
1154 	 * to report dirty pages and all pages are pinned and mapped.
1155 	 */
1156 	if (iommu->num_non_pinned_groups && dma->iommu_mapped)
1157 		bitmap_set(dma->bitmap, 0, nbits);
1158 
1159 	if (shift) {
1160 		bitmap_shift_left(dma->bitmap, dma->bitmap, shift,
1161 				  nbits + shift);
1162 
1163 		if (copy_from_user(&leftover,
1164 				   (void __user *)(bitmap + copy_offset),
1165 				   sizeof(leftover)))
1166 			return -EFAULT;
1167 
1168 		bitmap_or(dma->bitmap, dma->bitmap, &leftover, shift);
1169 	}
1170 
1171 	if (copy_to_user((void __user *)(bitmap + copy_offset), dma->bitmap,
1172 			 DIRTY_BITMAP_BYTES(nbits + shift)))
1173 		return -EFAULT;
1174 
1175 	return 0;
1176 }
1177 
vfio_iova_dirty_bitmap(u64 __user * bitmap,struct vfio_iommu * iommu,dma_addr_t iova,size_t size,size_t pgsize)1178 static int vfio_iova_dirty_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1179 				  dma_addr_t iova, size_t size, size_t pgsize)
1180 {
1181 	struct vfio_dma *dma;
1182 	struct rb_node *n;
1183 	unsigned long pgshift = __ffs(pgsize);
1184 	int ret;
1185 
1186 	/*
1187 	 * GET_BITMAP request must fully cover vfio_dma mappings.  Multiple
1188 	 * vfio_dma mappings may be clubbed by specifying large ranges, but
1189 	 * there must not be any previous mappings bisected by the range.
1190 	 * An error will be returned if these conditions are not met.
1191 	 */
1192 	dma = vfio_find_dma(iommu, iova, 1);
1193 	if (dma && dma->iova != iova)
1194 		return -EINVAL;
1195 
1196 	dma = vfio_find_dma(iommu, iova + size - 1, 0);
1197 	if (dma && dma->iova + dma->size != iova + size)
1198 		return -EINVAL;
1199 
1200 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1201 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1202 
1203 		if (dma->iova < iova)
1204 			continue;
1205 
1206 		if (dma->iova > iova + size - 1)
1207 			break;
1208 
1209 		ret = update_user_bitmap(bitmap, iommu, dma, iova, pgsize);
1210 		if (ret)
1211 			return ret;
1212 
1213 		/*
1214 		 * Re-populate bitmap to include all pinned pages which are
1215 		 * considered as dirty but exclude pages which are unpinned and
1216 		 * pages which are marked dirty by vfio_dma_rw()
1217 		 */
1218 		bitmap_clear(dma->bitmap, 0, dma->size >> pgshift);
1219 		vfio_dma_populate_bitmap(dma, pgsize);
1220 	}
1221 	return 0;
1222 }
1223 
verify_bitmap_size(uint64_t npages,uint64_t bitmap_size)1224 static int verify_bitmap_size(uint64_t npages, uint64_t bitmap_size)
1225 {
1226 	if (!npages || !bitmap_size || (bitmap_size > DIRTY_BITMAP_SIZE_MAX) ||
1227 	    (bitmap_size < DIRTY_BITMAP_BYTES(npages)))
1228 		return -EINVAL;
1229 
1230 	return 0;
1231 }
1232 
1233 /*
1234  * Notify VFIO drivers using vfio_register_emulated_iommu_dev() to invalidate
1235  * and unmap iovas within the range we're about to unmap. Drivers MUST unpin
1236  * pages in response to an invalidation.
1237  */
vfio_notify_dma_unmap(struct vfio_iommu * iommu,struct vfio_dma * dma)1238 static void vfio_notify_dma_unmap(struct vfio_iommu *iommu,
1239 				  struct vfio_dma *dma)
1240 {
1241 	struct vfio_device *device;
1242 
1243 	if (list_empty(&iommu->device_list))
1244 		return;
1245 
1246 	/*
1247 	 * The device is expected to call vfio_unpin_pages() for any IOVA it has
1248 	 * pinned within the range. Since vfio_unpin_pages() will eventually
1249 	 * call back down to this code and try to obtain the iommu->lock we must
1250 	 * drop it.
1251 	 */
1252 	mutex_lock(&iommu->device_list_lock);
1253 	mutex_unlock(&iommu->lock);
1254 
1255 	list_for_each_entry(device, &iommu->device_list, iommu_entry)
1256 		device->ops->dma_unmap(device, dma->iova, dma->size);
1257 
1258 	mutex_unlock(&iommu->device_list_lock);
1259 	mutex_lock(&iommu->lock);
1260 }
1261 
vfio_dma_do_unmap(struct vfio_iommu * iommu,struct vfio_iommu_type1_dma_unmap * unmap,struct vfio_bitmap * bitmap)1262 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
1263 			     struct vfio_iommu_type1_dma_unmap *unmap,
1264 			     struct vfio_bitmap *bitmap)
1265 {
1266 	struct vfio_dma *dma, *dma_last = NULL;
1267 	size_t unmapped = 0, pgsize;
1268 	int ret = -EINVAL, retries = 0;
1269 	unsigned long pgshift;
1270 	dma_addr_t iova = unmap->iova;
1271 	u64 size = unmap->size;
1272 	bool unmap_all = unmap->flags & VFIO_DMA_UNMAP_FLAG_ALL;
1273 	bool invalidate_vaddr = unmap->flags & VFIO_DMA_UNMAP_FLAG_VADDR;
1274 	struct rb_node *n, *first_n;
1275 
1276 	mutex_lock(&iommu->lock);
1277 
1278 	/* Cannot update vaddr if mdev is present. */
1279 	if (invalidate_vaddr && !list_empty(&iommu->emulated_iommu_groups)) {
1280 		ret = -EBUSY;
1281 		goto unlock;
1282 	}
1283 
1284 	pgshift = __ffs(iommu->pgsize_bitmap);
1285 	pgsize = (size_t)1 << pgshift;
1286 
1287 	if (iova & (pgsize - 1))
1288 		goto unlock;
1289 
1290 	if (unmap_all) {
1291 		if (iova || size)
1292 			goto unlock;
1293 		size = U64_MAX;
1294 	} else if (!size || size & (pgsize - 1) ||
1295 		   iova + size - 1 < iova || size > SIZE_MAX) {
1296 		goto unlock;
1297 	}
1298 
1299 	/* When dirty tracking is enabled, allow only min supported pgsize */
1300 	if ((unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
1301 	    (!iommu->dirty_page_tracking || (bitmap->pgsize != pgsize))) {
1302 		goto unlock;
1303 	}
1304 
1305 	WARN_ON((pgsize - 1) & PAGE_MASK);
1306 again:
1307 	/*
1308 	 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
1309 	 * avoid tracking individual mappings.  This means that the granularity
1310 	 * of the original mapping was lost and the user was allowed to attempt
1311 	 * to unmap any range.  Depending on the contiguousness of physical
1312 	 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
1313 	 * or may not have worked.  We only guaranteed unmap granularity
1314 	 * matching the original mapping; even though it was untracked here,
1315 	 * the original mappings are reflected in IOMMU mappings.  This
1316 	 * resulted in a couple unusual behaviors.  First, if a range is not
1317 	 * able to be unmapped, ex. a set of 4k pages that was mapped as a
1318 	 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
1319 	 * a zero sized unmap.  Also, if an unmap request overlaps the first
1320 	 * address of a hugepage, the IOMMU will unmap the entire hugepage.
1321 	 * This also returns success and the returned unmap size reflects the
1322 	 * actual size unmapped.
1323 	 *
1324 	 * We attempt to maintain compatibility with this "v1" interface, but
1325 	 * we take control out of the hands of the IOMMU.  Therefore, an unmap
1326 	 * request offset from the beginning of the original mapping will
1327 	 * return success with zero sized unmap.  And an unmap request covering
1328 	 * the first iova of mapping will unmap the entire range.
1329 	 *
1330 	 * The v2 version of this interface intends to be more deterministic.
1331 	 * Unmap requests must fully cover previous mappings.  Multiple
1332 	 * mappings may still be unmaped by specifying large ranges, but there
1333 	 * must not be any previous mappings bisected by the range.  An error
1334 	 * will be returned if these conditions are not met.  The v2 interface
1335 	 * will only return success and a size of zero if there were no
1336 	 * mappings within the range.
1337 	 */
1338 	if (iommu->v2 && !unmap_all) {
1339 		dma = vfio_find_dma(iommu, iova, 1);
1340 		if (dma && dma->iova != iova)
1341 			goto unlock;
1342 
1343 		dma = vfio_find_dma(iommu, iova + size - 1, 0);
1344 		if (dma && dma->iova + dma->size != iova + size)
1345 			goto unlock;
1346 	}
1347 
1348 	ret = 0;
1349 	n = first_n = vfio_find_dma_first_node(iommu, iova, size);
1350 
1351 	while (n) {
1352 		dma = rb_entry(n, struct vfio_dma, node);
1353 		if (dma->iova >= iova + size)
1354 			break;
1355 
1356 		if (!iommu->v2 && iova > dma->iova)
1357 			break;
1358 
1359 		if (invalidate_vaddr) {
1360 			if (dma->vaddr_invalid) {
1361 				struct rb_node *last_n = n;
1362 
1363 				for (n = first_n; n != last_n; n = rb_next(n)) {
1364 					dma = rb_entry(n,
1365 						       struct vfio_dma, node);
1366 					dma->vaddr_invalid = false;
1367 					iommu->vaddr_invalid_count--;
1368 				}
1369 				ret = -EINVAL;
1370 				unmapped = 0;
1371 				break;
1372 			}
1373 			dma->vaddr_invalid = true;
1374 			iommu->vaddr_invalid_count++;
1375 			unmapped += dma->size;
1376 			n = rb_next(n);
1377 			continue;
1378 		}
1379 
1380 		if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
1381 			if (dma_last == dma) {
1382 				BUG_ON(++retries > 10);
1383 			} else {
1384 				dma_last = dma;
1385 				retries = 0;
1386 			}
1387 
1388 			vfio_notify_dma_unmap(iommu, dma);
1389 			goto again;
1390 		}
1391 
1392 		if (unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
1393 			ret = update_user_bitmap(bitmap->data, iommu, dma,
1394 						 iova, pgsize);
1395 			if (ret)
1396 				break;
1397 		}
1398 
1399 		unmapped += dma->size;
1400 		n = rb_next(n);
1401 		vfio_remove_dma(iommu, dma);
1402 	}
1403 
1404 unlock:
1405 	mutex_unlock(&iommu->lock);
1406 
1407 	/* Report how much was unmapped */
1408 	unmap->size = unmapped;
1409 
1410 	return ret;
1411 }
1412 
vfio_iommu_map(struct vfio_iommu * iommu,dma_addr_t iova,unsigned long pfn,long npage,int prot)1413 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
1414 			  unsigned long pfn, long npage, int prot)
1415 {
1416 	struct vfio_domain *d;
1417 	int ret;
1418 
1419 	list_for_each_entry(d, &iommu->domain_list, next) {
1420 		ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
1421 				npage << PAGE_SHIFT, prot | IOMMU_CACHE,
1422 				GFP_KERNEL_ACCOUNT);
1423 		if (ret)
1424 			goto unwind;
1425 
1426 		cond_resched();
1427 	}
1428 
1429 	return 0;
1430 
1431 unwind:
1432 	list_for_each_entry_continue_reverse(d, &iommu->domain_list, next) {
1433 		iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
1434 		cond_resched();
1435 	}
1436 
1437 	return ret;
1438 }
1439 
vfio_pin_map_dma(struct vfio_iommu * iommu,struct vfio_dma * dma,size_t map_size)1440 static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
1441 			    size_t map_size)
1442 {
1443 	dma_addr_t iova = dma->iova;
1444 	unsigned long vaddr = dma->vaddr;
1445 	struct vfio_batch batch;
1446 	size_t size = map_size;
1447 	long npage;
1448 	unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1449 	int ret = 0;
1450 
1451 	vfio_batch_init(&batch);
1452 
1453 	while (size) {
1454 		/* Pin a contiguous chunk of memory */
1455 		npage = vfio_pin_pages_remote(dma, vaddr + dma->size,
1456 					      size >> PAGE_SHIFT, &pfn, limit,
1457 					      &batch);
1458 		if (npage <= 0) {
1459 			WARN_ON(!npage);
1460 			ret = (int)npage;
1461 			break;
1462 		}
1463 
1464 		/* Map it! */
1465 		ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage,
1466 				     dma->prot);
1467 		if (ret) {
1468 			vfio_unpin_pages_remote(dma, iova + dma->size, pfn,
1469 						npage, true);
1470 			vfio_batch_unpin(&batch, dma);
1471 			break;
1472 		}
1473 
1474 		size -= npage << PAGE_SHIFT;
1475 		dma->size += npage << PAGE_SHIFT;
1476 	}
1477 
1478 	vfio_batch_fini(&batch);
1479 	dma->iommu_mapped = true;
1480 
1481 	if (ret)
1482 		vfio_remove_dma(iommu, dma);
1483 
1484 	return ret;
1485 }
1486 
1487 /*
1488  * Check dma map request is within a valid iova range
1489  */
vfio_iommu_iova_dma_valid(struct vfio_iommu * iommu,dma_addr_t start,dma_addr_t end)1490 static bool vfio_iommu_iova_dma_valid(struct vfio_iommu *iommu,
1491 				      dma_addr_t start, dma_addr_t end)
1492 {
1493 	struct list_head *iova = &iommu->iova_list;
1494 	struct vfio_iova *node;
1495 
1496 	list_for_each_entry(node, iova, list) {
1497 		if (start >= node->start && end <= node->end)
1498 			return true;
1499 	}
1500 
1501 	/*
1502 	 * Check for list_empty() as well since a container with
1503 	 * a single mdev device will have an empty list.
1504 	 */
1505 	return list_empty(iova);
1506 }
1507 
vfio_change_dma_owner(struct vfio_dma * dma)1508 static int vfio_change_dma_owner(struct vfio_dma *dma)
1509 {
1510 	struct task_struct *task = current->group_leader;
1511 	struct mm_struct *mm = current->mm;
1512 	long npage = dma->locked_vm;
1513 	bool lock_cap;
1514 	int ret;
1515 
1516 	if (mm == dma->mm)
1517 		return 0;
1518 
1519 	lock_cap = capable(CAP_IPC_LOCK);
1520 	ret = mm_lock_acct(task, mm, lock_cap, npage);
1521 	if (ret)
1522 		return ret;
1523 
1524 	if (mmget_not_zero(dma->mm)) {
1525 		mm_lock_acct(dma->task, dma->mm, dma->lock_cap, -npage);
1526 		mmput(dma->mm);
1527 	}
1528 
1529 	if (dma->task != task) {
1530 		put_task_struct(dma->task);
1531 		dma->task = get_task_struct(task);
1532 	}
1533 	mmdrop(dma->mm);
1534 	dma->mm = mm;
1535 	mmgrab(dma->mm);
1536 	dma->lock_cap = lock_cap;
1537 	return 0;
1538 }
1539 
vfio_dma_do_map(struct vfio_iommu * iommu,struct vfio_iommu_type1_dma_map * map)1540 static int vfio_dma_do_map(struct vfio_iommu *iommu,
1541 			   struct vfio_iommu_type1_dma_map *map)
1542 {
1543 	bool set_vaddr = map->flags & VFIO_DMA_MAP_FLAG_VADDR;
1544 	dma_addr_t iova = map->iova;
1545 	unsigned long vaddr = map->vaddr;
1546 	size_t size = map->size;
1547 	int ret = 0, prot = 0;
1548 	size_t pgsize;
1549 	struct vfio_dma *dma;
1550 
1551 	/* Verify that none of our __u64 fields overflow */
1552 	if (map->size != size || map->vaddr != vaddr || map->iova != iova)
1553 		return -EINVAL;
1554 
1555 	/* READ/WRITE from device perspective */
1556 	if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
1557 		prot |= IOMMU_WRITE;
1558 	if (map->flags & VFIO_DMA_MAP_FLAG_READ)
1559 		prot |= IOMMU_READ;
1560 
1561 	if ((prot && set_vaddr) || (!prot && !set_vaddr))
1562 		return -EINVAL;
1563 
1564 	mutex_lock(&iommu->lock);
1565 
1566 	pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
1567 
1568 	WARN_ON((pgsize - 1) & PAGE_MASK);
1569 
1570 	if (!size || (size | iova | vaddr) & (pgsize - 1)) {
1571 		ret = -EINVAL;
1572 		goto out_unlock;
1573 	}
1574 
1575 	/* Don't allow IOVA or virtual address wrap */
1576 	if (iova + size - 1 < iova || vaddr + size - 1 < vaddr) {
1577 		ret = -EINVAL;
1578 		goto out_unlock;
1579 	}
1580 
1581 	dma = vfio_find_dma(iommu, iova, size);
1582 	if (set_vaddr) {
1583 		if (!dma) {
1584 			ret = -ENOENT;
1585 		} else if (!dma->vaddr_invalid || dma->iova != iova ||
1586 			   dma->size != size) {
1587 			ret = -EINVAL;
1588 		} else {
1589 			ret = vfio_change_dma_owner(dma);
1590 			if (ret)
1591 				goto out_unlock;
1592 			dma->vaddr = vaddr;
1593 			dma->vaddr_invalid = false;
1594 			iommu->vaddr_invalid_count--;
1595 		}
1596 		goto out_unlock;
1597 	} else if (dma) {
1598 		ret = -EEXIST;
1599 		goto out_unlock;
1600 	}
1601 
1602 	if (!iommu->dma_avail) {
1603 		ret = -ENOSPC;
1604 		goto out_unlock;
1605 	}
1606 
1607 	if (!vfio_iommu_iova_dma_valid(iommu, iova, iova + size - 1)) {
1608 		ret = -EINVAL;
1609 		goto out_unlock;
1610 	}
1611 
1612 	dma = kzalloc(sizeof(*dma), GFP_KERNEL);
1613 	if (!dma) {
1614 		ret = -ENOMEM;
1615 		goto out_unlock;
1616 	}
1617 
1618 	iommu->dma_avail--;
1619 	dma->iova = iova;
1620 	dma->vaddr = vaddr;
1621 	dma->prot = prot;
1622 
1623 	/*
1624 	 * We need to be able to both add to a task's locked memory and test
1625 	 * against the locked memory limit and we need to be able to do both
1626 	 * outside of this call path as pinning can be asynchronous via the
1627 	 * external interfaces for mdev devices.  RLIMIT_MEMLOCK requires a
1628 	 * task_struct. Save the group_leader so that all DMA tracking uses
1629 	 * the same task, to make debugging easier.  VM locked pages requires
1630 	 * an mm_struct, so grab the mm in case the task dies.
1631 	 */
1632 	get_task_struct(current->group_leader);
1633 	dma->task = current->group_leader;
1634 	dma->lock_cap = capable(CAP_IPC_LOCK);
1635 	dma->mm = current->mm;
1636 	mmgrab(dma->mm);
1637 
1638 	dma->pfn_list = RB_ROOT;
1639 
1640 	/* Insert zero-sized and grow as we map chunks of it */
1641 	vfio_link_dma(iommu, dma);
1642 
1643 	/* Don't pin and map if container doesn't contain IOMMU capable domain*/
1644 	if (list_empty(&iommu->domain_list))
1645 		dma->size = size;
1646 	else
1647 		ret = vfio_pin_map_dma(iommu, dma, size);
1648 
1649 	if (!ret && iommu->dirty_page_tracking) {
1650 		ret = vfio_dma_bitmap_alloc(dma, pgsize);
1651 		if (ret)
1652 			vfio_remove_dma(iommu, dma);
1653 	}
1654 
1655 out_unlock:
1656 	mutex_unlock(&iommu->lock);
1657 	return ret;
1658 }
1659 
vfio_iommu_replay(struct vfio_iommu * iommu,struct vfio_domain * domain)1660 static int vfio_iommu_replay(struct vfio_iommu *iommu,
1661 			     struct vfio_domain *domain)
1662 {
1663 	struct vfio_batch batch;
1664 	struct vfio_domain *d = NULL;
1665 	struct rb_node *n;
1666 	unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1667 	int ret;
1668 
1669 	/* Arbitrarily pick the first domain in the list for lookups */
1670 	if (!list_empty(&iommu->domain_list))
1671 		d = list_first_entry(&iommu->domain_list,
1672 				     struct vfio_domain, next);
1673 
1674 	vfio_batch_init(&batch);
1675 
1676 	n = rb_first(&iommu->dma_list);
1677 
1678 	for (; n; n = rb_next(n)) {
1679 		struct vfio_dma *dma;
1680 		dma_addr_t iova;
1681 
1682 		dma = rb_entry(n, struct vfio_dma, node);
1683 		iova = dma->iova;
1684 
1685 		while (iova < dma->iova + dma->size) {
1686 			phys_addr_t phys;
1687 			size_t size;
1688 
1689 			if (dma->iommu_mapped) {
1690 				phys_addr_t p;
1691 				dma_addr_t i;
1692 
1693 				if (WARN_ON(!d)) { /* mapped w/o a domain?! */
1694 					ret = -EINVAL;
1695 					goto unwind;
1696 				}
1697 
1698 				phys = iommu_iova_to_phys(d->domain, iova);
1699 
1700 				if (WARN_ON(!phys)) {
1701 					iova += PAGE_SIZE;
1702 					continue;
1703 				}
1704 
1705 				size = PAGE_SIZE;
1706 				p = phys + size;
1707 				i = iova + size;
1708 				while (i < dma->iova + dma->size &&
1709 				       p == iommu_iova_to_phys(d->domain, i)) {
1710 					size += PAGE_SIZE;
1711 					p += PAGE_SIZE;
1712 					i += PAGE_SIZE;
1713 				}
1714 			} else {
1715 				unsigned long pfn;
1716 				unsigned long vaddr = dma->vaddr +
1717 						     (iova - dma->iova);
1718 				size_t n = dma->iova + dma->size - iova;
1719 				long npage;
1720 
1721 				npage = vfio_pin_pages_remote(dma, vaddr,
1722 							      n >> PAGE_SHIFT,
1723 							      &pfn, limit,
1724 							      &batch);
1725 				if (npage <= 0) {
1726 					WARN_ON(!npage);
1727 					ret = (int)npage;
1728 					goto unwind;
1729 				}
1730 
1731 				phys = pfn << PAGE_SHIFT;
1732 				size = npage << PAGE_SHIFT;
1733 			}
1734 
1735 			ret = iommu_map(domain->domain, iova, phys, size,
1736 					dma->prot | IOMMU_CACHE,
1737 					GFP_KERNEL_ACCOUNT);
1738 			if (ret) {
1739 				if (!dma->iommu_mapped) {
1740 					vfio_unpin_pages_remote(dma, iova,
1741 							phys >> PAGE_SHIFT,
1742 							size >> PAGE_SHIFT,
1743 							true);
1744 					vfio_batch_unpin(&batch, dma);
1745 				}
1746 				goto unwind;
1747 			}
1748 
1749 			iova += size;
1750 		}
1751 	}
1752 
1753 	/* All dmas are now mapped, defer to second tree walk for unwind */
1754 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1755 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1756 
1757 		dma->iommu_mapped = true;
1758 	}
1759 
1760 	vfio_batch_fini(&batch);
1761 	return 0;
1762 
1763 unwind:
1764 	for (; n; n = rb_prev(n)) {
1765 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1766 		dma_addr_t iova;
1767 
1768 		if (dma->iommu_mapped) {
1769 			iommu_unmap(domain->domain, dma->iova, dma->size);
1770 			continue;
1771 		}
1772 
1773 		iova = dma->iova;
1774 		while (iova < dma->iova + dma->size) {
1775 			phys_addr_t phys, p;
1776 			size_t size;
1777 			dma_addr_t i;
1778 
1779 			phys = iommu_iova_to_phys(domain->domain, iova);
1780 			if (!phys) {
1781 				iova += PAGE_SIZE;
1782 				continue;
1783 			}
1784 
1785 			size = PAGE_SIZE;
1786 			p = phys + size;
1787 			i = iova + size;
1788 			while (i < dma->iova + dma->size &&
1789 			       p == iommu_iova_to_phys(domain->domain, i)) {
1790 				size += PAGE_SIZE;
1791 				p += PAGE_SIZE;
1792 				i += PAGE_SIZE;
1793 			}
1794 
1795 			iommu_unmap(domain->domain, iova, size);
1796 			vfio_unpin_pages_remote(dma, iova, phys >> PAGE_SHIFT,
1797 						size >> PAGE_SHIFT, true);
1798 		}
1799 	}
1800 
1801 	vfio_batch_fini(&batch);
1802 	return ret;
1803 }
1804 
1805 /*
1806  * We change our unmap behavior slightly depending on whether the IOMMU
1807  * supports fine-grained superpages.  IOMMUs like AMD-Vi will use a superpage
1808  * for practically any contiguous power-of-two mapping we give it.  This means
1809  * we don't need to look for contiguous chunks ourselves to make unmapping
1810  * more efficient.  On IOMMUs with coarse-grained super pages, like Intel VT-d
1811  * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
1812  * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
1813  * hugetlbfs is in use.
1814  */
vfio_test_domain_fgsp(struct vfio_domain * domain,struct list_head * regions)1815 static void vfio_test_domain_fgsp(struct vfio_domain *domain, struct list_head *regions)
1816 {
1817 	int ret, order = get_order(PAGE_SIZE * 2);
1818 	struct vfio_iova *region;
1819 	struct page *pages;
1820 	dma_addr_t start;
1821 
1822 	pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1823 	if (!pages)
1824 		return;
1825 
1826 	list_for_each_entry(region, regions, list) {
1827 		start = ALIGN(region->start, PAGE_SIZE * 2);
1828 		if (start >= region->end || (region->end - start < PAGE_SIZE * 2))
1829 			continue;
1830 
1831 		ret = iommu_map(domain->domain, start, page_to_phys(pages), PAGE_SIZE * 2,
1832 				IOMMU_READ | IOMMU_WRITE | IOMMU_CACHE,
1833 				GFP_KERNEL_ACCOUNT);
1834 		if (!ret) {
1835 			size_t unmapped = iommu_unmap(domain->domain, start, PAGE_SIZE);
1836 
1837 			if (unmapped == PAGE_SIZE)
1838 				iommu_unmap(domain->domain, start + PAGE_SIZE, PAGE_SIZE);
1839 			else
1840 				domain->fgsp = true;
1841 		}
1842 		break;
1843 	}
1844 
1845 	__free_pages(pages, order);
1846 }
1847 
find_iommu_group(struct vfio_domain * domain,struct iommu_group * iommu_group)1848 static struct vfio_iommu_group *find_iommu_group(struct vfio_domain *domain,
1849 						 struct iommu_group *iommu_group)
1850 {
1851 	struct vfio_iommu_group *g;
1852 
1853 	list_for_each_entry(g, &domain->group_list, next) {
1854 		if (g->iommu_group == iommu_group)
1855 			return g;
1856 	}
1857 
1858 	return NULL;
1859 }
1860 
1861 static struct vfio_iommu_group*
vfio_iommu_find_iommu_group(struct vfio_iommu * iommu,struct iommu_group * iommu_group)1862 vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
1863 			    struct iommu_group *iommu_group)
1864 {
1865 	struct vfio_iommu_group *group;
1866 	struct vfio_domain *domain;
1867 
1868 	list_for_each_entry(domain, &iommu->domain_list, next) {
1869 		group = find_iommu_group(domain, iommu_group);
1870 		if (group)
1871 			return group;
1872 	}
1873 
1874 	list_for_each_entry(group, &iommu->emulated_iommu_groups, next)
1875 		if (group->iommu_group == iommu_group)
1876 			return group;
1877 	return NULL;
1878 }
1879 
vfio_iommu_has_sw_msi(struct list_head * group_resv_regions,phys_addr_t * base)1880 static bool vfio_iommu_has_sw_msi(struct list_head *group_resv_regions,
1881 				  phys_addr_t *base)
1882 {
1883 	struct iommu_resv_region *region;
1884 	bool ret = false;
1885 
1886 	list_for_each_entry(region, group_resv_regions, list) {
1887 		/*
1888 		 * The presence of any 'real' MSI regions should take
1889 		 * precedence over the software-managed one if the
1890 		 * IOMMU driver happens to advertise both types.
1891 		 */
1892 		if (region->type == IOMMU_RESV_MSI) {
1893 			ret = false;
1894 			break;
1895 		}
1896 
1897 		if (region->type == IOMMU_RESV_SW_MSI) {
1898 			*base = region->start;
1899 			ret = true;
1900 		}
1901 	}
1902 
1903 	return ret;
1904 }
1905 
1906 /*
1907  * This is a helper function to insert an address range to iova list.
1908  * The list is initially created with a single entry corresponding to
1909  * the IOMMU domain geometry to which the device group is attached.
1910  * The list aperture gets modified when a new domain is added to the
1911  * container if the new aperture doesn't conflict with the current one
1912  * or with any existing dma mappings. The list is also modified to
1913  * exclude any reserved regions associated with the device group.
1914  */
vfio_iommu_iova_insert(struct list_head * head,dma_addr_t start,dma_addr_t end)1915 static int vfio_iommu_iova_insert(struct list_head *head,
1916 				  dma_addr_t start, dma_addr_t end)
1917 {
1918 	struct vfio_iova *region;
1919 
1920 	region = kmalloc(sizeof(*region), GFP_KERNEL);
1921 	if (!region)
1922 		return -ENOMEM;
1923 
1924 	INIT_LIST_HEAD(&region->list);
1925 	region->start = start;
1926 	region->end = end;
1927 
1928 	list_add_tail(&region->list, head);
1929 	return 0;
1930 }
1931 
1932 /*
1933  * Check the new iommu aperture conflicts with existing aper or with any
1934  * existing dma mappings.
1935  */
vfio_iommu_aper_conflict(struct vfio_iommu * iommu,dma_addr_t start,dma_addr_t end)1936 static bool vfio_iommu_aper_conflict(struct vfio_iommu *iommu,
1937 				     dma_addr_t start, dma_addr_t end)
1938 {
1939 	struct vfio_iova *first, *last;
1940 	struct list_head *iova = &iommu->iova_list;
1941 
1942 	if (list_empty(iova))
1943 		return false;
1944 
1945 	/* Disjoint sets, return conflict */
1946 	first = list_first_entry(iova, struct vfio_iova, list);
1947 	last = list_last_entry(iova, struct vfio_iova, list);
1948 	if (start > last->end || end < first->start)
1949 		return true;
1950 
1951 	/* Check for any existing dma mappings below the new start */
1952 	if (start > first->start) {
1953 		if (vfio_find_dma(iommu, first->start, start - first->start))
1954 			return true;
1955 	}
1956 
1957 	/* Check for any existing dma mappings beyond the new end */
1958 	if (end < last->end) {
1959 		if (vfio_find_dma(iommu, end + 1, last->end - end))
1960 			return true;
1961 	}
1962 
1963 	return false;
1964 }
1965 
1966 /*
1967  * Resize iommu iova aperture window. This is called only if the new
1968  * aperture has no conflict with existing aperture and dma mappings.
1969  */
vfio_iommu_aper_resize(struct list_head * iova,dma_addr_t start,dma_addr_t end)1970 static int vfio_iommu_aper_resize(struct list_head *iova,
1971 				  dma_addr_t start, dma_addr_t end)
1972 {
1973 	struct vfio_iova *node, *next;
1974 
1975 	if (list_empty(iova))
1976 		return vfio_iommu_iova_insert(iova, start, end);
1977 
1978 	/* Adjust iova list start */
1979 	list_for_each_entry_safe(node, next, iova, list) {
1980 		if (start < node->start)
1981 			break;
1982 		if (start >= node->start && start < node->end) {
1983 			node->start = start;
1984 			break;
1985 		}
1986 		/* Delete nodes before new start */
1987 		list_del(&node->list);
1988 		kfree(node);
1989 	}
1990 
1991 	/* Adjust iova list end */
1992 	list_for_each_entry_safe(node, next, iova, list) {
1993 		if (end > node->end)
1994 			continue;
1995 		if (end > node->start && end <= node->end) {
1996 			node->end = end;
1997 			continue;
1998 		}
1999 		/* Delete nodes after new end */
2000 		list_del(&node->list);
2001 		kfree(node);
2002 	}
2003 
2004 	return 0;
2005 }
2006 
2007 /*
2008  * Check reserved region conflicts with existing dma mappings
2009  */
vfio_iommu_resv_conflict(struct vfio_iommu * iommu,struct list_head * resv_regions)2010 static bool vfio_iommu_resv_conflict(struct vfio_iommu *iommu,
2011 				     struct list_head *resv_regions)
2012 {
2013 	struct iommu_resv_region *region;
2014 
2015 	/* Check for conflict with existing dma mappings */
2016 	list_for_each_entry(region, resv_regions, list) {
2017 		if (region->type == IOMMU_RESV_DIRECT_RELAXABLE)
2018 			continue;
2019 
2020 		if (vfio_find_dma(iommu, region->start, region->length))
2021 			return true;
2022 	}
2023 
2024 	return false;
2025 }
2026 
2027 /*
2028  * Check iova region overlap with  reserved regions and
2029  * exclude them from the iommu iova range
2030  */
vfio_iommu_resv_exclude(struct list_head * iova,struct list_head * resv_regions)2031 static int vfio_iommu_resv_exclude(struct list_head *iova,
2032 				   struct list_head *resv_regions)
2033 {
2034 	struct iommu_resv_region *resv;
2035 	struct vfio_iova *n, *next;
2036 
2037 	list_for_each_entry(resv, resv_regions, list) {
2038 		phys_addr_t start, end;
2039 
2040 		if (resv->type == IOMMU_RESV_DIRECT_RELAXABLE)
2041 			continue;
2042 
2043 		start = resv->start;
2044 		end = resv->start + resv->length - 1;
2045 
2046 		list_for_each_entry_safe(n, next, iova, list) {
2047 			int ret = 0;
2048 
2049 			/* No overlap */
2050 			if (start > n->end || end < n->start)
2051 				continue;
2052 			/*
2053 			 * Insert a new node if current node overlaps with the
2054 			 * reserve region to exclude that from valid iova range.
2055 			 * Note that, new node is inserted before the current
2056 			 * node and finally the current node is deleted keeping
2057 			 * the list updated and sorted.
2058 			 */
2059 			if (start > n->start)
2060 				ret = vfio_iommu_iova_insert(&n->list, n->start,
2061 							     start - 1);
2062 			if (!ret && end < n->end)
2063 				ret = vfio_iommu_iova_insert(&n->list, end + 1,
2064 							     n->end);
2065 			if (ret)
2066 				return ret;
2067 
2068 			list_del(&n->list);
2069 			kfree(n);
2070 		}
2071 	}
2072 
2073 	if (list_empty(iova))
2074 		return -EINVAL;
2075 
2076 	return 0;
2077 }
2078 
vfio_iommu_resv_free(struct list_head * resv_regions)2079 static void vfio_iommu_resv_free(struct list_head *resv_regions)
2080 {
2081 	struct iommu_resv_region *n, *next;
2082 
2083 	list_for_each_entry_safe(n, next, resv_regions, list) {
2084 		list_del(&n->list);
2085 		kfree(n);
2086 	}
2087 }
2088 
vfio_iommu_iova_free(struct list_head * iova)2089 static void vfio_iommu_iova_free(struct list_head *iova)
2090 {
2091 	struct vfio_iova *n, *next;
2092 
2093 	list_for_each_entry_safe(n, next, iova, list) {
2094 		list_del(&n->list);
2095 		kfree(n);
2096 	}
2097 }
2098 
vfio_iommu_iova_get_copy(struct vfio_iommu * iommu,struct list_head * iova_copy)2099 static int vfio_iommu_iova_get_copy(struct vfio_iommu *iommu,
2100 				    struct list_head *iova_copy)
2101 {
2102 	struct list_head *iova = &iommu->iova_list;
2103 	struct vfio_iova *n;
2104 	int ret;
2105 
2106 	list_for_each_entry(n, iova, list) {
2107 		ret = vfio_iommu_iova_insert(iova_copy, n->start, n->end);
2108 		if (ret)
2109 			goto out_free;
2110 	}
2111 
2112 	return 0;
2113 
2114 out_free:
2115 	vfio_iommu_iova_free(iova_copy);
2116 	return ret;
2117 }
2118 
vfio_iommu_iova_insert_copy(struct vfio_iommu * iommu,struct list_head * iova_copy)2119 static void vfio_iommu_iova_insert_copy(struct vfio_iommu *iommu,
2120 					struct list_head *iova_copy)
2121 {
2122 	struct list_head *iova = &iommu->iova_list;
2123 
2124 	vfio_iommu_iova_free(iova);
2125 
2126 	list_splice_tail(iova_copy, iova);
2127 }
2128 
vfio_iommu_domain_alloc(struct device * dev,void * data)2129 static int vfio_iommu_domain_alloc(struct device *dev, void *data)
2130 {
2131 	struct iommu_domain **domain = data;
2132 
2133 	*domain = iommu_paging_domain_alloc(dev);
2134 	return 1; /* Don't iterate */
2135 }
2136 
vfio_iommu_type1_attach_group(void * iommu_data,struct iommu_group * iommu_group,enum vfio_group_type type)2137 static int vfio_iommu_type1_attach_group(void *iommu_data,
2138 		struct iommu_group *iommu_group, enum vfio_group_type type)
2139 {
2140 	struct vfio_iommu *iommu = iommu_data;
2141 	struct vfio_iommu_group *group;
2142 	struct vfio_domain *domain, *d;
2143 	bool resv_msi;
2144 	phys_addr_t resv_msi_base = 0;
2145 	struct iommu_domain_geometry *geo;
2146 	LIST_HEAD(iova_copy);
2147 	LIST_HEAD(group_resv_regions);
2148 	int ret = -EBUSY;
2149 
2150 	mutex_lock(&iommu->lock);
2151 
2152 	/* Attach could require pinning, so disallow while vaddr is invalid. */
2153 	if (iommu->vaddr_invalid_count)
2154 		goto out_unlock;
2155 
2156 	/* Check for duplicates */
2157 	ret = -EINVAL;
2158 	if (vfio_iommu_find_iommu_group(iommu, iommu_group))
2159 		goto out_unlock;
2160 
2161 	ret = -ENOMEM;
2162 	group = kzalloc(sizeof(*group), GFP_KERNEL);
2163 	if (!group)
2164 		goto out_unlock;
2165 	group->iommu_group = iommu_group;
2166 
2167 	if (type == VFIO_EMULATED_IOMMU) {
2168 		list_add(&group->next, &iommu->emulated_iommu_groups);
2169 		/*
2170 		 * An emulated IOMMU group cannot dirty memory directly, it can
2171 		 * only use interfaces that provide dirty tracking.
2172 		 * The iommu scope can only be promoted with the addition of a
2173 		 * dirty tracking group.
2174 		 */
2175 		group->pinned_page_dirty_scope = true;
2176 		ret = 0;
2177 		goto out_unlock;
2178 	}
2179 
2180 	ret = -ENOMEM;
2181 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2182 	if (!domain)
2183 		goto out_free_group;
2184 
2185 	/*
2186 	 * Going via the iommu_group iterator avoids races, and trivially gives
2187 	 * us a representative device for the IOMMU API call. We don't actually
2188 	 * want to iterate beyond the first device (if any).
2189 	 */
2190 	iommu_group_for_each_dev(iommu_group, &domain->domain,
2191 				 vfio_iommu_domain_alloc);
2192 	if (IS_ERR(domain->domain)) {
2193 		ret = PTR_ERR(domain->domain);
2194 		goto out_free_domain;
2195 	}
2196 
2197 	ret = iommu_attach_group(domain->domain, group->iommu_group);
2198 	if (ret)
2199 		goto out_domain;
2200 
2201 	/* Get aperture info */
2202 	geo = &domain->domain->geometry;
2203 	if (vfio_iommu_aper_conflict(iommu, geo->aperture_start,
2204 				     geo->aperture_end)) {
2205 		ret = -EINVAL;
2206 		goto out_detach;
2207 	}
2208 
2209 	ret = iommu_get_group_resv_regions(iommu_group, &group_resv_regions);
2210 	if (ret)
2211 		goto out_detach;
2212 
2213 	if (vfio_iommu_resv_conflict(iommu, &group_resv_regions)) {
2214 		ret = -EINVAL;
2215 		goto out_detach;
2216 	}
2217 
2218 	/*
2219 	 * We don't want to work on the original iova list as the list
2220 	 * gets modified and in case of failure we have to retain the
2221 	 * original list. Get a copy here.
2222 	 */
2223 	ret = vfio_iommu_iova_get_copy(iommu, &iova_copy);
2224 	if (ret)
2225 		goto out_detach;
2226 
2227 	ret = vfio_iommu_aper_resize(&iova_copy, geo->aperture_start,
2228 				     geo->aperture_end);
2229 	if (ret)
2230 		goto out_detach;
2231 
2232 	ret = vfio_iommu_resv_exclude(&iova_copy, &group_resv_regions);
2233 	if (ret)
2234 		goto out_detach;
2235 
2236 	resv_msi = vfio_iommu_has_sw_msi(&group_resv_regions, &resv_msi_base);
2237 
2238 	INIT_LIST_HEAD(&domain->group_list);
2239 	list_add(&group->next, &domain->group_list);
2240 
2241 	if (!allow_unsafe_interrupts &&
2242 	    !iommu_group_has_isolated_msi(iommu_group)) {
2243 		pr_warn("%s: No interrupt remapping support.  Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
2244 		       __func__);
2245 		ret = -EPERM;
2246 		goto out_detach;
2247 	}
2248 
2249 	/*
2250 	 * If the IOMMU can block non-coherent operations (ie PCIe TLPs with
2251 	 * no-snoop set) then VFIO always turns this feature on because on Intel
2252 	 * platforms it optimizes KVM to disable wbinvd emulation.
2253 	 */
2254 	if (domain->domain->ops->enforce_cache_coherency)
2255 		domain->enforce_cache_coherency =
2256 			domain->domain->ops->enforce_cache_coherency(
2257 				domain->domain);
2258 
2259 	/*
2260 	 * Try to match an existing compatible domain.  We don't want to
2261 	 * preclude an IOMMU driver supporting multiple bus_types and being
2262 	 * able to include different bus_types in the same IOMMU domain, so
2263 	 * we test whether the domains use the same iommu_ops rather than
2264 	 * testing if they're on the same bus_type.
2265 	 */
2266 	list_for_each_entry(d, &iommu->domain_list, next) {
2267 		if (d->domain->ops == domain->domain->ops &&
2268 		    d->enforce_cache_coherency ==
2269 			    domain->enforce_cache_coherency) {
2270 			iommu_detach_group(domain->domain, group->iommu_group);
2271 			if (!iommu_attach_group(d->domain,
2272 						group->iommu_group)) {
2273 				list_add(&group->next, &d->group_list);
2274 				iommu_domain_free(domain->domain);
2275 				kfree(domain);
2276 				goto done;
2277 			}
2278 
2279 			ret = iommu_attach_group(domain->domain,
2280 						 group->iommu_group);
2281 			if (ret)
2282 				goto out_domain;
2283 		}
2284 	}
2285 
2286 	vfio_test_domain_fgsp(domain, &iova_copy);
2287 
2288 	/* replay mappings on new domains */
2289 	ret = vfio_iommu_replay(iommu, domain);
2290 	if (ret)
2291 		goto out_detach;
2292 
2293 	if (resv_msi) {
2294 		ret = iommu_get_msi_cookie(domain->domain, resv_msi_base);
2295 		if (ret && ret != -ENODEV)
2296 			goto out_detach;
2297 	}
2298 
2299 	list_add(&domain->next, &iommu->domain_list);
2300 	vfio_update_pgsize_bitmap(iommu);
2301 done:
2302 	/* Delete the old one and insert new iova list */
2303 	vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2304 
2305 	/*
2306 	 * An iommu backed group can dirty memory directly and therefore
2307 	 * demotes the iommu scope until it declares itself dirty tracking
2308 	 * capable via the page pinning interface.
2309 	 */
2310 	iommu->num_non_pinned_groups++;
2311 	mutex_unlock(&iommu->lock);
2312 	vfio_iommu_resv_free(&group_resv_regions);
2313 
2314 	return 0;
2315 
2316 out_detach:
2317 	iommu_detach_group(domain->domain, group->iommu_group);
2318 out_domain:
2319 	iommu_domain_free(domain->domain);
2320 	vfio_iommu_iova_free(&iova_copy);
2321 	vfio_iommu_resv_free(&group_resv_regions);
2322 out_free_domain:
2323 	kfree(domain);
2324 out_free_group:
2325 	kfree(group);
2326 out_unlock:
2327 	mutex_unlock(&iommu->lock);
2328 	return ret;
2329 }
2330 
vfio_iommu_unmap_unpin_all(struct vfio_iommu * iommu)2331 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
2332 {
2333 	struct rb_node *node;
2334 
2335 	while ((node = rb_first(&iommu->dma_list)))
2336 		vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
2337 }
2338 
vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu * iommu)2339 static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
2340 {
2341 	struct rb_node *n, *p;
2342 
2343 	n = rb_first(&iommu->dma_list);
2344 	for (; n; n = rb_next(n)) {
2345 		struct vfio_dma *dma;
2346 		long locked = 0, unlocked = 0;
2347 
2348 		dma = rb_entry(n, struct vfio_dma, node);
2349 		unlocked += vfio_unmap_unpin(iommu, dma, false);
2350 		p = rb_first(&dma->pfn_list);
2351 		for (; p; p = rb_next(p)) {
2352 			struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
2353 							 node);
2354 
2355 			if (!is_invalid_reserved_pfn(vpfn->pfn))
2356 				locked++;
2357 		}
2358 		vfio_lock_acct(dma, locked - unlocked, true);
2359 	}
2360 }
2361 
2362 /*
2363  * Called when a domain is removed in detach. It is possible that
2364  * the removed domain decided the iova aperture window. Modify the
2365  * iova aperture with the smallest window among existing domains.
2366  */
vfio_iommu_aper_expand(struct vfio_iommu * iommu,struct list_head * iova_copy)2367 static void vfio_iommu_aper_expand(struct vfio_iommu *iommu,
2368 				   struct list_head *iova_copy)
2369 {
2370 	struct vfio_domain *domain;
2371 	struct vfio_iova *node;
2372 	dma_addr_t start = 0;
2373 	dma_addr_t end = (dma_addr_t)~0;
2374 
2375 	if (list_empty(iova_copy))
2376 		return;
2377 
2378 	list_for_each_entry(domain, &iommu->domain_list, next) {
2379 		struct iommu_domain_geometry *geo = &domain->domain->geometry;
2380 
2381 		if (geo->aperture_start > start)
2382 			start = geo->aperture_start;
2383 		if (geo->aperture_end < end)
2384 			end = geo->aperture_end;
2385 	}
2386 
2387 	/* Modify aperture limits. The new aper is either same or bigger */
2388 	node = list_first_entry(iova_copy, struct vfio_iova, list);
2389 	node->start = start;
2390 	node = list_last_entry(iova_copy, struct vfio_iova, list);
2391 	node->end = end;
2392 }
2393 
2394 /*
2395  * Called when a group is detached. The reserved regions for that
2396  * group can be part of valid iova now. But since reserved regions
2397  * may be duplicated among groups, populate the iova valid regions
2398  * list again.
2399  */
vfio_iommu_resv_refresh(struct vfio_iommu * iommu,struct list_head * iova_copy)2400 static int vfio_iommu_resv_refresh(struct vfio_iommu *iommu,
2401 				   struct list_head *iova_copy)
2402 {
2403 	struct vfio_domain *d;
2404 	struct vfio_iommu_group *g;
2405 	struct vfio_iova *node;
2406 	dma_addr_t start, end;
2407 	LIST_HEAD(resv_regions);
2408 	int ret;
2409 
2410 	if (list_empty(iova_copy))
2411 		return -EINVAL;
2412 
2413 	list_for_each_entry(d, &iommu->domain_list, next) {
2414 		list_for_each_entry(g, &d->group_list, next) {
2415 			ret = iommu_get_group_resv_regions(g->iommu_group,
2416 							   &resv_regions);
2417 			if (ret)
2418 				goto done;
2419 		}
2420 	}
2421 
2422 	node = list_first_entry(iova_copy, struct vfio_iova, list);
2423 	start = node->start;
2424 	node = list_last_entry(iova_copy, struct vfio_iova, list);
2425 	end = node->end;
2426 
2427 	/* purge the iova list and create new one */
2428 	vfio_iommu_iova_free(iova_copy);
2429 
2430 	ret = vfio_iommu_aper_resize(iova_copy, start, end);
2431 	if (ret)
2432 		goto done;
2433 
2434 	/* Exclude current reserved regions from iova ranges */
2435 	ret = vfio_iommu_resv_exclude(iova_copy, &resv_regions);
2436 done:
2437 	vfio_iommu_resv_free(&resv_regions);
2438 	return ret;
2439 }
2440 
vfio_iommu_type1_detach_group(void * iommu_data,struct iommu_group * iommu_group)2441 static void vfio_iommu_type1_detach_group(void *iommu_data,
2442 					  struct iommu_group *iommu_group)
2443 {
2444 	struct vfio_iommu *iommu = iommu_data;
2445 	struct vfio_domain *domain;
2446 	struct vfio_iommu_group *group;
2447 	bool update_dirty_scope = false;
2448 	LIST_HEAD(iova_copy);
2449 
2450 	mutex_lock(&iommu->lock);
2451 	list_for_each_entry(group, &iommu->emulated_iommu_groups, next) {
2452 		if (group->iommu_group != iommu_group)
2453 			continue;
2454 		update_dirty_scope = !group->pinned_page_dirty_scope;
2455 		list_del(&group->next);
2456 		kfree(group);
2457 
2458 		if (list_empty(&iommu->emulated_iommu_groups) &&
2459 		    list_empty(&iommu->domain_list)) {
2460 			WARN_ON(!list_empty(&iommu->device_list));
2461 			vfio_iommu_unmap_unpin_all(iommu);
2462 		}
2463 		goto detach_group_done;
2464 	}
2465 
2466 	/*
2467 	 * Get a copy of iova list. This will be used to update
2468 	 * and to replace the current one later. Please note that
2469 	 * we will leave the original list as it is if update fails.
2470 	 */
2471 	vfio_iommu_iova_get_copy(iommu, &iova_copy);
2472 
2473 	list_for_each_entry(domain, &iommu->domain_list, next) {
2474 		group = find_iommu_group(domain, iommu_group);
2475 		if (!group)
2476 			continue;
2477 
2478 		iommu_detach_group(domain->domain, group->iommu_group);
2479 		update_dirty_scope = !group->pinned_page_dirty_scope;
2480 		list_del(&group->next);
2481 		kfree(group);
2482 		/*
2483 		 * Group ownership provides privilege, if the group list is
2484 		 * empty, the domain goes away. If it's the last domain with
2485 		 * iommu and external domain doesn't exist, then all the
2486 		 * mappings go away too. If it's the last domain with iommu and
2487 		 * external domain exist, update accounting
2488 		 */
2489 		if (list_empty(&domain->group_list)) {
2490 			if (list_is_singular(&iommu->domain_list)) {
2491 				if (list_empty(&iommu->emulated_iommu_groups)) {
2492 					WARN_ON(!list_empty(
2493 						&iommu->device_list));
2494 					vfio_iommu_unmap_unpin_all(iommu);
2495 				} else {
2496 					vfio_iommu_unmap_unpin_reaccount(iommu);
2497 				}
2498 			}
2499 			iommu_domain_free(domain->domain);
2500 			list_del(&domain->next);
2501 			kfree(domain);
2502 			vfio_iommu_aper_expand(iommu, &iova_copy);
2503 			vfio_update_pgsize_bitmap(iommu);
2504 		}
2505 		break;
2506 	}
2507 
2508 	if (!vfio_iommu_resv_refresh(iommu, &iova_copy))
2509 		vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2510 	else
2511 		vfio_iommu_iova_free(&iova_copy);
2512 
2513 detach_group_done:
2514 	/*
2515 	 * Removal of a group without dirty tracking may allow the iommu scope
2516 	 * to be promoted.
2517 	 */
2518 	if (update_dirty_scope) {
2519 		iommu->num_non_pinned_groups--;
2520 		if (iommu->dirty_page_tracking)
2521 			vfio_iommu_populate_bitmap_full(iommu);
2522 	}
2523 	mutex_unlock(&iommu->lock);
2524 }
2525 
vfio_iommu_type1_open(unsigned long arg)2526 static void *vfio_iommu_type1_open(unsigned long arg)
2527 {
2528 	struct vfio_iommu *iommu;
2529 
2530 	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
2531 	if (!iommu)
2532 		return ERR_PTR(-ENOMEM);
2533 
2534 	switch (arg) {
2535 	case VFIO_TYPE1_IOMMU:
2536 		break;
2537 	case __VFIO_RESERVED_TYPE1_NESTING_IOMMU:
2538 	case VFIO_TYPE1v2_IOMMU:
2539 		iommu->v2 = true;
2540 		break;
2541 	default:
2542 		kfree(iommu);
2543 		return ERR_PTR(-EINVAL);
2544 	}
2545 
2546 	INIT_LIST_HEAD(&iommu->domain_list);
2547 	INIT_LIST_HEAD(&iommu->iova_list);
2548 	iommu->dma_list = RB_ROOT;
2549 	iommu->dma_avail = dma_entry_limit;
2550 	mutex_init(&iommu->lock);
2551 	mutex_init(&iommu->device_list_lock);
2552 	INIT_LIST_HEAD(&iommu->device_list);
2553 	iommu->pgsize_bitmap = PAGE_MASK;
2554 	INIT_LIST_HEAD(&iommu->emulated_iommu_groups);
2555 
2556 	return iommu;
2557 }
2558 
vfio_release_domain(struct vfio_domain * domain)2559 static void vfio_release_domain(struct vfio_domain *domain)
2560 {
2561 	struct vfio_iommu_group *group, *group_tmp;
2562 
2563 	list_for_each_entry_safe(group, group_tmp,
2564 				 &domain->group_list, next) {
2565 		iommu_detach_group(domain->domain, group->iommu_group);
2566 		list_del(&group->next);
2567 		kfree(group);
2568 	}
2569 
2570 	iommu_domain_free(domain->domain);
2571 }
2572 
vfio_iommu_type1_release(void * iommu_data)2573 static void vfio_iommu_type1_release(void *iommu_data)
2574 {
2575 	struct vfio_iommu *iommu = iommu_data;
2576 	struct vfio_domain *domain, *domain_tmp;
2577 	struct vfio_iommu_group *group, *next_group;
2578 
2579 	list_for_each_entry_safe(group, next_group,
2580 			&iommu->emulated_iommu_groups, next) {
2581 		list_del(&group->next);
2582 		kfree(group);
2583 	}
2584 
2585 	vfio_iommu_unmap_unpin_all(iommu);
2586 
2587 	list_for_each_entry_safe(domain, domain_tmp,
2588 				 &iommu->domain_list, next) {
2589 		vfio_release_domain(domain);
2590 		list_del(&domain->next);
2591 		kfree(domain);
2592 	}
2593 
2594 	vfio_iommu_iova_free(&iommu->iova_list);
2595 
2596 	kfree(iommu);
2597 }
2598 
vfio_domains_have_enforce_cache_coherency(struct vfio_iommu * iommu)2599 static int vfio_domains_have_enforce_cache_coherency(struct vfio_iommu *iommu)
2600 {
2601 	struct vfio_domain *domain;
2602 	int ret = 1;
2603 
2604 	mutex_lock(&iommu->lock);
2605 	list_for_each_entry(domain, &iommu->domain_list, next) {
2606 		if (!(domain->enforce_cache_coherency)) {
2607 			ret = 0;
2608 			break;
2609 		}
2610 	}
2611 	mutex_unlock(&iommu->lock);
2612 
2613 	return ret;
2614 }
2615 
vfio_iommu_has_emulated(struct vfio_iommu * iommu)2616 static bool vfio_iommu_has_emulated(struct vfio_iommu *iommu)
2617 {
2618 	bool ret;
2619 
2620 	mutex_lock(&iommu->lock);
2621 	ret = !list_empty(&iommu->emulated_iommu_groups);
2622 	mutex_unlock(&iommu->lock);
2623 	return ret;
2624 }
2625 
vfio_iommu_type1_check_extension(struct vfio_iommu * iommu,unsigned long arg)2626 static int vfio_iommu_type1_check_extension(struct vfio_iommu *iommu,
2627 					    unsigned long arg)
2628 {
2629 	switch (arg) {
2630 	case VFIO_TYPE1_IOMMU:
2631 	case VFIO_TYPE1v2_IOMMU:
2632 	case VFIO_UNMAP_ALL:
2633 		return 1;
2634 	case VFIO_UPDATE_VADDR:
2635 		/*
2636 		 * Disable this feature if mdevs are present.  They cannot
2637 		 * safely pin/unpin/rw while vaddrs are being updated.
2638 		 */
2639 		return iommu && !vfio_iommu_has_emulated(iommu);
2640 	case VFIO_DMA_CC_IOMMU:
2641 		if (!iommu)
2642 			return 0;
2643 		return vfio_domains_have_enforce_cache_coherency(iommu);
2644 	default:
2645 		return 0;
2646 	}
2647 }
2648 
vfio_iommu_iova_add_cap(struct vfio_info_cap * caps,struct vfio_iommu_type1_info_cap_iova_range * cap_iovas,size_t size)2649 static int vfio_iommu_iova_add_cap(struct vfio_info_cap *caps,
2650 		 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas,
2651 		 size_t size)
2652 {
2653 	struct vfio_info_cap_header *header;
2654 	struct vfio_iommu_type1_info_cap_iova_range *iova_cap;
2655 
2656 	header = vfio_info_cap_add(caps, size,
2657 				   VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE, 1);
2658 	if (IS_ERR(header))
2659 		return PTR_ERR(header);
2660 
2661 	iova_cap = container_of(header,
2662 				struct vfio_iommu_type1_info_cap_iova_range,
2663 				header);
2664 	iova_cap->nr_iovas = cap_iovas->nr_iovas;
2665 	memcpy(iova_cap->iova_ranges, cap_iovas->iova_ranges,
2666 	       cap_iovas->nr_iovas * sizeof(*cap_iovas->iova_ranges));
2667 	return 0;
2668 }
2669 
vfio_iommu_iova_build_caps(struct vfio_iommu * iommu,struct vfio_info_cap * caps)2670 static int vfio_iommu_iova_build_caps(struct vfio_iommu *iommu,
2671 				      struct vfio_info_cap *caps)
2672 {
2673 	struct vfio_iommu_type1_info_cap_iova_range *cap_iovas;
2674 	struct vfio_iova *iova;
2675 	size_t size;
2676 	int iovas = 0, i = 0, ret;
2677 
2678 	list_for_each_entry(iova, &iommu->iova_list, list)
2679 		iovas++;
2680 
2681 	if (!iovas) {
2682 		/*
2683 		 * Return 0 as a container with a single mdev device
2684 		 * will have an empty list
2685 		 */
2686 		return 0;
2687 	}
2688 
2689 	size = struct_size(cap_iovas, iova_ranges, iovas);
2690 
2691 	cap_iovas = kzalloc(size, GFP_KERNEL);
2692 	if (!cap_iovas)
2693 		return -ENOMEM;
2694 
2695 	cap_iovas->nr_iovas = iovas;
2696 
2697 	list_for_each_entry(iova, &iommu->iova_list, list) {
2698 		cap_iovas->iova_ranges[i].start = iova->start;
2699 		cap_iovas->iova_ranges[i].end = iova->end;
2700 		i++;
2701 	}
2702 
2703 	ret = vfio_iommu_iova_add_cap(caps, cap_iovas, size);
2704 
2705 	kfree(cap_iovas);
2706 	return ret;
2707 }
2708 
vfio_iommu_migration_build_caps(struct vfio_iommu * iommu,struct vfio_info_cap * caps)2709 static int vfio_iommu_migration_build_caps(struct vfio_iommu *iommu,
2710 					   struct vfio_info_cap *caps)
2711 {
2712 	struct vfio_iommu_type1_info_cap_migration cap_mig = {};
2713 
2714 	cap_mig.header.id = VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION;
2715 	cap_mig.header.version = 1;
2716 
2717 	cap_mig.flags = 0;
2718 	/* support minimum pgsize */
2719 	cap_mig.pgsize_bitmap = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2720 	cap_mig.max_dirty_bitmap_size = DIRTY_BITMAP_SIZE_MAX;
2721 
2722 	return vfio_info_add_capability(caps, &cap_mig.header, sizeof(cap_mig));
2723 }
2724 
vfio_iommu_dma_avail_build_caps(struct vfio_iommu * iommu,struct vfio_info_cap * caps)2725 static int vfio_iommu_dma_avail_build_caps(struct vfio_iommu *iommu,
2726 					   struct vfio_info_cap *caps)
2727 {
2728 	struct vfio_iommu_type1_info_dma_avail cap_dma_avail;
2729 
2730 	cap_dma_avail.header.id = VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL;
2731 	cap_dma_avail.header.version = 1;
2732 
2733 	cap_dma_avail.avail = iommu->dma_avail;
2734 
2735 	return vfio_info_add_capability(caps, &cap_dma_avail.header,
2736 					sizeof(cap_dma_avail));
2737 }
2738 
vfio_iommu_type1_get_info(struct vfio_iommu * iommu,unsigned long arg)2739 static int vfio_iommu_type1_get_info(struct vfio_iommu *iommu,
2740 				     unsigned long arg)
2741 {
2742 	struct vfio_iommu_type1_info info = {};
2743 	unsigned long minsz;
2744 	struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
2745 	int ret;
2746 
2747 	minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
2748 
2749 	if (copy_from_user(&info, (void __user *)arg, minsz))
2750 		return -EFAULT;
2751 
2752 	if (info.argsz < minsz)
2753 		return -EINVAL;
2754 
2755 	minsz = min_t(size_t, info.argsz, sizeof(info));
2756 
2757 	mutex_lock(&iommu->lock);
2758 	info.flags = VFIO_IOMMU_INFO_PGSIZES;
2759 
2760 	info.iova_pgsizes = iommu->pgsize_bitmap;
2761 
2762 	ret = vfio_iommu_migration_build_caps(iommu, &caps);
2763 
2764 	if (!ret)
2765 		ret = vfio_iommu_dma_avail_build_caps(iommu, &caps);
2766 
2767 	if (!ret)
2768 		ret = vfio_iommu_iova_build_caps(iommu, &caps);
2769 
2770 	mutex_unlock(&iommu->lock);
2771 
2772 	if (ret)
2773 		return ret;
2774 
2775 	if (caps.size) {
2776 		info.flags |= VFIO_IOMMU_INFO_CAPS;
2777 
2778 		if (info.argsz < sizeof(info) + caps.size) {
2779 			info.argsz = sizeof(info) + caps.size;
2780 		} else {
2781 			vfio_info_cap_shift(&caps, sizeof(info));
2782 			if (copy_to_user((void __user *)arg +
2783 					sizeof(info), caps.buf,
2784 					caps.size)) {
2785 				kfree(caps.buf);
2786 				return -EFAULT;
2787 			}
2788 			info.cap_offset = sizeof(info);
2789 		}
2790 
2791 		kfree(caps.buf);
2792 	}
2793 
2794 	return copy_to_user((void __user *)arg, &info, minsz) ?
2795 			-EFAULT : 0;
2796 }
2797 
vfio_iommu_type1_map_dma(struct vfio_iommu * iommu,unsigned long arg)2798 static int vfio_iommu_type1_map_dma(struct vfio_iommu *iommu,
2799 				    unsigned long arg)
2800 {
2801 	struct vfio_iommu_type1_dma_map map;
2802 	unsigned long minsz;
2803 	uint32_t mask = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE |
2804 			VFIO_DMA_MAP_FLAG_VADDR;
2805 
2806 	minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
2807 
2808 	if (copy_from_user(&map, (void __user *)arg, minsz))
2809 		return -EFAULT;
2810 
2811 	if (map.argsz < minsz || map.flags & ~mask)
2812 		return -EINVAL;
2813 
2814 	return vfio_dma_do_map(iommu, &map);
2815 }
2816 
vfio_iommu_type1_unmap_dma(struct vfio_iommu * iommu,unsigned long arg)2817 static int vfio_iommu_type1_unmap_dma(struct vfio_iommu *iommu,
2818 				      unsigned long arg)
2819 {
2820 	struct vfio_iommu_type1_dma_unmap unmap;
2821 	struct vfio_bitmap bitmap = { 0 };
2822 	uint32_t mask = VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP |
2823 			VFIO_DMA_UNMAP_FLAG_VADDR |
2824 			VFIO_DMA_UNMAP_FLAG_ALL;
2825 	unsigned long minsz;
2826 	int ret;
2827 
2828 	minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
2829 
2830 	if (copy_from_user(&unmap, (void __user *)arg, minsz))
2831 		return -EFAULT;
2832 
2833 	if (unmap.argsz < minsz || unmap.flags & ~mask)
2834 		return -EINVAL;
2835 
2836 	if ((unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
2837 	    (unmap.flags & (VFIO_DMA_UNMAP_FLAG_ALL |
2838 			    VFIO_DMA_UNMAP_FLAG_VADDR)))
2839 		return -EINVAL;
2840 
2841 	if (unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
2842 		unsigned long pgshift;
2843 
2844 		if (unmap.argsz < (minsz + sizeof(bitmap)))
2845 			return -EINVAL;
2846 
2847 		if (copy_from_user(&bitmap,
2848 				   (void __user *)(arg + minsz),
2849 				   sizeof(bitmap)))
2850 			return -EFAULT;
2851 
2852 		if (!access_ok((void __user *)bitmap.data, bitmap.size))
2853 			return -EINVAL;
2854 
2855 		pgshift = __ffs(bitmap.pgsize);
2856 		ret = verify_bitmap_size(unmap.size >> pgshift,
2857 					 bitmap.size);
2858 		if (ret)
2859 			return ret;
2860 	}
2861 
2862 	ret = vfio_dma_do_unmap(iommu, &unmap, &bitmap);
2863 	if (ret)
2864 		return ret;
2865 
2866 	return copy_to_user((void __user *)arg, &unmap, minsz) ?
2867 			-EFAULT : 0;
2868 }
2869 
vfio_iommu_type1_dirty_pages(struct vfio_iommu * iommu,unsigned long arg)2870 static int vfio_iommu_type1_dirty_pages(struct vfio_iommu *iommu,
2871 					unsigned long arg)
2872 {
2873 	struct vfio_iommu_type1_dirty_bitmap dirty;
2874 	uint32_t mask = VFIO_IOMMU_DIRTY_PAGES_FLAG_START |
2875 			VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP |
2876 			VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
2877 	unsigned long minsz;
2878 	int ret = 0;
2879 
2880 	if (!iommu->v2)
2881 		return -EACCES;
2882 
2883 	minsz = offsetofend(struct vfio_iommu_type1_dirty_bitmap, flags);
2884 
2885 	if (copy_from_user(&dirty, (void __user *)arg, minsz))
2886 		return -EFAULT;
2887 
2888 	if (dirty.argsz < minsz || dirty.flags & ~mask)
2889 		return -EINVAL;
2890 
2891 	/* only one flag should be set at a time */
2892 	if (__ffs(dirty.flags) != __fls(dirty.flags))
2893 		return -EINVAL;
2894 
2895 	if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_START) {
2896 		size_t pgsize;
2897 
2898 		mutex_lock(&iommu->lock);
2899 		pgsize = 1 << __ffs(iommu->pgsize_bitmap);
2900 		if (!iommu->dirty_page_tracking) {
2901 			ret = vfio_dma_bitmap_alloc_all(iommu, pgsize);
2902 			if (!ret)
2903 				iommu->dirty_page_tracking = true;
2904 		}
2905 		mutex_unlock(&iommu->lock);
2906 		return ret;
2907 	} else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP) {
2908 		mutex_lock(&iommu->lock);
2909 		if (iommu->dirty_page_tracking) {
2910 			iommu->dirty_page_tracking = false;
2911 			vfio_dma_bitmap_free_all(iommu);
2912 		}
2913 		mutex_unlock(&iommu->lock);
2914 		return 0;
2915 	} else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP) {
2916 		struct vfio_iommu_type1_dirty_bitmap_get range;
2917 		unsigned long pgshift;
2918 		size_t data_size = dirty.argsz - minsz;
2919 		size_t iommu_pgsize;
2920 
2921 		if (!data_size || data_size < sizeof(range))
2922 			return -EINVAL;
2923 
2924 		if (copy_from_user(&range, (void __user *)(arg + minsz),
2925 				   sizeof(range)))
2926 			return -EFAULT;
2927 
2928 		if (range.iova + range.size < range.iova)
2929 			return -EINVAL;
2930 		if (!access_ok((void __user *)range.bitmap.data,
2931 			       range.bitmap.size))
2932 			return -EINVAL;
2933 
2934 		pgshift = __ffs(range.bitmap.pgsize);
2935 		ret = verify_bitmap_size(range.size >> pgshift,
2936 					 range.bitmap.size);
2937 		if (ret)
2938 			return ret;
2939 
2940 		mutex_lock(&iommu->lock);
2941 
2942 		iommu_pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2943 
2944 		/* allow only smallest supported pgsize */
2945 		if (range.bitmap.pgsize != iommu_pgsize) {
2946 			ret = -EINVAL;
2947 			goto out_unlock;
2948 		}
2949 		if (range.iova & (iommu_pgsize - 1)) {
2950 			ret = -EINVAL;
2951 			goto out_unlock;
2952 		}
2953 		if (!range.size || range.size & (iommu_pgsize - 1)) {
2954 			ret = -EINVAL;
2955 			goto out_unlock;
2956 		}
2957 
2958 		if (iommu->dirty_page_tracking)
2959 			ret = vfio_iova_dirty_bitmap(range.bitmap.data,
2960 						     iommu, range.iova,
2961 						     range.size,
2962 						     range.bitmap.pgsize);
2963 		else
2964 			ret = -EINVAL;
2965 out_unlock:
2966 		mutex_unlock(&iommu->lock);
2967 
2968 		return ret;
2969 	}
2970 
2971 	return -EINVAL;
2972 }
2973 
vfio_iommu_type1_ioctl(void * iommu_data,unsigned int cmd,unsigned long arg)2974 static long vfio_iommu_type1_ioctl(void *iommu_data,
2975 				   unsigned int cmd, unsigned long arg)
2976 {
2977 	struct vfio_iommu *iommu = iommu_data;
2978 
2979 	switch (cmd) {
2980 	case VFIO_CHECK_EXTENSION:
2981 		return vfio_iommu_type1_check_extension(iommu, arg);
2982 	case VFIO_IOMMU_GET_INFO:
2983 		return vfio_iommu_type1_get_info(iommu, arg);
2984 	case VFIO_IOMMU_MAP_DMA:
2985 		return vfio_iommu_type1_map_dma(iommu, arg);
2986 	case VFIO_IOMMU_UNMAP_DMA:
2987 		return vfio_iommu_type1_unmap_dma(iommu, arg);
2988 	case VFIO_IOMMU_DIRTY_PAGES:
2989 		return vfio_iommu_type1_dirty_pages(iommu, arg);
2990 	default:
2991 		return -ENOTTY;
2992 	}
2993 }
2994 
vfio_iommu_type1_register_device(void * iommu_data,struct vfio_device * vdev)2995 static void vfio_iommu_type1_register_device(void *iommu_data,
2996 					     struct vfio_device *vdev)
2997 {
2998 	struct vfio_iommu *iommu = iommu_data;
2999 
3000 	if (!vdev->ops->dma_unmap)
3001 		return;
3002 
3003 	/*
3004 	 * list_empty(&iommu->device_list) is tested under the iommu->lock while
3005 	 * iteration for dma_unmap must be done under the device_list_lock.
3006 	 * Holding both locks here allows avoiding the device_list_lock in
3007 	 * several fast paths. See vfio_notify_dma_unmap()
3008 	 */
3009 	mutex_lock(&iommu->lock);
3010 	mutex_lock(&iommu->device_list_lock);
3011 	list_add(&vdev->iommu_entry, &iommu->device_list);
3012 	mutex_unlock(&iommu->device_list_lock);
3013 	mutex_unlock(&iommu->lock);
3014 }
3015 
vfio_iommu_type1_unregister_device(void * iommu_data,struct vfio_device * vdev)3016 static void vfio_iommu_type1_unregister_device(void *iommu_data,
3017 					       struct vfio_device *vdev)
3018 {
3019 	struct vfio_iommu *iommu = iommu_data;
3020 
3021 	if (!vdev->ops->dma_unmap)
3022 		return;
3023 
3024 	mutex_lock(&iommu->lock);
3025 	mutex_lock(&iommu->device_list_lock);
3026 	list_del(&vdev->iommu_entry);
3027 	mutex_unlock(&iommu->device_list_lock);
3028 	mutex_unlock(&iommu->lock);
3029 }
3030 
vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu * iommu,dma_addr_t user_iova,void * data,size_t count,bool write,size_t * copied)3031 static int vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu *iommu,
3032 					 dma_addr_t user_iova, void *data,
3033 					 size_t count, bool write,
3034 					 size_t *copied)
3035 {
3036 	struct mm_struct *mm;
3037 	unsigned long vaddr;
3038 	struct vfio_dma *dma;
3039 	bool kthread = current->mm == NULL;
3040 	size_t offset;
3041 
3042 	*copied = 0;
3043 
3044 	dma = vfio_find_dma(iommu, user_iova, 1);
3045 	if (!dma)
3046 		return -EINVAL;
3047 
3048 	if ((write && !(dma->prot & IOMMU_WRITE)) ||
3049 			!(dma->prot & IOMMU_READ))
3050 		return -EPERM;
3051 
3052 	mm = dma->mm;
3053 	if (!mmget_not_zero(mm))
3054 		return -EPERM;
3055 
3056 	if (kthread)
3057 		kthread_use_mm(mm);
3058 	else if (current->mm != mm)
3059 		goto out;
3060 
3061 	offset = user_iova - dma->iova;
3062 
3063 	if (count > dma->size - offset)
3064 		count = dma->size - offset;
3065 
3066 	vaddr = dma->vaddr + offset;
3067 
3068 	if (write) {
3069 		*copied = copy_to_user((void __user *)vaddr, data,
3070 					 count) ? 0 : count;
3071 		if (*copied && iommu->dirty_page_tracking) {
3072 			unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
3073 			/*
3074 			 * Bitmap populated with the smallest supported page
3075 			 * size
3076 			 */
3077 			bitmap_set(dma->bitmap, offset >> pgshift,
3078 				   ((offset + *copied - 1) >> pgshift) -
3079 				   (offset >> pgshift) + 1);
3080 		}
3081 	} else
3082 		*copied = copy_from_user(data, (void __user *)vaddr,
3083 					   count) ? 0 : count;
3084 	if (kthread)
3085 		kthread_unuse_mm(mm);
3086 out:
3087 	mmput(mm);
3088 	return *copied ? 0 : -EFAULT;
3089 }
3090 
vfio_iommu_type1_dma_rw(void * iommu_data,dma_addr_t user_iova,void * data,size_t count,bool write)3091 static int vfio_iommu_type1_dma_rw(void *iommu_data, dma_addr_t user_iova,
3092 				   void *data, size_t count, bool write)
3093 {
3094 	struct vfio_iommu *iommu = iommu_data;
3095 	int ret = 0;
3096 	size_t done;
3097 
3098 	mutex_lock(&iommu->lock);
3099 
3100 	if (WARN_ONCE(iommu->vaddr_invalid_count,
3101 		      "vfio_dma_rw not allowed with VFIO_UPDATE_VADDR\n")) {
3102 		ret = -EBUSY;
3103 		goto out;
3104 	}
3105 
3106 	while (count > 0) {
3107 		ret = vfio_iommu_type1_dma_rw_chunk(iommu, user_iova, data,
3108 						    count, write, &done);
3109 		if (ret)
3110 			break;
3111 
3112 		count -= done;
3113 		data += done;
3114 		user_iova += done;
3115 	}
3116 
3117 out:
3118 	mutex_unlock(&iommu->lock);
3119 	return ret;
3120 }
3121 
3122 static struct iommu_domain *
vfio_iommu_type1_group_iommu_domain(void * iommu_data,struct iommu_group * iommu_group)3123 vfio_iommu_type1_group_iommu_domain(void *iommu_data,
3124 				    struct iommu_group *iommu_group)
3125 {
3126 	struct iommu_domain *domain = ERR_PTR(-ENODEV);
3127 	struct vfio_iommu *iommu = iommu_data;
3128 	struct vfio_domain *d;
3129 
3130 	if (!iommu || !iommu_group)
3131 		return ERR_PTR(-EINVAL);
3132 
3133 	mutex_lock(&iommu->lock);
3134 	list_for_each_entry(d, &iommu->domain_list, next) {
3135 		if (find_iommu_group(d, iommu_group)) {
3136 			domain = d->domain;
3137 			break;
3138 		}
3139 	}
3140 	mutex_unlock(&iommu->lock);
3141 
3142 	return domain;
3143 }
3144 
3145 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
3146 	.name			= "vfio-iommu-type1",
3147 	.owner			= THIS_MODULE,
3148 	.open			= vfio_iommu_type1_open,
3149 	.release		= vfio_iommu_type1_release,
3150 	.ioctl			= vfio_iommu_type1_ioctl,
3151 	.attach_group		= vfio_iommu_type1_attach_group,
3152 	.detach_group		= vfio_iommu_type1_detach_group,
3153 	.pin_pages		= vfio_iommu_type1_pin_pages,
3154 	.unpin_pages		= vfio_iommu_type1_unpin_pages,
3155 	.register_device	= vfio_iommu_type1_register_device,
3156 	.unregister_device	= vfio_iommu_type1_unregister_device,
3157 	.dma_rw			= vfio_iommu_type1_dma_rw,
3158 	.group_iommu_domain	= vfio_iommu_type1_group_iommu_domain,
3159 };
3160 
vfio_iommu_type1_init(void)3161 static int __init vfio_iommu_type1_init(void)
3162 {
3163 	return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
3164 }
3165 
vfio_iommu_type1_cleanup(void)3166 static void __exit vfio_iommu_type1_cleanup(void)
3167 {
3168 	vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
3169 }
3170 
3171 module_init(vfio_iommu_type1_init);
3172 module_exit(vfio_iommu_type1_cleanup);
3173 
3174 MODULE_VERSION(DRIVER_VERSION);
3175 MODULE_LICENSE("GPL v2");
3176 MODULE_AUTHOR(DRIVER_AUTHOR);
3177 MODULE_DESCRIPTION(DRIVER_DESC);
3178