xref: /linux/include/linux/memcontrol.h (revision f73a058be5d70dd81a43f16b2bbff4b1576a7af8)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/kernel.h>
18 #include <linux/page_counter.h>
19 #include <linux/vmpressure.h>
20 #include <linux/eventfd.h>
21 #include <linux/mm.h>
22 #include <linux/vmstat.h>
23 #include <linux/writeback.h>
24 #include <linux/page-flags.h>
25 #include <linux/shrinker.h>
26 
27 struct mem_cgroup;
28 struct obj_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32 
33 /* Cgroup-specific page state, on top of universal node page state */
34 enum memcg_stat_item {
35 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
36 	MEMCG_SOCK,
37 	MEMCG_PERCPU_B,
38 	MEMCG_VMALLOC,
39 	MEMCG_KMEM,
40 	MEMCG_ZSWAP_B,
41 	MEMCG_ZSWAPPED,
42 	MEMCG_NR_STAT,
43 };
44 
45 enum memcg_memory_event {
46 	MEMCG_LOW,
47 	MEMCG_HIGH,
48 	MEMCG_MAX,
49 	MEMCG_OOM,
50 	MEMCG_OOM_KILL,
51 	MEMCG_OOM_GROUP_KILL,
52 	MEMCG_SWAP_HIGH,
53 	MEMCG_SWAP_MAX,
54 	MEMCG_SWAP_FAIL,
55 	MEMCG_NR_MEMORY_EVENTS,
56 };
57 
58 struct mem_cgroup_reclaim_cookie {
59 	pg_data_t *pgdat;
60 	unsigned int generation;
61 };
62 
63 #ifdef CONFIG_MEMCG
64 
65 #define MEM_CGROUP_ID_SHIFT	16
66 
67 struct mem_cgroup_id {
68 	int id;
69 	refcount_t ref;
70 };
71 
72 /*
73  * Per memcg event counter is incremented at every pagein/pageout. With THP,
74  * it will be incremented by the number of pages. This counter is used
75  * to trigger some periodic events. This is straightforward and better
76  * than using jiffies etc. to handle periodic memcg event.
77  */
78 enum mem_cgroup_events_target {
79 	MEM_CGROUP_TARGET_THRESH,
80 	MEM_CGROUP_TARGET_SOFTLIMIT,
81 	MEM_CGROUP_NTARGETS,
82 };
83 
84 struct memcg_vmstats_percpu;
85 struct memcg_vmstats;
86 struct lruvec_stats_percpu;
87 struct lruvec_stats;
88 
89 struct mem_cgroup_reclaim_iter {
90 	struct mem_cgroup *position;
91 	/* scan generation, increased every round-trip */
92 	unsigned int generation;
93 };
94 
95 /*
96  * per-node information in memory controller.
97  */
98 struct mem_cgroup_per_node {
99 	struct lruvec		lruvec;
100 
101 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
102 	struct lruvec_stats			*lruvec_stats;
103 
104 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
105 
106 	struct mem_cgroup_reclaim_iter	iter;
107 
108 	struct shrinker_info __rcu	*shrinker_info;
109 
110 	struct rb_node		tree_node;	/* RB tree node */
111 	unsigned long		usage_in_excess;/* Set to the value by which */
112 						/* the soft limit is exceeded*/
113 	bool			on_tree;
114 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
115 						/* use container_of	   */
116 };
117 
118 struct mem_cgroup_threshold {
119 	struct eventfd_ctx *eventfd;
120 	unsigned long threshold;
121 };
122 
123 /* For threshold */
124 struct mem_cgroup_threshold_ary {
125 	/* An array index points to threshold just below or equal to usage. */
126 	int current_threshold;
127 	/* Size of entries[] */
128 	unsigned int size;
129 	/* Array of thresholds */
130 	struct mem_cgroup_threshold entries[] __counted_by(size);
131 };
132 
133 struct mem_cgroup_thresholds {
134 	/* Primary thresholds array */
135 	struct mem_cgroup_threshold_ary *primary;
136 	/*
137 	 * Spare threshold array.
138 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
139 	 * It must be able to store at least primary->size - 1 entries.
140 	 */
141 	struct mem_cgroup_threshold_ary *spare;
142 };
143 
144 /*
145  * Remember four most recent foreign writebacks with dirty pages in this
146  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
147  * one in a given round, we're likely to catch it later if it keeps
148  * foreign-dirtying, so a fairly low count should be enough.
149  *
150  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
151  */
152 #define MEMCG_CGWB_FRN_CNT	4
153 
154 struct memcg_cgwb_frn {
155 	u64 bdi_id;			/* bdi->id of the foreign inode */
156 	int memcg_id;			/* memcg->css.id of foreign inode */
157 	u64 at;				/* jiffies_64 at the time of dirtying */
158 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
159 };
160 
161 /*
162  * Bucket for arbitrarily byte-sized objects charged to a memory
163  * cgroup. The bucket can be reparented in one piece when the cgroup
164  * is destroyed, without having to round up the individual references
165  * of all live memory objects in the wild.
166  */
167 struct obj_cgroup {
168 	struct percpu_ref refcnt;
169 	struct mem_cgroup *memcg;
170 	atomic_t nr_charged_bytes;
171 	union {
172 		struct list_head list; /* protected by objcg_lock */
173 		struct rcu_head rcu;
174 	};
175 };
176 
177 /*
178  * The memory controller data structure. The memory controller controls both
179  * page cache and RSS per cgroup. We would eventually like to provide
180  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181  * to help the administrator determine what knobs to tune.
182  */
183 struct mem_cgroup {
184 	struct cgroup_subsys_state css;
185 
186 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
187 	struct mem_cgroup_id id;
188 
189 	/* Accounted resources */
190 	struct page_counter memory;		/* Both v1 & v2 */
191 
192 	union {
193 		struct page_counter swap;	/* v2 only */
194 		struct page_counter memsw;	/* v1 only */
195 	};
196 
197 	/* Legacy consumer-oriented counters */
198 	struct page_counter kmem;		/* v1 only */
199 	struct page_counter tcpmem;		/* v1 only */
200 
201 	/* Range enforcement for interrupt charges */
202 	struct work_struct high_work;
203 
204 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
205 	unsigned long zswap_max;
206 
207 	/*
208 	 * Prevent pages from this memcg from being written back from zswap to
209 	 * swap, and from being swapped out on zswap store failures.
210 	 */
211 	bool zswap_writeback;
212 #endif
213 
214 	unsigned long soft_limit;
215 
216 	/* vmpressure notifications */
217 	struct vmpressure vmpressure;
218 
219 	/*
220 	 * Should the OOM killer kill all belonging tasks, had it kill one?
221 	 */
222 	bool oom_group;
223 
224 	/* protected by memcg_oom_lock */
225 	bool		oom_lock;
226 	int		under_oom;
227 
228 	int	swappiness;
229 	/* OOM-Killer disable */
230 	int		oom_kill_disable;
231 
232 	/* memory.events and memory.events.local */
233 	struct cgroup_file events_file;
234 	struct cgroup_file events_local_file;
235 
236 	/* handle for "memory.swap.events" */
237 	struct cgroup_file swap_events_file;
238 
239 	/* protect arrays of thresholds */
240 	struct mutex thresholds_lock;
241 
242 	/* thresholds for memory usage. RCU-protected */
243 	struct mem_cgroup_thresholds thresholds;
244 
245 	/* thresholds for mem+swap usage. RCU-protected */
246 	struct mem_cgroup_thresholds memsw_thresholds;
247 
248 	/* For oom notifier event fd */
249 	struct list_head oom_notify;
250 
251 	/*
252 	 * Should we move charges of a task when a task is moved into this
253 	 * mem_cgroup ? And what type of charges should we move ?
254 	 */
255 	unsigned long move_charge_at_immigrate;
256 	/* taken only while moving_account > 0 */
257 	spinlock_t		move_lock;
258 	unsigned long		move_lock_flags;
259 
260 	CACHELINE_PADDING(_pad1_);
261 
262 	/* memory.stat */
263 	struct memcg_vmstats	*vmstats;
264 
265 	/* memory.events */
266 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
267 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
268 
269 	/*
270 	 * Hint of reclaim pressure for socket memroy management. Note
271 	 * that this indicator should NOT be used in legacy cgroup mode
272 	 * where socket memory is accounted/charged separately.
273 	 */
274 	unsigned long		socket_pressure;
275 
276 	/* Legacy tcp memory accounting */
277 	bool			tcpmem_active;
278 	int			tcpmem_pressure;
279 
280 #ifdef CONFIG_MEMCG_KMEM
281 	int kmemcg_id;
282 	/*
283 	 * memcg->objcg is wiped out as a part of the objcg repaprenting
284 	 * process. memcg->orig_objcg preserves a pointer (and a reference)
285 	 * to the original objcg until the end of live of memcg.
286 	 */
287 	struct obj_cgroup __rcu	*objcg;
288 	struct obj_cgroup	*orig_objcg;
289 	/* list of inherited objcgs, protected by objcg_lock */
290 	struct list_head objcg_list;
291 #endif
292 
293 	CACHELINE_PADDING(_pad2_);
294 
295 	/*
296 	 * set > 0 if pages under this cgroup are moving to other cgroup.
297 	 */
298 	atomic_t		moving_account;
299 	struct task_struct	*move_lock_task;
300 
301 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
302 
303 #ifdef CONFIG_CGROUP_WRITEBACK
304 	struct list_head cgwb_list;
305 	struct wb_domain cgwb_domain;
306 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
307 #endif
308 
309 	/* List of events which userspace want to receive */
310 	struct list_head event_list;
311 	spinlock_t event_list_lock;
312 
313 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
314 	struct deferred_split deferred_split_queue;
315 #endif
316 
317 #ifdef CONFIG_LRU_GEN_WALKS_MMU
318 	/* per-memcg mm_struct list */
319 	struct lru_gen_mm_list mm_list;
320 #endif
321 
322 	struct mem_cgroup_per_node *nodeinfo[];
323 };
324 
325 /*
326  * size of first charge trial.
327  * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
328  * workload.
329  */
330 #define MEMCG_CHARGE_BATCH 64U
331 
332 extern struct mem_cgroup *root_mem_cgroup;
333 
334 enum page_memcg_data_flags {
335 	/* page->memcg_data is a pointer to an slabobj_ext vector */
336 	MEMCG_DATA_OBJEXTS = (1UL << 0),
337 	/* page has been accounted as a non-slab kernel page */
338 	MEMCG_DATA_KMEM = (1UL << 1),
339 	/* the next bit after the last actual flag */
340 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
341 };
342 
343 #define __FIRST_OBJEXT_FLAG	__NR_MEMCG_DATA_FLAGS
344 
345 #else /* CONFIG_MEMCG */
346 
347 #define __FIRST_OBJEXT_FLAG	(1UL << 0)
348 
349 #endif /* CONFIG_MEMCG */
350 
351 enum objext_flags {
352 	/* slabobj_ext vector failed to allocate */
353 	OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG,
354 	/* the next bit after the last actual flag */
355 	__NR_OBJEXTS_FLAGS  = (__FIRST_OBJEXT_FLAG << 1),
356 };
357 
358 #define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1)
359 
360 #ifdef CONFIG_MEMCG
361 
362 static inline bool folio_memcg_kmem(struct folio *folio);
363 
364 /*
365  * After the initialization objcg->memcg is always pointing at
366  * a valid memcg, but can be atomically swapped to the parent memcg.
367  *
368  * The caller must ensure that the returned memcg won't be released:
369  * e.g. acquire the rcu_read_lock or css_set_lock.
370  */
371 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
372 {
373 	return READ_ONCE(objcg->memcg);
374 }
375 
376 /*
377  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
378  * @folio: Pointer to the folio.
379  *
380  * Returns a pointer to the memory cgroup associated with the folio,
381  * or NULL. This function assumes that the folio is known to have a
382  * proper memory cgroup pointer. It's not safe to call this function
383  * against some type of folios, e.g. slab folios or ex-slab folios or
384  * kmem folios.
385  */
386 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
387 {
388 	unsigned long memcg_data = folio->memcg_data;
389 
390 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
391 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
392 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
393 
394 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
395 }
396 
397 /*
398  * __folio_objcg - get the object cgroup associated with a kmem folio.
399  * @folio: Pointer to the folio.
400  *
401  * Returns a pointer to the object cgroup associated with the folio,
402  * or NULL. This function assumes that the folio is known to have a
403  * proper object cgroup pointer. It's not safe to call this function
404  * against some type of folios, e.g. slab folios or ex-slab folios or
405  * LRU folios.
406  */
407 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
408 {
409 	unsigned long memcg_data = folio->memcg_data;
410 
411 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
412 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
413 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
414 
415 	return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
416 }
417 
418 /*
419  * folio_memcg - Get the memory cgroup associated with a folio.
420  * @folio: Pointer to the folio.
421  *
422  * Returns a pointer to the memory cgroup associated with the folio,
423  * or NULL. This function assumes that the folio is known to have a
424  * proper memory cgroup pointer. It's not safe to call this function
425  * against some type of folios, e.g. slab folios or ex-slab folios.
426  *
427  * For a non-kmem folio any of the following ensures folio and memcg binding
428  * stability:
429  *
430  * - the folio lock
431  * - LRU isolation
432  * - folio_memcg_lock()
433  * - exclusive reference
434  * - mem_cgroup_trylock_pages()
435  *
436  * For a kmem folio a caller should hold an rcu read lock to protect memcg
437  * associated with a kmem folio from being released.
438  */
439 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
440 {
441 	if (folio_memcg_kmem(folio))
442 		return obj_cgroup_memcg(__folio_objcg(folio));
443 	return __folio_memcg(folio);
444 }
445 
446 static inline struct mem_cgroup *page_memcg(struct page *page)
447 {
448 	return folio_memcg(page_folio(page));
449 }
450 
451 /**
452  * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
453  * @folio: Pointer to the folio.
454  *
455  * This function assumes that the folio is known to have a
456  * proper memory cgroup pointer. It's not safe to call this function
457  * against some type of folios, e.g. slab folios or ex-slab folios.
458  *
459  * Return: A pointer to the memory cgroup associated with the folio,
460  * or NULL.
461  */
462 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
463 {
464 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
465 
466 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
467 	WARN_ON_ONCE(!rcu_read_lock_held());
468 
469 	if (memcg_data & MEMCG_DATA_KMEM) {
470 		struct obj_cgroup *objcg;
471 
472 		objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
473 		return obj_cgroup_memcg(objcg);
474 	}
475 
476 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
477 }
478 
479 /*
480  * folio_memcg_check - Get the memory cgroup associated with a folio.
481  * @folio: Pointer to the folio.
482  *
483  * Returns a pointer to the memory cgroup associated with the folio,
484  * or NULL. This function unlike folio_memcg() can take any folio
485  * as an argument. It has to be used in cases when it's not known if a folio
486  * has an associated memory cgroup pointer or an object cgroups vector or
487  * an object cgroup.
488  *
489  * For a non-kmem folio any of the following ensures folio and memcg binding
490  * stability:
491  *
492  * - the folio lock
493  * - LRU isolation
494  * - lock_folio_memcg()
495  * - exclusive reference
496  * - mem_cgroup_trylock_pages()
497  *
498  * For a kmem folio a caller should hold an rcu read lock to protect memcg
499  * associated with a kmem folio from being released.
500  */
501 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
502 {
503 	/*
504 	 * Because folio->memcg_data might be changed asynchronously
505 	 * for slabs, READ_ONCE() should be used here.
506 	 */
507 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
508 
509 	if (memcg_data & MEMCG_DATA_OBJEXTS)
510 		return NULL;
511 
512 	if (memcg_data & MEMCG_DATA_KMEM) {
513 		struct obj_cgroup *objcg;
514 
515 		objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
516 		return obj_cgroup_memcg(objcg);
517 	}
518 
519 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
520 }
521 
522 static inline struct mem_cgroup *page_memcg_check(struct page *page)
523 {
524 	if (PageTail(page))
525 		return NULL;
526 	return folio_memcg_check((struct folio *)page);
527 }
528 
529 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
530 {
531 	struct mem_cgroup *memcg;
532 
533 	rcu_read_lock();
534 retry:
535 	memcg = obj_cgroup_memcg(objcg);
536 	if (unlikely(!css_tryget(&memcg->css)))
537 		goto retry;
538 	rcu_read_unlock();
539 
540 	return memcg;
541 }
542 
543 #ifdef CONFIG_MEMCG_KMEM
544 /*
545  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
546  * @folio: Pointer to the folio.
547  *
548  * Checks if the folio has MemcgKmem flag set. The caller must ensure
549  * that the folio has an associated memory cgroup. It's not safe to call
550  * this function against some types of folios, e.g. slab folios.
551  */
552 static inline bool folio_memcg_kmem(struct folio *folio)
553 {
554 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
555 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio);
556 	return folio->memcg_data & MEMCG_DATA_KMEM;
557 }
558 
559 
560 #else
561 static inline bool folio_memcg_kmem(struct folio *folio)
562 {
563 	return false;
564 }
565 
566 #endif
567 
568 static inline bool PageMemcgKmem(struct page *page)
569 {
570 	return folio_memcg_kmem(page_folio(page));
571 }
572 
573 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
574 {
575 	return (memcg == root_mem_cgroup);
576 }
577 
578 static inline bool mem_cgroup_disabled(void)
579 {
580 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
581 }
582 
583 static inline void mem_cgroup_protection(struct mem_cgroup *root,
584 					 struct mem_cgroup *memcg,
585 					 unsigned long *min,
586 					 unsigned long *low)
587 {
588 	*min = *low = 0;
589 
590 	if (mem_cgroup_disabled())
591 		return;
592 
593 	/*
594 	 * There is no reclaim protection applied to a targeted reclaim.
595 	 * We are special casing this specific case here because
596 	 * mem_cgroup_calculate_protection is not robust enough to keep
597 	 * the protection invariant for calculated effective values for
598 	 * parallel reclaimers with different reclaim target. This is
599 	 * especially a problem for tail memcgs (as they have pages on LRU)
600 	 * which would want to have effective values 0 for targeted reclaim
601 	 * but a different value for external reclaim.
602 	 *
603 	 * Example
604 	 * Let's have global and A's reclaim in parallel:
605 	 *  |
606 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
607 	 *  |\
608 	 *  | C (low = 1G, usage = 2.5G)
609 	 *  B (low = 1G, usage = 0.5G)
610 	 *
611 	 * For the global reclaim
612 	 * A.elow = A.low
613 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
614 	 * C.elow = min(C.usage, C.low)
615 	 *
616 	 * With the effective values resetting we have A reclaim
617 	 * A.elow = 0
618 	 * B.elow = B.low
619 	 * C.elow = C.low
620 	 *
621 	 * If the global reclaim races with A's reclaim then
622 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
623 	 * is possible and reclaiming B would be violating the protection.
624 	 *
625 	 */
626 	if (root == memcg)
627 		return;
628 
629 	*min = READ_ONCE(memcg->memory.emin);
630 	*low = READ_ONCE(memcg->memory.elow);
631 }
632 
633 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
634 				     struct mem_cgroup *memcg);
635 
636 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
637 					  struct mem_cgroup *memcg)
638 {
639 	/*
640 	 * The root memcg doesn't account charges, and doesn't support
641 	 * protection. The target memcg's protection is ignored, see
642 	 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
643 	 */
644 	return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
645 		memcg == target;
646 }
647 
648 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
649 					struct mem_cgroup *memcg)
650 {
651 	if (mem_cgroup_unprotected(target, memcg))
652 		return false;
653 
654 	return READ_ONCE(memcg->memory.elow) >=
655 		page_counter_read(&memcg->memory);
656 }
657 
658 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
659 					struct mem_cgroup *memcg)
660 {
661 	if (mem_cgroup_unprotected(target, memcg))
662 		return false;
663 
664 	return READ_ONCE(memcg->memory.emin) >=
665 		page_counter_read(&memcg->memory);
666 }
667 
668 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg);
669 
670 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
671 
672 /**
673  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
674  * @folio: Folio to charge.
675  * @mm: mm context of the allocating task.
676  * @gfp: Reclaim mode.
677  *
678  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
679  * pages according to @gfp if necessary.  If @mm is NULL, try to
680  * charge to the active memcg.
681  *
682  * Do not use this for folios allocated for swapin.
683  *
684  * Return: 0 on success. Otherwise, an error code is returned.
685  */
686 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
687 				    gfp_t gfp)
688 {
689 	if (mem_cgroup_disabled())
690 		return 0;
691 	return __mem_cgroup_charge(folio, mm, gfp);
692 }
693 
694 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
695 		long nr_pages);
696 
697 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
698 				  gfp_t gfp, swp_entry_t entry);
699 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
700 
701 void __mem_cgroup_uncharge(struct folio *folio);
702 
703 /**
704  * mem_cgroup_uncharge - Uncharge a folio.
705  * @folio: Folio to uncharge.
706  *
707  * Uncharge a folio previously charged with mem_cgroup_charge().
708  */
709 static inline void mem_cgroup_uncharge(struct folio *folio)
710 {
711 	if (mem_cgroup_disabled())
712 		return;
713 	__mem_cgroup_uncharge(folio);
714 }
715 
716 void __mem_cgroup_uncharge_folios(struct folio_batch *folios);
717 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
718 {
719 	if (mem_cgroup_disabled())
720 		return;
721 	__mem_cgroup_uncharge_folios(folios);
722 }
723 
724 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages);
725 void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
726 void mem_cgroup_migrate(struct folio *old, struct folio *new);
727 
728 /**
729  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
730  * @memcg: memcg of the wanted lruvec
731  * @pgdat: pglist_data
732  *
733  * Returns the lru list vector holding pages for a given @memcg &
734  * @pgdat combination. This can be the node lruvec, if the memory
735  * controller is disabled.
736  */
737 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
738 					       struct pglist_data *pgdat)
739 {
740 	struct mem_cgroup_per_node *mz;
741 	struct lruvec *lruvec;
742 
743 	if (mem_cgroup_disabled()) {
744 		lruvec = &pgdat->__lruvec;
745 		goto out;
746 	}
747 
748 	if (!memcg)
749 		memcg = root_mem_cgroup;
750 
751 	mz = memcg->nodeinfo[pgdat->node_id];
752 	lruvec = &mz->lruvec;
753 out:
754 	/*
755 	 * Since a node can be onlined after the mem_cgroup was created,
756 	 * we have to be prepared to initialize lruvec->pgdat here;
757 	 * and if offlined then reonlined, we need to reinitialize it.
758 	 */
759 	if (unlikely(lruvec->pgdat != pgdat))
760 		lruvec->pgdat = pgdat;
761 	return lruvec;
762 }
763 
764 /**
765  * folio_lruvec - return lruvec for isolating/putting an LRU folio
766  * @folio: Pointer to the folio.
767  *
768  * This function relies on folio->mem_cgroup being stable.
769  */
770 static inline struct lruvec *folio_lruvec(struct folio *folio)
771 {
772 	struct mem_cgroup *memcg = folio_memcg(folio);
773 
774 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
775 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
776 }
777 
778 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
779 
780 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
781 
782 struct mem_cgroup *get_mem_cgroup_from_current(void);
783 
784 struct lruvec *folio_lruvec_lock(struct folio *folio);
785 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
786 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
787 						unsigned long *flags);
788 
789 #ifdef CONFIG_DEBUG_VM
790 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
791 #else
792 static inline
793 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
794 {
795 }
796 #endif
797 
798 static inline
799 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
800 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
801 }
802 
803 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
804 {
805 	return percpu_ref_tryget(&objcg->refcnt);
806 }
807 
808 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
809 {
810 	percpu_ref_get(&objcg->refcnt);
811 }
812 
813 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
814 				       unsigned long nr)
815 {
816 	percpu_ref_get_many(&objcg->refcnt, nr);
817 }
818 
819 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
820 {
821 	if (objcg)
822 		percpu_ref_put(&objcg->refcnt);
823 }
824 
825 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
826 {
827 	return !memcg || css_tryget(&memcg->css);
828 }
829 
830 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
831 {
832 	return !memcg || css_tryget_online(&memcg->css);
833 }
834 
835 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
836 {
837 	if (memcg)
838 		css_put(&memcg->css);
839 }
840 
841 #define mem_cgroup_from_counter(counter, member)	\
842 	container_of(counter, struct mem_cgroup, member)
843 
844 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
845 				   struct mem_cgroup *,
846 				   struct mem_cgroup_reclaim_cookie *);
847 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
848 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
849 			   int (*)(struct task_struct *, void *), void *arg);
850 
851 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
852 {
853 	if (mem_cgroup_disabled())
854 		return 0;
855 
856 	return memcg->id.id;
857 }
858 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
859 
860 #ifdef CONFIG_SHRINKER_DEBUG
861 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
862 {
863 	return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
864 }
865 
866 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
867 #endif
868 
869 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
870 {
871 	return mem_cgroup_from_css(seq_css(m));
872 }
873 
874 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
875 {
876 	struct mem_cgroup_per_node *mz;
877 
878 	if (mem_cgroup_disabled())
879 		return NULL;
880 
881 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
882 	return mz->memcg;
883 }
884 
885 /**
886  * parent_mem_cgroup - find the accounting parent of a memcg
887  * @memcg: memcg whose parent to find
888  *
889  * Returns the parent memcg, or NULL if this is the root.
890  */
891 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
892 {
893 	return mem_cgroup_from_css(memcg->css.parent);
894 }
895 
896 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
897 			      struct mem_cgroup *root)
898 {
899 	if (root == memcg)
900 		return true;
901 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
902 }
903 
904 static inline bool mm_match_cgroup(struct mm_struct *mm,
905 				   struct mem_cgroup *memcg)
906 {
907 	struct mem_cgroup *task_memcg;
908 	bool match = false;
909 
910 	rcu_read_lock();
911 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
912 	if (task_memcg)
913 		match = mem_cgroup_is_descendant(task_memcg, memcg);
914 	rcu_read_unlock();
915 	return match;
916 }
917 
918 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
919 ino_t page_cgroup_ino(struct page *page);
920 
921 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
922 {
923 	if (mem_cgroup_disabled())
924 		return true;
925 	return !!(memcg->css.flags & CSS_ONLINE);
926 }
927 
928 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
929 		int zid, int nr_pages);
930 
931 static inline
932 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
933 		enum lru_list lru, int zone_idx)
934 {
935 	struct mem_cgroup_per_node *mz;
936 
937 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
938 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
939 }
940 
941 void mem_cgroup_handle_over_high(gfp_t gfp_mask);
942 
943 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
944 
945 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
946 
947 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
948 				struct task_struct *p);
949 
950 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
951 
952 static inline void mem_cgroup_enter_user_fault(void)
953 {
954 	WARN_ON(current->in_user_fault);
955 	current->in_user_fault = 1;
956 }
957 
958 static inline void mem_cgroup_exit_user_fault(void)
959 {
960 	WARN_ON(!current->in_user_fault);
961 	current->in_user_fault = 0;
962 }
963 
964 static inline bool task_in_memcg_oom(struct task_struct *p)
965 {
966 	return p->memcg_in_oom;
967 }
968 
969 bool mem_cgroup_oom_synchronize(bool wait);
970 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
971 					    struct mem_cgroup *oom_domain);
972 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
973 
974 void folio_memcg_lock(struct folio *folio);
975 void folio_memcg_unlock(struct folio *folio);
976 
977 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
978 		       int val);
979 
980 /* try to stablize folio_memcg() for all the pages in a memcg */
981 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
982 {
983 	rcu_read_lock();
984 
985 	if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
986 		return true;
987 
988 	rcu_read_unlock();
989 	return false;
990 }
991 
992 static inline void mem_cgroup_unlock_pages(void)
993 {
994 	rcu_read_unlock();
995 }
996 
997 /* idx can be of type enum memcg_stat_item or node_stat_item */
998 static inline void mod_memcg_state(struct mem_cgroup *memcg,
999 				   enum memcg_stat_item idx, int val)
1000 {
1001 	unsigned long flags;
1002 
1003 	local_irq_save(flags);
1004 	__mod_memcg_state(memcg, idx, val);
1005 	local_irq_restore(flags);
1006 }
1007 
1008 static inline void mod_memcg_page_state(struct page *page,
1009 					enum memcg_stat_item idx, int val)
1010 {
1011 	struct mem_cgroup *memcg;
1012 
1013 	if (mem_cgroup_disabled())
1014 		return;
1015 
1016 	rcu_read_lock();
1017 	memcg = page_memcg(page);
1018 	if (memcg)
1019 		mod_memcg_state(memcg, idx, val);
1020 	rcu_read_unlock();
1021 }
1022 
1023 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
1024 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx);
1025 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1026 				      enum node_stat_item idx);
1027 
1028 void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
1029 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
1030 
1031 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1032 
1033 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1034 					 int val)
1035 {
1036 	unsigned long flags;
1037 
1038 	local_irq_save(flags);
1039 	__mod_lruvec_kmem_state(p, idx, val);
1040 	local_irq_restore(flags);
1041 }
1042 
1043 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1044 			  unsigned long count);
1045 
1046 static inline void count_memcg_events(struct mem_cgroup *memcg,
1047 				      enum vm_event_item idx,
1048 				      unsigned long count)
1049 {
1050 	unsigned long flags;
1051 
1052 	local_irq_save(flags);
1053 	__count_memcg_events(memcg, idx, count);
1054 	local_irq_restore(flags);
1055 }
1056 
1057 static inline void count_memcg_folio_events(struct folio *folio,
1058 		enum vm_event_item idx, unsigned long nr)
1059 {
1060 	struct mem_cgroup *memcg = folio_memcg(folio);
1061 
1062 	if (memcg)
1063 		count_memcg_events(memcg, idx, nr);
1064 }
1065 
1066 static inline void count_memcg_event_mm(struct mm_struct *mm,
1067 					enum vm_event_item idx)
1068 {
1069 	struct mem_cgroup *memcg;
1070 
1071 	if (mem_cgroup_disabled())
1072 		return;
1073 
1074 	rcu_read_lock();
1075 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1076 	if (likely(memcg))
1077 		count_memcg_events(memcg, idx, 1);
1078 	rcu_read_unlock();
1079 }
1080 
1081 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1082 				      enum memcg_memory_event event)
1083 {
1084 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1085 			  event == MEMCG_SWAP_FAIL;
1086 
1087 	atomic_long_inc(&memcg->memory_events_local[event]);
1088 	if (!swap_event)
1089 		cgroup_file_notify(&memcg->events_local_file);
1090 
1091 	do {
1092 		atomic_long_inc(&memcg->memory_events[event]);
1093 		if (swap_event)
1094 			cgroup_file_notify(&memcg->swap_events_file);
1095 		else
1096 			cgroup_file_notify(&memcg->events_file);
1097 
1098 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1099 			break;
1100 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1101 			break;
1102 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1103 		 !mem_cgroup_is_root(memcg));
1104 }
1105 
1106 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1107 					 enum memcg_memory_event event)
1108 {
1109 	struct mem_cgroup *memcg;
1110 
1111 	if (mem_cgroup_disabled())
1112 		return;
1113 
1114 	rcu_read_lock();
1115 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1116 	if (likely(memcg))
1117 		memcg_memory_event(memcg, event);
1118 	rcu_read_unlock();
1119 }
1120 
1121 void split_page_memcg(struct page *head, int old_order, int new_order);
1122 
1123 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1124 						gfp_t gfp_mask,
1125 						unsigned long *total_scanned);
1126 
1127 #else /* CONFIG_MEMCG */
1128 
1129 #define MEM_CGROUP_ID_SHIFT	0
1130 
1131 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1132 {
1133 	return NULL;
1134 }
1135 
1136 static inline struct mem_cgroup *page_memcg(struct page *page)
1137 {
1138 	return NULL;
1139 }
1140 
1141 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1142 {
1143 	WARN_ON_ONCE(!rcu_read_lock_held());
1144 	return NULL;
1145 }
1146 
1147 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1148 {
1149 	return NULL;
1150 }
1151 
1152 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1153 {
1154 	return NULL;
1155 }
1156 
1157 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
1158 {
1159 	return NULL;
1160 }
1161 
1162 static inline bool folio_memcg_kmem(struct folio *folio)
1163 {
1164 	return false;
1165 }
1166 
1167 static inline bool PageMemcgKmem(struct page *page)
1168 {
1169 	return false;
1170 }
1171 
1172 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1173 {
1174 	return true;
1175 }
1176 
1177 static inline bool mem_cgroup_disabled(void)
1178 {
1179 	return true;
1180 }
1181 
1182 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1183 				      enum memcg_memory_event event)
1184 {
1185 }
1186 
1187 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1188 					 enum memcg_memory_event event)
1189 {
1190 }
1191 
1192 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1193 					 struct mem_cgroup *memcg,
1194 					 unsigned long *min,
1195 					 unsigned long *low)
1196 {
1197 	*min = *low = 0;
1198 }
1199 
1200 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1201 						   struct mem_cgroup *memcg)
1202 {
1203 }
1204 
1205 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1206 					  struct mem_cgroup *memcg)
1207 {
1208 	return true;
1209 }
1210 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1211 					struct mem_cgroup *memcg)
1212 {
1213 	return false;
1214 }
1215 
1216 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1217 					struct mem_cgroup *memcg)
1218 {
1219 	return false;
1220 }
1221 
1222 static inline void mem_cgroup_commit_charge(struct folio *folio,
1223 		struct mem_cgroup *memcg)
1224 {
1225 }
1226 
1227 static inline int mem_cgroup_charge(struct folio *folio,
1228 		struct mm_struct *mm, gfp_t gfp)
1229 {
1230 	return 0;
1231 }
1232 
1233 static inline int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg,
1234 		gfp_t gfp, long nr_pages)
1235 {
1236 	return 0;
1237 }
1238 
1239 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1240 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1241 {
1242 	return 0;
1243 }
1244 
1245 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1246 {
1247 }
1248 
1249 static inline void mem_cgroup_uncharge(struct folio *folio)
1250 {
1251 }
1252 
1253 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
1254 {
1255 }
1256 
1257 static inline void mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
1258 		unsigned int nr_pages)
1259 {
1260 }
1261 
1262 static inline void mem_cgroup_replace_folio(struct folio *old,
1263 		struct folio *new)
1264 {
1265 }
1266 
1267 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1268 {
1269 }
1270 
1271 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1272 					       struct pglist_data *pgdat)
1273 {
1274 	return &pgdat->__lruvec;
1275 }
1276 
1277 static inline struct lruvec *folio_lruvec(struct folio *folio)
1278 {
1279 	struct pglist_data *pgdat = folio_pgdat(folio);
1280 	return &pgdat->__lruvec;
1281 }
1282 
1283 static inline
1284 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1285 {
1286 }
1287 
1288 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1289 {
1290 	return NULL;
1291 }
1292 
1293 static inline bool mm_match_cgroup(struct mm_struct *mm,
1294 		struct mem_cgroup *memcg)
1295 {
1296 	return true;
1297 }
1298 
1299 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1300 {
1301 	return NULL;
1302 }
1303 
1304 static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1305 {
1306 	return NULL;
1307 }
1308 
1309 static inline
1310 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1311 {
1312 	return NULL;
1313 }
1314 
1315 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1316 {
1317 }
1318 
1319 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1320 {
1321 	return true;
1322 }
1323 
1324 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
1325 {
1326 	return true;
1327 }
1328 
1329 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1330 {
1331 }
1332 
1333 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1334 {
1335 	struct pglist_data *pgdat = folio_pgdat(folio);
1336 
1337 	spin_lock(&pgdat->__lruvec.lru_lock);
1338 	return &pgdat->__lruvec;
1339 }
1340 
1341 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1342 {
1343 	struct pglist_data *pgdat = folio_pgdat(folio);
1344 
1345 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1346 	return &pgdat->__lruvec;
1347 }
1348 
1349 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1350 		unsigned long *flagsp)
1351 {
1352 	struct pglist_data *pgdat = folio_pgdat(folio);
1353 
1354 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1355 	return &pgdat->__lruvec;
1356 }
1357 
1358 static inline struct mem_cgroup *
1359 mem_cgroup_iter(struct mem_cgroup *root,
1360 		struct mem_cgroup *prev,
1361 		struct mem_cgroup_reclaim_cookie *reclaim)
1362 {
1363 	return NULL;
1364 }
1365 
1366 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1367 					 struct mem_cgroup *prev)
1368 {
1369 }
1370 
1371 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1372 		int (*fn)(struct task_struct *, void *), void *arg)
1373 {
1374 }
1375 
1376 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1377 {
1378 	return 0;
1379 }
1380 
1381 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1382 {
1383 	WARN_ON_ONCE(id);
1384 	/* XXX: This should always return root_mem_cgroup */
1385 	return NULL;
1386 }
1387 
1388 #ifdef CONFIG_SHRINKER_DEBUG
1389 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1390 {
1391 	return 0;
1392 }
1393 
1394 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1395 {
1396 	return NULL;
1397 }
1398 #endif
1399 
1400 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1401 {
1402 	return NULL;
1403 }
1404 
1405 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1406 {
1407 	return NULL;
1408 }
1409 
1410 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1411 {
1412 	return true;
1413 }
1414 
1415 static inline
1416 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1417 		enum lru_list lru, int zone_idx)
1418 {
1419 	return 0;
1420 }
1421 
1422 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1423 {
1424 	return 0;
1425 }
1426 
1427 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1428 {
1429 	return 0;
1430 }
1431 
1432 static inline void
1433 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1434 {
1435 }
1436 
1437 static inline void
1438 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1439 {
1440 }
1441 
1442 static inline void folio_memcg_lock(struct folio *folio)
1443 {
1444 }
1445 
1446 static inline void folio_memcg_unlock(struct folio *folio)
1447 {
1448 }
1449 
1450 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1451 {
1452 	/* to match folio_memcg_rcu() */
1453 	rcu_read_lock();
1454 	return true;
1455 }
1456 
1457 static inline void mem_cgroup_unlock_pages(void)
1458 {
1459 	rcu_read_unlock();
1460 }
1461 
1462 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1463 {
1464 }
1465 
1466 static inline void mem_cgroup_enter_user_fault(void)
1467 {
1468 }
1469 
1470 static inline void mem_cgroup_exit_user_fault(void)
1471 {
1472 }
1473 
1474 static inline bool task_in_memcg_oom(struct task_struct *p)
1475 {
1476 	return false;
1477 }
1478 
1479 static inline bool mem_cgroup_oom_synchronize(bool wait)
1480 {
1481 	return false;
1482 }
1483 
1484 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1485 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1486 {
1487 	return NULL;
1488 }
1489 
1490 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1491 {
1492 }
1493 
1494 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1495 				     enum memcg_stat_item idx,
1496 				     int nr)
1497 {
1498 }
1499 
1500 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1501 				   enum memcg_stat_item idx,
1502 				   int nr)
1503 {
1504 }
1505 
1506 static inline void mod_memcg_page_state(struct page *page,
1507 					enum memcg_stat_item idx, int val)
1508 {
1509 }
1510 
1511 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1512 {
1513 	return 0;
1514 }
1515 
1516 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1517 					      enum node_stat_item idx)
1518 {
1519 	return node_page_state(lruvec_pgdat(lruvec), idx);
1520 }
1521 
1522 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1523 						    enum node_stat_item idx)
1524 {
1525 	return node_page_state(lruvec_pgdat(lruvec), idx);
1526 }
1527 
1528 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
1529 {
1530 }
1531 
1532 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
1533 {
1534 }
1535 
1536 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1537 					   int val)
1538 {
1539 	struct page *page = virt_to_head_page(p);
1540 
1541 	__mod_node_page_state(page_pgdat(page), idx, val);
1542 }
1543 
1544 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1545 					 int val)
1546 {
1547 	struct page *page = virt_to_head_page(p);
1548 
1549 	mod_node_page_state(page_pgdat(page), idx, val);
1550 }
1551 
1552 static inline void count_memcg_events(struct mem_cgroup *memcg,
1553 				      enum vm_event_item idx,
1554 				      unsigned long count)
1555 {
1556 }
1557 
1558 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1559 					enum vm_event_item idx,
1560 					unsigned long count)
1561 {
1562 }
1563 
1564 static inline void count_memcg_folio_events(struct folio *folio,
1565 		enum vm_event_item idx, unsigned long nr)
1566 {
1567 }
1568 
1569 static inline
1570 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1571 {
1572 }
1573 
1574 static inline void split_page_memcg(struct page *head, int old_order, int new_order)
1575 {
1576 }
1577 
1578 static inline
1579 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1580 					    gfp_t gfp_mask,
1581 					    unsigned long *total_scanned)
1582 {
1583 	return 0;
1584 }
1585 #endif /* CONFIG_MEMCG */
1586 
1587 /*
1588  * Extended information for slab objects stored as an array in page->memcg_data
1589  * if MEMCG_DATA_OBJEXTS is set.
1590  */
1591 struct slabobj_ext {
1592 #ifdef CONFIG_MEMCG_KMEM
1593 	struct obj_cgroup *objcg;
1594 #endif
1595 #ifdef CONFIG_MEM_ALLOC_PROFILING
1596 	union codetag_ref ref;
1597 #endif
1598 } __aligned(8);
1599 
1600 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1601 {
1602 	__mod_lruvec_kmem_state(p, idx, 1);
1603 }
1604 
1605 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1606 {
1607 	__mod_lruvec_kmem_state(p, idx, -1);
1608 }
1609 
1610 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1611 {
1612 	struct mem_cgroup *memcg;
1613 
1614 	memcg = lruvec_memcg(lruvec);
1615 	if (!memcg)
1616 		return NULL;
1617 	memcg = parent_mem_cgroup(memcg);
1618 	if (!memcg)
1619 		return NULL;
1620 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1621 }
1622 
1623 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1624 {
1625 	spin_unlock(&lruvec->lru_lock);
1626 }
1627 
1628 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1629 {
1630 	spin_unlock_irq(&lruvec->lru_lock);
1631 }
1632 
1633 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1634 		unsigned long flags)
1635 {
1636 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1637 }
1638 
1639 /* Test requires a stable page->memcg binding, see page_memcg() */
1640 static inline bool folio_matches_lruvec(struct folio *folio,
1641 		struct lruvec *lruvec)
1642 {
1643 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1644 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1645 }
1646 
1647 /* Don't lock again iff page's lruvec locked */
1648 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1649 		struct lruvec *locked_lruvec)
1650 {
1651 	if (locked_lruvec) {
1652 		if (folio_matches_lruvec(folio, locked_lruvec))
1653 			return locked_lruvec;
1654 
1655 		unlock_page_lruvec_irq(locked_lruvec);
1656 	}
1657 
1658 	return folio_lruvec_lock_irq(folio);
1659 }
1660 
1661 /* Don't lock again iff folio's lruvec locked */
1662 static inline void folio_lruvec_relock_irqsave(struct folio *folio,
1663 		struct lruvec **lruvecp, unsigned long *flags)
1664 {
1665 	if (*lruvecp) {
1666 		if (folio_matches_lruvec(folio, *lruvecp))
1667 			return;
1668 
1669 		unlock_page_lruvec_irqrestore(*lruvecp, *flags);
1670 	}
1671 
1672 	*lruvecp = folio_lruvec_lock_irqsave(folio, flags);
1673 }
1674 
1675 #ifdef CONFIG_CGROUP_WRITEBACK
1676 
1677 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1678 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1679 			 unsigned long *pheadroom, unsigned long *pdirty,
1680 			 unsigned long *pwriteback);
1681 
1682 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1683 					     struct bdi_writeback *wb);
1684 
1685 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1686 						  struct bdi_writeback *wb)
1687 {
1688 	struct mem_cgroup *memcg;
1689 
1690 	if (mem_cgroup_disabled())
1691 		return;
1692 
1693 	memcg = folio_memcg(folio);
1694 	if (unlikely(memcg && &memcg->css != wb->memcg_css))
1695 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1696 }
1697 
1698 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1699 
1700 #else	/* CONFIG_CGROUP_WRITEBACK */
1701 
1702 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1703 {
1704 	return NULL;
1705 }
1706 
1707 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1708 				       unsigned long *pfilepages,
1709 				       unsigned long *pheadroom,
1710 				       unsigned long *pdirty,
1711 				       unsigned long *pwriteback)
1712 {
1713 }
1714 
1715 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1716 						  struct bdi_writeback *wb)
1717 {
1718 }
1719 
1720 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1721 {
1722 }
1723 
1724 #endif	/* CONFIG_CGROUP_WRITEBACK */
1725 
1726 struct sock;
1727 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1728 			     gfp_t gfp_mask);
1729 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1730 #ifdef CONFIG_MEMCG
1731 extern struct static_key_false memcg_sockets_enabled_key;
1732 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1733 void mem_cgroup_sk_alloc(struct sock *sk);
1734 void mem_cgroup_sk_free(struct sock *sk);
1735 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1736 {
1737 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1738 		return !!memcg->tcpmem_pressure;
1739 	do {
1740 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1741 			return true;
1742 	} while ((memcg = parent_mem_cgroup(memcg)));
1743 	return false;
1744 }
1745 
1746 int alloc_shrinker_info(struct mem_cgroup *memcg);
1747 void free_shrinker_info(struct mem_cgroup *memcg);
1748 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1749 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1750 #else
1751 #define mem_cgroup_sockets_enabled 0
1752 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1753 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1754 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1755 {
1756 	return false;
1757 }
1758 
1759 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1760 				    int nid, int shrinker_id)
1761 {
1762 }
1763 #endif
1764 
1765 #ifdef CONFIG_MEMCG_KMEM
1766 bool mem_cgroup_kmem_disabled(void);
1767 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1768 void __memcg_kmem_uncharge_page(struct page *page, int order);
1769 
1770 /*
1771  * The returned objcg pointer is safe to use without additional
1772  * protection within a scope. The scope is defined either by
1773  * the current task (similar to the "current" global variable)
1774  * or by set_active_memcg() pair.
1775  * Please, use obj_cgroup_get() to get a reference if the pointer
1776  * needs to be used outside of the local scope.
1777  */
1778 struct obj_cgroup *current_obj_cgroup(void);
1779 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1780 
1781 static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
1782 {
1783 	struct obj_cgroup *objcg = current_obj_cgroup();
1784 
1785 	if (objcg)
1786 		obj_cgroup_get(objcg);
1787 
1788 	return objcg;
1789 }
1790 
1791 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1792 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1793 
1794 extern struct static_key_false memcg_bpf_enabled_key;
1795 static inline bool memcg_bpf_enabled(void)
1796 {
1797 	return static_branch_likely(&memcg_bpf_enabled_key);
1798 }
1799 
1800 extern struct static_key_false memcg_kmem_online_key;
1801 
1802 static inline bool memcg_kmem_online(void)
1803 {
1804 	return static_branch_likely(&memcg_kmem_online_key);
1805 }
1806 
1807 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1808 					 int order)
1809 {
1810 	if (memcg_kmem_online())
1811 		return __memcg_kmem_charge_page(page, gfp, order);
1812 	return 0;
1813 }
1814 
1815 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1816 {
1817 	if (memcg_kmem_online())
1818 		__memcg_kmem_uncharge_page(page, order);
1819 }
1820 
1821 /*
1822  * A helper for accessing memcg's kmem_id, used for getting
1823  * corresponding LRU lists.
1824  */
1825 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1826 {
1827 	return memcg ? memcg->kmemcg_id : -1;
1828 }
1829 
1830 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1831 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1832 
1833 static inline void count_objcg_event(struct obj_cgroup *objcg,
1834 				     enum vm_event_item idx)
1835 {
1836 	struct mem_cgroup *memcg;
1837 
1838 	if (!memcg_kmem_online())
1839 		return;
1840 
1841 	rcu_read_lock();
1842 	memcg = obj_cgroup_memcg(objcg);
1843 	count_memcg_events(memcg, idx, 1);
1844 	rcu_read_unlock();
1845 }
1846 
1847 #else
1848 static inline bool mem_cgroup_kmem_disabled(void)
1849 {
1850 	return true;
1851 }
1852 
1853 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1854 					 int order)
1855 {
1856 	return 0;
1857 }
1858 
1859 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1860 {
1861 }
1862 
1863 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1864 					   int order)
1865 {
1866 	return 0;
1867 }
1868 
1869 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1870 {
1871 }
1872 
1873 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1874 {
1875 	return NULL;
1876 }
1877 
1878 static inline bool memcg_bpf_enabled(void)
1879 {
1880 	return false;
1881 }
1882 
1883 static inline bool memcg_kmem_online(void)
1884 {
1885 	return false;
1886 }
1887 
1888 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1889 {
1890 	return -1;
1891 }
1892 
1893 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1894 {
1895 	return NULL;
1896 }
1897 
1898 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1899 {
1900 	return NULL;
1901 }
1902 
1903 static inline void count_objcg_event(struct obj_cgroup *objcg,
1904 				     enum vm_event_item idx)
1905 {
1906 }
1907 
1908 #endif /* CONFIG_MEMCG_KMEM */
1909 
1910 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1911 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1912 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1913 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1914 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg);
1915 #else
1916 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1917 {
1918 	return true;
1919 }
1920 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1921 					   size_t size)
1922 {
1923 }
1924 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1925 					     size_t size)
1926 {
1927 }
1928 static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
1929 {
1930 	/* if zswap is disabled, do not block pages going to the swapping device */
1931 	return true;
1932 }
1933 #endif
1934 
1935 #endif /* _LINUX_MEMCONTROL_H */
1936