xref: /linux/net/unix/garbage.c (revision d0309c054362a235077327b46f727bc48878a3bc)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET3:	Garbage Collector For AF_UNIX sockets
4  *
5  * Garbage Collector:
6  *	Copyright (C) Barak A. Pearlmutter.
7  *
8  * Chopped about by Alan Cox 22/3/96 to make it fit the AF_UNIX socket problem.
9  * If it doesn't work blame me, it worked when Barak sent it.
10  *
11  * Assumptions:
12  *
13  *  - object w/ a bit
14  *  - free list
15  *
16  * Current optimizations:
17  *
18  *  - explicit stack instead of recursion
19  *  - tail recurse on first born instead of immediate push/pop
20  *  - we gather the stuff that should not be killed into tree
21  *    and stack is just a path from root to the current pointer.
22  *
23  *  Future optimizations:
24  *
25  *  - don't just push entire root set; process in place
26  *
27  *  Fixes:
28  *	Alan Cox	07 Sept	1997	Vmalloc internal stack as needed.
29  *					Cope with changing max_files.
30  *	Al Viro		11 Oct 1998
31  *		Graph may have cycles. That is, we can send the descriptor
32  *		of foo to bar and vice versa. Current code chokes on that.
33  *		Fix: move SCM_RIGHTS ones into the separate list and then
34  *		skb_free() them all instead of doing explicit fput's.
35  *		Another problem: since fput() may block somebody may
36  *		create a new unix_socket when we are in the middle of sweep
37  *		phase. Fix: revert the logic wrt MARKED. Mark everything
38  *		upon the beginning and unmark non-junk ones.
39  *
40  *		[12 Oct 1998] AAARGH! New code purges all SCM_RIGHTS
41  *		sent to connect()'ed but still not accept()'ed sockets.
42  *		Fixed. Old code had slightly different problem here:
43  *		extra fput() in situation when we passed the descriptor via
44  *		such socket and closed it (descriptor). That would happen on
45  *		each unix_gc() until the accept(). Since the struct file in
46  *		question would go to the free list and might be reused...
47  *		That might be the reason of random oopses on filp_close()
48  *		in unrelated processes.
49  *
50  *	AV		28 Feb 1999
51  *		Kill the explicit allocation of stack. Now we keep the tree
52  *		with root in dummy + pointer (gc_current) to one of the nodes.
53  *		Stack is represented as path from gc_current to dummy. Unmark
54  *		now means "add to tree". Push == "make it a son of gc_current".
55  *		Pop == "move gc_current to parent". We keep only pointers to
56  *		parents (->gc_tree).
57  *	AV		1 Mar 1999
58  *		Damn. Added missing check for ->dead in listen queues scanning.
59  *
60  *	Miklos Szeredi 25 Jun 2007
61  *		Reimplement with a cycle collecting algorithm. This should
62  *		solve several problems with the previous code, like being racy
63  *		wrt receive and holding up unrelated socket operations.
64  */
65 
66 #include <linux/fs.h>
67 #include <linux/list.h>
68 #include <linux/skbuff.h>
69 #include <linux/socket.h>
70 #include <linux/workqueue.h>
71 #include <net/af_unix.h>
72 #include <net/scm.h>
73 #include <net/tcp_states.h>
74 
75 #include "af_unix.h"
76 
77 struct unix_vertex {
78 	struct list_head edges;
79 	struct list_head entry;
80 	struct list_head scc_entry;
81 	unsigned long out_degree;
82 	unsigned long index;
83 	unsigned long scc_index;
84 };
85 
86 struct unix_edge {
87 	struct unix_sock *predecessor;
88 	struct unix_sock *successor;
89 	struct list_head vertex_entry;
90 	struct list_head stack_entry;
91 };
92 
unix_get_socket(struct file * filp)93 struct unix_sock *unix_get_socket(struct file *filp)
94 {
95 	struct inode *inode = file_inode(filp);
96 
97 	/* Socket ? */
98 	if (S_ISSOCK(inode->i_mode) && !(filp->f_mode & FMODE_PATH)) {
99 		struct socket *sock = SOCKET_I(inode);
100 		const struct proto_ops *ops;
101 		struct sock *sk = sock->sk;
102 
103 		ops = READ_ONCE(sock->ops);
104 
105 		/* PF_UNIX ? */
106 		if (sk && ops && ops->family == PF_UNIX)
107 			return unix_sk(sk);
108 	}
109 
110 	return NULL;
111 }
112 
unix_edge_successor(struct unix_edge * edge)113 static struct unix_vertex *unix_edge_successor(struct unix_edge *edge)
114 {
115 	/* If an embryo socket has a fd,
116 	 * the listener indirectly holds the fd's refcnt.
117 	 */
118 	if (edge->successor->listener)
119 		return unix_sk(edge->successor->listener)->vertex;
120 
121 	return edge->successor->vertex;
122 }
123 
124 static bool unix_graph_maybe_cyclic;
125 static bool unix_graph_grouped;
126 
unix_update_graph(struct unix_vertex * vertex)127 static void unix_update_graph(struct unix_vertex *vertex)
128 {
129 	/* If the receiver socket is not inflight, no cyclic
130 	 * reference could be formed.
131 	 */
132 	if (!vertex)
133 		return;
134 
135 	unix_graph_maybe_cyclic = true;
136 	unix_graph_grouped = false;
137 }
138 
139 static LIST_HEAD(unix_unvisited_vertices);
140 
141 enum unix_vertex_index {
142 	UNIX_VERTEX_INDEX_MARK1,
143 	UNIX_VERTEX_INDEX_MARK2,
144 	UNIX_VERTEX_INDEX_START,
145 };
146 
147 static unsigned long unix_vertex_unvisited_index = UNIX_VERTEX_INDEX_MARK1;
148 static unsigned long unix_vertex_max_scc_index = UNIX_VERTEX_INDEX_START;
149 
unix_add_edge(struct scm_fp_list * fpl,struct unix_edge * edge)150 static void unix_add_edge(struct scm_fp_list *fpl, struct unix_edge *edge)
151 {
152 	struct unix_vertex *vertex = edge->predecessor->vertex;
153 
154 	if (!vertex) {
155 		vertex = list_first_entry(&fpl->vertices, typeof(*vertex), entry);
156 		vertex->index = unix_vertex_unvisited_index;
157 		vertex->scc_index = ++unix_vertex_max_scc_index;
158 		vertex->out_degree = 0;
159 		INIT_LIST_HEAD(&vertex->edges);
160 		INIT_LIST_HEAD(&vertex->scc_entry);
161 
162 		list_move_tail(&vertex->entry, &unix_unvisited_vertices);
163 		edge->predecessor->vertex = vertex;
164 	}
165 
166 	vertex->out_degree++;
167 	list_add_tail(&edge->vertex_entry, &vertex->edges);
168 
169 	unix_update_graph(unix_edge_successor(edge));
170 }
171 
unix_del_edge(struct scm_fp_list * fpl,struct unix_edge * edge)172 static void unix_del_edge(struct scm_fp_list *fpl, struct unix_edge *edge)
173 {
174 	struct unix_vertex *vertex = edge->predecessor->vertex;
175 
176 	if (!fpl->dead)
177 		unix_update_graph(unix_edge_successor(edge));
178 
179 	list_del(&edge->vertex_entry);
180 	vertex->out_degree--;
181 
182 	if (!vertex->out_degree) {
183 		edge->predecessor->vertex = NULL;
184 		list_move_tail(&vertex->entry, &fpl->vertices);
185 	}
186 }
187 
unix_free_vertices(struct scm_fp_list * fpl)188 static void unix_free_vertices(struct scm_fp_list *fpl)
189 {
190 	struct unix_vertex *vertex, *next_vertex;
191 
192 	list_for_each_entry_safe(vertex, next_vertex, &fpl->vertices, entry) {
193 		list_del(&vertex->entry);
194 		kfree(vertex);
195 	}
196 }
197 
198 static DEFINE_SPINLOCK(unix_gc_lock);
199 unsigned int unix_tot_inflight;
200 
unix_add_edges(struct scm_fp_list * fpl,struct unix_sock * receiver)201 void unix_add_edges(struct scm_fp_list *fpl, struct unix_sock *receiver)
202 {
203 	int i = 0, j = 0;
204 
205 	spin_lock(&unix_gc_lock);
206 
207 	if (!fpl->count_unix)
208 		goto out;
209 
210 	do {
211 		struct unix_sock *inflight = unix_get_socket(fpl->fp[j++]);
212 		struct unix_edge *edge;
213 
214 		if (!inflight)
215 			continue;
216 
217 		edge = fpl->edges + i++;
218 		edge->predecessor = inflight;
219 		edge->successor = receiver;
220 
221 		unix_add_edge(fpl, edge);
222 	} while (i < fpl->count_unix);
223 
224 	receiver->scm_stat.nr_unix_fds += fpl->count_unix;
225 	WRITE_ONCE(unix_tot_inflight, unix_tot_inflight + fpl->count_unix);
226 out:
227 	WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight + fpl->count);
228 
229 	spin_unlock(&unix_gc_lock);
230 
231 	fpl->inflight = true;
232 
233 	unix_free_vertices(fpl);
234 }
235 
unix_del_edges(struct scm_fp_list * fpl)236 void unix_del_edges(struct scm_fp_list *fpl)
237 {
238 	struct unix_sock *receiver;
239 	int i = 0;
240 
241 	spin_lock(&unix_gc_lock);
242 
243 	if (!fpl->count_unix)
244 		goto out;
245 
246 	do {
247 		struct unix_edge *edge = fpl->edges + i++;
248 
249 		unix_del_edge(fpl, edge);
250 	} while (i < fpl->count_unix);
251 
252 	if (!fpl->dead) {
253 		receiver = fpl->edges[0].successor;
254 		receiver->scm_stat.nr_unix_fds -= fpl->count_unix;
255 	}
256 	WRITE_ONCE(unix_tot_inflight, unix_tot_inflight - fpl->count_unix);
257 out:
258 	WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight - fpl->count);
259 
260 	spin_unlock(&unix_gc_lock);
261 
262 	fpl->inflight = false;
263 }
264 
unix_update_edges(struct unix_sock * receiver)265 void unix_update_edges(struct unix_sock *receiver)
266 {
267 	/* nr_unix_fds is only updated under unix_state_lock().
268 	 * If it's 0 here, the embryo socket is not part of the
269 	 * inflight graph, and GC will not see it, so no lock needed.
270 	 */
271 	if (!receiver->scm_stat.nr_unix_fds) {
272 		receiver->listener = NULL;
273 	} else {
274 		spin_lock(&unix_gc_lock);
275 		unix_update_graph(unix_sk(receiver->listener)->vertex);
276 		receiver->listener = NULL;
277 		spin_unlock(&unix_gc_lock);
278 	}
279 }
280 
unix_prepare_fpl(struct scm_fp_list * fpl)281 int unix_prepare_fpl(struct scm_fp_list *fpl)
282 {
283 	struct unix_vertex *vertex;
284 	int i;
285 
286 	if (!fpl->count_unix)
287 		return 0;
288 
289 	for (i = 0; i < fpl->count_unix; i++) {
290 		vertex = kmalloc(sizeof(*vertex), GFP_KERNEL);
291 		if (!vertex)
292 			goto err;
293 
294 		list_add(&vertex->entry, &fpl->vertices);
295 	}
296 
297 	fpl->edges = kvmalloc_array(fpl->count_unix, sizeof(*fpl->edges),
298 				    GFP_KERNEL_ACCOUNT);
299 	if (!fpl->edges)
300 		goto err;
301 
302 	return 0;
303 
304 err:
305 	unix_free_vertices(fpl);
306 	return -ENOMEM;
307 }
308 
unix_destroy_fpl(struct scm_fp_list * fpl)309 void unix_destroy_fpl(struct scm_fp_list *fpl)
310 {
311 	if (fpl->inflight)
312 		unix_del_edges(fpl);
313 
314 	kvfree(fpl->edges);
315 	unix_free_vertices(fpl);
316 }
317 
unix_vertex_dead(struct unix_vertex * vertex)318 static bool unix_vertex_dead(struct unix_vertex *vertex)
319 {
320 	struct unix_edge *edge;
321 	struct unix_sock *u;
322 	long total_ref;
323 
324 	list_for_each_entry(edge, &vertex->edges, vertex_entry) {
325 		struct unix_vertex *next_vertex = unix_edge_successor(edge);
326 
327 		/* The vertex's fd can be received by a non-inflight socket. */
328 		if (!next_vertex)
329 			return false;
330 
331 		/* The vertex's fd can be received by an inflight socket in
332 		 * another SCC.
333 		 */
334 		if (next_vertex->scc_index != vertex->scc_index)
335 			return false;
336 	}
337 
338 	/* No receiver exists out of the same SCC. */
339 
340 	edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry);
341 	u = edge->predecessor;
342 	total_ref = file_count(u->sk.sk_socket->file);
343 
344 	/* If not close()d, total_ref > out_degree. */
345 	if (total_ref != vertex->out_degree)
346 		return false;
347 
348 	return true;
349 }
350 
unix_collect_skb(struct list_head * scc,struct sk_buff_head * hitlist)351 static void unix_collect_skb(struct list_head *scc, struct sk_buff_head *hitlist)
352 {
353 	struct unix_vertex *vertex;
354 
355 	list_for_each_entry_reverse(vertex, scc, scc_entry) {
356 		struct sk_buff_head *queue;
357 		struct unix_edge *edge;
358 		struct unix_sock *u;
359 
360 		edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry);
361 		u = edge->predecessor;
362 		queue = &u->sk.sk_receive_queue;
363 
364 		spin_lock(&queue->lock);
365 
366 		if (u->sk.sk_state == TCP_LISTEN) {
367 			struct sk_buff *skb;
368 
369 			skb_queue_walk(queue, skb) {
370 				struct sk_buff_head *embryo_queue = &skb->sk->sk_receive_queue;
371 
372 				spin_lock(&embryo_queue->lock);
373 				skb_queue_splice_init(embryo_queue, hitlist);
374 				spin_unlock(&embryo_queue->lock);
375 			}
376 		} else {
377 			skb_queue_splice_init(queue, hitlist);
378 		}
379 
380 		spin_unlock(&queue->lock);
381 	}
382 }
383 
unix_scc_cyclic(struct list_head * scc)384 static bool unix_scc_cyclic(struct list_head *scc)
385 {
386 	struct unix_vertex *vertex;
387 	struct unix_edge *edge;
388 
389 	/* SCC containing multiple vertices ? */
390 	if (!list_is_singular(scc))
391 		return true;
392 
393 	vertex = list_first_entry(scc, typeof(*vertex), scc_entry);
394 
395 	/* Self-reference or a embryo-listener circle ? */
396 	list_for_each_entry(edge, &vertex->edges, vertex_entry) {
397 		if (unix_edge_successor(edge) == vertex)
398 			return true;
399 	}
400 
401 	return false;
402 }
403 
404 static LIST_HEAD(unix_visited_vertices);
405 static unsigned long unix_vertex_grouped_index = UNIX_VERTEX_INDEX_MARK2;
406 
__unix_walk_scc(struct unix_vertex * vertex,unsigned long * last_index,struct sk_buff_head * hitlist)407 static void __unix_walk_scc(struct unix_vertex *vertex, unsigned long *last_index,
408 			    struct sk_buff_head *hitlist)
409 {
410 	LIST_HEAD(vertex_stack);
411 	struct unix_edge *edge;
412 	LIST_HEAD(edge_stack);
413 
414 next_vertex:
415 	/* Push vertex to vertex_stack and mark it as on-stack
416 	 * (index >= UNIX_VERTEX_INDEX_START).
417 	 * The vertex will be popped when finalising SCC later.
418 	 */
419 	list_add(&vertex->scc_entry, &vertex_stack);
420 
421 	vertex->index = *last_index;
422 	vertex->scc_index = *last_index;
423 	(*last_index)++;
424 
425 	/* Explore neighbour vertices (receivers of the current vertex's fd). */
426 	list_for_each_entry(edge, &vertex->edges, vertex_entry) {
427 		struct unix_vertex *next_vertex = unix_edge_successor(edge);
428 
429 		if (!next_vertex)
430 			continue;
431 
432 		if (next_vertex->index == unix_vertex_unvisited_index) {
433 			/* Iterative deepening depth first search
434 			 *
435 			 *   1. Push a forward edge to edge_stack and set
436 			 *      the successor to vertex for the next iteration.
437 			 */
438 			list_add(&edge->stack_entry, &edge_stack);
439 
440 			vertex = next_vertex;
441 			goto next_vertex;
442 
443 			/*   2. Pop the edge directed to the current vertex
444 			 *      and restore the ancestor for backtracking.
445 			 */
446 prev_vertex:
447 			edge = list_first_entry(&edge_stack, typeof(*edge), stack_entry);
448 			list_del_init(&edge->stack_entry);
449 
450 			next_vertex = vertex;
451 			vertex = edge->predecessor->vertex;
452 
453 			/* If the successor has a smaller scc_index, two vertices
454 			 * are in the same SCC, so propagate the smaller scc_index
455 			 * to skip SCC finalisation.
456 			 */
457 			vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index);
458 		} else if (next_vertex->index != unix_vertex_grouped_index) {
459 			/* Loop detected by a back/cross edge.
460 			 *
461 			 * The successor is on vertex_stack, so two vertices are in
462 			 * the same SCC.  If the successor has a smaller *scc_index*,
463 			 * propagate it to skip SCC finalisation.
464 			 */
465 			vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index);
466 		} else {
467 			/* The successor was already grouped as another SCC */
468 		}
469 	}
470 
471 	if (vertex->index == vertex->scc_index) {
472 		struct unix_vertex *v;
473 		struct list_head scc;
474 		bool scc_dead = true;
475 
476 		/* SCC finalised.
477 		 *
478 		 * If the scc_index was not updated, all the vertices above on
479 		 * vertex_stack are in the same SCC.  Group them using scc_entry.
480 		 */
481 		__list_cut_position(&scc, &vertex_stack, &vertex->scc_entry);
482 
483 		list_for_each_entry_reverse(v, &scc, scc_entry) {
484 			/* Don't restart DFS from this vertex in unix_walk_scc(). */
485 			list_move_tail(&v->entry, &unix_visited_vertices);
486 
487 			/* Mark vertex as off-stack. */
488 			v->index = unix_vertex_grouped_index;
489 
490 			if (scc_dead)
491 				scc_dead = unix_vertex_dead(v);
492 		}
493 
494 		if (scc_dead) {
495 			unix_collect_skb(&scc, hitlist);
496 		} else {
497 			if (unix_vertex_max_scc_index < vertex->scc_index)
498 				unix_vertex_max_scc_index = vertex->scc_index;
499 
500 			if (!unix_graph_maybe_cyclic)
501 				unix_graph_maybe_cyclic = unix_scc_cyclic(&scc);
502 		}
503 
504 		list_del(&scc);
505 	}
506 
507 	/* Need backtracking ? */
508 	if (!list_empty(&edge_stack))
509 		goto prev_vertex;
510 }
511 
unix_walk_scc(struct sk_buff_head * hitlist)512 static void unix_walk_scc(struct sk_buff_head *hitlist)
513 {
514 	unsigned long last_index = UNIX_VERTEX_INDEX_START;
515 
516 	unix_graph_maybe_cyclic = false;
517 	unix_vertex_max_scc_index = UNIX_VERTEX_INDEX_START;
518 
519 	/* Visit every vertex exactly once.
520 	 * __unix_walk_scc() moves visited vertices to unix_visited_vertices.
521 	 */
522 	while (!list_empty(&unix_unvisited_vertices)) {
523 		struct unix_vertex *vertex;
524 
525 		vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry);
526 		__unix_walk_scc(vertex, &last_index, hitlist);
527 	}
528 
529 	list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices);
530 	swap(unix_vertex_unvisited_index, unix_vertex_grouped_index);
531 
532 	unix_graph_grouped = true;
533 }
534 
unix_walk_scc_fast(struct sk_buff_head * hitlist)535 static void unix_walk_scc_fast(struct sk_buff_head *hitlist)
536 {
537 	unix_graph_maybe_cyclic = false;
538 
539 	while (!list_empty(&unix_unvisited_vertices)) {
540 		struct unix_vertex *vertex;
541 		struct list_head scc;
542 		bool scc_dead = true;
543 
544 		vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry);
545 		list_add(&scc, &vertex->scc_entry);
546 
547 		list_for_each_entry_reverse(vertex, &scc, scc_entry) {
548 			list_move_tail(&vertex->entry, &unix_visited_vertices);
549 
550 			if (scc_dead)
551 				scc_dead = unix_vertex_dead(vertex);
552 		}
553 
554 		if (scc_dead)
555 			unix_collect_skb(&scc, hitlist);
556 		else if (!unix_graph_maybe_cyclic)
557 			unix_graph_maybe_cyclic = unix_scc_cyclic(&scc);
558 
559 		list_del(&scc);
560 	}
561 
562 	list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices);
563 }
564 
565 static bool gc_in_progress;
566 
__unix_gc(struct work_struct * work)567 static void __unix_gc(struct work_struct *work)
568 {
569 	struct sk_buff_head hitlist;
570 	struct sk_buff *skb;
571 
572 	spin_lock(&unix_gc_lock);
573 
574 	if (!unix_graph_maybe_cyclic) {
575 		spin_unlock(&unix_gc_lock);
576 		goto skip_gc;
577 	}
578 
579 	__skb_queue_head_init(&hitlist);
580 
581 	if (unix_graph_grouped)
582 		unix_walk_scc_fast(&hitlist);
583 	else
584 		unix_walk_scc(&hitlist);
585 
586 	spin_unlock(&unix_gc_lock);
587 
588 	skb_queue_walk(&hitlist, skb) {
589 		if (UNIXCB(skb).fp)
590 			UNIXCB(skb).fp->dead = true;
591 	}
592 
593 	__skb_queue_purge_reason(&hitlist, SKB_DROP_REASON_SOCKET_CLOSE);
594 skip_gc:
595 	WRITE_ONCE(gc_in_progress, false);
596 }
597 
598 static DECLARE_WORK(unix_gc_work, __unix_gc);
599 
unix_gc(void)600 void unix_gc(void)
601 {
602 	WRITE_ONCE(gc_in_progress, true);
603 	queue_work(system_dfl_wq, &unix_gc_work);
604 }
605 
606 #define UNIX_INFLIGHT_TRIGGER_GC 16000
607 #define UNIX_INFLIGHT_SANE_USER (SCM_MAX_FD * 8)
608 
wait_for_unix_gc(struct scm_fp_list * fpl)609 void wait_for_unix_gc(struct scm_fp_list *fpl)
610 {
611 	/* If number of inflight sockets is insane,
612 	 * force a garbage collect right now.
613 	 *
614 	 * Paired with the WRITE_ONCE() in unix_inflight(),
615 	 * unix_notinflight(), and __unix_gc().
616 	 */
617 	if (READ_ONCE(unix_tot_inflight) > UNIX_INFLIGHT_TRIGGER_GC &&
618 	    !READ_ONCE(gc_in_progress))
619 		unix_gc();
620 
621 	/* Penalise users who want to send AF_UNIX sockets
622 	 * but whose sockets have not been received yet.
623 	 */
624 	if (!fpl || !fpl->count_unix ||
625 	    READ_ONCE(fpl->user->unix_inflight) < UNIX_INFLIGHT_SANE_USER)
626 		return;
627 
628 	if (READ_ONCE(gc_in_progress))
629 		flush_work(&unix_gc_work);
630 }
631