1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23 #include "xfs_zone_alloc.h"
24
25 struct kmem_cache *xfs_log_ticket_cache;
26
27 /* Local miscellaneous function prototypes */
28 STATIC struct xlog *
29 xlog_alloc_log(
30 struct xfs_mount *mp,
31 struct xfs_buftarg *log_target,
32 xfs_daddr_t blk_offset,
33 int num_bblks);
34 STATIC void
35 xlog_dealloc_log(
36 struct xlog *log);
37
38 /* local state machine functions */
39 STATIC void xlog_state_done_syncing(
40 struct xlog_in_core *iclog);
41 STATIC void xlog_state_do_callback(
42 struct xlog *log);
43 STATIC int
44 xlog_state_get_iclog_space(
45 struct xlog *log,
46 int len,
47 struct xlog_in_core **iclog,
48 struct xlog_ticket *ticket,
49 int *logoffsetp);
50 STATIC void
51 xlog_sync(
52 struct xlog *log,
53 struct xlog_in_core *iclog,
54 struct xlog_ticket *ticket);
55 #if defined(DEBUG)
56 STATIC void
57 xlog_verify_iclog(
58 struct xlog *log,
59 struct xlog_in_core *iclog,
60 int count);
61 STATIC void
62 xlog_verify_tail_lsn(
63 struct xlog *log,
64 struct xlog_in_core *iclog);
65 #else
66 #define xlog_verify_iclog(a,b,c)
67 #define xlog_verify_tail_lsn(a,b)
68 #endif
69
70 STATIC int
71 xlog_iclogs_empty(
72 struct xlog *log);
73
74 static int
75 xfs_log_cover(struct xfs_mount *);
76
77 /*
78 * We need to make sure the buffer pointer returned is naturally aligned for the
79 * biggest basic data type we put into it. We have already accounted for this
80 * padding when sizing the buffer.
81 *
82 * However, this padding does not get written into the log, and hence we have to
83 * track the space used by the log vectors separately to prevent log space hangs
84 * due to inaccurate accounting (i.e. a leak) of the used log space through the
85 * CIL context ticket.
86 *
87 * We also add space for the xlog_op_header that describes this region in the
88 * log. This prepends the data region we return to the caller to copy their data
89 * into, so do all the static initialisation of the ophdr now. Because the ophdr
90 * is not 8 byte aligned, we have to be careful to ensure that we align the
91 * start of the buffer such that the region we return to the call is 8 byte
92 * aligned and packed against the tail of the ophdr.
93 */
94 void *
xlog_prepare_iovec(struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp,uint type)95 xlog_prepare_iovec(
96 struct xfs_log_vec *lv,
97 struct xfs_log_iovec **vecp,
98 uint type)
99 {
100 struct xfs_log_iovec *vec = *vecp;
101 struct xlog_op_header *oph;
102 uint32_t len;
103 void *buf;
104
105 if (vec) {
106 ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs);
107 vec++;
108 } else {
109 vec = &lv->lv_iovecp[0];
110 }
111
112 len = lv->lv_buf_len + sizeof(struct xlog_op_header);
113 if (!IS_ALIGNED(len, sizeof(uint64_t))) {
114 lv->lv_buf_len = round_up(len, sizeof(uint64_t)) -
115 sizeof(struct xlog_op_header);
116 }
117
118 vec->i_type = type;
119 vec->i_addr = lv->lv_buf + lv->lv_buf_len;
120
121 oph = vec->i_addr;
122 oph->oh_clientid = XFS_TRANSACTION;
123 oph->oh_res2 = 0;
124 oph->oh_flags = 0;
125
126 buf = vec->i_addr + sizeof(struct xlog_op_header);
127 ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t)));
128
129 *vecp = vec;
130 return buf;
131 }
132
133 static inline void
xlog_grant_sub_space(struct xlog_grant_head * head,int64_t bytes)134 xlog_grant_sub_space(
135 struct xlog_grant_head *head,
136 int64_t bytes)
137 {
138 atomic64_sub(bytes, &head->grant);
139 }
140
141 static inline void
xlog_grant_add_space(struct xlog_grant_head * head,int64_t bytes)142 xlog_grant_add_space(
143 struct xlog_grant_head *head,
144 int64_t bytes)
145 {
146 atomic64_add(bytes, &head->grant);
147 }
148
149 static void
xlog_grant_head_init(struct xlog_grant_head * head)150 xlog_grant_head_init(
151 struct xlog_grant_head *head)
152 {
153 atomic64_set(&head->grant, 0);
154 INIT_LIST_HEAD(&head->waiters);
155 spin_lock_init(&head->lock);
156 }
157
158 void
xlog_grant_return_space(struct xlog * log,xfs_lsn_t old_head,xfs_lsn_t new_head)159 xlog_grant_return_space(
160 struct xlog *log,
161 xfs_lsn_t old_head,
162 xfs_lsn_t new_head)
163 {
164 int64_t diff = xlog_lsn_sub(log, new_head, old_head);
165
166 xlog_grant_sub_space(&log->l_reserve_head, diff);
167 xlog_grant_sub_space(&log->l_write_head, diff);
168 }
169
170 /*
171 * Return the space in the log between the tail and the head. In the case where
172 * we have overrun available reservation space, return 0. The memory barrier
173 * pairs with the smp_wmb() in xlog_cil_ail_insert() to ensure that grant head
174 * vs tail space updates are seen in the correct order and hence avoid
175 * transients as space is transferred from the grant heads to the AIL on commit
176 * completion.
177 */
178 static uint64_t
xlog_grant_space_left(struct xlog * log,struct xlog_grant_head * head)179 xlog_grant_space_left(
180 struct xlog *log,
181 struct xlog_grant_head *head)
182 {
183 int64_t free_bytes;
184
185 smp_rmb(); /* paired with smp_wmb in xlog_cil_ail_insert() */
186 free_bytes = log->l_logsize - READ_ONCE(log->l_tail_space) -
187 atomic64_read(&head->grant);
188 if (free_bytes > 0)
189 return free_bytes;
190 return 0;
191 }
192
193 STATIC void
xlog_grant_head_wake_all(struct xlog_grant_head * head)194 xlog_grant_head_wake_all(
195 struct xlog_grant_head *head)
196 {
197 struct xlog_ticket *tic;
198
199 spin_lock(&head->lock);
200 list_for_each_entry(tic, &head->waiters, t_queue)
201 wake_up_process(tic->t_task);
202 spin_unlock(&head->lock);
203 }
204
205 static inline int
xlog_ticket_reservation(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic)206 xlog_ticket_reservation(
207 struct xlog *log,
208 struct xlog_grant_head *head,
209 struct xlog_ticket *tic)
210 {
211 if (head == &log->l_write_head) {
212 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
213 return tic->t_unit_res;
214 }
215
216 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
217 return tic->t_unit_res * tic->t_cnt;
218
219 return tic->t_unit_res;
220 }
221
222 STATIC bool
xlog_grant_head_wake(struct xlog * log,struct xlog_grant_head * head,int * free_bytes)223 xlog_grant_head_wake(
224 struct xlog *log,
225 struct xlog_grant_head *head,
226 int *free_bytes)
227 {
228 struct xlog_ticket *tic;
229 int need_bytes;
230
231 list_for_each_entry(tic, &head->waiters, t_queue) {
232 need_bytes = xlog_ticket_reservation(log, head, tic);
233 if (*free_bytes < need_bytes)
234 return false;
235
236 *free_bytes -= need_bytes;
237 trace_xfs_log_grant_wake_up(log, tic);
238 wake_up_process(tic->t_task);
239 }
240
241 return true;
242 }
243
244 STATIC int
xlog_grant_head_wait(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int need_bytes)245 xlog_grant_head_wait(
246 struct xlog *log,
247 struct xlog_grant_head *head,
248 struct xlog_ticket *tic,
249 int need_bytes) __releases(&head->lock)
250 __acquires(&head->lock)
251 {
252 list_add_tail(&tic->t_queue, &head->waiters);
253
254 do {
255 if (xlog_is_shutdown(log))
256 goto shutdown;
257
258 __set_current_state(TASK_UNINTERRUPTIBLE);
259 spin_unlock(&head->lock);
260
261 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
262
263 /* Push on the AIL to free up all the log space. */
264 xfs_ail_push_all(log->l_ailp);
265
266 trace_xfs_log_grant_sleep(log, tic);
267 schedule();
268 trace_xfs_log_grant_wake(log, tic);
269
270 spin_lock(&head->lock);
271 if (xlog_is_shutdown(log))
272 goto shutdown;
273 } while (xlog_grant_space_left(log, head) < need_bytes);
274
275 list_del_init(&tic->t_queue);
276 return 0;
277 shutdown:
278 list_del_init(&tic->t_queue);
279 return -EIO;
280 }
281
282 /*
283 * Atomically get the log space required for a log ticket.
284 *
285 * Once a ticket gets put onto head->waiters, it will only return after the
286 * needed reservation is satisfied.
287 *
288 * This function is structured so that it has a lock free fast path. This is
289 * necessary because every new transaction reservation will come through this
290 * path. Hence any lock will be globally hot if we take it unconditionally on
291 * every pass.
292 *
293 * As tickets are only ever moved on and off head->waiters under head->lock, we
294 * only need to take that lock if we are going to add the ticket to the queue
295 * and sleep. We can avoid taking the lock if the ticket was never added to
296 * head->waiters because the t_queue list head will be empty and we hold the
297 * only reference to it so it can safely be checked unlocked.
298 */
299 STATIC int
xlog_grant_head_check(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int * need_bytes)300 xlog_grant_head_check(
301 struct xlog *log,
302 struct xlog_grant_head *head,
303 struct xlog_ticket *tic,
304 int *need_bytes)
305 {
306 int free_bytes;
307 int error = 0;
308
309 ASSERT(!xlog_in_recovery(log));
310
311 /*
312 * If there are other waiters on the queue then give them a chance at
313 * logspace before us. Wake up the first waiters, if we do not wake
314 * up all the waiters then go to sleep waiting for more free space,
315 * otherwise try to get some space for this transaction.
316 */
317 *need_bytes = xlog_ticket_reservation(log, head, tic);
318 free_bytes = xlog_grant_space_left(log, head);
319 if (!list_empty_careful(&head->waiters)) {
320 spin_lock(&head->lock);
321 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
322 free_bytes < *need_bytes) {
323 error = xlog_grant_head_wait(log, head, tic,
324 *need_bytes);
325 }
326 spin_unlock(&head->lock);
327 } else if (free_bytes < *need_bytes) {
328 spin_lock(&head->lock);
329 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
330 spin_unlock(&head->lock);
331 }
332
333 return error;
334 }
335
336 bool
xfs_log_writable(struct xfs_mount * mp)337 xfs_log_writable(
338 struct xfs_mount *mp)
339 {
340 /*
341 * Do not write to the log on norecovery mounts, if the data or log
342 * devices are read-only, or if the filesystem is shutdown. Read-only
343 * mounts allow internal writes for log recovery and unmount purposes,
344 * so don't restrict that case.
345 */
346 if (xfs_has_norecovery(mp))
347 return false;
348 if (xfs_readonly_buftarg(mp->m_ddev_targp))
349 return false;
350 if (xfs_readonly_buftarg(mp->m_log->l_targ))
351 return false;
352 if (xlog_is_shutdown(mp->m_log))
353 return false;
354 return true;
355 }
356
357 /*
358 * Replenish the byte reservation required by moving the grant write head.
359 */
360 int
xfs_log_regrant(struct xfs_mount * mp,struct xlog_ticket * tic)361 xfs_log_regrant(
362 struct xfs_mount *mp,
363 struct xlog_ticket *tic)
364 {
365 struct xlog *log = mp->m_log;
366 int need_bytes;
367 int error = 0;
368
369 if (xlog_is_shutdown(log))
370 return -EIO;
371
372 XFS_STATS_INC(mp, xs_try_logspace);
373
374 /*
375 * This is a new transaction on the ticket, so we need to change the
376 * transaction ID so that the next transaction has a different TID in
377 * the log. Just add one to the existing tid so that we can see chains
378 * of rolling transactions in the log easily.
379 */
380 tic->t_tid++;
381 tic->t_curr_res = tic->t_unit_res;
382 if (tic->t_cnt > 0)
383 return 0;
384
385 trace_xfs_log_regrant(log, tic);
386
387 error = xlog_grant_head_check(log, &log->l_write_head, tic,
388 &need_bytes);
389 if (error)
390 goto out_error;
391
392 xlog_grant_add_space(&log->l_write_head, need_bytes);
393 trace_xfs_log_regrant_exit(log, tic);
394 return 0;
395
396 out_error:
397 /*
398 * If we are failing, make sure the ticket doesn't have any current
399 * reservations. We don't want to add this back when the ticket/
400 * transaction gets cancelled.
401 */
402 tic->t_curr_res = 0;
403 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
404 return error;
405 }
406
407 /*
408 * Reserve log space and return a ticket corresponding to the reservation.
409 *
410 * Each reservation is going to reserve extra space for a log record header.
411 * When writes happen to the on-disk log, we don't subtract the length of the
412 * log record header from any reservation. By wasting space in each
413 * reservation, we prevent over allocation problems.
414 */
415 int
xfs_log_reserve(struct xfs_mount * mp,int unit_bytes,int cnt,struct xlog_ticket ** ticp,bool permanent)416 xfs_log_reserve(
417 struct xfs_mount *mp,
418 int unit_bytes,
419 int cnt,
420 struct xlog_ticket **ticp,
421 bool permanent)
422 {
423 struct xlog *log = mp->m_log;
424 struct xlog_ticket *tic;
425 int need_bytes;
426 int error = 0;
427
428 if (xlog_is_shutdown(log))
429 return -EIO;
430
431 XFS_STATS_INC(mp, xs_try_logspace);
432
433 ASSERT(*ticp == NULL);
434 tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent);
435 *ticp = tic;
436 trace_xfs_log_reserve(log, tic);
437 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
438 &need_bytes);
439 if (error)
440 goto out_error;
441
442 xlog_grant_add_space(&log->l_reserve_head, need_bytes);
443 xlog_grant_add_space(&log->l_write_head, need_bytes);
444 trace_xfs_log_reserve_exit(log, tic);
445 return 0;
446
447 out_error:
448 /*
449 * If we are failing, make sure the ticket doesn't have any current
450 * reservations. We don't want to add this back when the ticket/
451 * transaction gets cancelled.
452 */
453 tic->t_curr_res = 0;
454 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
455 return error;
456 }
457
458 /*
459 * Run all the pending iclog callbacks and wake log force waiters and iclog
460 * space waiters so they can process the newly set shutdown state. We really
461 * don't care what order we process callbacks here because the log is shut down
462 * and so state cannot change on disk anymore. However, we cannot wake waiters
463 * until the callbacks have been processed because we may be in unmount and
464 * we must ensure that all AIL operations the callbacks perform have completed
465 * before we tear down the AIL.
466 *
467 * We avoid processing actively referenced iclogs so that we don't run callbacks
468 * while the iclog owner might still be preparing the iclog for IO submssion.
469 * These will be caught by xlog_state_iclog_release() and call this function
470 * again to process any callbacks that may have been added to that iclog.
471 */
472 static void
xlog_state_shutdown_callbacks(struct xlog * log)473 xlog_state_shutdown_callbacks(
474 struct xlog *log)
475 {
476 struct xlog_in_core *iclog;
477 LIST_HEAD(cb_list);
478
479 iclog = log->l_iclog;
480 do {
481 if (atomic_read(&iclog->ic_refcnt)) {
482 /* Reference holder will re-run iclog callbacks. */
483 continue;
484 }
485 list_splice_init(&iclog->ic_callbacks, &cb_list);
486 spin_unlock(&log->l_icloglock);
487
488 xlog_cil_process_committed(&cb_list);
489
490 spin_lock(&log->l_icloglock);
491 wake_up_all(&iclog->ic_write_wait);
492 wake_up_all(&iclog->ic_force_wait);
493 } while ((iclog = iclog->ic_next) != log->l_iclog);
494
495 wake_up_all(&log->l_flush_wait);
496 }
497
498 /*
499 * Flush iclog to disk if this is the last reference to the given iclog and the
500 * it is in the WANT_SYNC state.
501 *
502 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
503 * log tail is updated correctly. NEED_FUA indicates that the iclog will be
504 * written to stable storage, and implies that a commit record is contained
505 * within the iclog. We need to ensure that the log tail does not move beyond
506 * the tail that the first commit record in the iclog ordered against, otherwise
507 * correct recovery of that checkpoint becomes dependent on future operations
508 * performed on this iclog.
509 *
510 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
511 * current tail into iclog. Once the iclog tail is set, future operations must
512 * not modify it, otherwise they potentially violate ordering constraints for
513 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
514 * the iclog will get zeroed on activation of the iclog after sync, so we
515 * always capture the tail lsn on the iclog on the first NEED_FUA release
516 * regardless of the number of active reference counts on this iclog.
517 */
518 int
xlog_state_release_iclog(struct xlog * log,struct xlog_in_core * iclog,struct xlog_ticket * ticket)519 xlog_state_release_iclog(
520 struct xlog *log,
521 struct xlog_in_core *iclog,
522 struct xlog_ticket *ticket)
523 {
524 bool last_ref;
525
526 lockdep_assert_held(&log->l_icloglock);
527
528 trace_xlog_iclog_release(iclog, _RET_IP_);
529 /*
530 * Grabbing the current log tail needs to be atomic w.r.t. the writing
531 * of the tail LSN into the iclog so we guarantee that the log tail does
532 * not move between the first time we know that the iclog needs to be
533 * made stable and when we eventually submit it.
534 */
535 if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
536 (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
537 !iclog->ic_header.h_tail_lsn) {
538 iclog->ic_header.h_tail_lsn =
539 cpu_to_be64(atomic64_read(&log->l_tail_lsn));
540 }
541
542 last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
543
544 if (xlog_is_shutdown(log)) {
545 /*
546 * If there are no more references to this iclog, process the
547 * pending iclog callbacks that were waiting on the release of
548 * this iclog.
549 */
550 if (last_ref)
551 xlog_state_shutdown_callbacks(log);
552 return -EIO;
553 }
554
555 if (!last_ref)
556 return 0;
557
558 if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
559 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
560 return 0;
561 }
562
563 iclog->ic_state = XLOG_STATE_SYNCING;
564 xlog_verify_tail_lsn(log, iclog);
565 trace_xlog_iclog_syncing(iclog, _RET_IP_);
566
567 spin_unlock(&log->l_icloglock);
568 xlog_sync(log, iclog, ticket);
569 spin_lock(&log->l_icloglock);
570 return 0;
571 }
572
573 /*
574 * Mount a log filesystem
575 *
576 * mp - ubiquitous xfs mount point structure
577 * log_target - buftarg of on-disk log device
578 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
579 * num_bblocks - Number of BBSIZE blocks in on-disk log
580 *
581 * Return error or zero.
582 */
583 int
xfs_log_mount(xfs_mount_t * mp,struct xfs_buftarg * log_target,xfs_daddr_t blk_offset,int num_bblks)584 xfs_log_mount(
585 xfs_mount_t *mp,
586 struct xfs_buftarg *log_target,
587 xfs_daddr_t blk_offset,
588 int num_bblks)
589 {
590 struct xlog *log;
591 int error = 0;
592 int min_logfsbs;
593
594 if (!xfs_has_norecovery(mp)) {
595 xfs_notice(mp, "Mounting V%d Filesystem %pU",
596 XFS_SB_VERSION_NUM(&mp->m_sb),
597 &mp->m_sb.sb_uuid);
598 } else {
599 xfs_notice(mp,
600 "Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.",
601 XFS_SB_VERSION_NUM(&mp->m_sb),
602 &mp->m_sb.sb_uuid);
603 ASSERT(xfs_is_readonly(mp));
604 }
605
606 log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
607 if (IS_ERR(log)) {
608 error = PTR_ERR(log);
609 goto out;
610 }
611 mp->m_log = log;
612
613 /*
614 * Now that we have set up the log and it's internal geometry
615 * parameters, we can validate the given log space and drop a critical
616 * message via syslog if the log size is too small. A log that is too
617 * small can lead to unexpected situations in transaction log space
618 * reservation stage. The superblock verifier has already validated all
619 * the other log geometry constraints, so we don't have to check those
620 * here.
621 *
622 * Note: For v4 filesystems, we can't just reject the mount if the
623 * validation fails. This would mean that people would have to
624 * downgrade their kernel just to remedy the situation as there is no
625 * way to grow the log (short of black magic surgery with xfs_db).
626 *
627 * We can, however, reject mounts for V5 format filesystems, as the
628 * mkfs binary being used to make the filesystem should never create a
629 * filesystem with a log that is too small.
630 */
631 min_logfsbs = xfs_log_calc_minimum_size(mp);
632 if (mp->m_sb.sb_logblocks < min_logfsbs) {
633 xfs_warn(mp,
634 "Log size %d blocks too small, minimum size is %d blocks",
635 mp->m_sb.sb_logblocks, min_logfsbs);
636
637 /*
638 * Log check errors are always fatal on v5; or whenever bad
639 * metadata leads to a crash.
640 */
641 if (xfs_has_crc(mp)) {
642 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
643 ASSERT(0);
644 error = -EINVAL;
645 goto out_free_log;
646 }
647 xfs_crit(mp, "Log size out of supported range.");
648 xfs_crit(mp,
649 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
650 }
651
652 /*
653 * Initialize the AIL now we have a log.
654 */
655 error = xfs_trans_ail_init(mp);
656 if (error) {
657 xfs_warn(mp, "AIL initialisation failed: error %d", error);
658 goto out_free_log;
659 }
660 log->l_ailp = mp->m_ail;
661
662 /*
663 * skip log recovery on a norecovery mount. pretend it all
664 * just worked.
665 */
666 if (!xfs_has_norecovery(mp)) {
667 error = xlog_recover(log);
668 if (error) {
669 xfs_warn(mp, "log mount/recovery failed: error %d",
670 error);
671 xlog_recover_cancel(log);
672 goto out_destroy_ail;
673 }
674 }
675
676 error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
677 "log");
678 if (error)
679 goto out_destroy_ail;
680
681 /* Normal transactions can now occur */
682 clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
683
684 /*
685 * Now the log has been fully initialised and we know were our
686 * space grant counters are, we can initialise the permanent ticket
687 * needed for delayed logging to work.
688 */
689 xlog_cil_init_post_recovery(log);
690
691 return 0;
692
693 out_destroy_ail:
694 xfs_trans_ail_destroy(mp);
695 out_free_log:
696 xlog_dealloc_log(log);
697 out:
698 return error;
699 }
700
701 /*
702 * Finish the recovery of the file system. This is separate from the
703 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
704 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
705 * here.
706 *
707 * If we finish recovery successfully, start the background log work. If we are
708 * not doing recovery, then we have a RO filesystem and we don't need to start
709 * it.
710 */
711 int
xfs_log_mount_finish(struct xfs_mount * mp)712 xfs_log_mount_finish(
713 struct xfs_mount *mp)
714 {
715 struct xlog *log = mp->m_log;
716 int error = 0;
717
718 if (xfs_has_norecovery(mp)) {
719 ASSERT(xfs_is_readonly(mp));
720 return 0;
721 }
722
723 /*
724 * During the second phase of log recovery, we need iget and
725 * iput to behave like they do for an active filesystem.
726 * xfs_fs_drop_inode needs to be able to prevent the deletion
727 * of inodes before we're done replaying log items on those
728 * inodes. Turn it off immediately after recovery finishes
729 * so that we don't leak the quota inodes if subsequent mount
730 * activities fail.
731 *
732 * We let all inodes involved in redo item processing end up on
733 * the LRU instead of being evicted immediately so that if we do
734 * something to an unlinked inode, the irele won't cause
735 * premature truncation and freeing of the inode, which results
736 * in log recovery failure. We have to evict the unreferenced
737 * lru inodes after clearing SB_ACTIVE because we don't
738 * otherwise clean up the lru if there's a subsequent failure in
739 * xfs_mountfs, which leads to us leaking the inodes if nothing
740 * else (e.g. quotacheck) references the inodes before the
741 * mount failure occurs.
742 */
743 mp->m_super->s_flags |= SB_ACTIVE;
744 xfs_log_work_queue(mp);
745 if (xlog_recovery_needed(log))
746 error = xlog_recover_finish(log);
747 mp->m_super->s_flags &= ~SB_ACTIVE;
748 evict_inodes(mp->m_super);
749
750 /*
751 * Drain the buffer LRU after log recovery. This is required for v4
752 * filesystems to avoid leaving around buffers with NULL verifier ops,
753 * but we do it unconditionally to make sure we're always in a clean
754 * cache state after mount.
755 *
756 * Don't push in the error case because the AIL may have pending intents
757 * that aren't removed until recovery is cancelled.
758 */
759 if (xlog_recovery_needed(log)) {
760 if (!error) {
761 xfs_log_force(mp, XFS_LOG_SYNC);
762 xfs_ail_push_all_sync(mp->m_ail);
763 }
764 xfs_notice(mp, "Ending recovery (logdev: %s)",
765 mp->m_logname ? mp->m_logname : "internal");
766 } else {
767 xfs_info(mp, "Ending clean mount");
768 }
769 xfs_buftarg_drain(mp->m_ddev_targp);
770
771 clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
772
773 /* Make sure the log is dead if we're returning failure. */
774 ASSERT(!error || xlog_is_shutdown(log));
775
776 return error;
777 }
778
779 /*
780 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
781 * the log.
782 */
783 void
xfs_log_mount_cancel(struct xfs_mount * mp)784 xfs_log_mount_cancel(
785 struct xfs_mount *mp)
786 {
787 xlog_recover_cancel(mp->m_log);
788 xfs_log_unmount(mp);
789 }
790
791 /*
792 * Flush out the iclog to disk ensuring that device caches are flushed and
793 * the iclog hits stable storage before any completion waiters are woken.
794 */
795 static inline int
xlog_force_iclog(struct xlog_in_core * iclog)796 xlog_force_iclog(
797 struct xlog_in_core *iclog)
798 {
799 atomic_inc(&iclog->ic_refcnt);
800 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
801 if (iclog->ic_state == XLOG_STATE_ACTIVE)
802 xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
803 return xlog_state_release_iclog(iclog->ic_log, iclog, NULL);
804 }
805
806 /*
807 * Cycle all the iclogbuf locks to make sure all log IO completion
808 * is done before we tear down these buffers.
809 */
810 static void
xlog_wait_iclog_completion(struct xlog * log)811 xlog_wait_iclog_completion(struct xlog *log)
812 {
813 int i;
814 struct xlog_in_core *iclog = log->l_iclog;
815
816 for (i = 0; i < log->l_iclog_bufs; i++) {
817 down(&iclog->ic_sema);
818 up(&iclog->ic_sema);
819 iclog = iclog->ic_next;
820 }
821 }
822
823 /*
824 * Wait for the iclog and all prior iclogs to be written disk as required by the
825 * log force state machine. Waiting on ic_force_wait ensures iclog completions
826 * have been ordered and callbacks run before we are woken here, hence
827 * guaranteeing that all the iclogs up to this one are on stable storage.
828 */
829 int
xlog_wait_on_iclog(struct xlog_in_core * iclog)830 xlog_wait_on_iclog(
831 struct xlog_in_core *iclog)
832 __releases(iclog->ic_log->l_icloglock)
833 {
834 struct xlog *log = iclog->ic_log;
835
836 trace_xlog_iclog_wait_on(iclog, _RET_IP_);
837 if (!xlog_is_shutdown(log) &&
838 iclog->ic_state != XLOG_STATE_ACTIVE &&
839 iclog->ic_state != XLOG_STATE_DIRTY) {
840 XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
841 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
842 } else {
843 spin_unlock(&log->l_icloglock);
844 }
845
846 if (xlog_is_shutdown(log))
847 return -EIO;
848 return 0;
849 }
850
851 /*
852 * Write out an unmount record using the ticket provided. We have to account for
853 * the data space used in the unmount ticket as this write is not done from a
854 * transaction context that has already done the accounting for us.
855 */
856 static int
xlog_write_unmount_record(struct xlog * log,struct xlog_ticket * ticket)857 xlog_write_unmount_record(
858 struct xlog *log,
859 struct xlog_ticket *ticket)
860 {
861 struct {
862 struct xlog_op_header ophdr;
863 struct xfs_unmount_log_format ulf;
864 } unmount_rec = {
865 .ophdr = {
866 .oh_clientid = XFS_LOG,
867 .oh_tid = cpu_to_be32(ticket->t_tid),
868 .oh_flags = XLOG_UNMOUNT_TRANS,
869 },
870 .ulf = {
871 .magic = XLOG_UNMOUNT_TYPE,
872 },
873 };
874 struct xfs_log_iovec reg = {
875 .i_addr = &unmount_rec,
876 .i_len = sizeof(unmount_rec),
877 .i_type = XLOG_REG_TYPE_UNMOUNT,
878 };
879 struct xfs_log_vec vec = {
880 .lv_niovecs = 1,
881 .lv_iovecp = ®,
882 };
883 LIST_HEAD(lv_chain);
884 list_add(&vec.lv_list, &lv_chain);
885
886 BUILD_BUG_ON((sizeof(struct xlog_op_header) +
887 sizeof(struct xfs_unmount_log_format)) !=
888 sizeof(unmount_rec));
889
890 /* account for space used by record data */
891 ticket->t_curr_res -= sizeof(unmount_rec);
892
893 return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len);
894 }
895
896 /*
897 * Mark the filesystem clean by writing an unmount record to the head of the
898 * log.
899 */
900 static void
xlog_unmount_write(struct xlog * log)901 xlog_unmount_write(
902 struct xlog *log)
903 {
904 struct xfs_mount *mp = log->l_mp;
905 struct xlog_in_core *iclog;
906 struct xlog_ticket *tic = NULL;
907 int error;
908
909 error = xfs_log_reserve(mp, 600, 1, &tic, 0);
910 if (error)
911 goto out_err;
912
913 error = xlog_write_unmount_record(log, tic);
914 /*
915 * At this point, we're umounting anyway, so there's no point in
916 * transitioning log state to shutdown. Just continue...
917 */
918 out_err:
919 if (error)
920 xfs_alert(mp, "%s: unmount record failed", __func__);
921
922 spin_lock(&log->l_icloglock);
923 iclog = log->l_iclog;
924 error = xlog_force_iclog(iclog);
925 xlog_wait_on_iclog(iclog);
926
927 if (tic) {
928 trace_xfs_log_umount_write(log, tic);
929 xfs_log_ticket_ungrant(log, tic);
930 }
931 }
932
933 static void
xfs_log_unmount_verify_iclog(struct xlog * log)934 xfs_log_unmount_verify_iclog(
935 struct xlog *log)
936 {
937 struct xlog_in_core *iclog = log->l_iclog;
938
939 do {
940 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
941 ASSERT(iclog->ic_offset == 0);
942 } while ((iclog = iclog->ic_next) != log->l_iclog);
943 }
944
945 /*
946 * Unmount record used to have a string "Unmount filesystem--" in the
947 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
948 * We just write the magic number now since that particular field isn't
949 * currently architecture converted and "Unmount" is a bit foo.
950 * As far as I know, there weren't any dependencies on the old behaviour.
951 */
952 static void
xfs_log_unmount_write(struct xfs_mount * mp)953 xfs_log_unmount_write(
954 struct xfs_mount *mp)
955 {
956 struct xlog *log = mp->m_log;
957
958 if (!xfs_log_writable(mp))
959 return;
960
961 xfs_log_force(mp, XFS_LOG_SYNC);
962
963 if (xlog_is_shutdown(log))
964 return;
965
966 /*
967 * If we think the summary counters are bad, avoid writing the unmount
968 * record to force log recovery at next mount, after which the summary
969 * counters will be recalculated. Refer to xlog_check_unmount_rec for
970 * more details.
971 */
972 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
973 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
974 xfs_alert(mp, "%s: will fix summary counters at next mount",
975 __func__);
976 return;
977 }
978
979 xfs_log_unmount_verify_iclog(log);
980 xlog_unmount_write(log);
981 }
982
983 /*
984 * Empty the log for unmount/freeze.
985 *
986 * To do this, we first need to shut down the background log work so it is not
987 * trying to cover the log as we clean up. We then need to unpin all objects in
988 * the log so we can then flush them out. Once they have completed their IO and
989 * run the callbacks removing themselves from the AIL, we can cover the log.
990 */
991 int
xfs_log_quiesce(struct xfs_mount * mp)992 xfs_log_quiesce(
993 struct xfs_mount *mp)
994 {
995 /*
996 * Clear log incompat features since we're quiescing the log. Report
997 * failures, though it's not fatal to have a higher log feature
998 * protection level than the log contents actually require.
999 */
1000 if (xfs_clear_incompat_log_features(mp)) {
1001 int error;
1002
1003 error = xfs_sync_sb(mp, false);
1004 if (error)
1005 xfs_warn(mp,
1006 "Failed to clear log incompat features on quiesce");
1007 }
1008
1009 cancel_delayed_work_sync(&mp->m_log->l_work);
1010 xfs_log_force(mp, XFS_LOG_SYNC);
1011
1012 /*
1013 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1014 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1015 * xfs_buf_iowait() cannot be used because it was pushed with the
1016 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1017 * the IO to complete.
1018 */
1019 xfs_ail_push_all_sync(mp->m_ail);
1020 xfs_buftarg_wait(mp->m_ddev_targp);
1021 xfs_buf_lock(mp->m_sb_bp);
1022 xfs_buf_unlock(mp->m_sb_bp);
1023
1024 return xfs_log_cover(mp);
1025 }
1026
1027 void
xfs_log_clean(struct xfs_mount * mp)1028 xfs_log_clean(
1029 struct xfs_mount *mp)
1030 {
1031 xfs_log_quiesce(mp);
1032 xfs_log_unmount_write(mp);
1033 }
1034
1035 /*
1036 * Shut down and release the AIL and Log.
1037 *
1038 * During unmount, we need to ensure we flush all the dirty metadata objects
1039 * from the AIL so that the log is empty before we write the unmount record to
1040 * the log. Once this is done, we can tear down the AIL and the log.
1041 */
1042 void
xfs_log_unmount(struct xfs_mount * mp)1043 xfs_log_unmount(
1044 struct xfs_mount *mp)
1045 {
1046 xfs_log_clean(mp);
1047
1048 /*
1049 * If shutdown has come from iclog IO context, the log
1050 * cleaning will have been skipped and so we need to wait
1051 * for the iclog to complete shutdown processing before we
1052 * tear anything down.
1053 */
1054 xlog_wait_iclog_completion(mp->m_log);
1055
1056 xfs_buftarg_drain(mp->m_ddev_targp);
1057
1058 xfs_trans_ail_destroy(mp);
1059
1060 xfs_sysfs_del(&mp->m_log->l_kobj);
1061
1062 xlog_dealloc_log(mp->m_log);
1063 }
1064
1065 void
xfs_log_item_init(struct xfs_mount * mp,struct xfs_log_item * item,int type,const struct xfs_item_ops * ops)1066 xfs_log_item_init(
1067 struct xfs_mount *mp,
1068 struct xfs_log_item *item,
1069 int type,
1070 const struct xfs_item_ops *ops)
1071 {
1072 item->li_log = mp->m_log;
1073 item->li_ailp = mp->m_ail;
1074 item->li_type = type;
1075 item->li_ops = ops;
1076 item->li_lv = NULL;
1077
1078 INIT_LIST_HEAD(&item->li_ail);
1079 INIT_LIST_HEAD(&item->li_cil);
1080 INIT_LIST_HEAD(&item->li_bio_list);
1081 INIT_LIST_HEAD(&item->li_trans);
1082 }
1083
1084 /*
1085 * Wake up processes waiting for log space after we have moved the log tail.
1086 */
1087 void
xfs_log_space_wake(struct xfs_mount * mp)1088 xfs_log_space_wake(
1089 struct xfs_mount *mp)
1090 {
1091 struct xlog *log = mp->m_log;
1092 int free_bytes;
1093
1094 if (xlog_is_shutdown(log))
1095 return;
1096
1097 if (!list_empty_careful(&log->l_write_head.waiters)) {
1098 ASSERT(!xlog_in_recovery(log));
1099
1100 spin_lock(&log->l_write_head.lock);
1101 free_bytes = xlog_grant_space_left(log, &log->l_write_head);
1102 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1103 spin_unlock(&log->l_write_head.lock);
1104 }
1105
1106 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1107 ASSERT(!xlog_in_recovery(log));
1108
1109 spin_lock(&log->l_reserve_head.lock);
1110 free_bytes = xlog_grant_space_left(log, &log->l_reserve_head);
1111 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1112 spin_unlock(&log->l_reserve_head.lock);
1113 }
1114 }
1115
1116 /*
1117 * Determine if we have a transaction that has gone to disk that needs to be
1118 * covered. To begin the transition to the idle state firstly the log needs to
1119 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1120 * we start attempting to cover the log.
1121 *
1122 * Only if we are then in a state where covering is needed, the caller is
1123 * informed that dummy transactions are required to move the log into the idle
1124 * state.
1125 *
1126 * If there are any items in the AIl or CIL, then we do not want to attempt to
1127 * cover the log as we may be in a situation where there isn't log space
1128 * available to run a dummy transaction and this can lead to deadlocks when the
1129 * tail of the log is pinned by an item that is modified in the CIL. Hence
1130 * there's no point in running a dummy transaction at this point because we
1131 * can't start trying to idle the log until both the CIL and AIL are empty.
1132 */
1133 static bool
xfs_log_need_covered(struct xfs_mount * mp)1134 xfs_log_need_covered(
1135 struct xfs_mount *mp)
1136 {
1137 struct xlog *log = mp->m_log;
1138 bool needed = false;
1139
1140 if (!xlog_cil_empty(log))
1141 return false;
1142
1143 spin_lock(&log->l_icloglock);
1144 switch (log->l_covered_state) {
1145 case XLOG_STATE_COVER_DONE:
1146 case XLOG_STATE_COVER_DONE2:
1147 case XLOG_STATE_COVER_IDLE:
1148 break;
1149 case XLOG_STATE_COVER_NEED:
1150 case XLOG_STATE_COVER_NEED2:
1151 if (xfs_ail_min_lsn(log->l_ailp))
1152 break;
1153 if (!xlog_iclogs_empty(log))
1154 break;
1155
1156 needed = true;
1157 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1158 log->l_covered_state = XLOG_STATE_COVER_DONE;
1159 else
1160 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1161 break;
1162 default:
1163 needed = true;
1164 break;
1165 }
1166 spin_unlock(&log->l_icloglock);
1167 return needed;
1168 }
1169
1170 /*
1171 * Explicitly cover the log. This is similar to background log covering but
1172 * intended for usage in quiesce codepaths. The caller is responsible to ensure
1173 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1174 * must all be empty.
1175 */
1176 static int
xfs_log_cover(struct xfs_mount * mp)1177 xfs_log_cover(
1178 struct xfs_mount *mp)
1179 {
1180 int error = 0;
1181 bool need_covered;
1182
1183 ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1184 !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1185 xlog_is_shutdown(mp->m_log));
1186
1187 if (!xfs_log_writable(mp))
1188 return 0;
1189
1190 /*
1191 * xfs_log_need_covered() is not idempotent because it progresses the
1192 * state machine if the log requires covering. Therefore, we must call
1193 * this function once and use the result until we've issued an sb sync.
1194 * Do so first to make that abundantly clear.
1195 *
1196 * Fall into the covering sequence if the log needs covering or the
1197 * mount has lazy superblock accounting to sync to disk. The sb sync
1198 * used for covering accumulates the in-core counters, so covering
1199 * handles this for us.
1200 */
1201 need_covered = xfs_log_need_covered(mp);
1202 if (!need_covered && !xfs_has_lazysbcount(mp))
1203 return 0;
1204
1205 /*
1206 * To cover the log, commit the superblock twice (at most) in
1207 * independent checkpoints. The first serves as a reference for the
1208 * tail pointer. The sync transaction and AIL push empties the AIL and
1209 * updates the in-core tail to the LSN of the first checkpoint. The
1210 * second commit updates the on-disk tail with the in-core LSN,
1211 * covering the log. Push the AIL one more time to leave it empty, as
1212 * we found it.
1213 */
1214 do {
1215 error = xfs_sync_sb(mp, true);
1216 if (error)
1217 break;
1218 xfs_ail_push_all_sync(mp->m_ail);
1219 } while (xfs_log_need_covered(mp));
1220
1221 return error;
1222 }
1223
1224 static void
xlog_ioend_work(struct work_struct * work)1225 xlog_ioend_work(
1226 struct work_struct *work)
1227 {
1228 struct xlog_in_core *iclog =
1229 container_of(work, struct xlog_in_core, ic_end_io_work);
1230 struct xlog *log = iclog->ic_log;
1231 int error;
1232
1233 error = blk_status_to_errno(iclog->ic_bio.bi_status);
1234 #ifdef DEBUG
1235 /* treat writes with injected CRC errors as failed */
1236 if (iclog->ic_fail_crc)
1237 error = -EIO;
1238 #endif
1239
1240 /*
1241 * Race to shutdown the filesystem if we see an error.
1242 */
1243 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1244 xfs_alert(log->l_mp, "log I/O error %d", error);
1245 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1246 }
1247
1248 xlog_state_done_syncing(iclog);
1249 bio_uninit(&iclog->ic_bio);
1250
1251 /*
1252 * Drop the lock to signal that we are done. Nothing references the
1253 * iclog after this, so an unmount waiting on this lock can now tear it
1254 * down safely. As such, it is unsafe to reference the iclog after the
1255 * unlock as we could race with it being freed.
1256 */
1257 up(&iclog->ic_sema);
1258 }
1259
1260 /*
1261 * Return size of each in-core log record buffer.
1262 *
1263 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1264 *
1265 * If the filesystem blocksize is too large, we may need to choose a
1266 * larger size since the directory code currently logs entire blocks.
1267 */
1268 STATIC void
xlog_get_iclog_buffer_size(struct xfs_mount * mp,struct xlog * log)1269 xlog_get_iclog_buffer_size(
1270 struct xfs_mount *mp,
1271 struct xlog *log)
1272 {
1273 if (mp->m_logbufs <= 0)
1274 mp->m_logbufs = XLOG_MAX_ICLOGS;
1275 if (mp->m_logbsize <= 0)
1276 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1277
1278 log->l_iclog_bufs = mp->m_logbufs;
1279 log->l_iclog_size = mp->m_logbsize;
1280
1281 /*
1282 * # headers = size / 32k - one header holds cycles from 32k of data.
1283 */
1284 log->l_iclog_heads =
1285 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1286 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1287 }
1288
1289 void
xfs_log_work_queue(struct xfs_mount * mp)1290 xfs_log_work_queue(
1291 struct xfs_mount *mp)
1292 {
1293 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1294 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1295 }
1296
1297 /*
1298 * Clear the log incompat flags if we have the opportunity.
1299 *
1300 * This only happens if we're about to log the second dummy transaction as part
1301 * of covering the log.
1302 */
1303 static inline void
xlog_clear_incompat(struct xlog * log)1304 xlog_clear_incompat(
1305 struct xlog *log)
1306 {
1307 struct xfs_mount *mp = log->l_mp;
1308
1309 if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1310 XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1311 return;
1312
1313 if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1314 return;
1315
1316 xfs_clear_incompat_log_features(mp);
1317 }
1318
1319 /*
1320 * Every sync period we need to unpin all items in the AIL and push them to
1321 * disk. If there is nothing dirty, then we might need to cover the log to
1322 * indicate that the filesystem is idle.
1323 */
1324 static void
xfs_log_worker(struct work_struct * work)1325 xfs_log_worker(
1326 struct work_struct *work)
1327 {
1328 struct xlog *log = container_of(to_delayed_work(work),
1329 struct xlog, l_work);
1330 struct xfs_mount *mp = log->l_mp;
1331
1332 /* dgc: errors ignored - not fatal and nowhere to report them */
1333 if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1334 /*
1335 * Dump a transaction into the log that contains no real change.
1336 * This is needed to stamp the current tail LSN into the log
1337 * during the covering operation.
1338 *
1339 * We cannot use an inode here for this - that will push dirty
1340 * state back up into the VFS and then periodic inode flushing
1341 * will prevent log covering from making progress. Hence we
1342 * synchronously log the superblock instead to ensure the
1343 * superblock is immediately unpinned and can be written back.
1344 */
1345 xlog_clear_incompat(log);
1346 xfs_sync_sb(mp, true);
1347 } else
1348 xfs_log_force(mp, 0);
1349
1350 /* start pushing all the metadata that is currently dirty */
1351 xfs_ail_push_all(mp->m_ail);
1352
1353 /* queue us up again */
1354 xfs_log_work_queue(mp);
1355 }
1356
1357 /*
1358 * This routine initializes some of the log structure for a given mount point.
1359 * Its primary purpose is to fill in enough, so recovery can occur. However,
1360 * some other stuff may be filled in too.
1361 */
1362 STATIC struct xlog *
xlog_alloc_log(struct xfs_mount * mp,struct xfs_buftarg * log_target,xfs_daddr_t blk_offset,int num_bblks)1363 xlog_alloc_log(
1364 struct xfs_mount *mp,
1365 struct xfs_buftarg *log_target,
1366 xfs_daddr_t blk_offset,
1367 int num_bblks)
1368 {
1369 struct xlog *log;
1370 xlog_rec_header_t *head;
1371 xlog_in_core_t **iclogp;
1372 xlog_in_core_t *iclog, *prev_iclog=NULL;
1373 int i;
1374 int error = -ENOMEM;
1375 uint log2_size = 0;
1376
1377 log = kzalloc(sizeof(struct xlog), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1378 if (!log) {
1379 xfs_warn(mp, "Log allocation failed: No memory!");
1380 goto out;
1381 }
1382
1383 log->l_mp = mp;
1384 log->l_targ = log_target;
1385 log->l_logsize = BBTOB(num_bblks);
1386 log->l_logBBstart = blk_offset;
1387 log->l_logBBsize = num_bblks;
1388 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1389 set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1390 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1391 INIT_LIST_HEAD(&log->r_dfops);
1392
1393 log->l_prev_block = -1;
1394 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1395 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1396 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1397
1398 if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1399 log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1400 else
1401 log->l_iclog_roundoff = BBSIZE;
1402
1403 xlog_grant_head_init(&log->l_reserve_head);
1404 xlog_grant_head_init(&log->l_write_head);
1405
1406 error = -EFSCORRUPTED;
1407 if (xfs_has_sector(mp)) {
1408 log2_size = mp->m_sb.sb_logsectlog;
1409 if (log2_size < BBSHIFT) {
1410 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1411 log2_size, BBSHIFT);
1412 goto out_free_log;
1413 }
1414
1415 log2_size -= BBSHIFT;
1416 if (log2_size > mp->m_sectbb_log) {
1417 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1418 log2_size, mp->m_sectbb_log);
1419 goto out_free_log;
1420 }
1421
1422 /* for larger sector sizes, must have v2 or external log */
1423 if (log2_size && log->l_logBBstart > 0 &&
1424 !xfs_has_logv2(mp)) {
1425 xfs_warn(mp,
1426 "log sector size (0x%x) invalid for configuration.",
1427 log2_size);
1428 goto out_free_log;
1429 }
1430 }
1431 log->l_sectBBsize = 1 << log2_size;
1432
1433 xlog_get_iclog_buffer_size(mp, log);
1434
1435 spin_lock_init(&log->l_icloglock);
1436 init_waitqueue_head(&log->l_flush_wait);
1437
1438 iclogp = &log->l_iclog;
1439 /*
1440 * The amount of memory to allocate for the iclog structure is
1441 * rather funky due to the way the structure is defined. It is
1442 * done this way so that we can use different sizes for machines
1443 * with different amounts of memory. See the definition of
1444 * xlog_in_core_t in xfs_log_priv.h for details.
1445 */
1446 ASSERT(log->l_iclog_size >= 4096);
1447 for (i = 0; i < log->l_iclog_bufs; i++) {
1448 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1449 sizeof(struct bio_vec);
1450
1451 iclog = kzalloc(sizeof(*iclog) + bvec_size,
1452 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1453 if (!iclog)
1454 goto out_free_iclog;
1455
1456 *iclogp = iclog;
1457 iclog->ic_prev = prev_iclog;
1458 prev_iclog = iclog;
1459
1460 iclog->ic_data = kvzalloc(log->l_iclog_size,
1461 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1462 if (!iclog->ic_data)
1463 goto out_free_iclog;
1464 head = &iclog->ic_header;
1465 memset(head, 0, sizeof(xlog_rec_header_t));
1466 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1467 head->h_version = cpu_to_be32(
1468 xfs_has_logv2(log->l_mp) ? 2 : 1);
1469 head->h_size = cpu_to_be32(log->l_iclog_size);
1470 /* new fields */
1471 head->h_fmt = cpu_to_be32(XLOG_FMT);
1472 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1473
1474 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1475 iclog->ic_state = XLOG_STATE_ACTIVE;
1476 iclog->ic_log = log;
1477 atomic_set(&iclog->ic_refcnt, 0);
1478 INIT_LIST_HEAD(&iclog->ic_callbacks);
1479 iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize;
1480
1481 init_waitqueue_head(&iclog->ic_force_wait);
1482 init_waitqueue_head(&iclog->ic_write_wait);
1483 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1484 sema_init(&iclog->ic_sema, 1);
1485
1486 iclogp = &iclog->ic_next;
1487 }
1488 *iclogp = log->l_iclog; /* complete ring */
1489 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1490
1491 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1492 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1493 WQ_HIGHPRI),
1494 0, mp->m_super->s_id);
1495 if (!log->l_ioend_workqueue)
1496 goto out_free_iclog;
1497
1498 error = xlog_cil_init(log);
1499 if (error)
1500 goto out_destroy_workqueue;
1501 return log;
1502
1503 out_destroy_workqueue:
1504 destroy_workqueue(log->l_ioend_workqueue);
1505 out_free_iclog:
1506 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1507 prev_iclog = iclog->ic_next;
1508 kvfree(iclog->ic_data);
1509 kfree(iclog);
1510 if (prev_iclog == log->l_iclog)
1511 break;
1512 }
1513 out_free_log:
1514 kfree(log);
1515 out:
1516 return ERR_PTR(error);
1517 } /* xlog_alloc_log */
1518
1519 /*
1520 * Stamp cycle number in every block
1521 */
1522 STATIC void
xlog_pack_data(struct xlog * log,struct xlog_in_core * iclog,int roundoff)1523 xlog_pack_data(
1524 struct xlog *log,
1525 struct xlog_in_core *iclog,
1526 int roundoff)
1527 {
1528 int i, j, k;
1529 int size = iclog->ic_offset + roundoff;
1530 __be32 cycle_lsn;
1531 char *dp;
1532
1533 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1534
1535 dp = iclog->ic_datap;
1536 for (i = 0; i < BTOBB(size); i++) {
1537 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1538 break;
1539 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1540 *(__be32 *)dp = cycle_lsn;
1541 dp += BBSIZE;
1542 }
1543
1544 if (xfs_has_logv2(log->l_mp)) {
1545 xlog_in_core_2_t *xhdr = iclog->ic_data;
1546
1547 for ( ; i < BTOBB(size); i++) {
1548 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1549 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1550 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1551 *(__be32 *)dp = cycle_lsn;
1552 dp += BBSIZE;
1553 }
1554
1555 for (i = 1; i < log->l_iclog_heads; i++)
1556 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1557 }
1558 }
1559
1560 /*
1561 * Calculate the checksum for a log buffer.
1562 *
1563 * This is a little more complicated than it should be because the various
1564 * headers and the actual data are non-contiguous.
1565 */
1566 __le32
xlog_cksum(struct xlog * log,struct xlog_rec_header * rhead,char * dp,int size)1567 xlog_cksum(
1568 struct xlog *log,
1569 struct xlog_rec_header *rhead,
1570 char *dp,
1571 int size)
1572 {
1573 uint32_t crc;
1574
1575 /* first generate the crc for the record header ... */
1576 crc = xfs_start_cksum_update((char *)rhead,
1577 sizeof(struct xlog_rec_header),
1578 offsetof(struct xlog_rec_header, h_crc));
1579
1580 /* ... then for additional cycle data for v2 logs ... */
1581 if (xfs_has_logv2(log->l_mp)) {
1582 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1583 int i;
1584 int xheads;
1585
1586 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1587
1588 for (i = 1; i < xheads; i++) {
1589 crc = crc32c(crc, &xhdr[i].hic_xheader,
1590 sizeof(struct xlog_rec_ext_header));
1591 }
1592 }
1593
1594 /* ... and finally for the payload */
1595 crc = crc32c(crc, dp, size);
1596
1597 return xfs_end_cksum(crc);
1598 }
1599
1600 static void
xlog_bio_end_io(struct bio * bio)1601 xlog_bio_end_io(
1602 struct bio *bio)
1603 {
1604 struct xlog_in_core *iclog = bio->bi_private;
1605
1606 queue_work(iclog->ic_log->l_ioend_workqueue,
1607 &iclog->ic_end_io_work);
1608 }
1609
1610 STATIC void
xlog_write_iclog(struct xlog * log,struct xlog_in_core * iclog,uint64_t bno,unsigned int count)1611 xlog_write_iclog(
1612 struct xlog *log,
1613 struct xlog_in_core *iclog,
1614 uint64_t bno,
1615 unsigned int count)
1616 {
1617 ASSERT(bno < log->l_logBBsize);
1618 trace_xlog_iclog_write(iclog, _RET_IP_);
1619
1620 /*
1621 * We lock the iclogbufs here so that we can serialise against I/O
1622 * completion during unmount. We might be processing a shutdown
1623 * triggered during unmount, and that can occur asynchronously to the
1624 * unmount thread, and hence we need to ensure that completes before
1625 * tearing down the iclogbufs. Hence we need to hold the buffer lock
1626 * across the log IO to archieve that.
1627 */
1628 down(&iclog->ic_sema);
1629 if (xlog_is_shutdown(log)) {
1630 /*
1631 * It would seem logical to return EIO here, but we rely on
1632 * the log state machine to propagate I/O errors instead of
1633 * doing it here. We kick of the state machine and unlock
1634 * the buffer manually, the code needs to be kept in sync
1635 * with the I/O completion path.
1636 */
1637 goto sync;
1638 }
1639
1640 /*
1641 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1642 * IOs coming immediately after this one. This prevents the block layer
1643 * writeback throttle from throttling log writes behind background
1644 * metadata writeback and causing priority inversions.
1645 */
1646 bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1647 howmany(count, PAGE_SIZE),
1648 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1649 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1650 iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1651 iclog->ic_bio.bi_private = iclog;
1652
1653 if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1654 iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1655 /*
1656 * For external log devices, we also need to flush the data
1657 * device cache first to ensure all metadata writeback covered
1658 * by the LSN in this iclog is on stable storage. This is slow,
1659 * but it *must* complete before we issue the external log IO.
1660 *
1661 * If the flush fails, we cannot conclude that past metadata
1662 * writeback from the log succeeded. Repeating the flush is
1663 * not possible, hence we must shut down with log IO error to
1664 * avoid shutdown re-entering this path and erroring out again.
1665 */
1666 if (log->l_targ != log->l_mp->m_ddev_targp &&
1667 blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev))
1668 goto shutdown;
1669 }
1670 if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1671 iclog->ic_bio.bi_opf |= REQ_FUA;
1672
1673 iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1674
1675 if (is_vmalloc_addr(iclog->ic_data)) {
1676 if (!bio_add_vmalloc(&iclog->ic_bio, iclog->ic_data, count))
1677 goto shutdown;
1678 } else {
1679 bio_add_virt_nofail(&iclog->ic_bio, iclog->ic_data, count);
1680 }
1681
1682 /*
1683 * If this log buffer would straddle the end of the log we will have
1684 * to split it up into two bios, so that we can continue at the start.
1685 */
1686 if (bno + BTOBB(count) > log->l_logBBsize) {
1687 struct bio *split;
1688
1689 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1690 GFP_NOIO, &fs_bio_set);
1691 bio_chain(split, &iclog->ic_bio);
1692 submit_bio(split);
1693
1694 /* restart at logical offset zero for the remainder */
1695 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1696 }
1697
1698 submit_bio(&iclog->ic_bio);
1699 return;
1700 shutdown:
1701 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1702 sync:
1703 xlog_state_done_syncing(iclog);
1704 up(&iclog->ic_sema);
1705 }
1706
1707 /*
1708 * We need to bump cycle number for the part of the iclog that is
1709 * written to the start of the log. Watch out for the header magic
1710 * number case, though.
1711 */
1712 static void
xlog_split_iclog(struct xlog * log,void * data,uint64_t bno,unsigned int count)1713 xlog_split_iclog(
1714 struct xlog *log,
1715 void *data,
1716 uint64_t bno,
1717 unsigned int count)
1718 {
1719 unsigned int split_offset = BBTOB(log->l_logBBsize - bno);
1720 unsigned int i;
1721
1722 for (i = split_offset; i < count; i += BBSIZE) {
1723 uint32_t cycle = get_unaligned_be32(data + i);
1724
1725 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1726 cycle++;
1727 put_unaligned_be32(cycle, data + i);
1728 }
1729 }
1730
1731 static int
xlog_calc_iclog_size(struct xlog * log,struct xlog_in_core * iclog,uint32_t * roundoff)1732 xlog_calc_iclog_size(
1733 struct xlog *log,
1734 struct xlog_in_core *iclog,
1735 uint32_t *roundoff)
1736 {
1737 uint32_t count_init, count;
1738
1739 /* Add for LR header */
1740 count_init = log->l_iclog_hsize + iclog->ic_offset;
1741 count = roundup(count_init, log->l_iclog_roundoff);
1742
1743 *roundoff = count - count_init;
1744
1745 ASSERT(count >= count_init);
1746 ASSERT(*roundoff < log->l_iclog_roundoff);
1747 return count;
1748 }
1749
1750 /*
1751 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1752 * fashion. Previously, we should have moved the current iclog
1753 * ptr in the log to point to the next available iclog. This allows further
1754 * write to continue while this code syncs out an iclog ready to go.
1755 * Before an in-core log can be written out, the data section must be scanned
1756 * to save away the 1st word of each BBSIZE block into the header. We replace
1757 * it with the current cycle count. Each BBSIZE block is tagged with the
1758 * cycle count because there in an implicit assumption that drives will
1759 * guarantee that entire 512 byte blocks get written at once. In other words,
1760 * we can't have part of a 512 byte block written and part not written. By
1761 * tagging each block, we will know which blocks are valid when recovering
1762 * after an unclean shutdown.
1763 *
1764 * This routine is single threaded on the iclog. No other thread can be in
1765 * this routine with the same iclog. Changing contents of iclog can there-
1766 * fore be done without grabbing the state machine lock. Updating the global
1767 * log will require grabbing the lock though.
1768 *
1769 * The entire log manager uses a logical block numbering scheme. Only
1770 * xlog_write_iclog knows about the fact that the log may not start with
1771 * block zero on a given device.
1772 */
1773 STATIC void
xlog_sync(struct xlog * log,struct xlog_in_core * iclog,struct xlog_ticket * ticket)1774 xlog_sync(
1775 struct xlog *log,
1776 struct xlog_in_core *iclog,
1777 struct xlog_ticket *ticket)
1778 {
1779 unsigned int count; /* byte count of bwrite */
1780 unsigned int roundoff; /* roundoff to BB or stripe */
1781 uint64_t bno;
1782 unsigned int size;
1783
1784 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1785 trace_xlog_iclog_sync(iclog, _RET_IP_);
1786
1787 count = xlog_calc_iclog_size(log, iclog, &roundoff);
1788
1789 /*
1790 * If we have a ticket, account for the roundoff via the ticket
1791 * reservation to avoid touching the hot grant heads needlessly.
1792 * Otherwise, we have to move grant heads directly.
1793 */
1794 if (ticket) {
1795 ticket->t_curr_res -= roundoff;
1796 } else {
1797 xlog_grant_add_space(&log->l_reserve_head, roundoff);
1798 xlog_grant_add_space(&log->l_write_head, roundoff);
1799 }
1800
1801 /* put cycle number in every block */
1802 xlog_pack_data(log, iclog, roundoff);
1803
1804 /* real byte length */
1805 size = iclog->ic_offset;
1806 if (xfs_has_logv2(log->l_mp))
1807 size += roundoff;
1808 iclog->ic_header.h_len = cpu_to_be32(size);
1809
1810 XFS_STATS_INC(log->l_mp, xs_log_writes);
1811 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1812
1813 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1814
1815 /* Do we need to split this write into 2 parts? */
1816 if (bno + BTOBB(count) > log->l_logBBsize)
1817 xlog_split_iclog(log, &iclog->ic_header, bno, count);
1818
1819 /* calculcate the checksum */
1820 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1821 iclog->ic_datap, size);
1822 /*
1823 * Intentionally corrupt the log record CRC based on the error injection
1824 * frequency, if defined. This facilitates testing log recovery in the
1825 * event of torn writes. Hence, set the IOABORT state to abort the log
1826 * write on I/O completion and shutdown the fs. The subsequent mount
1827 * detects the bad CRC and attempts to recover.
1828 */
1829 #ifdef DEBUG
1830 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1831 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1832 iclog->ic_fail_crc = true;
1833 xfs_warn(log->l_mp,
1834 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1835 be64_to_cpu(iclog->ic_header.h_lsn));
1836 }
1837 #endif
1838 xlog_verify_iclog(log, iclog, count);
1839 xlog_write_iclog(log, iclog, bno, count);
1840 }
1841
1842 /*
1843 * Deallocate a log structure
1844 */
1845 STATIC void
xlog_dealloc_log(struct xlog * log)1846 xlog_dealloc_log(
1847 struct xlog *log)
1848 {
1849 xlog_in_core_t *iclog, *next_iclog;
1850 int i;
1851
1852 /*
1853 * Destroy the CIL after waiting for iclog IO completion because an
1854 * iclog EIO error will try to shut down the log, which accesses the
1855 * CIL to wake up the waiters.
1856 */
1857 xlog_cil_destroy(log);
1858
1859 iclog = log->l_iclog;
1860 for (i = 0; i < log->l_iclog_bufs; i++) {
1861 next_iclog = iclog->ic_next;
1862 kvfree(iclog->ic_data);
1863 kfree(iclog);
1864 iclog = next_iclog;
1865 }
1866
1867 log->l_mp->m_log = NULL;
1868 destroy_workqueue(log->l_ioend_workqueue);
1869 kfree(log);
1870 }
1871
1872 /*
1873 * Update counters atomically now that memcpy is done.
1874 */
1875 static inline void
xlog_state_finish_copy(struct xlog * log,struct xlog_in_core * iclog,int record_cnt,int copy_bytes)1876 xlog_state_finish_copy(
1877 struct xlog *log,
1878 struct xlog_in_core *iclog,
1879 int record_cnt,
1880 int copy_bytes)
1881 {
1882 lockdep_assert_held(&log->l_icloglock);
1883
1884 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1885 iclog->ic_offset += copy_bytes;
1886 }
1887
1888 /*
1889 * print out info relating to regions written which consume
1890 * the reservation
1891 */
1892 void
xlog_print_tic_res(struct xfs_mount * mp,struct xlog_ticket * ticket)1893 xlog_print_tic_res(
1894 struct xfs_mount *mp,
1895 struct xlog_ticket *ticket)
1896 {
1897 xfs_warn(mp, "ticket reservation summary:");
1898 xfs_warn(mp, " unit res = %d bytes", ticket->t_unit_res);
1899 xfs_warn(mp, " current res = %d bytes", ticket->t_curr_res);
1900 xfs_warn(mp, " original count = %d", ticket->t_ocnt);
1901 xfs_warn(mp, " remaining count = %d", ticket->t_cnt);
1902 }
1903
1904 /*
1905 * Print a summary of the transaction.
1906 */
1907 void
xlog_print_trans(struct xfs_trans * tp)1908 xlog_print_trans(
1909 struct xfs_trans *tp)
1910 {
1911 struct xfs_mount *mp = tp->t_mountp;
1912 struct xfs_log_item *lip;
1913
1914 /* dump core transaction and ticket info */
1915 xfs_warn(mp, "transaction summary:");
1916 xfs_warn(mp, " log res = %d", tp->t_log_res);
1917 xfs_warn(mp, " log count = %d", tp->t_log_count);
1918 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
1919
1920 xlog_print_tic_res(mp, tp->t_ticket);
1921
1922 /* dump each log item */
1923 list_for_each_entry(lip, &tp->t_items, li_trans) {
1924 struct xfs_log_vec *lv = lip->li_lv;
1925 struct xfs_log_iovec *vec;
1926 int i;
1927
1928 xfs_warn(mp, "log item: ");
1929 xfs_warn(mp, " type = 0x%x", lip->li_type);
1930 xfs_warn(mp, " flags = 0x%lx", lip->li_flags);
1931 if (!lv)
1932 continue;
1933 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
1934 xfs_warn(mp, " size = %d", lv->lv_size);
1935 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
1936 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
1937
1938 /* dump each iovec for the log item */
1939 vec = lv->lv_iovecp;
1940 for (i = 0; i < lv->lv_niovecs; i++) {
1941 int dumplen = min(vec->i_len, 32);
1942
1943 xfs_warn(mp, " iovec[%d]", i);
1944 xfs_warn(mp, " type = 0x%x", vec->i_type);
1945 xfs_warn(mp, " len = %d", vec->i_len);
1946 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
1947 xfs_hex_dump(vec->i_addr, dumplen);
1948
1949 vec++;
1950 }
1951 }
1952 }
1953
1954 static inline void
xlog_write_iovec(struct xlog_in_core * iclog,uint32_t * log_offset,void * data,uint32_t write_len,int * bytes_left,uint32_t * record_cnt,uint32_t * data_cnt)1955 xlog_write_iovec(
1956 struct xlog_in_core *iclog,
1957 uint32_t *log_offset,
1958 void *data,
1959 uint32_t write_len,
1960 int *bytes_left,
1961 uint32_t *record_cnt,
1962 uint32_t *data_cnt)
1963 {
1964 ASSERT(*log_offset < iclog->ic_log->l_iclog_size);
1965 ASSERT(*log_offset % sizeof(int32_t) == 0);
1966 ASSERT(write_len % sizeof(int32_t) == 0);
1967
1968 memcpy(iclog->ic_datap + *log_offset, data, write_len);
1969 *log_offset += write_len;
1970 *bytes_left -= write_len;
1971 (*record_cnt)++;
1972 *data_cnt += write_len;
1973 }
1974
1975 /*
1976 * Write log vectors into a single iclog which is guaranteed by the caller
1977 * to have enough space to write the entire log vector into.
1978 */
1979 static void
xlog_write_full(struct xfs_log_vec * lv,struct xlog_ticket * ticket,struct xlog_in_core * iclog,uint32_t * log_offset,uint32_t * len,uint32_t * record_cnt,uint32_t * data_cnt)1980 xlog_write_full(
1981 struct xfs_log_vec *lv,
1982 struct xlog_ticket *ticket,
1983 struct xlog_in_core *iclog,
1984 uint32_t *log_offset,
1985 uint32_t *len,
1986 uint32_t *record_cnt,
1987 uint32_t *data_cnt)
1988 {
1989 int index;
1990
1991 ASSERT(*log_offset + *len <= iclog->ic_size ||
1992 iclog->ic_state == XLOG_STATE_WANT_SYNC);
1993
1994 /*
1995 * Ordered log vectors have no regions to write so this
1996 * loop will naturally skip them.
1997 */
1998 for (index = 0; index < lv->lv_niovecs; index++) {
1999 struct xfs_log_iovec *reg = &lv->lv_iovecp[index];
2000 struct xlog_op_header *ophdr = reg->i_addr;
2001
2002 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2003 xlog_write_iovec(iclog, log_offset, reg->i_addr,
2004 reg->i_len, len, record_cnt, data_cnt);
2005 }
2006 }
2007
2008 static int
xlog_write_get_more_iclog_space(struct xlog_ticket * ticket,struct xlog_in_core ** iclogp,uint32_t * log_offset,uint32_t len,uint32_t * record_cnt,uint32_t * data_cnt)2009 xlog_write_get_more_iclog_space(
2010 struct xlog_ticket *ticket,
2011 struct xlog_in_core **iclogp,
2012 uint32_t *log_offset,
2013 uint32_t len,
2014 uint32_t *record_cnt,
2015 uint32_t *data_cnt)
2016 {
2017 struct xlog_in_core *iclog = *iclogp;
2018 struct xlog *log = iclog->ic_log;
2019 int error;
2020
2021 spin_lock(&log->l_icloglock);
2022 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC);
2023 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2024 error = xlog_state_release_iclog(log, iclog, ticket);
2025 spin_unlock(&log->l_icloglock);
2026 if (error)
2027 return error;
2028
2029 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2030 log_offset);
2031 if (error)
2032 return error;
2033 *record_cnt = 0;
2034 *data_cnt = 0;
2035 *iclogp = iclog;
2036 return 0;
2037 }
2038
2039 /*
2040 * Write log vectors into a single iclog which is smaller than the current chain
2041 * length. We write until we cannot fit a full record into the remaining space
2042 * and then stop. We return the log vector that is to be written that cannot
2043 * wholly fit in the iclog.
2044 */
2045 static int
xlog_write_partial(struct xfs_log_vec * lv,struct xlog_ticket * ticket,struct xlog_in_core ** iclogp,uint32_t * log_offset,uint32_t * len,uint32_t * record_cnt,uint32_t * data_cnt)2046 xlog_write_partial(
2047 struct xfs_log_vec *lv,
2048 struct xlog_ticket *ticket,
2049 struct xlog_in_core **iclogp,
2050 uint32_t *log_offset,
2051 uint32_t *len,
2052 uint32_t *record_cnt,
2053 uint32_t *data_cnt)
2054 {
2055 struct xlog_in_core *iclog = *iclogp;
2056 struct xlog_op_header *ophdr;
2057 int index = 0;
2058 uint32_t rlen;
2059 int error;
2060
2061 /* walk the logvec, copying until we run out of space in the iclog */
2062 for (index = 0; index < lv->lv_niovecs; index++) {
2063 struct xfs_log_iovec *reg = &lv->lv_iovecp[index];
2064 uint32_t reg_offset = 0;
2065
2066 /*
2067 * The first region of a continuation must have a non-zero
2068 * length otherwise log recovery will just skip over it and
2069 * start recovering from the next opheader it finds. Because we
2070 * mark the next opheader as a continuation, recovery will then
2071 * incorrectly add the continuation to the previous region and
2072 * that breaks stuff.
2073 *
2074 * Hence if there isn't space for region data after the
2075 * opheader, then we need to start afresh with a new iclog.
2076 */
2077 if (iclog->ic_size - *log_offset <=
2078 sizeof(struct xlog_op_header)) {
2079 error = xlog_write_get_more_iclog_space(ticket,
2080 &iclog, log_offset, *len, record_cnt,
2081 data_cnt);
2082 if (error)
2083 return error;
2084 }
2085
2086 ophdr = reg->i_addr;
2087 rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset);
2088
2089 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2090 ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header));
2091 if (rlen != reg->i_len)
2092 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2093
2094 xlog_write_iovec(iclog, log_offset, reg->i_addr,
2095 rlen, len, record_cnt, data_cnt);
2096
2097 /* If we wrote the whole region, move to the next. */
2098 if (rlen == reg->i_len)
2099 continue;
2100
2101 /*
2102 * We now have a partially written iovec, but it can span
2103 * multiple iclogs so we loop here. First we release the iclog
2104 * we currently have, then we get a new iclog and add a new
2105 * opheader. Then we continue copying from where we were until
2106 * we either complete the iovec or fill the iclog. If we
2107 * complete the iovec, then we increment the index and go right
2108 * back to the top of the outer loop. if we fill the iclog, we
2109 * run the inner loop again.
2110 *
2111 * This is complicated by the tail of a region using all the
2112 * space in an iclog and hence requiring us to release the iclog
2113 * and get a new one before returning to the outer loop. We must
2114 * always guarantee that we exit this inner loop with at least
2115 * space for log transaction opheaders left in the current
2116 * iclog, hence we cannot just terminate the loop at the end
2117 * of the of the continuation. So we loop while there is no
2118 * space left in the current iclog, and check for the end of the
2119 * continuation after getting a new iclog.
2120 */
2121 do {
2122 /*
2123 * Ensure we include the continuation opheader in the
2124 * space we need in the new iclog by adding that size
2125 * to the length we require. This continuation opheader
2126 * needs to be accounted to the ticket as the space it
2127 * consumes hasn't been accounted to the lv we are
2128 * writing.
2129 */
2130 error = xlog_write_get_more_iclog_space(ticket,
2131 &iclog, log_offset,
2132 *len + sizeof(struct xlog_op_header),
2133 record_cnt, data_cnt);
2134 if (error)
2135 return error;
2136
2137 ophdr = iclog->ic_datap + *log_offset;
2138 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2139 ophdr->oh_clientid = XFS_TRANSACTION;
2140 ophdr->oh_res2 = 0;
2141 ophdr->oh_flags = XLOG_WAS_CONT_TRANS;
2142
2143 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2144 *log_offset += sizeof(struct xlog_op_header);
2145 *data_cnt += sizeof(struct xlog_op_header);
2146
2147 /*
2148 * If rlen fits in the iclog, then end the region
2149 * continuation. Otherwise we're going around again.
2150 */
2151 reg_offset += rlen;
2152 rlen = reg->i_len - reg_offset;
2153 if (rlen <= iclog->ic_size - *log_offset)
2154 ophdr->oh_flags |= XLOG_END_TRANS;
2155 else
2156 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2157
2158 rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset);
2159 ophdr->oh_len = cpu_to_be32(rlen);
2160
2161 xlog_write_iovec(iclog, log_offset,
2162 reg->i_addr + reg_offset,
2163 rlen, len, record_cnt, data_cnt);
2164
2165 } while (ophdr->oh_flags & XLOG_CONTINUE_TRANS);
2166 }
2167
2168 /*
2169 * No more iovecs remain in this logvec so return the next log vec to
2170 * the caller so it can go back to fast path copying.
2171 */
2172 *iclogp = iclog;
2173 return 0;
2174 }
2175
2176 /*
2177 * Write some region out to in-core log
2178 *
2179 * This will be called when writing externally provided regions or when
2180 * writing out a commit record for a given transaction.
2181 *
2182 * General algorithm:
2183 * 1. Find total length of this write. This may include adding to the
2184 * lengths passed in.
2185 * 2. Check whether we violate the tickets reservation.
2186 * 3. While writing to this iclog
2187 * A. Reserve as much space in this iclog as can get
2188 * B. If this is first write, save away start lsn
2189 * C. While writing this region:
2190 * 1. If first write of transaction, write start record
2191 * 2. Write log operation header (header per region)
2192 * 3. Find out if we can fit entire region into this iclog
2193 * 4. Potentially, verify destination memcpy ptr
2194 * 5. Memcpy (partial) region
2195 * 6. If partial copy, release iclog; otherwise, continue
2196 * copying more regions into current iclog
2197 * 4. Mark want sync bit (in simulation mode)
2198 * 5. Release iclog for potential flush to on-disk log.
2199 *
2200 * ERRORS:
2201 * 1. Panic if reservation is overrun. This should never happen since
2202 * reservation amounts are generated internal to the filesystem.
2203 * NOTES:
2204 * 1. Tickets are single threaded data structures.
2205 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2206 * syncing routine. When a single log_write region needs to span
2207 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2208 * on all log operation writes which don't contain the end of the
2209 * region. The XLOG_END_TRANS bit is used for the in-core log
2210 * operation which contains the end of the continued log_write region.
2211 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2212 * we don't really know exactly how much space will be used. As a result,
2213 * we don't update ic_offset until the end when we know exactly how many
2214 * bytes have been written out.
2215 */
2216 int
xlog_write(struct xlog * log,struct xfs_cil_ctx * ctx,struct list_head * lv_chain,struct xlog_ticket * ticket,uint32_t len)2217 xlog_write(
2218 struct xlog *log,
2219 struct xfs_cil_ctx *ctx,
2220 struct list_head *lv_chain,
2221 struct xlog_ticket *ticket,
2222 uint32_t len)
2223
2224 {
2225 struct xlog_in_core *iclog = NULL;
2226 struct xfs_log_vec *lv;
2227 uint32_t record_cnt = 0;
2228 uint32_t data_cnt = 0;
2229 int error = 0;
2230 int log_offset;
2231
2232 if (ticket->t_curr_res < 0) {
2233 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2234 "ctx ticket reservation ran out. Need to up reservation");
2235 xlog_print_tic_res(log->l_mp, ticket);
2236 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
2237 }
2238
2239 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2240 &log_offset);
2241 if (error)
2242 return error;
2243
2244 ASSERT(log_offset <= iclog->ic_size - 1);
2245
2246 /*
2247 * If we have a context pointer, pass it the first iclog we are
2248 * writing to so it can record state needed for iclog write
2249 * ordering.
2250 */
2251 if (ctx)
2252 xlog_cil_set_ctx_write_state(ctx, iclog);
2253
2254 list_for_each_entry(lv, lv_chain, lv_list) {
2255 /*
2256 * If the entire log vec does not fit in the iclog, punt it to
2257 * the partial copy loop which can handle this case.
2258 */
2259 if (lv->lv_niovecs &&
2260 lv->lv_bytes > iclog->ic_size - log_offset) {
2261 error = xlog_write_partial(lv, ticket, &iclog,
2262 &log_offset, &len, &record_cnt,
2263 &data_cnt);
2264 if (error) {
2265 /*
2266 * We have no iclog to release, so just return
2267 * the error immediately.
2268 */
2269 return error;
2270 }
2271 } else {
2272 xlog_write_full(lv, ticket, iclog, &log_offset,
2273 &len, &record_cnt, &data_cnt);
2274 }
2275 }
2276 ASSERT(len == 0);
2277
2278 /*
2279 * We've already been guaranteed that the last writes will fit inside
2280 * the current iclog, and hence it will already have the space used by
2281 * those writes accounted to it. Hence we do not need to update the
2282 * iclog with the number of bytes written here.
2283 */
2284 spin_lock(&log->l_icloglock);
2285 xlog_state_finish_copy(log, iclog, record_cnt, 0);
2286 error = xlog_state_release_iclog(log, iclog, ticket);
2287 spin_unlock(&log->l_icloglock);
2288
2289 return error;
2290 }
2291
2292 static void
xlog_state_activate_iclog(struct xlog_in_core * iclog,int * iclogs_changed)2293 xlog_state_activate_iclog(
2294 struct xlog_in_core *iclog,
2295 int *iclogs_changed)
2296 {
2297 ASSERT(list_empty_careful(&iclog->ic_callbacks));
2298 trace_xlog_iclog_activate(iclog, _RET_IP_);
2299
2300 /*
2301 * If the number of ops in this iclog indicate it just contains the
2302 * dummy transaction, we can change state into IDLE (the second time
2303 * around). Otherwise we should change the state into NEED a dummy.
2304 * We don't need to cover the dummy.
2305 */
2306 if (*iclogs_changed == 0 &&
2307 iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2308 *iclogs_changed = 1;
2309 } else {
2310 /*
2311 * We have two dirty iclogs so start over. This could also be
2312 * num of ops indicating this is not the dummy going out.
2313 */
2314 *iclogs_changed = 2;
2315 }
2316
2317 iclog->ic_state = XLOG_STATE_ACTIVE;
2318 iclog->ic_offset = 0;
2319 iclog->ic_header.h_num_logops = 0;
2320 memset(iclog->ic_header.h_cycle_data, 0,
2321 sizeof(iclog->ic_header.h_cycle_data));
2322 iclog->ic_header.h_lsn = 0;
2323 iclog->ic_header.h_tail_lsn = 0;
2324 }
2325
2326 /*
2327 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2328 * ACTIVE after iclog I/O has completed.
2329 */
2330 static void
xlog_state_activate_iclogs(struct xlog * log,int * iclogs_changed)2331 xlog_state_activate_iclogs(
2332 struct xlog *log,
2333 int *iclogs_changed)
2334 {
2335 struct xlog_in_core *iclog = log->l_iclog;
2336
2337 do {
2338 if (iclog->ic_state == XLOG_STATE_DIRTY)
2339 xlog_state_activate_iclog(iclog, iclogs_changed);
2340 /*
2341 * The ordering of marking iclogs ACTIVE must be maintained, so
2342 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2343 */
2344 else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2345 break;
2346 } while ((iclog = iclog->ic_next) != log->l_iclog);
2347 }
2348
2349 static int
xlog_covered_state(int prev_state,int iclogs_changed)2350 xlog_covered_state(
2351 int prev_state,
2352 int iclogs_changed)
2353 {
2354 /*
2355 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2356 * wrote the first covering record (DONE). We go to IDLE if we just
2357 * wrote the second covering record (DONE2) and remain in IDLE until a
2358 * non-covering write occurs.
2359 */
2360 switch (prev_state) {
2361 case XLOG_STATE_COVER_IDLE:
2362 if (iclogs_changed == 1)
2363 return XLOG_STATE_COVER_IDLE;
2364 fallthrough;
2365 case XLOG_STATE_COVER_NEED:
2366 case XLOG_STATE_COVER_NEED2:
2367 break;
2368 case XLOG_STATE_COVER_DONE:
2369 if (iclogs_changed == 1)
2370 return XLOG_STATE_COVER_NEED2;
2371 break;
2372 case XLOG_STATE_COVER_DONE2:
2373 if (iclogs_changed == 1)
2374 return XLOG_STATE_COVER_IDLE;
2375 break;
2376 default:
2377 ASSERT(0);
2378 }
2379
2380 return XLOG_STATE_COVER_NEED;
2381 }
2382
2383 STATIC void
xlog_state_clean_iclog(struct xlog * log,struct xlog_in_core * dirty_iclog)2384 xlog_state_clean_iclog(
2385 struct xlog *log,
2386 struct xlog_in_core *dirty_iclog)
2387 {
2388 int iclogs_changed = 0;
2389
2390 trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2391
2392 dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2393
2394 xlog_state_activate_iclogs(log, &iclogs_changed);
2395 wake_up_all(&dirty_iclog->ic_force_wait);
2396
2397 if (iclogs_changed) {
2398 log->l_covered_state = xlog_covered_state(log->l_covered_state,
2399 iclogs_changed);
2400 }
2401 }
2402
2403 STATIC xfs_lsn_t
xlog_get_lowest_lsn(struct xlog * log)2404 xlog_get_lowest_lsn(
2405 struct xlog *log)
2406 {
2407 struct xlog_in_core *iclog = log->l_iclog;
2408 xfs_lsn_t lowest_lsn = 0, lsn;
2409
2410 do {
2411 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2412 iclog->ic_state == XLOG_STATE_DIRTY)
2413 continue;
2414
2415 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2416 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2417 lowest_lsn = lsn;
2418 } while ((iclog = iclog->ic_next) != log->l_iclog);
2419
2420 return lowest_lsn;
2421 }
2422
2423 /*
2424 * Return true if we need to stop processing, false to continue to the next
2425 * iclog. The caller will need to run callbacks if the iclog is returned in the
2426 * XLOG_STATE_CALLBACK state.
2427 */
2428 static bool
xlog_state_iodone_process_iclog(struct xlog * log,struct xlog_in_core * iclog)2429 xlog_state_iodone_process_iclog(
2430 struct xlog *log,
2431 struct xlog_in_core *iclog)
2432 {
2433 xfs_lsn_t lowest_lsn;
2434 xfs_lsn_t header_lsn;
2435
2436 switch (iclog->ic_state) {
2437 case XLOG_STATE_ACTIVE:
2438 case XLOG_STATE_DIRTY:
2439 /*
2440 * Skip all iclogs in the ACTIVE & DIRTY states:
2441 */
2442 return false;
2443 case XLOG_STATE_DONE_SYNC:
2444 /*
2445 * Now that we have an iclog that is in the DONE_SYNC state, do
2446 * one more check here to see if we have chased our tail around.
2447 * If this is not the lowest lsn iclog, then we will leave it
2448 * for another completion to process.
2449 */
2450 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2451 lowest_lsn = xlog_get_lowest_lsn(log);
2452 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2453 return false;
2454 /*
2455 * If there are no callbacks on this iclog, we can mark it clean
2456 * immediately and return. Otherwise we need to run the
2457 * callbacks.
2458 */
2459 if (list_empty(&iclog->ic_callbacks)) {
2460 xlog_state_clean_iclog(log, iclog);
2461 return false;
2462 }
2463 trace_xlog_iclog_callback(iclog, _RET_IP_);
2464 iclog->ic_state = XLOG_STATE_CALLBACK;
2465 return false;
2466 default:
2467 /*
2468 * Can only perform callbacks in order. Since this iclog is not
2469 * in the DONE_SYNC state, we skip the rest and just try to
2470 * clean up.
2471 */
2472 return true;
2473 }
2474 }
2475
2476 /*
2477 * Loop over all the iclogs, running attached callbacks on them. Return true if
2478 * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2479 * to handle transient shutdown state here at all because
2480 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2481 * cleanup of the callbacks.
2482 */
2483 static bool
xlog_state_do_iclog_callbacks(struct xlog * log)2484 xlog_state_do_iclog_callbacks(
2485 struct xlog *log)
2486 __releases(&log->l_icloglock)
2487 __acquires(&log->l_icloglock)
2488 {
2489 struct xlog_in_core *first_iclog = log->l_iclog;
2490 struct xlog_in_core *iclog = first_iclog;
2491 bool ran_callback = false;
2492
2493 do {
2494 LIST_HEAD(cb_list);
2495
2496 if (xlog_state_iodone_process_iclog(log, iclog))
2497 break;
2498 if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2499 iclog = iclog->ic_next;
2500 continue;
2501 }
2502 list_splice_init(&iclog->ic_callbacks, &cb_list);
2503 spin_unlock(&log->l_icloglock);
2504
2505 trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2506 xlog_cil_process_committed(&cb_list);
2507 trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2508 ran_callback = true;
2509
2510 spin_lock(&log->l_icloglock);
2511 xlog_state_clean_iclog(log, iclog);
2512 iclog = iclog->ic_next;
2513 } while (iclog != first_iclog);
2514
2515 return ran_callback;
2516 }
2517
2518
2519 /*
2520 * Loop running iclog completion callbacks until there are no more iclogs in a
2521 * state that can run callbacks.
2522 */
2523 STATIC void
xlog_state_do_callback(struct xlog * log)2524 xlog_state_do_callback(
2525 struct xlog *log)
2526 {
2527 int flushcnt = 0;
2528 int repeats = 0;
2529
2530 spin_lock(&log->l_icloglock);
2531 while (xlog_state_do_iclog_callbacks(log)) {
2532 if (xlog_is_shutdown(log))
2533 break;
2534
2535 if (++repeats > 5000) {
2536 flushcnt += repeats;
2537 repeats = 0;
2538 xfs_warn(log->l_mp,
2539 "%s: possible infinite loop (%d iterations)",
2540 __func__, flushcnt);
2541 }
2542 }
2543
2544 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2545 wake_up_all(&log->l_flush_wait);
2546
2547 spin_unlock(&log->l_icloglock);
2548 }
2549
2550
2551 /*
2552 * Finish transitioning this iclog to the dirty state.
2553 *
2554 * Callbacks could take time, so they are done outside the scope of the
2555 * global state machine log lock.
2556 */
2557 STATIC void
xlog_state_done_syncing(struct xlog_in_core * iclog)2558 xlog_state_done_syncing(
2559 struct xlog_in_core *iclog)
2560 {
2561 struct xlog *log = iclog->ic_log;
2562
2563 spin_lock(&log->l_icloglock);
2564 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2565 trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2566
2567 /*
2568 * If we got an error, either on the first buffer, or in the case of
2569 * split log writes, on the second, we shut down the file system and
2570 * no iclogs should ever be attempted to be written to disk again.
2571 */
2572 if (!xlog_is_shutdown(log)) {
2573 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2574 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2575 }
2576
2577 /*
2578 * Someone could be sleeping prior to writing out the next
2579 * iclog buffer, we wake them all, one will get to do the
2580 * I/O, the others get to wait for the result.
2581 */
2582 wake_up_all(&iclog->ic_write_wait);
2583 spin_unlock(&log->l_icloglock);
2584 xlog_state_do_callback(log);
2585 }
2586
2587 /*
2588 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2589 * sleep. We wait on the flush queue on the head iclog as that should be
2590 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2591 * we will wait here and all new writes will sleep until a sync completes.
2592 *
2593 * The in-core logs are used in a circular fashion. They are not used
2594 * out-of-order even when an iclog past the head is free.
2595 *
2596 * return:
2597 * * log_offset where xlog_write() can start writing into the in-core
2598 * log's data space.
2599 * * in-core log pointer to which xlog_write() should write.
2600 * * boolean indicating this is a continued write to an in-core log.
2601 * If this is the last write, then the in-core log's offset field
2602 * needs to be incremented, depending on the amount of data which
2603 * is copied.
2604 */
2605 STATIC int
xlog_state_get_iclog_space(struct xlog * log,int len,struct xlog_in_core ** iclogp,struct xlog_ticket * ticket,int * logoffsetp)2606 xlog_state_get_iclog_space(
2607 struct xlog *log,
2608 int len,
2609 struct xlog_in_core **iclogp,
2610 struct xlog_ticket *ticket,
2611 int *logoffsetp)
2612 {
2613 int log_offset;
2614 xlog_rec_header_t *head;
2615 xlog_in_core_t *iclog;
2616
2617 restart:
2618 spin_lock(&log->l_icloglock);
2619 if (xlog_is_shutdown(log)) {
2620 spin_unlock(&log->l_icloglock);
2621 return -EIO;
2622 }
2623
2624 iclog = log->l_iclog;
2625 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2626 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2627
2628 /* Wait for log writes to have flushed */
2629 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2630 goto restart;
2631 }
2632
2633 head = &iclog->ic_header;
2634
2635 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2636 log_offset = iclog->ic_offset;
2637
2638 trace_xlog_iclog_get_space(iclog, _RET_IP_);
2639
2640 /* On the 1st write to an iclog, figure out lsn. This works
2641 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2642 * committing to. If the offset is set, that's how many blocks
2643 * must be written.
2644 */
2645 if (log_offset == 0) {
2646 ticket->t_curr_res -= log->l_iclog_hsize;
2647 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2648 head->h_lsn = cpu_to_be64(
2649 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2650 ASSERT(log->l_curr_block >= 0);
2651 }
2652
2653 /* If there is enough room to write everything, then do it. Otherwise,
2654 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2655 * bit is on, so this will get flushed out. Don't update ic_offset
2656 * until you know exactly how many bytes get copied. Therefore, wait
2657 * until later to update ic_offset.
2658 *
2659 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2660 * can fit into remaining data section.
2661 */
2662 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2663 int error = 0;
2664
2665 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2666
2667 /*
2668 * If we are the only one writing to this iclog, sync it to
2669 * disk. We need to do an atomic compare and decrement here to
2670 * avoid racing with concurrent atomic_dec_and_lock() calls in
2671 * xlog_state_release_iclog() when there is more than one
2672 * reference to the iclog.
2673 */
2674 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2675 error = xlog_state_release_iclog(log, iclog, ticket);
2676 spin_unlock(&log->l_icloglock);
2677 if (error)
2678 return error;
2679 goto restart;
2680 }
2681
2682 /* Do we have enough room to write the full amount in the remainder
2683 * of this iclog? Or must we continue a write on the next iclog and
2684 * mark this iclog as completely taken? In the case where we switch
2685 * iclogs (to mark it taken), this particular iclog will release/sync
2686 * to disk in xlog_write().
2687 */
2688 if (len <= iclog->ic_size - iclog->ic_offset)
2689 iclog->ic_offset += len;
2690 else
2691 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2692 *iclogp = iclog;
2693
2694 ASSERT(iclog->ic_offset <= iclog->ic_size);
2695 spin_unlock(&log->l_icloglock);
2696
2697 *logoffsetp = log_offset;
2698 return 0;
2699 }
2700
2701 /*
2702 * The first cnt-1 times a ticket goes through here we don't need to move the
2703 * grant write head because the permanent reservation has reserved cnt times the
2704 * unit amount. Release part of current permanent unit reservation and reset
2705 * current reservation to be one units worth. Also move grant reservation head
2706 * forward.
2707 */
2708 void
xfs_log_ticket_regrant(struct xlog * log,struct xlog_ticket * ticket)2709 xfs_log_ticket_regrant(
2710 struct xlog *log,
2711 struct xlog_ticket *ticket)
2712 {
2713 trace_xfs_log_ticket_regrant(log, ticket);
2714
2715 if (ticket->t_cnt > 0)
2716 ticket->t_cnt--;
2717
2718 xlog_grant_sub_space(&log->l_reserve_head, ticket->t_curr_res);
2719 xlog_grant_sub_space(&log->l_write_head, ticket->t_curr_res);
2720 ticket->t_curr_res = ticket->t_unit_res;
2721
2722 trace_xfs_log_ticket_regrant_sub(log, ticket);
2723
2724 /* just return if we still have some of the pre-reserved space */
2725 if (!ticket->t_cnt) {
2726 xlog_grant_add_space(&log->l_reserve_head, ticket->t_unit_res);
2727 trace_xfs_log_ticket_regrant_exit(log, ticket);
2728 }
2729
2730 xfs_log_ticket_put(ticket);
2731 }
2732
2733 /*
2734 * Give back the space left from a reservation.
2735 *
2736 * All the information we need to make a correct determination of space left
2737 * is present. For non-permanent reservations, things are quite easy. The
2738 * count should have been decremented to zero. We only need to deal with the
2739 * space remaining in the current reservation part of the ticket. If the
2740 * ticket contains a permanent reservation, there may be left over space which
2741 * needs to be released. A count of N means that N-1 refills of the current
2742 * reservation can be done before we need to ask for more space. The first
2743 * one goes to fill up the first current reservation. Once we run out of
2744 * space, the count will stay at zero and the only space remaining will be
2745 * in the current reservation field.
2746 */
2747 void
xfs_log_ticket_ungrant(struct xlog * log,struct xlog_ticket * ticket)2748 xfs_log_ticket_ungrant(
2749 struct xlog *log,
2750 struct xlog_ticket *ticket)
2751 {
2752 int bytes;
2753
2754 trace_xfs_log_ticket_ungrant(log, ticket);
2755
2756 if (ticket->t_cnt > 0)
2757 ticket->t_cnt--;
2758
2759 trace_xfs_log_ticket_ungrant_sub(log, ticket);
2760
2761 /*
2762 * If this is a permanent reservation ticket, we may be able to free
2763 * up more space based on the remaining count.
2764 */
2765 bytes = ticket->t_curr_res;
2766 if (ticket->t_cnt > 0) {
2767 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2768 bytes += ticket->t_unit_res*ticket->t_cnt;
2769 }
2770
2771 xlog_grant_sub_space(&log->l_reserve_head, bytes);
2772 xlog_grant_sub_space(&log->l_write_head, bytes);
2773
2774 trace_xfs_log_ticket_ungrant_exit(log, ticket);
2775
2776 xfs_log_space_wake(log->l_mp);
2777 xfs_log_ticket_put(ticket);
2778 }
2779
2780 /*
2781 * This routine will mark the current iclog in the ring as WANT_SYNC and move
2782 * the current iclog pointer to the next iclog in the ring.
2783 */
2784 void
xlog_state_switch_iclogs(struct xlog * log,struct xlog_in_core * iclog,int eventual_size)2785 xlog_state_switch_iclogs(
2786 struct xlog *log,
2787 struct xlog_in_core *iclog,
2788 int eventual_size)
2789 {
2790 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2791 assert_spin_locked(&log->l_icloglock);
2792 trace_xlog_iclog_switch(iclog, _RET_IP_);
2793
2794 if (!eventual_size)
2795 eventual_size = iclog->ic_offset;
2796 iclog->ic_state = XLOG_STATE_WANT_SYNC;
2797 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2798 log->l_prev_block = log->l_curr_block;
2799 log->l_prev_cycle = log->l_curr_cycle;
2800
2801 /* roll log?: ic_offset changed later */
2802 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2803
2804 /* Round up to next log-sunit */
2805 if (log->l_iclog_roundoff > BBSIZE) {
2806 uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
2807 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2808 }
2809
2810 if (log->l_curr_block >= log->l_logBBsize) {
2811 /*
2812 * Rewind the current block before the cycle is bumped to make
2813 * sure that the combined LSN never transiently moves forward
2814 * when the log wraps to the next cycle. This is to support the
2815 * unlocked sample of these fields from xlog_valid_lsn(). Most
2816 * other cases should acquire l_icloglock.
2817 */
2818 log->l_curr_block -= log->l_logBBsize;
2819 ASSERT(log->l_curr_block >= 0);
2820 smp_wmb();
2821 log->l_curr_cycle++;
2822 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2823 log->l_curr_cycle++;
2824 }
2825 ASSERT(iclog == log->l_iclog);
2826 log->l_iclog = iclog->ic_next;
2827 }
2828
2829 /*
2830 * Force the iclog to disk and check if the iclog has been completed before
2831 * xlog_force_iclog() returns. This can happen on synchronous (e.g.
2832 * pmem) or fast async storage because we drop the icloglock to issue the IO.
2833 * If completion has already occurred, tell the caller so that it can avoid an
2834 * unnecessary wait on the iclog.
2835 */
2836 static int
xlog_force_and_check_iclog(struct xlog_in_core * iclog,bool * completed)2837 xlog_force_and_check_iclog(
2838 struct xlog_in_core *iclog,
2839 bool *completed)
2840 {
2841 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2842 int error;
2843
2844 *completed = false;
2845 error = xlog_force_iclog(iclog);
2846 if (error)
2847 return error;
2848
2849 /*
2850 * If the iclog has already been completed and reused the header LSN
2851 * will have been rewritten by completion
2852 */
2853 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
2854 *completed = true;
2855 return 0;
2856 }
2857
2858 /*
2859 * Write out all data in the in-core log as of this exact moment in time.
2860 *
2861 * Data may be written to the in-core log during this call. However,
2862 * we don't guarantee this data will be written out. A change from past
2863 * implementation means this routine will *not* write out zero length LRs.
2864 *
2865 * Basically, we try and perform an intelligent scan of the in-core logs.
2866 * If we determine there is no flushable data, we just return. There is no
2867 * flushable data if:
2868 *
2869 * 1. the current iclog is active and has no data; the previous iclog
2870 * is in the active or dirty state.
2871 * 2. the current iclog is dirty, and the previous iclog is in the
2872 * active or dirty state.
2873 *
2874 * We may sleep if:
2875 *
2876 * 1. the current iclog is not in the active nor dirty state.
2877 * 2. the current iclog dirty, and the previous iclog is not in the
2878 * active nor dirty state.
2879 * 3. the current iclog is active, and there is another thread writing
2880 * to this particular iclog.
2881 * 4. a) the current iclog is active and has no other writers
2882 * b) when we return from flushing out this iclog, it is still
2883 * not in the active nor dirty state.
2884 */
2885 int
xfs_log_force(struct xfs_mount * mp,uint flags)2886 xfs_log_force(
2887 struct xfs_mount *mp,
2888 uint flags)
2889 {
2890 struct xlog *log = mp->m_log;
2891 struct xlog_in_core *iclog;
2892
2893 XFS_STATS_INC(mp, xs_log_force);
2894 trace_xfs_log_force(mp, 0, _RET_IP_);
2895
2896 xlog_cil_force(log);
2897
2898 spin_lock(&log->l_icloglock);
2899 if (xlog_is_shutdown(log))
2900 goto out_error;
2901
2902 iclog = log->l_iclog;
2903 trace_xlog_iclog_force(iclog, _RET_IP_);
2904
2905 if (iclog->ic_state == XLOG_STATE_DIRTY ||
2906 (iclog->ic_state == XLOG_STATE_ACTIVE &&
2907 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
2908 /*
2909 * If the head is dirty or (active and empty), then we need to
2910 * look at the previous iclog.
2911 *
2912 * If the previous iclog is active or dirty we are done. There
2913 * is nothing to sync out. Otherwise, we attach ourselves to the
2914 * previous iclog and go to sleep.
2915 */
2916 iclog = iclog->ic_prev;
2917 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
2918 if (atomic_read(&iclog->ic_refcnt) == 0) {
2919 /* We have exclusive access to this iclog. */
2920 bool completed;
2921
2922 if (xlog_force_and_check_iclog(iclog, &completed))
2923 goto out_error;
2924
2925 if (completed)
2926 goto out_unlock;
2927 } else {
2928 /*
2929 * Someone else is still writing to this iclog, so we
2930 * need to ensure that when they release the iclog it
2931 * gets synced immediately as we may be waiting on it.
2932 */
2933 xlog_state_switch_iclogs(log, iclog, 0);
2934 }
2935 }
2936
2937 /*
2938 * The iclog we are about to wait on may contain the checkpoint pushed
2939 * by the above xlog_cil_force() call, but it may not have been pushed
2940 * to disk yet. Like the ACTIVE case above, we need to make sure caches
2941 * are flushed when this iclog is written.
2942 */
2943 if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
2944 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
2945
2946 if (flags & XFS_LOG_SYNC)
2947 return xlog_wait_on_iclog(iclog);
2948 out_unlock:
2949 spin_unlock(&log->l_icloglock);
2950 return 0;
2951 out_error:
2952 spin_unlock(&log->l_icloglock);
2953 return -EIO;
2954 }
2955
2956 /*
2957 * Force the log to a specific LSN.
2958 *
2959 * If an iclog with that lsn can be found:
2960 * If it is in the DIRTY state, just return.
2961 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
2962 * state and go to sleep or return.
2963 * If it is in any other state, go to sleep or return.
2964 *
2965 * Synchronous forces are implemented with a wait queue. All callers trying
2966 * to force a given lsn to disk must wait on the queue attached to the
2967 * specific in-core log. When given in-core log finally completes its write
2968 * to disk, that thread will wake up all threads waiting on the queue.
2969 */
2970 static int
xlog_force_lsn(struct xlog * log,xfs_lsn_t lsn,uint flags,int * log_flushed,bool already_slept)2971 xlog_force_lsn(
2972 struct xlog *log,
2973 xfs_lsn_t lsn,
2974 uint flags,
2975 int *log_flushed,
2976 bool already_slept)
2977 {
2978 struct xlog_in_core *iclog;
2979 bool completed;
2980
2981 spin_lock(&log->l_icloglock);
2982 if (xlog_is_shutdown(log))
2983 goto out_error;
2984
2985 iclog = log->l_iclog;
2986 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
2987 trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
2988 iclog = iclog->ic_next;
2989 if (iclog == log->l_iclog)
2990 goto out_unlock;
2991 }
2992
2993 switch (iclog->ic_state) {
2994 case XLOG_STATE_ACTIVE:
2995 /*
2996 * We sleep here if we haven't already slept (e.g. this is the
2997 * first time we've looked at the correct iclog buf) and the
2998 * buffer before us is going to be sync'ed. The reason for this
2999 * is that if we are doing sync transactions here, by waiting
3000 * for the previous I/O to complete, we can allow a few more
3001 * transactions into this iclog before we close it down.
3002 *
3003 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3004 * refcnt so we can release the log (which drops the ref count).
3005 * The state switch keeps new transaction commits from using
3006 * this buffer. When the current commits finish writing into
3007 * the buffer, the refcount will drop to zero and the buffer
3008 * will go out then.
3009 */
3010 if (!already_slept &&
3011 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3012 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3013 xlog_wait(&iclog->ic_prev->ic_write_wait,
3014 &log->l_icloglock);
3015 return -EAGAIN;
3016 }
3017 if (xlog_force_and_check_iclog(iclog, &completed))
3018 goto out_error;
3019 if (log_flushed)
3020 *log_flushed = 1;
3021 if (completed)
3022 goto out_unlock;
3023 break;
3024 case XLOG_STATE_WANT_SYNC:
3025 /*
3026 * This iclog may contain the checkpoint pushed by the
3027 * xlog_cil_force_seq() call, but there are other writers still
3028 * accessing it so it hasn't been pushed to disk yet. Like the
3029 * ACTIVE case above, we need to make sure caches are flushed
3030 * when this iclog is written.
3031 */
3032 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3033 break;
3034 default:
3035 /*
3036 * The entire checkpoint was written by the CIL force and is on
3037 * its way to disk already. It will be stable when it
3038 * completes, so we don't need to manipulate caches here at all.
3039 * We just need to wait for completion if necessary.
3040 */
3041 break;
3042 }
3043
3044 if (flags & XFS_LOG_SYNC)
3045 return xlog_wait_on_iclog(iclog);
3046 out_unlock:
3047 spin_unlock(&log->l_icloglock);
3048 return 0;
3049 out_error:
3050 spin_unlock(&log->l_icloglock);
3051 return -EIO;
3052 }
3053
3054 /*
3055 * Force the log to a specific checkpoint sequence.
3056 *
3057 * First force the CIL so that all the required changes have been flushed to the
3058 * iclogs. If the CIL force completed it will return a commit LSN that indicates
3059 * the iclog that needs to be flushed to stable storage. If the caller needs
3060 * a synchronous log force, we will wait on the iclog with the LSN returned by
3061 * xlog_cil_force_seq() to be completed.
3062 */
3063 int
xfs_log_force_seq(struct xfs_mount * mp,xfs_csn_t seq,uint flags,int * log_flushed)3064 xfs_log_force_seq(
3065 struct xfs_mount *mp,
3066 xfs_csn_t seq,
3067 uint flags,
3068 int *log_flushed)
3069 {
3070 struct xlog *log = mp->m_log;
3071 xfs_lsn_t lsn;
3072 int ret;
3073 ASSERT(seq != 0);
3074
3075 XFS_STATS_INC(mp, xs_log_force);
3076 trace_xfs_log_force(mp, seq, _RET_IP_);
3077
3078 lsn = xlog_cil_force_seq(log, seq);
3079 if (lsn == NULLCOMMITLSN)
3080 return 0;
3081
3082 ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3083 if (ret == -EAGAIN) {
3084 XFS_STATS_INC(mp, xs_log_force_sleep);
3085 ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3086 }
3087 return ret;
3088 }
3089
3090 /*
3091 * Free a used ticket when its refcount falls to zero.
3092 */
3093 void
xfs_log_ticket_put(xlog_ticket_t * ticket)3094 xfs_log_ticket_put(
3095 xlog_ticket_t *ticket)
3096 {
3097 ASSERT(atomic_read(&ticket->t_ref) > 0);
3098 if (atomic_dec_and_test(&ticket->t_ref))
3099 kmem_cache_free(xfs_log_ticket_cache, ticket);
3100 }
3101
3102 xlog_ticket_t *
xfs_log_ticket_get(xlog_ticket_t * ticket)3103 xfs_log_ticket_get(
3104 xlog_ticket_t *ticket)
3105 {
3106 ASSERT(atomic_read(&ticket->t_ref) > 0);
3107 atomic_inc(&ticket->t_ref);
3108 return ticket;
3109 }
3110
3111 /*
3112 * Figure out the total log space unit (in bytes) that would be
3113 * required for a log ticket.
3114 */
3115 static int
xlog_calc_unit_res(struct xlog * log,int unit_bytes,int * niclogs)3116 xlog_calc_unit_res(
3117 struct xlog *log,
3118 int unit_bytes,
3119 int *niclogs)
3120 {
3121 int iclog_space;
3122 uint num_headers;
3123
3124 /*
3125 * Permanent reservations have up to 'cnt'-1 active log operations
3126 * in the log. A unit in this case is the amount of space for one
3127 * of these log operations. Normal reservations have a cnt of 1
3128 * and their unit amount is the total amount of space required.
3129 *
3130 * The following lines of code account for non-transaction data
3131 * which occupy space in the on-disk log.
3132 *
3133 * Normal form of a transaction is:
3134 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3135 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3136 *
3137 * We need to account for all the leadup data and trailer data
3138 * around the transaction data.
3139 * And then we need to account for the worst case in terms of using
3140 * more space.
3141 * The worst case will happen if:
3142 * - the placement of the transaction happens to be such that the
3143 * roundoff is at its maximum
3144 * - the transaction data is synced before the commit record is synced
3145 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3146 * Therefore the commit record is in its own Log Record.
3147 * This can happen as the commit record is called with its
3148 * own region to xlog_write().
3149 * This then means that in the worst case, roundoff can happen for
3150 * the commit-rec as well.
3151 * The commit-rec is smaller than padding in this scenario and so it is
3152 * not added separately.
3153 */
3154
3155 /* for trans header */
3156 unit_bytes += sizeof(xlog_op_header_t);
3157 unit_bytes += sizeof(xfs_trans_header_t);
3158
3159 /* for start-rec */
3160 unit_bytes += sizeof(xlog_op_header_t);
3161
3162 /*
3163 * for LR headers - the space for data in an iclog is the size minus
3164 * the space used for the headers. If we use the iclog size, then we
3165 * undercalculate the number of headers required.
3166 *
3167 * Furthermore - the addition of op headers for split-recs might
3168 * increase the space required enough to require more log and op
3169 * headers, so take that into account too.
3170 *
3171 * IMPORTANT: This reservation makes the assumption that if this
3172 * transaction is the first in an iclog and hence has the LR headers
3173 * accounted to it, then the remaining space in the iclog is
3174 * exclusively for this transaction. i.e. if the transaction is larger
3175 * than the iclog, it will be the only thing in that iclog.
3176 * Fundamentally, this means we must pass the entire log vector to
3177 * xlog_write to guarantee this.
3178 */
3179 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3180 num_headers = howmany(unit_bytes, iclog_space);
3181
3182 /* for split-recs - ophdrs added when data split over LRs */
3183 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3184
3185 /* add extra header reservations if we overrun */
3186 while (!num_headers ||
3187 howmany(unit_bytes, iclog_space) > num_headers) {
3188 unit_bytes += sizeof(xlog_op_header_t);
3189 num_headers++;
3190 }
3191 unit_bytes += log->l_iclog_hsize * num_headers;
3192
3193 /* for commit-rec LR header - note: padding will subsume the ophdr */
3194 unit_bytes += log->l_iclog_hsize;
3195
3196 /* roundoff padding for transaction data and one for commit record */
3197 unit_bytes += 2 * log->l_iclog_roundoff;
3198
3199 if (niclogs)
3200 *niclogs = num_headers;
3201 return unit_bytes;
3202 }
3203
3204 int
xfs_log_calc_unit_res(struct xfs_mount * mp,int unit_bytes)3205 xfs_log_calc_unit_res(
3206 struct xfs_mount *mp,
3207 int unit_bytes)
3208 {
3209 return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL);
3210 }
3211
3212 /*
3213 * Allocate and initialise a new log ticket.
3214 */
3215 struct xlog_ticket *
xlog_ticket_alloc(struct xlog * log,int unit_bytes,int cnt,bool permanent)3216 xlog_ticket_alloc(
3217 struct xlog *log,
3218 int unit_bytes,
3219 int cnt,
3220 bool permanent)
3221 {
3222 struct xlog_ticket *tic;
3223 int unit_res;
3224
3225 tic = kmem_cache_zalloc(xfs_log_ticket_cache,
3226 GFP_KERNEL | __GFP_NOFAIL);
3227
3228 unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs);
3229
3230 atomic_set(&tic->t_ref, 1);
3231 tic->t_task = current;
3232 INIT_LIST_HEAD(&tic->t_queue);
3233 tic->t_unit_res = unit_res;
3234 tic->t_curr_res = unit_res;
3235 tic->t_cnt = cnt;
3236 tic->t_ocnt = cnt;
3237 tic->t_tid = get_random_u32();
3238 if (permanent)
3239 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3240
3241 return tic;
3242 }
3243
3244 #if defined(DEBUG)
3245 static void
xlog_verify_dump_tail(struct xlog * log,struct xlog_in_core * iclog)3246 xlog_verify_dump_tail(
3247 struct xlog *log,
3248 struct xlog_in_core *iclog)
3249 {
3250 xfs_alert(log->l_mp,
3251 "ran out of log space tail 0x%llx/0x%llx, head lsn 0x%llx, head 0x%x/0x%x, prev head 0x%x/0x%x",
3252 iclog ? be64_to_cpu(iclog->ic_header.h_tail_lsn) : -1,
3253 atomic64_read(&log->l_tail_lsn),
3254 log->l_ailp->ail_head_lsn,
3255 log->l_curr_cycle, log->l_curr_block,
3256 log->l_prev_cycle, log->l_prev_block);
3257 xfs_alert(log->l_mp,
3258 "write grant 0x%llx, reserve grant 0x%llx, tail_space 0x%llx, size 0x%x, iclog flags 0x%x",
3259 atomic64_read(&log->l_write_head.grant),
3260 atomic64_read(&log->l_reserve_head.grant),
3261 log->l_tail_space, log->l_logsize,
3262 iclog ? iclog->ic_flags : -1);
3263 }
3264
3265 /* Check if the new iclog will fit in the log. */
3266 STATIC void
xlog_verify_tail_lsn(struct xlog * log,struct xlog_in_core * iclog)3267 xlog_verify_tail_lsn(
3268 struct xlog *log,
3269 struct xlog_in_core *iclog)
3270 {
3271 xfs_lsn_t tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3272 int blocks;
3273
3274 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3275 blocks = log->l_logBBsize -
3276 (log->l_prev_block - BLOCK_LSN(tail_lsn));
3277 if (blocks < BTOBB(iclog->ic_offset) +
3278 BTOBB(log->l_iclog_hsize)) {
3279 xfs_emerg(log->l_mp,
3280 "%s: ran out of log space", __func__);
3281 xlog_verify_dump_tail(log, iclog);
3282 }
3283 return;
3284 }
3285
3286 if (CYCLE_LSN(tail_lsn) + 1 != log->l_prev_cycle) {
3287 xfs_emerg(log->l_mp, "%s: head has wrapped tail.", __func__);
3288 xlog_verify_dump_tail(log, iclog);
3289 return;
3290 }
3291 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) {
3292 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3293 xlog_verify_dump_tail(log, iclog);
3294 return;
3295 }
3296
3297 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3298 if (blocks < BTOBB(iclog->ic_offset) + 1) {
3299 xfs_emerg(log->l_mp, "%s: ran out of iclog space", __func__);
3300 xlog_verify_dump_tail(log, iclog);
3301 }
3302 }
3303
3304 /*
3305 * Perform a number of checks on the iclog before writing to disk.
3306 *
3307 * 1. Make sure the iclogs are still circular
3308 * 2. Make sure we have a good magic number
3309 * 3. Make sure we don't have magic numbers in the data
3310 * 4. Check fields of each log operation header for:
3311 * A. Valid client identifier
3312 * B. tid ptr value falls in valid ptr space (user space code)
3313 * C. Length in log record header is correct according to the
3314 * individual operation headers within record.
3315 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3316 * log, check the preceding blocks of the physical log to make sure all
3317 * the cycle numbers agree with the current cycle number.
3318 */
3319 STATIC void
xlog_verify_iclog(struct xlog * log,struct xlog_in_core * iclog,int count)3320 xlog_verify_iclog(
3321 struct xlog *log,
3322 struct xlog_in_core *iclog,
3323 int count)
3324 {
3325 xlog_op_header_t *ophead;
3326 xlog_in_core_t *icptr;
3327 xlog_in_core_2_t *xhdr;
3328 void *base_ptr, *ptr, *p;
3329 ptrdiff_t field_offset;
3330 uint8_t clientid;
3331 int len, i, j, k, op_len;
3332 int idx;
3333
3334 /* check validity of iclog pointers */
3335 spin_lock(&log->l_icloglock);
3336 icptr = log->l_iclog;
3337 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3338 ASSERT(icptr);
3339
3340 if (icptr != log->l_iclog)
3341 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3342 spin_unlock(&log->l_icloglock);
3343
3344 /* check log magic numbers */
3345 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3346 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3347
3348 base_ptr = ptr = &iclog->ic_header;
3349 p = &iclog->ic_header;
3350 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3351 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3352 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3353 __func__);
3354 }
3355
3356 /* check fields */
3357 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3358 base_ptr = ptr = iclog->ic_datap;
3359 ophead = ptr;
3360 xhdr = iclog->ic_data;
3361 for (i = 0; i < len; i++) {
3362 ophead = ptr;
3363
3364 /* clientid is only 1 byte */
3365 p = &ophead->oh_clientid;
3366 field_offset = p - base_ptr;
3367 if (field_offset & 0x1ff) {
3368 clientid = ophead->oh_clientid;
3369 } else {
3370 idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap);
3371 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3372 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3373 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3374 clientid = xlog_get_client_id(
3375 xhdr[j].hic_xheader.xh_cycle_data[k]);
3376 } else {
3377 clientid = xlog_get_client_id(
3378 iclog->ic_header.h_cycle_data[idx]);
3379 }
3380 }
3381 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) {
3382 xfs_warn(log->l_mp,
3383 "%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx",
3384 __func__, i, clientid, ophead,
3385 (unsigned long)field_offset);
3386 }
3387
3388 /* check length */
3389 p = &ophead->oh_len;
3390 field_offset = p - base_ptr;
3391 if (field_offset & 0x1ff) {
3392 op_len = be32_to_cpu(ophead->oh_len);
3393 } else {
3394 idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap);
3395 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3396 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3397 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3398 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3399 } else {
3400 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3401 }
3402 }
3403 ptr += sizeof(xlog_op_header_t) + op_len;
3404 }
3405 }
3406 #endif
3407
3408 /*
3409 * Perform a forced shutdown on the log.
3410 *
3411 * This can be called from low level log code to trigger a shutdown, or from the
3412 * high level mount shutdown code when the mount shuts down.
3413 *
3414 * Our main objectives here are to make sure that:
3415 * a. if the shutdown was not due to a log IO error, flush the logs to
3416 * disk. Anything modified after this is ignored.
3417 * b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3418 * parties to find out. Nothing new gets queued after this is done.
3419 * c. Tasks sleeping on log reservations, pinned objects and
3420 * other resources get woken up.
3421 * d. The mount is also marked as shut down so that log triggered shutdowns
3422 * still behave the same as if they called xfs_forced_shutdown().
3423 *
3424 * Return true if the shutdown cause was a log IO error and we actually shut the
3425 * log down.
3426 */
3427 bool
xlog_force_shutdown(struct xlog * log,uint32_t shutdown_flags)3428 xlog_force_shutdown(
3429 struct xlog *log,
3430 uint32_t shutdown_flags)
3431 {
3432 bool log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
3433
3434 if (!log)
3435 return false;
3436
3437 /*
3438 * Ensure that there is only ever one log shutdown being processed.
3439 * If we allow the log force below on a second pass after shutting
3440 * down the log, we risk deadlocking the CIL push as it may require
3441 * locks on objects the current shutdown context holds (e.g. taking
3442 * buffer locks to abort buffers on last unpin of buf log items).
3443 */
3444 if (test_and_set_bit(XLOG_SHUTDOWN_STARTED, &log->l_opstate))
3445 return false;
3446
3447 /*
3448 * Flush all the completed transactions to disk before marking the log
3449 * being shut down. We need to do this first as shutting down the log
3450 * before the force will prevent the log force from flushing the iclogs
3451 * to disk.
3452 *
3453 * When we are in recovery, there are no transactions to flush, and
3454 * we don't want to touch the log because we don't want to perturb the
3455 * current head/tail for future recovery attempts. Hence we need to
3456 * avoid a log force in this case.
3457 *
3458 * If we are shutting down due to a log IO error, then we must avoid
3459 * trying to write the log as that may just result in more IO errors and
3460 * an endless shutdown/force loop.
3461 */
3462 if (!log_error && !xlog_in_recovery(log))
3463 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3464
3465 /*
3466 * Atomically set the shutdown state. If the shutdown state is already
3467 * set, there someone else is performing the shutdown and so we are done
3468 * here. This should never happen because we should only ever get called
3469 * once by the first shutdown caller.
3470 *
3471 * Much of the log state machine transitions assume that shutdown state
3472 * cannot change once they hold the log->l_icloglock. Hence we need to
3473 * hold that lock here, even though we use the atomic test_and_set_bit()
3474 * operation to set the shutdown state.
3475 */
3476 spin_lock(&log->l_icloglock);
3477 if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3478 spin_unlock(&log->l_icloglock);
3479 ASSERT(0);
3480 return false;
3481 }
3482 spin_unlock(&log->l_icloglock);
3483
3484 /*
3485 * If this log shutdown also sets the mount shutdown state, issue a
3486 * shutdown warning message.
3487 */
3488 if (!xfs_set_shutdown(log->l_mp)) {
3489 xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR,
3490 "Filesystem has been shut down due to log error (0x%x).",
3491 shutdown_flags);
3492 xfs_alert(log->l_mp,
3493 "Please unmount the filesystem and rectify the problem(s).");
3494 if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
3495 xfs_stack_trace();
3496 }
3497
3498 /*
3499 * We don't want anybody waiting for log reservations after this. That
3500 * means we have to wake up everybody queued up on reserveq as well as
3501 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3502 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3503 * action is protected by the grant locks.
3504 */
3505 xlog_grant_head_wake_all(&log->l_reserve_head);
3506 xlog_grant_head_wake_all(&log->l_write_head);
3507
3508 /*
3509 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3510 * as if the log writes were completed. The abort handling in the log
3511 * item committed callback functions will do this again under lock to
3512 * avoid races.
3513 */
3514 spin_lock(&log->l_cilp->xc_push_lock);
3515 wake_up_all(&log->l_cilp->xc_start_wait);
3516 wake_up_all(&log->l_cilp->xc_commit_wait);
3517 spin_unlock(&log->l_cilp->xc_push_lock);
3518
3519 spin_lock(&log->l_icloglock);
3520 xlog_state_shutdown_callbacks(log);
3521 spin_unlock(&log->l_icloglock);
3522
3523 wake_up_var(&log->l_opstate);
3524 if (IS_ENABLED(CONFIG_XFS_RT) && xfs_has_zoned(log->l_mp))
3525 xfs_zoned_wake_all(log->l_mp);
3526
3527 return log_error;
3528 }
3529
3530 STATIC int
xlog_iclogs_empty(struct xlog * log)3531 xlog_iclogs_empty(
3532 struct xlog *log)
3533 {
3534 xlog_in_core_t *iclog;
3535
3536 iclog = log->l_iclog;
3537 do {
3538 /* endianness does not matter here, zero is zero in
3539 * any language.
3540 */
3541 if (iclog->ic_header.h_num_logops)
3542 return 0;
3543 iclog = iclog->ic_next;
3544 } while (iclog != log->l_iclog);
3545 return 1;
3546 }
3547
3548 /*
3549 * Verify that an LSN stamped into a piece of metadata is valid. This is
3550 * intended for use in read verifiers on v5 superblocks.
3551 */
3552 bool
xfs_log_check_lsn(struct xfs_mount * mp,xfs_lsn_t lsn)3553 xfs_log_check_lsn(
3554 struct xfs_mount *mp,
3555 xfs_lsn_t lsn)
3556 {
3557 struct xlog *log = mp->m_log;
3558 bool valid;
3559
3560 /*
3561 * norecovery mode skips mount-time log processing and unconditionally
3562 * resets the in-core LSN. We can't validate in this mode, but
3563 * modifications are not allowed anyways so just return true.
3564 */
3565 if (xfs_has_norecovery(mp))
3566 return true;
3567
3568 /*
3569 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3570 * handled by recovery and thus safe to ignore here.
3571 */
3572 if (lsn == NULLCOMMITLSN)
3573 return true;
3574
3575 valid = xlog_valid_lsn(mp->m_log, lsn);
3576
3577 /* warn the user about what's gone wrong before verifier failure */
3578 if (!valid) {
3579 spin_lock(&log->l_icloglock);
3580 xfs_warn(mp,
3581 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3582 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3583 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3584 log->l_curr_cycle, log->l_curr_block);
3585 spin_unlock(&log->l_icloglock);
3586 }
3587
3588 return valid;
3589 }
3590