xref: /linux/fs/xfs/xfs_log.c (revision a3d14d1602ca11429d242d230c31af8f822f614f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23 #include "xfs_zone_alloc.h"
24 
25 struct kmem_cache	*xfs_log_ticket_cache;
26 
27 /* Local miscellaneous function prototypes */
28 STATIC struct xlog *
29 xlog_alloc_log(
30 	struct xfs_mount	*mp,
31 	struct xfs_buftarg	*log_target,
32 	xfs_daddr_t		blk_offset,
33 	int			num_bblks);
34 STATIC void
35 xlog_dealloc_log(
36 	struct xlog		*log);
37 
38 /* local state machine functions */
39 STATIC void xlog_state_done_syncing(
40 	struct xlog_in_core	*iclog);
41 STATIC void xlog_state_do_callback(
42 	struct xlog		*log);
43 STATIC int
44 xlog_state_get_iclog_space(
45 	struct xlog		*log,
46 	int			len,
47 	struct xlog_in_core	**iclog,
48 	struct xlog_ticket	*ticket,
49 	int			*logoffsetp);
50 STATIC void
51 xlog_sync(
52 	struct xlog		*log,
53 	struct xlog_in_core	*iclog,
54 	struct xlog_ticket	*ticket);
55 #if defined(DEBUG)
56 STATIC void
57 xlog_verify_iclog(
58 	struct xlog		*log,
59 	struct xlog_in_core	*iclog,
60 	int			count);
61 STATIC void
62 xlog_verify_tail_lsn(
63 	struct xlog		*log,
64 	struct xlog_in_core	*iclog);
65 #else
66 #define xlog_verify_iclog(a,b,c)
67 #define xlog_verify_tail_lsn(a,b)
68 #endif
69 
70 STATIC int
71 xlog_iclogs_empty(
72 	struct xlog		*log);
73 
74 static int
75 xfs_log_cover(struct xfs_mount *);
76 
77 /*
78  * We need to make sure the buffer pointer returned is naturally aligned for the
79  * biggest basic data type we put into it. We have already accounted for this
80  * padding when sizing the buffer.
81  *
82  * However, this padding does not get written into the log, and hence we have to
83  * track the space used by the log vectors separately to prevent log space hangs
84  * due to inaccurate accounting (i.e. a leak) of the used log space through the
85  * CIL context ticket.
86  *
87  * We also add space for the xlog_op_header that describes this region in the
88  * log. This prepends the data region we return to the caller to copy their data
89  * into, so do all the static initialisation of the ophdr now. Because the ophdr
90  * is not 8 byte aligned, we have to be careful to ensure that we align the
91  * start of the buffer such that the region we return to the call is 8 byte
92  * aligned and packed against the tail of the ophdr.
93  */
94 void *
xlog_prepare_iovec(struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp,uint type)95 xlog_prepare_iovec(
96 	struct xfs_log_vec	*lv,
97 	struct xfs_log_iovec	**vecp,
98 	uint			type)
99 {
100 	struct xfs_log_iovec	*vec = *vecp;
101 	struct xlog_op_header	*oph;
102 	uint32_t		len;
103 	void			*buf;
104 
105 	if (vec) {
106 		ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs);
107 		vec++;
108 	} else {
109 		vec = &lv->lv_iovecp[0];
110 	}
111 
112 	len = lv->lv_buf_len + sizeof(struct xlog_op_header);
113 	if (!IS_ALIGNED(len, sizeof(uint64_t))) {
114 		lv->lv_buf_len = round_up(len, sizeof(uint64_t)) -
115 					sizeof(struct xlog_op_header);
116 	}
117 
118 	vec->i_type = type;
119 	vec->i_addr = lv->lv_buf + lv->lv_buf_len;
120 
121 	oph = vec->i_addr;
122 	oph->oh_clientid = XFS_TRANSACTION;
123 	oph->oh_res2 = 0;
124 	oph->oh_flags = 0;
125 
126 	buf = vec->i_addr + sizeof(struct xlog_op_header);
127 	ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t)));
128 
129 	*vecp = vec;
130 	return buf;
131 }
132 
133 static inline void
xlog_grant_sub_space(struct xlog_grant_head * head,int64_t bytes)134 xlog_grant_sub_space(
135 	struct xlog_grant_head	*head,
136 	int64_t			bytes)
137 {
138 	atomic64_sub(bytes, &head->grant);
139 }
140 
141 static inline void
xlog_grant_add_space(struct xlog_grant_head * head,int64_t bytes)142 xlog_grant_add_space(
143 	struct xlog_grant_head	*head,
144 	int64_t			bytes)
145 {
146 	atomic64_add(bytes, &head->grant);
147 }
148 
149 static void
xlog_grant_head_init(struct xlog_grant_head * head)150 xlog_grant_head_init(
151 	struct xlog_grant_head	*head)
152 {
153 	atomic64_set(&head->grant, 0);
154 	INIT_LIST_HEAD(&head->waiters);
155 	spin_lock_init(&head->lock);
156 }
157 
158 void
xlog_grant_return_space(struct xlog * log,xfs_lsn_t old_head,xfs_lsn_t new_head)159 xlog_grant_return_space(
160 	struct xlog	*log,
161 	xfs_lsn_t	old_head,
162 	xfs_lsn_t	new_head)
163 {
164 	int64_t		diff = xlog_lsn_sub(log, new_head, old_head);
165 
166 	xlog_grant_sub_space(&log->l_reserve_head, diff);
167 	xlog_grant_sub_space(&log->l_write_head, diff);
168 }
169 
170 /*
171  * Return the space in the log between the tail and the head.  In the case where
172  * we have overrun available reservation space, return 0. The memory barrier
173  * pairs with the smp_wmb() in xlog_cil_ail_insert() to ensure that grant head
174  * vs tail space updates are seen in the correct order and hence avoid
175  * transients as space is transferred from the grant heads to the AIL on commit
176  * completion.
177  */
178 static uint64_t
xlog_grant_space_left(struct xlog * log,struct xlog_grant_head * head)179 xlog_grant_space_left(
180 	struct xlog		*log,
181 	struct xlog_grant_head	*head)
182 {
183 	int64_t			free_bytes;
184 
185 	smp_rmb();	/* paired with smp_wmb in xlog_cil_ail_insert() */
186 	free_bytes = log->l_logsize - READ_ONCE(log->l_tail_space) -
187 			atomic64_read(&head->grant);
188 	if (free_bytes > 0)
189 		return free_bytes;
190 	return 0;
191 }
192 
193 STATIC void
xlog_grant_head_wake_all(struct xlog_grant_head * head)194 xlog_grant_head_wake_all(
195 	struct xlog_grant_head	*head)
196 {
197 	struct xlog_ticket	*tic;
198 
199 	spin_lock(&head->lock);
200 	list_for_each_entry(tic, &head->waiters, t_queue)
201 		wake_up_process(tic->t_task);
202 	spin_unlock(&head->lock);
203 }
204 
205 static inline int
xlog_ticket_reservation(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic)206 xlog_ticket_reservation(
207 	struct xlog		*log,
208 	struct xlog_grant_head	*head,
209 	struct xlog_ticket	*tic)
210 {
211 	if (head == &log->l_write_head) {
212 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
213 		return tic->t_unit_res;
214 	}
215 
216 	if (tic->t_flags & XLOG_TIC_PERM_RESERV)
217 		return tic->t_unit_res * tic->t_cnt;
218 
219 	return tic->t_unit_res;
220 }
221 
222 STATIC bool
xlog_grant_head_wake(struct xlog * log,struct xlog_grant_head * head,int * free_bytes)223 xlog_grant_head_wake(
224 	struct xlog		*log,
225 	struct xlog_grant_head	*head,
226 	int			*free_bytes)
227 {
228 	struct xlog_ticket	*tic;
229 	int			need_bytes;
230 
231 	list_for_each_entry(tic, &head->waiters, t_queue) {
232 		need_bytes = xlog_ticket_reservation(log, head, tic);
233 		if (*free_bytes < need_bytes)
234 			return false;
235 
236 		*free_bytes -= need_bytes;
237 		trace_xfs_log_grant_wake_up(log, tic);
238 		wake_up_process(tic->t_task);
239 	}
240 
241 	return true;
242 }
243 
244 STATIC int
xlog_grant_head_wait(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int need_bytes)245 xlog_grant_head_wait(
246 	struct xlog		*log,
247 	struct xlog_grant_head	*head,
248 	struct xlog_ticket	*tic,
249 	int			need_bytes) __releases(&head->lock)
250 					    __acquires(&head->lock)
251 {
252 	list_add_tail(&tic->t_queue, &head->waiters);
253 
254 	do {
255 		if (xlog_is_shutdown(log))
256 			goto shutdown;
257 
258 		__set_current_state(TASK_UNINTERRUPTIBLE);
259 		spin_unlock(&head->lock);
260 
261 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
262 
263 		/* Push on the AIL to free up all the log space. */
264 		xfs_ail_push_all(log->l_ailp);
265 
266 		trace_xfs_log_grant_sleep(log, tic);
267 		schedule();
268 		trace_xfs_log_grant_wake(log, tic);
269 
270 		spin_lock(&head->lock);
271 		if (xlog_is_shutdown(log))
272 			goto shutdown;
273 	} while (xlog_grant_space_left(log, head) < need_bytes);
274 
275 	list_del_init(&tic->t_queue);
276 	return 0;
277 shutdown:
278 	list_del_init(&tic->t_queue);
279 	return -EIO;
280 }
281 
282 /*
283  * Atomically get the log space required for a log ticket.
284  *
285  * Once a ticket gets put onto head->waiters, it will only return after the
286  * needed reservation is satisfied.
287  *
288  * This function is structured so that it has a lock free fast path. This is
289  * necessary because every new transaction reservation will come through this
290  * path. Hence any lock will be globally hot if we take it unconditionally on
291  * every pass.
292  *
293  * As tickets are only ever moved on and off head->waiters under head->lock, we
294  * only need to take that lock if we are going to add the ticket to the queue
295  * and sleep. We can avoid taking the lock if the ticket was never added to
296  * head->waiters because the t_queue list head will be empty and we hold the
297  * only reference to it so it can safely be checked unlocked.
298  */
299 STATIC int
xlog_grant_head_check(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int * need_bytes)300 xlog_grant_head_check(
301 	struct xlog		*log,
302 	struct xlog_grant_head	*head,
303 	struct xlog_ticket	*tic,
304 	int			*need_bytes)
305 {
306 	int			free_bytes;
307 	int			error = 0;
308 
309 	ASSERT(!xlog_in_recovery(log));
310 
311 	/*
312 	 * If there are other waiters on the queue then give them a chance at
313 	 * logspace before us.  Wake up the first waiters, if we do not wake
314 	 * up all the waiters then go to sleep waiting for more free space,
315 	 * otherwise try to get some space for this transaction.
316 	 */
317 	*need_bytes = xlog_ticket_reservation(log, head, tic);
318 	free_bytes = xlog_grant_space_left(log, head);
319 	if (!list_empty_careful(&head->waiters)) {
320 		spin_lock(&head->lock);
321 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
322 		    free_bytes < *need_bytes) {
323 			error = xlog_grant_head_wait(log, head, tic,
324 						     *need_bytes);
325 		}
326 		spin_unlock(&head->lock);
327 	} else if (free_bytes < *need_bytes) {
328 		spin_lock(&head->lock);
329 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
330 		spin_unlock(&head->lock);
331 	}
332 
333 	return error;
334 }
335 
336 bool
xfs_log_writable(struct xfs_mount * mp)337 xfs_log_writable(
338 	struct xfs_mount	*mp)
339 {
340 	/*
341 	 * Do not write to the log on norecovery mounts, if the data or log
342 	 * devices are read-only, or if the filesystem is shutdown. Read-only
343 	 * mounts allow internal writes for log recovery and unmount purposes,
344 	 * so don't restrict that case.
345 	 */
346 	if (xfs_has_norecovery(mp))
347 		return false;
348 	if (xfs_readonly_buftarg(mp->m_ddev_targp))
349 		return false;
350 	if (xfs_readonly_buftarg(mp->m_log->l_targ))
351 		return false;
352 	if (xlog_is_shutdown(mp->m_log))
353 		return false;
354 	return true;
355 }
356 
357 /*
358  * Replenish the byte reservation required by moving the grant write head.
359  */
360 int
xfs_log_regrant(struct xfs_mount * mp,struct xlog_ticket * tic)361 xfs_log_regrant(
362 	struct xfs_mount	*mp,
363 	struct xlog_ticket	*tic)
364 {
365 	struct xlog		*log = mp->m_log;
366 	int			need_bytes;
367 	int			error = 0;
368 
369 	if (xlog_is_shutdown(log))
370 		return -EIO;
371 
372 	XFS_STATS_INC(mp, xs_try_logspace);
373 
374 	/*
375 	 * This is a new transaction on the ticket, so we need to change the
376 	 * transaction ID so that the next transaction has a different TID in
377 	 * the log. Just add one to the existing tid so that we can see chains
378 	 * of rolling transactions in the log easily.
379 	 */
380 	tic->t_tid++;
381 	tic->t_curr_res = tic->t_unit_res;
382 	if (tic->t_cnt > 0)
383 		return 0;
384 
385 	trace_xfs_log_regrant(log, tic);
386 
387 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
388 				      &need_bytes);
389 	if (error)
390 		goto out_error;
391 
392 	xlog_grant_add_space(&log->l_write_head, need_bytes);
393 	trace_xfs_log_regrant_exit(log, tic);
394 	return 0;
395 
396 out_error:
397 	/*
398 	 * If we are failing, make sure the ticket doesn't have any current
399 	 * reservations.  We don't want to add this back when the ticket/
400 	 * transaction gets cancelled.
401 	 */
402 	tic->t_curr_res = 0;
403 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
404 	return error;
405 }
406 
407 /*
408  * Reserve log space and return a ticket corresponding to the reservation.
409  *
410  * Each reservation is going to reserve extra space for a log record header.
411  * When writes happen to the on-disk log, we don't subtract the length of the
412  * log record header from any reservation.  By wasting space in each
413  * reservation, we prevent over allocation problems.
414  */
415 int
xfs_log_reserve(struct xfs_mount * mp,int unit_bytes,int cnt,struct xlog_ticket ** ticp,bool permanent)416 xfs_log_reserve(
417 	struct xfs_mount	*mp,
418 	int			unit_bytes,
419 	int			cnt,
420 	struct xlog_ticket	**ticp,
421 	bool			permanent)
422 {
423 	struct xlog		*log = mp->m_log;
424 	struct xlog_ticket	*tic;
425 	int			need_bytes;
426 	int			error = 0;
427 
428 	if (xlog_is_shutdown(log))
429 		return -EIO;
430 
431 	XFS_STATS_INC(mp, xs_try_logspace);
432 
433 	ASSERT(*ticp == NULL);
434 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent);
435 	*ticp = tic;
436 	trace_xfs_log_reserve(log, tic);
437 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
438 				      &need_bytes);
439 	if (error)
440 		goto out_error;
441 
442 	xlog_grant_add_space(&log->l_reserve_head, need_bytes);
443 	xlog_grant_add_space(&log->l_write_head, need_bytes);
444 	trace_xfs_log_reserve_exit(log, tic);
445 	return 0;
446 
447 out_error:
448 	/*
449 	 * If we are failing, make sure the ticket doesn't have any current
450 	 * reservations.  We don't want to add this back when the ticket/
451 	 * transaction gets cancelled.
452 	 */
453 	tic->t_curr_res = 0;
454 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
455 	return error;
456 }
457 
458 /*
459  * Run all the pending iclog callbacks and wake log force waiters and iclog
460  * space waiters so they can process the newly set shutdown state. We really
461  * don't care what order we process callbacks here because the log is shut down
462  * and so state cannot change on disk anymore. However, we cannot wake waiters
463  * until the callbacks have been processed because we may be in unmount and
464  * we must ensure that all AIL operations the callbacks perform have completed
465  * before we tear down the AIL.
466  *
467  * We avoid processing actively referenced iclogs so that we don't run callbacks
468  * while the iclog owner might still be preparing the iclog for IO submssion.
469  * These will be caught by xlog_state_iclog_release() and call this function
470  * again to process any callbacks that may have been added to that iclog.
471  */
472 static void
xlog_state_shutdown_callbacks(struct xlog * log)473 xlog_state_shutdown_callbacks(
474 	struct xlog		*log)
475 {
476 	struct xlog_in_core	*iclog;
477 	LIST_HEAD(cb_list);
478 
479 	iclog = log->l_iclog;
480 	do {
481 		if (atomic_read(&iclog->ic_refcnt)) {
482 			/* Reference holder will re-run iclog callbacks. */
483 			continue;
484 		}
485 		list_splice_init(&iclog->ic_callbacks, &cb_list);
486 		spin_unlock(&log->l_icloglock);
487 
488 		xlog_cil_process_committed(&cb_list);
489 
490 		spin_lock(&log->l_icloglock);
491 		wake_up_all(&iclog->ic_write_wait);
492 		wake_up_all(&iclog->ic_force_wait);
493 	} while ((iclog = iclog->ic_next) != log->l_iclog);
494 
495 	wake_up_all(&log->l_flush_wait);
496 }
497 
498 /*
499  * Flush iclog to disk if this is the last reference to the given iclog and the
500  * it is in the WANT_SYNC state.
501  *
502  * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
503  * log tail is updated correctly. NEED_FUA indicates that the iclog will be
504  * written to stable storage, and implies that a commit record is contained
505  * within the iclog. We need to ensure that the log tail does not move beyond
506  * the tail that the first commit record in the iclog ordered against, otherwise
507  * correct recovery of that checkpoint becomes dependent on future operations
508  * performed on this iclog.
509  *
510  * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
511  * current tail into iclog. Once the iclog tail is set, future operations must
512  * not modify it, otherwise they potentially violate ordering constraints for
513  * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
514  * the iclog will get zeroed on activation of the iclog after sync, so we
515  * always capture the tail lsn on the iclog on the first NEED_FUA release
516  * regardless of the number of active reference counts on this iclog.
517  */
518 int
xlog_state_release_iclog(struct xlog * log,struct xlog_in_core * iclog,struct xlog_ticket * ticket)519 xlog_state_release_iclog(
520 	struct xlog		*log,
521 	struct xlog_in_core	*iclog,
522 	struct xlog_ticket	*ticket)
523 {
524 	bool			last_ref;
525 
526 	lockdep_assert_held(&log->l_icloglock);
527 
528 	trace_xlog_iclog_release(iclog, _RET_IP_);
529 	/*
530 	 * Grabbing the current log tail needs to be atomic w.r.t. the writing
531 	 * of the tail LSN into the iclog so we guarantee that the log tail does
532 	 * not move between the first time we know that the iclog needs to be
533 	 * made stable and when we eventually submit it.
534 	 */
535 	if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
536 	     (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
537 	    !iclog->ic_header.h_tail_lsn) {
538 		iclog->ic_header.h_tail_lsn =
539 				cpu_to_be64(atomic64_read(&log->l_tail_lsn));
540 	}
541 
542 	last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
543 
544 	if (xlog_is_shutdown(log)) {
545 		/*
546 		 * If there are no more references to this iclog, process the
547 		 * pending iclog callbacks that were waiting on the release of
548 		 * this iclog.
549 		 */
550 		if (last_ref)
551 			xlog_state_shutdown_callbacks(log);
552 		return -EIO;
553 	}
554 
555 	if (!last_ref)
556 		return 0;
557 
558 	if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
559 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
560 		return 0;
561 	}
562 
563 	iclog->ic_state = XLOG_STATE_SYNCING;
564 	xlog_verify_tail_lsn(log, iclog);
565 	trace_xlog_iclog_syncing(iclog, _RET_IP_);
566 
567 	spin_unlock(&log->l_icloglock);
568 	xlog_sync(log, iclog, ticket);
569 	spin_lock(&log->l_icloglock);
570 	return 0;
571 }
572 
573 /*
574  * Mount a log filesystem
575  *
576  * mp		- ubiquitous xfs mount point structure
577  * log_target	- buftarg of on-disk log device
578  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
579  * num_bblocks	- Number of BBSIZE blocks in on-disk log
580  *
581  * Return error or zero.
582  */
583 int
xfs_log_mount(xfs_mount_t * mp,struct xfs_buftarg * log_target,xfs_daddr_t blk_offset,int num_bblks)584 xfs_log_mount(
585 	xfs_mount_t		*mp,
586 	struct xfs_buftarg	*log_target,
587 	xfs_daddr_t		blk_offset,
588 	int			num_bblks)
589 {
590 	struct xlog		*log;
591 	int			error = 0;
592 	int			min_logfsbs;
593 
594 	if (!xfs_has_norecovery(mp)) {
595 		xfs_notice(mp, "Mounting V%d Filesystem %pU",
596 			   XFS_SB_VERSION_NUM(&mp->m_sb),
597 			   &mp->m_sb.sb_uuid);
598 	} else {
599 		xfs_notice(mp,
600 "Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.",
601 			   XFS_SB_VERSION_NUM(&mp->m_sb),
602 			   &mp->m_sb.sb_uuid);
603 		ASSERT(xfs_is_readonly(mp));
604 	}
605 
606 	log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
607 	if (IS_ERR(log)) {
608 		error = PTR_ERR(log);
609 		goto out;
610 	}
611 	mp->m_log = log;
612 
613 	/*
614 	 * Now that we have set up the log and it's internal geometry
615 	 * parameters, we can validate the given log space and drop a critical
616 	 * message via syslog if the log size is too small. A log that is too
617 	 * small can lead to unexpected situations in transaction log space
618 	 * reservation stage. The superblock verifier has already validated all
619 	 * the other log geometry constraints, so we don't have to check those
620 	 * here.
621 	 *
622 	 * Note: For v4 filesystems, we can't just reject the mount if the
623 	 * validation fails.  This would mean that people would have to
624 	 * downgrade their kernel just to remedy the situation as there is no
625 	 * way to grow the log (short of black magic surgery with xfs_db).
626 	 *
627 	 * We can, however, reject mounts for V5 format filesystems, as the
628 	 * mkfs binary being used to make the filesystem should never create a
629 	 * filesystem with a log that is too small.
630 	 */
631 	min_logfsbs = xfs_log_calc_minimum_size(mp);
632 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
633 		xfs_warn(mp,
634 		"Log size %d blocks too small, minimum size is %d blocks",
635 			 mp->m_sb.sb_logblocks, min_logfsbs);
636 
637 		/*
638 		 * Log check errors are always fatal on v5; or whenever bad
639 		 * metadata leads to a crash.
640 		 */
641 		if (xfs_has_crc(mp)) {
642 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
643 			ASSERT(0);
644 			error = -EINVAL;
645 			goto out_free_log;
646 		}
647 		xfs_crit(mp, "Log size out of supported range.");
648 		xfs_crit(mp,
649 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
650 	}
651 
652 	/*
653 	 * Initialize the AIL now we have a log.
654 	 */
655 	error = xfs_trans_ail_init(mp);
656 	if (error) {
657 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
658 		goto out_free_log;
659 	}
660 	log->l_ailp = mp->m_ail;
661 
662 	/*
663 	 * skip log recovery on a norecovery mount.  pretend it all
664 	 * just worked.
665 	 */
666 	if (!xfs_has_norecovery(mp)) {
667 		error = xlog_recover(log);
668 		if (error) {
669 			xfs_warn(mp, "log mount/recovery failed: error %d",
670 				error);
671 			xlog_recover_cancel(log);
672 			goto out_destroy_ail;
673 		}
674 	}
675 
676 	error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
677 			       "log");
678 	if (error)
679 		goto out_destroy_ail;
680 
681 	/* Normal transactions can now occur */
682 	clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
683 
684 	/*
685 	 * Now the log has been fully initialised and we know were our
686 	 * space grant counters are, we can initialise the permanent ticket
687 	 * needed for delayed logging to work.
688 	 */
689 	xlog_cil_init_post_recovery(log);
690 
691 	return 0;
692 
693 out_destroy_ail:
694 	xfs_trans_ail_destroy(mp);
695 out_free_log:
696 	xlog_dealloc_log(log);
697 out:
698 	return error;
699 }
700 
701 /*
702  * Finish the recovery of the file system.  This is separate from the
703  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
704  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
705  * here.
706  *
707  * If we finish recovery successfully, start the background log work. If we are
708  * not doing recovery, then we have a RO filesystem and we don't need to start
709  * it.
710  */
711 int
xfs_log_mount_finish(struct xfs_mount * mp)712 xfs_log_mount_finish(
713 	struct xfs_mount	*mp)
714 {
715 	struct xlog		*log = mp->m_log;
716 	int			error = 0;
717 
718 	if (xfs_has_norecovery(mp)) {
719 		ASSERT(xfs_is_readonly(mp));
720 		return 0;
721 	}
722 
723 	/*
724 	 * During the second phase of log recovery, we need iget and
725 	 * iput to behave like they do for an active filesystem.
726 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
727 	 * of inodes before we're done replaying log items on those
728 	 * inodes.  Turn it off immediately after recovery finishes
729 	 * so that we don't leak the quota inodes if subsequent mount
730 	 * activities fail.
731 	 *
732 	 * We let all inodes involved in redo item processing end up on
733 	 * the LRU instead of being evicted immediately so that if we do
734 	 * something to an unlinked inode, the irele won't cause
735 	 * premature truncation and freeing of the inode, which results
736 	 * in log recovery failure.  We have to evict the unreferenced
737 	 * lru inodes after clearing SB_ACTIVE because we don't
738 	 * otherwise clean up the lru if there's a subsequent failure in
739 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
740 	 * else (e.g. quotacheck) references the inodes before the
741 	 * mount failure occurs.
742 	 */
743 	mp->m_super->s_flags |= SB_ACTIVE;
744 	xfs_log_work_queue(mp);
745 	if (xlog_recovery_needed(log))
746 		error = xlog_recover_finish(log);
747 	mp->m_super->s_flags &= ~SB_ACTIVE;
748 	evict_inodes(mp->m_super);
749 
750 	/*
751 	 * Drain the buffer LRU after log recovery. This is required for v4
752 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
753 	 * but we do it unconditionally to make sure we're always in a clean
754 	 * cache state after mount.
755 	 *
756 	 * Don't push in the error case because the AIL may have pending intents
757 	 * that aren't removed until recovery is cancelled.
758 	 */
759 	if (xlog_recovery_needed(log)) {
760 		if (!error) {
761 			xfs_log_force(mp, XFS_LOG_SYNC);
762 			xfs_ail_push_all_sync(mp->m_ail);
763 		}
764 		xfs_notice(mp, "Ending recovery (logdev: %s)",
765 				mp->m_logname ? mp->m_logname : "internal");
766 	} else {
767 		xfs_info(mp, "Ending clean mount");
768 	}
769 	xfs_buftarg_drain(mp->m_ddev_targp);
770 
771 	clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
772 
773 	/* Make sure the log is dead if we're returning failure. */
774 	ASSERT(!error || xlog_is_shutdown(log));
775 
776 	return error;
777 }
778 
779 /*
780  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
781  * the log.
782  */
783 void
xfs_log_mount_cancel(struct xfs_mount * mp)784 xfs_log_mount_cancel(
785 	struct xfs_mount	*mp)
786 {
787 	xlog_recover_cancel(mp->m_log);
788 	xfs_log_unmount(mp);
789 }
790 
791 /*
792  * Flush out the iclog to disk ensuring that device caches are flushed and
793  * the iclog hits stable storage before any completion waiters are woken.
794  */
795 static inline int
xlog_force_iclog(struct xlog_in_core * iclog)796 xlog_force_iclog(
797 	struct xlog_in_core	*iclog)
798 {
799 	atomic_inc(&iclog->ic_refcnt);
800 	iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
801 	if (iclog->ic_state == XLOG_STATE_ACTIVE)
802 		xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
803 	return xlog_state_release_iclog(iclog->ic_log, iclog, NULL);
804 }
805 
806 /*
807  * Cycle all the iclogbuf locks to make sure all log IO completion
808  * is done before we tear down these buffers.
809  */
810 static void
xlog_wait_iclog_completion(struct xlog * log)811 xlog_wait_iclog_completion(struct xlog *log)
812 {
813 	int		i;
814 	struct xlog_in_core	*iclog = log->l_iclog;
815 
816 	for (i = 0; i < log->l_iclog_bufs; i++) {
817 		down(&iclog->ic_sema);
818 		up(&iclog->ic_sema);
819 		iclog = iclog->ic_next;
820 	}
821 }
822 
823 /*
824  * Wait for the iclog and all prior iclogs to be written disk as required by the
825  * log force state machine. Waiting on ic_force_wait ensures iclog completions
826  * have been ordered and callbacks run before we are woken here, hence
827  * guaranteeing that all the iclogs up to this one are on stable storage.
828  */
829 int
xlog_wait_on_iclog(struct xlog_in_core * iclog)830 xlog_wait_on_iclog(
831 	struct xlog_in_core	*iclog)
832 		__releases(iclog->ic_log->l_icloglock)
833 {
834 	struct xlog		*log = iclog->ic_log;
835 
836 	trace_xlog_iclog_wait_on(iclog, _RET_IP_);
837 	if (!xlog_is_shutdown(log) &&
838 	    iclog->ic_state != XLOG_STATE_ACTIVE &&
839 	    iclog->ic_state != XLOG_STATE_DIRTY) {
840 		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
841 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
842 	} else {
843 		spin_unlock(&log->l_icloglock);
844 	}
845 
846 	if (xlog_is_shutdown(log))
847 		return -EIO;
848 	return 0;
849 }
850 
851 /*
852  * Write out an unmount record using the ticket provided. We have to account for
853  * the data space used in the unmount ticket as this write is not done from a
854  * transaction context that has already done the accounting for us.
855  */
856 static int
xlog_write_unmount_record(struct xlog * log,struct xlog_ticket * ticket)857 xlog_write_unmount_record(
858 	struct xlog		*log,
859 	struct xlog_ticket	*ticket)
860 {
861 	struct  {
862 		struct xlog_op_header ophdr;
863 		struct xfs_unmount_log_format ulf;
864 	} unmount_rec = {
865 		.ophdr = {
866 			.oh_clientid = XFS_LOG,
867 			.oh_tid = cpu_to_be32(ticket->t_tid),
868 			.oh_flags = XLOG_UNMOUNT_TRANS,
869 		},
870 		.ulf = {
871 			.magic = XLOG_UNMOUNT_TYPE,
872 		},
873 	};
874 	struct xfs_log_iovec reg = {
875 		.i_addr = &unmount_rec,
876 		.i_len = sizeof(unmount_rec),
877 		.i_type = XLOG_REG_TYPE_UNMOUNT,
878 	};
879 	struct xfs_log_vec vec = {
880 		.lv_niovecs = 1,
881 		.lv_iovecp = &reg,
882 	};
883 	LIST_HEAD(lv_chain);
884 	list_add(&vec.lv_list, &lv_chain);
885 
886 	BUILD_BUG_ON((sizeof(struct xlog_op_header) +
887 		      sizeof(struct xfs_unmount_log_format)) !=
888 							sizeof(unmount_rec));
889 
890 	/* account for space used by record data */
891 	ticket->t_curr_res -= sizeof(unmount_rec);
892 
893 	return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len);
894 }
895 
896 /*
897  * Mark the filesystem clean by writing an unmount record to the head of the
898  * log.
899  */
900 static void
xlog_unmount_write(struct xlog * log)901 xlog_unmount_write(
902 	struct xlog		*log)
903 {
904 	struct xfs_mount	*mp = log->l_mp;
905 	struct xlog_in_core	*iclog;
906 	struct xlog_ticket	*tic = NULL;
907 	int			error;
908 
909 	error = xfs_log_reserve(mp, 600, 1, &tic, 0);
910 	if (error)
911 		goto out_err;
912 
913 	error = xlog_write_unmount_record(log, tic);
914 	/*
915 	 * At this point, we're umounting anyway, so there's no point in
916 	 * transitioning log state to shutdown. Just continue...
917 	 */
918 out_err:
919 	if (error)
920 		xfs_alert(mp, "%s: unmount record failed", __func__);
921 
922 	spin_lock(&log->l_icloglock);
923 	iclog = log->l_iclog;
924 	error = xlog_force_iclog(iclog);
925 	xlog_wait_on_iclog(iclog);
926 
927 	if (tic) {
928 		trace_xfs_log_umount_write(log, tic);
929 		xfs_log_ticket_ungrant(log, tic);
930 	}
931 }
932 
933 static void
xfs_log_unmount_verify_iclog(struct xlog * log)934 xfs_log_unmount_verify_iclog(
935 	struct xlog		*log)
936 {
937 	struct xlog_in_core	*iclog = log->l_iclog;
938 
939 	do {
940 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
941 		ASSERT(iclog->ic_offset == 0);
942 	} while ((iclog = iclog->ic_next) != log->l_iclog);
943 }
944 
945 /*
946  * Unmount record used to have a string "Unmount filesystem--" in the
947  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
948  * We just write the magic number now since that particular field isn't
949  * currently architecture converted and "Unmount" is a bit foo.
950  * As far as I know, there weren't any dependencies on the old behaviour.
951  */
952 static void
xfs_log_unmount_write(struct xfs_mount * mp)953 xfs_log_unmount_write(
954 	struct xfs_mount	*mp)
955 {
956 	struct xlog		*log = mp->m_log;
957 
958 	if (!xfs_log_writable(mp))
959 		return;
960 
961 	xfs_log_force(mp, XFS_LOG_SYNC);
962 
963 	if (xlog_is_shutdown(log))
964 		return;
965 
966 	/*
967 	 * If we think the summary counters are bad, avoid writing the unmount
968 	 * record to force log recovery at next mount, after which the summary
969 	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
970 	 * more details.
971 	 */
972 	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
973 			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
974 		xfs_alert(mp, "%s: will fix summary counters at next mount",
975 				__func__);
976 		return;
977 	}
978 
979 	xfs_log_unmount_verify_iclog(log);
980 	xlog_unmount_write(log);
981 }
982 
983 /*
984  * Empty the log for unmount/freeze.
985  *
986  * To do this, we first need to shut down the background log work so it is not
987  * trying to cover the log as we clean up. We then need to unpin all objects in
988  * the log so we can then flush them out. Once they have completed their IO and
989  * run the callbacks removing themselves from the AIL, we can cover the log.
990  */
991 int
xfs_log_quiesce(struct xfs_mount * mp)992 xfs_log_quiesce(
993 	struct xfs_mount	*mp)
994 {
995 	/*
996 	 * Clear log incompat features since we're quiescing the log.  Report
997 	 * failures, though it's not fatal to have a higher log feature
998 	 * protection level than the log contents actually require.
999 	 */
1000 	if (xfs_clear_incompat_log_features(mp)) {
1001 		int error;
1002 
1003 		error = xfs_sync_sb(mp, false);
1004 		if (error)
1005 			xfs_warn(mp,
1006 	"Failed to clear log incompat features on quiesce");
1007 	}
1008 
1009 	cancel_delayed_work_sync(&mp->m_log->l_work);
1010 	xfs_log_force(mp, XFS_LOG_SYNC);
1011 
1012 	/*
1013 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1014 	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1015 	 * xfs_buf_iowait() cannot be used because it was pushed with the
1016 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1017 	 * the IO to complete.
1018 	 */
1019 	xfs_ail_push_all_sync(mp->m_ail);
1020 	xfs_buftarg_wait(mp->m_ddev_targp);
1021 	xfs_buf_lock(mp->m_sb_bp);
1022 	xfs_buf_unlock(mp->m_sb_bp);
1023 
1024 	return xfs_log_cover(mp);
1025 }
1026 
1027 void
xfs_log_clean(struct xfs_mount * mp)1028 xfs_log_clean(
1029 	struct xfs_mount	*mp)
1030 {
1031 	xfs_log_quiesce(mp);
1032 	xfs_log_unmount_write(mp);
1033 }
1034 
1035 /*
1036  * Shut down and release the AIL and Log.
1037  *
1038  * During unmount, we need to ensure we flush all the dirty metadata objects
1039  * from the AIL so that the log is empty before we write the unmount record to
1040  * the log. Once this is done, we can tear down the AIL and the log.
1041  */
1042 void
xfs_log_unmount(struct xfs_mount * mp)1043 xfs_log_unmount(
1044 	struct xfs_mount	*mp)
1045 {
1046 	xfs_log_clean(mp);
1047 
1048 	/*
1049 	 * If shutdown has come from iclog IO context, the log
1050 	 * cleaning will have been skipped and so we need to wait
1051 	 * for the iclog to complete shutdown processing before we
1052 	 * tear anything down.
1053 	 */
1054 	xlog_wait_iclog_completion(mp->m_log);
1055 
1056 	xfs_buftarg_drain(mp->m_ddev_targp);
1057 
1058 	xfs_trans_ail_destroy(mp);
1059 
1060 	xfs_sysfs_del(&mp->m_log->l_kobj);
1061 
1062 	xlog_dealloc_log(mp->m_log);
1063 }
1064 
1065 void
xfs_log_item_init(struct xfs_mount * mp,struct xfs_log_item * item,int type,const struct xfs_item_ops * ops)1066 xfs_log_item_init(
1067 	struct xfs_mount	*mp,
1068 	struct xfs_log_item	*item,
1069 	int			type,
1070 	const struct xfs_item_ops *ops)
1071 {
1072 	item->li_log = mp->m_log;
1073 	item->li_ailp = mp->m_ail;
1074 	item->li_type = type;
1075 	item->li_ops = ops;
1076 	item->li_lv = NULL;
1077 
1078 	INIT_LIST_HEAD(&item->li_ail);
1079 	INIT_LIST_HEAD(&item->li_cil);
1080 	INIT_LIST_HEAD(&item->li_bio_list);
1081 	INIT_LIST_HEAD(&item->li_trans);
1082 }
1083 
1084 /*
1085  * Wake up processes waiting for log space after we have moved the log tail.
1086  */
1087 void
xfs_log_space_wake(struct xfs_mount * mp)1088 xfs_log_space_wake(
1089 	struct xfs_mount	*mp)
1090 {
1091 	struct xlog		*log = mp->m_log;
1092 	int			free_bytes;
1093 
1094 	if (xlog_is_shutdown(log))
1095 		return;
1096 
1097 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1098 		ASSERT(!xlog_in_recovery(log));
1099 
1100 		spin_lock(&log->l_write_head.lock);
1101 		free_bytes = xlog_grant_space_left(log, &log->l_write_head);
1102 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1103 		spin_unlock(&log->l_write_head.lock);
1104 	}
1105 
1106 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1107 		ASSERT(!xlog_in_recovery(log));
1108 
1109 		spin_lock(&log->l_reserve_head.lock);
1110 		free_bytes = xlog_grant_space_left(log, &log->l_reserve_head);
1111 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1112 		spin_unlock(&log->l_reserve_head.lock);
1113 	}
1114 }
1115 
1116 /*
1117  * Determine if we have a transaction that has gone to disk that needs to be
1118  * covered. To begin the transition to the idle state firstly the log needs to
1119  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1120  * we start attempting to cover the log.
1121  *
1122  * Only if we are then in a state where covering is needed, the caller is
1123  * informed that dummy transactions are required to move the log into the idle
1124  * state.
1125  *
1126  * If there are any items in the AIl or CIL, then we do not want to attempt to
1127  * cover the log as we may be in a situation where there isn't log space
1128  * available to run a dummy transaction and this can lead to deadlocks when the
1129  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1130  * there's no point in running a dummy transaction at this point because we
1131  * can't start trying to idle the log until both the CIL and AIL are empty.
1132  */
1133 static bool
xfs_log_need_covered(struct xfs_mount * mp)1134 xfs_log_need_covered(
1135 	struct xfs_mount	*mp)
1136 {
1137 	struct xlog		*log = mp->m_log;
1138 	bool			needed = false;
1139 
1140 	if (!xlog_cil_empty(log))
1141 		return false;
1142 
1143 	spin_lock(&log->l_icloglock);
1144 	switch (log->l_covered_state) {
1145 	case XLOG_STATE_COVER_DONE:
1146 	case XLOG_STATE_COVER_DONE2:
1147 	case XLOG_STATE_COVER_IDLE:
1148 		break;
1149 	case XLOG_STATE_COVER_NEED:
1150 	case XLOG_STATE_COVER_NEED2:
1151 		if (xfs_ail_min_lsn(log->l_ailp))
1152 			break;
1153 		if (!xlog_iclogs_empty(log))
1154 			break;
1155 
1156 		needed = true;
1157 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1158 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1159 		else
1160 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1161 		break;
1162 	default:
1163 		needed = true;
1164 		break;
1165 	}
1166 	spin_unlock(&log->l_icloglock);
1167 	return needed;
1168 }
1169 
1170 /*
1171  * Explicitly cover the log. This is similar to background log covering but
1172  * intended for usage in quiesce codepaths. The caller is responsible to ensure
1173  * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1174  * must all be empty.
1175  */
1176 static int
xfs_log_cover(struct xfs_mount * mp)1177 xfs_log_cover(
1178 	struct xfs_mount	*mp)
1179 {
1180 	int			error = 0;
1181 	bool			need_covered;
1182 
1183 	ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1184 	        !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1185 		xlog_is_shutdown(mp->m_log));
1186 
1187 	if (!xfs_log_writable(mp))
1188 		return 0;
1189 
1190 	/*
1191 	 * xfs_log_need_covered() is not idempotent because it progresses the
1192 	 * state machine if the log requires covering. Therefore, we must call
1193 	 * this function once and use the result until we've issued an sb sync.
1194 	 * Do so first to make that abundantly clear.
1195 	 *
1196 	 * Fall into the covering sequence if the log needs covering or the
1197 	 * mount has lazy superblock accounting to sync to disk. The sb sync
1198 	 * used for covering accumulates the in-core counters, so covering
1199 	 * handles this for us.
1200 	 */
1201 	need_covered = xfs_log_need_covered(mp);
1202 	if (!need_covered && !xfs_has_lazysbcount(mp))
1203 		return 0;
1204 
1205 	/*
1206 	 * To cover the log, commit the superblock twice (at most) in
1207 	 * independent checkpoints. The first serves as a reference for the
1208 	 * tail pointer. The sync transaction and AIL push empties the AIL and
1209 	 * updates the in-core tail to the LSN of the first checkpoint. The
1210 	 * second commit updates the on-disk tail with the in-core LSN,
1211 	 * covering the log. Push the AIL one more time to leave it empty, as
1212 	 * we found it.
1213 	 */
1214 	do {
1215 		error = xfs_sync_sb(mp, true);
1216 		if (error)
1217 			break;
1218 		xfs_ail_push_all_sync(mp->m_ail);
1219 	} while (xfs_log_need_covered(mp));
1220 
1221 	return error;
1222 }
1223 
1224 static void
xlog_ioend_work(struct work_struct * work)1225 xlog_ioend_work(
1226 	struct work_struct	*work)
1227 {
1228 	struct xlog_in_core     *iclog =
1229 		container_of(work, struct xlog_in_core, ic_end_io_work);
1230 	struct xlog		*log = iclog->ic_log;
1231 	int			error;
1232 
1233 	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1234 #ifdef DEBUG
1235 	/* treat writes with injected CRC errors as failed */
1236 	if (iclog->ic_fail_crc)
1237 		error = -EIO;
1238 #endif
1239 
1240 	/*
1241 	 * Race to shutdown the filesystem if we see an error.
1242 	 */
1243 	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1244 		xfs_alert(log->l_mp, "log I/O error %d", error);
1245 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1246 	}
1247 
1248 	xlog_state_done_syncing(iclog);
1249 	bio_uninit(&iclog->ic_bio);
1250 
1251 	/*
1252 	 * Drop the lock to signal that we are done. Nothing references the
1253 	 * iclog after this, so an unmount waiting on this lock can now tear it
1254 	 * down safely. As such, it is unsafe to reference the iclog after the
1255 	 * unlock as we could race with it being freed.
1256 	 */
1257 	up(&iclog->ic_sema);
1258 }
1259 
1260 /*
1261  * Return size of each in-core log record buffer.
1262  *
1263  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1264  *
1265  * If the filesystem blocksize is too large, we may need to choose a
1266  * larger size since the directory code currently logs entire blocks.
1267  */
1268 STATIC void
xlog_get_iclog_buffer_size(struct xfs_mount * mp,struct xlog * log)1269 xlog_get_iclog_buffer_size(
1270 	struct xfs_mount	*mp,
1271 	struct xlog		*log)
1272 {
1273 	if (mp->m_logbufs <= 0)
1274 		mp->m_logbufs = XLOG_MAX_ICLOGS;
1275 	if (mp->m_logbsize <= 0)
1276 		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1277 
1278 	log->l_iclog_bufs = mp->m_logbufs;
1279 	log->l_iclog_size = mp->m_logbsize;
1280 
1281 	/*
1282 	 * # headers = size / 32k - one header holds cycles from 32k of data.
1283 	 */
1284 	log->l_iclog_heads =
1285 		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1286 	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1287 }
1288 
1289 void
xfs_log_work_queue(struct xfs_mount * mp)1290 xfs_log_work_queue(
1291 	struct xfs_mount        *mp)
1292 {
1293 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1294 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1295 }
1296 
1297 /*
1298  * Clear the log incompat flags if we have the opportunity.
1299  *
1300  * This only happens if we're about to log the second dummy transaction as part
1301  * of covering the log.
1302  */
1303 static inline void
xlog_clear_incompat(struct xlog * log)1304 xlog_clear_incompat(
1305 	struct xlog		*log)
1306 {
1307 	struct xfs_mount	*mp = log->l_mp;
1308 
1309 	if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1310 				XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1311 		return;
1312 
1313 	if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1314 		return;
1315 
1316 	xfs_clear_incompat_log_features(mp);
1317 }
1318 
1319 /*
1320  * Every sync period we need to unpin all items in the AIL and push them to
1321  * disk. If there is nothing dirty, then we might need to cover the log to
1322  * indicate that the filesystem is idle.
1323  */
1324 static void
xfs_log_worker(struct work_struct * work)1325 xfs_log_worker(
1326 	struct work_struct	*work)
1327 {
1328 	struct xlog		*log = container_of(to_delayed_work(work),
1329 						struct xlog, l_work);
1330 	struct xfs_mount	*mp = log->l_mp;
1331 
1332 	/* dgc: errors ignored - not fatal and nowhere to report them */
1333 	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1334 		/*
1335 		 * Dump a transaction into the log that contains no real change.
1336 		 * This is needed to stamp the current tail LSN into the log
1337 		 * during the covering operation.
1338 		 *
1339 		 * We cannot use an inode here for this - that will push dirty
1340 		 * state back up into the VFS and then periodic inode flushing
1341 		 * will prevent log covering from making progress. Hence we
1342 		 * synchronously log the superblock instead to ensure the
1343 		 * superblock is immediately unpinned and can be written back.
1344 		 */
1345 		xlog_clear_incompat(log);
1346 		xfs_sync_sb(mp, true);
1347 	} else
1348 		xfs_log_force(mp, 0);
1349 
1350 	/* start pushing all the metadata that is currently dirty */
1351 	xfs_ail_push_all(mp->m_ail);
1352 
1353 	/* queue us up again */
1354 	xfs_log_work_queue(mp);
1355 }
1356 
1357 /*
1358  * This routine initializes some of the log structure for a given mount point.
1359  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1360  * some other stuff may be filled in too.
1361  */
1362 STATIC struct xlog *
xlog_alloc_log(struct xfs_mount * mp,struct xfs_buftarg * log_target,xfs_daddr_t blk_offset,int num_bblks)1363 xlog_alloc_log(
1364 	struct xfs_mount	*mp,
1365 	struct xfs_buftarg	*log_target,
1366 	xfs_daddr_t		blk_offset,
1367 	int			num_bblks)
1368 {
1369 	struct xlog		*log;
1370 	xlog_rec_header_t	*head;
1371 	xlog_in_core_t		**iclogp;
1372 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1373 	int			i;
1374 	int			error = -ENOMEM;
1375 	uint			log2_size = 0;
1376 
1377 	log = kzalloc(sizeof(struct xlog), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1378 	if (!log) {
1379 		xfs_warn(mp, "Log allocation failed: No memory!");
1380 		goto out;
1381 	}
1382 
1383 	log->l_mp	   = mp;
1384 	log->l_targ	   = log_target;
1385 	log->l_logsize     = BBTOB(num_bblks);
1386 	log->l_logBBstart  = blk_offset;
1387 	log->l_logBBsize   = num_bblks;
1388 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1389 	set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1390 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1391 	INIT_LIST_HEAD(&log->r_dfops);
1392 
1393 	log->l_prev_block  = -1;
1394 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1395 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1396 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1397 
1398 	if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1399 		log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1400 	else
1401 		log->l_iclog_roundoff = BBSIZE;
1402 
1403 	xlog_grant_head_init(&log->l_reserve_head);
1404 	xlog_grant_head_init(&log->l_write_head);
1405 
1406 	error = -EFSCORRUPTED;
1407 	if (xfs_has_sector(mp)) {
1408 	        log2_size = mp->m_sb.sb_logsectlog;
1409 		if (log2_size < BBSHIFT) {
1410 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1411 				log2_size, BBSHIFT);
1412 			goto out_free_log;
1413 		}
1414 
1415 	        log2_size -= BBSHIFT;
1416 		if (log2_size > mp->m_sectbb_log) {
1417 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1418 				log2_size, mp->m_sectbb_log);
1419 			goto out_free_log;
1420 		}
1421 
1422 		/* for larger sector sizes, must have v2 or external log */
1423 		if (log2_size && log->l_logBBstart > 0 &&
1424 			    !xfs_has_logv2(mp)) {
1425 			xfs_warn(mp,
1426 		"log sector size (0x%x) invalid for configuration.",
1427 				log2_size);
1428 			goto out_free_log;
1429 		}
1430 	}
1431 	log->l_sectBBsize = 1 << log2_size;
1432 
1433 	xlog_get_iclog_buffer_size(mp, log);
1434 
1435 	spin_lock_init(&log->l_icloglock);
1436 	init_waitqueue_head(&log->l_flush_wait);
1437 
1438 	iclogp = &log->l_iclog;
1439 	/*
1440 	 * The amount of memory to allocate for the iclog structure is
1441 	 * rather funky due to the way the structure is defined.  It is
1442 	 * done this way so that we can use different sizes for machines
1443 	 * with different amounts of memory.  See the definition of
1444 	 * xlog_in_core_t in xfs_log_priv.h for details.
1445 	 */
1446 	ASSERT(log->l_iclog_size >= 4096);
1447 	for (i = 0; i < log->l_iclog_bufs; i++) {
1448 		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1449 				sizeof(struct bio_vec);
1450 
1451 		iclog = kzalloc(sizeof(*iclog) + bvec_size,
1452 				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1453 		if (!iclog)
1454 			goto out_free_iclog;
1455 
1456 		*iclogp = iclog;
1457 		iclog->ic_prev = prev_iclog;
1458 		prev_iclog = iclog;
1459 
1460 		iclog->ic_data = kvzalloc(log->l_iclog_size,
1461 				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1462 		if (!iclog->ic_data)
1463 			goto out_free_iclog;
1464 		head = &iclog->ic_header;
1465 		memset(head, 0, sizeof(xlog_rec_header_t));
1466 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1467 		head->h_version = cpu_to_be32(
1468 			xfs_has_logv2(log->l_mp) ? 2 : 1);
1469 		head->h_size = cpu_to_be32(log->l_iclog_size);
1470 		/* new fields */
1471 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1472 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1473 
1474 		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1475 		iclog->ic_state = XLOG_STATE_ACTIVE;
1476 		iclog->ic_log = log;
1477 		atomic_set(&iclog->ic_refcnt, 0);
1478 		INIT_LIST_HEAD(&iclog->ic_callbacks);
1479 		iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize;
1480 
1481 		init_waitqueue_head(&iclog->ic_force_wait);
1482 		init_waitqueue_head(&iclog->ic_write_wait);
1483 		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1484 		sema_init(&iclog->ic_sema, 1);
1485 
1486 		iclogp = &iclog->ic_next;
1487 	}
1488 	*iclogp = log->l_iclog;			/* complete ring */
1489 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1490 
1491 	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1492 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1493 				    WQ_HIGHPRI),
1494 			0, mp->m_super->s_id);
1495 	if (!log->l_ioend_workqueue)
1496 		goto out_free_iclog;
1497 
1498 	error = xlog_cil_init(log);
1499 	if (error)
1500 		goto out_destroy_workqueue;
1501 	return log;
1502 
1503 out_destroy_workqueue:
1504 	destroy_workqueue(log->l_ioend_workqueue);
1505 out_free_iclog:
1506 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1507 		prev_iclog = iclog->ic_next;
1508 		kvfree(iclog->ic_data);
1509 		kfree(iclog);
1510 		if (prev_iclog == log->l_iclog)
1511 			break;
1512 	}
1513 out_free_log:
1514 	kfree(log);
1515 out:
1516 	return ERR_PTR(error);
1517 }	/* xlog_alloc_log */
1518 
1519 /*
1520  * Stamp cycle number in every block
1521  */
1522 STATIC void
xlog_pack_data(struct xlog * log,struct xlog_in_core * iclog,int roundoff)1523 xlog_pack_data(
1524 	struct xlog		*log,
1525 	struct xlog_in_core	*iclog,
1526 	int			roundoff)
1527 {
1528 	int			i, j, k;
1529 	int			size = iclog->ic_offset + roundoff;
1530 	__be32			cycle_lsn;
1531 	char			*dp;
1532 
1533 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1534 
1535 	dp = iclog->ic_datap;
1536 	for (i = 0; i < BTOBB(size); i++) {
1537 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1538 			break;
1539 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1540 		*(__be32 *)dp = cycle_lsn;
1541 		dp += BBSIZE;
1542 	}
1543 
1544 	if (xfs_has_logv2(log->l_mp)) {
1545 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1546 
1547 		for ( ; i < BTOBB(size); i++) {
1548 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1549 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1550 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1551 			*(__be32 *)dp = cycle_lsn;
1552 			dp += BBSIZE;
1553 		}
1554 
1555 		for (i = 1; i < log->l_iclog_heads; i++)
1556 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1557 	}
1558 }
1559 
1560 /*
1561  * Calculate the checksum for a log buffer.
1562  *
1563  * This is a little more complicated than it should be because the various
1564  * headers and the actual data are non-contiguous.
1565  */
1566 __le32
xlog_cksum(struct xlog * log,struct xlog_rec_header * rhead,char * dp,int size)1567 xlog_cksum(
1568 	struct xlog		*log,
1569 	struct xlog_rec_header	*rhead,
1570 	char			*dp,
1571 	int			size)
1572 {
1573 	uint32_t		crc;
1574 
1575 	/* first generate the crc for the record header ... */
1576 	crc = xfs_start_cksum_update((char *)rhead,
1577 			      sizeof(struct xlog_rec_header),
1578 			      offsetof(struct xlog_rec_header, h_crc));
1579 
1580 	/* ... then for additional cycle data for v2 logs ... */
1581 	if (xfs_has_logv2(log->l_mp)) {
1582 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1583 		int		i;
1584 		int		xheads;
1585 
1586 		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1587 
1588 		for (i = 1; i < xheads; i++) {
1589 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1590 				     sizeof(struct xlog_rec_ext_header));
1591 		}
1592 	}
1593 
1594 	/* ... and finally for the payload */
1595 	crc = crc32c(crc, dp, size);
1596 
1597 	return xfs_end_cksum(crc);
1598 }
1599 
1600 static void
xlog_bio_end_io(struct bio * bio)1601 xlog_bio_end_io(
1602 	struct bio		*bio)
1603 {
1604 	struct xlog_in_core	*iclog = bio->bi_private;
1605 
1606 	queue_work(iclog->ic_log->l_ioend_workqueue,
1607 		   &iclog->ic_end_io_work);
1608 }
1609 
1610 STATIC void
xlog_write_iclog(struct xlog * log,struct xlog_in_core * iclog,uint64_t bno,unsigned int count)1611 xlog_write_iclog(
1612 	struct xlog		*log,
1613 	struct xlog_in_core	*iclog,
1614 	uint64_t		bno,
1615 	unsigned int		count)
1616 {
1617 	ASSERT(bno < log->l_logBBsize);
1618 	trace_xlog_iclog_write(iclog, _RET_IP_);
1619 
1620 	/*
1621 	 * We lock the iclogbufs here so that we can serialise against I/O
1622 	 * completion during unmount.  We might be processing a shutdown
1623 	 * triggered during unmount, and that can occur asynchronously to the
1624 	 * unmount thread, and hence we need to ensure that completes before
1625 	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1626 	 * across the log IO to archieve that.
1627 	 */
1628 	down(&iclog->ic_sema);
1629 	if (xlog_is_shutdown(log)) {
1630 		/*
1631 		 * It would seem logical to return EIO here, but we rely on
1632 		 * the log state machine to propagate I/O errors instead of
1633 		 * doing it here.  We kick of the state machine and unlock
1634 		 * the buffer manually, the code needs to be kept in sync
1635 		 * with the I/O completion path.
1636 		 */
1637 		goto sync;
1638 	}
1639 
1640 	/*
1641 	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1642 	 * IOs coming immediately after this one. This prevents the block layer
1643 	 * writeback throttle from throttling log writes behind background
1644 	 * metadata writeback and causing priority inversions.
1645 	 */
1646 	bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1647 		 howmany(count, PAGE_SIZE),
1648 		 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1649 	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1650 	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1651 	iclog->ic_bio.bi_private = iclog;
1652 
1653 	if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1654 		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1655 		/*
1656 		 * For external log devices, we also need to flush the data
1657 		 * device cache first to ensure all metadata writeback covered
1658 		 * by the LSN in this iclog is on stable storage. This is slow,
1659 		 * but it *must* complete before we issue the external log IO.
1660 		 *
1661 		 * If the flush fails, we cannot conclude that past metadata
1662 		 * writeback from the log succeeded.  Repeating the flush is
1663 		 * not possible, hence we must shut down with log IO error to
1664 		 * avoid shutdown re-entering this path and erroring out again.
1665 		 */
1666 		if (log->l_targ != log->l_mp->m_ddev_targp &&
1667 		    blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev))
1668 			goto shutdown;
1669 	}
1670 	if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1671 		iclog->ic_bio.bi_opf |= REQ_FUA;
1672 
1673 	iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1674 
1675 	if (is_vmalloc_addr(iclog->ic_data)) {
1676 		if (!bio_add_vmalloc(&iclog->ic_bio, iclog->ic_data, count))
1677 			goto shutdown;
1678 	} else {
1679 		bio_add_virt_nofail(&iclog->ic_bio, iclog->ic_data, count);
1680 	}
1681 
1682 	/*
1683 	 * If this log buffer would straddle the end of the log we will have
1684 	 * to split it up into two bios, so that we can continue at the start.
1685 	 */
1686 	if (bno + BTOBB(count) > log->l_logBBsize) {
1687 		struct bio *split;
1688 
1689 		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1690 				  GFP_NOIO, &fs_bio_set);
1691 		bio_chain(split, &iclog->ic_bio);
1692 		submit_bio(split);
1693 
1694 		/* restart at logical offset zero for the remainder */
1695 		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1696 	}
1697 
1698 	submit_bio(&iclog->ic_bio);
1699 	return;
1700 shutdown:
1701 	xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1702 sync:
1703 	xlog_state_done_syncing(iclog);
1704 	up(&iclog->ic_sema);
1705 }
1706 
1707 /*
1708  * We need to bump cycle number for the part of the iclog that is
1709  * written to the start of the log. Watch out for the header magic
1710  * number case, though.
1711  */
1712 static void
xlog_split_iclog(struct xlog * log,void * data,uint64_t bno,unsigned int count)1713 xlog_split_iclog(
1714 	struct xlog		*log,
1715 	void			*data,
1716 	uint64_t		bno,
1717 	unsigned int		count)
1718 {
1719 	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1720 	unsigned int		i;
1721 
1722 	for (i = split_offset; i < count; i += BBSIZE) {
1723 		uint32_t cycle = get_unaligned_be32(data + i);
1724 
1725 		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1726 			cycle++;
1727 		put_unaligned_be32(cycle, data + i);
1728 	}
1729 }
1730 
1731 static int
xlog_calc_iclog_size(struct xlog * log,struct xlog_in_core * iclog,uint32_t * roundoff)1732 xlog_calc_iclog_size(
1733 	struct xlog		*log,
1734 	struct xlog_in_core	*iclog,
1735 	uint32_t		*roundoff)
1736 {
1737 	uint32_t		count_init, count;
1738 
1739 	/* Add for LR header */
1740 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1741 	count = roundup(count_init, log->l_iclog_roundoff);
1742 
1743 	*roundoff = count - count_init;
1744 
1745 	ASSERT(count >= count_init);
1746 	ASSERT(*roundoff < log->l_iclog_roundoff);
1747 	return count;
1748 }
1749 
1750 /*
1751  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1752  * fashion.  Previously, we should have moved the current iclog
1753  * ptr in the log to point to the next available iclog.  This allows further
1754  * write to continue while this code syncs out an iclog ready to go.
1755  * Before an in-core log can be written out, the data section must be scanned
1756  * to save away the 1st word of each BBSIZE block into the header.  We replace
1757  * it with the current cycle count.  Each BBSIZE block is tagged with the
1758  * cycle count because there in an implicit assumption that drives will
1759  * guarantee that entire 512 byte blocks get written at once.  In other words,
1760  * we can't have part of a 512 byte block written and part not written.  By
1761  * tagging each block, we will know which blocks are valid when recovering
1762  * after an unclean shutdown.
1763  *
1764  * This routine is single threaded on the iclog.  No other thread can be in
1765  * this routine with the same iclog.  Changing contents of iclog can there-
1766  * fore be done without grabbing the state machine lock.  Updating the global
1767  * log will require grabbing the lock though.
1768  *
1769  * The entire log manager uses a logical block numbering scheme.  Only
1770  * xlog_write_iclog knows about the fact that the log may not start with
1771  * block zero on a given device.
1772  */
1773 STATIC void
xlog_sync(struct xlog * log,struct xlog_in_core * iclog,struct xlog_ticket * ticket)1774 xlog_sync(
1775 	struct xlog		*log,
1776 	struct xlog_in_core	*iclog,
1777 	struct xlog_ticket	*ticket)
1778 {
1779 	unsigned int		count;		/* byte count of bwrite */
1780 	unsigned int		roundoff;       /* roundoff to BB or stripe */
1781 	uint64_t		bno;
1782 	unsigned int		size;
1783 
1784 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1785 	trace_xlog_iclog_sync(iclog, _RET_IP_);
1786 
1787 	count = xlog_calc_iclog_size(log, iclog, &roundoff);
1788 
1789 	/*
1790 	 * If we have a ticket, account for the roundoff via the ticket
1791 	 * reservation to avoid touching the hot grant heads needlessly.
1792 	 * Otherwise, we have to move grant heads directly.
1793 	 */
1794 	if (ticket) {
1795 		ticket->t_curr_res -= roundoff;
1796 	} else {
1797 		xlog_grant_add_space(&log->l_reserve_head, roundoff);
1798 		xlog_grant_add_space(&log->l_write_head, roundoff);
1799 	}
1800 
1801 	/* put cycle number in every block */
1802 	xlog_pack_data(log, iclog, roundoff);
1803 
1804 	/* real byte length */
1805 	size = iclog->ic_offset;
1806 	if (xfs_has_logv2(log->l_mp))
1807 		size += roundoff;
1808 	iclog->ic_header.h_len = cpu_to_be32(size);
1809 
1810 	XFS_STATS_INC(log->l_mp, xs_log_writes);
1811 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1812 
1813 	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1814 
1815 	/* Do we need to split this write into 2 parts? */
1816 	if (bno + BTOBB(count) > log->l_logBBsize)
1817 		xlog_split_iclog(log, &iclog->ic_header, bno, count);
1818 
1819 	/* calculcate the checksum */
1820 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1821 					    iclog->ic_datap, size);
1822 	/*
1823 	 * Intentionally corrupt the log record CRC based on the error injection
1824 	 * frequency, if defined. This facilitates testing log recovery in the
1825 	 * event of torn writes. Hence, set the IOABORT state to abort the log
1826 	 * write on I/O completion and shutdown the fs. The subsequent mount
1827 	 * detects the bad CRC and attempts to recover.
1828 	 */
1829 #ifdef DEBUG
1830 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1831 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1832 		iclog->ic_fail_crc = true;
1833 		xfs_warn(log->l_mp,
1834 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1835 			 be64_to_cpu(iclog->ic_header.h_lsn));
1836 	}
1837 #endif
1838 	xlog_verify_iclog(log, iclog, count);
1839 	xlog_write_iclog(log, iclog, bno, count);
1840 }
1841 
1842 /*
1843  * Deallocate a log structure
1844  */
1845 STATIC void
xlog_dealloc_log(struct xlog * log)1846 xlog_dealloc_log(
1847 	struct xlog	*log)
1848 {
1849 	xlog_in_core_t	*iclog, *next_iclog;
1850 	int		i;
1851 
1852 	/*
1853 	 * Destroy the CIL after waiting for iclog IO completion because an
1854 	 * iclog EIO error will try to shut down the log, which accesses the
1855 	 * CIL to wake up the waiters.
1856 	 */
1857 	xlog_cil_destroy(log);
1858 
1859 	iclog = log->l_iclog;
1860 	for (i = 0; i < log->l_iclog_bufs; i++) {
1861 		next_iclog = iclog->ic_next;
1862 		kvfree(iclog->ic_data);
1863 		kfree(iclog);
1864 		iclog = next_iclog;
1865 	}
1866 
1867 	log->l_mp->m_log = NULL;
1868 	destroy_workqueue(log->l_ioend_workqueue);
1869 	kfree(log);
1870 }
1871 
1872 /*
1873  * Update counters atomically now that memcpy is done.
1874  */
1875 static inline void
xlog_state_finish_copy(struct xlog * log,struct xlog_in_core * iclog,int record_cnt,int copy_bytes)1876 xlog_state_finish_copy(
1877 	struct xlog		*log,
1878 	struct xlog_in_core	*iclog,
1879 	int			record_cnt,
1880 	int			copy_bytes)
1881 {
1882 	lockdep_assert_held(&log->l_icloglock);
1883 
1884 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1885 	iclog->ic_offset += copy_bytes;
1886 }
1887 
1888 /*
1889  * print out info relating to regions written which consume
1890  * the reservation
1891  */
1892 void
xlog_print_tic_res(struct xfs_mount * mp,struct xlog_ticket * ticket)1893 xlog_print_tic_res(
1894 	struct xfs_mount	*mp,
1895 	struct xlog_ticket	*ticket)
1896 {
1897 	xfs_warn(mp, "ticket reservation summary:");
1898 	xfs_warn(mp, "  unit res    = %d bytes", ticket->t_unit_res);
1899 	xfs_warn(mp, "  current res = %d bytes", ticket->t_curr_res);
1900 	xfs_warn(mp, "  original count  = %d", ticket->t_ocnt);
1901 	xfs_warn(mp, "  remaining count = %d", ticket->t_cnt);
1902 }
1903 
1904 /*
1905  * Print a summary of the transaction.
1906  */
1907 void
xlog_print_trans(struct xfs_trans * tp)1908 xlog_print_trans(
1909 	struct xfs_trans	*tp)
1910 {
1911 	struct xfs_mount	*mp = tp->t_mountp;
1912 	struct xfs_log_item	*lip;
1913 
1914 	/* dump core transaction and ticket info */
1915 	xfs_warn(mp, "transaction summary:");
1916 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
1917 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
1918 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
1919 
1920 	xlog_print_tic_res(mp, tp->t_ticket);
1921 
1922 	/* dump each log item */
1923 	list_for_each_entry(lip, &tp->t_items, li_trans) {
1924 		struct xfs_log_vec	*lv = lip->li_lv;
1925 		struct xfs_log_iovec	*vec;
1926 		int			i;
1927 
1928 		xfs_warn(mp, "log item: ");
1929 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
1930 		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
1931 		if (!lv)
1932 			continue;
1933 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
1934 		xfs_warn(mp, "  size	= %d", lv->lv_size);
1935 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
1936 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
1937 
1938 		/* dump each iovec for the log item */
1939 		vec = lv->lv_iovecp;
1940 		for (i = 0; i < lv->lv_niovecs; i++) {
1941 			int dumplen = min(vec->i_len, 32);
1942 
1943 			xfs_warn(mp, "  iovec[%d]", i);
1944 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
1945 			xfs_warn(mp, "    len	= %d", vec->i_len);
1946 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
1947 			xfs_hex_dump(vec->i_addr, dumplen);
1948 
1949 			vec++;
1950 		}
1951 	}
1952 }
1953 
1954 static inline void
xlog_write_iovec(struct xlog_in_core * iclog,uint32_t * log_offset,void * data,uint32_t write_len,int * bytes_left,uint32_t * record_cnt,uint32_t * data_cnt)1955 xlog_write_iovec(
1956 	struct xlog_in_core	*iclog,
1957 	uint32_t		*log_offset,
1958 	void			*data,
1959 	uint32_t		write_len,
1960 	int			*bytes_left,
1961 	uint32_t		*record_cnt,
1962 	uint32_t		*data_cnt)
1963 {
1964 	ASSERT(*log_offset < iclog->ic_log->l_iclog_size);
1965 	ASSERT(*log_offset % sizeof(int32_t) == 0);
1966 	ASSERT(write_len % sizeof(int32_t) == 0);
1967 
1968 	memcpy(iclog->ic_datap + *log_offset, data, write_len);
1969 	*log_offset += write_len;
1970 	*bytes_left -= write_len;
1971 	(*record_cnt)++;
1972 	*data_cnt += write_len;
1973 }
1974 
1975 /*
1976  * Write log vectors into a single iclog which is guaranteed by the caller
1977  * to have enough space to write the entire log vector into.
1978  */
1979 static void
xlog_write_full(struct xfs_log_vec * lv,struct xlog_ticket * ticket,struct xlog_in_core * iclog,uint32_t * log_offset,uint32_t * len,uint32_t * record_cnt,uint32_t * data_cnt)1980 xlog_write_full(
1981 	struct xfs_log_vec	*lv,
1982 	struct xlog_ticket	*ticket,
1983 	struct xlog_in_core	*iclog,
1984 	uint32_t		*log_offset,
1985 	uint32_t		*len,
1986 	uint32_t		*record_cnt,
1987 	uint32_t		*data_cnt)
1988 {
1989 	int			index;
1990 
1991 	ASSERT(*log_offset + *len <= iclog->ic_size ||
1992 		iclog->ic_state == XLOG_STATE_WANT_SYNC);
1993 
1994 	/*
1995 	 * Ordered log vectors have no regions to write so this
1996 	 * loop will naturally skip them.
1997 	 */
1998 	for (index = 0; index < lv->lv_niovecs; index++) {
1999 		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2000 		struct xlog_op_header	*ophdr = reg->i_addr;
2001 
2002 		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2003 		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2004 				reg->i_len, len, record_cnt, data_cnt);
2005 	}
2006 }
2007 
2008 static int
xlog_write_get_more_iclog_space(struct xlog_ticket * ticket,struct xlog_in_core ** iclogp,uint32_t * log_offset,uint32_t len,uint32_t * record_cnt,uint32_t * data_cnt)2009 xlog_write_get_more_iclog_space(
2010 	struct xlog_ticket	*ticket,
2011 	struct xlog_in_core	**iclogp,
2012 	uint32_t		*log_offset,
2013 	uint32_t		len,
2014 	uint32_t		*record_cnt,
2015 	uint32_t		*data_cnt)
2016 {
2017 	struct xlog_in_core	*iclog = *iclogp;
2018 	struct xlog		*log = iclog->ic_log;
2019 	int			error;
2020 
2021 	spin_lock(&log->l_icloglock);
2022 	ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC);
2023 	xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2024 	error = xlog_state_release_iclog(log, iclog, ticket);
2025 	spin_unlock(&log->l_icloglock);
2026 	if (error)
2027 		return error;
2028 
2029 	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2030 					log_offset);
2031 	if (error)
2032 		return error;
2033 	*record_cnt = 0;
2034 	*data_cnt = 0;
2035 	*iclogp = iclog;
2036 	return 0;
2037 }
2038 
2039 /*
2040  * Write log vectors into a single iclog which is smaller than the current chain
2041  * length. We write until we cannot fit a full record into the remaining space
2042  * and then stop. We return the log vector that is to be written that cannot
2043  * wholly fit in the iclog.
2044  */
2045 static int
xlog_write_partial(struct xfs_log_vec * lv,struct xlog_ticket * ticket,struct xlog_in_core ** iclogp,uint32_t * log_offset,uint32_t * len,uint32_t * record_cnt,uint32_t * data_cnt)2046 xlog_write_partial(
2047 	struct xfs_log_vec	*lv,
2048 	struct xlog_ticket	*ticket,
2049 	struct xlog_in_core	**iclogp,
2050 	uint32_t		*log_offset,
2051 	uint32_t		*len,
2052 	uint32_t		*record_cnt,
2053 	uint32_t		*data_cnt)
2054 {
2055 	struct xlog_in_core	*iclog = *iclogp;
2056 	struct xlog_op_header	*ophdr;
2057 	int			index = 0;
2058 	uint32_t		rlen;
2059 	int			error;
2060 
2061 	/* walk the logvec, copying until we run out of space in the iclog */
2062 	for (index = 0; index < lv->lv_niovecs; index++) {
2063 		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2064 		uint32_t		reg_offset = 0;
2065 
2066 		/*
2067 		 * The first region of a continuation must have a non-zero
2068 		 * length otherwise log recovery will just skip over it and
2069 		 * start recovering from the next opheader it finds. Because we
2070 		 * mark the next opheader as a continuation, recovery will then
2071 		 * incorrectly add the continuation to the previous region and
2072 		 * that breaks stuff.
2073 		 *
2074 		 * Hence if there isn't space for region data after the
2075 		 * opheader, then we need to start afresh with a new iclog.
2076 		 */
2077 		if (iclog->ic_size - *log_offset <=
2078 					sizeof(struct xlog_op_header)) {
2079 			error = xlog_write_get_more_iclog_space(ticket,
2080 					&iclog, log_offset, *len, record_cnt,
2081 					data_cnt);
2082 			if (error)
2083 				return error;
2084 		}
2085 
2086 		ophdr = reg->i_addr;
2087 		rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset);
2088 
2089 		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2090 		ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header));
2091 		if (rlen != reg->i_len)
2092 			ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2093 
2094 		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2095 				rlen, len, record_cnt, data_cnt);
2096 
2097 		/* If we wrote the whole region, move to the next. */
2098 		if (rlen == reg->i_len)
2099 			continue;
2100 
2101 		/*
2102 		 * We now have a partially written iovec, but it can span
2103 		 * multiple iclogs so we loop here. First we release the iclog
2104 		 * we currently have, then we get a new iclog and add a new
2105 		 * opheader. Then we continue copying from where we were until
2106 		 * we either complete the iovec or fill the iclog. If we
2107 		 * complete the iovec, then we increment the index and go right
2108 		 * back to the top of the outer loop. if we fill the iclog, we
2109 		 * run the inner loop again.
2110 		 *
2111 		 * This is complicated by the tail of a region using all the
2112 		 * space in an iclog and hence requiring us to release the iclog
2113 		 * and get a new one before returning to the outer loop. We must
2114 		 * always guarantee that we exit this inner loop with at least
2115 		 * space for log transaction opheaders left in the current
2116 		 * iclog, hence we cannot just terminate the loop at the end
2117 		 * of the of the continuation. So we loop while there is no
2118 		 * space left in the current iclog, and check for the end of the
2119 		 * continuation after getting a new iclog.
2120 		 */
2121 		do {
2122 			/*
2123 			 * Ensure we include the continuation opheader in the
2124 			 * space we need in the new iclog by adding that size
2125 			 * to the length we require. This continuation opheader
2126 			 * needs to be accounted to the ticket as the space it
2127 			 * consumes hasn't been accounted to the lv we are
2128 			 * writing.
2129 			 */
2130 			error = xlog_write_get_more_iclog_space(ticket,
2131 					&iclog, log_offset,
2132 					*len + sizeof(struct xlog_op_header),
2133 					record_cnt, data_cnt);
2134 			if (error)
2135 				return error;
2136 
2137 			ophdr = iclog->ic_datap + *log_offset;
2138 			ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2139 			ophdr->oh_clientid = XFS_TRANSACTION;
2140 			ophdr->oh_res2 = 0;
2141 			ophdr->oh_flags = XLOG_WAS_CONT_TRANS;
2142 
2143 			ticket->t_curr_res -= sizeof(struct xlog_op_header);
2144 			*log_offset += sizeof(struct xlog_op_header);
2145 			*data_cnt += sizeof(struct xlog_op_header);
2146 
2147 			/*
2148 			 * If rlen fits in the iclog, then end the region
2149 			 * continuation. Otherwise we're going around again.
2150 			 */
2151 			reg_offset += rlen;
2152 			rlen = reg->i_len - reg_offset;
2153 			if (rlen <= iclog->ic_size - *log_offset)
2154 				ophdr->oh_flags |= XLOG_END_TRANS;
2155 			else
2156 				ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2157 
2158 			rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset);
2159 			ophdr->oh_len = cpu_to_be32(rlen);
2160 
2161 			xlog_write_iovec(iclog, log_offset,
2162 					reg->i_addr + reg_offset,
2163 					rlen, len, record_cnt, data_cnt);
2164 
2165 		} while (ophdr->oh_flags & XLOG_CONTINUE_TRANS);
2166 	}
2167 
2168 	/*
2169 	 * No more iovecs remain in this logvec so return the next log vec to
2170 	 * the caller so it can go back to fast path copying.
2171 	 */
2172 	*iclogp = iclog;
2173 	return 0;
2174 }
2175 
2176 /*
2177  * Write some region out to in-core log
2178  *
2179  * This will be called when writing externally provided regions or when
2180  * writing out a commit record for a given transaction.
2181  *
2182  * General algorithm:
2183  *	1. Find total length of this write.  This may include adding to the
2184  *		lengths passed in.
2185  *	2. Check whether we violate the tickets reservation.
2186  *	3. While writing to this iclog
2187  *	    A. Reserve as much space in this iclog as can get
2188  *	    B. If this is first write, save away start lsn
2189  *	    C. While writing this region:
2190  *		1. If first write of transaction, write start record
2191  *		2. Write log operation header (header per region)
2192  *		3. Find out if we can fit entire region into this iclog
2193  *		4. Potentially, verify destination memcpy ptr
2194  *		5. Memcpy (partial) region
2195  *		6. If partial copy, release iclog; otherwise, continue
2196  *			copying more regions into current iclog
2197  *	4. Mark want sync bit (in simulation mode)
2198  *	5. Release iclog for potential flush to on-disk log.
2199  *
2200  * ERRORS:
2201  * 1.	Panic if reservation is overrun.  This should never happen since
2202  *	reservation amounts are generated internal to the filesystem.
2203  * NOTES:
2204  * 1. Tickets are single threaded data structures.
2205  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2206  *	syncing routine.  When a single log_write region needs to span
2207  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2208  *	on all log operation writes which don't contain the end of the
2209  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2210  *	operation which contains the end of the continued log_write region.
2211  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2212  *	we don't really know exactly how much space will be used.  As a result,
2213  *	we don't update ic_offset until the end when we know exactly how many
2214  *	bytes have been written out.
2215  */
2216 int
xlog_write(struct xlog * log,struct xfs_cil_ctx * ctx,struct list_head * lv_chain,struct xlog_ticket * ticket,uint32_t len)2217 xlog_write(
2218 	struct xlog		*log,
2219 	struct xfs_cil_ctx	*ctx,
2220 	struct list_head	*lv_chain,
2221 	struct xlog_ticket	*ticket,
2222 	uint32_t		len)
2223 
2224 {
2225 	struct xlog_in_core	*iclog = NULL;
2226 	struct xfs_log_vec	*lv;
2227 	uint32_t		record_cnt = 0;
2228 	uint32_t		data_cnt = 0;
2229 	int			error = 0;
2230 	int			log_offset;
2231 
2232 	if (ticket->t_curr_res < 0) {
2233 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2234 		     "ctx ticket reservation ran out. Need to up reservation");
2235 		xlog_print_tic_res(log->l_mp, ticket);
2236 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
2237 	}
2238 
2239 	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2240 					   &log_offset);
2241 	if (error)
2242 		return error;
2243 
2244 	ASSERT(log_offset <= iclog->ic_size - 1);
2245 
2246 	/*
2247 	 * If we have a context pointer, pass it the first iclog we are
2248 	 * writing to so it can record state needed for iclog write
2249 	 * ordering.
2250 	 */
2251 	if (ctx)
2252 		xlog_cil_set_ctx_write_state(ctx, iclog);
2253 
2254 	list_for_each_entry(lv, lv_chain, lv_list) {
2255 		/*
2256 		 * If the entire log vec does not fit in the iclog, punt it to
2257 		 * the partial copy loop which can handle this case.
2258 		 */
2259 		if (lv->lv_niovecs &&
2260 		    lv->lv_bytes > iclog->ic_size - log_offset) {
2261 			error = xlog_write_partial(lv, ticket, &iclog,
2262 					&log_offset, &len, &record_cnt,
2263 					&data_cnt);
2264 			if (error) {
2265 				/*
2266 				 * We have no iclog to release, so just return
2267 				 * the error immediately.
2268 				 */
2269 				return error;
2270 			}
2271 		} else {
2272 			xlog_write_full(lv, ticket, iclog, &log_offset,
2273 					 &len, &record_cnt, &data_cnt);
2274 		}
2275 	}
2276 	ASSERT(len == 0);
2277 
2278 	/*
2279 	 * We've already been guaranteed that the last writes will fit inside
2280 	 * the current iclog, and hence it will already have the space used by
2281 	 * those writes accounted to it. Hence we do not need to update the
2282 	 * iclog with the number of bytes written here.
2283 	 */
2284 	spin_lock(&log->l_icloglock);
2285 	xlog_state_finish_copy(log, iclog, record_cnt, 0);
2286 	error = xlog_state_release_iclog(log, iclog, ticket);
2287 	spin_unlock(&log->l_icloglock);
2288 
2289 	return error;
2290 }
2291 
2292 static void
xlog_state_activate_iclog(struct xlog_in_core * iclog,int * iclogs_changed)2293 xlog_state_activate_iclog(
2294 	struct xlog_in_core	*iclog,
2295 	int			*iclogs_changed)
2296 {
2297 	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2298 	trace_xlog_iclog_activate(iclog, _RET_IP_);
2299 
2300 	/*
2301 	 * If the number of ops in this iclog indicate it just contains the
2302 	 * dummy transaction, we can change state into IDLE (the second time
2303 	 * around). Otherwise we should change the state into NEED a dummy.
2304 	 * We don't need to cover the dummy.
2305 	 */
2306 	if (*iclogs_changed == 0 &&
2307 	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2308 		*iclogs_changed = 1;
2309 	} else {
2310 		/*
2311 		 * We have two dirty iclogs so start over.  This could also be
2312 		 * num of ops indicating this is not the dummy going out.
2313 		 */
2314 		*iclogs_changed = 2;
2315 	}
2316 
2317 	iclog->ic_state	= XLOG_STATE_ACTIVE;
2318 	iclog->ic_offset = 0;
2319 	iclog->ic_header.h_num_logops = 0;
2320 	memset(iclog->ic_header.h_cycle_data, 0,
2321 		sizeof(iclog->ic_header.h_cycle_data));
2322 	iclog->ic_header.h_lsn = 0;
2323 	iclog->ic_header.h_tail_lsn = 0;
2324 }
2325 
2326 /*
2327  * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2328  * ACTIVE after iclog I/O has completed.
2329  */
2330 static void
xlog_state_activate_iclogs(struct xlog * log,int * iclogs_changed)2331 xlog_state_activate_iclogs(
2332 	struct xlog		*log,
2333 	int			*iclogs_changed)
2334 {
2335 	struct xlog_in_core	*iclog = log->l_iclog;
2336 
2337 	do {
2338 		if (iclog->ic_state == XLOG_STATE_DIRTY)
2339 			xlog_state_activate_iclog(iclog, iclogs_changed);
2340 		/*
2341 		 * The ordering of marking iclogs ACTIVE must be maintained, so
2342 		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2343 		 */
2344 		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2345 			break;
2346 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2347 }
2348 
2349 static int
xlog_covered_state(int prev_state,int iclogs_changed)2350 xlog_covered_state(
2351 	int			prev_state,
2352 	int			iclogs_changed)
2353 {
2354 	/*
2355 	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2356 	 * wrote the first covering record (DONE). We go to IDLE if we just
2357 	 * wrote the second covering record (DONE2) and remain in IDLE until a
2358 	 * non-covering write occurs.
2359 	 */
2360 	switch (prev_state) {
2361 	case XLOG_STATE_COVER_IDLE:
2362 		if (iclogs_changed == 1)
2363 			return XLOG_STATE_COVER_IDLE;
2364 		fallthrough;
2365 	case XLOG_STATE_COVER_NEED:
2366 	case XLOG_STATE_COVER_NEED2:
2367 		break;
2368 	case XLOG_STATE_COVER_DONE:
2369 		if (iclogs_changed == 1)
2370 			return XLOG_STATE_COVER_NEED2;
2371 		break;
2372 	case XLOG_STATE_COVER_DONE2:
2373 		if (iclogs_changed == 1)
2374 			return XLOG_STATE_COVER_IDLE;
2375 		break;
2376 	default:
2377 		ASSERT(0);
2378 	}
2379 
2380 	return XLOG_STATE_COVER_NEED;
2381 }
2382 
2383 STATIC void
xlog_state_clean_iclog(struct xlog * log,struct xlog_in_core * dirty_iclog)2384 xlog_state_clean_iclog(
2385 	struct xlog		*log,
2386 	struct xlog_in_core	*dirty_iclog)
2387 {
2388 	int			iclogs_changed = 0;
2389 
2390 	trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2391 
2392 	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2393 
2394 	xlog_state_activate_iclogs(log, &iclogs_changed);
2395 	wake_up_all(&dirty_iclog->ic_force_wait);
2396 
2397 	if (iclogs_changed) {
2398 		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2399 				iclogs_changed);
2400 	}
2401 }
2402 
2403 STATIC xfs_lsn_t
xlog_get_lowest_lsn(struct xlog * log)2404 xlog_get_lowest_lsn(
2405 	struct xlog		*log)
2406 {
2407 	struct xlog_in_core	*iclog = log->l_iclog;
2408 	xfs_lsn_t		lowest_lsn = 0, lsn;
2409 
2410 	do {
2411 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2412 		    iclog->ic_state == XLOG_STATE_DIRTY)
2413 			continue;
2414 
2415 		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2416 		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2417 			lowest_lsn = lsn;
2418 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2419 
2420 	return lowest_lsn;
2421 }
2422 
2423 /*
2424  * Return true if we need to stop processing, false to continue to the next
2425  * iclog. The caller will need to run callbacks if the iclog is returned in the
2426  * XLOG_STATE_CALLBACK state.
2427  */
2428 static bool
xlog_state_iodone_process_iclog(struct xlog * log,struct xlog_in_core * iclog)2429 xlog_state_iodone_process_iclog(
2430 	struct xlog		*log,
2431 	struct xlog_in_core	*iclog)
2432 {
2433 	xfs_lsn_t		lowest_lsn;
2434 	xfs_lsn_t		header_lsn;
2435 
2436 	switch (iclog->ic_state) {
2437 	case XLOG_STATE_ACTIVE:
2438 	case XLOG_STATE_DIRTY:
2439 		/*
2440 		 * Skip all iclogs in the ACTIVE & DIRTY states:
2441 		 */
2442 		return false;
2443 	case XLOG_STATE_DONE_SYNC:
2444 		/*
2445 		 * Now that we have an iclog that is in the DONE_SYNC state, do
2446 		 * one more check here to see if we have chased our tail around.
2447 		 * If this is not the lowest lsn iclog, then we will leave it
2448 		 * for another completion to process.
2449 		 */
2450 		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2451 		lowest_lsn = xlog_get_lowest_lsn(log);
2452 		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2453 			return false;
2454 		/*
2455 		 * If there are no callbacks on this iclog, we can mark it clean
2456 		 * immediately and return. Otherwise we need to run the
2457 		 * callbacks.
2458 		 */
2459 		if (list_empty(&iclog->ic_callbacks)) {
2460 			xlog_state_clean_iclog(log, iclog);
2461 			return false;
2462 		}
2463 		trace_xlog_iclog_callback(iclog, _RET_IP_);
2464 		iclog->ic_state = XLOG_STATE_CALLBACK;
2465 		return false;
2466 	default:
2467 		/*
2468 		 * Can only perform callbacks in order.  Since this iclog is not
2469 		 * in the DONE_SYNC state, we skip the rest and just try to
2470 		 * clean up.
2471 		 */
2472 		return true;
2473 	}
2474 }
2475 
2476 /*
2477  * Loop over all the iclogs, running attached callbacks on them. Return true if
2478  * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2479  * to handle transient shutdown state here at all because
2480  * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2481  * cleanup of the callbacks.
2482  */
2483 static bool
xlog_state_do_iclog_callbacks(struct xlog * log)2484 xlog_state_do_iclog_callbacks(
2485 	struct xlog		*log)
2486 		__releases(&log->l_icloglock)
2487 		__acquires(&log->l_icloglock)
2488 {
2489 	struct xlog_in_core	*first_iclog = log->l_iclog;
2490 	struct xlog_in_core	*iclog = first_iclog;
2491 	bool			ran_callback = false;
2492 
2493 	do {
2494 		LIST_HEAD(cb_list);
2495 
2496 		if (xlog_state_iodone_process_iclog(log, iclog))
2497 			break;
2498 		if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2499 			iclog = iclog->ic_next;
2500 			continue;
2501 		}
2502 		list_splice_init(&iclog->ic_callbacks, &cb_list);
2503 		spin_unlock(&log->l_icloglock);
2504 
2505 		trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2506 		xlog_cil_process_committed(&cb_list);
2507 		trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2508 		ran_callback = true;
2509 
2510 		spin_lock(&log->l_icloglock);
2511 		xlog_state_clean_iclog(log, iclog);
2512 		iclog = iclog->ic_next;
2513 	} while (iclog != first_iclog);
2514 
2515 	return ran_callback;
2516 }
2517 
2518 
2519 /*
2520  * Loop running iclog completion callbacks until there are no more iclogs in a
2521  * state that can run callbacks.
2522  */
2523 STATIC void
xlog_state_do_callback(struct xlog * log)2524 xlog_state_do_callback(
2525 	struct xlog		*log)
2526 {
2527 	int			flushcnt = 0;
2528 	int			repeats = 0;
2529 
2530 	spin_lock(&log->l_icloglock);
2531 	while (xlog_state_do_iclog_callbacks(log)) {
2532 		if (xlog_is_shutdown(log))
2533 			break;
2534 
2535 		if (++repeats > 5000) {
2536 			flushcnt += repeats;
2537 			repeats = 0;
2538 			xfs_warn(log->l_mp,
2539 				"%s: possible infinite loop (%d iterations)",
2540 				__func__, flushcnt);
2541 		}
2542 	}
2543 
2544 	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2545 		wake_up_all(&log->l_flush_wait);
2546 
2547 	spin_unlock(&log->l_icloglock);
2548 }
2549 
2550 
2551 /*
2552  * Finish transitioning this iclog to the dirty state.
2553  *
2554  * Callbacks could take time, so they are done outside the scope of the
2555  * global state machine log lock.
2556  */
2557 STATIC void
xlog_state_done_syncing(struct xlog_in_core * iclog)2558 xlog_state_done_syncing(
2559 	struct xlog_in_core	*iclog)
2560 {
2561 	struct xlog		*log = iclog->ic_log;
2562 
2563 	spin_lock(&log->l_icloglock);
2564 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2565 	trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2566 
2567 	/*
2568 	 * If we got an error, either on the first buffer, or in the case of
2569 	 * split log writes, on the second, we shut down the file system and
2570 	 * no iclogs should ever be attempted to be written to disk again.
2571 	 */
2572 	if (!xlog_is_shutdown(log)) {
2573 		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2574 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2575 	}
2576 
2577 	/*
2578 	 * Someone could be sleeping prior to writing out the next
2579 	 * iclog buffer, we wake them all, one will get to do the
2580 	 * I/O, the others get to wait for the result.
2581 	 */
2582 	wake_up_all(&iclog->ic_write_wait);
2583 	spin_unlock(&log->l_icloglock);
2584 	xlog_state_do_callback(log);
2585 }
2586 
2587 /*
2588  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2589  * sleep.  We wait on the flush queue on the head iclog as that should be
2590  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2591  * we will wait here and all new writes will sleep until a sync completes.
2592  *
2593  * The in-core logs are used in a circular fashion. They are not used
2594  * out-of-order even when an iclog past the head is free.
2595  *
2596  * return:
2597  *	* log_offset where xlog_write() can start writing into the in-core
2598  *		log's data space.
2599  *	* in-core log pointer to which xlog_write() should write.
2600  *	* boolean indicating this is a continued write to an in-core log.
2601  *		If this is the last write, then the in-core log's offset field
2602  *		needs to be incremented, depending on the amount of data which
2603  *		is copied.
2604  */
2605 STATIC int
xlog_state_get_iclog_space(struct xlog * log,int len,struct xlog_in_core ** iclogp,struct xlog_ticket * ticket,int * logoffsetp)2606 xlog_state_get_iclog_space(
2607 	struct xlog		*log,
2608 	int			len,
2609 	struct xlog_in_core	**iclogp,
2610 	struct xlog_ticket	*ticket,
2611 	int			*logoffsetp)
2612 {
2613 	int		  log_offset;
2614 	xlog_rec_header_t *head;
2615 	xlog_in_core_t	  *iclog;
2616 
2617 restart:
2618 	spin_lock(&log->l_icloglock);
2619 	if (xlog_is_shutdown(log)) {
2620 		spin_unlock(&log->l_icloglock);
2621 		return -EIO;
2622 	}
2623 
2624 	iclog = log->l_iclog;
2625 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2626 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2627 
2628 		/* Wait for log writes to have flushed */
2629 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2630 		goto restart;
2631 	}
2632 
2633 	head = &iclog->ic_header;
2634 
2635 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2636 	log_offset = iclog->ic_offset;
2637 
2638 	trace_xlog_iclog_get_space(iclog, _RET_IP_);
2639 
2640 	/* On the 1st write to an iclog, figure out lsn.  This works
2641 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2642 	 * committing to.  If the offset is set, that's how many blocks
2643 	 * must be written.
2644 	 */
2645 	if (log_offset == 0) {
2646 		ticket->t_curr_res -= log->l_iclog_hsize;
2647 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2648 		head->h_lsn = cpu_to_be64(
2649 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2650 		ASSERT(log->l_curr_block >= 0);
2651 	}
2652 
2653 	/* If there is enough room to write everything, then do it.  Otherwise,
2654 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2655 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2656 	 * until you know exactly how many bytes get copied.  Therefore, wait
2657 	 * until later to update ic_offset.
2658 	 *
2659 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2660 	 * can fit into remaining data section.
2661 	 */
2662 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2663 		int		error = 0;
2664 
2665 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2666 
2667 		/*
2668 		 * If we are the only one writing to this iclog, sync it to
2669 		 * disk.  We need to do an atomic compare and decrement here to
2670 		 * avoid racing with concurrent atomic_dec_and_lock() calls in
2671 		 * xlog_state_release_iclog() when there is more than one
2672 		 * reference to the iclog.
2673 		 */
2674 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2675 			error = xlog_state_release_iclog(log, iclog, ticket);
2676 		spin_unlock(&log->l_icloglock);
2677 		if (error)
2678 			return error;
2679 		goto restart;
2680 	}
2681 
2682 	/* Do we have enough room to write the full amount in the remainder
2683 	 * of this iclog?  Or must we continue a write on the next iclog and
2684 	 * mark this iclog as completely taken?  In the case where we switch
2685 	 * iclogs (to mark it taken), this particular iclog will release/sync
2686 	 * to disk in xlog_write().
2687 	 */
2688 	if (len <= iclog->ic_size - iclog->ic_offset)
2689 		iclog->ic_offset += len;
2690 	else
2691 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2692 	*iclogp = iclog;
2693 
2694 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2695 	spin_unlock(&log->l_icloglock);
2696 
2697 	*logoffsetp = log_offset;
2698 	return 0;
2699 }
2700 
2701 /*
2702  * The first cnt-1 times a ticket goes through here we don't need to move the
2703  * grant write head because the permanent reservation has reserved cnt times the
2704  * unit amount.  Release part of current permanent unit reservation and reset
2705  * current reservation to be one units worth.  Also move grant reservation head
2706  * forward.
2707  */
2708 void
xfs_log_ticket_regrant(struct xlog * log,struct xlog_ticket * ticket)2709 xfs_log_ticket_regrant(
2710 	struct xlog		*log,
2711 	struct xlog_ticket	*ticket)
2712 {
2713 	trace_xfs_log_ticket_regrant(log, ticket);
2714 
2715 	if (ticket->t_cnt > 0)
2716 		ticket->t_cnt--;
2717 
2718 	xlog_grant_sub_space(&log->l_reserve_head, ticket->t_curr_res);
2719 	xlog_grant_sub_space(&log->l_write_head, ticket->t_curr_res);
2720 	ticket->t_curr_res = ticket->t_unit_res;
2721 
2722 	trace_xfs_log_ticket_regrant_sub(log, ticket);
2723 
2724 	/* just return if we still have some of the pre-reserved space */
2725 	if (!ticket->t_cnt) {
2726 		xlog_grant_add_space(&log->l_reserve_head, ticket->t_unit_res);
2727 		trace_xfs_log_ticket_regrant_exit(log, ticket);
2728 	}
2729 
2730 	xfs_log_ticket_put(ticket);
2731 }
2732 
2733 /*
2734  * Give back the space left from a reservation.
2735  *
2736  * All the information we need to make a correct determination of space left
2737  * is present.  For non-permanent reservations, things are quite easy.  The
2738  * count should have been decremented to zero.  We only need to deal with the
2739  * space remaining in the current reservation part of the ticket.  If the
2740  * ticket contains a permanent reservation, there may be left over space which
2741  * needs to be released.  A count of N means that N-1 refills of the current
2742  * reservation can be done before we need to ask for more space.  The first
2743  * one goes to fill up the first current reservation.  Once we run out of
2744  * space, the count will stay at zero and the only space remaining will be
2745  * in the current reservation field.
2746  */
2747 void
xfs_log_ticket_ungrant(struct xlog * log,struct xlog_ticket * ticket)2748 xfs_log_ticket_ungrant(
2749 	struct xlog		*log,
2750 	struct xlog_ticket	*ticket)
2751 {
2752 	int			bytes;
2753 
2754 	trace_xfs_log_ticket_ungrant(log, ticket);
2755 
2756 	if (ticket->t_cnt > 0)
2757 		ticket->t_cnt--;
2758 
2759 	trace_xfs_log_ticket_ungrant_sub(log, ticket);
2760 
2761 	/*
2762 	 * If this is a permanent reservation ticket, we may be able to free
2763 	 * up more space based on the remaining count.
2764 	 */
2765 	bytes = ticket->t_curr_res;
2766 	if (ticket->t_cnt > 0) {
2767 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2768 		bytes += ticket->t_unit_res*ticket->t_cnt;
2769 	}
2770 
2771 	xlog_grant_sub_space(&log->l_reserve_head, bytes);
2772 	xlog_grant_sub_space(&log->l_write_head, bytes);
2773 
2774 	trace_xfs_log_ticket_ungrant_exit(log, ticket);
2775 
2776 	xfs_log_space_wake(log->l_mp);
2777 	xfs_log_ticket_put(ticket);
2778 }
2779 
2780 /*
2781  * This routine will mark the current iclog in the ring as WANT_SYNC and move
2782  * the current iclog pointer to the next iclog in the ring.
2783  */
2784 void
xlog_state_switch_iclogs(struct xlog * log,struct xlog_in_core * iclog,int eventual_size)2785 xlog_state_switch_iclogs(
2786 	struct xlog		*log,
2787 	struct xlog_in_core	*iclog,
2788 	int			eventual_size)
2789 {
2790 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2791 	assert_spin_locked(&log->l_icloglock);
2792 	trace_xlog_iclog_switch(iclog, _RET_IP_);
2793 
2794 	if (!eventual_size)
2795 		eventual_size = iclog->ic_offset;
2796 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
2797 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2798 	log->l_prev_block = log->l_curr_block;
2799 	log->l_prev_cycle = log->l_curr_cycle;
2800 
2801 	/* roll log?: ic_offset changed later */
2802 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2803 
2804 	/* Round up to next log-sunit */
2805 	if (log->l_iclog_roundoff > BBSIZE) {
2806 		uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
2807 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2808 	}
2809 
2810 	if (log->l_curr_block >= log->l_logBBsize) {
2811 		/*
2812 		 * Rewind the current block before the cycle is bumped to make
2813 		 * sure that the combined LSN never transiently moves forward
2814 		 * when the log wraps to the next cycle. This is to support the
2815 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
2816 		 * other cases should acquire l_icloglock.
2817 		 */
2818 		log->l_curr_block -= log->l_logBBsize;
2819 		ASSERT(log->l_curr_block >= 0);
2820 		smp_wmb();
2821 		log->l_curr_cycle++;
2822 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2823 			log->l_curr_cycle++;
2824 	}
2825 	ASSERT(iclog == log->l_iclog);
2826 	log->l_iclog = iclog->ic_next;
2827 }
2828 
2829 /*
2830  * Force the iclog to disk and check if the iclog has been completed before
2831  * xlog_force_iclog() returns. This can happen on synchronous (e.g.
2832  * pmem) or fast async storage because we drop the icloglock to issue the IO.
2833  * If completion has already occurred, tell the caller so that it can avoid an
2834  * unnecessary wait on the iclog.
2835  */
2836 static int
xlog_force_and_check_iclog(struct xlog_in_core * iclog,bool * completed)2837 xlog_force_and_check_iclog(
2838 	struct xlog_in_core	*iclog,
2839 	bool			*completed)
2840 {
2841 	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2842 	int			error;
2843 
2844 	*completed = false;
2845 	error = xlog_force_iclog(iclog);
2846 	if (error)
2847 		return error;
2848 
2849 	/*
2850 	 * If the iclog has already been completed and reused the header LSN
2851 	 * will have been rewritten by completion
2852 	 */
2853 	if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
2854 		*completed = true;
2855 	return 0;
2856 }
2857 
2858 /*
2859  * Write out all data in the in-core log as of this exact moment in time.
2860  *
2861  * Data may be written to the in-core log during this call.  However,
2862  * we don't guarantee this data will be written out.  A change from past
2863  * implementation means this routine will *not* write out zero length LRs.
2864  *
2865  * Basically, we try and perform an intelligent scan of the in-core logs.
2866  * If we determine there is no flushable data, we just return.  There is no
2867  * flushable data if:
2868  *
2869  *	1. the current iclog is active and has no data; the previous iclog
2870  *		is in the active or dirty state.
2871  *	2. the current iclog is dirty, and the previous iclog is in the
2872  *		active or dirty state.
2873  *
2874  * We may sleep if:
2875  *
2876  *	1. the current iclog is not in the active nor dirty state.
2877  *	2. the current iclog dirty, and the previous iclog is not in the
2878  *		active nor dirty state.
2879  *	3. the current iclog is active, and there is another thread writing
2880  *		to this particular iclog.
2881  *	4. a) the current iclog is active and has no other writers
2882  *	   b) when we return from flushing out this iclog, it is still
2883  *		not in the active nor dirty state.
2884  */
2885 int
xfs_log_force(struct xfs_mount * mp,uint flags)2886 xfs_log_force(
2887 	struct xfs_mount	*mp,
2888 	uint			flags)
2889 {
2890 	struct xlog		*log = mp->m_log;
2891 	struct xlog_in_core	*iclog;
2892 
2893 	XFS_STATS_INC(mp, xs_log_force);
2894 	trace_xfs_log_force(mp, 0, _RET_IP_);
2895 
2896 	xlog_cil_force(log);
2897 
2898 	spin_lock(&log->l_icloglock);
2899 	if (xlog_is_shutdown(log))
2900 		goto out_error;
2901 
2902 	iclog = log->l_iclog;
2903 	trace_xlog_iclog_force(iclog, _RET_IP_);
2904 
2905 	if (iclog->ic_state == XLOG_STATE_DIRTY ||
2906 	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
2907 	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
2908 		/*
2909 		 * If the head is dirty or (active and empty), then we need to
2910 		 * look at the previous iclog.
2911 		 *
2912 		 * If the previous iclog is active or dirty we are done.  There
2913 		 * is nothing to sync out. Otherwise, we attach ourselves to the
2914 		 * previous iclog and go to sleep.
2915 		 */
2916 		iclog = iclog->ic_prev;
2917 	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
2918 		if (atomic_read(&iclog->ic_refcnt) == 0) {
2919 			/* We have exclusive access to this iclog. */
2920 			bool	completed;
2921 
2922 			if (xlog_force_and_check_iclog(iclog, &completed))
2923 				goto out_error;
2924 
2925 			if (completed)
2926 				goto out_unlock;
2927 		} else {
2928 			/*
2929 			 * Someone else is still writing to this iclog, so we
2930 			 * need to ensure that when they release the iclog it
2931 			 * gets synced immediately as we may be waiting on it.
2932 			 */
2933 			xlog_state_switch_iclogs(log, iclog, 0);
2934 		}
2935 	}
2936 
2937 	/*
2938 	 * The iclog we are about to wait on may contain the checkpoint pushed
2939 	 * by the above xlog_cil_force() call, but it may not have been pushed
2940 	 * to disk yet. Like the ACTIVE case above, we need to make sure caches
2941 	 * are flushed when this iclog is written.
2942 	 */
2943 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
2944 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
2945 
2946 	if (flags & XFS_LOG_SYNC)
2947 		return xlog_wait_on_iclog(iclog);
2948 out_unlock:
2949 	spin_unlock(&log->l_icloglock);
2950 	return 0;
2951 out_error:
2952 	spin_unlock(&log->l_icloglock);
2953 	return -EIO;
2954 }
2955 
2956 /*
2957  * Force the log to a specific LSN.
2958  *
2959  * If an iclog with that lsn can be found:
2960  *	If it is in the DIRTY state, just return.
2961  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
2962  *		state and go to sleep or return.
2963  *	If it is in any other state, go to sleep or return.
2964  *
2965  * Synchronous forces are implemented with a wait queue.  All callers trying
2966  * to force a given lsn to disk must wait on the queue attached to the
2967  * specific in-core log.  When given in-core log finally completes its write
2968  * to disk, that thread will wake up all threads waiting on the queue.
2969  */
2970 static int
xlog_force_lsn(struct xlog * log,xfs_lsn_t lsn,uint flags,int * log_flushed,bool already_slept)2971 xlog_force_lsn(
2972 	struct xlog		*log,
2973 	xfs_lsn_t		lsn,
2974 	uint			flags,
2975 	int			*log_flushed,
2976 	bool			already_slept)
2977 {
2978 	struct xlog_in_core	*iclog;
2979 	bool			completed;
2980 
2981 	spin_lock(&log->l_icloglock);
2982 	if (xlog_is_shutdown(log))
2983 		goto out_error;
2984 
2985 	iclog = log->l_iclog;
2986 	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
2987 		trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
2988 		iclog = iclog->ic_next;
2989 		if (iclog == log->l_iclog)
2990 			goto out_unlock;
2991 	}
2992 
2993 	switch (iclog->ic_state) {
2994 	case XLOG_STATE_ACTIVE:
2995 		/*
2996 		 * We sleep here if we haven't already slept (e.g. this is the
2997 		 * first time we've looked at the correct iclog buf) and the
2998 		 * buffer before us is going to be sync'ed.  The reason for this
2999 		 * is that if we are doing sync transactions here, by waiting
3000 		 * for the previous I/O to complete, we can allow a few more
3001 		 * transactions into this iclog before we close it down.
3002 		 *
3003 		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3004 		 * refcnt so we can release the log (which drops the ref count).
3005 		 * The state switch keeps new transaction commits from using
3006 		 * this buffer.  When the current commits finish writing into
3007 		 * the buffer, the refcount will drop to zero and the buffer
3008 		 * will go out then.
3009 		 */
3010 		if (!already_slept &&
3011 		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3012 		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3013 			xlog_wait(&iclog->ic_prev->ic_write_wait,
3014 					&log->l_icloglock);
3015 			return -EAGAIN;
3016 		}
3017 		if (xlog_force_and_check_iclog(iclog, &completed))
3018 			goto out_error;
3019 		if (log_flushed)
3020 			*log_flushed = 1;
3021 		if (completed)
3022 			goto out_unlock;
3023 		break;
3024 	case XLOG_STATE_WANT_SYNC:
3025 		/*
3026 		 * This iclog may contain the checkpoint pushed by the
3027 		 * xlog_cil_force_seq() call, but there are other writers still
3028 		 * accessing it so it hasn't been pushed to disk yet. Like the
3029 		 * ACTIVE case above, we need to make sure caches are flushed
3030 		 * when this iclog is written.
3031 		 */
3032 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3033 		break;
3034 	default:
3035 		/*
3036 		 * The entire checkpoint was written by the CIL force and is on
3037 		 * its way to disk already. It will be stable when it
3038 		 * completes, so we don't need to manipulate caches here at all.
3039 		 * We just need to wait for completion if necessary.
3040 		 */
3041 		break;
3042 	}
3043 
3044 	if (flags & XFS_LOG_SYNC)
3045 		return xlog_wait_on_iclog(iclog);
3046 out_unlock:
3047 	spin_unlock(&log->l_icloglock);
3048 	return 0;
3049 out_error:
3050 	spin_unlock(&log->l_icloglock);
3051 	return -EIO;
3052 }
3053 
3054 /*
3055  * Force the log to a specific checkpoint sequence.
3056  *
3057  * First force the CIL so that all the required changes have been flushed to the
3058  * iclogs. If the CIL force completed it will return a commit LSN that indicates
3059  * the iclog that needs to be flushed to stable storage. If the caller needs
3060  * a synchronous log force, we will wait on the iclog with the LSN returned by
3061  * xlog_cil_force_seq() to be completed.
3062  */
3063 int
xfs_log_force_seq(struct xfs_mount * mp,xfs_csn_t seq,uint flags,int * log_flushed)3064 xfs_log_force_seq(
3065 	struct xfs_mount	*mp,
3066 	xfs_csn_t		seq,
3067 	uint			flags,
3068 	int			*log_flushed)
3069 {
3070 	struct xlog		*log = mp->m_log;
3071 	xfs_lsn_t		lsn;
3072 	int			ret;
3073 	ASSERT(seq != 0);
3074 
3075 	XFS_STATS_INC(mp, xs_log_force);
3076 	trace_xfs_log_force(mp, seq, _RET_IP_);
3077 
3078 	lsn = xlog_cil_force_seq(log, seq);
3079 	if (lsn == NULLCOMMITLSN)
3080 		return 0;
3081 
3082 	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3083 	if (ret == -EAGAIN) {
3084 		XFS_STATS_INC(mp, xs_log_force_sleep);
3085 		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3086 	}
3087 	return ret;
3088 }
3089 
3090 /*
3091  * Free a used ticket when its refcount falls to zero.
3092  */
3093 void
xfs_log_ticket_put(xlog_ticket_t * ticket)3094 xfs_log_ticket_put(
3095 	xlog_ticket_t	*ticket)
3096 {
3097 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3098 	if (atomic_dec_and_test(&ticket->t_ref))
3099 		kmem_cache_free(xfs_log_ticket_cache, ticket);
3100 }
3101 
3102 xlog_ticket_t *
xfs_log_ticket_get(xlog_ticket_t * ticket)3103 xfs_log_ticket_get(
3104 	xlog_ticket_t	*ticket)
3105 {
3106 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3107 	atomic_inc(&ticket->t_ref);
3108 	return ticket;
3109 }
3110 
3111 /*
3112  * Figure out the total log space unit (in bytes) that would be
3113  * required for a log ticket.
3114  */
3115 static int
xlog_calc_unit_res(struct xlog * log,int unit_bytes,int * niclogs)3116 xlog_calc_unit_res(
3117 	struct xlog		*log,
3118 	int			unit_bytes,
3119 	int			*niclogs)
3120 {
3121 	int			iclog_space;
3122 	uint			num_headers;
3123 
3124 	/*
3125 	 * Permanent reservations have up to 'cnt'-1 active log operations
3126 	 * in the log.  A unit in this case is the amount of space for one
3127 	 * of these log operations.  Normal reservations have a cnt of 1
3128 	 * and their unit amount is the total amount of space required.
3129 	 *
3130 	 * The following lines of code account for non-transaction data
3131 	 * which occupy space in the on-disk log.
3132 	 *
3133 	 * Normal form of a transaction is:
3134 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3135 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3136 	 *
3137 	 * We need to account for all the leadup data and trailer data
3138 	 * around the transaction data.
3139 	 * And then we need to account for the worst case in terms of using
3140 	 * more space.
3141 	 * The worst case will happen if:
3142 	 * - the placement of the transaction happens to be such that the
3143 	 *   roundoff is at its maximum
3144 	 * - the transaction data is synced before the commit record is synced
3145 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3146 	 *   Therefore the commit record is in its own Log Record.
3147 	 *   This can happen as the commit record is called with its
3148 	 *   own region to xlog_write().
3149 	 *   This then means that in the worst case, roundoff can happen for
3150 	 *   the commit-rec as well.
3151 	 *   The commit-rec is smaller than padding in this scenario and so it is
3152 	 *   not added separately.
3153 	 */
3154 
3155 	/* for trans header */
3156 	unit_bytes += sizeof(xlog_op_header_t);
3157 	unit_bytes += sizeof(xfs_trans_header_t);
3158 
3159 	/* for start-rec */
3160 	unit_bytes += sizeof(xlog_op_header_t);
3161 
3162 	/*
3163 	 * for LR headers - the space for data in an iclog is the size minus
3164 	 * the space used for the headers. If we use the iclog size, then we
3165 	 * undercalculate the number of headers required.
3166 	 *
3167 	 * Furthermore - the addition of op headers for split-recs might
3168 	 * increase the space required enough to require more log and op
3169 	 * headers, so take that into account too.
3170 	 *
3171 	 * IMPORTANT: This reservation makes the assumption that if this
3172 	 * transaction is the first in an iclog and hence has the LR headers
3173 	 * accounted to it, then the remaining space in the iclog is
3174 	 * exclusively for this transaction.  i.e. if the transaction is larger
3175 	 * than the iclog, it will be the only thing in that iclog.
3176 	 * Fundamentally, this means we must pass the entire log vector to
3177 	 * xlog_write to guarantee this.
3178 	 */
3179 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3180 	num_headers = howmany(unit_bytes, iclog_space);
3181 
3182 	/* for split-recs - ophdrs added when data split over LRs */
3183 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3184 
3185 	/* add extra header reservations if we overrun */
3186 	while (!num_headers ||
3187 	       howmany(unit_bytes, iclog_space) > num_headers) {
3188 		unit_bytes += sizeof(xlog_op_header_t);
3189 		num_headers++;
3190 	}
3191 	unit_bytes += log->l_iclog_hsize * num_headers;
3192 
3193 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3194 	unit_bytes += log->l_iclog_hsize;
3195 
3196 	/* roundoff padding for transaction data and one for commit record */
3197 	unit_bytes += 2 * log->l_iclog_roundoff;
3198 
3199 	if (niclogs)
3200 		*niclogs = num_headers;
3201 	return unit_bytes;
3202 }
3203 
3204 int
xfs_log_calc_unit_res(struct xfs_mount * mp,int unit_bytes)3205 xfs_log_calc_unit_res(
3206 	struct xfs_mount	*mp,
3207 	int			unit_bytes)
3208 {
3209 	return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL);
3210 }
3211 
3212 /*
3213  * Allocate and initialise a new log ticket.
3214  */
3215 struct xlog_ticket *
xlog_ticket_alloc(struct xlog * log,int unit_bytes,int cnt,bool permanent)3216 xlog_ticket_alloc(
3217 	struct xlog		*log,
3218 	int			unit_bytes,
3219 	int			cnt,
3220 	bool			permanent)
3221 {
3222 	struct xlog_ticket	*tic;
3223 	int			unit_res;
3224 
3225 	tic = kmem_cache_zalloc(xfs_log_ticket_cache,
3226 			GFP_KERNEL | __GFP_NOFAIL);
3227 
3228 	unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs);
3229 
3230 	atomic_set(&tic->t_ref, 1);
3231 	tic->t_task		= current;
3232 	INIT_LIST_HEAD(&tic->t_queue);
3233 	tic->t_unit_res		= unit_res;
3234 	tic->t_curr_res		= unit_res;
3235 	tic->t_cnt		= cnt;
3236 	tic->t_ocnt		= cnt;
3237 	tic->t_tid		= get_random_u32();
3238 	if (permanent)
3239 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3240 
3241 	return tic;
3242 }
3243 
3244 #if defined(DEBUG)
3245 static void
xlog_verify_dump_tail(struct xlog * log,struct xlog_in_core * iclog)3246 xlog_verify_dump_tail(
3247 	struct xlog		*log,
3248 	struct xlog_in_core	*iclog)
3249 {
3250 	xfs_alert(log->l_mp,
3251 "ran out of log space tail 0x%llx/0x%llx, head lsn 0x%llx, head 0x%x/0x%x, prev head 0x%x/0x%x",
3252 			iclog ? be64_to_cpu(iclog->ic_header.h_tail_lsn) : -1,
3253 			atomic64_read(&log->l_tail_lsn),
3254 			log->l_ailp->ail_head_lsn,
3255 			log->l_curr_cycle, log->l_curr_block,
3256 			log->l_prev_cycle, log->l_prev_block);
3257 	xfs_alert(log->l_mp,
3258 "write grant 0x%llx, reserve grant 0x%llx, tail_space 0x%llx, size 0x%x, iclog flags 0x%x",
3259 			atomic64_read(&log->l_write_head.grant),
3260 			atomic64_read(&log->l_reserve_head.grant),
3261 			log->l_tail_space, log->l_logsize,
3262 			iclog ? iclog->ic_flags : -1);
3263 }
3264 
3265 /* Check if the new iclog will fit in the log. */
3266 STATIC void
xlog_verify_tail_lsn(struct xlog * log,struct xlog_in_core * iclog)3267 xlog_verify_tail_lsn(
3268 	struct xlog		*log,
3269 	struct xlog_in_core	*iclog)
3270 {
3271 	xfs_lsn_t	tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3272 	int		blocks;
3273 
3274 	if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3275 		blocks = log->l_logBBsize -
3276 				(log->l_prev_block - BLOCK_LSN(tail_lsn));
3277 		if (blocks < BTOBB(iclog->ic_offset) +
3278 					BTOBB(log->l_iclog_hsize)) {
3279 			xfs_emerg(log->l_mp,
3280 					"%s: ran out of log space", __func__);
3281 			xlog_verify_dump_tail(log, iclog);
3282 		}
3283 		return;
3284 	}
3285 
3286 	if (CYCLE_LSN(tail_lsn) + 1 != log->l_prev_cycle) {
3287 		xfs_emerg(log->l_mp, "%s: head has wrapped tail.", __func__);
3288 		xlog_verify_dump_tail(log, iclog);
3289 		return;
3290 	}
3291 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block) {
3292 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3293 		xlog_verify_dump_tail(log, iclog);
3294 		return;
3295 	}
3296 
3297 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3298 	if (blocks < BTOBB(iclog->ic_offset) + 1) {
3299 		xfs_emerg(log->l_mp, "%s: ran out of iclog space", __func__);
3300 		xlog_verify_dump_tail(log, iclog);
3301 	}
3302 }
3303 
3304 /*
3305  * Perform a number of checks on the iclog before writing to disk.
3306  *
3307  * 1. Make sure the iclogs are still circular
3308  * 2. Make sure we have a good magic number
3309  * 3. Make sure we don't have magic numbers in the data
3310  * 4. Check fields of each log operation header for:
3311  *	A. Valid client identifier
3312  *	B. tid ptr value falls in valid ptr space (user space code)
3313  *	C. Length in log record header is correct according to the
3314  *		individual operation headers within record.
3315  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3316  *	log, check the preceding blocks of the physical log to make sure all
3317  *	the cycle numbers agree with the current cycle number.
3318  */
3319 STATIC void
xlog_verify_iclog(struct xlog * log,struct xlog_in_core * iclog,int count)3320 xlog_verify_iclog(
3321 	struct xlog		*log,
3322 	struct xlog_in_core	*iclog,
3323 	int			count)
3324 {
3325 	xlog_op_header_t	*ophead;
3326 	xlog_in_core_t		*icptr;
3327 	xlog_in_core_2_t	*xhdr;
3328 	void			*base_ptr, *ptr, *p;
3329 	ptrdiff_t		field_offset;
3330 	uint8_t			clientid;
3331 	int			len, i, j, k, op_len;
3332 	int			idx;
3333 
3334 	/* check validity of iclog pointers */
3335 	spin_lock(&log->l_icloglock);
3336 	icptr = log->l_iclog;
3337 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3338 		ASSERT(icptr);
3339 
3340 	if (icptr != log->l_iclog)
3341 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3342 	spin_unlock(&log->l_icloglock);
3343 
3344 	/* check log magic numbers */
3345 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3346 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3347 
3348 	base_ptr = ptr = &iclog->ic_header;
3349 	p = &iclog->ic_header;
3350 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3351 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3352 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3353 				__func__);
3354 	}
3355 
3356 	/* check fields */
3357 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3358 	base_ptr = ptr = iclog->ic_datap;
3359 	ophead = ptr;
3360 	xhdr = iclog->ic_data;
3361 	for (i = 0; i < len; i++) {
3362 		ophead = ptr;
3363 
3364 		/* clientid is only 1 byte */
3365 		p = &ophead->oh_clientid;
3366 		field_offset = p - base_ptr;
3367 		if (field_offset & 0x1ff) {
3368 			clientid = ophead->oh_clientid;
3369 		} else {
3370 			idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap);
3371 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3372 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3373 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3374 				clientid = xlog_get_client_id(
3375 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3376 			} else {
3377 				clientid = xlog_get_client_id(
3378 					iclog->ic_header.h_cycle_data[idx]);
3379 			}
3380 		}
3381 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) {
3382 			xfs_warn(log->l_mp,
3383 				"%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx",
3384 				__func__, i, clientid, ophead,
3385 				(unsigned long)field_offset);
3386 		}
3387 
3388 		/* check length */
3389 		p = &ophead->oh_len;
3390 		field_offset = p - base_ptr;
3391 		if (field_offset & 0x1ff) {
3392 			op_len = be32_to_cpu(ophead->oh_len);
3393 		} else {
3394 			idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap);
3395 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3396 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3397 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3398 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3399 			} else {
3400 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3401 			}
3402 		}
3403 		ptr += sizeof(xlog_op_header_t) + op_len;
3404 	}
3405 }
3406 #endif
3407 
3408 /*
3409  * Perform a forced shutdown on the log.
3410  *
3411  * This can be called from low level log code to trigger a shutdown, or from the
3412  * high level mount shutdown code when the mount shuts down.
3413  *
3414  * Our main objectives here are to make sure that:
3415  *	a. if the shutdown was not due to a log IO error, flush the logs to
3416  *	   disk. Anything modified after this is ignored.
3417  *	b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3418  *	   parties to find out. Nothing new gets queued after this is done.
3419  *	c. Tasks sleeping on log reservations, pinned objects and
3420  *	   other resources get woken up.
3421  *	d. The mount is also marked as shut down so that log triggered shutdowns
3422  *	   still behave the same as if they called xfs_forced_shutdown().
3423  *
3424  * Return true if the shutdown cause was a log IO error and we actually shut the
3425  * log down.
3426  */
3427 bool
xlog_force_shutdown(struct xlog * log,uint32_t shutdown_flags)3428 xlog_force_shutdown(
3429 	struct xlog	*log,
3430 	uint32_t	shutdown_flags)
3431 {
3432 	bool		log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
3433 
3434 	if (!log)
3435 		return false;
3436 
3437 	/*
3438 	 * Ensure that there is only ever one log shutdown being processed.
3439 	 * If we allow the log force below on a second pass after shutting
3440 	 * down the log, we risk deadlocking the CIL push as it may require
3441 	 * locks on objects the current shutdown context holds (e.g. taking
3442 	 * buffer locks to abort buffers on last unpin of buf log items).
3443 	 */
3444 	if (test_and_set_bit(XLOG_SHUTDOWN_STARTED, &log->l_opstate))
3445 		return false;
3446 
3447 	/*
3448 	 * Flush all the completed transactions to disk before marking the log
3449 	 * being shut down. We need to do this first as shutting down the log
3450 	 * before the force will prevent the log force from flushing the iclogs
3451 	 * to disk.
3452 	 *
3453 	 * When we are in recovery, there are no transactions to flush, and
3454 	 * we don't want to touch the log because we don't want to perturb the
3455 	 * current head/tail for future recovery attempts. Hence we need to
3456 	 * avoid a log force in this case.
3457 	 *
3458 	 * If we are shutting down due to a log IO error, then we must avoid
3459 	 * trying to write the log as that may just result in more IO errors and
3460 	 * an endless shutdown/force loop.
3461 	 */
3462 	if (!log_error && !xlog_in_recovery(log))
3463 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3464 
3465 	/*
3466 	 * Atomically set the shutdown state. If the shutdown state is already
3467 	 * set, there someone else is performing the shutdown and so we are done
3468 	 * here. This should never happen because we should only ever get called
3469 	 * once by the first shutdown caller.
3470 	 *
3471 	 * Much of the log state machine transitions assume that shutdown state
3472 	 * cannot change once they hold the log->l_icloglock. Hence we need to
3473 	 * hold that lock here, even though we use the atomic test_and_set_bit()
3474 	 * operation to set the shutdown state.
3475 	 */
3476 	spin_lock(&log->l_icloglock);
3477 	if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3478 		spin_unlock(&log->l_icloglock);
3479 		ASSERT(0);
3480 		return false;
3481 	}
3482 	spin_unlock(&log->l_icloglock);
3483 
3484 	/*
3485 	 * If this log shutdown also sets the mount shutdown state, issue a
3486 	 * shutdown warning message.
3487 	 */
3488 	if (!xfs_set_shutdown(log->l_mp)) {
3489 		xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR,
3490 "Filesystem has been shut down due to log error (0x%x).",
3491 				shutdown_flags);
3492 		xfs_alert(log->l_mp,
3493 "Please unmount the filesystem and rectify the problem(s).");
3494 		if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
3495 			xfs_stack_trace();
3496 	}
3497 
3498 	/*
3499 	 * We don't want anybody waiting for log reservations after this. That
3500 	 * means we have to wake up everybody queued up on reserveq as well as
3501 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3502 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3503 	 * action is protected by the grant locks.
3504 	 */
3505 	xlog_grant_head_wake_all(&log->l_reserve_head);
3506 	xlog_grant_head_wake_all(&log->l_write_head);
3507 
3508 	/*
3509 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3510 	 * as if the log writes were completed. The abort handling in the log
3511 	 * item committed callback functions will do this again under lock to
3512 	 * avoid races.
3513 	 */
3514 	spin_lock(&log->l_cilp->xc_push_lock);
3515 	wake_up_all(&log->l_cilp->xc_start_wait);
3516 	wake_up_all(&log->l_cilp->xc_commit_wait);
3517 	spin_unlock(&log->l_cilp->xc_push_lock);
3518 
3519 	spin_lock(&log->l_icloglock);
3520 	xlog_state_shutdown_callbacks(log);
3521 	spin_unlock(&log->l_icloglock);
3522 
3523 	wake_up_var(&log->l_opstate);
3524 	if (IS_ENABLED(CONFIG_XFS_RT) && xfs_has_zoned(log->l_mp))
3525 		xfs_zoned_wake_all(log->l_mp);
3526 
3527 	return log_error;
3528 }
3529 
3530 STATIC int
xlog_iclogs_empty(struct xlog * log)3531 xlog_iclogs_empty(
3532 	struct xlog	*log)
3533 {
3534 	xlog_in_core_t	*iclog;
3535 
3536 	iclog = log->l_iclog;
3537 	do {
3538 		/* endianness does not matter here, zero is zero in
3539 		 * any language.
3540 		 */
3541 		if (iclog->ic_header.h_num_logops)
3542 			return 0;
3543 		iclog = iclog->ic_next;
3544 	} while (iclog != log->l_iclog);
3545 	return 1;
3546 }
3547 
3548 /*
3549  * Verify that an LSN stamped into a piece of metadata is valid. This is
3550  * intended for use in read verifiers on v5 superblocks.
3551  */
3552 bool
xfs_log_check_lsn(struct xfs_mount * mp,xfs_lsn_t lsn)3553 xfs_log_check_lsn(
3554 	struct xfs_mount	*mp,
3555 	xfs_lsn_t		lsn)
3556 {
3557 	struct xlog		*log = mp->m_log;
3558 	bool			valid;
3559 
3560 	/*
3561 	 * norecovery mode skips mount-time log processing and unconditionally
3562 	 * resets the in-core LSN. We can't validate in this mode, but
3563 	 * modifications are not allowed anyways so just return true.
3564 	 */
3565 	if (xfs_has_norecovery(mp))
3566 		return true;
3567 
3568 	/*
3569 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3570 	 * handled by recovery and thus safe to ignore here.
3571 	 */
3572 	if (lsn == NULLCOMMITLSN)
3573 		return true;
3574 
3575 	valid = xlog_valid_lsn(mp->m_log, lsn);
3576 
3577 	/* warn the user about what's gone wrong before verifier failure */
3578 	if (!valid) {
3579 		spin_lock(&log->l_icloglock);
3580 		xfs_warn(mp,
3581 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3582 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3583 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3584 			 log->l_curr_cycle, log->l_curr_block);
3585 		spin_unlock(&log->l_icloglock);
3586 	}
3587 
3588 	return valid;
3589 }
3590