1 /*
2 * Broadcom NetXtreme-E RoCE driver.
3 *
4 * Copyright (c) 2016 - 2017, Broadcom. All rights reserved. The term
5 * Broadcom refers to Broadcom Limited and/or its subsidiaries.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 *
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
31 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
33 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
34 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 *
36 * Description: Slow Path Operators
37 */
38
39 #define dev_fmt(fmt) "QPLIB: " fmt
40
41 #include <linux/interrupt.h>
42 #include <linux/spinlock.h>
43 #include <linux/sched.h>
44 #include <linux/pci.h>
45
46 #include "roce_hsi.h"
47
48 #include "qplib_res.h"
49 #include "qplib_rcfw.h"
50 #include "qplib_sp.h"
51 #include "qplib_tlv.h"
52
53 const struct bnxt_qplib_gid bnxt_qplib_gid_zero = {{ 0, 0, 0, 0, 0, 0, 0, 0,
54 0, 0, 0, 0, 0, 0, 0, 0 } };
55
56 /* Device */
57
bnxt_qplib_is_atomic_cap(struct bnxt_qplib_rcfw * rcfw)58 static bool bnxt_qplib_is_atomic_cap(struct bnxt_qplib_rcfw *rcfw)
59 {
60 u16 pcie_ctl2 = 0;
61
62 if (!bnxt_qplib_is_chip_gen_p5_p7(rcfw->res->cctx))
63 return false;
64
65 pcie_capability_read_word(rcfw->pdev, PCI_EXP_DEVCTL2, &pcie_ctl2);
66 return (pcie_ctl2 & PCI_EXP_DEVCTL2_ATOMIC_REQ);
67 }
68
bnxt_qplib_query_version(struct bnxt_qplib_rcfw * rcfw)69 void bnxt_qplib_query_version(struct bnxt_qplib_rcfw *rcfw)
70 {
71 struct creq_query_version_resp resp = {};
72 struct bnxt_qplib_cmdqmsg msg = {};
73 struct cmdq_query_version req = {};
74 struct bnxt_qplib_dev_attr *attr;
75 int rc;
76
77 attr = rcfw->res->dattr;
78 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
79 CMDQ_BASE_OPCODE_QUERY_VERSION,
80 sizeof(req));
81
82 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), sizeof(resp), 0);
83 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
84 if (rc)
85 return;
86 attr->fw_ver[0] = resp.fw_maj;
87 attr->fw_ver[1] = resp.fw_minor;
88 attr->fw_ver[2] = resp.fw_bld;
89 attr->fw_ver[3] = resp.fw_rsvd;
90 }
91
bnxt_qplib_get_dev_attr(struct bnxt_qplib_rcfw * rcfw)92 int bnxt_qplib_get_dev_attr(struct bnxt_qplib_rcfw *rcfw)
93 {
94 struct bnxt_qplib_dev_attr *attr = rcfw->res->dattr;
95 struct creq_query_func_resp resp = {};
96 struct bnxt_qplib_cmdqmsg msg = {};
97 struct creq_query_func_resp_sb *sb;
98 struct bnxt_qplib_rcfw_sbuf sbuf;
99 struct bnxt_qplib_chip_ctx *cctx;
100 struct cmdq_query_func req = {};
101 u8 *tqm_alloc;
102 int i, rc;
103 u32 temp;
104
105 cctx = rcfw->res->cctx;
106 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
107 CMDQ_BASE_OPCODE_QUERY_FUNC,
108 sizeof(req));
109
110 sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
111 sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
112 &sbuf.dma_addr, GFP_KERNEL);
113 if (!sbuf.sb)
114 return -ENOMEM;
115 sb = sbuf.sb;
116 req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
117 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
118 sizeof(resp), 0);
119 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
120 if (rc)
121 goto bail;
122
123 /* Extract the context from the side buffer */
124 attr->max_qp = le32_to_cpu(sb->max_qp);
125 /* max_qp value reported by FW doesn't include the QP1 */
126 attr->max_qp += 1;
127 attr->max_qp_rd_atom =
128 sb->max_qp_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ?
129 BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_rd_atom;
130 attr->max_qp_init_rd_atom =
131 sb->max_qp_init_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ?
132 BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_init_rd_atom;
133 attr->max_qp_wqes = le16_to_cpu(sb->max_qp_wr) - 1;
134 if (!bnxt_qplib_is_chip_gen_p5_p7(rcfw->res->cctx)) {
135 /*
136 * 128 WQEs needs to be reserved for the HW (8916). Prevent
137 * reporting the max number on legacy devices
138 */
139 attr->max_qp_wqes -= BNXT_QPLIB_RESERVED_QP_WRS + 1;
140 }
141
142 /* Adjust for max_qp_wqes for variable wqe */
143 if (cctx->modes.wqe_mode == BNXT_QPLIB_WQE_MODE_VARIABLE)
144 attr->max_qp_wqes = BNXT_VAR_MAX_WQE - 1;
145
146 attr->max_qp_sges = cctx->modes.wqe_mode == BNXT_QPLIB_WQE_MODE_VARIABLE ?
147 min_t(u32, sb->max_sge_var_wqe, BNXT_VAR_MAX_SGE) : 6;
148 attr->max_cq = le32_to_cpu(sb->max_cq);
149 attr->max_cq_wqes = le32_to_cpu(sb->max_cqe);
150 if (!bnxt_qplib_is_chip_gen_p7(rcfw->res->cctx))
151 attr->max_cq_wqes = min_t(u32, BNXT_QPLIB_MAX_CQ_WQES, attr->max_cq_wqes);
152 attr->max_cq_sges = attr->max_qp_sges;
153 attr->max_mr = le32_to_cpu(sb->max_mr);
154 attr->max_mw = le32_to_cpu(sb->max_mw);
155
156 attr->max_mr_size = le64_to_cpu(sb->max_mr_size);
157 attr->max_pd = 64 * 1024;
158 attr->max_raw_ethy_qp = le32_to_cpu(sb->max_raw_eth_qp);
159 attr->max_ah = le32_to_cpu(sb->max_ah);
160
161 attr->max_srq = le16_to_cpu(sb->max_srq);
162 attr->max_srq_wqes = le32_to_cpu(sb->max_srq_wr) - 1;
163 attr->max_srq_sges = sb->max_srq_sge;
164 attr->max_pkey = 1;
165 attr->max_inline_data = attr->max_qp_sges * sizeof(struct sq_sge);
166 if (!bnxt_qplib_is_chip_gen_p7(rcfw->res->cctx))
167 attr->l2_db_size = (sb->l2_db_space_size + 1) *
168 (0x01 << RCFW_DBR_BASE_PAGE_SHIFT);
169 /*
170 * Read the max gid supported by HW.
171 * For each entry in HW GID in HW table, we consume 2
172 * GID entries in the kernel GID table. So max_gid reported
173 * to stack can be up to twice the value reported by the HW, up to 256 gids.
174 */
175 attr->max_sgid = le32_to_cpu(sb->max_gid);
176 attr->max_sgid = min_t(u32, BNXT_QPLIB_NUM_GIDS_SUPPORTED, 2 * attr->max_sgid);
177 attr->dev_cap_flags = le16_to_cpu(sb->dev_cap_flags);
178 attr->dev_cap_flags2 = le16_to_cpu(sb->dev_cap_ext_flags_2);
179
180 if (_is_max_srq_ext_supported(attr->dev_cap_flags2))
181 attr->max_srq += le16_to_cpu(sb->max_srq_ext);
182
183 for (i = 0; i < MAX_TQM_ALLOC_REQ / 4; i++) {
184 temp = le32_to_cpu(sb->tqm_alloc_reqs[i]);
185 tqm_alloc = (u8 *)&temp;
186 attr->tqm_alloc_reqs[i * 4] = *tqm_alloc;
187 attr->tqm_alloc_reqs[i * 4 + 1] = *(++tqm_alloc);
188 attr->tqm_alloc_reqs[i * 4 + 2] = *(++tqm_alloc);
189 attr->tqm_alloc_reqs[i * 4 + 3] = *(++tqm_alloc);
190 }
191
192 if (rcfw->res->cctx->hwrm_intf_ver >= HWRM_VERSION_DEV_ATTR_MAX_DPI)
193 attr->max_dpi = le32_to_cpu(sb->max_dpi);
194
195 attr->is_atomic = bnxt_qplib_is_atomic_cap(rcfw);
196 bail:
197 dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
198 sbuf.sb, sbuf.dma_addr);
199 return rc;
200 }
201
bnxt_qplib_set_func_resources(struct bnxt_qplib_res * res,struct bnxt_qplib_rcfw * rcfw,struct bnxt_qplib_ctx * ctx)202 int bnxt_qplib_set_func_resources(struct bnxt_qplib_res *res,
203 struct bnxt_qplib_rcfw *rcfw,
204 struct bnxt_qplib_ctx *ctx)
205 {
206 struct creq_set_func_resources_resp resp = {};
207 struct cmdq_set_func_resources req = {};
208 struct bnxt_qplib_cmdqmsg msg = {};
209 int rc;
210
211 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
212 CMDQ_BASE_OPCODE_SET_FUNC_RESOURCES,
213 sizeof(req));
214
215 req.number_of_qp = cpu_to_le32(ctx->qpc_count);
216 req.number_of_mrw = cpu_to_le32(ctx->mrw_count);
217 req.number_of_srq = cpu_to_le32(ctx->srqc_count);
218 req.number_of_cq = cpu_to_le32(ctx->cq_count);
219
220 req.max_qp_per_vf = cpu_to_le32(ctx->vf_res.max_qp_per_vf);
221 req.max_mrw_per_vf = cpu_to_le32(ctx->vf_res.max_mrw_per_vf);
222 req.max_srq_per_vf = cpu_to_le32(ctx->vf_res.max_srq_per_vf);
223 req.max_cq_per_vf = cpu_to_le32(ctx->vf_res.max_cq_per_vf);
224 req.max_gid_per_vf = cpu_to_le32(ctx->vf_res.max_gid_per_vf);
225
226 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
227 sizeof(resp), 0);
228 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
229 if (rc) {
230 dev_err(&res->pdev->dev, "Failed to set function resources\n");
231 }
232 return rc;
233 }
234
235 /* SGID */
bnxt_qplib_get_sgid(struct bnxt_qplib_res * res,struct bnxt_qplib_sgid_tbl * sgid_tbl,int index,struct bnxt_qplib_gid * gid)236 int bnxt_qplib_get_sgid(struct bnxt_qplib_res *res,
237 struct bnxt_qplib_sgid_tbl *sgid_tbl, int index,
238 struct bnxt_qplib_gid *gid)
239 {
240 if (index >= sgid_tbl->max) {
241 dev_err(&res->pdev->dev,
242 "Index %d exceeded SGID table max (%d)\n",
243 index, sgid_tbl->max);
244 return -EINVAL;
245 }
246 memcpy(gid, &sgid_tbl->tbl[index].gid, sizeof(*gid));
247 return 0;
248 }
249
bnxt_qplib_del_sgid(struct bnxt_qplib_sgid_tbl * sgid_tbl,struct bnxt_qplib_gid * gid,u16 vlan_id,bool update)250 int bnxt_qplib_del_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
251 struct bnxt_qplib_gid *gid, u16 vlan_id, bool update)
252 {
253 struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
254 struct bnxt_qplib_res,
255 sgid_tbl);
256 struct bnxt_qplib_rcfw *rcfw = res->rcfw;
257 int index;
258
259 /* Do we need a sgid_lock here? */
260 if (!sgid_tbl->active) {
261 dev_err(&res->pdev->dev, "SGID table has no active entries\n");
262 return -ENOMEM;
263 }
264 for (index = 0; index < sgid_tbl->max; index++) {
265 if (!memcmp(&sgid_tbl->tbl[index].gid, gid, sizeof(*gid)) &&
266 vlan_id == sgid_tbl->tbl[index].vlan_id)
267 break;
268 }
269 if (index == sgid_tbl->max) {
270 dev_warn(&res->pdev->dev, "GID not found in the SGID table\n");
271 return 0;
272 }
273 /* Remove GID from the SGID table */
274 if (update) {
275 struct creq_delete_gid_resp resp = {};
276 struct bnxt_qplib_cmdqmsg msg = {};
277 struct cmdq_delete_gid req = {};
278 int rc;
279
280 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
281 CMDQ_BASE_OPCODE_DELETE_GID,
282 sizeof(req));
283 if (sgid_tbl->hw_id[index] == 0xFFFF) {
284 dev_err(&res->pdev->dev,
285 "GID entry contains an invalid HW id\n");
286 return -EINVAL;
287 }
288 req.gid_index = cpu_to_le16(sgid_tbl->hw_id[index]);
289 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
290 sizeof(resp), 0);
291 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
292 if (rc)
293 return rc;
294 }
295 memcpy(&sgid_tbl->tbl[index].gid, &bnxt_qplib_gid_zero,
296 sizeof(bnxt_qplib_gid_zero));
297 sgid_tbl->tbl[index].vlan_id = 0xFFFF;
298 sgid_tbl->vlan[index] = 0;
299 sgid_tbl->active--;
300 dev_dbg(&res->pdev->dev,
301 "SGID deleted hw_id[0x%x] = 0x%x active = 0x%x\n",
302 index, sgid_tbl->hw_id[index], sgid_tbl->active);
303 sgid_tbl->hw_id[index] = (u16)-1;
304
305 /* unlock */
306 return 0;
307 }
308
bnxt_qplib_add_sgid(struct bnxt_qplib_sgid_tbl * sgid_tbl,struct bnxt_qplib_gid * gid,const u8 * smac,u16 vlan_id,bool update,u32 * index,bool is_ugid,u32 stats_ctx_id)309 int bnxt_qplib_add_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
310 struct bnxt_qplib_gid *gid, const u8 *smac,
311 u16 vlan_id, bool update, u32 *index,
312 bool is_ugid, u32 stats_ctx_id)
313 {
314 struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
315 struct bnxt_qplib_res,
316 sgid_tbl);
317 struct bnxt_qplib_rcfw *rcfw = res->rcfw;
318 int i, free_idx;
319
320 /* Do we need a sgid_lock here? */
321 if (sgid_tbl->active == sgid_tbl->max) {
322 dev_err(&res->pdev->dev, "SGID table is full\n");
323 return -ENOMEM;
324 }
325 free_idx = sgid_tbl->max;
326 for (i = 0; i < sgid_tbl->max; i++) {
327 if (!memcmp(&sgid_tbl->tbl[i], gid, sizeof(*gid)) &&
328 sgid_tbl->tbl[i].vlan_id == vlan_id) {
329 dev_dbg(&res->pdev->dev,
330 "SGID entry already exist in entry %d!\n", i);
331 *index = i;
332 return -EALREADY;
333 } else if (!memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero,
334 sizeof(bnxt_qplib_gid_zero)) &&
335 free_idx == sgid_tbl->max) {
336 free_idx = i;
337 }
338 }
339 if (free_idx == sgid_tbl->max) {
340 dev_err(&res->pdev->dev,
341 "SGID table is FULL but count is not MAX??\n");
342 return -ENOMEM;
343 }
344 if (update) {
345 struct creq_add_gid_resp resp = {};
346 struct bnxt_qplib_cmdqmsg msg = {};
347 struct cmdq_add_gid req = {};
348 int rc;
349
350 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
351 CMDQ_BASE_OPCODE_ADD_GID,
352 sizeof(req));
353
354 req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]);
355 req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]);
356 req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]);
357 req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]);
358 /*
359 * driver should ensure that all RoCE traffic is always VLAN
360 * tagged if RoCE traffic is running on non-zero VLAN ID or
361 * RoCE traffic is running on non-zero Priority.
362 */
363 if ((vlan_id != 0xFFFF) || res->prio) {
364 if (vlan_id != 0xFFFF)
365 req.vlan = cpu_to_le16
366 (vlan_id & CMDQ_ADD_GID_VLAN_VLAN_ID_MASK);
367 req.vlan |= cpu_to_le16
368 (CMDQ_ADD_GID_VLAN_TPID_TPID_8100 |
369 CMDQ_ADD_GID_VLAN_VLAN_EN);
370 }
371
372 /* MAC in network format */
373 req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]);
374 req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]);
375 req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]);
376
377 req.stats_ctx = cpu_to_le16(CMDQ_ADD_GID_STATS_CTX_STATS_CTX_VALID |
378 (u16)stats_ctx_id);
379
380 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
381 sizeof(resp), 0);
382 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
383 if (rc)
384 return rc;
385 sgid_tbl->hw_id[free_idx] = le32_to_cpu(resp.xid);
386 }
387 /* Add GID to the sgid_tbl */
388 memcpy(&sgid_tbl->tbl[free_idx], gid, sizeof(*gid));
389 sgid_tbl->tbl[free_idx].vlan_id = vlan_id;
390 sgid_tbl->active++;
391 if (vlan_id != 0xFFFF)
392 sgid_tbl->vlan[free_idx] = 1;
393
394 dev_dbg(&res->pdev->dev,
395 "SGID added hw_id[0x%x] = 0x%x active = 0x%x\n",
396 free_idx, sgid_tbl->hw_id[free_idx], sgid_tbl->active);
397
398 *index = free_idx;
399 /* unlock */
400 return 0;
401 }
402
403 /* AH */
bnxt_qplib_create_ah(struct bnxt_qplib_res * res,struct bnxt_qplib_ah * ah,bool block)404 int bnxt_qplib_create_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah,
405 bool block)
406 {
407 struct bnxt_qplib_rcfw *rcfw = res->rcfw;
408 struct creq_create_ah_resp resp = {};
409 struct bnxt_qplib_cmdqmsg msg = {};
410 struct cmdq_create_ah req = {};
411 u32 temp32[4];
412 u16 temp16[3];
413 int rc;
414
415 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
416 CMDQ_BASE_OPCODE_CREATE_AH,
417 sizeof(req));
418
419 memcpy(temp32, ah->dgid.data, sizeof(struct bnxt_qplib_gid));
420 req.dgid[0] = cpu_to_le32(temp32[0]);
421 req.dgid[1] = cpu_to_le32(temp32[1]);
422 req.dgid[2] = cpu_to_le32(temp32[2]);
423 req.dgid[3] = cpu_to_le32(temp32[3]);
424
425 req.type = ah->nw_type;
426 req.hop_limit = ah->hop_limit;
427 req.sgid_index = cpu_to_le16(res->sgid_tbl.hw_id[ah->sgid_index]);
428 req.dest_vlan_id_flow_label = cpu_to_le32((ah->flow_label &
429 CMDQ_CREATE_AH_FLOW_LABEL_MASK) |
430 CMDQ_CREATE_AH_DEST_VLAN_ID_MASK);
431 req.pd_id = cpu_to_le32(ah->pd->id);
432 req.traffic_class = ah->traffic_class;
433
434 /* MAC in network format */
435 memcpy(temp16, ah->dmac, 6);
436 req.dest_mac[0] = cpu_to_le16(temp16[0]);
437 req.dest_mac[1] = cpu_to_le16(temp16[1]);
438 req.dest_mac[2] = cpu_to_le16(temp16[2]);
439
440 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
441 sizeof(resp), block);
442 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
443 if (rc)
444 return rc;
445
446 ah->id = le32_to_cpu(resp.xid);
447 return 0;
448 }
449
bnxt_qplib_destroy_ah(struct bnxt_qplib_res * res,struct bnxt_qplib_ah * ah,bool block)450 int bnxt_qplib_destroy_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah,
451 bool block)
452 {
453 struct bnxt_qplib_rcfw *rcfw = res->rcfw;
454 struct creq_destroy_ah_resp resp = {};
455 struct bnxt_qplib_cmdqmsg msg = {};
456 struct cmdq_destroy_ah req = {};
457 int rc;
458
459 /* Clean up the AH table in the device */
460 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
461 CMDQ_BASE_OPCODE_DESTROY_AH,
462 sizeof(req));
463
464 req.ah_cid = cpu_to_le32(ah->id);
465
466 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
467 sizeof(resp), block);
468 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
469 return rc;
470 }
471
472 /* MRW */
bnxt_qplib_free_mrw(struct bnxt_qplib_res * res,struct bnxt_qplib_mrw * mrw)473 int bnxt_qplib_free_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw)
474 {
475 struct creq_deallocate_key_resp resp = {};
476 struct bnxt_qplib_rcfw *rcfw = res->rcfw;
477 struct cmdq_deallocate_key req = {};
478 struct bnxt_qplib_cmdqmsg msg = {};
479 int rc;
480
481 if (mrw->lkey == 0xFFFFFFFF) {
482 dev_info(&res->pdev->dev, "SP: Free a reserved lkey MRW\n");
483 return 0;
484 }
485
486 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
487 CMDQ_BASE_OPCODE_DEALLOCATE_KEY,
488 sizeof(req));
489
490 req.mrw_flags = mrw->type;
491
492 if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1) ||
493 (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) ||
494 (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B))
495 req.key = cpu_to_le32(mrw->rkey);
496 else
497 req.key = cpu_to_le32(mrw->lkey);
498
499 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
500 sizeof(resp), 0);
501 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
502 if (rc)
503 return rc;
504
505 /* Free the qplib's MRW memory */
506 if (mrw->hwq.max_elements)
507 bnxt_qplib_free_hwq(res, &mrw->hwq);
508
509 return 0;
510 }
511
bnxt_qplib_alloc_mrw(struct bnxt_qplib_res * res,struct bnxt_qplib_mrw * mrw)512 int bnxt_qplib_alloc_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw)
513 {
514 struct bnxt_qplib_rcfw *rcfw = res->rcfw;
515 struct creq_allocate_mrw_resp resp = {};
516 struct bnxt_qplib_cmdqmsg msg = {};
517 struct cmdq_allocate_mrw req = {};
518 unsigned long tmp;
519 int rc;
520
521 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
522 CMDQ_BASE_OPCODE_ALLOCATE_MRW,
523 sizeof(req));
524
525 req.pd_id = cpu_to_le32(mrw->pd->id);
526 req.mrw_flags = mrw->type;
527 if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_PMR &&
528 mrw->access_flags & BNXT_QPLIB_FR_PMR) ||
529 mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A ||
530 mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B)
531 req.access = CMDQ_ALLOCATE_MRW_ACCESS_CONSUMER_OWNED_KEY;
532 tmp = (unsigned long)mrw;
533 req.mrw_handle = cpu_to_le64(tmp);
534
535 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
536 sizeof(resp), 0);
537 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
538 if (rc)
539 return rc;
540
541 if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1) ||
542 (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) ||
543 (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B))
544 mrw->rkey = le32_to_cpu(resp.xid);
545 else
546 mrw->lkey = le32_to_cpu(resp.xid);
547 return 0;
548 }
549
bnxt_qplib_dereg_mrw(struct bnxt_qplib_res * res,struct bnxt_qplib_mrw * mrw,bool block)550 int bnxt_qplib_dereg_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw,
551 bool block)
552 {
553 struct bnxt_qplib_rcfw *rcfw = res->rcfw;
554 struct creq_deregister_mr_resp resp = {};
555 struct bnxt_qplib_cmdqmsg msg = {};
556 struct cmdq_deregister_mr req = {};
557 int rc;
558
559 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
560 CMDQ_BASE_OPCODE_DEREGISTER_MR,
561 sizeof(req));
562
563 req.lkey = cpu_to_le32(mrw->lkey);
564 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
565 sizeof(resp), block);
566 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
567 if (rc)
568 return rc;
569
570 /* Free the qplib's MR memory */
571 if (mrw->hwq.max_elements) {
572 mrw->va = 0;
573 mrw->total_size = 0;
574 bnxt_qplib_free_hwq(res, &mrw->hwq);
575 }
576
577 return 0;
578 }
579
bnxt_qplib_reg_mr(struct bnxt_qplib_res * res,struct bnxt_qplib_mrw * mr,struct ib_umem * umem,int num_pbls,u32 buf_pg_size,bool unified_mr)580 int bnxt_qplib_reg_mr(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mr,
581 struct ib_umem *umem, int num_pbls, u32 buf_pg_size, bool unified_mr)
582 {
583 struct bnxt_qplib_rcfw *rcfw = res->rcfw;
584 struct bnxt_qplib_hwq_attr hwq_attr = {};
585 struct bnxt_qplib_sg_info sginfo = {};
586 struct creq_register_mr_resp resp = {};
587 struct bnxt_qplib_cmdqmsg msg = {};
588 struct cmdq_register_mr req = {};
589 int pages, rc;
590 u32 pg_size;
591 u16 level;
592
593 if (num_pbls) {
594 pages = roundup_pow_of_two(num_pbls);
595 /* Allocate memory for the non-leaf pages to store buf ptrs.
596 * Non-leaf pages always uses system PAGE_SIZE
597 */
598 /* Free the hwq if it already exist, must be a rereg */
599 if (mr->hwq.max_elements)
600 bnxt_qplib_free_hwq(res, &mr->hwq);
601 hwq_attr.res = res;
602 hwq_attr.depth = pages;
603 hwq_attr.stride = sizeof(dma_addr_t);
604 hwq_attr.type = HWQ_TYPE_MR;
605 hwq_attr.sginfo = &sginfo;
606 hwq_attr.sginfo->umem = umem;
607 hwq_attr.sginfo->npages = pages;
608 hwq_attr.sginfo->pgsize = buf_pg_size;
609 hwq_attr.sginfo->pgshft = ilog2(buf_pg_size);
610 rc = bnxt_qplib_alloc_init_hwq(&mr->hwq, &hwq_attr);
611 if (rc) {
612 dev_err(&res->pdev->dev,
613 "SP: Reg MR memory allocation failed\n");
614 return -ENOMEM;
615 }
616 }
617
618 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
619 CMDQ_BASE_OPCODE_REGISTER_MR,
620 sizeof(req));
621
622 /* Configure the request */
623 if (mr->hwq.level == PBL_LVL_MAX) {
624 /* No PBL provided, just use system PAGE_SIZE */
625 level = 0;
626 req.pbl = 0;
627 pg_size = PAGE_SIZE;
628 } else {
629 level = mr->hwq.level;
630 req.pbl = cpu_to_le64(mr->hwq.pbl[PBL_LVL_0].pg_map_arr[0]);
631 }
632 pg_size = buf_pg_size ? buf_pg_size : PAGE_SIZE;
633 req.log2_pg_size_lvl = (level << CMDQ_REGISTER_MR_LVL_SFT) |
634 ((ilog2(pg_size) <<
635 CMDQ_REGISTER_MR_LOG2_PG_SIZE_SFT) &
636 CMDQ_REGISTER_MR_LOG2_PG_SIZE_MASK);
637 req.log2_pbl_pg_size = cpu_to_le16(((ilog2(PAGE_SIZE) <<
638 CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_SFT) &
639 CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_MASK));
640 req.access = (mr->access_flags & BNXT_QPLIB_MR_ACCESS_MASK);
641 req.va = cpu_to_le64(mr->va);
642 req.key = cpu_to_le32(mr->lkey);
643 if (unified_mr)
644 req.key = cpu_to_le32(mr->pd->id);
645 req.flags = cpu_to_le16(mr->flags);
646 req.mr_size = cpu_to_le64(mr->total_size);
647
648 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
649 sizeof(resp), 0);
650 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
651 if (rc)
652 goto fail;
653
654 if (unified_mr) {
655 mr->lkey = le32_to_cpu(resp.xid);
656 mr->rkey = mr->lkey;
657 }
658
659 return 0;
660
661 fail:
662 if (mr->hwq.max_elements)
663 bnxt_qplib_free_hwq(res, &mr->hwq);
664 return rc;
665 }
666
bnxt_qplib_alloc_fast_reg_page_list(struct bnxt_qplib_res * res,struct bnxt_qplib_frpl * frpl,int max_pg_ptrs)667 int bnxt_qplib_alloc_fast_reg_page_list(struct bnxt_qplib_res *res,
668 struct bnxt_qplib_frpl *frpl,
669 int max_pg_ptrs)
670 {
671 struct bnxt_qplib_hwq_attr hwq_attr = {};
672 struct bnxt_qplib_sg_info sginfo = {};
673 int pg_ptrs, pages, rc;
674
675 /* Re-calculate the max to fit the HWQ allocation model */
676 pg_ptrs = roundup_pow_of_two(max_pg_ptrs);
677 pages = pg_ptrs >> MAX_PBL_LVL_1_PGS_SHIFT;
678 if (!pages)
679 pages++;
680
681 if (pages > MAX_PBL_LVL_1_PGS)
682 return -ENOMEM;
683
684 sginfo.pgsize = PAGE_SIZE;
685 sginfo.nopte = true;
686
687 hwq_attr.res = res;
688 hwq_attr.depth = pg_ptrs;
689 hwq_attr.stride = PAGE_SIZE;
690 hwq_attr.sginfo = &sginfo;
691 hwq_attr.type = HWQ_TYPE_CTX;
692 rc = bnxt_qplib_alloc_init_hwq(&frpl->hwq, &hwq_attr);
693 if (!rc)
694 frpl->max_pg_ptrs = pg_ptrs;
695
696 return rc;
697 }
698
bnxt_qplib_free_fast_reg_page_list(struct bnxt_qplib_res * res,struct bnxt_qplib_frpl * frpl)699 int bnxt_qplib_free_fast_reg_page_list(struct bnxt_qplib_res *res,
700 struct bnxt_qplib_frpl *frpl)
701 {
702 bnxt_qplib_free_hwq(res, &frpl->hwq);
703 return 0;
704 }
705
bnxt_qplib_get_roce_stats(struct bnxt_qplib_rcfw * rcfw,struct bnxt_qplib_roce_stats * stats)706 int bnxt_qplib_get_roce_stats(struct bnxt_qplib_rcfw *rcfw,
707 struct bnxt_qplib_roce_stats *stats)
708 {
709 struct creq_query_roce_stats_resp resp = {};
710 struct creq_query_roce_stats_resp_sb *sb;
711 struct cmdq_query_roce_stats req = {};
712 struct bnxt_qplib_cmdqmsg msg = {};
713 struct bnxt_qplib_rcfw_sbuf sbuf;
714 int rc;
715
716 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
717 CMDQ_BASE_OPCODE_QUERY_ROCE_STATS,
718 sizeof(req));
719
720 sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
721 sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
722 &sbuf.dma_addr, GFP_KERNEL);
723 if (!sbuf.sb)
724 return -ENOMEM;
725 sb = sbuf.sb;
726
727 req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
728 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
729 sizeof(resp), 0);
730 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
731 if (rc)
732 goto bail;
733 /* Extract the context from the side buffer */
734 stats->to_retransmits = le64_to_cpu(sb->to_retransmits);
735 stats->seq_err_naks_rcvd = le64_to_cpu(sb->seq_err_naks_rcvd);
736 stats->max_retry_exceeded = le64_to_cpu(sb->max_retry_exceeded);
737 stats->rnr_naks_rcvd = le64_to_cpu(sb->rnr_naks_rcvd);
738 stats->missing_resp = le64_to_cpu(sb->missing_resp);
739 stats->unrecoverable_err = le64_to_cpu(sb->unrecoverable_err);
740 stats->bad_resp_err = le64_to_cpu(sb->bad_resp_err);
741 stats->local_qp_op_err = le64_to_cpu(sb->local_qp_op_err);
742 stats->local_protection_err = le64_to_cpu(sb->local_protection_err);
743 stats->mem_mgmt_op_err = le64_to_cpu(sb->mem_mgmt_op_err);
744 stats->remote_invalid_req_err = le64_to_cpu(sb->remote_invalid_req_err);
745 stats->remote_access_err = le64_to_cpu(sb->remote_access_err);
746 stats->remote_op_err = le64_to_cpu(sb->remote_op_err);
747 stats->dup_req = le64_to_cpu(sb->dup_req);
748 stats->res_exceed_max = le64_to_cpu(sb->res_exceed_max);
749 stats->res_length_mismatch = le64_to_cpu(sb->res_length_mismatch);
750 stats->res_exceeds_wqe = le64_to_cpu(sb->res_exceeds_wqe);
751 stats->res_opcode_err = le64_to_cpu(sb->res_opcode_err);
752 stats->res_rx_invalid_rkey = le64_to_cpu(sb->res_rx_invalid_rkey);
753 stats->res_rx_domain_err = le64_to_cpu(sb->res_rx_domain_err);
754 stats->res_rx_no_perm = le64_to_cpu(sb->res_rx_no_perm);
755 stats->res_rx_range_err = le64_to_cpu(sb->res_rx_range_err);
756 stats->res_tx_invalid_rkey = le64_to_cpu(sb->res_tx_invalid_rkey);
757 stats->res_tx_domain_err = le64_to_cpu(sb->res_tx_domain_err);
758 stats->res_tx_no_perm = le64_to_cpu(sb->res_tx_no_perm);
759 stats->res_tx_range_err = le64_to_cpu(sb->res_tx_range_err);
760 stats->res_irrq_oflow = le64_to_cpu(sb->res_irrq_oflow);
761 stats->res_unsup_opcode = le64_to_cpu(sb->res_unsup_opcode);
762 stats->res_unaligned_atomic = le64_to_cpu(sb->res_unaligned_atomic);
763 stats->res_rem_inv_err = le64_to_cpu(sb->res_rem_inv_err);
764 stats->res_mem_error = le64_to_cpu(sb->res_mem_error);
765 stats->res_srq_err = le64_to_cpu(sb->res_srq_err);
766 stats->res_cmp_err = le64_to_cpu(sb->res_cmp_err);
767 stats->res_invalid_dup_rkey = le64_to_cpu(sb->res_invalid_dup_rkey);
768 stats->res_wqe_format_err = le64_to_cpu(sb->res_wqe_format_err);
769 stats->res_cq_load_err = le64_to_cpu(sb->res_cq_load_err);
770 stats->res_srq_load_err = le64_to_cpu(sb->res_srq_load_err);
771 stats->res_tx_pci_err = le64_to_cpu(sb->res_tx_pci_err);
772 stats->res_rx_pci_err = le64_to_cpu(sb->res_rx_pci_err);
773 if (!rcfw->init_oos_stats) {
774 rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count);
775 rcfw->init_oos_stats = 1;
776 } else {
777 stats->res_oos_drop_count +=
778 (le64_to_cpu(sb->res_oos_drop_count) -
779 rcfw->oos_prev) & BNXT_QPLIB_OOS_COUNT_MASK;
780 rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count);
781 }
782
783 bail:
784 dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
785 sbuf.sb, sbuf.dma_addr);
786 return rc;
787 }
788
bnxt_qplib_qext_stat(struct bnxt_qplib_rcfw * rcfw,u32 fid,struct bnxt_qplib_ext_stat * estat)789 int bnxt_qplib_qext_stat(struct bnxt_qplib_rcfw *rcfw, u32 fid,
790 struct bnxt_qplib_ext_stat *estat)
791 {
792 struct creq_query_roce_stats_ext_resp resp = {};
793 struct creq_query_roce_stats_ext_resp_sb *sb;
794 struct cmdq_query_roce_stats_ext req = {};
795 struct bnxt_qplib_cmdqmsg msg = {};
796 struct bnxt_qplib_rcfw_sbuf sbuf;
797 int rc;
798
799 sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
800 sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
801 &sbuf.dma_addr, GFP_KERNEL);
802 if (!sbuf.sb)
803 return -ENOMEM;
804
805 sb = sbuf.sb;
806 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
807 CMDQ_QUERY_ROCE_STATS_EXT_OPCODE_QUERY_ROCE_STATS,
808 sizeof(req));
809
810 req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
811 req.resp_addr = cpu_to_le64(sbuf.dma_addr);
812 if (bnxt_qplib_is_chip_gen_p7(rcfw->res->cctx) && rcfw->res->is_vf)
813 req.function_id =
814 cpu_to_le32(CMDQ_QUERY_ROCE_STATS_EXT_VF_VALID |
815 (fid << CMDQ_QUERY_ROCE_STATS_EXT_VF_NUM_SFT));
816 else
817 req.function_id = cpu_to_le32(fid);
818 req.flags = cpu_to_le16(CMDQ_QUERY_ROCE_STATS_EXT_FLAGS_FUNCTION_ID);
819
820 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
821 sizeof(resp), 0);
822 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
823 if (rc)
824 goto bail;
825
826 estat->tx_atomic_req = le64_to_cpu(sb->tx_atomic_req_pkts);
827 estat->tx_read_req = le64_to_cpu(sb->tx_read_req_pkts);
828 estat->tx_read_res = le64_to_cpu(sb->tx_read_res_pkts);
829 estat->tx_write_req = le64_to_cpu(sb->tx_write_req_pkts);
830 estat->tx_send_req = le64_to_cpu(sb->tx_send_req_pkts);
831 estat->tx_roce_pkts = le64_to_cpu(sb->tx_roce_pkts);
832 estat->tx_roce_bytes = le64_to_cpu(sb->tx_roce_bytes);
833 estat->rx_atomic_req = le64_to_cpu(sb->rx_atomic_req_pkts);
834 estat->rx_read_req = le64_to_cpu(sb->rx_read_req_pkts);
835 estat->rx_read_res = le64_to_cpu(sb->rx_read_res_pkts);
836 estat->rx_write_req = le64_to_cpu(sb->rx_write_req_pkts);
837 estat->rx_send_req = le64_to_cpu(sb->rx_send_req_pkts);
838 estat->rx_roce_pkts = le64_to_cpu(sb->rx_roce_pkts);
839 estat->rx_roce_bytes = le64_to_cpu(sb->rx_roce_bytes);
840 estat->rx_roce_good_pkts = le64_to_cpu(sb->rx_roce_good_pkts);
841 estat->rx_roce_good_bytes = le64_to_cpu(sb->rx_roce_good_bytes);
842 estat->rx_out_of_buffer = le64_to_cpu(sb->rx_out_of_buffer_pkts);
843 estat->rx_out_of_sequence = le64_to_cpu(sb->rx_out_of_sequence_pkts);
844 estat->tx_cnp = le64_to_cpu(sb->tx_cnp_pkts);
845 estat->rx_cnp = le64_to_cpu(sb->rx_cnp_pkts);
846 estat->rx_ecn_marked = le64_to_cpu(sb->rx_ecn_marked_pkts);
847
848 bail:
849 dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
850 sbuf.sb, sbuf.dma_addr);
851 return rc;
852 }
853
bnxt_qplib_fill_cc_gen1(struct cmdq_modify_roce_cc_gen1_tlv * ext_req,struct bnxt_qplib_cc_param_ext * cc_ext)854 static void bnxt_qplib_fill_cc_gen1(struct cmdq_modify_roce_cc_gen1_tlv *ext_req,
855 struct bnxt_qplib_cc_param_ext *cc_ext)
856 {
857 ext_req->modify_mask = cpu_to_le64(cc_ext->ext_mask);
858 cc_ext->ext_mask = 0;
859 ext_req->inactivity_th_hi = cpu_to_le16(cc_ext->inact_th_hi);
860 ext_req->min_time_between_cnps = cpu_to_le16(cc_ext->min_delta_cnp);
861 ext_req->init_cp = cpu_to_le16(cc_ext->init_cp);
862 ext_req->tr_update_mode = cc_ext->tr_update_mode;
863 ext_req->tr_update_cycles = cc_ext->tr_update_cyls;
864 ext_req->fr_num_rtts = cc_ext->fr_rtt;
865 ext_req->ai_rate_increase = cc_ext->ai_rate_incr;
866 ext_req->reduction_relax_rtts_th = cpu_to_le16(cc_ext->rr_rtt_th);
867 ext_req->additional_relax_cr_th = cpu_to_le16(cc_ext->ar_cr_th);
868 ext_req->cr_min_th = cpu_to_le16(cc_ext->cr_min_th);
869 ext_req->bw_avg_weight = cc_ext->bw_avg_weight;
870 ext_req->actual_cr_factor = cc_ext->cr_factor;
871 ext_req->max_cp_cr_th = cpu_to_le16(cc_ext->cr_th_max_cp);
872 ext_req->cp_bias_en = cc_ext->cp_bias_en;
873 ext_req->cp_bias = cc_ext->cp_bias;
874 ext_req->cnp_ecn = cc_ext->cnp_ecn;
875 ext_req->rtt_jitter_en = cc_ext->rtt_jitter_en;
876 ext_req->link_bytes_per_usec = cpu_to_le16(cc_ext->bytes_per_usec);
877 ext_req->reset_cc_cr_th = cpu_to_le16(cc_ext->cc_cr_reset_th);
878 ext_req->cr_width = cc_ext->cr_width;
879 ext_req->quota_period_min = cc_ext->min_quota;
880 ext_req->quota_period_max = cc_ext->max_quota;
881 ext_req->quota_period_abs_max = cc_ext->abs_max_quota;
882 ext_req->tr_lower_bound = cpu_to_le16(cc_ext->tr_lb);
883 ext_req->cr_prob_factor = cc_ext->cr_prob_fac;
884 ext_req->tr_prob_factor = cc_ext->tr_prob_fac;
885 ext_req->fairness_cr_th = cpu_to_le16(cc_ext->fair_cr_th);
886 ext_req->red_div = cc_ext->red_div;
887 ext_req->cnp_ratio_th = cc_ext->cnp_ratio_th;
888 ext_req->exp_ai_rtts = cpu_to_le16(cc_ext->ai_ext_rtt);
889 ext_req->exp_ai_cr_cp_ratio = cc_ext->exp_crcp_ratio;
890 ext_req->use_rate_table = cc_ext->low_rate_en;
891 ext_req->cp_exp_update_th = cpu_to_le16(cc_ext->cpcr_update_th);
892 ext_req->high_exp_ai_rtts_th1 = cpu_to_le16(cc_ext->ai_rtt_th1);
893 ext_req->high_exp_ai_rtts_th2 = cpu_to_le16(cc_ext->ai_rtt_th2);
894 ext_req->actual_cr_cong_free_rtts_th = cpu_to_le16(cc_ext->cf_rtt_th);
895 ext_req->severe_cong_cr_th1 = cpu_to_le16(cc_ext->sc_cr_th1);
896 ext_req->severe_cong_cr_th2 = cpu_to_le16(cc_ext->sc_cr_th2);
897 ext_req->link64B_per_rtt = cpu_to_le32(cc_ext->l64B_per_rtt);
898 ext_req->cc_ack_bytes = cc_ext->cc_ack_bytes;
899 }
900
bnxt_qplib_modify_cc(struct bnxt_qplib_res * res,struct bnxt_qplib_cc_param * cc_param)901 int bnxt_qplib_modify_cc(struct bnxt_qplib_res *res,
902 struct bnxt_qplib_cc_param *cc_param)
903 {
904 struct bnxt_qplib_tlv_modify_cc_req tlv_req = {};
905 struct creq_modify_roce_cc_resp resp = {};
906 struct bnxt_qplib_cmdqmsg msg = {};
907 struct cmdq_modify_roce_cc *req;
908 int req_size;
909 void *cmd;
910 int rc;
911
912 /* Prepare the older base command */
913 req = &tlv_req.base_req;
914 cmd = req;
915 req_size = sizeof(*req);
916 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)req, CMDQ_BASE_OPCODE_MODIFY_ROCE_CC,
917 sizeof(*req));
918 req->modify_mask = cpu_to_le32(cc_param->mask);
919 req->enable_cc = cc_param->enable;
920 req->g = cc_param->g;
921 req->num_phases_per_state = cc_param->nph_per_state;
922 req->time_per_phase = cc_param->time_pph;
923 req->pkts_per_phase = cc_param->pkts_pph;
924 req->init_cr = cpu_to_le16(cc_param->init_cr);
925 req->init_tr = cpu_to_le16(cc_param->init_tr);
926 req->tos_dscp_tos_ecn = (cc_param->tos_dscp << CMDQ_MODIFY_ROCE_CC_TOS_DSCP_SFT) |
927 (cc_param->tos_ecn & CMDQ_MODIFY_ROCE_CC_TOS_ECN_MASK);
928 req->alt_vlan_pcp = cc_param->alt_vlan_pcp;
929 req->alt_tos_dscp = cpu_to_le16(cc_param->alt_tos_dscp);
930 req->rtt = cpu_to_le16(cc_param->rtt);
931 req->tcp_cp = cpu_to_le16(cc_param->tcp_cp);
932 req->cc_mode = cc_param->cc_mode;
933 req->inactivity_th = cpu_to_le16(cc_param->inact_th);
934
935 /* For chip gen P5 onwards fill extended cmd and header */
936 if (bnxt_qplib_is_chip_gen_p5_p7(res->cctx)) {
937 struct roce_tlv *hdr;
938 u32 payload;
939 u32 chunks;
940
941 cmd = &tlv_req;
942 req_size = sizeof(tlv_req);
943 /* Prepare primary tlv header */
944 hdr = &tlv_req.tlv_hdr;
945 chunks = CHUNKS(sizeof(struct bnxt_qplib_tlv_modify_cc_req));
946 payload = sizeof(struct cmdq_modify_roce_cc);
947 __roce_1st_tlv_prep(hdr, chunks, payload, true);
948 /* Prepare secondary tlv header */
949 hdr = (struct roce_tlv *)&tlv_req.ext_req;
950 payload = sizeof(struct cmdq_modify_roce_cc_gen1_tlv) -
951 sizeof(struct roce_tlv);
952 __roce_ext_tlv_prep(hdr, TLV_TYPE_MODIFY_ROCE_CC_GEN1, payload, false, true);
953 bnxt_qplib_fill_cc_gen1(&tlv_req.ext_req, &cc_param->cc_ext);
954 }
955
956 bnxt_qplib_fill_cmdqmsg(&msg, cmd, &resp, NULL, req_size,
957 sizeof(resp), 0);
958 rc = bnxt_qplib_rcfw_send_message(res->rcfw, &msg);
959 return rc;
960 }
961
bnxt_qplib_read_context(struct bnxt_qplib_rcfw * rcfw,u8 res_type,u32 xid,u32 resp_size,void * resp_va)962 int bnxt_qplib_read_context(struct bnxt_qplib_rcfw *rcfw, u8 res_type,
963 u32 xid, u32 resp_size, void *resp_va)
964 {
965 struct creq_read_context resp = {};
966 struct bnxt_qplib_cmdqmsg msg = {};
967 struct cmdq_read_context req = {};
968 struct bnxt_qplib_rcfw_sbuf sbuf;
969 int rc;
970
971 sbuf.size = resp_size;
972 sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
973 &sbuf.dma_addr, GFP_KERNEL);
974 if (!sbuf.sb)
975 return -ENOMEM;
976
977 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
978 CMDQ_BASE_OPCODE_READ_CONTEXT, sizeof(req));
979 req.resp_addr = cpu_to_le64(sbuf.dma_addr);
980 req.resp_size = resp_size / BNXT_QPLIB_CMDQE_UNITS;
981
982 req.xid = cpu_to_le32(xid);
983 req.type = res_type;
984
985 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
986 sizeof(resp), 0);
987 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
988 if (rc)
989 goto free_mem;
990
991 memcpy(resp_va, sbuf.sb, resp_size);
992 free_mem:
993 dma_free_coherent(&rcfw->pdev->dev, sbuf.size, sbuf.sb, sbuf.dma_addr);
994 return rc;
995 }
996
bnxt_qplib_read_cc_gen1(struct bnxt_qplib_cc_param_ext * cc_ext,struct creq_query_roce_cc_gen1_resp_sb_tlv * sb)997 static void bnxt_qplib_read_cc_gen1(struct bnxt_qplib_cc_param_ext *cc_ext,
998 struct creq_query_roce_cc_gen1_resp_sb_tlv *sb)
999 {
1000 cc_ext->inact_th_hi = le16_to_cpu(sb->inactivity_th_hi);
1001 cc_ext->min_delta_cnp = le16_to_cpu(sb->min_time_between_cnps);
1002 cc_ext->init_cp = le16_to_cpu(sb->init_cp);
1003 cc_ext->tr_update_mode = sb->tr_update_mode;
1004 cc_ext->tr_update_cyls = sb->tr_update_cycles;
1005 cc_ext->fr_rtt = sb->fr_num_rtts;
1006 cc_ext->ai_rate_incr = sb->ai_rate_increase;
1007 cc_ext->rr_rtt_th = le16_to_cpu(sb->reduction_relax_rtts_th);
1008 cc_ext->ar_cr_th = le16_to_cpu(sb->additional_relax_cr_th);
1009 cc_ext->cr_min_th = le16_to_cpu(sb->cr_min_th);
1010 cc_ext->bw_avg_weight = sb->bw_avg_weight;
1011 cc_ext->cr_factor = sb->actual_cr_factor;
1012 cc_ext->cr_th_max_cp = le16_to_cpu(sb->max_cp_cr_th);
1013 cc_ext->cp_bias_en = sb->cp_bias_en;
1014 cc_ext->cp_bias = sb->cp_bias;
1015 cc_ext->cnp_ecn = sb->cnp_ecn;
1016 cc_ext->rtt_jitter_en = sb->rtt_jitter_en;
1017 cc_ext->bytes_per_usec = le16_to_cpu(sb->link_bytes_per_usec);
1018 cc_ext->cc_cr_reset_th = le16_to_cpu(sb->reset_cc_cr_th);
1019 cc_ext->cr_width = sb->cr_width;
1020 cc_ext->min_quota = sb->quota_period_min;
1021 cc_ext->max_quota = sb->quota_period_max;
1022 cc_ext->abs_max_quota = sb->quota_period_abs_max;
1023 cc_ext->tr_lb = le16_to_cpu(sb->tr_lower_bound);
1024 cc_ext->cr_prob_fac = sb->cr_prob_factor;
1025 cc_ext->tr_prob_fac = sb->tr_prob_factor;
1026 cc_ext->fair_cr_th = le16_to_cpu(sb->fairness_cr_th);
1027 cc_ext->red_div = sb->red_div;
1028 cc_ext->cnp_ratio_th = sb->cnp_ratio_th;
1029 cc_ext->ai_ext_rtt = le16_to_cpu(sb->exp_ai_rtts);
1030 cc_ext->exp_crcp_ratio = sb->exp_ai_cr_cp_ratio;
1031 cc_ext->low_rate_en = sb->use_rate_table;
1032 cc_ext->cpcr_update_th = le16_to_cpu(sb->cp_exp_update_th);
1033 cc_ext->ai_rtt_th1 = le16_to_cpu(sb->high_exp_ai_rtts_th1);
1034 cc_ext->ai_rtt_th2 = le16_to_cpu(sb->high_exp_ai_rtts_th2);
1035 cc_ext->cf_rtt_th = le16_to_cpu(sb->actual_cr_cong_free_rtts_th);
1036 cc_ext->sc_cr_th1 = le16_to_cpu(sb->severe_cong_cr_th1);
1037 cc_ext->sc_cr_th2 = le16_to_cpu(sb->severe_cong_cr_th2);
1038 cc_ext->l64B_per_rtt = le32_to_cpu(sb->link64B_per_rtt);
1039 cc_ext->cc_ack_bytes = sb->cc_ack_bytes;
1040 cc_ext->reduce_cf_rtt_th = le16_to_cpu(sb->reduce_init_cong_free_rtts_th);
1041 }
1042
bnxt_qplib_query_cc_param(struct bnxt_qplib_res * res,struct bnxt_qplib_cc_param * cc_param)1043 int bnxt_qplib_query_cc_param(struct bnxt_qplib_res *res,
1044 struct bnxt_qplib_cc_param *cc_param)
1045 {
1046 struct bnxt_qplib_tlv_query_rcc_sb *ext_sb;
1047 struct bnxt_qplib_rcfw *rcfw = res->rcfw;
1048 struct creq_query_roce_cc_resp resp = {};
1049 struct creq_query_roce_cc_resp_sb *sb;
1050 struct bnxt_qplib_cmdqmsg msg = {};
1051 struct cmdq_query_roce_cc req = {};
1052 struct bnxt_qplib_rcfw_sbuf sbuf;
1053 size_t resp_size;
1054 int rc;
1055
1056 /* Query the parameters from chip */
1057 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, CMDQ_BASE_OPCODE_QUERY_ROCE_CC,
1058 sizeof(req));
1059 if (bnxt_qplib_is_chip_gen_p5_p7(res->cctx))
1060 resp_size = sizeof(*ext_sb);
1061 else
1062 resp_size = sizeof(*sb);
1063
1064 sbuf.size = ALIGN(resp_size, BNXT_QPLIB_CMDQE_UNITS);
1065 sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
1066 &sbuf.dma_addr, GFP_KERNEL);
1067 if (!sbuf.sb)
1068 return -ENOMEM;
1069
1070 req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
1071 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
1072 sizeof(resp), 0);
1073 rc = bnxt_qplib_rcfw_send_message(res->rcfw, &msg);
1074 if (rc)
1075 goto out;
1076
1077 ext_sb = sbuf.sb;
1078 sb = bnxt_qplib_is_chip_gen_p5_p7(res->cctx) ? &ext_sb->base_sb :
1079 (struct creq_query_roce_cc_resp_sb *)ext_sb;
1080
1081 cc_param->enable = sb->enable_cc & CREQ_QUERY_ROCE_CC_RESP_SB_ENABLE_CC;
1082 cc_param->tos_ecn = (sb->tos_dscp_tos_ecn &
1083 CREQ_QUERY_ROCE_CC_RESP_SB_TOS_ECN_MASK) >>
1084 CREQ_QUERY_ROCE_CC_RESP_SB_TOS_ECN_SFT;
1085 cc_param->tos_dscp = (sb->tos_dscp_tos_ecn &
1086 CREQ_QUERY_ROCE_CC_RESP_SB_TOS_DSCP_MASK) >>
1087 CREQ_QUERY_ROCE_CC_RESP_SB_TOS_DSCP_SFT;
1088 cc_param->alt_tos_dscp = sb->alt_tos_dscp;
1089 cc_param->alt_vlan_pcp = sb->alt_vlan_pcp;
1090
1091 cc_param->g = sb->g;
1092 cc_param->nph_per_state = sb->num_phases_per_state;
1093 cc_param->init_cr = le16_to_cpu(sb->init_cr);
1094 cc_param->init_tr = le16_to_cpu(sb->init_tr);
1095 cc_param->cc_mode = sb->cc_mode;
1096 cc_param->inact_th = le16_to_cpu(sb->inactivity_th);
1097 cc_param->rtt = le16_to_cpu(sb->rtt);
1098 cc_param->tcp_cp = le16_to_cpu(sb->tcp_cp);
1099 cc_param->time_pph = sb->time_per_phase;
1100 cc_param->pkts_pph = sb->pkts_per_phase;
1101 if (bnxt_qplib_is_chip_gen_p5_p7(res->cctx)) {
1102 bnxt_qplib_read_cc_gen1(&cc_param->cc_ext, &ext_sb->gen1_sb);
1103 cc_param->inact_th |= (cc_param->cc_ext.inact_th_hi & 0x3F) << 16;
1104 }
1105 out:
1106 dma_free_coherent(&rcfw->pdev->dev, sbuf.size, sbuf.sb, sbuf.dma_addr);
1107 return rc;
1108 }
1109
bnxt_qplib_create_flow(struct bnxt_qplib_res * res)1110 int bnxt_qplib_create_flow(struct bnxt_qplib_res *res)
1111 {
1112 struct creq_roce_mirror_cfg_resp resp = {};
1113 struct bnxt_qplib_rcfw *rcfw = res->rcfw;
1114 struct cmdq_roce_mirror_cfg req = {};
1115 struct bnxt_qplib_cmdqmsg msg = {};
1116
1117 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
1118 CMDQ_BASE_OPCODE_ROCE_MIRROR_CFG,
1119 sizeof(req));
1120
1121 req.mirror_flags = (u8)CMDQ_ROCE_MIRROR_CFG_MIRROR_ENABLE;
1122
1123 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
1124 sizeof(resp), 0);
1125 return bnxt_qplib_rcfw_send_message(rcfw, &msg);
1126 }
1127
bnxt_qplib_destroy_flow(struct bnxt_qplib_res * res)1128 int bnxt_qplib_destroy_flow(struct bnxt_qplib_res *res)
1129 {
1130 struct creq_roce_mirror_cfg_resp resp = {};
1131 struct bnxt_qplib_rcfw *rcfw = res->rcfw;
1132 struct cmdq_roce_mirror_cfg req = {};
1133 struct bnxt_qplib_cmdqmsg msg = {};
1134
1135 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
1136 CMDQ_BASE_OPCODE_ROCE_MIRROR_CFG,
1137 sizeof(req));
1138
1139 req.mirror_flags &= ~((u8)CMDQ_ROCE_MIRROR_CFG_MIRROR_ENABLE);
1140
1141 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
1142 sizeof(resp), 0);
1143
1144 return bnxt_qplib_rcfw_send_message(rcfw, &msg);
1145 }
1146