1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Linux INET6 implementation 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 */ 8 9 #ifndef _NET_IPV6_H 10 #define _NET_IPV6_H 11 12 #include <linux/ipv6.h> 13 #include <linux/hardirq.h> 14 #include <linux/jhash.h> 15 #include <linux/refcount.h> 16 #include <linux/jump_label_ratelimit.h> 17 #include <net/if_inet6.h> 18 #include <net/flow.h> 19 #include <net/flow_dissector.h> 20 #include <net/inet_dscp.h> 21 #include <net/snmp.h> 22 #include <net/netns/hash.h> 23 24 struct ip_tunnel_info; 25 26 #define SIN6_LEN_RFC2133 24 27 28 #define IPV6_MAXPLEN 65535 29 30 /* 31 * NextHeader field of IPv6 header 32 */ 33 34 #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */ 35 #define NEXTHDR_IPV4 4 /* IPv4 in IPv6 */ 36 #define NEXTHDR_TCP 6 /* TCP segment. */ 37 #define NEXTHDR_UDP 17 /* UDP message. */ 38 #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */ 39 #define NEXTHDR_ROUTING 43 /* Routing header. */ 40 #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */ 41 #define NEXTHDR_GRE 47 /* GRE header. */ 42 #define NEXTHDR_ESP 50 /* Encapsulating security payload. */ 43 #define NEXTHDR_AUTH 51 /* Authentication header. */ 44 #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */ 45 #define NEXTHDR_NONE 59 /* No next header */ 46 #define NEXTHDR_DEST 60 /* Destination options header. */ 47 #define NEXTHDR_SCTP 132 /* SCTP message. */ 48 #define NEXTHDR_MOBILITY 135 /* Mobility header. */ 49 50 #define NEXTHDR_MAX 255 51 52 #define IPV6_DEFAULT_HOPLIMIT 64 53 #define IPV6_DEFAULT_MCASTHOPS 1 54 55 /* Limits on Hop-by-Hop and Destination options. 56 * 57 * Per RFC8200 there is no limit on the maximum number or lengths of options in 58 * Hop-by-Hop or Destination options other then the packet must fit in an MTU. 59 * We allow configurable limits in order to mitigate potential denial of 60 * service attacks. 61 * 62 * There are three limits that may be set: 63 * - Limit the number of options in a Hop-by-Hop or Destination options 64 * extension header 65 * - Limit the byte length of a Hop-by-Hop or Destination options extension 66 * header 67 * - Disallow unknown options 68 * 69 * The limits are expressed in corresponding sysctls: 70 * 71 * ipv6.sysctl.max_dst_opts_cnt 72 * ipv6.sysctl.max_hbh_opts_cnt 73 * ipv6.sysctl.max_dst_opts_len 74 * ipv6.sysctl.max_hbh_opts_len 75 * 76 * max_*_opts_cnt is the number of TLVs that are allowed for Destination 77 * options or Hop-by-Hop options. If the number is less than zero then unknown 78 * TLVs are disallowed and the number of known options that are allowed is the 79 * absolute value. Setting the value to INT_MAX indicates no limit. 80 * 81 * max_*_opts_len is the length limit in bytes of a Destination or 82 * Hop-by-Hop options extension header. Setting the value to INT_MAX 83 * indicates no length limit. 84 * 85 * If a limit is exceeded when processing an extension header the packet is 86 * silently discarded. 87 */ 88 89 /* Default limits for Hop-by-Hop and Destination options */ 90 #define IP6_DEFAULT_MAX_DST_OPTS_CNT 8 91 #define IP6_DEFAULT_MAX_HBH_OPTS_CNT 8 92 #define IP6_DEFAULT_MAX_DST_OPTS_LEN INT_MAX /* No limit */ 93 #define IP6_DEFAULT_MAX_HBH_OPTS_LEN INT_MAX /* No limit */ 94 95 /* 96 * Addr type 97 * 98 * type - unicast | multicast 99 * scope - local | site | global 100 * v4 - compat 101 * v4mapped 102 * any 103 * loopback 104 */ 105 106 #define IPV6_ADDR_ANY 0x0000U 107 108 #define IPV6_ADDR_UNICAST 0x0001U 109 #define IPV6_ADDR_MULTICAST 0x0002U 110 111 #define IPV6_ADDR_LOOPBACK 0x0010U 112 #define IPV6_ADDR_LINKLOCAL 0x0020U 113 #define IPV6_ADDR_SITELOCAL 0x0040U 114 115 #define IPV6_ADDR_COMPATv4 0x0080U 116 117 #define IPV6_ADDR_SCOPE_MASK 0x00f0U 118 119 #define IPV6_ADDR_MAPPED 0x1000U 120 121 /* 122 * Addr scopes 123 */ 124 #define IPV6_ADDR_MC_SCOPE(a) \ 125 ((a)->s6_addr[1] & 0x0f) /* nonstandard */ 126 #define __IPV6_ADDR_SCOPE_INVALID -1 127 #define IPV6_ADDR_SCOPE_NODELOCAL 0x01 128 #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02 129 #define IPV6_ADDR_SCOPE_SITELOCAL 0x05 130 #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08 131 #define IPV6_ADDR_SCOPE_GLOBAL 0x0e 132 133 /* 134 * Addr flags 135 */ 136 #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \ 137 ((a)->s6_addr[1] & 0x10) 138 #define IPV6_ADDR_MC_FLAG_PREFIX(a) \ 139 ((a)->s6_addr[1] & 0x20) 140 #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \ 141 ((a)->s6_addr[1] & 0x40) 142 143 /* 144 * fragmentation header 145 */ 146 147 struct frag_hdr { 148 __u8 nexthdr; 149 __u8 reserved; 150 __be16 frag_off; 151 __be32 identification; 152 }; 153 154 /* 155 * Jumbo payload option, as described in RFC 2675 2. 156 */ 157 struct hop_jumbo_hdr { 158 u8 nexthdr; 159 u8 hdrlen; 160 u8 tlv_type; /* IPV6_TLV_JUMBO, 0xC2 */ 161 u8 tlv_len; /* 4 */ 162 __be32 jumbo_payload_len; 163 }; 164 165 #define IP6_MF 0x0001 166 #define IP6_OFFSET 0xFFF8 167 168 struct ip6_fraglist_iter { 169 struct ipv6hdr *tmp_hdr; 170 struct sk_buff *frag; 171 int offset; 172 unsigned int hlen; 173 __be32 frag_id; 174 u8 nexthdr; 175 }; 176 177 int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr, 178 u8 nexthdr, __be32 frag_id, 179 struct ip6_fraglist_iter *iter); 180 void ip6_fraglist_prepare(struct sk_buff *skb, struct ip6_fraglist_iter *iter); 181 ip6_fraglist_next(struct ip6_fraglist_iter * iter)182 static inline struct sk_buff *ip6_fraglist_next(struct ip6_fraglist_iter *iter) 183 { 184 struct sk_buff *skb = iter->frag; 185 186 iter->frag = skb->next; 187 skb_mark_not_on_list(skb); 188 189 return skb; 190 } 191 192 struct ip6_frag_state { 193 u8 *prevhdr; 194 unsigned int hlen; 195 unsigned int mtu; 196 unsigned int left; 197 int offset; 198 int ptr; 199 int hroom; 200 int troom; 201 __be32 frag_id; 202 u8 nexthdr; 203 }; 204 205 void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu, 206 unsigned short needed_tailroom, int hdr_room, u8 *prevhdr, 207 u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state); 208 struct sk_buff *ip6_frag_next(struct sk_buff *skb, 209 struct ip6_frag_state *state); 210 211 #define IP6_REPLY_MARK(net, mark) \ 212 ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0) 213 214 #include <net/sock.h> 215 216 /* sysctls */ 217 extern int sysctl_mld_max_msf; 218 extern int sysctl_mld_qrv; 219 220 #define _DEVINC(net, statname, mod, idev, field) \ 221 ({ \ 222 struct inet6_dev *_idev = (idev); \ 223 if (likely(_idev != NULL)) \ 224 mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\ 225 mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\ 226 }) 227 228 /* per device counters are atomic_long_t */ 229 #define _DEVINCATOMIC(net, statname, mod, idev, field) \ 230 ({ \ 231 struct inet6_dev *_idev = (idev); \ 232 if (likely(_idev != NULL)) \ 233 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \ 234 mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\ 235 }) 236 237 /* per device and per net counters are atomic_long_t */ 238 #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \ 239 ({ \ 240 struct inet6_dev *_idev = (idev); \ 241 if (likely(_idev != NULL)) \ 242 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \ 243 SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\ 244 }) 245 246 #define _DEVADD(net, statname, mod, idev, field, val) \ 247 ({ \ 248 struct inet6_dev *_idev = (idev); \ 249 unsigned long _field = (field); \ 250 unsigned long _val = (val); \ 251 if (likely(_idev != NULL)) \ 252 mod##SNMP_ADD_STATS((_idev)->stats.statname, _field, _val); \ 253 mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, _field, _val);\ 254 }) 255 256 #define _DEVUPD(net, statname, mod, idev, field, val) \ 257 ({ \ 258 struct inet6_dev *_idev = (idev); \ 259 unsigned long _val = (val); \ 260 if (likely(_idev != NULL)) \ 261 mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, _val); \ 262 mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, _val);\ 263 }) 264 265 /* MIBs */ 266 267 #define IP6_INC_STATS(net, idev,field) \ 268 _DEVINC(net, ipv6, , idev, field) 269 #define __IP6_INC_STATS(net, idev,field) \ 270 _DEVINC(net, ipv6, __, idev, field) 271 #define IP6_ADD_STATS(net, idev,field,val) \ 272 _DEVADD(net, ipv6, , idev, field, val) 273 #define __IP6_ADD_STATS(net, idev,field,val) \ 274 _DEVADD(net, ipv6, __, idev, field, val) 275 #define IP6_UPD_PO_STATS(net, idev,field,val) \ 276 _DEVUPD(net, ipv6, , idev, field, val) 277 #define __IP6_UPD_PO_STATS(net, idev,field,val) \ 278 _DEVUPD(net, ipv6, __, idev, field, val) 279 #define ICMP6_INC_STATS(net, idev, field) \ 280 _DEVINCATOMIC(net, icmpv6, , idev, field) 281 #define __ICMP6_INC_STATS(net, idev, field) \ 282 _DEVINCATOMIC(net, icmpv6, __, idev, field) 283 284 #define ICMP6MSGOUT_INC_STATS(net, idev, field) \ 285 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256) 286 #define ICMP6MSGIN_INC_STATS(net, idev, field) \ 287 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field) 288 289 struct ip6_ra_chain { 290 struct ip6_ra_chain *next; 291 struct sock *sk; 292 int sel; 293 void (*destructor)(struct sock *); 294 }; 295 296 extern struct ip6_ra_chain *ip6_ra_chain; 297 extern rwlock_t ip6_ra_lock; 298 299 /* 300 This structure is prepared by protocol, when parsing 301 ancillary data and passed to IPv6. 302 */ 303 304 struct ipv6_txoptions { 305 refcount_t refcnt; 306 /* Length of this structure */ 307 int tot_len; 308 309 /* length of extension headers */ 310 311 __u16 opt_flen; /* after fragment hdr */ 312 __u16 opt_nflen; /* before fragment hdr */ 313 314 struct ipv6_opt_hdr *hopopt; 315 struct ipv6_opt_hdr *dst0opt; 316 struct ipv6_rt_hdr *srcrt; /* Routing Header */ 317 struct ipv6_opt_hdr *dst1opt; 318 struct rcu_head rcu; 319 /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */ 320 }; 321 322 /* flowlabel_reflect sysctl values */ 323 enum flowlabel_reflect { 324 FLOWLABEL_REFLECT_ESTABLISHED = 1, 325 FLOWLABEL_REFLECT_TCP_RESET = 2, 326 FLOWLABEL_REFLECT_ICMPV6_ECHO_REPLIES = 4, 327 }; 328 329 struct ip6_flowlabel { 330 struct ip6_flowlabel __rcu *next; 331 __be32 label; 332 atomic_t users; 333 struct in6_addr dst; 334 struct ipv6_txoptions *opt; 335 unsigned long linger; 336 struct rcu_head rcu; 337 u8 share; 338 union { 339 struct pid *pid; 340 kuid_t uid; 341 } owner; 342 unsigned long lastuse; 343 unsigned long expires; 344 struct net *fl_net; 345 }; 346 347 #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF) 348 #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF) 349 #define IPV6_FLOWLABEL_STATELESS_FLAG cpu_to_be32(0x00080000) 350 351 #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK) 352 #define IPV6_TCLASS_SHIFT 20 353 354 struct ipv6_fl_socklist { 355 struct ipv6_fl_socklist __rcu *next; 356 struct ip6_flowlabel *fl; 357 struct rcu_head rcu; 358 }; 359 360 struct ipcm6_cookie { 361 struct sockcm_cookie sockc; 362 __s16 hlimit; 363 __s16 tclass; 364 __u16 gso_size; 365 __s8 dontfrag; 366 struct ipv6_txoptions *opt; 367 }; 368 ipcm6_init_sk(struct ipcm6_cookie * ipc6,const struct sock * sk)369 static inline void ipcm6_init_sk(struct ipcm6_cookie *ipc6, 370 const struct sock *sk) 371 { 372 *ipc6 = (struct ipcm6_cookie) { 373 .hlimit = -1, 374 .tclass = inet6_sk(sk)->tclass, 375 .dontfrag = inet6_test_bit(DONTFRAG, sk), 376 }; 377 378 sockcm_init(&ipc6->sockc, sk); 379 } 380 txopt_get(const struct ipv6_pinfo * np)381 static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np) 382 { 383 struct ipv6_txoptions *opt; 384 385 rcu_read_lock(); 386 opt = rcu_dereference(np->opt); 387 if (opt) { 388 if (!refcount_inc_not_zero(&opt->refcnt)) 389 opt = NULL; 390 else 391 opt = rcu_pointer_handoff(opt); 392 } 393 rcu_read_unlock(); 394 return opt; 395 } 396 txopt_put(struct ipv6_txoptions * opt)397 static inline void txopt_put(struct ipv6_txoptions *opt) 398 { 399 if (opt && refcount_dec_and_test(&opt->refcnt)) 400 kfree_rcu(opt, rcu); 401 } 402 403 #if IS_ENABLED(CONFIG_IPV6) 404 struct ip6_flowlabel *__fl6_sock_lookup(struct sock *sk, __be32 label); 405 406 extern struct static_key_false_deferred ipv6_flowlabel_exclusive; fl6_sock_lookup(struct sock * sk,__be32 label)407 static inline struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk, 408 __be32 label) 409 { 410 if (static_branch_unlikely(&ipv6_flowlabel_exclusive.key) && 411 READ_ONCE(sock_net(sk)->ipv6.flowlabel_has_excl)) 412 return __fl6_sock_lookup(sk, label) ? : ERR_PTR(-ENOENT); 413 414 return NULL; 415 } 416 #endif 417 418 struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space, 419 struct ip6_flowlabel *fl, 420 struct ipv6_txoptions *fopt); 421 void fl6_free_socklist(struct sock *sk); 422 int ipv6_flowlabel_opt(struct sock *sk, sockptr_t optval, int optlen); 423 int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq, 424 int flags); 425 int ip6_flowlabel_init(void); 426 void ip6_flowlabel_cleanup(void); 427 bool ip6_autoflowlabel(struct net *net, const struct sock *sk); 428 fl6_sock_release(struct ip6_flowlabel * fl)429 static inline void fl6_sock_release(struct ip6_flowlabel *fl) 430 { 431 if (fl) 432 atomic_dec(&fl->users); 433 } 434 435 enum skb_drop_reason icmpv6_notify(struct sk_buff *skb, u8 type, 436 u8 code, __be32 info); 437 438 void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6, 439 struct icmp6hdr *thdr, int len); 440 441 int ip6_ra_control(struct sock *sk, int sel); 442 443 int ipv6_parse_hopopts(struct sk_buff *skb); 444 445 struct ipv6_txoptions *ipv6_dup_options(struct sock *sk, 446 struct ipv6_txoptions *opt); 447 struct ipv6_txoptions *ipv6_renew_options(struct sock *sk, 448 struct ipv6_txoptions *opt, 449 int newtype, 450 struct ipv6_opt_hdr *newopt); 451 struct ipv6_txoptions *__ipv6_fixup_options(struct ipv6_txoptions *opt_space, 452 struct ipv6_txoptions *opt); 453 454 static inline struct ipv6_txoptions * ipv6_fixup_options(struct ipv6_txoptions * opt_space,struct ipv6_txoptions * opt)455 ipv6_fixup_options(struct ipv6_txoptions *opt_space, struct ipv6_txoptions *opt) 456 { 457 if (!opt) 458 return NULL; 459 return __ipv6_fixup_options(opt_space, opt); 460 } 461 462 bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb, 463 const struct inet6_skb_parm *opt); 464 struct ipv6_txoptions *ipv6_update_options(struct sock *sk, 465 struct ipv6_txoptions *opt); 466 467 /* This helper is specialized for BIG TCP needs. 468 * It assumes the hop_jumbo_hdr will immediately follow the IPV6 header. 469 * It assumes headers are already in skb->head. 470 * Returns: 0, or IPPROTO_TCP if a BIG TCP packet is there. 471 */ ipv6_has_hopopt_jumbo(const struct sk_buff * skb)472 static inline int ipv6_has_hopopt_jumbo(const struct sk_buff *skb) 473 { 474 const struct hop_jumbo_hdr *jhdr; 475 const struct ipv6hdr *nhdr; 476 477 if (likely(skb->len <= GRO_LEGACY_MAX_SIZE)) 478 return 0; 479 480 if (skb->protocol != htons(ETH_P_IPV6)) 481 return 0; 482 483 if (skb_network_offset(skb) + 484 sizeof(struct ipv6hdr) + 485 sizeof(struct hop_jumbo_hdr) > skb_headlen(skb)) 486 return 0; 487 488 nhdr = ipv6_hdr(skb); 489 490 if (nhdr->nexthdr != NEXTHDR_HOP) 491 return 0; 492 493 jhdr = (const struct hop_jumbo_hdr *) (nhdr + 1); 494 if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 || 495 jhdr->nexthdr != IPPROTO_TCP) 496 return 0; 497 return jhdr->nexthdr; 498 } 499 500 /* Return 0 if HBH header is successfully removed 501 * Or if HBH removal is unnecessary (packet is not big TCP) 502 * Return error to indicate dropping the packet 503 */ ipv6_hopopt_jumbo_remove(struct sk_buff * skb)504 static inline int ipv6_hopopt_jumbo_remove(struct sk_buff *skb) 505 { 506 const int hophdr_len = sizeof(struct hop_jumbo_hdr); 507 int nexthdr = ipv6_has_hopopt_jumbo(skb); 508 struct ipv6hdr *h6; 509 510 if (!nexthdr) 511 return 0; 512 513 if (skb_cow_head(skb, 0)) 514 return -1; 515 516 /* Remove the HBH header. 517 * Layout: [Ethernet header][IPv6 header][HBH][L4 Header] 518 */ 519 memmove(skb_mac_header(skb) + hophdr_len, skb_mac_header(skb), 520 skb_network_header(skb) - skb_mac_header(skb) + 521 sizeof(struct ipv6hdr)); 522 523 __skb_pull(skb, hophdr_len); 524 skb->network_header += hophdr_len; 525 skb->mac_header += hophdr_len; 526 527 h6 = ipv6_hdr(skb); 528 h6->nexthdr = nexthdr; 529 530 return 0; 531 } 532 ipv6_accept_ra(const struct inet6_dev * idev)533 static inline bool ipv6_accept_ra(const struct inet6_dev *idev) 534 { 535 s32 accept_ra = READ_ONCE(idev->cnf.accept_ra); 536 537 /* If forwarding is enabled, RA are not accepted unless the special 538 * hybrid mode (accept_ra=2) is enabled. 539 */ 540 return READ_ONCE(idev->cnf.forwarding) ? accept_ra == 2 : 541 accept_ra; 542 } 543 544 #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */ 545 #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */ 546 #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */ 547 548 int __ipv6_addr_type(const struct in6_addr *addr); ipv6_addr_type(const struct in6_addr * addr)549 static inline int ipv6_addr_type(const struct in6_addr *addr) 550 { 551 return __ipv6_addr_type(addr) & 0xffff; 552 } 553 ipv6_addr_scope(const struct in6_addr * addr)554 static inline int ipv6_addr_scope(const struct in6_addr *addr) 555 { 556 return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK; 557 } 558 __ipv6_addr_src_scope(int type)559 static inline int __ipv6_addr_src_scope(int type) 560 { 561 return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16); 562 } 563 ipv6_addr_src_scope(const struct in6_addr * addr)564 static inline int ipv6_addr_src_scope(const struct in6_addr *addr) 565 { 566 return __ipv6_addr_src_scope(__ipv6_addr_type(addr)); 567 } 568 __ipv6_addr_needs_scope_id(int type)569 static inline bool __ipv6_addr_needs_scope_id(int type) 570 { 571 return type & IPV6_ADDR_LINKLOCAL || 572 (type & IPV6_ADDR_MULTICAST && 573 (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL))); 574 } 575 ipv6_iface_scope_id(const struct in6_addr * addr,int iface)576 static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface) 577 { 578 return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0; 579 } 580 ipv6_addr_cmp(const struct in6_addr * a1,const struct in6_addr * a2)581 static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2) 582 { 583 return memcmp(a1, a2, sizeof(struct in6_addr)); 584 } 585 586 static inline bool ipv6_masked_addr_cmp(const struct in6_addr * a1,const struct in6_addr * m,const struct in6_addr * a2)587 ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m, 588 const struct in6_addr *a2) 589 { 590 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 591 const unsigned long *ul1 = (const unsigned long *)a1; 592 const unsigned long *ulm = (const unsigned long *)m; 593 const unsigned long *ul2 = (const unsigned long *)a2; 594 595 return !!(((ul1[0] ^ ul2[0]) & ulm[0]) | 596 ((ul1[1] ^ ul2[1]) & ulm[1])); 597 #else 598 return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) | 599 ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) | 600 ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) | 601 ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3])); 602 #endif 603 } 604 ipv6_addr_prefix(struct in6_addr * pfx,const struct in6_addr * addr,int plen)605 static inline void ipv6_addr_prefix(struct in6_addr *pfx, 606 const struct in6_addr *addr, 607 int plen) 608 { 609 /* caller must guarantee 0 <= plen <= 128 */ 610 int o = plen >> 3, 611 b = plen & 0x7; 612 613 memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr)); 614 memcpy(pfx->s6_addr, addr, o); 615 if (b != 0) 616 pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b); 617 } 618 ipv6_addr_prefix_copy(struct in6_addr * addr,const struct in6_addr * pfx,int plen)619 static inline void ipv6_addr_prefix_copy(struct in6_addr *addr, 620 const struct in6_addr *pfx, 621 int plen) 622 { 623 /* caller must guarantee 0 <= plen <= 128 */ 624 int o = plen >> 3, 625 b = plen & 0x7; 626 627 memcpy(addr->s6_addr, pfx, o); 628 if (b != 0) { 629 addr->s6_addr[o] &= ~(0xff00 >> b); 630 addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b)); 631 } 632 } 633 __ipv6_addr_set_half(__be32 * addr,__be32 wh,__be32 wl)634 static inline void __ipv6_addr_set_half(__be32 *addr, 635 __be32 wh, __be32 wl) 636 { 637 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 638 #if defined(__BIG_ENDIAN) 639 if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) { 640 *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl)); 641 return; 642 } 643 #elif defined(__LITTLE_ENDIAN) 644 if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) { 645 *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh)); 646 return; 647 } 648 #endif 649 #endif 650 addr[0] = wh; 651 addr[1] = wl; 652 } 653 ipv6_addr_set(struct in6_addr * addr,__be32 w1,__be32 w2,__be32 w3,__be32 w4)654 static inline void ipv6_addr_set(struct in6_addr *addr, 655 __be32 w1, __be32 w2, 656 __be32 w3, __be32 w4) 657 { 658 __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2); 659 __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4); 660 } 661 ipv6_addr_equal(const struct in6_addr * a1,const struct in6_addr * a2)662 static inline bool ipv6_addr_equal(const struct in6_addr *a1, 663 const struct in6_addr *a2) 664 { 665 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 666 const unsigned long *ul1 = (const unsigned long *)a1; 667 const unsigned long *ul2 = (const unsigned long *)a2; 668 669 return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL; 670 #else 671 return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) | 672 (a1->s6_addr32[1] ^ a2->s6_addr32[1]) | 673 (a1->s6_addr32[2] ^ a2->s6_addr32[2]) | 674 (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0; 675 #endif 676 } 677 678 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 __ipv6_prefix_equal64_half(const __be64 * a1,const __be64 * a2,unsigned int len)679 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1, 680 const __be64 *a2, 681 unsigned int len) 682 { 683 if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len)))) 684 return false; 685 return true; 686 } 687 ipv6_prefix_equal(const struct in6_addr * addr1,const struct in6_addr * addr2,unsigned int prefixlen)688 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1, 689 const struct in6_addr *addr2, 690 unsigned int prefixlen) 691 { 692 const __be64 *a1 = (const __be64 *)addr1; 693 const __be64 *a2 = (const __be64 *)addr2; 694 695 if (prefixlen >= 64) { 696 if (a1[0] ^ a2[0]) 697 return false; 698 return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64); 699 } 700 return __ipv6_prefix_equal64_half(a1, a2, prefixlen); 701 } 702 #else ipv6_prefix_equal(const struct in6_addr * addr1,const struct in6_addr * addr2,unsigned int prefixlen)703 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1, 704 const struct in6_addr *addr2, 705 unsigned int prefixlen) 706 { 707 const __be32 *a1 = addr1->s6_addr32; 708 const __be32 *a2 = addr2->s6_addr32; 709 unsigned int pdw, pbi; 710 711 /* check complete u32 in prefix */ 712 pdw = prefixlen >> 5; 713 if (pdw && memcmp(a1, a2, pdw << 2)) 714 return false; 715 716 /* check incomplete u32 in prefix */ 717 pbi = prefixlen & 0x1f; 718 if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi)))) 719 return false; 720 721 return true; 722 } 723 #endif 724 ipv6_addr_any(const struct in6_addr * a)725 static inline bool ipv6_addr_any(const struct in6_addr *a) 726 { 727 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 728 const unsigned long *ul = (const unsigned long *)a; 729 730 return (ul[0] | ul[1]) == 0UL; 731 #else 732 return (a->s6_addr32[0] | a->s6_addr32[1] | 733 a->s6_addr32[2] | a->s6_addr32[3]) == 0; 734 #endif 735 } 736 ipv6_addr_hash(const struct in6_addr * a)737 static inline u32 ipv6_addr_hash(const struct in6_addr *a) 738 { 739 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 740 const unsigned long *ul = (const unsigned long *)a; 741 unsigned long x = ul[0] ^ ul[1]; 742 743 return (u32)(x ^ (x >> 32)); 744 #else 745 return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^ 746 a->s6_addr32[2] ^ a->s6_addr32[3]); 747 #endif 748 } 749 750 /* more secured version of ipv6_addr_hash() */ __ipv6_addr_jhash(const struct in6_addr * a,const u32 initval)751 static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval) 752 { 753 return jhash2((__force const u32 *)a->s6_addr32, 754 ARRAY_SIZE(a->s6_addr32), initval); 755 } 756 ipv6_addr_loopback(const struct in6_addr * a)757 static inline bool ipv6_addr_loopback(const struct in6_addr *a) 758 { 759 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 760 const __be64 *be = (const __be64 *)a; 761 762 return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL; 763 #else 764 return (a->s6_addr32[0] | a->s6_addr32[1] | 765 a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0; 766 #endif 767 } 768 769 /* 770 * Note that we must __force cast these to unsigned long to make sparse happy, 771 * since all of the endian-annotated types are fixed size regardless of arch. 772 */ ipv6_addr_v4mapped(const struct in6_addr * a)773 static inline bool ipv6_addr_v4mapped(const struct in6_addr *a) 774 { 775 return ( 776 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 777 *(unsigned long *)a | 778 #else 779 (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) | 780 #endif 781 (__force unsigned long)(a->s6_addr32[2] ^ 782 cpu_to_be32(0x0000ffff))) == 0UL; 783 } 784 ipv6_addr_v4mapped_loopback(const struct in6_addr * a)785 static inline bool ipv6_addr_v4mapped_loopback(const struct in6_addr *a) 786 { 787 return ipv6_addr_v4mapped(a) && ipv4_is_loopback(a->s6_addr32[3]); 788 } 789 ipv6_portaddr_hash(const struct net * net,const struct in6_addr * addr6,unsigned int port)790 static inline u32 ipv6_portaddr_hash(const struct net *net, 791 const struct in6_addr *addr6, 792 unsigned int port) 793 { 794 unsigned int hash, mix = net_hash_mix(net); 795 796 if (ipv6_addr_any(addr6)) 797 hash = jhash_1word(0, mix); 798 else if (ipv6_addr_v4mapped(addr6)) 799 hash = jhash_1word((__force u32)addr6->s6_addr32[3], mix); 800 else 801 hash = jhash2((__force u32 *)addr6->s6_addr32, 4, mix); 802 803 return hash ^ port; 804 } 805 806 /* 807 * Check for a RFC 4843 ORCHID address 808 * (Overlay Routable Cryptographic Hash Identifiers) 809 */ ipv6_addr_orchid(const struct in6_addr * a)810 static inline bool ipv6_addr_orchid(const struct in6_addr *a) 811 { 812 return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010); 813 } 814 ipv6_addr_is_multicast(const struct in6_addr * addr)815 static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr) 816 { 817 return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000); 818 } 819 ipv6_addr_set_v4mapped(const __be32 addr,struct in6_addr * v4mapped)820 static inline void ipv6_addr_set_v4mapped(const __be32 addr, 821 struct in6_addr *v4mapped) 822 { 823 ipv6_addr_set(v4mapped, 824 0, 0, 825 htonl(0x0000FFFF), 826 addr); 827 } 828 829 /* 830 * find the first different bit between two addresses 831 * length of address must be a multiple of 32bits 832 */ __ipv6_addr_diff32(const void * token1,const void * token2,int addrlen)833 static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen) 834 { 835 const __be32 *a1 = token1, *a2 = token2; 836 int i; 837 838 addrlen >>= 2; 839 840 for (i = 0; i < addrlen; i++) { 841 __be32 xb = a1[i] ^ a2[i]; 842 if (xb) 843 return i * 32 + 31 - __fls(ntohl(xb)); 844 } 845 846 /* 847 * we should *never* get to this point since that 848 * would mean the addrs are equal 849 * 850 * However, we do get to it 8) And exactly, when 851 * addresses are equal 8) 852 * 853 * ip route add 1111::/128 via ... 854 * ip route add 1111::/64 via ... 855 * and we are here. 856 * 857 * Ideally, this function should stop comparison 858 * at prefix length. It does not, but it is still OK, 859 * if returned value is greater than prefix length. 860 * --ANK (980803) 861 */ 862 return addrlen << 5; 863 } 864 865 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 __ipv6_addr_diff64(const void * token1,const void * token2,int addrlen)866 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen) 867 { 868 const __be64 *a1 = token1, *a2 = token2; 869 int i; 870 871 addrlen >>= 3; 872 873 for (i = 0; i < addrlen; i++) { 874 __be64 xb = a1[i] ^ a2[i]; 875 if (xb) 876 return i * 64 + 63 - __fls(be64_to_cpu(xb)); 877 } 878 879 return addrlen << 6; 880 } 881 #endif 882 __ipv6_addr_diff(const void * token1,const void * token2,int addrlen)883 static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen) 884 { 885 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 886 if (__builtin_constant_p(addrlen) && !(addrlen & 7)) 887 return __ipv6_addr_diff64(token1, token2, addrlen); 888 #endif 889 return __ipv6_addr_diff32(token1, token2, addrlen); 890 } 891 ipv6_addr_diff(const struct in6_addr * a1,const struct in6_addr * a2)892 static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2) 893 { 894 return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr)); 895 } 896 897 __be32 ipv6_select_ident(struct net *net, 898 const struct in6_addr *daddr, 899 const struct in6_addr *saddr); 900 __be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb); 901 902 int ip6_dst_hoplimit(struct dst_entry *dst); 903 ip6_sk_dst_hoplimit(struct ipv6_pinfo * np,struct flowi6 * fl6,struct dst_entry * dst)904 static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6, 905 struct dst_entry *dst) 906 { 907 int hlimit; 908 909 if (ipv6_addr_is_multicast(&fl6->daddr)) 910 hlimit = READ_ONCE(np->mcast_hops); 911 else 912 hlimit = READ_ONCE(np->hop_limit); 913 if (hlimit < 0) 914 hlimit = ip6_dst_hoplimit(dst); 915 return hlimit; 916 } 917 918 /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store 919 * Equivalent to : flow->v6addrs.src = iph->saddr; 920 * flow->v6addrs.dst = iph->daddr; 921 */ iph_to_flow_copy_v6addrs(struct flow_keys * flow,const struct ipv6hdr * iph)922 static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow, 923 const struct ipv6hdr *iph) 924 { 925 BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) != 926 offsetof(typeof(flow->addrs), v6addrs.src) + 927 sizeof(flow->addrs.v6addrs.src)); 928 memcpy(&flow->addrs.v6addrs, &iph->addrs, sizeof(flow->addrs.v6addrs)); 929 flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 930 } 931 932 #if IS_ENABLED(CONFIG_IPV6) 933 ipv6_can_nonlocal_bind(struct net * net,struct inet_sock * inet)934 static inline bool ipv6_can_nonlocal_bind(struct net *net, 935 struct inet_sock *inet) 936 { 937 return net->ipv6.sysctl.ip_nonlocal_bind || 938 test_bit(INET_FLAGS_FREEBIND, &inet->inet_flags) || 939 test_bit(INET_FLAGS_TRANSPARENT, &inet->inet_flags); 940 } 941 942 /* Sysctl settings for net ipv6.auto_flowlabels */ 943 #define IP6_AUTO_FLOW_LABEL_OFF 0 944 #define IP6_AUTO_FLOW_LABEL_OPTOUT 1 945 #define IP6_AUTO_FLOW_LABEL_OPTIN 2 946 #define IP6_AUTO_FLOW_LABEL_FORCED 3 947 948 #define IP6_AUTO_FLOW_LABEL_MAX IP6_AUTO_FLOW_LABEL_FORCED 949 950 #define IP6_DEFAULT_AUTO_FLOW_LABELS IP6_AUTO_FLOW_LABEL_OPTOUT 951 ip6_make_flowlabel(struct net * net,struct sk_buff * skb,__be32 flowlabel,bool autolabel,struct flowi6 * fl6)952 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb, 953 __be32 flowlabel, bool autolabel, 954 struct flowi6 *fl6) 955 { 956 u32 hash; 957 958 /* @flowlabel may include more than a flow label, eg, the traffic class. 959 * Here we want only the flow label value. 960 */ 961 flowlabel &= IPV6_FLOWLABEL_MASK; 962 963 if (flowlabel || 964 net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF || 965 (!autolabel && 966 net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED)) 967 return flowlabel; 968 969 hash = skb_get_hash_flowi6(skb, fl6); 970 971 /* Since this is being sent on the wire obfuscate hash a bit 972 * to minimize possibility that any useful information to an 973 * attacker is leaked. Only lower 20 bits are relevant. 974 */ 975 hash = rol32(hash, 16); 976 977 flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK; 978 979 if (net->ipv6.sysctl.flowlabel_state_ranges) 980 flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG; 981 982 return flowlabel; 983 } 984 ip6_default_np_autolabel(struct net * net)985 static inline int ip6_default_np_autolabel(struct net *net) 986 { 987 switch (net->ipv6.sysctl.auto_flowlabels) { 988 case IP6_AUTO_FLOW_LABEL_OFF: 989 case IP6_AUTO_FLOW_LABEL_OPTIN: 990 default: 991 return 0; 992 case IP6_AUTO_FLOW_LABEL_OPTOUT: 993 case IP6_AUTO_FLOW_LABEL_FORCED: 994 return 1; 995 } 996 } 997 #else ip6_make_flowlabel(struct net * net,struct sk_buff * skb,__be32 flowlabel,bool autolabel,struct flowi6 * fl6)998 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb, 999 __be32 flowlabel, bool autolabel, 1000 struct flowi6 *fl6) 1001 { 1002 return flowlabel; 1003 } ip6_default_np_autolabel(struct net * net)1004 static inline int ip6_default_np_autolabel(struct net *net) 1005 { 1006 return 0; 1007 } 1008 #endif 1009 1010 #if IS_ENABLED(CONFIG_IPV6) ip6_multipath_hash_policy(const struct net * net)1011 static inline int ip6_multipath_hash_policy(const struct net *net) 1012 { 1013 return net->ipv6.sysctl.multipath_hash_policy; 1014 } ip6_multipath_hash_fields(const struct net * net)1015 static inline u32 ip6_multipath_hash_fields(const struct net *net) 1016 { 1017 return net->ipv6.sysctl.multipath_hash_fields; 1018 } 1019 #else ip6_multipath_hash_policy(const struct net * net)1020 static inline int ip6_multipath_hash_policy(const struct net *net) 1021 { 1022 return 0; 1023 } ip6_multipath_hash_fields(const struct net * net)1024 static inline u32 ip6_multipath_hash_fields(const struct net *net) 1025 { 1026 return 0; 1027 } 1028 #endif 1029 1030 /* 1031 * Header manipulation 1032 */ ip6_flow_hdr(struct ipv6hdr * hdr,unsigned int tclass,__be32 flowlabel)1033 static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass, 1034 __be32 flowlabel) 1035 { 1036 *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel; 1037 } 1038 ip6_flowinfo(const struct ipv6hdr * hdr)1039 static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr) 1040 { 1041 return *(__be32 *)hdr & IPV6_FLOWINFO_MASK; 1042 } 1043 ip6_flowlabel(const struct ipv6hdr * hdr)1044 static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr) 1045 { 1046 return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK; 1047 } 1048 ip6_tclass(__be32 flowinfo)1049 static inline u8 ip6_tclass(__be32 flowinfo) 1050 { 1051 return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT; 1052 } 1053 ip6_dscp(__be32 flowinfo)1054 static inline dscp_t ip6_dscp(__be32 flowinfo) 1055 { 1056 return inet_dsfield_to_dscp(ip6_tclass(flowinfo)); 1057 } 1058 ip6_make_flowinfo(unsigned int tclass,__be32 flowlabel)1059 static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel) 1060 { 1061 return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel; 1062 } 1063 flowi6_get_flowlabel(const struct flowi6 * fl6)1064 static inline __be32 flowi6_get_flowlabel(const struct flowi6 *fl6) 1065 { 1066 return fl6->flowlabel & IPV6_FLOWLABEL_MASK; 1067 } 1068 1069 /* 1070 * Prototypes exported by ipv6 1071 */ 1072 1073 /* 1074 * rcv function (called from netdevice level) 1075 */ 1076 1077 int ipv6_rcv(struct sk_buff *skb, struct net_device *dev, 1078 struct packet_type *pt, struct net_device *orig_dev); 1079 void ipv6_list_rcv(struct list_head *head, struct packet_type *pt, 1080 struct net_device *orig_dev); 1081 1082 int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb); 1083 1084 /* 1085 * upper-layer output functions 1086 */ 1087 int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6, 1088 __u32 mark, struct ipv6_txoptions *opt, int tclass, u32 priority); 1089 1090 int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr); 1091 1092 int ip6_append_data(struct sock *sk, 1093 int getfrag(void *from, char *to, int offset, int len, 1094 int odd, struct sk_buff *skb), 1095 void *from, size_t length, int transhdrlen, 1096 struct ipcm6_cookie *ipc6, struct flowi6 *fl6, 1097 struct rt6_info *rt, unsigned int flags); 1098 1099 int ip6_push_pending_frames(struct sock *sk); 1100 1101 void ip6_flush_pending_frames(struct sock *sk); 1102 1103 int ip6_send_skb(struct sk_buff *skb); 1104 1105 struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue, 1106 struct inet_cork_full *cork, 1107 struct inet6_cork *v6_cork); 1108 struct sk_buff *ip6_make_skb(struct sock *sk, 1109 int getfrag(void *from, char *to, int offset, 1110 int len, int odd, struct sk_buff *skb), 1111 void *from, size_t length, int transhdrlen, 1112 struct ipcm6_cookie *ipc6, 1113 struct rt6_info *rt, unsigned int flags, 1114 struct inet_cork_full *cork); 1115 ip6_finish_skb(struct sock * sk)1116 static inline struct sk_buff *ip6_finish_skb(struct sock *sk) 1117 { 1118 return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork, 1119 &inet6_sk(sk)->cork); 1120 } 1121 1122 int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst, 1123 struct flowi6 *fl6); 1124 struct dst_entry *ip6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6, 1125 const struct in6_addr *final_dst); 1126 struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6, 1127 const struct in6_addr *final_dst, 1128 bool connected); 1129 struct dst_entry *ip6_blackhole_route(struct net *net, 1130 struct dst_entry *orig_dst); 1131 1132 /* 1133 * skb processing functions 1134 */ 1135 1136 int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb); 1137 int ip6_forward(struct sk_buff *skb); 1138 int ip6_input(struct sk_buff *skb); 1139 int ip6_mc_input(struct sk_buff *skb); 1140 void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr, 1141 bool have_final); 1142 1143 int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); 1144 int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); 1145 1146 /* 1147 * Extension header (options) processing 1148 */ 1149 1150 void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt, 1151 u8 *proto, struct in6_addr **daddr_p, 1152 struct in6_addr *saddr); 1153 void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt, 1154 u8 *proto); 1155 1156 int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp, 1157 __be16 *frag_offp); 1158 1159 bool ipv6_ext_hdr(u8 nexthdr); 1160 1161 enum { 1162 IP6_FH_F_FRAG = (1 << 0), 1163 IP6_FH_F_AUTH = (1 << 1), 1164 IP6_FH_F_SKIP_RH = (1 << 2), 1165 }; 1166 1167 /* find specified header and get offset to it */ 1168 int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target, 1169 unsigned short *fragoff, int *fragflg); 1170 1171 int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type); 1172 1173 struct in6_addr *fl6_update_dst(struct flowi6 *fl6, 1174 const struct ipv6_txoptions *opt, 1175 struct in6_addr *orig); 1176 1177 /* 1178 * socket options (ipv6_sockglue.c) 1179 */ 1180 DECLARE_STATIC_KEY_FALSE(ip6_min_hopcount); 1181 1182 int do_ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 1183 unsigned int optlen); 1184 int ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 1185 unsigned int optlen); 1186 int do_ipv6_getsockopt(struct sock *sk, int level, int optname, 1187 sockptr_t optval, sockptr_t optlen); 1188 int ipv6_getsockopt(struct sock *sk, int level, int optname, 1189 char __user *optval, int __user *optlen); 1190 1191 int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, 1192 int addr_len); 1193 int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len); 1194 int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr, 1195 int addr_len); 1196 int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr); 1197 void ip6_datagram_release_cb(struct sock *sk); 1198 1199 int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len, 1200 int *addr_len); 1201 int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len, 1202 int *addr_len); 1203 void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port, 1204 u32 info, u8 *payload); 1205 void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info); 1206 void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu); 1207 1208 void inet6_cleanup_sock(struct sock *sk); 1209 void inet6_sock_destruct(struct sock *sk); 1210 int inet6_release(struct socket *sock); 1211 int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len); 1212 int inet6_bind_sk(struct sock *sk, struct sockaddr *uaddr, int addr_len); 1213 int inet6_getname(struct socket *sock, struct sockaddr *uaddr, 1214 int peer); 1215 int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); 1216 int inet6_compat_ioctl(struct socket *sock, unsigned int cmd, 1217 unsigned long arg); 1218 1219 int inet6_hash_connect(struct inet_timewait_death_row *death_row, 1220 struct sock *sk); 1221 int inet6_sendmsg(struct socket *sock, struct msghdr *msg, size_t size); 1222 int inet6_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1223 int flags); 1224 1225 /* 1226 * reassembly.c 1227 */ 1228 extern const struct proto_ops inet6_stream_ops; 1229 extern const struct proto_ops inet6_dgram_ops; 1230 extern const struct proto_ops inet6_sockraw_ops; 1231 1232 struct group_source_req; 1233 struct group_filter; 1234 1235 int ip6_mc_source(int add, int omode, struct sock *sk, 1236 struct group_source_req *pgsr); 1237 int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf, 1238 struct sockaddr_storage *list); 1239 int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf, 1240 sockptr_t optval, size_t ss_offset); 1241 1242 #ifdef CONFIG_PROC_FS 1243 int ac6_proc_init(struct net *net); 1244 void ac6_proc_exit(struct net *net); 1245 int raw6_proc_init(void); 1246 void raw6_proc_exit(void); 1247 int tcp6_proc_init(struct net *net); 1248 void tcp6_proc_exit(struct net *net); 1249 int udp6_proc_init(struct net *net); 1250 void udp6_proc_exit(struct net *net); 1251 int udplite6_proc_init(void); 1252 void udplite6_proc_exit(void); 1253 int ipv6_misc_proc_init(void); 1254 void ipv6_misc_proc_exit(void); 1255 int snmp6_register_dev(struct inet6_dev *idev); 1256 int snmp6_unregister_dev(struct inet6_dev *idev); 1257 1258 #else ac6_proc_init(struct net * net)1259 static inline int ac6_proc_init(struct net *net) { return 0; } ac6_proc_exit(struct net * net)1260 static inline void ac6_proc_exit(struct net *net) { } snmp6_register_dev(struct inet6_dev * idev)1261 static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; } snmp6_unregister_dev(struct inet6_dev * idev)1262 static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; } 1263 #endif 1264 1265 #ifdef CONFIG_SYSCTL 1266 struct ctl_table *ipv6_icmp_sysctl_init(struct net *net); 1267 size_t ipv6_icmp_sysctl_table_size(void); 1268 struct ctl_table *ipv6_route_sysctl_init(struct net *net); 1269 size_t ipv6_route_sysctl_table_size(struct net *net); 1270 int ipv6_sysctl_register(void); 1271 void ipv6_sysctl_unregister(void); 1272 #endif 1273 1274 int ipv6_sock_mc_join(struct sock *sk, int ifindex, 1275 const struct in6_addr *addr); 1276 int ipv6_sock_mc_join_ssm(struct sock *sk, int ifindex, 1277 const struct in6_addr *addr, unsigned int mode); 1278 int ipv6_sock_mc_drop(struct sock *sk, int ifindex, 1279 const struct in6_addr *addr); 1280 ip6_sock_set_v6only(struct sock * sk)1281 static inline int ip6_sock_set_v6only(struct sock *sk) 1282 { 1283 if (inet_sk(sk)->inet_num) 1284 return -EINVAL; 1285 lock_sock(sk); 1286 sk->sk_ipv6only = true; 1287 release_sock(sk); 1288 return 0; 1289 } 1290 ip6_sock_set_recverr(struct sock * sk)1291 static inline void ip6_sock_set_recverr(struct sock *sk) 1292 { 1293 inet6_set_bit(RECVERR6, sk); 1294 } 1295 1296 #define IPV6_PREFER_SRC_MASK (IPV6_PREFER_SRC_TMP | IPV6_PREFER_SRC_PUBLIC | \ 1297 IPV6_PREFER_SRC_COA) 1298 ip6_sock_set_addr_preferences(struct sock * sk,int val)1299 static inline int ip6_sock_set_addr_preferences(struct sock *sk, int val) 1300 { 1301 unsigned int prefmask = ~IPV6_PREFER_SRC_MASK; 1302 unsigned int pref = 0; 1303 1304 /* check PUBLIC/TMP/PUBTMP_DEFAULT conflicts */ 1305 switch (val & (IPV6_PREFER_SRC_PUBLIC | 1306 IPV6_PREFER_SRC_TMP | 1307 IPV6_PREFER_SRC_PUBTMP_DEFAULT)) { 1308 case IPV6_PREFER_SRC_PUBLIC: 1309 pref |= IPV6_PREFER_SRC_PUBLIC; 1310 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC | 1311 IPV6_PREFER_SRC_TMP); 1312 break; 1313 case IPV6_PREFER_SRC_TMP: 1314 pref |= IPV6_PREFER_SRC_TMP; 1315 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC | 1316 IPV6_PREFER_SRC_TMP); 1317 break; 1318 case IPV6_PREFER_SRC_PUBTMP_DEFAULT: 1319 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC | 1320 IPV6_PREFER_SRC_TMP); 1321 break; 1322 case 0: 1323 break; 1324 default: 1325 return -EINVAL; 1326 } 1327 1328 /* check HOME/COA conflicts */ 1329 switch (val & (IPV6_PREFER_SRC_HOME | IPV6_PREFER_SRC_COA)) { 1330 case IPV6_PREFER_SRC_HOME: 1331 prefmask &= ~IPV6_PREFER_SRC_COA; 1332 break; 1333 case IPV6_PREFER_SRC_COA: 1334 pref |= IPV6_PREFER_SRC_COA; 1335 break; 1336 case 0: 1337 break; 1338 default: 1339 return -EINVAL; 1340 } 1341 1342 /* check CGA/NONCGA conflicts */ 1343 switch (val & (IPV6_PREFER_SRC_CGA|IPV6_PREFER_SRC_NONCGA)) { 1344 case IPV6_PREFER_SRC_CGA: 1345 case IPV6_PREFER_SRC_NONCGA: 1346 case 0: 1347 break; 1348 default: 1349 return -EINVAL; 1350 } 1351 1352 WRITE_ONCE(inet6_sk(sk)->srcprefs, 1353 (READ_ONCE(inet6_sk(sk)->srcprefs) & prefmask) | pref); 1354 return 0; 1355 } 1356 ip6_sock_set_recvpktinfo(struct sock * sk)1357 static inline void ip6_sock_set_recvpktinfo(struct sock *sk) 1358 { 1359 lock_sock(sk); 1360 inet6_sk(sk)->rxopt.bits.rxinfo = true; 1361 release_sock(sk); 1362 } 1363 1364 #define IPV6_ADDR_WORDS 4 1365 ipv6_addr_cpu_to_be32(__be32 * dst,const u32 * src)1366 static inline void ipv6_addr_cpu_to_be32(__be32 *dst, const u32 *src) 1367 { 1368 cpu_to_be32_array(dst, src, IPV6_ADDR_WORDS); 1369 } 1370 ipv6_addr_be32_to_cpu(u32 * dst,const __be32 * src)1371 static inline void ipv6_addr_be32_to_cpu(u32 *dst, const __be32 *src) 1372 { 1373 be32_to_cpu_array(dst, src, IPV6_ADDR_WORDS); 1374 } 1375 1376 #endif /* _NET_IPV6_H */ 1377