1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Universal Flash Storage Host controller driver Core
4 * Copyright (C) 2011-2013 Samsung India Software Operations
5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6 *
7 * Authors:
8 * Santosh Yaraganavi <santosh.sy@samsung.com>
9 * Vinayak Holikatti <h.vinayak@samsung.com>
10 */
11
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <linux/unaligned.h>
40
41 #define CREATE_TRACE_POINTS
42 #include "ufs_trace.h"
43
44 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\
45 UTP_TASK_REQ_COMPL |\
46 UFSHCD_ERROR_MASK)
47
48 #define UFSHCD_ENABLE_MCQ_INTRS (UTP_TASK_REQ_COMPL |\
49 UFSHCD_ERROR_MASK |\
50 MCQ_CQ_EVENT_STATUS)
51
52
53 /* UIC command timeout, unit: ms */
54 enum {
55 UIC_CMD_TIMEOUT_DEFAULT = 500,
56 UIC_CMD_TIMEOUT_MAX = 5000,
57 };
58 /* NOP OUT retries waiting for NOP IN response */
59 #define NOP_OUT_RETRIES 10
60 /* Timeout after 50 msecs if NOP OUT hangs without response */
61 #define NOP_OUT_TIMEOUT 50 /* msecs */
62
63 /* Query request retries */
64 #define QUERY_REQ_RETRIES 3
65 /* Query request timeout */
66 enum {
67 QUERY_REQ_TIMEOUT_MIN = 1,
68 QUERY_REQ_TIMEOUT_DEFAULT = 1500,
69 QUERY_REQ_TIMEOUT_MAX = 30000
70 };
71
72 /* Advanced RPMB request timeout */
73 #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */
74
75 /* Task management command timeout */
76 #define TM_CMD_TIMEOUT 100 /* msecs */
77
78 /* maximum number of retries for a general UIC command */
79 #define UFS_UIC_COMMAND_RETRIES 3
80
81 /* maximum number of link-startup retries */
82 #define DME_LINKSTARTUP_RETRIES 3
83
84 /* maximum number of reset retries before giving up */
85 #define MAX_HOST_RESET_RETRIES 5
86
87 /* Maximum number of error handler retries before giving up */
88 #define MAX_ERR_HANDLER_RETRIES 5
89
90 /* Expose the flag value from utp_upiu_query.value */
91 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
92
93 /* Interrupt aggregation default timeout, unit: 40us */
94 #define INT_AGGR_DEF_TO 0x02
95
96 /* default delay of autosuspend: 2000 ms */
97 #define RPM_AUTOSUSPEND_DELAY_MS 2000
98
99 /* Default delay of RPM device flush delayed work */
100 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
101
102 /* Default value of wait time before gating device ref clock */
103 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
104
105 /* Polling time to wait for fDeviceInit */
106 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
107
108 /* Default RTC update every 10 seconds */
109 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
110
111 /* bMaxNumOfRTT is equal to two after device manufacturing */
112 #define DEFAULT_MAX_NUM_RTT 2
113
114 /* UFSHC 4.0 compliant HC support this mode. */
115 static bool use_mcq_mode = true;
116
is_mcq_supported(struct ufs_hba * hba)117 static bool is_mcq_supported(struct ufs_hba *hba)
118 {
119 return hba->mcq_sup && use_mcq_mode;
120 }
121
122 module_param(use_mcq_mode, bool, 0644);
123 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
124
125 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT;
126
uic_cmd_timeout_set(const char * val,const struct kernel_param * kp)127 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp)
128 {
129 return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT,
130 UIC_CMD_TIMEOUT_MAX);
131 }
132
133 static const struct kernel_param_ops uic_cmd_timeout_ops = {
134 .set = uic_cmd_timeout_set,
135 .get = param_get_uint,
136 };
137
138 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644);
139 MODULE_PARM_DESC(uic_cmd_timeout,
140 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 5 seconds inclusively");
141
142 static unsigned int dev_cmd_timeout = QUERY_REQ_TIMEOUT_DEFAULT;
143
dev_cmd_timeout_set(const char * val,const struct kernel_param * kp)144 static int dev_cmd_timeout_set(const char *val, const struct kernel_param *kp)
145 {
146 return param_set_uint_minmax(val, kp, QUERY_REQ_TIMEOUT_MIN,
147 QUERY_REQ_TIMEOUT_MAX);
148 }
149
150 static const struct kernel_param_ops dev_cmd_timeout_ops = {
151 .set = dev_cmd_timeout_set,
152 .get = param_get_uint,
153 };
154
155 module_param_cb(dev_cmd_timeout, &dev_cmd_timeout_ops, &dev_cmd_timeout, 0644);
156 MODULE_PARM_DESC(dev_cmd_timeout,
157 "UFS Device command timeout in milliseconds. Defaults to 1.5s. Supported values range from 1ms to 30 seconds inclusively");
158
159 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \
160 ({ \
161 int _ret; \
162 if (_on) \
163 _ret = ufshcd_enable_vreg(_dev, _vreg); \
164 else \
165 _ret = ufshcd_disable_vreg(_dev, _vreg); \
166 _ret; \
167 })
168
169 #define ufshcd_hex_dump(prefix_str, buf, len) do { \
170 size_t __len = (len); \
171 print_hex_dump(KERN_ERR, prefix_str, \
172 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
173 16, 4, buf, __len, false); \
174 } while (0)
175
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)176 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
177 const char *prefix)
178 {
179 u32 *regs;
180 size_t pos;
181
182 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
183 return -EINVAL;
184
185 regs = kzalloc(len, GFP_ATOMIC);
186 if (!regs)
187 return -ENOMEM;
188
189 for (pos = 0; pos < len; pos += 4) {
190 if (offset == 0 &&
191 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
192 pos <= REG_UIC_ERROR_CODE_DME)
193 continue;
194 regs[pos / 4] = ufshcd_readl(hba, offset + pos);
195 }
196
197 ufshcd_hex_dump(prefix, regs, len);
198 kfree(regs);
199
200 return 0;
201 }
202 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
203
204 enum {
205 UFSHCD_MAX_CHANNEL = 0,
206 UFSHCD_MAX_ID = 1,
207 };
208
209 static const char *const ufshcd_state_name[] = {
210 [UFSHCD_STATE_RESET] = "reset",
211 [UFSHCD_STATE_OPERATIONAL] = "operational",
212 [UFSHCD_STATE_ERROR] = "error",
213 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal",
214 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal",
215 };
216
217 /* UFSHCD error handling flags */
218 enum {
219 UFSHCD_EH_IN_PROGRESS = (1 << 0),
220 };
221
222 /* UFSHCD UIC layer error flags */
223 enum {
224 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
225 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
226 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
227 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
228 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
229 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
230 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
231 };
232
233 #define ufshcd_set_eh_in_progress(h) \
234 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
235 #define ufshcd_eh_in_progress(h) \
236 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
237 #define ufshcd_clear_eh_in_progress(h) \
238 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
239
240 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
241 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
242 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
243 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
244 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
245 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
246 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
247 /*
248 * For DeepSleep, the link is first put in hibern8 and then off.
249 * Leaving the link in hibern8 is not supported.
250 */
251 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
252 };
253
254 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)255 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
256 {
257 return ufs_pm_lvl_states[lvl].dev_state;
258 }
259
260 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)261 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
262 {
263 return ufs_pm_lvl_states[lvl].link_state;
264 }
265
266 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)267 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
268 enum uic_link_state link_state)
269 {
270 enum ufs_pm_level lvl;
271
272 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
273 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
274 (ufs_pm_lvl_states[lvl].link_state == link_state))
275 return lvl;
276 }
277
278 /* if no match found, return the level 0 */
279 return UFS_PM_LVL_0;
280 }
281
ufshcd_has_pending_tasks(struct ufs_hba * hba)282 static bool ufshcd_has_pending_tasks(struct ufs_hba *hba)
283 {
284 return hba->outstanding_tasks || hba->active_uic_cmd ||
285 hba->uic_async_done;
286 }
287
ufshcd_is_ufs_dev_busy(struct ufs_hba * hba)288 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
289 {
290 return scsi_host_busy(hba->host) || ufshcd_has_pending_tasks(hba);
291 }
292
293 static const struct ufs_dev_quirk ufs_fixups[] = {
294 /* UFS cards deviations table */
295 { .wmanufacturerid = UFS_VENDOR_MICRON,
296 .model = UFS_ANY_MODEL,
297 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
298 { .wmanufacturerid = UFS_VENDOR_SAMSUNG,
299 .model = UFS_ANY_MODEL,
300 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
301 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
302 UFS_DEVICE_QUIRK_PA_HIBER8TIME |
303 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
304 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
305 .model = UFS_ANY_MODEL,
306 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
307 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
308 .model = "hB8aL1" /*H28U62301AMR*/,
309 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
310 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
311 .model = UFS_ANY_MODEL,
312 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
313 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
314 .model = "THGLF2G9C8KBADG",
315 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
316 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
317 .model = "THGLF2G9D8KBADG",
318 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
319 {}
320 };
321
322 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
323 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
324 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
325 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
326 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
327 static void ufshcd_hba_exit(struct ufs_hba *hba);
328 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params);
329 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
330 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
331 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
332 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
333 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
334 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
335 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
336 bool scale_up);
337 static irqreturn_t ufshcd_intr(int irq, void *__hba);
338 static int ufshcd_change_power_mode(struct ufs_hba *hba,
339 struct ufs_pa_layer_attr *pwr_mode);
340 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
341 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
342 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
343 struct ufs_vreg *vreg);
344 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
345 bool enable);
346 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
347 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
348
ufshcd_enable_irq(struct ufs_hba * hba)349 void ufshcd_enable_irq(struct ufs_hba *hba)
350 {
351 if (!hba->is_irq_enabled) {
352 enable_irq(hba->irq);
353 hba->is_irq_enabled = true;
354 }
355 }
356 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
357
ufshcd_disable_irq(struct ufs_hba * hba)358 void ufshcd_disable_irq(struct ufs_hba *hba)
359 {
360 if (hba->is_irq_enabled) {
361 disable_irq(hba->irq);
362 hba->is_irq_enabled = false;
363 }
364 }
365 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
366
ufshcd_configure_wb(struct ufs_hba * hba)367 static void ufshcd_configure_wb(struct ufs_hba *hba)
368 {
369 if (!ufshcd_is_wb_allowed(hba))
370 return;
371
372 ufshcd_wb_toggle(hba, true);
373
374 ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
375
376 if (ufshcd_is_wb_buf_flush_allowed(hba))
377 ufshcd_wb_toggle_buf_flush(hba, true);
378 }
379
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)380 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
381 enum ufs_trace_str_t str_t)
382 {
383 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
384 struct utp_upiu_header *header;
385
386 if (!trace_ufshcd_upiu_enabled())
387 return;
388
389 if (str_t == UFS_CMD_SEND)
390 header = &rq->header;
391 else
392 header = &hba->lrb[tag].ucd_rsp_ptr->header;
393
394 trace_ufshcd_upiu(hba, str_t, header, &rq->sc.cdb,
395 UFS_TSF_CDB);
396 }
397
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,enum ufs_trace_str_t str_t,struct utp_upiu_req * rq_rsp)398 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
399 enum ufs_trace_str_t str_t,
400 struct utp_upiu_req *rq_rsp)
401 {
402 if (!trace_ufshcd_upiu_enabled())
403 return;
404
405 trace_ufshcd_upiu(hba, str_t, &rq_rsp->header,
406 &rq_rsp->qr, UFS_TSF_OSF);
407 }
408
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)409 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
410 enum ufs_trace_str_t str_t)
411 {
412 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
413
414 if (!trace_ufshcd_upiu_enabled())
415 return;
416
417 if (str_t == UFS_TM_SEND)
418 trace_ufshcd_upiu(hba, str_t,
419 &descp->upiu_req.req_header,
420 &descp->upiu_req.input_param1,
421 UFS_TSF_TM_INPUT);
422 else
423 trace_ufshcd_upiu(hba, str_t,
424 &descp->upiu_rsp.rsp_header,
425 &descp->upiu_rsp.output_param1,
426 UFS_TSF_TM_OUTPUT);
427 }
428
ufshcd_add_uic_command_trace(struct ufs_hba * hba,const struct uic_command * ucmd,enum ufs_trace_str_t str_t)429 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
430 const struct uic_command *ucmd,
431 enum ufs_trace_str_t str_t)
432 {
433 u32 cmd;
434
435 if (!trace_ufshcd_uic_command_enabled())
436 return;
437
438 if (str_t == UFS_CMD_SEND)
439 cmd = ucmd->command;
440 else
441 cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
442
443 trace_ufshcd_uic_command(hba, str_t, cmd,
444 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
445 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
446 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
447 }
448
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)449 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
450 enum ufs_trace_str_t str_t)
451 {
452 u64 lba = 0;
453 u8 opcode = 0, group_id = 0;
454 u32 doorbell = 0;
455 u32 intr;
456 u32 hwq_id = 0;
457 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
458 struct scsi_cmnd *cmd = lrbp->cmd;
459 struct request *rq = scsi_cmd_to_rq(cmd);
460 int transfer_len = -1;
461
462 if (!cmd)
463 return;
464
465 /* trace UPIU also */
466 ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
467 if (!trace_ufshcd_command_enabled())
468 return;
469
470 opcode = cmd->cmnd[0];
471
472 if (opcode == READ_10 || opcode == WRITE_10) {
473 /*
474 * Currently we only fully trace read(10) and write(10) commands
475 */
476 transfer_len =
477 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
478 lba = scsi_get_lba(cmd);
479 if (opcode == WRITE_10)
480 group_id = lrbp->cmd->cmnd[6];
481 } else if (opcode == UNMAP) {
482 /*
483 * The number of Bytes to be unmapped beginning with the lba.
484 */
485 transfer_len = blk_rq_bytes(rq);
486 lba = scsi_get_lba(cmd);
487 }
488
489 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
490
491 if (hba->mcq_enabled) {
492 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
493
494 hwq_id = hwq->id;
495 } else {
496 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
497 }
498 trace_ufshcd_command(cmd->device, hba, str_t, tag, doorbell, hwq_id,
499 transfer_len, intr, lba, opcode, group_id);
500 }
501
ufshcd_print_clk_freqs(struct ufs_hba * hba)502 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
503 {
504 struct ufs_clk_info *clki;
505 struct list_head *head = &hba->clk_list_head;
506
507 if (list_empty(head))
508 return;
509
510 list_for_each_entry(clki, head, list) {
511 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
512 clki->max_freq)
513 dev_err(hba->dev, "clk: %s, rate: %u\n",
514 clki->name, clki->curr_freq);
515 }
516 }
517
ufshcd_print_evt(struct ufs_hba * hba,u32 id,const char * err_name)518 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
519 const char *err_name)
520 {
521 int i;
522 bool found = false;
523 const struct ufs_event_hist *e;
524
525 if (id >= UFS_EVT_CNT)
526 return;
527
528 e = &hba->ufs_stats.event[id];
529
530 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
531 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
532
533 if (e->tstamp[p] == 0)
534 continue;
535 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
536 e->val[p], div_u64(e->tstamp[p], 1000));
537 found = true;
538 }
539
540 if (!found)
541 dev_err(hba->dev, "No record of %s\n", err_name);
542 else
543 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
544 }
545
ufshcd_print_evt_hist(struct ufs_hba * hba)546 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
547 {
548 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
549
550 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
551 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
552 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
553 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
554 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
555 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
556 "auto_hibern8_err");
557 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
558 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
559 "link_startup_fail");
560 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
561 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
562 "suspend_fail");
563 ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
564 ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
565 "wlun suspend_fail");
566 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
567 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
568 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
569
570 ufshcd_vops_dbg_register_dump(hba);
571 }
572
573 static
ufshcd_print_tr(struct ufs_hba * hba,int tag,bool pr_prdt)574 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
575 {
576 const struct ufshcd_lrb *lrbp;
577 int prdt_length;
578
579 lrbp = &hba->lrb[tag];
580
581 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
582 tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
583 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
584 tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
585 dev_err(hba->dev,
586 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
587 tag, (u64)lrbp->utrd_dma_addr);
588
589 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
590 sizeof(struct utp_transfer_req_desc));
591 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
592 (u64)lrbp->ucd_req_dma_addr);
593 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
594 sizeof(struct utp_upiu_req));
595 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
596 (u64)lrbp->ucd_rsp_dma_addr);
597 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
598 sizeof(struct utp_upiu_rsp));
599
600 prdt_length = le16_to_cpu(
601 lrbp->utr_descriptor_ptr->prd_table_length);
602 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
603 prdt_length /= ufshcd_sg_entry_size(hba);
604
605 dev_err(hba->dev,
606 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n",
607 tag, prdt_length,
608 (u64)lrbp->ucd_prdt_dma_addr);
609
610 if (pr_prdt)
611 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
612 ufshcd_sg_entry_size(hba) * prdt_length);
613 }
614
ufshcd_print_tr_iter(struct request * req,void * priv)615 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
616 {
617 struct scsi_device *sdev = req->q->queuedata;
618 struct Scsi_Host *shost = sdev->host;
619 struct ufs_hba *hba = shost_priv(shost);
620
621 ufshcd_print_tr(hba, req->tag, *(bool *)priv);
622
623 return true;
624 }
625
626 /**
627 * ufshcd_print_trs_all - print trs for all started requests.
628 * @hba: per-adapter instance.
629 * @pr_prdt: need to print prdt or not.
630 */
ufshcd_print_trs_all(struct ufs_hba * hba,bool pr_prdt)631 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
632 {
633 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
634 }
635
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)636 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
637 {
638 int tag;
639
640 for_each_set_bit(tag, &bitmap, hba->nutmrs) {
641 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
642
643 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
644 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
645 }
646 }
647
ufshcd_print_host_state(struct ufs_hba * hba)648 static void ufshcd_print_host_state(struct ufs_hba *hba)
649 {
650 const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
651
652 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
653 dev_err(hba->dev, "%d outstanding reqs, tasks=0x%lx\n",
654 scsi_host_busy(hba->host), hba->outstanding_tasks);
655 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
656 hba->saved_err, hba->saved_uic_err);
657 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
658 hba->curr_dev_pwr_mode, hba->uic_link_state);
659 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
660 hba->pm_op_in_progress, hba->is_sys_suspended);
661 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
662 hba->auto_bkops_enabled, hba->host->host_self_blocked);
663 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
664 dev_err(hba->dev,
665 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
666 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
667 hba->ufs_stats.hibern8_exit_cnt);
668 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
669 hba->eh_flags, hba->req_abort_count);
670 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
671 hba->ufs_version, hba->capabilities, hba->caps);
672 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
673 hba->dev_quirks);
674 if (sdev_ufs)
675 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
676 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
677
678 ufshcd_print_clk_freqs(hba);
679 }
680
681 /**
682 * ufshcd_print_pwr_info - print power params as saved in hba
683 * power info
684 * @hba: per-adapter instance
685 */
ufshcd_print_pwr_info(struct ufs_hba * hba)686 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
687 {
688 static const char * const names[] = {
689 "INVALID MODE",
690 "FAST MODE",
691 "SLOW_MODE",
692 "INVALID MODE",
693 "FASTAUTO_MODE",
694 "SLOWAUTO_MODE",
695 "INVALID MODE",
696 };
697
698 /*
699 * Using dev_dbg to avoid messages during runtime PM to avoid
700 * never-ending cycles of messages written back to storage by user space
701 * causing runtime resume, causing more messages and so on.
702 */
703 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
704 __func__,
705 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
706 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
707 names[hba->pwr_info.pwr_rx],
708 names[hba->pwr_info.pwr_tx],
709 hba->pwr_info.hs_rate);
710 }
711
ufshcd_device_reset(struct ufs_hba * hba)712 static void ufshcd_device_reset(struct ufs_hba *hba)
713 {
714 int err;
715
716 err = ufshcd_vops_device_reset(hba);
717
718 if (!err) {
719 ufshcd_set_ufs_dev_active(hba);
720 if (ufshcd_is_wb_allowed(hba)) {
721 hba->dev_info.wb_enabled = false;
722 hba->dev_info.wb_buf_flush_enabled = false;
723 }
724 if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
725 hba->dev_info.rtc_time_baseline = 0;
726 }
727 if (err != -EOPNOTSUPP)
728 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
729 }
730
ufshcd_delay_us(unsigned long us,unsigned long tolerance)731 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
732 {
733 if (!us)
734 return;
735
736 if (us < 10)
737 udelay(us);
738 else
739 usleep_range(us, us + tolerance);
740 }
741 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
742
743 /**
744 * ufshcd_wait_for_register - wait for register value to change
745 * @hba: per-adapter interface
746 * @reg: mmio register offset
747 * @mask: mask to apply to the read register value
748 * @val: value to wait for
749 * @interval_us: polling interval in microseconds
750 * @timeout_ms: timeout in milliseconds
751 *
752 * Return: -ETIMEDOUT on error, zero on success.
753 */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)754 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
755 u32 val, unsigned long interval_us,
756 unsigned long timeout_ms)
757 {
758 u32 v;
759
760 val &= mask; /* ignore bits that we don't intend to wait on */
761
762 return read_poll_timeout(ufshcd_readl, v, (v & mask) == val,
763 interval_us, timeout_ms * 1000, false, hba, reg);
764 }
765
766 /**
767 * ufshcd_get_intr_mask - Get the interrupt bit mask
768 * @hba: Pointer to adapter instance
769 *
770 * Return: interrupt bit mask per version
771 */
ufshcd_get_intr_mask(struct ufs_hba * hba)772 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
773 {
774 if (hba->ufs_version <= ufshci_version(2, 0))
775 return INTERRUPT_MASK_ALL_VER_11;
776
777 return INTERRUPT_MASK_ALL_VER_21;
778 }
779
780 /**
781 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
782 * @hba: Pointer to adapter instance
783 *
784 * Return: UFSHCI version supported by the controller
785 */
ufshcd_get_ufs_version(struct ufs_hba * hba)786 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
787 {
788 u32 ufshci_ver;
789
790 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
791 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
792 else
793 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
794
795 /*
796 * UFSHCI v1.x uses a different version scheme, in order
797 * to allow the use of comparisons with the ufshci_version
798 * function, we convert it to the same scheme as ufs 2.0+.
799 */
800 if (ufshci_ver & 0x00010000)
801 return ufshci_version(1, ufshci_ver & 0x00000100);
802
803 return ufshci_ver;
804 }
805
806 /**
807 * ufshcd_is_device_present - Check if any device connected to
808 * the host controller
809 * @hba: pointer to adapter instance
810 *
811 * Return: true if device present, false if no device detected
812 */
ufshcd_is_device_present(struct ufs_hba * hba)813 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
814 {
815 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
816 }
817
818 /**
819 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
820 * @lrbp: pointer to local command reference block
821 * @cqe: pointer to the completion queue entry
822 *
823 * This function is used to get the OCS field from UTRD
824 *
825 * Return: the OCS field in the UTRD.
826 */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp,struct cq_entry * cqe)827 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
828 struct cq_entry *cqe)
829 {
830 if (cqe)
831 return le32_to_cpu(cqe->status) & MASK_OCS;
832
833 return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
834 }
835
836 /**
837 * ufshcd_utrl_clear() - Clear requests from the controller request list.
838 * @hba: per adapter instance
839 * @mask: mask with one bit set for each request to be cleared
840 */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 mask)841 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
842 {
843 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
844 mask = ~mask;
845 /*
846 * From the UFSHCI specification: "UTP Transfer Request List CLear
847 * Register (UTRLCLR): This field is bit significant. Each bit
848 * corresponds to a slot in the UTP Transfer Request List, where bit 0
849 * corresponds to request slot 0. A bit in this field is set to ‘0’
850 * by host software to indicate to the host controller that a transfer
851 * request slot is cleared. The host controller
852 * shall free up any resources associated to the request slot
853 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
854 * host software indicates no change to request slots by setting the
855 * associated bits in this field to ‘1’. Bits in this field shall only
856 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
857 */
858 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
859 }
860
861 /**
862 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
863 * @hba: per adapter instance
864 * @pos: position of the bit to be cleared
865 */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)866 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
867 {
868 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
869 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
870 else
871 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
872 }
873
874 /**
875 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
876 * @reg: Register value of host controller status
877 *
878 * Return: 0 on success; a positive value if failed.
879 */
ufshcd_get_lists_status(u32 reg)880 static inline int ufshcd_get_lists_status(u32 reg)
881 {
882 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
883 }
884
885 /**
886 * ufshcd_get_uic_cmd_result - Get the UIC command result
887 * @hba: Pointer to adapter instance
888 *
889 * This function gets the result of UIC command completion
890 *
891 * Return: 0 on success; non-zero value on error.
892 */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)893 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
894 {
895 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
896 MASK_UIC_COMMAND_RESULT;
897 }
898
899 /**
900 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
901 * @hba: Pointer to adapter instance
902 *
903 * This function gets UIC command argument3
904 *
905 * Return: 0 on success; non-zero value on error.
906 */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)907 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
908 {
909 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
910 }
911
912 /**
913 * ufshcd_get_req_rsp - returns the TR response transaction type
914 * @ucd_rsp_ptr: pointer to response UPIU
915 *
916 * Return: UPIU type.
917 */
918 static inline enum upiu_response_transaction
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)919 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
920 {
921 return ucd_rsp_ptr->header.transaction_code;
922 }
923
924 /**
925 * ufshcd_is_exception_event - Check if the device raised an exception event
926 * @ucd_rsp_ptr: pointer to response UPIU
927 *
928 * The function checks if the device raised an exception event indicated in
929 * the Device Information field of response UPIU.
930 *
931 * Return: true if exception is raised, false otherwise.
932 */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)933 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
934 {
935 return ucd_rsp_ptr->header.device_information & 1;
936 }
937
938 /**
939 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
940 * @hba: per adapter instance
941 */
942 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)943 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
944 {
945 ufshcd_writel(hba, INT_AGGR_ENABLE |
946 INT_AGGR_COUNTER_AND_TIMER_RESET,
947 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
948 }
949
950 /**
951 * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
952 * @hba: per adapter instance
953 * @cnt: Interrupt aggregation counter threshold
954 * @tmout: Interrupt aggregation timeout value
955 */
956 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)957 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
958 {
959 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
960 INT_AGGR_COUNTER_THLD_VAL(cnt) |
961 INT_AGGR_TIMEOUT_VAL(tmout),
962 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
963 }
964
965 /**
966 * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
967 * @hba: per adapter instance
968 */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)969 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
970 {
971 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
972 }
973
974 /**
975 * ufshcd_enable_run_stop_reg - Enable run-stop registers,
976 * When run-stop registers are set to 1, it indicates the
977 * host controller that it can process the requests
978 * @hba: per adapter instance
979 */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)980 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
981 {
982 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
983 REG_UTP_TASK_REQ_LIST_RUN_STOP);
984 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
985 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
986 }
987
988 /**
989 * ufshcd_hba_start - Start controller initialization sequence
990 * @hba: per adapter instance
991 */
ufshcd_hba_start(struct ufs_hba * hba)992 static inline void ufshcd_hba_start(struct ufs_hba *hba)
993 {
994 u32 val = CONTROLLER_ENABLE;
995
996 if (ufshcd_crypto_enable(hba))
997 val |= CRYPTO_GENERAL_ENABLE;
998
999 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
1000 }
1001
1002 /**
1003 * ufshcd_is_hba_active - Get controller state
1004 * @hba: per adapter instance
1005 *
1006 * Return: true if and only if the controller is active.
1007 */
ufshcd_is_hba_active(struct ufs_hba * hba)1008 bool ufshcd_is_hba_active(struct ufs_hba *hba)
1009 {
1010 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
1011 }
1012 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
1013
1014 /**
1015 * ufshcd_pm_qos_init - initialize PM QoS request
1016 * @hba: per adapter instance
1017 */
ufshcd_pm_qos_init(struct ufs_hba * hba)1018 void ufshcd_pm_qos_init(struct ufs_hba *hba)
1019 {
1020
1021 if (hba->pm_qos_enabled)
1022 return;
1023
1024 cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1025
1026 if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1027 hba->pm_qos_enabled = true;
1028 }
1029
1030 /**
1031 * ufshcd_pm_qos_exit - remove request from PM QoS
1032 * @hba: per adapter instance
1033 */
ufshcd_pm_qos_exit(struct ufs_hba * hba)1034 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1035 {
1036 if (!hba->pm_qos_enabled)
1037 return;
1038
1039 cpu_latency_qos_remove_request(&hba->pm_qos_req);
1040 hba->pm_qos_enabled = false;
1041 }
1042
1043 /**
1044 * ufshcd_pm_qos_update - update PM QoS request
1045 * @hba: per adapter instance
1046 * @on: If True, vote for perf PM QoS mode otherwise power save mode
1047 */
ufshcd_pm_qos_update(struct ufs_hba * hba,bool on)1048 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1049 {
1050 if (!hba->pm_qos_enabled)
1051 return;
1052
1053 cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1054 }
1055
1056 /**
1057 * ufshcd_set_clk_freq - set UFS controller clock frequencies
1058 * @hba: per adapter instance
1059 * @scale_up: If True, set max possible frequency othewise set low frequency
1060 *
1061 * Return: 0 if successful; < 0 upon failure.
1062 */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)1063 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1064 {
1065 int ret = 0;
1066 struct ufs_clk_info *clki;
1067 struct list_head *head = &hba->clk_list_head;
1068
1069 if (list_empty(head))
1070 goto out;
1071
1072 list_for_each_entry(clki, head, list) {
1073 if (!IS_ERR_OR_NULL(clki->clk)) {
1074 if (scale_up && clki->max_freq) {
1075 if (clki->curr_freq == clki->max_freq)
1076 continue;
1077
1078 ret = clk_set_rate(clki->clk, clki->max_freq);
1079 if (ret) {
1080 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1081 __func__, clki->name,
1082 clki->max_freq, ret);
1083 break;
1084 }
1085 trace_ufshcd_clk_scaling(hba,
1086 "scaled up", clki->name,
1087 clki->curr_freq,
1088 clki->max_freq);
1089
1090 clki->curr_freq = clki->max_freq;
1091
1092 } else if (!scale_up && clki->min_freq) {
1093 if (clki->curr_freq == clki->min_freq)
1094 continue;
1095
1096 ret = clk_set_rate(clki->clk, clki->min_freq);
1097 if (ret) {
1098 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1099 __func__, clki->name,
1100 clki->min_freq, ret);
1101 break;
1102 }
1103 trace_ufshcd_clk_scaling(hba,
1104 "scaled down", clki->name,
1105 clki->curr_freq,
1106 clki->min_freq);
1107 clki->curr_freq = clki->min_freq;
1108 }
1109 }
1110 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1111 clki->name, clk_get_rate(clki->clk));
1112 }
1113
1114 out:
1115 return ret;
1116 }
1117
ufshcd_opp_config_clks(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)1118 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1119 struct dev_pm_opp *opp, void *data,
1120 bool scaling_down)
1121 {
1122 struct ufs_hba *hba = dev_get_drvdata(dev);
1123 struct list_head *head = &hba->clk_list_head;
1124 struct ufs_clk_info *clki;
1125 unsigned long freq;
1126 u8 idx = 0;
1127 int ret;
1128
1129 list_for_each_entry(clki, head, list) {
1130 if (!IS_ERR_OR_NULL(clki->clk)) {
1131 freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1132
1133 /* Do not set rate for clocks having frequency as 0 */
1134 if (!freq)
1135 continue;
1136
1137 ret = clk_set_rate(clki->clk, freq);
1138 if (ret) {
1139 dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1140 __func__, clki->name, freq, ret);
1141 return ret;
1142 }
1143
1144 trace_ufshcd_clk_scaling(hba,
1145 (scaling_down ? "scaled down" : "scaled up"),
1146 clki->name, hba->clk_scaling.target_freq, freq);
1147 }
1148 }
1149
1150 return 0;
1151 }
1152 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1153
ufshcd_opp_set_rate(struct ufs_hba * hba,unsigned long freq)1154 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1155 {
1156 struct dev_pm_opp *opp;
1157 int ret;
1158
1159 opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1160 &freq, 0);
1161 if (IS_ERR(opp))
1162 return PTR_ERR(opp);
1163
1164 ret = dev_pm_opp_set_opp(hba->dev, opp);
1165 dev_pm_opp_put(opp);
1166
1167 return ret;
1168 }
1169
1170 /**
1171 * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1172 * @hba: per adapter instance
1173 * @freq: frequency to scale
1174 * @scale_up: True if scaling up and false if scaling down
1175 *
1176 * Return: 0 if successful; < 0 upon failure.
1177 */
ufshcd_scale_clks(struct ufs_hba * hba,unsigned long freq,bool scale_up)1178 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1179 bool scale_up)
1180 {
1181 int ret = 0;
1182 ktime_t start = ktime_get();
1183
1184 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, PRE_CHANGE);
1185 if (ret)
1186 goto out;
1187
1188 if (hba->use_pm_opp)
1189 ret = ufshcd_opp_set_rate(hba, freq);
1190 else
1191 ret = ufshcd_set_clk_freq(hba, scale_up);
1192 if (ret)
1193 goto out;
1194
1195 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, POST_CHANGE);
1196 if (ret) {
1197 if (hba->use_pm_opp)
1198 ufshcd_opp_set_rate(hba,
1199 hba->devfreq->previous_freq);
1200 else
1201 ufshcd_set_clk_freq(hba, !scale_up);
1202 goto out;
1203 }
1204
1205 ufshcd_pm_qos_update(hba, scale_up);
1206
1207 out:
1208 trace_ufshcd_profile_clk_scaling(hba,
1209 (scale_up ? "up" : "down"),
1210 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1211 return ret;
1212 }
1213
1214 /**
1215 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1216 * @hba: per adapter instance
1217 * @freq: frequency to scale
1218 * @scale_up: True if scaling up and false if scaling down
1219 *
1220 * Return: true if scaling is required, false otherwise.
1221 */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,unsigned long freq,bool scale_up)1222 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1223 unsigned long freq, bool scale_up)
1224 {
1225 struct ufs_clk_info *clki;
1226 struct list_head *head = &hba->clk_list_head;
1227
1228 if (list_empty(head))
1229 return false;
1230
1231 if (hba->use_pm_opp)
1232 return freq != hba->clk_scaling.target_freq;
1233
1234 list_for_each_entry(clki, head, list) {
1235 if (!IS_ERR_OR_NULL(clki->clk)) {
1236 if (scale_up && clki->max_freq) {
1237 if (clki->curr_freq == clki->max_freq)
1238 continue;
1239 return true;
1240 } else if (!scale_up && clki->min_freq) {
1241 if (clki->curr_freq == clki->min_freq)
1242 continue;
1243 return true;
1244 }
1245 }
1246 }
1247
1248 return false;
1249 }
1250
1251 /*
1252 * Determine the number of pending commands by counting the bits in the SCSI
1253 * device budget maps. This approach has been selected because a bit is set in
1254 * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1255 * flag. The host_self_blocked flag can be modified by calling
1256 * scsi_block_requests() or scsi_unblock_requests().
1257 */
ufshcd_pending_cmds(struct ufs_hba * hba)1258 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1259 {
1260 const struct scsi_device *sdev;
1261 unsigned long flags;
1262 u32 pending = 0;
1263
1264 spin_lock_irqsave(hba->host->host_lock, flags);
1265 __shost_for_each_device(sdev, hba->host)
1266 pending += sbitmap_weight(&sdev->budget_map);
1267 spin_unlock_irqrestore(hba->host->host_lock, flags);
1268
1269 return pending;
1270 }
1271
1272 /*
1273 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1274 * has expired.
1275 *
1276 * Return: 0 upon success; -EBUSY upon timeout.
1277 */
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1278 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1279 u64 wait_timeout_us)
1280 {
1281 int ret = 0;
1282 u32 tm_doorbell;
1283 u32 tr_pending;
1284 bool timeout = false, do_last_check = false;
1285 ktime_t start;
1286
1287 ufshcd_hold(hba);
1288 /*
1289 * Wait for all the outstanding tasks/transfer requests.
1290 * Verify by checking the doorbell registers are clear.
1291 */
1292 start = ktime_get();
1293 do {
1294 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1295 ret = -EBUSY;
1296 goto out;
1297 }
1298
1299 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1300 tr_pending = ufshcd_pending_cmds(hba);
1301 if (!tm_doorbell && !tr_pending) {
1302 timeout = false;
1303 break;
1304 } else if (do_last_check) {
1305 break;
1306 }
1307
1308 io_schedule_timeout(msecs_to_jiffies(20));
1309 if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1310 wait_timeout_us) {
1311 timeout = true;
1312 /*
1313 * We might have scheduled out for long time so make
1314 * sure to check if doorbells are cleared by this time
1315 * or not.
1316 */
1317 do_last_check = true;
1318 }
1319 } while (tm_doorbell || tr_pending);
1320
1321 if (timeout) {
1322 dev_err(hba->dev,
1323 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1324 __func__, tm_doorbell, tr_pending);
1325 ret = -EBUSY;
1326 }
1327 out:
1328 ufshcd_release(hba);
1329 return ret;
1330 }
1331
1332 /**
1333 * ufshcd_scale_gear - scale up/down UFS gear
1334 * @hba: per adapter instance
1335 * @target_gear: target gear to scale to
1336 * @scale_up: True for scaling up gear and false for scaling down
1337 *
1338 * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1339 * non-zero for any other errors.
1340 */
ufshcd_scale_gear(struct ufs_hba * hba,u32 target_gear,bool scale_up)1341 static int ufshcd_scale_gear(struct ufs_hba *hba, u32 target_gear, bool scale_up)
1342 {
1343 int ret = 0;
1344 struct ufs_pa_layer_attr new_pwr_info;
1345
1346 if (target_gear) {
1347 new_pwr_info = hba->pwr_info;
1348 new_pwr_info.gear_tx = target_gear;
1349 new_pwr_info.gear_rx = target_gear;
1350
1351 goto config_pwr_mode;
1352 }
1353
1354 /* Legacy gear scaling, in case vops_freq_to_gear_speed() is not implemented */
1355 if (scale_up) {
1356 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1357 sizeof(struct ufs_pa_layer_attr));
1358 } else {
1359 memcpy(&new_pwr_info, &hba->pwr_info,
1360 sizeof(struct ufs_pa_layer_attr));
1361
1362 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1363 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1364 /* save the current power mode */
1365 memcpy(&hba->clk_scaling.saved_pwr_info,
1366 &hba->pwr_info,
1367 sizeof(struct ufs_pa_layer_attr));
1368
1369 /* scale down gear */
1370 new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1371 new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1372 }
1373 }
1374
1375 config_pwr_mode:
1376 /* check if the power mode needs to be changed or not? */
1377 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1378 if (ret)
1379 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1380 __func__, ret,
1381 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1382 new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1383
1384 return ret;
1385 }
1386
1387 /*
1388 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1389 * has expired.
1390 *
1391 * Return: 0 upon success; -EBUSY upon timeout.
1392 */
ufshcd_clock_scaling_prepare(struct ufs_hba * hba,u64 timeout_us)1393 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1394 {
1395 int ret = 0;
1396 /*
1397 * make sure that there are no outstanding requests when
1398 * clock scaling is in progress
1399 */
1400 mutex_lock(&hba->host->scan_mutex);
1401 blk_mq_quiesce_tagset(&hba->host->tag_set);
1402 mutex_lock(&hba->wb_mutex);
1403 down_write(&hba->clk_scaling_lock);
1404
1405 if (!hba->clk_scaling.is_allowed ||
1406 ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1407 ret = -EBUSY;
1408 up_write(&hba->clk_scaling_lock);
1409 mutex_unlock(&hba->wb_mutex);
1410 blk_mq_unquiesce_tagset(&hba->host->tag_set);
1411 mutex_unlock(&hba->host->scan_mutex);
1412 goto out;
1413 }
1414
1415 /* let's not get into low power until clock scaling is completed */
1416 ufshcd_hold(hba);
1417
1418 out:
1419 return ret;
1420 }
1421
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,int err)1422 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err)
1423 {
1424 up_write(&hba->clk_scaling_lock);
1425
1426 /* Enable Write Booster if current gear requires it else disable it */
1427 if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1428 ufshcd_wb_toggle(hba, hba->pwr_info.gear_rx >= hba->clk_scaling.wb_gear);
1429
1430 mutex_unlock(&hba->wb_mutex);
1431
1432 blk_mq_unquiesce_tagset(&hba->host->tag_set);
1433 mutex_unlock(&hba->host->scan_mutex);
1434 ufshcd_release(hba);
1435 }
1436
1437 /**
1438 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1439 * @hba: per adapter instance
1440 * @freq: frequency to scale
1441 * @scale_up: True for scaling up and false for scalin down
1442 *
1443 * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1444 * for any other errors.
1445 */
ufshcd_devfreq_scale(struct ufs_hba * hba,unsigned long freq,bool scale_up)1446 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1447 bool scale_up)
1448 {
1449 u32 old_gear = hba->pwr_info.gear_rx;
1450 u32 new_gear = 0;
1451 int ret = 0;
1452
1453 new_gear = ufshcd_vops_freq_to_gear_speed(hba, freq);
1454
1455 ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1456 if (ret)
1457 return ret;
1458
1459 /* scale down the gear before scaling down clocks */
1460 if (!scale_up) {
1461 ret = ufshcd_scale_gear(hba, new_gear, false);
1462 if (ret)
1463 goto out_unprepare;
1464 }
1465
1466 ret = ufshcd_scale_clks(hba, freq, scale_up);
1467 if (ret) {
1468 if (!scale_up)
1469 ufshcd_scale_gear(hba, old_gear, true);
1470 goto out_unprepare;
1471 }
1472
1473 /* scale up the gear after scaling up clocks */
1474 if (scale_up) {
1475 ret = ufshcd_scale_gear(hba, new_gear, true);
1476 if (ret) {
1477 ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1478 false);
1479 goto out_unprepare;
1480 }
1481 }
1482
1483 out_unprepare:
1484 ufshcd_clock_scaling_unprepare(hba, ret);
1485 return ret;
1486 }
1487
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1488 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1489 {
1490 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1491 clk_scaling.suspend_work);
1492
1493 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1494 {
1495 if (hba->clk_scaling.active_reqs ||
1496 hba->clk_scaling.is_suspended)
1497 return;
1498
1499 hba->clk_scaling.is_suspended = true;
1500 hba->clk_scaling.window_start_t = 0;
1501 }
1502
1503 devfreq_suspend_device(hba->devfreq);
1504 }
1505
ufshcd_clk_scaling_resume_work(struct work_struct * work)1506 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1507 {
1508 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1509 clk_scaling.resume_work);
1510
1511 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1512 {
1513 if (!hba->clk_scaling.is_suspended)
1514 return;
1515 hba->clk_scaling.is_suspended = false;
1516 }
1517
1518 devfreq_resume_device(hba->devfreq);
1519 }
1520
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1521 static int ufshcd_devfreq_target(struct device *dev,
1522 unsigned long *freq, u32 flags)
1523 {
1524 int ret = 0;
1525 struct ufs_hba *hba = dev_get_drvdata(dev);
1526 ktime_t start;
1527 bool scale_up = false, sched_clk_scaling_suspend_work = false;
1528 struct list_head *clk_list = &hba->clk_list_head;
1529 struct ufs_clk_info *clki;
1530
1531 if (!ufshcd_is_clkscaling_supported(hba))
1532 return -EINVAL;
1533
1534 if (hba->use_pm_opp) {
1535 struct dev_pm_opp *opp;
1536
1537 /* Get the recommended frequency from OPP framework */
1538 opp = devfreq_recommended_opp(dev, freq, flags);
1539 if (IS_ERR(opp))
1540 return PTR_ERR(opp);
1541
1542 dev_pm_opp_put(opp);
1543 } else {
1544 /* Override with the closest supported frequency */
1545 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1546 list);
1547 *freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1548 }
1549
1550 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1551 {
1552 if (ufshcd_eh_in_progress(hba))
1553 return 0;
1554
1555 /* Skip scaling clock when clock scaling is suspended */
1556 if (hba->clk_scaling.is_suspended) {
1557 dev_warn(hba->dev, "clock scaling is suspended, skip");
1558 return 0;
1559 }
1560
1561 if (!hba->clk_scaling.active_reqs)
1562 sched_clk_scaling_suspend_work = true;
1563
1564 if (list_empty(clk_list))
1565 goto out;
1566
1567 /* Decide based on the target or rounded-off frequency and update */
1568 if (hba->use_pm_opp)
1569 scale_up = *freq > hba->clk_scaling.target_freq;
1570 else
1571 scale_up = *freq == clki->max_freq;
1572
1573 if (!hba->use_pm_opp && !scale_up)
1574 *freq = clki->min_freq;
1575
1576 /* Update the frequency */
1577 if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1578 ret = 0;
1579 goto out; /* no state change required */
1580 }
1581 }
1582
1583 start = ktime_get();
1584 ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1585 if (!ret)
1586 hba->clk_scaling.target_freq = *freq;
1587
1588 trace_ufshcd_profile_clk_scaling(hba,
1589 (scale_up ? "up" : "down"),
1590 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1591
1592 out:
1593 if (sched_clk_scaling_suspend_work &&
1594 (!scale_up || hba->clk_scaling.suspend_on_no_request))
1595 queue_work(hba->clk_scaling.workq,
1596 &hba->clk_scaling.suspend_work);
1597
1598 return ret;
1599 }
1600
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1601 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1602 struct devfreq_dev_status *stat)
1603 {
1604 struct ufs_hba *hba = dev_get_drvdata(dev);
1605 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1606 ktime_t curr_t;
1607
1608 if (!ufshcd_is_clkscaling_supported(hba))
1609 return -EINVAL;
1610
1611 memset(stat, 0, sizeof(*stat));
1612
1613 guard(spinlock_irqsave)(&hba->clk_scaling.lock);
1614
1615 curr_t = ktime_get();
1616 if (!scaling->window_start_t)
1617 goto start_window;
1618
1619 /*
1620 * If current frequency is 0, then the ondemand governor considers
1621 * there's no initial frequency set. And it always requests to set
1622 * to max. frequency.
1623 */
1624 if (hba->use_pm_opp) {
1625 stat->current_frequency = hba->clk_scaling.target_freq;
1626 } else {
1627 struct list_head *clk_list = &hba->clk_list_head;
1628 struct ufs_clk_info *clki;
1629
1630 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1631 stat->current_frequency = clki->curr_freq;
1632 }
1633
1634 if (scaling->is_busy_started)
1635 scaling->tot_busy_t += ktime_us_delta(curr_t,
1636 scaling->busy_start_t);
1637 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1638 stat->busy_time = scaling->tot_busy_t;
1639 start_window:
1640 scaling->window_start_t = curr_t;
1641 scaling->tot_busy_t = 0;
1642
1643 if (scaling->active_reqs) {
1644 scaling->busy_start_t = curr_t;
1645 scaling->is_busy_started = true;
1646 } else {
1647 scaling->busy_start_t = 0;
1648 scaling->is_busy_started = false;
1649 }
1650
1651 return 0;
1652 }
1653
ufshcd_devfreq_init(struct ufs_hba * hba)1654 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1655 {
1656 struct list_head *clk_list = &hba->clk_list_head;
1657 struct ufs_clk_info *clki;
1658 struct devfreq *devfreq;
1659 int ret;
1660
1661 /* Skip devfreq if we don't have any clocks in the list */
1662 if (list_empty(clk_list))
1663 return 0;
1664
1665 if (!hba->use_pm_opp) {
1666 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1667 dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1668 dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1669 }
1670
1671 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1672 &hba->vps->ondemand_data);
1673 devfreq = devfreq_add_device(hba->dev,
1674 &hba->vps->devfreq_profile,
1675 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1676 &hba->vps->ondemand_data);
1677 if (IS_ERR(devfreq)) {
1678 ret = PTR_ERR(devfreq);
1679 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1680
1681 if (!hba->use_pm_opp) {
1682 dev_pm_opp_remove(hba->dev, clki->min_freq);
1683 dev_pm_opp_remove(hba->dev, clki->max_freq);
1684 }
1685 return ret;
1686 }
1687
1688 hba->devfreq = devfreq;
1689
1690 return 0;
1691 }
1692
ufshcd_devfreq_remove(struct ufs_hba * hba)1693 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1694 {
1695 struct list_head *clk_list = &hba->clk_list_head;
1696
1697 if (!hba->devfreq)
1698 return;
1699
1700 devfreq_remove_device(hba->devfreq);
1701 hba->devfreq = NULL;
1702
1703 if (!hba->use_pm_opp) {
1704 struct ufs_clk_info *clki;
1705
1706 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1707 dev_pm_opp_remove(hba->dev, clki->min_freq);
1708 dev_pm_opp_remove(hba->dev, clki->max_freq);
1709 }
1710 }
1711
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1712 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1713 {
1714 bool suspend = false;
1715
1716 cancel_work_sync(&hba->clk_scaling.suspend_work);
1717 cancel_work_sync(&hba->clk_scaling.resume_work);
1718
1719 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1720 {
1721 if (!hba->clk_scaling.is_suspended) {
1722 suspend = true;
1723 hba->clk_scaling.is_suspended = true;
1724 hba->clk_scaling.window_start_t = 0;
1725 }
1726 }
1727
1728 if (suspend)
1729 devfreq_suspend_device(hba->devfreq);
1730 }
1731
ufshcd_resume_clkscaling(struct ufs_hba * hba)1732 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1733 {
1734 bool resume = false;
1735
1736 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1737 {
1738 if (hba->clk_scaling.is_suspended) {
1739 resume = true;
1740 hba->clk_scaling.is_suspended = false;
1741 }
1742 }
1743
1744 if (resume)
1745 devfreq_resume_device(hba->devfreq);
1746 }
1747
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1748 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1749 struct device_attribute *attr, char *buf)
1750 {
1751 struct ufs_hba *hba = dev_get_drvdata(dev);
1752
1753 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1754 }
1755
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1756 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1757 struct device_attribute *attr, const char *buf, size_t count)
1758 {
1759 struct ufs_hba *hba = dev_get_drvdata(dev);
1760 struct ufs_clk_info *clki;
1761 unsigned long freq;
1762 u32 value;
1763 int err = 0;
1764
1765 if (kstrtou32(buf, 0, &value))
1766 return -EINVAL;
1767
1768 down(&hba->host_sem);
1769 if (!ufshcd_is_user_access_allowed(hba)) {
1770 err = -EBUSY;
1771 goto out;
1772 }
1773
1774 value = !!value;
1775 if (value == hba->clk_scaling.is_enabled)
1776 goto out;
1777
1778 ufshcd_rpm_get_sync(hba);
1779 ufshcd_hold(hba);
1780
1781 hba->clk_scaling.is_enabled = value;
1782
1783 if (value) {
1784 ufshcd_resume_clkscaling(hba);
1785 goto out_rel;
1786 }
1787
1788 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1789 freq = clki->max_freq;
1790
1791 ufshcd_suspend_clkscaling(hba);
1792
1793 if (!ufshcd_is_devfreq_scaling_required(hba, freq, true))
1794 goto out_rel;
1795
1796 err = ufshcd_devfreq_scale(hba, freq, true);
1797 if (err)
1798 dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1799 __func__, err);
1800 else
1801 hba->clk_scaling.target_freq = freq;
1802
1803 out_rel:
1804 ufshcd_release(hba);
1805 ufshcd_rpm_put_sync(hba);
1806 out:
1807 up(&hba->host_sem);
1808 return err ? err : count;
1809 }
1810
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1811 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1812 {
1813 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1814 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1815 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1816 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1817 hba->clk_scaling.enable_attr.attr.mode = 0644;
1818 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1819 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1820 }
1821
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1822 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1823 {
1824 if (hba->clk_scaling.enable_attr.attr.name)
1825 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1826 }
1827
ufshcd_init_clk_scaling(struct ufs_hba * hba)1828 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1829 {
1830 if (!ufshcd_is_clkscaling_supported(hba))
1831 return;
1832
1833 if (!hba->clk_scaling.min_gear)
1834 hba->clk_scaling.min_gear = UFS_HS_G1;
1835
1836 if (!hba->clk_scaling.wb_gear)
1837 /* Use intermediate gear speed HS_G3 as the default wb_gear */
1838 hba->clk_scaling.wb_gear = UFS_HS_G3;
1839
1840 INIT_WORK(&hba->clk_scaling.suspend_work,
1841 ufshcd_clk_scaling_suspend_work);
1842 INIT_WORK(&hba->clk_scaling.resume_work,
1843 ufshcd_clk_scaling_resume_work);
1844
1845 spin_lock_init(&hba->clk_scaling.lock);
1846
1847 hba->clk_scaling.workq = alloc_ordered_workqueue(
1848 "ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no);
1849
1850 hba->clk_scaling.is_initialized = true;
1851 }
1852
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1853 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1854 {
1855 if (!hba->clk_scaling.is_initialized)
1856 return;
1857
1858 ufshcd_remove_clk_scaling_sysfs(hba);
1859 destroy_workqueue(hba->clk_scaling.workq);
1860 ufshcd_devfreq_remove(hba);
1861 hba->clk_scaling.is_initialized = false;
1862 }
1863
ufshcd_ungate_work(struct work_struct * work)1864 static void ufshcd_ungate_work(struct work_struct *work)
1865 {
1866 int ret;
1867 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1868 clk_gating.ungate_work);
1869
1870 cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1871
1872 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
1873 if (hba->clk_gating.state == CLKS_ON)
1874 return;
1875 }
1876
1877 ufshcd_hba_vreg_set_hpm(hba);
1878 ufshcd_setup_clocks(hba, true);
1879
1880 ufshcd_enable_irq(hba);
1881
1882 /* Exit from hibern8 */
1883 if (ufshcd_can_hibern8_during_gating(hba)) {
1884 /* Prevent gating in this path */
1885 hba->clk_gating.is_suspended = true;
1886 if (ufshcd_is_link_hibern8(hba)) {
1887 ret = ufshcd_uic_hibern8_exit(hba);
1888 if (ret)
1889 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1890 __func__, ret);
1891 else
1892 ufshcd_set_link_active(hba);
1893 }
1894 hba->clk_gating.is_suspended = false;
1895 }
1896 }
1897
1898 /**
1899 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1900 * Also, exit from hibern8 mode and set the link as active.
1901 * @hba: per adapter instance
1902 */
ufshcd_hold(struct ufs_hba * hba)1903 void ufshcd_hold(struct ufs_hba *hba)
1904 {
1905 bool flush_result;
1906 unsigned long flags;
1907
1908 if (!ufshcd_is_clkgating_allowed(hba) ||
1909 !hba->clk_gating.is_initialized)
1910 return;
1911 spin_lock_irqsave(&hba->clk_gating.lock, flags);
1912 hba->clk_gating.active_reqs++;
1913
1914 start:
1915 switch (hba->clk_gating.state) {
1916 case CLKS_ON:
1917 /*
1918 * Wait for the ungate work to complete if in progress.
1919 * Though the clocks may be in ON state, the link could
1920 * still be in hibner8 state if hibern8 is allowed
1921 * during clock gating.
1922 * Make sure we exit hibern8 state also in addition to
1923 * clocks being ON.
1924 */
1925 if (ufshcd_can_hibern8_during_gating(hba) &&
1926 ufshcd_is_link_hibern8(hba)) {
1927 spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1928 flush_result = flush_work(&hba->clk_gating.ungate_work);
1929 if (hba->clk_gating.is_suspended && !flush_result)
1930 return;
1931 spin_lock_irqsave(&hba->clk_gating.lock, flags);
1932 goto start;
1933 }
1934 break;
1935 case REQ_CLKS_OFF:
1936 if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1937 hba->clk_gating.state = CLKS_ON;
1938 trace_ufshcd_clk_gating(hba,
1939 hba->clk_gating.state);
1940 break;
1941 }
1942 /*
1943 * If we are here, it means gating work is either done or
1944 * currently running. Hence, fall through to cancel gating
1945 * work and to enable clocks.
1946 */
1947 fallthrough;
1948 case CLKS_OFF:
1949 hba->clk_gating.state = REQ_CLKS_ON;
1950 trace_ufshcd_clk_gating(hba,
1951 hba->clk_gating.state);
1952 queue_work(hba->clk_gating.clk_gating_workq,
1953 &hba->clk_gating.ungate_work);
1954 /*
1955 * fall through to check if we should wait for this
1956 * work to be done or not.
1957 */
1958 fallthrough;
1959 case REQ_CLKS_ON:
1960 spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1961 flush_work(&hba->clk_gating.ungate_work);
1962 /* Make sure state is CLKS_ON before returning */
1963 spin_lock_irqsave(&hba->clk_gating.lock, flags);
1964 goto start;
1965 default:
1966 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1967 __func__, hba->clk_gating.state);
1968 break;
1969 }
1970 spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1971 }
1972 EXPORT_SYMBOL_GPL(ufshcd_hold);
1973
ufshcd_gate_work(struct work_struct * work)1974 static void ufshcd_gate_work(struct work_struct *work)
1975 {
1976 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1977 clk_gating.gate_work.work);
1978 int ret;
1979
1980 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
1981 /*
1982 * In case you are here to cancel this work the gating state
1983 * would be marked as REQ_CLKS_ON. In this case save time by
1984 * skipping the gating work and exit after changing the clock
1985 * state to CLKS_ON.
1986 */
1987 if (hba->clk_gating.is_suspended ||
1988 hba->clk_gating.state != REQ_CLKS_OFF) {
1989 hba->clk_gating.state = CLKS_ON;
1990 trace_ufshcd_clk_gating(hba,
1991 hba->clk_gating.state);
1992 return;
1993 }
1994
1995 if (hba->clk_gating.active_reqs)
1996 return;
1997 }
1998
1999 scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2000 if (ufshcd_is_ufs_dev_busy(hba) ||
2001 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2002 return;
2003 }
2004
2005 /* put the link into hibern8 mode before turning off clocks */
2006 if (ufshcd_can_hibern8_during_gating(hba)) {
2007 ret = ufshcd_uic_hibern8_enter(hba);
2008 if (ret) {
2009 hba->clk_gating.state = CLKS_ON;
2010 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
2011 __func__, ret);
2012 trace_ufshcd_clk_gating(hba,
2013 hba->clk_gating.state);
2014 return;
2015 }
2016 ufshcd_set_link_hibern8(hba);
2017 }
2018
2019 ufshcd_disable_irq(hba);
2020
2021 ufshcd_setup_clocks(hba, false);
2022
2023 /* Put the host controller in low power mode if possible */
2024 ufshcd_hba_vreg_set_lpm(hba);
2025 /*
2026 * In case you are here to cancel this work the gating state
2027 * would be marked as REQ_CLKS_ON. In this case keep the state
2028 * as REQ_CLKS_ON which would anyway imply that clocks are off
2029 * and a request to turn them on is pending. By doing this way,
2030 * we keep the state machine in tact and this would ultimately
2031 * prevent from doing cancel work multiple times when there are
2032 * new requests arriving before the current cancel work is done.
2033 */
2034 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2035 if (hba->clk_gating.state == REQ_CLKS_OFF) {
2036 hba->clk_gating.state = CLKS_OFF;
2037 trace_ufshcd_clk_gating(hba,
2038 hba->clk_gating.state);
2039 }
2040 }
2041
__ufshcd_release(struct ufs_hba * hba)2042 static void __ufshcd_release(struct ufs_hba *hba)
2043 {
2044 lockdep_assert_held(&hba->clk_gating.lock);
2045
2046 if (!ufshcd_is_clkgating_allowed(hba))
2047 return;
2048
2049 hba->clk_gating.active_reqs--;
2050
2051 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2052 !hba->clk_gating.is_initialized ||
2053 hba->clk_gating.state == CLKS_OFF)
2054 return;
2055
2056 scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2057 if (ufshcd_has_pending_tasks(hba) ||
2058 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2059 return;
2060 }
2061
2062 hba->clk_gating.state = REQ_CLKS_OFF;
2063 trace_ufshcd_clk_gating(hba, hba->clk_gating.state);
2064 queue_delayed_work(hba->clk_gating.clk_gating_workq,
2065 &hba->clk_gating.gate_work,
2066 msecs_to_jiffies(hba->clk_gating.delay_ms));
2067 }
2068
ufshcd_release(struct ufs_hba * hba)2069 void ufshcd_release(struct ufs_hba *hba)
2070 {
2071 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2072 __ufshcd_release(hba);
2073 }
2074 EXPORT_SYMBOL_GPL(ufshcd_release);
2075
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)2076 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2077 struct device_attribute *attr, char *buf)
2078 {
2079 struct ufs_hba *hba = dev_get_drvdata(dev);
2080
2081 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2082 }
2083
ufshcd_clkgate_delay_set(struct device * dev,unsigned long value)2084 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2085 {
2086 struct ufs_hba *hba = dev_get_drvdata(dev);
2087
2088 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2089 hba->clk_gating.delay_ms = value;
2090 }
2091 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2092
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2093 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2094 struct device_attribute *attr, const char *buf, size_t count)
2095 {
2096 unsigned long value;
2097
2098 if (kstrtoul(buf, 0, &value))
2099 return -EINVAL;
2100
2101 ufshcd_clkgate_delay_set(dev, value);
2102 return count;
2103 }
2104
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)2105 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2106 struct device_attribute *attr, char *buf)
2107 {
2108 struct ufs_hba *hba = dev_get_drvdata(dev);
2109
2110 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2111 }
2112
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2113 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2114 struct device_attribute *attr, const char *buf, size_t count)
2115 {
2116 struct ufs_hba *hba = dev_get_drvdata(dev);
2117 u32 value;
2118
2119 if (kstrtou32(buf, 0, &value))
2120 return -EINVAL;
2121
2122 value = !!value;
2123
2124 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2125
2126 if (value == hba->clk_gating.is_enabled)
2127 return count;
2128
2129 if (value)
2130 __ufshcd_release(hba);
2131 else
2132 hba->clk_gating.active_reqs++;
2133
2134 hba->clk_gating.is_enabled = value;
2135
2136 return count;
2137 }
2138
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)2139 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2140 {
2141 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2142 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2143 sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2144 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2145 hba->clk_gating.delay_attr.attr.mode = 0644;
2146 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2147 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2148
2149 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2150 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2151 sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2152 hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2153 hba->clk_gating.enable_attr.attr.mode = 0644;
2154 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2155 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2156 }
2157
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)2158 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2159 {
2160 if (hba->clk_gating.delay_attr.attr.name)
2161 device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2162 if (hba->clk_gating.enable_attr.attr.name)
2163 device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2164 }
2165
ufshcd_init_clk_gating(struct ufs_hba * hba)2166 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2167 {
2168 if (!ufshcd_is_clkgating_allowed(hba))
2169 return;
2170
2171 hba->clk_gating.state = CLKS_ON;
2172
2173 hba->clk_gating.delay_ms = 150;
2174 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2175 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2176
2177 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(
2178 "ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI,
2179 hba->host->host_no);
2180
2181 ufshcd_init_clk_gating_sysfs(hba);
2182
2183 hba->clk_gating.is_enabled = true;
2184 hba->clk_gating.is_initialized = true;
2185 }
2186
ufshcd_exit_clk_gating(struct ufs_hba * hba)2187 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2188 {
2189 if (!hba->clk_gating.is_initialized)
2190 return;
2191
2192 ufshcd_remove_clk_gating_sysfs(hba);
2193
2194 /* Ungate the clock if necessary. */
2195 ufshcd_hold(hba);
2196 hba->clk_gating.is_initialized = false;
2197 ufshcd_release(hba);
2198
2199 destroy_workqueue(hba->clk_gating.clk_gating_workq);
2200 }
2201
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)2202 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2203 {
2204 bool queue_resume_work = false;
2205 ktime_t curr_t = ktime_get();
2206
2207 if (!ufshcd_is_clkscaling_supported(hba))
2208 return;
2209
2210 guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2211
2212 if (!hba->clk_scaling.active_reqs++)
2213 queue_resume_work = true;
2214
2215 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress)
2216 return;
2217
2218 if (queue_resume_work)
2219 queue_work(hba->clk_scaling.workq,
2220 &hba->clk_scaling.resume_work);
2221
2222 if (!hba->clk_scaling.window_start_t) {
2223 hba->clk_scaling.window_start_t = curr_t;
2224 hba->clk_scaling.tot_busy_t = 0;
2225 hba->clk_scaling.is_busy_started = false;
2226 }
2227
2228 if (!hba->clk_scaling.is_busy_started) {
2229 hba->clk_scaling.busy_start_t = curr_t;
2230 hba->clk_scaling.is_busy_started = true;
2231 }
2232 }
2233
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)2234 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2235 {
2236 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2237
2238 if (!ufshcd_is_clkscaling_supported(hba))
2239 return;
2240
2241 guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2242
2243 hba->clk_scaling.active_reqs--;
2244 if (!scaling->active_reqs && scaling->is_busy_started) {
2245 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2246 scaling->busy_start_t));
2247 scaling->busy_start_t = 0;
2248 scaling->is_busy_started = false;
2249 }
2250 }
2251
ufshcd_monitor_opcode2dir(u8 opcode)2252 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2253 {
2254 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2255 return READ;
2256 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2257 return WRITE;
2258 else
2259 return -EINVAL;
2260 }
2261
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2262 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2263 struct ufshcd_lrb *lrbp)
2264 {
2265 const struct ufs_hba_monitor *m = &hba->monitor;
2266
2267 return (m->enabled && lrbp && lrbp->cmd &&
2268 (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2269 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2270 }
2271
ufshcd_start_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2272 static void ufshcd_start_monitor(struct ufs_hba *hba,
2273 const struct ufshcd_lrb *lrbp)
2274 {
2275 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2276 unsigned long flags;
2277
2278 spin_lock_irqsave(hba->host->host_lock, flags);
2279 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2280 hba->monitor.busy_start_ts[dir] = ktime_get();
2281 spin_unlock_irqrestore(hba->host->host_lock, flags);
2282 }
2283
ufshcd_update_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2284 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2285 {
2286 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2287 unsigned long flags;
2288
2289 spin_lock_irqsave(hba->host->host_lock, flags);
2290 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2291 const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2292 struct ufs_hba_monitor *m = &hba->monitor;
2293 ktime_t now, inc, lat;
2294
2295 now = lrbp->compl_time_stamp;
2296 inc = ktime_sub(now, m->busy_start_ts[dir]);
2297 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2298 m->nr_sec_rw[dir] += blk_rq_sectors(req);
2299
2300 /* Update latencies */
2301 m->nr_req[dir]++;
2302 lat = ktime_sub(now, lrbp->issue_time_stamp);
2303 m->lat_sum[dir] += lat;
2304 if (m->lat_max[dir] < lat || !m->lat_max[dir])
2305 m->lat_max[dir] = lat;
2306 if (m->lat_min[dir] > lat || !m->lat_min[dir])
2307 m->lat_min[dir] = lat;
2308
2309 m->nr_queued[dir]--;
2310 /* Push forward the busy start of monitor */
2311 m->busy_start_ts[dir] = now;
2312 }
2313 spin_unlock_irqrestore(hba->host->host_lock, flags);
2314 }
2315
2316 /**
2317 * ufshcd_send_command - Send SCSI or device management commands
2318 * @hba: per adapter instance
2319 * @task_tag: Task tag of the command
2320 * @hwq: pointer to hardware queue instance
2321 */
2322 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag,struct ufs_hw_queue * hwq)2323 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2324 struct ufs_hw_queue *hwq)
2325 {
2326 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2327 unsigned long flags;
2328
2329 lrbp->issue_time_stamp = ktime_get();
2330 lrbp->issue_time_stamp_local_clock = local_clock();
2331 lrbp->compl_time_stamp = ktime_set(0, 0);
2332 lrbp->compl_time_stamp_local_clock = 0;
2333 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2334 if (lrbp->cmd)
2335 ufshcd_clk_scaling_start_busy(hba);
2336 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2337 ufshcd_start_monitor(hba, lrbp);
2338
2339 if (hba->mcq_enabled) {
2340 int utrd_size = sizeof(struct utp_transfer_req_desc);
2341 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2342 struct utp_transfer_req_desc *dest;
2343
2344 spin_lock(&hwq->sq_lock);
2345 dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2346 memcpy(dest, src, utrd_size);
2347 ufshcd_inc_sq_tail(hwq);
2348 spin_unlock(&hwq->sq_lock);
2349 } else {
2350 spin_lock_irqsave(&hba->outstanding_lock, flags);
2351 if (hba->vops && hba->vops->setup_xfer_req)
2352 hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2353 !!lrbp->cmd);
2354 __set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2355 ufshcd_writel(hba, 1 << lrbp->task_tag,
2356 REG_UTP_TRANSFER_REQ_DOOR_BELL);
2357 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2358 }
2359 }
2360
2361 /**
2362 * ufshcd_copy_sense_data - Copy sense data in case of check condition
2363 * @lrbp: pointer to local reference block
2364 */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)2365 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2366 {
2367 u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2368 u16 resp_len;
2369 int len;
2370
2371 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2372 if (sense_buffer && resp_len) {
2373 int len_to_copy;
2374
2375 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2376 len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2377
2378 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2379 len_to_copy);
2380 }
2381 }
2382
2383 /**
2384 * ufshcd_copy_query_response() - Copy the Query Response and the data
2385 * descriptor
2386 * @hba: per adapter instance
2387 * @lrbp: pointer to local reference block
2388 *
2389 * Return: 0 upon success; < 0 upon failure.
2390 */
2391 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2392 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2393 {
2394 struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2395
2396 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2397
2398 /* Get the descriptor */
2399 if (hba->dev_cmd.query.descriptor &&
2400 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2401 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2402 GENERAL_UPIU_REQUEST_SIZE;
2403 u16 resp_len;
2404 u16 buf_len;
2405
2406 /* data segment length */
2407 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2408 .data_segment_length);
2409 buf_len = be16_to_cpu(
2410 hba->dev_cmd.query.request.upiu_req.length);
2411 if (likely(buf_len >= resp_len)) {
2412 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2413 } else {
2414 dev_warn(hba->dev,
2415 "%s: rsp size %d is bigger than buffer size %d",
2416 __func__, resp_len, buf_len);
2417 return -EINVAL;
2418 }
2419 }
2420
2421 return 0;
2422 }
2423
2424 /**
2425 * ufshcd_hba_capabilities - Read controller capabilities
2426 * @hba: per adapter instance
2427 *
2428 * Return: 0 on success, negative on error.
2429 */
ufshcd_hba_capabilities(struct ufs_hba * hba)2430 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2431 {
2432 int err;
2433
2434 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2435
2436 /* nutrs and nutmrs are 0 based values */
2437 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1;
2438 hba->nutmrs =
2439 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2440 hba->reserved_slot = hba->nutrs - 1;
2441
2442 hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1;
2443
2444 /* Read crypto capabilities */
2445 err = ufshcd_hba_init_crypto_capabilities(hba);
2446 if (err) {
2447 dev_err(hba->dev, "crypto setup failed\n");
2448 return err;
2449 }
2450
2451 /*
2452 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2453 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2454 * means we can simply read values regardless of version.
2455 */
2456 hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2457 /*
2458 * 0h: legacy single doorbell support is available
2459 * 1h: indicate that legacy single doorbell support has been removed
2460 */
2461 if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP))
2462 hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2463 else
2464 hba->lsdb_sup = true;
2465
2466 hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2467
2468 return 0;
2469 }
2470
2471 /**
2472 * ufshcd_ready_for_uic_cmd - Check if controller is ready
2473 * to accept UIC commands
2474 * @hba: per adapter instance
2475 *
2476 * Return: true on success, else false.
2477 */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2478 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2479 {
2480 u32 val;
2481 int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2482 500, uic_cmd_timeout * 1000, false, hba,
2483 REG_CONTROLLER_STATUS);
2484 return ret == 0;
2485 }
2486
2487 /**
2488 * ufshcd_get_upmcrs - Get the power mode change request status
2489 * @hba: Pointer to adapter instance
2490 *
2491 * This function gets the UPMCRS field of HCS register
2492 *
2493 * Return: value of UPMCRS field.
2494 */
ufshcd_get_upmcrs(struct ufs_hba * hba)2495 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2496 {
2497 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2498 }
2499
2500 /**
2501 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2502 * @hba: per adapter instance
2503 * @uic_cmd: UIC command
2504 */
2505 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2506 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2507 {
2508 lockdep_assert_held(&hba->uic_cmd_mutex);
2509
2510 WARN_ON(hba->active_uic_cmd);
2511
2512 hba->active_uic_cmd = uic_cmd;
2513
2514 /* Write Args */
2515 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2516 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2517 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2518
2519 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2520
2521 /* Write UIC Cmd */
2522 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2523 REG_UIC_COMMAND);
2524 }
2525
2526 /**
2527 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2528 * @hba: per adapter instance
2529 * @uic_cmd: UIC command
2530 *
2531 * Return: 0 only if success.
2532 */
2533 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2534 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2535 {
2536 int ret;
2537 unsigned long flags;
2538
2539 lockdep_assert_held(&hba->uic_cmd_mutex);
2540
2541 if (wait_for_completion_timeout(&uic_cmd->done,
2542 msecs_to_jiffies(uic_cmd_timeout))) {
2543 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2544 } else {
2545 ret = -ETIMEDOUT;
2546 dev_err(hba->dev,
2547 "uic cmd 0x%x with arg3 0x%x completion timeout\n",
2548 uic_cmd->command, uic_cmd->argument3);
2549
2550 if (!uic_cmd->cmd_active) {
2551 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2552 __func__);
2553 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2554 }
2555 }
2556
2557 spin_lock_irqsave(hba->host->host_lock, flags);
2558 hba->active_uic_cmd = NULL;
2559 spin_unlock_irqrestore(hba->host->host_lock, flags);
2560
2561 return ret;
2562 }
2563
2564 /**
2565 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2566 * @hba: per adapter instance
2567 * @uic_cmd: UIC command
2568 *
2569 * Return: 0 only if success.
2570 */
2571 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2572 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2573 {
2574 lockdep_assert_held(&hba->uic_cmd_mutex);
2575
2576 if (!ufshcd_ready_for_uic_cmd(hba)) {
2577 dev_err(hba->dev,
2578 "Controller not ready to accept UIC commands\n");
2579 return -EIO;
2580 }
2581
2582 init_completion(&uic_cmd->done);
2583
2584 uic_cmd->cmd_active = 1;
2585 ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2586
2587 return 0;
2588 }
2589
2590 /**
2591 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2592 * @hba: per adapter instance
2593 * @uic_cmd: UIC command
2594 *
2595 * Return: 0 only if success.
2596 */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2597 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2598 {
2599 int ret;
2600
2601 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2602 return 0;
2603
2604 ufshcd_hold(hba);
2605 mutex_lock(&hba->uic_cmd_mutex);
2606 ufshcd_add_delay_before_dme_cmd(hba);
2607
2608 ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2609 if (!ret)
2610 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2611
2612 mutex_unlock(&hba->uic_cmd_mutex);
2613
2614 ufshcd_release(hba);
2615 return ret;
2616 }
2617
2618 /**
2619 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2620 * @hba: per-adapter instance
2621 * @lrbp: pointer to local reference block
2622 * @sg_entries: The number of sg lists actually used
2623 * @sg_list: Pointer to SG list
2624 */
ufshcd_sgl_to_prdt(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int sg_entries,struct scatterlist * sg_list)2625 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2626 struct scatterlist *sg_list)
2627 {
2628 struct ufshcd_sg_entry *prd;
2629 struct scatterlist *sg;
2630 int i;
2631
2632 if (sg_entries) {
2633
2634 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2635 lrbp->utr_descriptor_ptr->prd_table_length =
2636 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2637 else
2638 lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2639
2640 prd = lrbp->ucd_prdt_ptr;
2641
2642 for_each_sg(sg_list, sg, sg_entries, i) {
2643 const unsigned int len = sg_dma_len(sg);
2644
2645 /*
2646 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2647 * based value that indicates the length, in bytes, of
2648 * the data block. A maximum of length of 256KB may
2649 * exist for any entry. Bits 1:0 of this field shall be
2650 * 11b to indicate Dword granularity. A value of '3'
2651 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2652 */
2653 WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2654 prd->size = cpu_to_le32(len - 1);
2655 prd->addr = cpu_to_le64(sg->dma_address);
2656 prd->reserved = 0;
2657 prd = (void *)prd + ufshcd_sg_entry_size(hba);
2658 }
2659 } else {
2660 lrbp->utr_descriptor_ptr->prd_table_length = 0;
2661 }
2662 }
2663
2664 /**
2665 * ufshcd_map_sg - Map scatter-gather list to prdt
2666 * @hba: per adapter instance
2667 * @lrbp: pointer to local reference block
2668 *
2669 * Return: 0 in case of success, non-zero value in case of failure.
2670 */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2671 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2672 {
2673 struct scsi_cmnd *cmd = lrbp->cmd;
2674 int sg_segments = scsi_dma_map(cmd);
2675
2676 if (sg_segments < 0)
2677 return sg_segments;
2678
2679 ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2680
2681 return ufshcd_crypto_fill_prdt(hba, lrbp);
2682 }
2683
2684 /**
2685 * ufshcd_enable_intr - enable interrupts
2686 * @hba: per adapter instance
2687 * @intrs: interrupt bits
2688 */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2689 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2690 {
2691 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2692
2693 set |= intrs;
2694 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2695 }
2696
2697 /**
2698 * ufshcd_disable_intr - disable interrupts
2699 * @hba: per adapter instance
2700 * @intrs: interrupt bits
2701 */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2702 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2703 {
2704 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2705
2706 set &= ~intrs;
2707 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2708 }
2709
2710 /**
2711 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2712 * descriptor according to request
2713 * @hba: per adapter instance
2714 * @lrbp: pointer to local reference block
2715 * @upiu_flags: flags required in the header
2716 * @cmd_dir: requests data direction
2717 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2718 */
2719 static void
ufshcd_prepare_req_desc_hdr(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir,int ehs_length)2720 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2721 u8 *upiu_flags, enum dma_data_direction cmd_dir,
2722 int ehs_length)
2723 {
2724 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2725 struct request_desc_header *h = &req_desc->header;
2726 enum utp_data_direction data_direction;
2727
2728 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2729
2730 *h = (typeof(*h)){ };
2731
2732 if (cmd_dir == DMA_FROM_DEVICE) {
2733 data_direction = UTP_DEVICE_TO_HOST;
2734 *upiu_flags = UPIU_CMD_FLAGS_READ;
2735 } else if (cmd_dir == DMA_TO_DEVICE) {
2736 data_direction = UTP_HOST_TO_DEVICE;
2737 *upiu_flags = UPIU_CMD_FLAGS_WRITE;
2738 } else {
2739 data_direction = UTP_NO_DATA_TRANSFER;
2740 *upiu_flags = UPIU_CMD_FLAGS_NONE;
2741 }
2742
2743 h->command_type = lrbp->command_type;
2744 h->data_direction = data_direction;
2745 h->ehs_length = ehs_length;
2746
2747 if (lrbp->intr_cmd)
2748 h->interrupt = 1;
2749
2750 /* Prepare crypto related dwords */
2751 ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2752
2753 /*
2754 * assigning invalid value for command status. Controller
2755 * updates OCS on command completion, with the command
2756 * status
2757 */
2758 h->ocs = OCS_INVALID_COMMAND_STATUS;
2759
2760 req_desc->prd_table_length = 0;
2761 }
2762
2763 /**
2764 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2765 * for scsi commands
2766 * @lrbp: local reference block pointer
2767 * @upiu_flags: flags
2768 */
2769 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2770 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2771 {
2772 struct scsi_cmnd *cmd = lrbp->cmd;
2773 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2774 unsigned short cdb_len;
2775
2776 ucd_req_ptr->header = (struct utp_upiu_header){
2777 .transaction_code = UPIU_TRANSACTION_COMMAND,
2778 .flags = upiu_flags,
2779 .lun = lrbp->lun,
2780 .task_tag = lrbp->task_tag,
2781 .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2782 };
2783
2784 WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2785
2786 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2787
2788 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2789 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2790
2791 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2792 }
2793
2794 /**
2795 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2796 * @hba: UFS hba
2797 * @lrbp: local reference block pointer
2798 * @upiu_flags: flags
2799 */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2800 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2801 struct ufshcd_lrb *lrbp, u8 upiu_flags)
2802 {
2803 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2804 struct ufs_query *query = &hba->dev_cmd.query;
2805 u16 len = be16_to_cpu(query->request.upiu_req.length);
2806
2807 /* Query request header */
2808 ucd_req_ptr->header = (struct utp_upiu_header){
2809 .transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2810 .flags = upiu_flags,
2811 .lun = lrbp->lun,
2812 .task_tag = lrbp->task_tag,
2813 .query_function = query->request.query_func,
2814 /* Data segment length only need for WRITE_DESC */
2815 .data_segment_length =
2816 query->request.upiu_req.opcode ==
2817 UPIU_QUERY_OPCODE_WRITE_DESC ?
2818 cpu_to_be16(len) :
2819 0,
2820 };
2821
2822 /* Copy the Query Request buffer as is */
2823 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2824 QUERY_OSF_SIZE);
2825
2826 /* Copy the Descriptor */
2827 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2828 memcpy(ucd_req_ptr + 1, query->descriptor, len);
2829
2830 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2831 }
2832
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2833 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2834 {
2835 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2836
2837 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2838
2839 ucd_req_ptr->header = (struct utp_upiu_header){
2840 .transaction_code = UPIU_TRANSACTION_NOP_OUT,
2841 .task_tag = lrbp->task_tag,
2842 };
2843
2844 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2845 }
2846
2847 /**
2848 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2849 * for Device Management Purposes
2850 * @hba: per adapter instance
2851 * @lrbp: pointer to local reference block
2852 *
2853 * Return: 0 upon success; < 0 upon failure.
2854 */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2855 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2856 struct ufshcd_lrb *lrbp)
2857 {
2858 u8 upiu_flags;
2859 int ret = 0;
2860
2861 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2862
2863 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2864 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2865 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2866 ufshcd_prepare_utp_nop_upiu(lrbp);
2867 else
2868 ret = -EINVAL;
2869
2870 return ret;
2871 }
2872
2873 /**
2874 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2875 * for SCSI Purposes
2876 * @hba: per adapter instance
2877 * @lrbp: pointer to local reference block
2878 */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2879 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2880 {
2881 struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2882 unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2883 u8 upiu_flags;
2884
2885 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2886 if (ioprio_class == IOPRIO_CLASS_RT)
2887 upiu_flags |= UPIU_CMD_FLAGS_CP;
2888 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2889 }
2890
__ufshcd_setup_cmd(struct ufshcd_lrb * lrbp,struct scsi_cmnd * cmd,u8 lun,int tag)2891 static void __ufshcd_setup_cmd(struct ufshcd_lrb *lrbp, struct scsi_cmnd *cmd, u8 lun, int tag)
2892 {
2893 memset(lrbp->ucd_req_ptr, 0, sizeof(*lrbp->ucd_req_ptr));
2894
2895 lrbp->cmd = cmd;
2896 lrbp->task_tag = tag;
2897 lrbp->lun = lun;
2898 ufshcd_prepare_lrbp_crypto(cmd ? scsi_cmd_to_rq(cmd) : NULL, lrbp);
2899 }
2900
ufshcd_setup_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct scsi_cmnd * cmd,u8 lun,int tag)2901 static void ufshcd_setup_scsi_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2902 struct scsi_cmnd *cmd, u8 lun, int tag)
2903 {
2904 __ufshcd_setup_cmd(lrbp, cmd, lun, tag);
2905 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2906 lrbp->req_abort_skip = false;
2907
2908 ufshcd_comp_scsi_upiu(hba, lrbp);
2909 }
2910
2911 /**
2912 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2913 * @upiu_wlun_id: UPIU W-LUN id
2914 *
2915 * Return: SCSI W-LUN id.
2916 */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2917 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2918 {
2919 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2920 }
2921
is_device_wlun(struct scsi_device * sdev)2922 static inline bool is_device_wlun(struct scsi_device *sdev)
2923 {
2924 return sdev->lun ==
2925 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2926 }
2927
2928 /*
2929 * Associate the UFS controller queue with the default and poll HCTX types.
2930 * Initialize the mq_map[] arrays.
2931 */
ufshcd_map_queues(struct Scsi_Host * shost)2932 static void ufshcd_map_queues(struct Scsi_Host *shost)
2933 {
2934 struct ufs_hba *hba = shost_priv(shost);
2935 int i, queue_offset = 0;
2936
2937 if (!is_mcq_supported(hba)) {
2938 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2939 hba->nr_queues[HCTX_TYPE_READ] = 0;
2940 hba->nr_queues[HCTX_TYPE_POLL] = 1;
2941 hba->nr_hw_queues = 1;
2942 }
2943
2944 for (i = 0; i < shost->nr_maps; i++) {
2945 struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2946
2947 map->nr_queues = hba->nr_queues[i];
2948 if (!map->nr_queues)
2949 continue;
2950 map->queue_offset = queue_offset;
2951 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2952 map->queue_offset = 0;
2953
2954 blk_mq_map_queues(map);
2955 queue_offset += map->nr_queues;
2956 }
2957 }
2958
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2959 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2960 {
2961 struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2962 i * ufshcd_get_ucd_size(hba);
2963 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2964 dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2965 i * ufshcd_get_ucd_size(hba);
2966 u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset);
2967 u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset);
2968
2969 lrb->utr_descriptor_ptr = utrdlp + i;
2970 lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2971 i * sizeof(struct utp_transfer_req_desc);
2972 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2973 lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2974 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2975 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2976 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2977 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2978 }
2979
2980 /**
2981 * ufshcd_queuecommand - main entry point for SCSI requests
2982 * @host: SCSI host pointer
2983 * @cmd: command from SCSI Midlayer
2984 *
2985 * Return: 0 for success, non-zero in case of failure.
2986 */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2987 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2988 {
2989 struct ufs_hba *hba = shost_priv(host);
2990 int tag = scsi_cmd_to_rq(cmd)->tag;
2991 struct ufshcd_lrb *lrbp;
2992 int err = 0;
2993 struct ufs_hw_queue *hwq = NULL;
2994
2995 switch (hba->ufshcd_state) {
2996 case UFSHCD_STATE_OPERATIONAL:
2997 break;
2998 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2999 /*
3000 * SCSI error handler can call ->queuecommand() while UFS error
3001 * handler is in progress. Error interrupts could change the
3002 * state from UFSHCD_STATE_RESET to
3003 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
3004 * being issued in that case.
3005 */
3006 if (ufshcd_eh_in_progress(hba)) {
3007 err = SCSI_MLQUEUE_HOST_BUSY;
3008 goto out;
3009 }
3010 break;
3011 case UFSHCD_STATE_EH_SCHEDULED_FATAL:
3012 /*
3013 * pm_runtime_get_sync() is used at error handling preparation
3014 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
3015 * PM ops, it can never be finished if we let SCSI layer keep
3016 * retrying it, which gets err handler stuck forever. Neither
3017 * can we let the scsi cmd pass through, because UFS is in bad
3018 * state, the scsi cmd may eventually time out, which will get
3019 * err handler blocked for too long. So, just fail the scsi cmd
3020 * sent from PM ops, err handler can recover PM error anyways.
3021 */
3022 if (hba->pm_op_in_progress) {
3023 hba->force_reset = true;
3024 set_host_byte(cmd, DID_BAD_TARGET);
3025 scsi_done(cmd);
3026 goto out;
3027 }
3028 fallthrough;
3029 case UFSHCD_STATE_RESET:
3030 err = SCSI_MLQUEUE_HOST_BUSY;
3031 goto out;
3032 case UFSHCD_STATE_ERROR:
3033 set_host_byte(cmd, DID_ERROR);
3034 scsi_done(cmd);
3035 goto out;
3036 }
3037
3038 hba->req_abort_count = 0;
3039
3040 ufshcd_hold(hba);
3041
3042 lrbp = &hba->lrb[tag];
3043
3044 ufshcd_setup_scsi_cmd(hba, lrbp, cmd, ufshcd_scsi_to_upiu_lun(cmd->device->lun), tag);
3045
3046 err = ufshcd_map_sg(hba, lrbp);
3047 if (err) {
3048 ufshcd_release(hba);
3049 goto out;
3050 }
3051
3052 if (hba->mcq_enabled)
3053 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3054
3055 ufshcd_send_command(hba, tag, hwq);
3056
3057 out:
3058 if (ufs_trigger_eh(hba)) {
3059 unsigned long flags;
3060
3061 spin_lock_irqsave(hba->host->host_lock, flags);
3062 ufshcd_schedule_eh_work(hba);
3063 spin_unlock_irqrestore(hba->host->host_lock, flags);
3064 }
3065
3066 return err;
3067 }
3068
ufshcd_setup_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,u8 lun,int tag)3069 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3070 enum dev_cmd_type cmd_type, u8 lun, int tag)
3071 {
3072 __ufshcd_setup_cmd(lrbp, NULL, lun, tag);
3073 lrbp->intr_cmd = true; /* No interrupt aggregation */
3074 hba->dev_cmd.type = cmd_type;
3075 }
3076
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)3077 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3078 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3079 {
3080 ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
3081
3082 return ufshcd_compose_devman_upiu(hba, lrbp);
3083 }
3084
3085 /*
3086 * Check with the block layer if the command is inflight
3087 * @cmd: command to check.
3088 *
3089 * Return: true if command is inflight; false if not.
3090 */
ufshcd_cmd_inflight(struct scsi_cmnd * cmd)3091 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3092 {
3093 return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3094 }
3095
3096 /*
3097 * Clear the pending command in the controller and wait until
3098 * the controller confirms that the command has been cleared.
3099 * @hba: per adapter instance
3100 * @task_tag: The tag number of the command to be cleared.
3101 */
ufshcd_clear_cmd(struct ufs_hba * hba,u32 task_tag)3102 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3103 {
3104 u32 mask;
3105 int err;
3106
3107 if (hba->mcq_enabled) {
3108 /*
3109 * MCQ mode. Clean up the MCQ resources similar to
3110 * what the ufshcd_utrl_clear() does for SDB mode.
3111 */
3112 err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3113 if (err) {
3114 dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3115 __func__, task_tag, err);
3116 return err;
3117 }
3118 return 0;
3119 }
3120
3121 mask = 1U << task_tag;
3122
3123 /* clear outstanding transaction before retry */
3124 ufshcd_utrl_clear(hba, mask);
3125
3126 /*
3127 * wait for h/w to clear corresponding bit in door-bell.
3128 * max. wait is 1 sec.
3129 */
3130 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3131 mask, ~mask, 1000, 1000);
3132 }
3133
3134 /**
3135 * ufshcd_dev_cmd_completion() - handles device management command responses
3136 * @hba: per adapter instance
3137 * @lrbp: pointer to local reference block
3138 *
3139 * Return: 0 upon success; < 0 upon failure.
3140 */
3141 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)3142 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3143 {
3144 enum upiu_response_transaction resp;
3145 int err = 0;
3146
3147 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3148 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3149
3150 switch (resp) {
3151 case UPIU_TRANSACTION_NOP_IN:
3152 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3153 err = -EINVAL;
3154 dev_err(hba->dev, "%s: unexpected response %x\n",
3155 __func__, resp);
3156 }
3157 break;
3158 case UPIU_TRANSACTION_QUERY_RSP: {
3159 u8 response = lrbp->ucd_rsp_ptr->header.response;
3160
3161 if (response == 0) {
3162 err = ufshcd_copy_query_response(hba, lrbp);
3163 } else {
3164 err = -EINVAL;
3165 dev_err(hba->dev, "%s: unexpected response in Query RSP: %x\n",
3166 __func__, response);
3167 }
3168 break;
3169 }
3170 case UPIU_TRANSACTION_REJECT_UPIU:
3171 /* TODO: handle Reject UPIU Response */
3172 err = -EPERM;
3173 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3174 __func__);
3175 break;
3176 case UPIU_TRANSACTION_RESPONSE:
3177 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3178 err = -EINVAL;
3179 dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3180 }
3181 break;
3182 default:
3183 err = -EINVAL;
3184 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3185 __func__, resp);
3186 break;
3187 }
3188
3189 return err;
3190 }
3191
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)3192 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3193 struct ufshcd_lrb *lrbp, int max_timeout)
3194 {
3195 unsigned long time_left = msecs_to_jiffies(max_timeout);
3196 unsigned long flags;
3197 bool pending;
3198 int err;
3199
3200 retry:
3201 time_left = wait_for_completion_timeout(&hba->dev_cmd.complete,
3202 time_left);
3203
3204 if (likely(time_left)) {
3205 err = ufshcd_get_tr_ocs(lrbp, NULL);
3206 if (!err)
3207 err = ufshcd_dev_cmd_completion(hba, lrbp);
3208 } else {
3209 err = -ETIMEDOUT;
3210 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3211 __func__, lrbp->task_tag);
3212
3213 /* MCQ mode */
3214 if (hba->mcq_enabled) {
3215 /* successfully cleared the command, retry if needed */
3216 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3217 err = -EAGAIN;
3218 return err;
3219 }
3220
3221 /* SDB mode */
3222 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3223 /* successfully cleared the command, retry if needed */
3224 err = -EAGAIN;
3225 /*
3226 * Since clearing the command succeeded we also need to
3227 * clear the task tag bit from the outstanding_reqs
3228 * variable.
3229 */
3230 spin_lock_irqsave(&hba->outstanding_lock, flags);
3231 pending = test_bit(lrbp->task_tag,
3232 &hba->outstanding_reqs);
3233 if (pending)
3234 __clear_bit(lrbp->task_tag,
3235 &hba->outstanding_reqs);
3236 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3237
3238 if (!pending) {
3239 /*
3240 * The completion handler ran while we tried to
3241 * clear the command.
3242 */
3243 time_left = 1;
3244 goto retry;
3245 }
3246 } else {
3247 dev_err(hba->dev, "%s: failed to clear tag %d\n",
3248 __func__, lrbp->task_tag);
3249
3250 spin_lock_irqsave(&hba->outstanding_lock, flags);
3251 pending = test_bit(lrbp->task_tag,
3252 &hba->outstanding_reqs);
3253 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3254
3255 if (!pending) {
3256 /*
3257 * The completion handler ran while we tried to
3258 * clear the command.
3259 */
3260 time_left = 1;
3261 goto retry;
3262 }
3263 }
3264 }
3265
3266 return err;
3267 }
3268
ufshcd_dev_man_lock(struct ufs_hba * hba)3269 static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3270 {
3271 ufshcd_hold(hba);
3272 mutex_lock(&hba->dev_cmd.lock);
3273 down_read(&hba->clk_scaling_lock);
3274 }
3275
ufshcd_dev_man_unlock(struct ufs_hba * hba)3276 static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3277 {
3278 up_read(&hba->clk_scaling_lock);
3279 mutex_unlock(&hba->dev_cmd.lock);
3280 ufshcd_release(hba);
3281 }
3282
ufshcd_issue_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,const u32 tag,int timeout)3283 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3284 const u32 tag, int timeout)
3285 {
3286 int err;
3287
3288 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3289 ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3290 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3291
3292 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3293 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3294
3295 return err;
3296 }
3297
3298 /**
3299 * ufshcd_exec_dev_cmd - API for sending device management requests
3300 * @hba: UFS hba
3301 * @cmd_type: specifies the type (NOP, Query...)
3302 * @timeout: timeout in milliseconds
3303 *
3304 * Return: 0 upon success; < 0 upon failure.
3305 *
3306 * NOTE: Since there is only one available tag for device management commands,
3307 * it is expected you hold the hba->dev_cmd.lock mutex.
3308 */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)3309 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3310 enum dev_cmd_type cmd_type, int timeout)
3311 {
3312 const u32 tag = hba->reserved_slot;
3313 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
3314 int err;
3315
3316 /* Protects use of hba->reserved_slot. */
3317 lockdep_assert_held(&hba->dev_cmd.lock);
3318
3319 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3320 if (unlikely(err))
3321 return err;
3322
3323 return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout);
3324 }
3325
3326 /**
3327 * ufshcd_init_query() - init the query response and request parameters
3328 * @hba: per-adapter instance
3329 * @request: address of the request pointer to be initialized
3330 * @response: address of the response pointer to be initialized
3331 * @opcode: operation to perform
3332 * @idn: flag idn to access
3333 * @index: LU number to access
3334 * @selector: query/flag/descriptor further identification
3335 */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)3336 static inline void ufshcd_init_query(struct ufs_hba *hba,
3337 struct ufs_query_req **request, struct ufs_query_res **response,
3338 enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3339 {
3340 *request = &hba->dev_cmd.query.request;
3341 *response = &hba->dev_cmd.query.response;
3342 memset(*request, 0, sizeof(struct ufs_query_req));
3343 memset(*response, 0, sizeof(struct ufs_query_res));
3344 (*request)->upiu_req.opcode = opcode;
3345 (*request)->upiu_req.idn = idn;
3346 (*request)->upiu_req.index = index;
3347 (*request)->upiu_req.selector = selector;
3348 }
3349
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3350 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3351 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3352 {
3353 int ret;
3354 int retries;
3355
3356 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3357 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3358 if (ret)
3359 dev_dbg(hba->dev,
3360 "%s: failed with error %d, retries %d\n",
3361 __func__, ret, retries);
3362 else
3363 break;
3364 }
3365
3366 if (ret)
3367 dev_err(hba->dev,
3368 "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3369 __func__, opcode, idn, ret, retries);
3370 return ret;
3371 }
3372
3373 /**
3374 * ufshcd_query_flag() - API function for sending flag query requests
3375 * @hba: per-adapter instance
3376 * @opcode: flag query to perform
3377 * @idn: flag idn to access
3378 * @index: flag index to access
3379 * @flag_res: the flag value after the query request completes
3380 *
3381 * Return: 0 for success, non-zero in case of failure.
3382 */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3383 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3384 enum flag_idn idn, u8 index, bool *flag_res)
3385 {
3386 struct ufs_query_req *request = NULL;
3387 struct ufs_query_res *response = NULL;
3388 int err, selector = 0;
3389 int timeout = dev_cmd_timeout;
3390
3391 BUG_ON(!hba);
3392
3393 ufshcd_dev_man_lock(hba);
3394
3395 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3396 selector);
3397
3398 switch (opcode) {
3399 case UPIU_QUERY_OPCODE_SET_FLAG:
3400 case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3401 case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3402 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3403 break;
3404 case UPIU_QUERY_OPCODE_READ_FLAG:
3405 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3406 if (!flag_res) {
3407 /* No dummy reads */
3408 dev_err(hba->dev, "%s: Invalid argument for read request\n",
3409 __func__);
3410 err = -EINVAL;
3411 goto out_unlock;
3412 }
3413 break;
3414 default:
3415 dev_err(hba->dev,
3416 "%s: Expected query flag opcode but got = %d\n",
3417 __func__, opcode);
3418 err = -EINVAL;
3419 goto out_unlock;
3420 }
3421
3422 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3423
3424 if (err) {
3425 dev_err(hba->dev,
3426 "%s: Sending flag query for idn %d failed, err = %d\n",
3427 __func__, idn, err);
3428 goto out_unlock;
3429 }
3430
3431 if (flag_res)
3432 *flag_res = (be32_to_cpu(response->upiu_res.value) &
3433 MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3434
3435 out_unlock:
3436 ufshcd_dev_man_unlock(hba);
3437 return err;
3438 }
3439
3440 /**
3441 * ufshcd_query_attr - API function for sending attribute requests
3442 * @hba: per-adapter instance
3443 * @opcode: attribute opcode
3444 * @idn: attribute idn to access
3445 * @index: index field
3446 * @selector: selector field
3447 * @attr_val: the attribute value after the query request completes
3448 *
3449 * Return: 0 for success, non-zero in case of failure.
3450 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3451 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3452 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3453 {
3454 struct ufs_query_req *request = NULL;
3455 struct ufs_query_res *response = NULL;
3456 int err;
3457
3458 BUG_ON(!hba);
3459
3460 if (!attr_val) {
3461 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3462 __func__, opcode);
3463 return -EINVAL;
3464 }
3465
3466 ufshcd_dev_man_lock(hba);
3467
3468 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3469 selector);
3470
3471 switch (opcode) {
3472 case UPIU_QUERY_OPCODE_WRITE_ATTR:
3473 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3474 request->upiu_req.value = cpu_to_be32(*attr_val);
3475 break;
3476 case UPIU_QUERY_OPCODE_READ_ATTR:
3477 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3478 break;
3479 default:
3480 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3481 __func__, opcode);
3482 err = -EINVAL;
3483 goto out_unlock;
3484 }
3485
3486 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
3487
3488 if (err) {
3489 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3490 __func__, opcode, idn, index, err);
3491 goto out_unlock;
3492 }
3493
3494 *attr_val = be32_to_cpu(response->upiu_res.value);
3495
3496 out_unlock:
3497 ufshcd_dev_man_unlock(hba);
3498 return err;
3499 }
3500
3501 /**
3502 * ufshcd_query_attr_retry() - API function for sending query
3503 * attribute with retries
3504 * @hba: per-adapter instance
3505 * @opcode: attribute opcode
3506 * @idn: attribute idn to access
3507 * @index: index field
3508 * @selector: selector field
3509 * @attr_val: the attribute value after the query request
3510 * completes
3511 *
3512 * Return: 0 for success, non-zero in case of failure.
3513 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3514 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3515 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3516 u32 *attr_val)
3517 {
3518 int ret = 0;
3519 u32 retries;
3520
3521 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3522 ret = ufshcd_query_attr(hba, opcode, idn, index,
3523 selector, attr_val);
3524 if (ret)
3525 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3526 __func__, ret, retries);
3527 else
3528 break;
3529 }
3530
3531 if (ret)
3532 dev_err(hba->dev,
3533 "%s: query attribute, idn %d, failed with error %d after %d retries\n",
3534 __func__, idn, ret, QUERY_REQ_RETRIES);
3535 return ret;
3536 }
3537
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3538 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3539 enum query_opcode opcode, enum desc_idn idn, u8 index,
3540 u8 selector, u8 *desc_buf, int *buf_len)
3541 {
3542 struct ufs_query_req *request = NULL;
3543 struct ufs_query_res *response = NULL;
3544 int err;
3545
3546 BUG_ON(!hba);
3547
3548 if (!desc_buf) {
3549 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3550 __func__, opcode);
3551 return -EINVAL;
3552 }
3553
3554 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3555 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3556 __func__, *buf_len);
3557 return -EINVAL;
3558 }
3559
3560 ufshcd_dev_man_lock(hba);
3561
3562 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3563 selector);
3564 hba->dev_cmd.query.descriptor = desc_buf;
3565 request->upiu_req.length = cpu_to_be16(*buf_len);
3566
3567 switch (opcode) {
3568 case UPIU_QUERY_OPCODE_WRITE_DESC:
3569 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3570 break;
3571 case UPIU_QUERY_OPCODE_READ_DESC:
3572 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3573 break;
3574 default:
3575 dev_err(hba->dev,
3576 "%s: Expected query descriptor opcode but got = 0x%.2x\n",
3577 __func__, opcode);
3578 err = -EINVAL;
3579 goto out_unlock;
3580 }
3581
3582 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
3583
3584 if (err) {
3585 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3586 __func__, opcode, idn, index, err);
3587 goto out_unlock;
3588 }
3589
3590 *buf_len = be16_to_cpu(response->upiu_res.length);
3591
3592 out_unlock:
3593 hba->dev_cmd.query.descriptor = NULL;
3594 ufshcd_dev_man_unlock(hba);
3595 return err;
3596 }
3597
3598 /**
3599 * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3600 * @hba: per-adapter instance
3601 * @opcode: attribute opcode
3602 * @idn: attribute idn to access
3603 * @index: index field
3604 * @selector: selector field
3605 * @desc_buf: the buffer that contains the descriptor
3606 * @buf_len: length parameter passed to the device
3607 *
3608 * The buf_len parameter will contain, on return, the length parameter
3609 * received on the response.
3610 *
3611 * Return: 0 for success, non-zero in case of failure.
3612 */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3613 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3614 enum query_opcode opcode,
3615 enum desc_idn idn, u8 index,
3616 u8 selector,
3617 u8 *desc_buf, int *buf_len)
3618 {
3619 int err;
3620 int retries;
3621
3622 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3623 err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3624 selector, desc_buf, buf_len);
3625 if (!err || err == -EINVAL)
3626 break;
3627 }
3628
3629 return err;
3630 }
3631
3632 /**
3633 * ufshcd_read_desc_param - read the specified descriptor parameter
3634 * @hba: Pointer to adapter instance
3635 * @desc_id: descriptor idn value
3636 * @desc_index: descriptor index
3637 * @param_offset: offset of the parameter to read
3638 * @param_read_buf: pointer to buffer where parameter would be read
3639 * @param_size: sizeof(param_read_buf)
3640 *
3641 * Return: 0 in case of success, non-zero otherwise.
3642 */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3643 int ufshcd_read_desc_param(struct ufs_hba *hba,
3644 enum desc_idn desc_id,
3645 int desc_index,
3646 u8 param_offset,
3647 u8 *param_read_buf,
3648 u8 param_size)
3649 {
3650 int ret;
3651 u8 *desc_buf;
3652 int buff_len = QUERY_DESC_MAX_SIZE;
3653 bool is_kmalloc = true;
3654
3655 /* Safety check */
3656 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3657 return -EINVAL;
3658
3659 /* Check whether we need temp memory */
3660 if (param_offset != 0 || param_size < buff_len) {
3661 desc_buf = kzalloc(buff_len, GFP_KERNEL);
3662 if (!desc_buf)
3663 return -ENOMEM;
3664 } else {
3665 desc_buf = param_read_buf;
3666 is_kmalloc = false;
3667 }
3668
3669 /* Request for full descriptor */
3670 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3671 desc_id, desc_index, 0,
3672 desc_buf, &buff_len);
3673 if (ret) {
3674 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3675 __func__, desc_id, desc_index, param_offset, ret);
3676 goto out;
3677 }
3678
3679 /* Update descriptor length */
3680 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3681
3682 if (param_offset >= buff_len) {
3683 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3684 __func__, param_offset, desc_id, buff_len);
3685 ret = -EINVAL;
3686 goto out;
3687 }
3688
3689 /* Sanity check */
3690 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3691 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3692 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3693 ret = -EINVAL;
3694 goto out;
3695 }
3696
3697 if (is_kmalloc) {
3698 /* Make sure we don't copy more data than available */
3699 if (param_offset >= buff_len)
3700 ret = -EINVAL;
3701 else
3702 memcpy(param_read_buf, &desc_buf[param_offset],
3703 min_t(u32, param_size, buff_len - param_offset));
3704 }
3705 out:
3706 if (is_kmalloc)
3707 kfree(desc_buf);
3708 return ret;
3709 }
3710
3711 /**
3712 * struct uc_string_id - unicode string
3713 *
3714 * @len: size of this descriptor inclusive
3715 * @type: descriptor type
3716 * @uc: unicode string character
3717 */
3718 struct uc_string_id {
3719 u8 len;
3720 u8 type;
3721 wchar_t uc[];
3722 } __packed;
3723
3724 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3725 static inline char ufshcd_remove_non_printable(u8 ch)
3726 {
3727 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3728 }
3729
3730 /**
3731 * ufshcd_read_string_desc - read string descriptor
3732 * @hba: pointer to adapter instance
3733 * @desc_index: descriptor index
3734 * @buf: pointer to buffer where descriptor would be read,
3735 * the caller should free the memory.
3736 * @ascii: if true convert from unicode to ascii characters
3737 * null terminated string.
3738 *
3739 * Return:
3740 * * string size on success.
3741 * * -ENOMEM: on allocation failure
3742 * * -EINVAL: on a wrong parameter
3743 */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3744 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3745 u8 **buf, bool ascii)
3746 {
3747 struct uc_string_id *uc_str;
3748 u8 *str;
3749 int ret;
3750
3751 if (!buf)
3752 return -EINVAL;
3753
3754 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3755 if (!uc_str)
3756 return -ENOMEM;
3757
3758 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3759 (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3760 if (ret < 0) {
3761 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3762 QUERY_REQ_RETRIES, ret);
3763 str = NULL;
3764 goto out;
3765 }
3766
3767 if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3768 dev_dbg(hba->dev, "String Desc is of zero length\n");
3769 str = NULL;
3770 ret = 0;
3771 goto out;
3772 }
3773
3774 if (ascii) {
3775 ssize_t ascii_len;
3776 int i;
3777 /* remove header and divide by 2 to move from UTF16 to UTF8 */
3778 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3779 str = kzalloc(ascii_len, GFP_KERNEL);
3780 if (!str) {
3781 ret = -ENOMEM;
3782 goto out;
3783 }
3784
3785 /*
3786 * the descriptor contains string in UTF16 format
3787 * we need to convert to utf-8 so it can be displayed
3788 */
3789 ret = utf16s_to_utf8s(uc_str->uc,
3790 uc_str->len - QUERY_DESC_HDR_SIZE,
3791 UTF16_BIG_ENDIAN, str, ascii_len - 1);
3792
3793 /* replace non-printable or non-ASCII characters with spaces */
3794 for (i = 0; i < ret; i++)
3795 str[i] = ufshcd_remove_non_printable(str[i]);
3796
3797 str[ret++] = '\0';
3798
3799 } else {
3800 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3801 if (!str) {
3802 ret = -ENOMEM;
3803 goto out;
3804 }
3805 ret = uc_str->len;
3806 }
3807 out:
3808 *buf = str;
3809 kfree(uc_str);
3810 return ret;
3811 }
3812
3813 /**
3814 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3815 * @hba: Pointer to adapter instance
3816 * @lun: lun id
3817 * @param_offset: offset of the parameter to read
3818 * @param_read_buf: pointer to buffer where parameter would be read
3819 * @param_size: sizeof(param_read_buf)
3820 *
3821 * Return: 0 in case of success, non-zero otherwise.
3822 */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3823 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3824 int lun,
3825 enum unit_desc_param param_offset,
3826 u8 *param_read_buf,
3827 u32 param_size)
3828 {
3829 /*
3830 * Unit descriptors are only available for general purpose LUs (LUN id
3831 * from 0 to 7) and RPMB Well known LU.
3832 */
3833 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3834 return -EOPNOTSUPP;
3835
3836 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3837 param_offset, param_read_buf, param_size);
3838 }
3839
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3840 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3841 {
3842 int err = 0;
3843 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3844
3845 if (hba->dev_info.wspecversion >= 0x300) {
3846 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3847 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3848 &gating_wait);
3849 if (err)
3850 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3851 err, gating_wait);
3852
3853 if (gating_wait == 0) {
3854 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3855 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3856 gating_wait);
3857 }
3858
3859 hba->dev_info.clk_gating_wait_us = gating_wait;
3860 }
3861
3862 return err;
3863 }
3864
3865 /**
3866 * ufshcd_memory_alloc - allocate memory for host memory space data structures
3867 * @hba: per adapter instance
3868 *
3869 * 1. Allocate DMA memory for Command Descriptor array
3870 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3871 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3872 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3873 * (UTMRDL)
3874 * 4. Allocate memory for local reference block(lrb).
3875 *
3876 * Return: 0 for success, non-zero in case of failure.
3877 */
ufshcd_memory_alloc(struct ufs_hba * hba)3878 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3879 {
3880 size_t utmrdl_size, utrdl_size, ucdl_size;
3881
3882 /* Allocate memory for UTP command descriptors */
3883 ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3884 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3885 ucdl_size,
3886 &hba->ucdl_dma_addr,
3887 GFP_KERNEL);
3888
3889 /*
3890 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3891 */
3892 if (!hba->ucdl_base_addr ||
3893 WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3894 dev_err(hba->dev,
3895 "Command Descriptor Memory allocation failed\n");
3896 goto out;
3897 }
3898
3899 /*
3900 * Allocate memory for UTP Transfer descriptors
3901 * UFSHCI requires 1KB alignment of UTRD
3902 */
3903 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3904 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3905 utrdl_size,
3906 &hba->utrdl_dma_addr,
3907 GFP_KERNEL);
3908 if (!hba->utrdl_base_addr ||
3909 WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3910 dev_err(hba->dev,
3911 "Transfer Descriptor Memory allocation failed\n");
3912 goto out;
3913 }
3914
3915 /*
3916 * Skip utmrdl allocation; it may have been
3917 * allocated during first pass and not released during
3918 * MCQ memory allocation.
3919 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3920 */
3921 if (hba->utmrdl_base_addr)
3922 goto skip_utmrdl;
3923 /*
3924 * Allocate memory for UTP Task Management descriptors
3925 * UFSHCI requires 1KB alignment of UTMRD
3926 */
3927 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3928 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3929 utmrdl_size,
3930 &hba->utmrdl_dma_addr,
3931 GFP_KERNEL);
3932 if (!hba->utmrdl_base_addr ||
3933 WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3934 dev_err(hba->dev,
3935 "Task Management Descriptor Memory allocation failed\n");
3936 goto out;
3937 }
3938
3939 skip_utmrdl:
3940 /* Allocate memory for local reference block */
3941 hba->lrb = devm_kcalloc(hba->dev,
3942 hba->nutrs, sizeof(struct ufshcd_lrb),
3943 GFP_KERNEL);
3944 if (!hba->lrb) {
3945 dev_err(hba->dev, "LRB Memory allocation failed\n");
3946 goto out;
3947 }
3948 return 0;
3949 out:
3950 return -ENOMEM;
3951 }
3952
3953 /**
3954 * ufshcd_host_memory_configure - configure local reference block with
3955 * memory offsets
3956 * @hba: per adapter instance
3957 *
3958 * Configure Host memory space
3959 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3960 * address.
3961 * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3962 * and PRDT offset.
3963 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3964 * into local reference block.
3965 */
ufshcd_host_memory_configure(struct ufs_hba * hba)3966 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3967 {
3968 struct utp_transfer_req_desc *utrdlp;
3969 dma_addr_t cmd_desc_dma_addr;
3970 dma_addr_t cmd_desc_element_addr;
3971 u16 response_offset;
3972 u16 prdt_offset;
3973 int cmd_desc_size;
3974 int i;
3975
3976 utrdlp = hba->utrdl_base_addr;
3977
3978 response_offset =
3979 offsetof(struct utp_transfer_cmd_desc, response_upiu);
3980 prdt_offset =
3981 offsetof(struct utp_transfer_cmd_desc, prd_table);
3982
3983 cmd_desc_size = ufshcd_get_ucd_size(hba);
3984 cmd_desc_dma_addr = hba->ucdl_dma_addr;
3985
3986 for (i = 0; i < hba->nutrs; i++) {
3987 /* Configure UTRD with command descriptor base address */
3988 cmd_desc_element_addr =
3989 (cmd_desc_dma_addr + (cmd_desc_size * i));
3990 utrdlp[i].command_desc_base_addr =
3991 cpu_to_le64(cmd_desc_element_addr);
3992
3993 /* Response upiu and prdt offset should be in double words */
3994 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3995 utrdlp[i].response_upiu_offset =
3996 cpu_to_le16(response_offset);
3997 utrdlp[i].prd_table_offset =
3998 cpu_to_le16(prdt_offset);
3999 utrdlp[i].response_upiu_length =
4000 cpu_to_le16(ALIGNED_UPIU_SIZE);
4001 } else {
4002 utrdlp[i].response_upiu_offset =
4003 cpu_to_le16(response_offset >> 2);
4004 utrdlp[i].prd_table_offset =
4005 cpu_to_le16(prdt_offset >> 2);
4006 utrdlp[i].response_upiu_length =
4007 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
4008 }
4009
4010 ufshcd_init_lrb(hba, &hba->lrb[i], i);
4011 }
4012 }
4013
4014 /**
4015 * ufshcd_dme_link_startup - Notify Unipro to perform link startup
4016 * @hba: per adapter instance
4017 *
4018 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
4019 * in order to initialize the Unipro link startup procedure.
4020 * Once the Unipro links are up, the device connected to the controller
4021 * is detected.
4022 *
4023 * Return: 0 on success, non-zero value on failure.
4024 */
ufshcd_dme_link_startup(struct ufs_hba * hba)4025 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
4026 {
4027 struct uic_command uic_cmd = {
4028 .command = UIC_CMD_DME_LINK_STARTUP,
4029 };
4030 int ret;
4031
4032 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4033 if (ret)
4034 dev_dbg(hba->dev,
4035 "dme-link-startup: error code %d\n", ret);
4036 return ret;
4037 }
4038 /**
4039 * ufshcd_dme_reset - UIC command for DME_RESET
4040 * @hba: per adapter instance
4041 *
4042 * DME_RESET command is issued in order to reset UniPro stack.
4043 * This function now deals with cold reset.
4044 *
4045 * Return: 0 on success, non-zero value on failure.
4046 */
ufshcd_dme_reset(struct ufs_hba * hba)4047 int ufshcd_dme_reset(struct ufs_hba *hba)
4048 {
4049 struct uic_command uic_cmd = {
4050 .command = UIC_CMD_DME_RESET,
4051 };
4052 int ret;
4053
4054 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4055 if (ret)
4056 dev_err(hba->dev,
4057 "dme-reset: error code %d\n", ret);
4058
4059 return ret;
4060 }
4061 EXPORT_SYMBOL_GPL(ufshcd_dme_reset);
4062
ufshcd_dme_configure_adapt(struct ufs_hba * hba,int agreed_gear,int adapt_val)4063 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4064 int agreed_gear,
4065 int adapt_val)
4066 {
4067 int ret;
4068
4069 if (agreed_gear < UFS_HS_G4)
4070 adapt_val = PA_NO_ADAPT;
4071
4072 ret = ufshcd_dme_set(hba,
4073 UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4074 adapt_val);
4075 return ret;
4076 }
4077 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4078
4079 /**
4080 * ufshcd_dme_enable - UIC command for DME_ENABLE
4081 * @hba: per adapter instance
4082 *
4083 * DME_ENABLE command is issued in order to enable UniPro stack.
4084 *
4085 * Return: 0 on success, non-zero value on failure.
4086 */
ufshcd_dme_enable(struct ufs_hba * hba)4087 int ufshcd_dme_enable(struct ufs_hba *hba)
4088 {
4089 struct uic_command uic_cmd = {
4090 .command = UIC_CMD_DME_ENABLE,
4091 };
4092 int ret;
4093
4094 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4095 if (ret)
4096 dev_err(hba->dev,
4097 "dme-enable: error code %d\n", ret);
4098
4099 return ret;
4100 }
4101 EXPORT_SYMBOL_GPL(ufshcd_dme_enable);
4102
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)4103 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4104 {
4105 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000
4106 unsigned long min_sleep_time_us;
4107
4108 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4109 return;
4110
4111 /*
4112 * last_dme_cmd_tstamp will be 0 only for 1st call to
4113 * this function
4114 */
4115 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4116 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4117 } else {
4118 unsigned long delta =
4119 (unsigned long) ktime_to_us(
4120 ktime_sub(ktime_get(),
4121 hba->last_dme_cmd_tstamp));
4122
4123 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4124 min_sleep_time_us =
4125 MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4126 else
4127 min_sleep_time_us = 0; /* no more delay required */
4128 }
4129
4130 if (min_sleep_time_us > 0) {
4131 /* allow sleep for extra 50us if needed */
4132 usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4133 }
4134
4135 /* update the last_dme_cmd_tstamp */
4136 hba->last_dme_cmd_tstamp = ktime_get();
4137 }
4138
4139 /**
4140 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4141 * @hba: per adapter instance
4142 * @attr_sel: uic command argument1
4143 * @attr_set: attribute set type as uic command argument2
4144 * @mib_val: setting value as uic command argument3
4145 * @peer: indicate whether peer or local
4146 *
4147 * Return: 0 on success, non-zero value on failure.
4148 */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)4149 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4150 u8 attr_set, u32 mib_val, u8 peer)
4151 {
4152 struct uic_command uic_cmd = {
4153 .command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET,
4154 .argument1 = attr_sel,
4155 .argument2 = UIC_ARG_ATTR_TYPE(attr_set),
4156 .argument3 = mib_val,
4157 };
4158 static const char *const action[] = {
4159 "dme-set",
4160 "dme-peer-set"
4161 };
4162 const char *set = action[!!peer];
4163 int ret;
4164 int retries = UFS_UIC_COMMAND_RETRIES;
4165
4166 do {
4167 /* for peer attributes we retry upon failure */
4168 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4169 if (ret)
4170 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4171 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4172 } while (ret && peer && --retries);
4173
4174 if (ret)
4175 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4176 set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4177 UFS_UIC_COMMAND_RETRIES - retries);
4178
4179 return ret;
4180 }
4181 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4182
4183 /**
4184 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4185 * @hba: per adapter instance
4186 * @attr_sel: uic command argument1
4187 * @mib_val: the value of the attribute as returned by the UIC command
4188 * @peer: indicate whether peer or local
4189 *
4190 * Return: 0 on success, non-zero value on failure.
4191 */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)4192 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4193 u32 *mib_val, u8 peer)
4194 {
4195 struct uic_command uic_cmd = {
4196 .command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET,
4197 .argument1 = attr_sel,
4198 };
4199 static const char *const action[] = {
4200 "dme-get",
4201 "dme-peer-get"
4202 };
4203 const char *get = action[!!peer];
4204 int ret;
4205 int retries = UFS_UIC_COMMAND_RETRIES;
4206 struct ufs_pa_layer_attr orig_pwr_info;
4207 struct ufs_pa_layer_attr temp_pwr_info;
4208 bool pwr_mode_change = false;
4209
4210 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4211 orig_pwr_info = hba->pwr_info;
4212 temp_pwr_info = orig_pwr_info;
4213
4214 if (orig_pwr_info.pwr_tx == FAST_MODE ||
4215 orig_pwr_info.pwr_rx == FAST_MODE) {
4216 temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4217 temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4218 pwr_mode_change = true;
4219 } else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4220 orig_pwr_info.pwr_rx == SLOW_MODE) {
4221 temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4222 temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4223 pwr_mode_change = true;
4224 }
4225 if (pwr_mode_change) {
4226 ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4227 if (ret)
4228 goto out;
4229 }
4230 }
4231
4232 do {
4233 /* for peer attributes we retry upon failure */
4234 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4235 if (ret)
4236 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4237 get, UIC_GET_ATTR_ID(attr_sel), ret);
4238 } while (ret && peer && --retries);
4239
4240 if (ret)
4241 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4242 get, UIC_GET_ATTR_ID(attr_sel),
4243 UFS_UIC_COMMAND_RETRIES - retries);
4244
4245 if (mib_val && !ret)
4246 *mib_val = uic_cmd.argument3;
4247
4248 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4249 && pwr_mode_change)
4250 ufshcd_change_power_mode(hba, &orig_pwr_info);
4251 out:
4252 return ret;
4253 }
4254 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4255
4256 /**
4257 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4258 * state) and waits for it to take effect.
4259 *
4260 * @hba: per adapter instance
4261 * @cmd: UIC command to execute
4262 *
4263 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4264 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4265 * and device UniPro link and hence it's final completion would be indicated by
4266 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4267 * addition to normal UIC command completion Status (UCCS). This function only
4268 * returns after the relevant status bits indicate the completion.
4269 *
4270 * Return: 0 on success, non-zero value on failure.
4271 */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)4272 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4273 {
4274 DECLARE_COMPLETION_ONSTACK(uic_async_done);
4275 unsigned long flags;
4276 u8 status;
4277 int ret;
4278 bool reenable_intr = false;
4279
4280 mutex_lock(&hba->uic_cmd_mutex);
4281 ufshcd_add_delay_before_dme_cmd(hba);
4282
4283 spin_lock_irqsave(hba->host->host_lock, flags);
4284 if (ufshcd_is_link_broken(hba)) {
4285 ret = -ENOLINK;
4286 goto out_unlock;
4287 }
4288 hba->uic_async_done = &uic_async_done;
4289 if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4290 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4291 /*
4292 * Make sure UIC command completion interrupt is disabled before
4293 * issuing UIC command.
4294 */
4295 ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
4296 reenable_intr = true;
4297 }
4298 spin_unlock_irqrestore(hba->host->host_lock, flags);
4299 ret = __ufshcd_send_uic_cmd(hba, cmd);
4300 if (ret) {
4301 dev_err(hba->dev,
4302 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4303 cmd->command, cmd->argument3, ret);
4304 goto out;
4305 }
4306
4307 if (!wait_for_completion_timeout(hba->uic_async_done,
4308 msecs_to_jiffies(uic_cmd_timeout))) {
4309 dev_err(hba->dev,
4310 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4311 cmd->command, cmd->argument3);
4312
4313 if (!cmd->cmd_active) {
4314 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4315 __func__);
4316 goto check_upmcrs;
4317 }
4318
4319 ret = -ETIMEDOUT;
4320 goto out;
4321 }
4322
4323 check_upmcrs:
4324 status = ufshcd_get_upmcrs(hba);
4325 if (status != PWR_LOCAL) {
4326 dev_err(hba->dev,
4327 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4328 cmd->command, status);
4329 ret = (status != PWR_OK) ? status : -1;
4330 }
4331 out:
4332 if (ret) {
4333 ufshcd_print_host_state(hba);
4334 ufshcd_print_pwr_info(hba);
4335 ufshcd_print_evt_hist(hba);
4336 }
4337
4338 spin_lock_irqsave(hba->host->host_lock, flags);
4339 hba->active_uic_cmd = NULL;
4340 hba->uic_async_done = NULL;
4341 if (reenable_intr)
4342 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4343 if (ret) {
4344 ufshcd_set_link_broken(hba);
4345 ufshcd_schedule_eh_work(hba);
4346 }
4347 out_unlock:
4348 spin_unlock_irqrestore(hba->host->host_lock, flags);
4349 mutex_unlock(&hba->uic_cmd_mutex);
4350
4351 return ret;
4352 }
4353
4354 /**
4355 * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result
4356 * @hba: per adapter instance
4357 * @uic_cmd: UIC command
4358 *
4359 * Return: 0 only if success.
4360 */
ufshcd_send_bsg_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)4361 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
4362 {
4363 int ret;
4364
4365 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
4366 return 0;
4367
4368 ufshcd_hold(hba);
4369
4370 if (uic_cmd->argument1 == UIC_ARG_MIB(PA_PWRMODE) &&
4371 uic_cmd->command == UIC_CMD_DME_SET) {
4372 ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd);
4373 goto out;
4374 }
4375
4376 mutex_lock(&hba->uic_cmd_mutex);
4377 ufshcd_add_delay_before_dme_cmd(hba);
4378
4379 ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
4380 if (!ret)
4381 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
4382
4383 mutex_unlock(&hba->uic_cmd_mutex);
4384
4385 out:
4386 ufshcd_release(hba);
4387 return ret;
4388 }
4389
4390 /**
4391 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4392 * using DME_SET primitives.
4393 * @hba: per adapter instance
4394 * @mode: powr mode value
4395 *
4396 * Return: 0 on success, non-zero value on failure.
4397 */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4398 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4399 {
4400 struct uic_command uic_cmd = {
4401 .command = UIC_CMD_DME_SET,
4402 .argument1 = UIC_ARG_MIB(PA_PWRMODE),
4403 .argument3 = mode,
4404 };
4405 int ret;
4406
4407 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4408 ret = ufshcd_dme_set(hba,
4409 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4410 if (ret) {
4411 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4412 __func__, ret);
4413 goto out;
4414 }
4415 }
4416
4417 ufshcd_hold(hba);
4418 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4419 ufshcd_release(hba);
4420
4421 out:
4422 return ret;
4423 }
4424 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4425
ufshcd_link_recovery(struct ufs_hba * hba)4426 int ufshcd_link_recovery(struct ufs_hba *hba)
4427 {
4428 int ret;
4429 unsigned long flags;
4430
4431 spin_lock_irqsave(hba->host->host_lock, flags);
4432 hba->ufshcd_state = UFSHCD_STATE_RESET;
4433 ufshcd_set_eh_in_progress(hba);
4434 spin_unlock_irqrestore(hba->host->host_lock, flags);
4435
4436 /* Reset the attached device */
4437 ufshcd_device_reset(hba);
4438
4439 ret = ufshcd_host_reset_and_restore(hba);
4440
4441 spin_lock_irqsave(hba->host->host_lock, flags);
4442 if (ret)
4443 hba->ufshcd_state = UFSHCD_STATE_ERROR;
4444 ufshcd_clear_eh_in_progress(hba);
4445 spin_unlock_irqrestore(hba->host->host_lock, flags);
4446
4447 if (ret)
4448 dev_err(hba->dev, "%s: link recovery failed, err %d",
4449 __func__, ret);
4450
4451 return ret;
4452 }
4453 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4454
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4455 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4456 {
4457 struct uic_command uic_cmd = {
4458 .command = UIC_CMD_DME_HIBER_ENTER,
4459 };
4460 ktime_t start = ktime_get();
4461 int ret;
4462
4463 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4464
4465 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4466 trace_ufshcd_profile_hibern8(hba, "enter",
4467 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4468
4469 if (ret)
4470 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4471 __func__, ret);
4472 else
4473 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4474 POST_CHANGE);
4475
4476 return ret;
4477 }
4478 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4479
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4480 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4481 {
4482 struct uic_command uic_cmd = {
4483 .command = UIC_CMD_DME_HIBER_EXIT,
4484 };
4485 int ret;
4486 ktime_t start = ktime_get();
4487
4488 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4489
4490 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4491 trace_ufshcd_profile_hibern8(hba, "exit",
4492 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4493
4494 if (ret) {
4495 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4496 __func__, ret);
4497 } else {
4498 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4499 POST_CHANGE);
4500 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4501 hba->ufs_stats.hibern8_exit_cnt++;
4502 }
4503
4504 return ret;
4505 }
4506 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4507
ufshcd_configure_auto_hibern8(struct ufs_hba * hba)4508 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4509 {
4510 if (!ufshcd_is_auto_hibern8_supported(hba))
4511 return;
4512
4513 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4514 }
4515
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4516 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4517 {
4518 const u32 cur_ahit = READ_ONCE(hba->ahit);
4519
4520 if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4521 return;
4522
4523 WRITE_ONCE(hba->ahit, ahit);
4524 if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4525 ufshcd_rpm_get_sync(hba);
4526 ufshcd_hold(hba);
4527 ufshcd_configure_auto_hibern8(hba);
4528 ufshcd_release(hba);
4529 ufshcd_rpm_put_sync(hba);
4530 }
4531 }
4532 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4533
4534 /**
4535 * ufshcd_init_pwr_info - setting the POR (power on reset)
4536 * values in hba power info
4537 * @hba: per-adapter instance
4538 */
ufshcd_init_pwr_info(struct ufs_hba * hba)4539 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4540 {
4541 hba->pwr_info.gear_rx = UFS_PWM_G1;
4542 hba->pwr_info.gear_tx = UFS_PWM_G1;
4543 hba->pwr_info.lane_rx = UFS_LANE_1;
4544 hba->pwr_info.lane_tx = UFS_LANE_1;
4545 hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4546 hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4547 hba->pwr_info.hs_rate = 0;
4548 }
4549
4550 /**
4551 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4552 * @hba: per-adapter instance
4553 *
4554 * Return: 0 upon success; < 0 upon failure.
4555 */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4556 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4557 {
4558 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4559
4560 if (hba->max_pwr_info.is_valid)
4561 return 0;
4562
4563 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4564 pwr_info->pwr_tx = FASTAUTO_MODE;
4565 pwr_info->pwr_rx = FASTAUTO_MODE;
4566 } else {
4567 pwr_info->pwr_tx = FAST_MODE;
4568 pwr_info->pwr_rx = FAST_MODE;
4569 }
4570 pwr_info->hs_rate = PA_HS_MODE_B;
4571
4572 /* Get the connected lane count */
4573 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4574 &pwr_info->lane_rx);
4575 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4576 &pwr_info->lane_tx);
4577
4578 if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4579 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4580 __func__,
4581 pwr_info->lane_rx,
4582 pwr_info->lane_tx);
4583 return -EINVAL;
4584 }
4585
4586 if (pwr_info->lane_rx != pwr_info->lane_tx) {
4587 dev_err(hba->dev, "%s: asymmetric connected lanes. rx=%d, tx=%d\n",
4588 __func__,
4589 pwr_info->lane_rx,
4590 pwr_info->lane_tx);
4591 return -EINVAL;
4592 }
4593
4594 /*
4595 * First, get the maximum gears of HS speed.
4596 * If a zero value, it means there is no HSGEAR capability.
4597 * Then, get the maximum gears of PWM speed.
4598 */
4599 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4600 if (!pwr_info->gear_rx) {
4601 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4602 &pwr_info->gear_rx);
4603 if (!pwr_info->gear_rx) {
4604 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4605 __func__, pwr_info->gear_rx);
4606 return -EINVAL;
4607 }
4608 pwr_info->pwr_rx = SLOW_MODE;
4609 }
4610
4611 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4612 &pwr_info->gear_tx);
4613 if (!pwr_info->gear_tx) {
4614 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4615 &pwr_info->gear_tx);
4616 if (!pwr_info->gear_tx) {
4617 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4618 __func__, pwr_info->gear_tx);
4619 return -EINVAL;
4620 }
4621 pwr_info->pwr_tx = SLOW_MODE;
4622 }
4623
4624 hba->max_pwr_info.is_valid = true;
4625 return 0;
4626 }
4627
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4628 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4629 struct ufs_pa_layer_attr *pwr_mode)
4630 {
4631 int ret;
4632
4633 /* if already configured to the requested pwr_mode */
4634 if (!hba->force_pmc &&
4635 pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4636 pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4637 pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4638 pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4639 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4640 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4641 pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4642 dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4643 return 0;
4644 }
4645
4646 /*
4647 * Configure attributes for power mode change with below.
4648 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4649 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4650 * - PA_HSSERIES
4651 */
4652 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4653 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4654 pwr_mode->lane_rx);
4655 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4656 pwr_mode->pwr_rx == FAST_MODE)
4657 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4658 else
4659 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4660
4661 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4662 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4663 pwr_mode->lane_tx);
4664 if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4665 pwr_mode->pwr_tx == FAST_MODE)
4666 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4667 else
4668 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4669
4670 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4671 pwr_mode->pwr_tx == FASTAUTO_MODE ||
4672 pwr_mode->pwr_rx == FAST_MODE ||
4673 pwr_mode->pwr_tx == FAST_MODE)
4674 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4675 pwr_mode->hs_rate);
4676
4677 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4678 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4679 DL_FC0ProtectionTimeOutVal_Default);
4680 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4681 DL_TC0ReplayTimeOutVal_Default);
4682 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4683 DL_AFC0ReqTimeOutVal_Default);
4684 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4685 DL_FC1ProtectionTimeOutVal_Default);
4686 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4687 DL_TC1ReplayTimeOutVal_Default);
4688 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4689 DL_AFC1ReqTimeOutVal_Default);
4690
4691 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4692 DL_FC0ProtectionTimeOutVal_Default);
4693 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4694 DL_TC0ReplayTimeOutVal_Default);
4695 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4696 DL_AFC0ReqTimeOutVal_Default);
4697 }
4698
4699 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4700 | pwr_mode->pwr_tx);
4701
4702 if (ret) {
4703 dev_err(hba->dev,
4704 "%s: power mode change failed %d\n", __func__, ret);
4705 } else {
4706 memcpy(&hba->pwr_info, pwr_mode,
4707 sizeof(struct ufs_pa_layer_attr));
4708 }
4709
4710 return ret;
4711 }
4712
4713 /**
4714 * ufshcd_config_pwr_mode - configure a new power mode
4715 * @hba: per-adapter instance
4716 * @desired_pwr_mode: desired power configuration
4717 *
4718 * Return: 0 upon success; < 0 upon failure.
4719 */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4720 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4721 struct ufs_pa_layer_attr *desired_pwr_mode)
4722 {
4723 struct ufs_pa_layer_attr final_params = { 0 };
4724 int ret;
4725
4726 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4727 desired_pwr_mode, &final_params);
4728
4729 if (ret)
4730 memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4731
4732 ret = ufshcd_change_power_mode(hba, &final_params);
4733
4734 if (!ret)
4735 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4736 &final_params);
4737
4738 return ret;
4739 }
4740 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4741
4742 /**
4743 * ufshcd_complete_dev_init() - checks device readiness
4744 * @hba: per-adapter instance
4745 *
4746 * Set fDeviceInit flag and poll until device toggles it.
4747 *
4748 * Return: 0 upon success; < 0 upon failure.
4749 */
ufshcd_complete_dev_init(struct ufs_hba * hba)4750 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4751 {
4752 int err;
4753 bool flag_res = true;
4754 ktime_t timeout;
4755
4756 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4757 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4758 if (err) {
4759 dev_err(hba->dev,
4760 "%s: setting fDeviceInit flag failed with error %d\n",
4761 __func__, err);
4762 goto out;
4763 }
4764
4765 /* Poll fDeviceInit flag to be cleared */
4766 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4767 do {
4768 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4769 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4770 if (!flag_res)
4771 break;
4772 usleep_range(500, 1000);
4773 } while (ktime_before(ktime_get(), timeout));
4774
4775 if (err) {
4776 dev_err(hba->dev,
4777 "%s: reading fDeviceInit flag failed with error %d\n",
4778 __func__, err);
4779 } else if (flag_res) {
4780 dev_err(hba->dev,
4781 "%s: fDeviceInit was not cleared by the device\n",
4782 __func__);
4783 err = -EBUSY;
4784 }
4785 out:
4786 return err;
4787 }
4788
4789 /**
4790 * ufshcd_make_hba_operational - Make UFS controller operational
4791 * @hba: per adapter instance
4792 *
4793 * To bring UFS host controller to operational state,
4794 * 1. Enable required interrupts
4795 * 2. Configure interrupt aggregation
4796 * 3. Program UTRL and UTMRL base address
4797 * 4. Configure run-stop-registers
4798 *
4799 * Return: 0 on success, non-zero value on failure.
4800 */
ufshcd_make_hba_operational(struct ufs_hba * hba)4801 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4802 {
4803 int err = 0;
4804 u32 reg;
4805
4806 /* Enable required interrupts */
4807 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4808
4809 /* Configure interrupt aggregation */
4810 if (ufshcd_is_intr_aggr_allowed(hba))
4811 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4812 else
4813 ufshcd_disable_intr_aggr(hba);
4814
4815 /* Configure UTRL and UTMRL base address registers */
4816 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4817 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4818 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4819 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4820 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4821 REG_UTP_TASK_REQ_LIST_BASE_L);
4822 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4823 REG_UTP_TASK_REQ_LIST_BASE_H);
4824
4825 /*
4826 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4827 */
4828 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4829 if (!(ufshcd_get_lists_status(reg))) {
4830 ufshcd_enable_run_stop_reg(hba);
4831 } else {
4832 dev_err(hba->dev,
4833 "Host controller not ready to process requests");
4834 err = -EIO;
4835 }
4836
4837 return err;
4838 }
4839 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4840
4841 /**
4842 * ufshcd_hba_stop - Send controller to reset state
4843 * @hba: per adapter instance
4844 */
ufshcd_hba_stop(struct ufs_hba * hba)4845 void ufshcd_hba_stop(struct ufs_hba *hba)
4846 {
4847 int err;
4848
4849 ufshcd_disable_irq(hba);
4850 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE);
4851 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4852 CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4853 10, 1);
4854 ufshcd_enable_irq(hba);
4855 if (err)
4856 dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4857 }
4858 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4859
4860 /**
4861 * ufshcd_hba_execute_hce - initialize the controller
4862 * @hba: per adapter instance
4863 *
4864 * The controller resets itself and controller firmware initialization
4865 * sequence kicks off. When controller is ready it will set
4866 * the Host Controller Enable bit to 1.
4867 *
4868 * Return: 0 on success, non-zero value on failure.
4869 */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4870 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4871 {
4872 int retry;
4873
4874 for (retry = 3; retry > 0; retry--) {
4875 if (ufshcd_is_hba_active(hba))
4876 /* change controller state to "reset state" */
4877 ufshcd_hba_stop(hba);
4878
4879 /* UniPro link is disabled at this point */
4880 ufshcd_set_link_off(hba);
4881
4882 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4883
4884 /* start controller initialization sequence */
4885 ufshcd_hba_start(hba);
4886
4887 /*
4888 * To initialize a UFS host controller HCE bit must be set to 1.
4889 * During initialization the HCE bit value changes from 1->0->1.
4890 * When the host controller completes initialization sequence
4891 * it sets the value of HCE bit to 1. The same HCE bit is read back
4892 * to check if the controller has completed initialization sequence.
4893 * So without this delay the value HCE = 1, set in the previous
4894 * instruction might be read back.
4895 * This delay can be changed based on the controller.
4896 */
4897 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4898
4899 /* wait for the host controller to complete initialization */
4900 if (!ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE,
4901 CONTROLLER_ENABLE, 1000, 50))
4902 break;
4903
4904 dev_err(hba->dev, "Enabling the controller failed\n");
4905 }
4906
4907 if (!retry)
4908 return -EIO;
4909
4910 /* enable UIC related interrupts */
4911 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4912
4913 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4914
4915 return 0;
4916 }
4917
ufshcd_hba_enable(struct ufs_hba * hba)4918 int ufshcd_hba_enable(struct ufs_hba *hba)
4919 {
4920 int ret;
4921
4922 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4923 ufshcd_set_link_off(hba);
4924 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4925
4926 /* enable UIC related interrupts */
4927 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4928 ret = ufshcd_dme_reset(hba);
4929 if (ret) {
4930 dev_err(hba->dev, "DME_RESET failed\n");
4931 return ret;
4932 }
4933
4934 ret = ufshcd_dme_enable(hba);
4935 if (ret) {
4936 dev_err(hba->dev, "Enabling DME failed\n");
4937 return ret;
4938 }
4939
4940 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4941 } else {
4942 ret = ufshcd_hba_execute_hce(hba);
4943 }
4944
4945 return ret;
4946 }
4947 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4948
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4949 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4950 {
4951 int tx_lanes = 0, i, err = 0;
4952
4953 if (!peer)
4954 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4955 &tx_lanes);
4956 else
4957 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4958 &tx_lanes);
4959 for (i = 0; i < tx_lanes; i++) {
4960 if (!peer)
4961 err = ufshcd_dme_set(hba,
4962 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4963 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4964 0);
4965 else
4966 err = ufshcd_dme_peer_set(hba,
4967 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4968 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4969 0);
4970 if (err) {
4971 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4972 __func__, peer, i, err);
4973 break;
4974 }
4975 }
4976
4977 return err;
4978 }
4979
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4980 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4981 {
4982 return ufshcd_disable_tx_lcc(hba, true);
4983 }
4984
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)4985 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4986 {
4987 struct ufs_event_hist *e;
4988
4989 if (id >= UFS_EVT_CNT)
4990 return;
4991
4992 e = &hba->ufs_stats.event[id];
4993 e->val[e->pos] = val;
4994 e->tstamp[e->pos] = local_clock();
4995 e->cnt += 1;
4996 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4997
4998 ufshcd_vops_event_notify(hba, id, &val);
4999 }
5000 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
5001
5002 /**
5003 * ufshcd_link_startup - Initialize unipro link startup
5004 * @hba: per adapter instance
5005 *
5006 * Return: 0 for success, non-zero in case of failure.
5007 */
ufshcd_link_startup(struct ufs_hba * hba)5008 static int ufshcd_link_startup(struct ufs_hba *hba)
5009 {
5010 int ret;
5011 int retries = DME_LINKSTARTUP_RETRIES;
5012 bool link_startup_again = false;
5013
5014 /*
5015 * If UFS device isn't active then we will have to issue link startup
5016 * 2 times to make sure the device state move to active.
5017 */
5018 if (!ufshcd_is_ufs_dev_active(hba))
5019 link_startup_again = true;
5020
5021 link_startup:
5022 do {
5023 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
5024
5025 ret = ufshcd_dme_link_startup(hba);
5026
5027 /* check if device is detected by inter-connect layer */
5028 if (!ret && !ufshcd_is_device_present(hba)) {
5029 ufshcd_update_evt_hist(hba,
5030 UFS_EVT_LINK_STARTUP_FAIL,
5031 0);
5032 dev_err(hba->dev, "%s: Device not present\n", __func__);
5033 ret = -ENXIO;
5034 goto out;
5035 }
5036
5037 /*
5038 * DME link lost indication is only received when link is up,
5039 * but we can't be sure if the link is up until link startup
5040 * succeeds. So reset the local Uni-Pro and try again.
5041 */
5042 if (ret && retries && ufshcd_hba_enable(hba)) {
5043 ufshcd_update_evt_hist(hba,
5044 UFS_EVT_LINK_STARTUP_FAIL,
5045 (u32)ret);
5046 goto out;
5047 }
5048 } while (ret && retries--);
5049
5050 if (ret) {
5051 /* failed to get the link up... retire */
5052 ufshcd_update_evt_hist(hba,
5053 UFS_EVT_LINK_STARTUP_FAIL,
5054 (u32)ret);
5055 goto out;
5056 }
5057
5058 if (link_startup_again) {
5059 link_startup_again = false;
5060 retries = DME_LINKSTARTUP_RETRIES;
5061 goto link_startup;
5062 }
5063
5064 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5065 ufshcd_init_pwr_info(hba);
5066 ufshcd_print_pwr_info(hba);
5067
5068 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5069 ret = ufshcd_disable_device_tx_lcc(hba);
5070 if (ret)
5071 goto out;
5072 }
5073
5074 /* Include any host controller configuration via UIC commands */
5075 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5076 if (ret)
5077 goto out;
5078
5079 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5080 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5081 ret = ufshcd_make_hba_operational(hba);
5082 out:
5083 if (ret) {
5084 dev_err(hba->dev, "link startup failed %d\n", ret);
5085 ufshcd_print_host_state(hba);
5086 ufshcd_print_pwr_info(hba);
5087 ufshcd_print_evt_hist(hba);
5088 }
5089 return ret;
5090 }
5091
5092 /**
5093 * ufshcd_verify_dev_init() - Verify device initialization
5094 * @hba: per-adapter instance
5095 *
5096 * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5097 * device Transport Protocol (UTP) layer is ready after a reset.
5098 * If the UTP layer at the device side is not initialized, it may
5099 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5100 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5101 *
5102 * Return: 0 upon success; < 0 upon failure.
5103 */
ufshcd_verify_dev_init(struct ufs_hba * hba)5104 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5105 {
5106 int err = 0;
5107 int retries;
5108
5109 ufshcd_dev_man_lock(hba);
5110
5111 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5112 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5113 hba->nop_out_timeout);
5114
5115 if (!err || err == -ETIMEDOUT)
5116 break;
5117
5118 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5119 }
5120
5121 ufshcd_dev_man_unlock(hba);
5122
5123 if (err)
5124 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5125 return err;
5126 }
5127
5128 /**
5129 * ufshcd_setup_links - associate link b/w device wlun and other luns
5130 * @sdev: pointer to SCSI device
5131 * @hba: pointer to ufs hba
5132 */
ufshcd_setup_links(struct ufs_hba * hba,struct scsi_device * sdev)5133 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5134 {
5135 struct device_link *link;
5136
5137 /*
5138 * Device wlun is the supplier & rest of the luns are consumers.
5139 * This ensures that device wlun suspends after all other luns.
5140 */
5141 if (hba->ufs_device_wlun) {
5142 link = device_link_add(&sdev->sdev_gendev,
5143 &hba->ufs_device_wlun->sdev_gendev,
5144 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5145 if (!link) {
5146 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5147 dev_name(&hba->ufs_device_wlun->sdev_gendev));
5148 return;
5149 }
5150 hba->luns_avail--;
5151 /* Ignore REPORT_LUN wlun probing */
5152 if (hba->luns_avail == 1) {
5153 ufshcd_rpm_put(hba);
5154 return;
5155 }
5156 } else {
5157 /*
5158 * Device wlun is probed. The assumption is that WLUNs are
5159 * scanned before other LUNs.
5160 */
5161 hba->luns_avail--;
5162 }
5163 }
5164
5165 /**
5166 * ufshcd_lu_init - Initialize the relevant parameters of the LU
5167 * @hba: per-adapter instance
5168 * @sdev: pointer to SCSI device
5169 */
ufshcd_lu_init(struct ufs_hba * hba,struct scsi_device * sdev)5170 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5171 {
5172 int len = QUERY_DESC_MAX_SIZE;
5173 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5174 u8 lun_qdepth = hba->nutrs;
5175 u8 *desc_buf;
5176 int ret;
5177
5178 desc_buf = kzalloc(len, GFP_KERNEL);
5179 if (!desc_buf)
5180 goto set_qdepth;
5181
5182 ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5183 if (ret < 0) {
5184 if (ret == -EOPNOTSUPP)
5185 /* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5186 lun_qdepth = 1;
5187 kfree(desc_buf);
5188 goto set_qdepth;
5189 }
5190
5191 if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5192 /*
5193 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5194 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5195 */
5196 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5197 }
5198 /*
5199 * According to UFS device specification, the write protection mode is only supported by
5200 * normal LU, not supported by WLUN.
5201 */
5202 if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5203 !hba->dev_info.is_lu_power_on_wp &&
5204 desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5205 hba->dev_info.is_lu_power_on_wp = true;
5206
5207 /* In case of RPMB LU, check if advanced RPMB mode is enabled */
5208 if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5209 desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5210 hba->dev_info.b_advanced_rpmb_en = true;
5211
5212
5213 kfree(desc_buf);
5214 set_qdepth:
5215 /*
5216 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5217 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5218 */
5219 dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5220 scsi_change_queue_depth(sdev, lun_qdepth);
5221 }
5222
5223 /**
5224 * ufshcd_sdev_init - handle initial SCSI device configurations
5225 * @sdev: pointer to SCSI device
5226 *
5227 * Return: success.
5228 */
ufshcd_sdev_init(struct scsi_device * sdev)5229 static int ufshcd_sdev_init(struct scsi_device *sdev)
5230 {
5231 struct ufs_hba *hba;
5232
5233 hba = shost_priv(sdev->host);
5234
5235 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5236 sdev->use_10_for_ms = 1;
5237
5238 /* DBD field should be set to 1 in mode sense(10) */
5239 sdev->set_dbd_for_ms = 1;
5240
5241 /* allow SCSI layer to restart the device in case of errors */
5242 sdev->allow_restart = 1;
5243
5244 /* REPORT SUPPORTED OPERATION CODES is not supported */
5245 sdev->no_report_opcodes = 1;
5246
5247 /* WRITE_SAME command is not supported */
5248 sdev->no_write_same = 1;
5249
5250 ufshcd_lu_init(hba, sdev);
5251
5252 ufshcd_setup_links(hba, sdev);
5253
5254 return 0;
5255 }
5256
5257 /**
5258 * ufshcd_change_queue_depth - change queue depth
5259 * @sdev: pointer to SCSI device
5260 * @depth: required depth to set
5261 *
5262 * Change queue depth and make sure the max. limits are not crossed.
5263 *
5264 * Return: new queue depth.
5265 */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)5266 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5267 {
5268 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5269 }
5270
5271 /**
5272 * ufshcd_sdev_configure - adjust SCSI device configurations
5273 * @sdev: pointer to SCSI device
5274 * @lim: queue limits
5275 *
5276 * Return: 0 (success).
5277 */
ufshcd_sdev_configure(struct scsi_device * sdev,struct queue_limits * lim)5278 static int ufshcd_sdev_configure(struct scsi_device *sdev,
5279 struct queue_limits *lim)
5280 {
5281 struct ufs_hba *hba = shost_priv(sdev->host);
5282 struct request_queue *q = sdev->request_queue;
5283
5284 lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1;
5285
5286 /*
5287 * Block runtime-pm until all consumers are added.
5288 * Refer ufshcd_setup_links().
5289 */
5290 if (is_device_wlun(sdev))
5291 pm_runtime_get_noresume(&sdev->sdev_gendev);
5292 else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5293 sdev->rpm_autosuspend = 1;
5294 /*
5295 * Do not print messages during runtime PM to avoid never-ending cycles
5296 * of messages written back to storage by user space causing runtime
5297 * resume, causing more messages and so on.
5298 */
5299 sdev->silence_suspend = 1;
5300
5301 if (hba->vops && hba->vops->config_scsi_dev)
5302 hba->vops->config_scsi_dev(sdev);
5303
5304 ufshcd_crypto_register(hba, q);
5305
5306 return 0;
5307 }
5308
5309 /**
5310 * ufshcd_sdev_destroy - remove SCSI device configurations
5311 * @sdev: pointer to SCSI device
5312 */
ufshcd_sdev_destroy(struct scsi_device * sdev)5313 static void ufshcd_sdev_destroy(struct scsi_device *sdev)
5314 {
5315 struct ufs_hba *hba;
5316 unsigned long flags;
5317
5318 hba = shost_priv(sdev->host);
5319
5320 /* Drop the reference as it won't be needed anymore */
5321 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5322 spin_lock_irqsave(hba->host->host_lock, flags);
5323 hba->ufs_device_wlun = NULL;
5324 spin_unlock_irqrestore(hba->host->host_lock, flags);
5325 } else if (hba->ufs_device_wlun) {
5326 struct device *supplier = NULL;
5327
5328 /* Ensure UFS Device WLUN exists and does not disappear */
5329 spin_lock_irqsave(hba->host->host_lock, flags);
5330 if (hba->ufs_device_wlun) {
5331 supplier = &hba->ufs_device_wlun->sdev_gendev;
5332 get_device(supplier);
5333 }
5334 spin_unlock_irqrestore(hba->host->host_lock, flags);
5335
5336 if (supplier) {
5337 /*
5338 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5339 * device will not have been registered but can still
5340 * have a device link holding a reference to the device.
5341 */
5342 device_link_remove(&sdev->sdev_gendev, supplier);
5343 put_device(supplier);
5344 }
5345 }
5346 }
5347
5348 /**
5349 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5350 * @lrbp: pointer to local reference block of completed command
5351 * @scsi_status: SCSI command status
5352 *
5353 * Return: value base on SCSI command status.
5354 */
5355 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)5356 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5357 {
5358 int result = 0;
5359
5360 switch (scsi_status) {
5361 case SAM_STAT_CHECK_CONDITION:
5362 ufshcd_copy_sense_data(lrbp);
5363 fallthrough;
5364 case SAM_STAT_GOOD:
5365 result |= DID_OK << 16 | scsi_status;
5366 break;
5367 case SAM_STAT_TASK_SET_FULL:
5368 case SAM_STAT_BUSY:
5369 case SAM_STAT_TASK_ABORTED:
5370 ufshcd_copy_sense_data(lrbp);
5371 result |= scsi_status;
5372 break;
5373 default:
5374 result |= DID_ERROR << 16;
5375 break;
5376 } /* end of switch */
5377
5378 return result;
5379 }
5380
5381 /**
5382 * ufshcd_transfer_rsp_status - Get overall status of the response
5383 * @hba: per adapter instance
5384 * @lrbp: pointer to local reference block of completed command
5385 * @cqe: pointer to the completion queue entry
5386 *
5387 * Return: result of the command to notify SCSI midlayer.
5388 */
5389 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct cq_entry * cqe)5390 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5391 struct cq_entry *cqe)
5392 {
5393 int result = 0;
5394 int scsi_status;
5395 enum utp_ocs ocs;
5396 u8 upiu_flags;
5397 u32 resid;
5398
5399 upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5400 resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5401 /*
5402 * Test !overflow instead of underflow to support UFS devices that do
5403 * not set either flag.
5404 */
5405 if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5406 scsi_set_resid(lrbp->cmd, resid);
5407
5408 /* overall command status of utrd */
5409 ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5410
5411 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5412 if (lrbp->ucd_rsp_ptr->header.response ||
5413 lrbp->ucd_rsp_ptr->header.status)
5414 ocs = OCS_SUCCESS;
5415 }
5416
5417 switch (ocs) {
5418 case OCS_SUCCESS:
5419 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5420 switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5421 case UPIU_TRANSACTION_RESPONSE:
5422 /*
5423 * get the result based on SCSI status response
5424 * to notify the SCSI midlayer of the command status
5425 */
5426 scsi_status = lrbp->ucd_rsp_ptr->header.status;
5427 result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5428
5429 /*
5430 * Currently we are only supporting BKOPs exception
5431 * events hence we can ignore BKOPs exception event
5432 * during power management callbacks. BKOPs exception
5433 * event is not expected to be raised in runtime suspend
5434 * callback as it allows the urgent bkops.
5435 * During system suspend, we are anyway forcefully
5436 * disabling the bkops and if urgent bkops is needed
5437 * it will be enabled on system resume. Long term
5438 * solution could be to abort the system suspend if
5439 * UFS device needs urgent BKOPs.
5440 */
5441 if (!hba->pm_op_in_progress &&
5442 !ufshcd_eh_in_progress(hba) &&
5443 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5444 /* Flushed in suspend */
5445 schedule_work(&hba->eeh_work);
5446 break;
5447 case UPIU_TRANSACTION_REJECT_UPIU:
5448 /* TODO: handle Reject UPIU Response */
5449 result = DID_ERROR << 16;
5450 dev_err(hba->dev,
5451 "Reject UPIU not fully implemented\n");
5452 break;
5453 default:
5454 dev_err(hba->dev,
5455 "Unexpected request response code = %x\n",
5456 result);
5457 result = DID_ERROR << 16;
5458 break;
5459 }
5460 break;
5461 case OCS_ABORTED:
5462 case OCS_INVALID_COMMAND_STATUS:
5463 result |= DID_REQUEUE << 16;
5464 dev_warn(hba->dev,
5465 "OCS %s from controller for tag %d\n",
5466 (ocs == OCS_ABORTED ? "aborted" : "invalid"),
5467 lrbp->task_tag);
5468 break;
5469 case OCS_INVALID_CMD_TABLE_ATTR:
5470 case OCS_INVALID_PRDT_ATTR:
5471 case OCS_MISMATCH_DATA_BUF_SIZE:
5472 case OCS_MISMATCH_RESP_UPIU_SIZE:
5473 case OCS_PEER_COMM_FAILURE:
5474 case OCS_FATAL_ERROR:
5475 case OCS_DEVICE_FATAL_ERROR:
5476 case OCS_INVALID_CRYPTO_CONFIG:
5477 case OCS_GENERAL_CRYPTO_ERROR:
5478 default:
5479 result |= DID_ERROR << 16;
5480 dev_err(hba->dev,
5481 "OCS error from controller = %x for tag %d\n",
5482 ocs, lrbp->task_tag);
5483 ufshcd_print_evt_hist(hba);
5484 ufshcd_print_host_state(hba);
5485 break;
5486 } /* end of switch */
5487
5488 if ((host_byte(result) != DID_OK) &&
5489 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5490 ufshcd_print_tr(hba, lrbp->task_tag, true);
5491 return result;
5492 }
5493
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5494 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5495 u32 intr_mask)
5496 {
5497 if (!ufshcd_is_auto_hibern8_supported(hba) ||
5498 !ufshcd_is_auto_hibern8_enabled(hba))
5499 return false;
5500
5501 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5502 return false;
5503
5504 if (hba->active_uic_cmd &&
5505 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5506 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5507 return false;
5508
5509 return true;
5510 }
5511
5512 /**
5513 * ufshcd_uic_cmd_compl - handle completion of uic command
5514 * @hba: per adapter instance
5515 * @intr_status: interrupt status generated by the controller
5516 *
5517 * Return:
5518 * IRQ_HANDLED - If interrupt is valid
5519 * IRQ_NONE - If invalid interrupt
5520 */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5521 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5522 {
5523 irqreturn_t retval = IRQ_NONE;
5524 struct uic_command *cmd;
5525
5526 spin_lock(hba->host->host_lock);
5527 cmd = hba->active_uic_cmd;
5528 if (WARN_ON_ONCE(!cmd))
5529 goto unlock;
5530
5531 if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5532 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5533
5534 if (intr_status & UIC_COMMAND_COMPL) {
5535 cmd->argument2 |= ufshcd_get_uic_cmd_result(hba);
5536 cmd->argument3 = ufshcd_get_dme_attr_val(hba);
5537 if (!hba->uic_async_done)
5538 cmd->cmd_active = 0;
5539 complete(&cmd->done);
5540 retval = IRQ_HANDLED;
5541 }
5542
5543 if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) {
5544 cmd->cmd_active = 0;
5545 complete(hba->uic_async_done);
5546 retval = IRQ_HANDLED;
5547 }
5548
5549 if (retval == IRQ_HANDLED)
5550 ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP);
5551
5552 unlock:
5553 spin_unlock(hba->host->host_lock);
5554
5555 return retval;
5556 }
5557
5558 /* Release the resources allocated for processing a SCSI command. */
ufshcd_release_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5559 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5560 struct ufshcd_lrb *lrbp)
5561 {
5562 struct scsi_cmnd *cmd = lrbp->cmd;
5563
5564 scsi_dma_unmap(cmd);
5565 ufshcd_crypto_clear_prdt(hba, lrbp);
5566 ufshcd_release(hba);
5567 ufshcd_clk_scaling_update_busy(hba);
5568 }
5569
5570 /**
5571 * ufshcd_compl_one_cqe - handle a completion queue entry
5572 * @hba: per adapter instance
5573 * @task_tag: the task tag of the request to be completed
5574 * @cqe: pointer to the completion queue entry
5575 */
ufshcd_compl_one_cqe(struct ufs_hba * hba,int task_tag,struct cq_entry * cqe)5576 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5577 struct cq_entry *cqe)
5578 {
5579 struct ufshcd_lrb *lrbp;
5580 struct scsi_cmnd *cmd;
5581 enum utp_ocs ocs;
5582
5583 lrbp = &hba->lrb[task_tag];
5584 lrbp->compl_time_stamp = ktime_get();
5585 lrbp->compl_time_stamp_local_clock = local_clock();
5586 cmd = lrbp->cmd;
5587 if (cmd) {
5588 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5589 ufshcd_update_monitor(hba, lrbp);
5590 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5591 cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5592 ufshcd_release_scsi_cmd(hba, lrbp);
5593 /* Do not touch lrbp after scsi done */
5594 scsi_done(cmd);
5595 } else {
5596 if (cqe) {
5597 ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5598 lrbp->utr_descriptor_ptr->header.ocs = ocs;
5599 }
5600 complete(&hba->dev_cmd.complete);
5601 }
5602 }
5603
5604 /**
5605 * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5606 * @hba: per adapter instance
5607 * @completed_reqs: bitmask that indicates which requests to complete
5608 */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)5609 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5610 unsigned long completed_reqs)
5611 {
5612 int tag;
5613
5614 for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5615 ufshcd_compl_one_cqe(hba, tag, NULL);
5616 }
5617
5618 /* Any value that is not an existing queue number is fine for this constant. */
5619 enum {
5620 UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5621 };
5622
ufshcd_clear_polled(struct ufs_hba * hba,unsigned long * completed_reqs)5623 static void ufshcd_clear_polled(struct ufs_hba *hba,
5624 unsigned long *completed_reqs)
5625 {
5626 int tag;
5627
5628 for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5629 struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5630
5631 if (!cmd)
5632 continue;
5633 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5634 __clear_bit(tag, completed_reqs);
5635 }
5636 }
5637
5638 /*
5639 * Return: > 0 if one or more commands have been completed or 0 if no
5640 * requests have been completed.
5641 */
ufshcd_poll(struct Scsi_Host * shost,unsigned int queue_num)5642 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5643 {
5644 struct ufs_hba *hba = shost_priv(shost);
5645 unsigned long completed_reqs, flags;
5646 u32 tr_doorbell;
5647 struct ufs_hw_queue *hwq;
5648
5649 if (hba->mcq_enabled) {
5650 hwq = &hba->uhq[queue_num];
5651
5652 return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5653 }
5654
5655 spin_lock_irqsave(&hba->outstanding_lock, flags);
5656 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5657 completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5658 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5659 "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5660 hba->outstanding_reqs);
5661 if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5662 /* Do not complete polled requests from interrupt context. */
5663 ufshcd_clear_polled(hba, &completed_reqs);
5664 }
5665 hba->outstanding_reqs &= ~completed_reqs;
5666 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5667
5668 if (completed_reqs)
5669 __ufshcd_transfer_req_compl(hba, completed_reqs);
5670
5671 return completed_reqs != 0;
5672 }
5673
5674 /**
5675 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5676 * invoked from the error handler context or ufshcd_host_reset_and_restore()
5677 * to complete the pending transfers and free the resources associated with
5678 * the scsi command.
5679 *
5680 * @hba: per adapter instance
5681 * @force_compl: This flag is set to true when invoked
5682 * from ufshcd_host_reset_and_restore() in which case it requires special
5683 * handling because the host controller has been reset by ufshcd_hba_stop().
5684 */
ufshcd_mcq_compl_pending_transfer(struct ufs_hba * hba,bool force_compl)5685 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5686 bool force_compl)
5687 {
5688 struct ufs_hw_queue *hwq;
5689 struct ufshcd_lrb *lrbp;
5690 struct scsi_cmnd *cmd;
5691 unsigned long flags;
5692 int tag;
5693
5694 for (tag = 0; tag < hba->nutrs; tag++) {
5695 lrbp = &hba->lrb[tag];
5696 cmd = lrbp->cmd;
5697 if (!ufshcd_cmd_inflight(cmd) ||
5698 test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5699 continue;
5700
5701 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
5702 if (!hwq)
5703 continue;
5704
5705 if (force_compl) {
5706 ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5707 /*
5708 * For those cmds of which the cqes are not present
5709 * in the cq, complete them explicitly.
5710 */
5711 spin_lock_irqsave(&hwq->cq_lock, flags);
5712 if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5713 set_host_byte(cmd, DID_REQUEUE);
5714 ufshcd_release_scsi_cmd(hba, lrbp);
5715 scsi_done(cmd);
5716 }
5717 spin_unlock_irqrestore(&hwq->cq_lock, flags);
5718 } else {
5719 ufshcd_mcq_poll_cqe_lock(hba, hwq);
5720 }
5721 }
5722 }
5723
5724 /**
5725 * ufshcd_transfer_req_compl - handle SCSI and query command completion
5726 * @hba: per adapter instance
5727 *
5728 * Return:
5729 * IRQ_HANDLED - If interrupt is valid
5730 * IRQ_NONE - If invalid interrupt
5731 */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5732 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5733 {
5734 /* Resetting interrupt aggregation counters first and reading the
5735 * DOOR_BELL afterward allows us to handle all the completed requests.
5736 * In order to prevent other interrupts starvation the DB is read once
5737 * after reset. The down side of this solution is the possibility of
5738 * false interrupt if device completes another request after resetting
5739 * aggregation and before reading the DB.
5740 */
5741 if (ufshcd_is_intr_aggr_allowed(hba) &&
5742 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5743 ufshcd_reset_intr_aggr(hba);
5744
5745 if (ufs_fail_completion(hba))
5746 return IRQ_HANDLED;
5747
5748 /*
5749 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5750 * do not want polling to trigger spurious interrupt complaints.
5751 */
5752 ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5753
5754 return IRQ_HANDLED;
5755 }
5756
__ufshcd_write_ee_control(struct ufs_hba * hba,u32 ee_ctrl_mask)5757 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5758 {
5759 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5760 QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5761 &ee_ctrl_mask);
5762 }
5763
ufshcd_write_ee_control(struct ufs_hba * hba)5764 int ufshcd_write_ee_control(struct ufs_hba *hba)
5765 {
5766 int err;
5767
5768 mutex_lock(&hba->ee_ctrl_mutex);
5769 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5770 mutex_unlock(&hba->ee_ctrl_mutex);
5771 if (err)
5772 dev_err(hba->dev, "%s: failed to write ee control %d\n",
5773 __func__, err);
5774 return err;
5775 }
5776
ufshcd_update_ee_control(struct ufs_hba * hba,u16 * mask,const u16 * other_mask,u16 set,u16 clr)5777 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5778 const u16 *other_mask, u16 set, u16 clr)
5779 {
5780 u16 new_mask, ee_ctrl_mask;
5781 int err = 0;
5782
5783 mutex_lock(&hba->ee_ctrl_mutex);
5784 new_mask = (*mask & ~clr) | set;
5785 ee_ctrl_mask = new_mask | *other_mask;
5786 if (ee_ctrl_mask != hba->ee_ctrl_mask)
5787 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5788 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5789 if (!err) {
5790 hba->ee_ctrl_mask = ee_ctrl_mask;
5791 *mask = new_mask;
5792 }
5793 mutex_unlock(&hba->ee_ctrl_mutex);
5794 return err;
5795 }
5796
5797 /**
5798 * ufshcd_disable_ee - disable exception event
5799 * @hba: per-adapter instance
5800 * @mask: exception event to disable
5801 *
5802 * Disables exception event in the device so that the EVENT_ALERT
5803 * bit is not set.
5804 *
5805 * Return: zero on success, non-zero error value on failure.
5806 */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5807 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5808 {
5809 return ufshcd_update_ee_drv_mask(hba, 0, mask);
5810 }
5811
5812 /**
5813 * ufshcd_enable_ee - enable exception event
5814 * @hba: per-adapter instance
5815 * @mask: exception event to enable
5816 *
5817 * Enable corresponding exception event in the device to allow
5818 * device to alert host in critical scenarios.
5819 *
5820 * Return: zero on success, non-zero error value on failure.
5821 */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5822 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5823 {
5824 return ufshcd_update_ee_drv_mask(hba, mask, 0);
5825 }
5826
5827 /**
5828 * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5829 * @hba: per-adapter instance
5830 *
5831 * Allow device to manage background operations on its own. Enabling
5832 * this might lead to inconsistent latencies during normal data transfers
5833 * as the device is allowed to manage its own way of handling background
5834 * operations.
5835 *
5836 * Return: zero on success, non-zero on failure.
5837 */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5838 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5839 {
5840 int err = 0;
5841
5842 if (hba->auto_bkops_enabled)
5843 goto out;
5844
5845 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5846 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5847 if (err) {
5848 dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5849 __func__, err);
5850 goto out;
5851 }
5852
5853 hba->auto_bkops_enabled = true;
5854 trace_ufshcd_auto_bkops_state(hba, "Enabled");
5855
5856 /* No need of URGENT_BKOPS exception from the device */
5857 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5858 if (err)
5859 dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5860 __func__, err);
5861 out:
5862 return err;
5863 }
5864
5865 /**
5866 * ufshcd_disable_auto_bkops - block device in doing background operations
5867 * @hba: per-adapter instance
5868 *
5869 * Disabling background operations improves command response latency but
5870 * has drawback of device moving into critical state where the device is
5871 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5872 * host is idle so that BKOPS are managed effectively without any negative
5873 * impacts.
5874 *
5875 * Return: zero on success, non-zero on failure.
5876 */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5877 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5878 {
5879 int err = 0;
5880
5881 if (!hba->auto_bkops_enabled)
5882 goto out;
5883
5884 /*
5885 * If host assisted BKOPs is to be enabled, make sure
5886 * urgent bkops exception is allowed.
5887 */
5888 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5889 if (err) {
5890 dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5891 __func__, err);
5892 goto out;
5893 }
5894
5895 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5896 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5897 if (err) {
5898 dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5899 __func__, err);
5900 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5901 goto out;
5902 }
5903
5904 hba->auto_bkops_enabled = false;
5905 trace_ufshcd_auto_bkops_state(hba, "Disabled");
5906 hba->is_urgent_bkops_lvl_checked = false;
5907 out:
5908 return err;
5909 }
5910
5911 /**
5912 * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5913 * @hba: per adapter instance
5914 *
5915 * After a device reset the device may toggle the BKOPS_EN flag
5916 * to default value. The s/w tracking variables should be updated
5917 * as well. This function would change the auto-bkops state based on
5918 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5919 */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5920 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5921 {
5922 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5923 hba->auto_bkops_enabled = false;
5924 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5925 ufshcd_enable_auto_bkops(hba);
5926 } else {
5927 hba->auto_bkops_enabled = true;
5928 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5929 ufshcd_disable_auto_bkops(hba);
5930 }
5931 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5932 hba->is_urgent_bkops_lvl_checked = false;
5933 }
5934
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5935 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5936 {
5937 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5938 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5939 }
5940
5941 /**
5942 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5943 * @hba: per-adapter instance
5944 *
5945 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5946 * flag in the device to permit background operations if the device
5947 * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl",
5948 * disable otherwise.
5949 *
5950 * Return: 0 for success, non-zero in case of failure.
5951 *
5952 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5953 * to know whether auto bkops is enabled or disabled after this function
5954 * returns control to it.
5955 */
ufshcd_bkops_ctrl(struct ufs_hba * hba)5956 static int ufshcd_bkops_ctrl(struct ufs_hba *hba)
5957 {
5958 enum bkops_status status = hba->urgent_bkops_lvl;
5959 u32 curr_status = 0;
5960 int err;
5961
5962 err = ufshcd_get_bkops_status(hba, &curr_status);
5963 if (err) {
5964 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5965 __func__, err);
5966 goto out;
5967 } else if (curr_status > BKOPS_STATUS_MAX) {
5968 dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5969 __func__, curr_status);
5970 err = -EINVAL;
5971 goto out;
5972 }
5973
5974 if (curr_status >= status)
5975 err = ufshcd_enable_auto_bkops(hba);
5976 else
5977 err = ufshcd_disable_auto_bkops(hba);
5978 out:
5979 return err;
5980 }
5981
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5982 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5983 {
5984 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5985 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5986 }
5987
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5988 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5989 {
5990 int err;
5991 u32 curr_status = 0;
5992
5993 if (hba->is_urgent_bkops_lvl_checked)
5994 goto enable_auto_bkops;
5995
5996 err = ufshcd_get_bkops_status(hba, &curr_status);
5997 if (err) {
5998 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5999 __func__, err);
6000 goto out;
6001 }
6002
6003 /*
6004 * We are seeing that some devices are raising the urgent bkops
6005 * exception events even when BKOPS status doesn't indicate performace
6006 * impacted or critical. Handle these device by determining their urgent
6007 * bkops status at runtime.
6008 */
6009 if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
6010 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
6011 __func__, curr_status);
6012 /* update the current status as the urgent bkops level */
6013 hba->urgent_bkops_lvl = curr_status;
6014 hba->is_urgent_bkops_lvl_checked = true;
6015 }
6016
6017 enable_auto_bkops:
6018 err = ufshcd_enable_auto_bkops(hba);
6019 out:
6020 if (err < 0)
6021 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
6022 __func__, err);
6023 }
6024
ufshcd_read_device_lvl_exception_id(struct ufs_hba * hba,u64 * exception_id)6025 int ufshcd_read_device_lvl_exception_id(struct ufs_hba *hba, u64 *exception_id)
6026 {
6027 struct utp_upiu_query_v4_0 *upiu_resp;
6028 struct ufs_query_req *request = NULL;
6029 struct ufs_query_res *response = NULL;
6030 int err;
6031
6032 if (hba->dev_info.wspecversion < 0x410)
6033 return -EOPNOTSUPP;
6034
6035 ufshcd_hold(hba);
6036 mutex_lock(&hba->dev_cmd.lock);
6037
6038 ufshcd_init_query(hba, &request, &response,
6039 UPIU_QUERY_OPCODE_READ_ATTR,
6040 QUERY_ATTR_IDN_DEV_LVL_EXCEPTION_ID, 0, 0);
6041
6042 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
6043
6044 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
6045
6046 if (err) {
6047 dev_err(hba->dev, "%s: failed to read device level exception %d\n",
6048 __func__, err);
6049 goto out;
6050 }
6051
6052 upiu_resp = (struct utp_upiu_query_v4_0 *)response;
6053 *exception_id = get_unaligned_be64(&upiu_resp->osf3);
6054 out:
6055 mutex_unlock(&hba->dev_cmd.lock);
6056 ufshcd_release(hba);
6057
6058 return err;
6059 }
6060
__ufshcd_wb_toggle(struct ufs_hba * hba,bool set,enum flag_idn idn)6061 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
6062 {
6063 u8 index;
6064 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
6065 UPIU_QUERY_OPCODE_CLEAR_FLAG;
6066
6067 index = ufshcd_wb_get_query_index(hba);
6068 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
6069 }
6070
ufshcd_wb_toggle(struct ufs_hba * hba,bool enable)6071 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
6072 {
6073 int ret;
6074
6075 if (!ufshcd_is_wb_allowed(hba) ||
6076 hba->dev_info.wb_enabled == enable)
6077 return 0;
6078
6079 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
6080 if (ret) {
6081 dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
6082 __func__, enable ? "enabling" : "disabling", ret);
6083 return ret;
6084 }
6085
6086 hba->dev_info.wb_enabled = enable;
6087 dev_dbg(hba->dev, "%s: Write Booster %s\n",
6088 __func__, enable ? "enabled" : "disabled");
6089
6090 return ret;
6091 }
6092
ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba * hba,bool enable)6093 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6094 bool enable)
6095 {
6096 int ret;
6097
6098 ret = __ufshcd_wb_toggle(hba, enable,
6099 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6100 if (ret) {
6101 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6102 __func__, enable ? "enabling" : "disabling", ret);
6103 return;
6104 }
6105 dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6106 __func__, enable ? "enabled" : "disabled");
6107 }
6108
ufshcd_wb_toggle_buf_flush(struct ufs_hba * hba,bool enable)6109 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6110 {
6111 int ret;
6112
6113 if (!ufshcd_is_wb_allowed(hba) ||
6114 hba->dev_info.wb_buf_flush_enabled == enable)
6115 return 0;
6116
6117 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6118 if (ret) {
6119 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6120 __func__, enable ? "enabling" : "disabling", ret);
6121 return ret;
6122 }
6123
6124 hba->dev_info.wb_buf_flush_enabled = enable;
6125 dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6126 __func__, enable ? "enabled" : "disabled");
6127
6128 return ret;
6129 }
6130
ufshcd_wb_set_resize_en(struct ufs_hba * hba,enum wb_resize_en en_mode)6131 int ufshcd_wb_set_resize_en(struct ufs_hba *hba, enum wb_resize_en en_mode)
6132 {
6133 int ret;
6134 u8 index;
6135
6136 index = ufshcd_wb_get_query_index(hba);
6137 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
6138 QUERY_ATTR_IDN_WB_BUF_RESIZE_EN, index, 0, &en_mode);
6139 if (ret)
6140 dev_err(hba->dev, "%s: Enable WB buf resize operation failed %d\n",
6141 __func__, ret);
6142
6143 return ret;
6144 }
6145
ufshcd_wb_curr_buff_threshold_check(struct ufs_hba * hba,u32 avail_buf)6146 static bool ufshcd_wb_curr_buff_threshold_check(struct ufs_hba *hba,
6147 u32 avail_buf)
6148 {
6149 u32 cur_buf;
6150 int ret;
6151 u8 index;
6152
6153 index = ufshcd_wb_get_query_index(hba);
6154 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6155 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6156 index, 0, &cur_buf);
6157 if (ret) {
6158 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6159 __func__, ret);
6160 return false;
6161 }
6162
6163 if (!cur_buf) {
6164 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6165 cur_buf);
6166 return false;
6167 }
6168 /* Let it continue to flush when available buffer exceeds threshold */
6169 return avail_buf < hba->vps->wb_flush_threshold;
6170 }
6171
ufshcd_wb_force_disable(struct ufs_hba * hba)6172 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6173 {
6174 if (ufshcd_is_wb_buf_flush_allowed(hba))
6175 ufshcd_wb_toggle_buf_flush(hba, false);
6176
6177 ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6178 ufshcd_wb_toggle(hba, false);
6179 hba->caps &= ~UFSHCD_CAP_WB_EN;
6180
6181 dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6182 }
6183
ufshcd_is_wb_buf_lifetime_available(struct ufs_hba * hba)6184 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6185 {
6186 u32 lifetime;
6187 int ret;
6188 u8 index;
6189
6190 index = ufshcd_wb_get_query_index(hba);
6191 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6192 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6193 index, 0, &lifetime);
6194 if (ret) {
6195 dev_err(hba->dev,
6196 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6197 __func__, ret);
6198 return false;
6199 }
6200
6201 if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6202 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6203 __func__, lifetime);
6204 return false;
6205 }
6206
6207 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6208 __func__, lifetime);
6209
6210 return true;
6211 }
6212
ufshcd_wb_need_flush(struct ufs_hba * hba)6213 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6214 {
6215 int ret;
6216 u32 avail_buf;
6217 u8 index;
6218
6219 if (!ufshcd_is_wb_allowed(hba))
6220 return false;
6221
6222 if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6223 ufshcd_wb_force_disable(hba);
6224 return false;
6225 }
6226
6227 /*
6228 * With user-space reduction enabled, it's enough to enable flush
6229 * by checking only the available buffer. The threshold
6230 * defined here is > 90% full.
6231 * With user-space preserved enabled, the current-buffer
6232 * should be checked too because the wb buffer size can reduce
6233 * when disk tends to be full. This info is provided by current
6234 * buffer (dCurrentWriteBoosterBufferSize).
6235 */
6236 index = ufshcd_wb_get_query_index(hba);
6237 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6238 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6239 index, 0, &avail_buf);
6240 if (ret) {
6241 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6242 __func__, ret);
6243 return false;
6244 }
6245
6246 if (!hba->dev_info.b_presrv_uspc_en)
6247 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6248
6249 return ufshcd_wb_curr_buff_threshold_check(hba, avail_buf);
6250 }
6251
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)6252 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6253 {
6254 struct ufs_hba *hba = container_of(to_delayed_work(work),
6255 struct ufs_hba,
6256 rpm_dev_flush_recheck_work);
6257 /*
6258 * To prevent unnecessary VCC power drain after device finishes
6259 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6260 * after a certain delay to recheck the threshold by next runtime
6261 * suspend.
6262 */
6263 ufshcd_rpm_get_sync(hba);
6264 ufshcd_rpm_put_sync(hba);
6265 }
6266
6267 /**
6268 * ufshcd_exception_event_handler - handle exceptions raised by device
6269 * @work: pointer to work data
6270 *
6271 * Read bExceptionEventStatus attribute from the device and handle the
6272 * exception event accordingly.
6273 */
ufshcd_exception_event_handler(struct work_struct * work)6274 static void ufshcd_exception_event_handler(struct work_struct *work)
6275 {
6276 struct ufs_hba *hba;
6277 int err;
6278 u32 status = 0;
6279 hba = container_of(work, struct ufs_hba, eeh_work);
6280
6281 err = ufshcd_get_ee_status(hba, &status);
6282 if (err) {
6283 dev_err(hba->dev, "%s: failed to get exception status %d\n",
6284 __func__, err);
6285 return;
6286 }
6287
6288 trace_ufshcd_exception_event(hba, status);
6289
6290 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6291 ufshcd_bkops_exception_event_handler(hba);
6292
6293 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6294 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
6295
6296 if (status & hba->ee_drv_mask & MASK_EE_HEALTH_CRITICAL) {
6297 hba->critical_health_count++;
6298 sysfs_notify(&hba->dev->kobj, NULL, "critical_health");
6299 }
6300
6301 if (status & hba->ee_drv_mask & MASK_EE_DEV_LVL_EXCEPTION) {
6302 atomic_inc(&hba->dev_lvl_exception_count);
6303 sysfs_notify(&hba->dev->kobj, NULL, "device_lvl_exception_count");
6304 }
6305
6306 ufs_debugfs_exception_event(hba, status);
6307 }
6308
6309 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba,bool force_compl)6310 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6311 {
6312 if (hba->mcq_enabled)
6313 ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6314 else
6315 ufshcd_transfer_req_compl(hba);
6316
6317 ufshcd_tmc_handler(hba);
6318 }
6319
6320 /**
6321 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6322 * to recover from the DL NAC errors or not.
6323 * @hba: per-adapter instance
6324 *
6325 * Return: true if error handling is required, false otherwise.
6326 */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)6327 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6328 {
6329 unsigned long flags;
6330 bool err_handling = true;
6331
6332 spin_lock_irqsave(hba->host->host_lock, flags);
6333 /*
6334 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6335 * device fatal error and/or DL NAC & REPLAY timeout errors.
6336 */
6337 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6338 goto out;
6339
6340 if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6341 ((hba->saved_err & UIC_ERROR) &&
6342 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6343 goto out;
6344
6345 if ((hba->saved_err & UIC_ERROR) &&
6346 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6347 int err;
6348 /*
6349 * wait for 50ms to see if we can get any other errors or not.
6350 */
6351 spin_unlock_irqrestore(hba->host->host_lock, flags);
6352 msleep(50);
6353 spin_lock_irqsave(hba->host->host_lock, flags);
6354
6355 /*
6356 * now check if we have got any other severe errors other than
6357 * DL NAC error?
6358 */
6359 if ((hba->saved_err & INT_FATAL_ERRORS) ||
6360 ((hba->saved_err & UIC_ERROR) &&
6361 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6362 goto out;
6363
6364 /*
6365 * As DL NAC is the only error received so far, send out NOP
6366 * command to confirm if link is still active or not.
6367 * - If we don't get any response then do error recovery.
6368 * - If we get response then clear the DL NAC error bit.
6369 */
6370
6371 spin_unlock_irqrestore(hba->host->host_lock, flags);
6372 err = ufshcd_verify_dev_init(hba);
6373 spin_lock_irqsave(hba->host->host_lock, flags);
6374
6375 if (err)
6376 goto out;
6377
6378 /* Link seems to be alive hence ignore the DL NAC errors */
6379 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6380 hba->saved_err &= ~UIC_ERROR;
6381 /* clear NAC error */
6382 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6383 if (!hba->saved_uic_err)
6384 err_handling = false;
6385 }
6386 out:
6387 spin_unlock_irqrestore(hba->host->host_lock, flags);
6388 return err_handling;
6389 }
6390
6391 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)6392 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6393 {
6394 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6395 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6396 }
6397
ufshcd_schedule_eh_work(struct ufs_hba * hba)6398 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6399 {
6400 lockdep_assert_held(hba->host->host_lock);
6401
6402 /* handle fatal errors only when link is not in error state */
6403 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6404 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6405 ufshcd_is_saved_err_fatal(hba))
6406 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6407 else
6408 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6409 queue_work(hba->eh_wq, &hba->eh_work);
6410 }
6411 }
6412
ufshcd_force_error_recovery(struct ufs_hba * hba)6413 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6414 {
6415 spin_lock_irq(hba->host->host_lock);
6416 hba->force_reset = true;
6417 ufshcd_schedule_eh_work(hba);
6418 spin_unlock_irq(hba->host->host_lock);
6419 }
6420
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)6421 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6422 {
6423 mutex_lock(&hba->wb_mutex);
6424 down_write(&hba->clk_scaling_lock);
6425 hba->clk_scaling.is_allowed = allow;
6426 up_write(&hba->clk_scaling_lock);
6427 mutex_unlock(&hba->wb_mutex);
6428 }
6429
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)6430 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6431 {
6432 if (suspend) {
6433 if (hba->clk_scaling.is_enabled)
6434 ufshcd_suspend_clkscaling(hba);
6435 ufshcd_clk_scaling_allow(hba, false);
6436 } else {
6437 ufshcd_clk_scaling_allow(hba, true);
6438 if (hba->clk_scaling.is_enabled)
6439 ufshcd_resume_clkscaling(hba);
6440 }
6441 }
6442
ufshcd_err_handling_prepare(struct ufs_hba * hba)6443 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6444 {
6445 ufshcd_rpm_get_sync(hba);
6446 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6447 hba->is_sys_suspended) {
6448 enum ufs_pm_op pm_op;
6449
6450 /*
6451 * Don't assume anything of resume, if
6452 * resume fails, irq and clocks can be OFF, and powers
6453 * can be OFF or in LPM.
6454 */
6455 ufshcd_setup_hba_vreg(hba, true);
6456 ufshcd_enable_irq(hba);
6457 ufshcd_setup_vreg(hba, true);
6458 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6459 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6460 ufshcd_hold(hba);
6461 if (!ufshcd_is_clkgating_allowed(hba))
6462 ufshcd_setup_clocks(hba, true);
6463 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6464 ufshcd_vops_resume(hba, pm_op);
6465 } else {
6466 ufshcd_hold(hba);
6467 if (ufshcd_is_clkscaling_supported(hba) &&
6468 hba->clk_scaling.is_enabled)
6469 ufshcd_suspend_clkscaling(hba);
6470 ufshcd_clk_scaling_allow(hba, false);
6471 }
6472 /* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6473 blk_mq_quiesce_tagset(&hba->host->tag_set);
6474 cancel_work_sync(&hba->eeh_work);
6475 }
6476
ufshcd_err_handling_unprepare(struct ufs_hba * hba)6477 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6478 {
6479 blk_mq_unquiesce_tagset(&hba->host->tag_set);
6480 ufshcd_release(hba);
6481 if (ufshcd_is_clkscaling_supported(hba))
6482 ufshcd_clk_scaling_suspend(hba, false);
6483 ufshcd_rpm_put(hba);
6484 }
6485
ufshcd_err_handling_should_stop(struct ufs_hba * hba)6486 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6487 {
6488 return (!hba->is_powered || hba->shutting_down ||
6489 !hba->ufs_device_wlun ||
6490 hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6491 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6492 ufshcd_is_link_broken(hba))));
6493 }
6494
6495 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)6496 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6497 {
6498 struct Scsi_Host *shost = hba->host;
6499 struct scsi_device *sdev;
6500 struct request_queue *q;
6501 int ret;
6502
6503 hba->is_sys_suspended = false;
6504 /*
6505 * Set RPM status of wlun device to RPM_ACTIVE,
6506 * this also clears its runtime error.
6507 */
6508 ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6509
6510 /* hba device might have a runtime error otherwise */
6511 if (ret)
6512 ret = pm_runtime_set_active(hba->dev);
6513 /*
6514 * If wlun device had runtime error, we also need to resume those
6515 * consumer scsi devices in case any of them has failed to be
6516 * resumed due to supplier runtime resume failure. This is to unblock
6517 * blk_queue_enter in case there are bios waiting inside it.
6518 */
6519 if (!ret) {
6520 shost_for_each_device(sdev, shost) {
6521 q = sdev->request_queue;
6522 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6523 q->rpm_status == RPM_SUSPENDING))
6524 pm_request_resume(q->dev);
6525 }
6526 }
6527 }
6528 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)6529 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6530 {
6531 }
6532 #endif
6533
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)6534 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6535 {
6536 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6537 u32 mode;
6538
6539 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6540
6541 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6542 return true;
6543
6544 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6545 return true;
6546
6547 return false;
6548 }
6549
ufshcd_abort_one(struct request * rq,void * priv)6550 static bool ufshcd_abort_one(struct request *rq, void *priv)
6551 {
6552 int *ret = priv;
6553 u32 tag = rq->tag;
6554 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6555 struct scsi_device *sdev = cmd->device;
6556 struct Scsi_Host *shost = sdev->host;
6557 struct ufs_hba *hba = shost_priv(shost);
6558
6559 *ret = ufshcd_try_to_abort_task(hba, tag);
6560 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6561 hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6562 *ret ? "failed" : "succeeded");
6563
6564 return *ret == 0;
6565 }
6566
6567 /**
6568 * ufshcd_abort_all - Abort all pending commands.
6569 * @hba: Host bus adapter pointer.
6570 *
6571 * Return: true if and only if the host controller needs to be reset.
6572 */
ufshcd_abort_all(struct ufs_hba * hba)6573 static bool ufshcd_abort_all(struct ufs_hba *hba)
6574 {
6575 int tag, ret = 0;
6576
6577 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6578 if (ret)
6579 goto out;
6580
6581 /* Clear pending task management requests */
6582 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6583 ret = ufshcd_clear_tm_cmd(hba, tag);
6584 if (ret)
6585 goto out;
6586 }
6587
6588 out:
6589 /* Complete the requests that are cleared by s/w */
6590 ufshcd_complete_requests(hba, false);
6591
6592 return ret != 0;
6593 }
6594
6595 /**
6596 * ufshcd_err_handler - handle UFS errors that require s/w attention
6597 * @work: pointer to work structure
6598 */
ufshcd_err_handler(struct work_struct * work)6599 static void ufshcd_err_handler(struct work_struct *work)
6600 {
6601 int retries = MAX_ERR_HANDLER_RETRIES;
6602 struct ufs_hba *hba;
6603 unsigned long flags;
6604 bool needs_restore;
6605 bool needs_reset;
6606 int pmc_err;
6607
6608 hba = container_of(work, struct ufs_hba, eh_work);
6609
6610 dev_info(hba->dev,
6611 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = 0x%x; saved_uic_err = 0x%x; force_reset = %d%s\n",
6612 __func__, ufshcd_state_name[hba->ufshcd_state],
6613 hba->is_powered, hba->shutting_down, hba->saved_err,
6614 hba->saved_uic_err, hba->force_reset,
6615 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6616
6617 down(&hba->host_sem);
6618 spin_lock_irqsave(hba->host->host_lock, flags);
6619 if (ufshcd_err_handling_should_stop(hba)) {
6620 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6621 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6622 spin_unlock_irqrestore(hba->host->host_lock, flags);
6623 up(&hba->host_sem);
6624 return;
6625 }
6626 spin_unlock_irqrestore(hba->host->host_lock, flags);
6627
6628 ufshcd_err_handling_prepare(hba);
6629
6630 spin_lock_irqsave(hba->host->host_lock, flags);
6631 ufshcd_set_eh_in_progress(hba);
6632 spin_unlock_irqrestore(hba->host->host_lock, flags);
6633
6634 /* Complete requests that have door-bell cleared by h/w */
6635 ufshcd_complete_requests(hba, false);
6636 spin_lock_irqsave(hba->host->host_lock, flags);
6637 again:
6638 needs_restore = false;
6639 needs_reset = false;
6640
6641 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6642 hba->ufshcd_state = UFSHCD_STATE_RESET;
6643 /*
6644 * A full reset and restore might have happened after preparation
6645 * is finished, double check whether we should stop.
6646 */
6647 if (ufshcd_err_handling_should_stop(hba))
6648 goto skip_err_handling;
6649
6650 if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6651 !hba->force_reset) {
6652 bool ret;
6653
6654 spin_unlock_irqrestore(hba->host->host_lock, flags);
6655 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6656 ret = ufshcd_quirk_dl_nac_errors(hba);
6657 spin_lock_irqsave(hba->host->host_lock, flags);
6658 if (!ret && ufshcd_err_handling_should_stop(hba))
6659 goto skip_err_handling;
6660 }
6661
6662 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6663 (hba->saved_uic_err &&
6664 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6665 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6666
6667 spin_unlock_irqrestore(hba->host->host_lock, flags);
6668 ufshcd_print_host_state(hba);
6669 ufshcd_print_pwr_info(hba);
6670 ufshcd_print_evt_hist(hba);
6671 ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6672 ufshcd_print_trs_all(hba, pr_prdt);
6673 spin_lock_irqsave(hba->host->host_lock, flags);
6674 }
6675
6676 /*
6677 * if host reset is required then skip clearing the pending
6678 * transfers forcefully because they will get cleared during
6679 * host reset and restore
6680 */
6681 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6682 ufshcd_is_saved_err_fatal(hba) ||
6683 ((hba->saved_err & UIC_ERROR) &&
6684 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6685 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6686 needs_reset = true;
6687 goto do_reset;
6688 }
6689
6690 /*
6691 * If LINERESET was caught, UFS might have been put to PWM mode,
6692 * check if power mode restore is needed.
6693 */
6694 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6695 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6696 if (!hba->saved_uic_err)
6697 hba->saved_err &= ~UIC_ERROR;
6698 spin_unlock_irqrestore(hba->host->host_lock, flags);
6699 if (ufshcd_is_pwr_mode_restore_needed(hba))
6700 needs_restore = true;
6701 spin_lock_irqsave(hba->host->host_lock, flags);
6702 if (!hba->saved_err && !needs_restore)
6703 goto skip_err_handling;
6704 }
6705
6706 hba->silence_err_logs = true;
6707 /* release lock as clear command might sleep */
6708 spin_unlock_irqrestore(hba->host->host_lock, flags);
6709
6710 needs_reset = ufshcd_abort_all(hba);
6711
6712 spin_lock_irqsave(hba->host->host_lock, flags);
6713 hba->silence_err_logs = false;
6714 if (needs_reset)
6715 goto do_reset;
6716
6717 /*
6718 * After all reqs and tasks are cleared from doorbell,
6719 * now it is safe to retore power mode.
6720 */
6721 if (needs_restore) {
6722 spin_unlock_irqrestore(hba->host->host_lock, flags);
6723 /*
6724 * Hold the scaling lock just in case dev cmds
6725 * are sent via bsg and/or sysfs.
6726 */
6727 down_write(&hba->clk_scaling_lock);
6728 hba->force_pmc = true;
6729 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6730 if (pmc_err) {
6731 needs_reset = true;
6732 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6733 __func__, pmc_err);
6734 }
6735 hba->force_pmc = false;
6736 ufshcd_print_pwr_info(hba);
6737 up_write(&hba->clk_scaling_lock);
6738 spin_lock_irqsave(hba->host->host_lock, flags);
6739 }
6740
6741 do_reset:
6742 /* Fatal errors need reset */
6743 if (needs_reset) {
6744 int err;
6745
6746 hba->force_reset = false;
6747 spin_unlock_irqrestore(hba->host->host_lock, flags);
6748 err = ufshcd_reset_and_restore(hba);
6749 if (err)
6750 dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6751 __func__, err);
6752 else
6753 ufshcd_recover_pm_error(hba);
6754 spin_lock_irqsave(hba->host->host_lock, flags);
6755 }
6756
6757 skip_err_handling:
6758 if (!needs_reset) {
6759 if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6760 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6761 if (hba->saved_err || hba->saved_uic_err)
6762 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6763 __func__, hba->saved_err, hba->saved_uic_err);
6764 }
6765 /* Exit in an operational state or dead */
6766 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6767 hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6768 if (--retries)
6769 goto again;
6770 hba->ufshcd_state = UFSHCD_STATE_ERROR;
6771 }
6772 ufshcd_clear_eh_in_progress(hba);
6773 spin_unlock_irqrestore(hba->host->host_lock, flags);
6774 ufshcd_err_handling_unprepare(hba);
6775 up(&hba->host_sem);
6776
6777 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6778 ufshcd_state_name[hba->ufshcd_state]);
6779 }
6780
6781 /**
6782 * ufshcd_update_uic_error - check and set fatal UIC error flags.
6783 * @hba: per-adapter instance
6784 *
6785 * Return:
6786 * IRQ_HANDLED - If interrupt is valid
6787 * IRQ_NONE - If invalid interrupt
6788 */
ufshcd_update_uic_error(struct ufs_hba * hba)6789 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6790 {
6791 u32 reg;
6792 irqreturn_t retval = IRQ_NONE;
6793
6794 /* PHY layer error */
6795 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6796 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6797 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6798 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6799 /*
6800 * To know whether this error is fatal or not, DB timeout
6801 * must be checked but this error is handled separately.
6802 */
6803 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6804 dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6805 __func__);
6806
6807 /* Got a LINERESET indication. */
6808 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6809 struct uic_command *cmd = NULL;
6810
6811 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6812 if (hba->uic_async_done && hba->active_uic_cmd)
6813 cmd = hba->active_uic_cmd;
6814 /*
6815 * Ignore the LINERESET during power mode change
6816 * operation via DME_SET command.
6817 */
6818 if (cmd && (cmd->command == UIC_CMD_DME_SET))
6819 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6820 }
6821 retval |= IRQ_HANDLED;
6822 }
6823
6824 /* PA_INIT_ERROR is fatal and needs UIC reset */
6825 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6826 if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6827 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6828 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6829
6830 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6831 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6832 else if (hba->dev_quirks &
6833 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6834 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6835 hba->uic_error |=
6836 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6837 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6838 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6839 }
6840 retval |= IRQ_HANDLED;
6841 }
6842
6843 /* UIC NL/TL/DME errors needs software retry */
6844 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6845 if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6846 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6847 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6848 hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6849 retval |= IRQ_HANDLED;
6850 }
6851
6852 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6853 if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6854 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6855 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6856 hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6857 retval |= IRQ_HANDLED;
6858 }
6859
6860 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6861 if ((reg & UIC_DME_ERROR) &&
6862 (reg & UIC_DME_ERROR_CODE_MASK)) {
6863 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6864 hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6865 retval |= IRQ_HANDLED;
6866 }
6867
6868 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6869 __func__, hba->uic_error);
6870 return retval;
6871 }
6872
6873 /**
6874 * ufshcd_check_errors - Check for errors that need s/w attention
6875 * @hba: per-adapter instance
6876 * @intr_status: interrupt status generated by the controller
6877 *
6878 * Return:
6879 * IRQ_HANDLED - If interrupt is valid
6880 * IRQ_NONE - If invalid interrupt
6881 */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)6882 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6883 {
6884 bool queue_eh_work = false;
6885 irqreturn_t retval = IRQ_NONE;
6886
6887 spin_lock(hba->host->host_lock);
6888 hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6889
6890 if (hba->errors & INT_FATAL_ERRORS) {
6891 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6892 hba->errors);
6893 queue_eh_work = true;
6894 }
6895
6896 if (hba->errors & UIC_ERROR) {
6897 hba->uic_error = 0;
6898 retval = ufshcd_update_uic_error(hba);
6899 if (hba->uic_error)
6900 queue_eh_work = true;
6901 }
6902
6903 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6904 dev_err(hba->dev,
6905 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6906 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6907 "Enter" : "Exit",
6908 hba->errors, ufshcd_get_upmcrs(hba));
6909 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6910 hba->errors);
6911 ufshcd_set_link_broken(hba);
6912 queue_eh_work = true;
6913 }
6914
6915 if (queue_eh_work) {
6916 /*
6917 * update the transfer error masks to sticky bits, let's do this
6918 * irrespective of current ufshcd_state.
6919 */
6920 hba->saved_err |= hba->errors;
6921 hba->saved_uic_err |= hba->uic_error;
6922
6923 /* dump controller state before resetting */
6924 if ((hba->saved_err &
6925 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6926 (hba->saved_uic_err &&
6927 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6928 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6929 __func__, hba->saved_err,
6930 hba->saved_uic_err);
6931 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6932 "host_regs: ");
6933 ufshcd_print_pwr_info(hba);
6934 }
6935 ufshcd_schedule_eh_work(hba);
6936 retval |= IRQ_HANDLED;
6937 }
6938 /*
6939 * if (!queue_eh_work) -
6940 * Other errors are either non-fatal where host recovers
6941 * itself without s/w intervention or errors that will be
6942 * handled by the SCSI core layer.
6943 */
6944 hba->errors = 0;
6945 hba->uic_error = 0;
6946 spin_unlock(hba->host->host_lock);
6947 return retval;
6948 }
6949
6950 /**
6951 * ufshcd_tmc_handler - handle task management function completion
6952 * @hba: per adapter instance
6953 *
6954 * Return:
6955 * IRQ_HANDLED - If interrupt is valid
6956 * IRQ_NONE - If invalid interrupt
6957 */
ufshcd_tmc_handler(struct ufs_hba * hba)6958 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6959 {
6960 unsigned long flags, pending, issued;
6961 irqreturn_t ret = IRQ_NONE;
6962 int tag;
6963
6964 spin_lock_irqsave(hba->host->host_lock, flags);
6965 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6966 issued = hba->outstanding_tasks & ~pending;
6967 for_each_set_bit(tag, &issued, hba->nutmrs) {
6968 struct request *req = hba->tmf_rqs[tag];
6969 struct completion *c = req->end_io_data;
6970
6971 complete(c);
6972 ret = IRQ_HANDLED;
6973 }
6974 spin_unlock_irqrestore(hba->host->host_lock, flags);
6975
6976 return ret;
6977 }
6978
6979 /**
6980 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6981 * @hba: per adapter instance
6982 *
6983 * Return: IRQ_HANDLED if interrupt is handled.
6984 */
ufshcd_handle_mcq_cq_events(struct ufs_hba * hba)6985 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6986 {
6987 struct ufs_hw_queue *hwq;
6988 unsigned long outstanding_cqs;
6989 unsigned int nr_queues;
6990 int i, ret;
6991 u32 events;
6992
6993 ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6994 if (ret)
6995 outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6996
6997 /* Exclude the poll queues */
6998 nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6999 for_each_set_bit(i, &outstanding_cqs, nr_queues) {
7000 hwq = &hba->uhq[i];
7001
7002 events = ufshcd_mcq_read_cqis(hba, i);
7003 if (events)
7004 ufshcd_mcq_write_cqis(hba, events, i);
7005
7006 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
7007 ufshcd_mcq_poll_cqe_lock(hba, hwq);
7008 }
7009
7010 return IRQ_HANDLED;
7011 }
7012
7013 /**
7014 * ufshcd_sl_intr - Interrupt service routine
7015 * @hba: per adapter instance
7016 * @intr_status: contains interrupts generated by the controller
7017 *
7018 * Return:
7019 * IRQ_HANDLED - If interrupt is valid
7020 * IRQ_NONE - If invalid interrupt
7021 */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)7022 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
7023 {
7024 irqreturn_t retval = IRQ_NONE;
7025
7026 if (intr_status & UFSHCD_UIC_MASK)
7027 retval |= ufshcd_uic_cmd_compl(hba, intr_status);
7028
7029 if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
7030 retval |= ufshcd_check_errors(hba, intr_status);
7031
7032 if (intr_status & UTP_TASK_REQ_COMPL)
7033 retval |= ufshcd_tmc_handler(hba);
7034
7035 if (intr_status & UTP_TRANSFER_REQ_COMPL)
7036 retval |= ufshcd_transfer_req_compl(hba);
7037
7038 if (intr_status & MCQ_CQ_EVENT_STATUS)
7039 retval |= ufshcd_handle_mcq_cq_events(hba);
7040
7041 return retval;
7042 }
7043
7044 /**
7045 * ufshcd_threaded_intr - Threaded interrupt service routine
7046 * @irq: irq number
7047 * @__hba: pointer to adapter instance
7048 *
7049 * Return:
7050 * IRQ_HANDLED - If interrupt is valid
7051 * IRQ_NONE - If invalid interrupt
7052 */
ufshcd_threaded_intr(int irq,void * __hba)7053 static irqreturn_t ufshcd_threaded_intr(int irq, void *__hba)
7054 {
7055 u32 last_intr_status, intr_status, enabled_intr_status = 0;
7056 irqreturn_t retval = IRQ_NONE;
7057 struct ufs_hba *hba = __hba;
7058 int retries = hba->nutrs;
7059
7060 last_intr_status = intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7061
7062 /*
7063 * There could be max of hba->nutrs reqs in flight and in worst case
7064 * if the reqs get finished 1 by 1 after the interrupt status is
7065 * read, make sure we handle them by checking the interrupt status
7066 * again in a loop until we process all of the reqs before returning.
7067 */
7068 while (intr_status && retries--) {
7069 enabled_intr_status =
7070 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7071 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7072 if (enabled_intr_status)
7073 retval |= ufshcd_sl_intr(hba, enabled_intr_status);
7074
7075 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7076 }
7077
7078 if (enabled_intr_status && retval == IRQ_NONE &&
7079 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
7080 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
7081 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
7082 __func__,
7083 intr_status,
7084 last_intr_status,
7085 enabled_intr_status);
7086 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
7087 }
7088
7089 return retval;
7090 }
7091
7092 /**
7093 * ufshcd_intr - Main interrupt service routine
7094 * @irq: irq number
7095 * @__hba: pointer to adapter instance
7096 *
7097 * Return:
7098 * IRQ_HANDLED - If interrupt is valid
7099 * IRQ_WAKE_THREAD - If handling is moved to threaded handled
7100 * IRQ_NONE - If invalid interrupt
7101 */
ufshcd_intr(int irq,void * __hba)7102 static irqreturn_t ufshcd_intr(int irq, void *__hba)
7103 {
7104 struct ufs_hba *hba = __hba;
7105
7106 /* Move interrupt handling to thread when MCQ & ESI are not enabled */
7107 if (!hba->mcq_enabled || !hba->mcq_esi_enabled)
7108 return IRQ_WAKE_THREAD;
7109
7110 /* Directly handle interrupts since MCQ ESI handlers does the hard job */
7111 return ufshcd_sl_intr(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS) &
7112 ufshcd_readl(hba, REG_INTERRUPT_ENABLE));
7113 }
7114
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)7115 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
7116 {
7117 int err = 0;
7118 u32 mask = 1 << tag;
7119
7120 if (!test_bit(tag, &hba->outstanding_tasks))
7121 goto out;
7122
7123 ufshcd_utmrl_clear(hba, tag);
7124
7125 /* poll for max. 1 sec to clear door bell register by h/w */
7126 err = ufshcd_wait_for_register(hba,
7127 REG_UTP_TASK_REQ_DOOR_BELL,
7128 mask, 0, 1000, 1000);
7129
7130 dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7131 tag, err < 0 ? "failed" : "succeeded");
7132
7133 out:
7134 return err;
7135 }
7136
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)7137 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7138 struct utp_task_req_desc *treq, u8 tm_function)
7139 {
7140 struct request_queue *q = hba->tmf_queue;
7141 struct Scsi_Host *host = hba->host;
7142 DECLARE_COMPLETION_ONSTACK(wait);
7143 struct request *req;
7144 unsigned long flags;
7145 int task_tag, err;
7146
7147 /*
7148 * blk_mq_alloc_request() is used here only to get a free tag.
7149 */
7150 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7151 if (IS_ERR(req))
7152 return PTR_ERR(req);
7153
7154 req->end_io_data = &wait;
7155 ufshcd_hold(hba);
7156
7157 spin_lock_irqsave(host->host_lock, flags);
7158
7159 task_tag = req->tag;
7160 hba->tmf_rqs[req->tag] = req;
7161 treq->upiu_req.req_header.task_tag = task_tag;
7162
7163 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7164 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7165
7166 __set_bit(task_tag, &hba->outstanding_tasks);
7167
7168 spin_unlock_irqrestore(host->host_lock, flags);
7169
7170 /* send command to the controller */
7171 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7172
7173 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7174
7175 /* wait until the task management command is completed */
7176 err = wait_for_completion_io_timeout(&wait,
7177 msecs_to_jiffies(TM_CMD_TIMEOUT));
7178 if (!err) {
7179 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7180 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7181 __func__, tm_function);
7182 if (ufshcd_clear_tm_cmd(hba, task_tag))
7183 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7184 __func__, task_tag);
7185 err = -ETIMEDOUT;
7186 } else {
7187 err = 0;
7188 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7189
7190 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7191 }
7192
7193 spin_lock_irqsave(hba->host->host_lock, flags);
7194 hba->tmf_rqs[req->tag] = NULL;
7195 __clear_bit(task_tag, &hba->outstanding_tasks);
7196 spin_unlock_irqrestore(hba->host->host_lock, flags);
7197
7198 ufshcd_release(hba);
7199 blk_mq_free_request(req);
7200
7201 return err;
7202 }
7203
7204 /**
7205 * ufshcd_issue_tm_cmd - issues task management commands to controller
7206 * @hba: per adapter instance
7207 * @lun_id: LUN ID to which TM command is sent
7208 * @task_id: task ID to which the TM command is applicable
7209 * @tm_function: task management function opcode
7210 * @tm_response: task management service response return value
7211 *
7212 * Return: non-zero value on error, zero on success.
7213 */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)7214 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7215 u8 tm_function, u8 *tm_response)
7216 {
7217 struct utp_task_req_desc treq = { };
7218 enum utp_ocs ocs_value;
7219 int err;
7220
7221 /* Configure task request descriptor */
7222 treq.header.interrupt = 1;
7223 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7224
7225 /* Configure task request UPIU */
7226 treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7227 treq.upiu_req.req_header.lun = lun_id;
7228 treq.upiu_req.req_header.tm_function = tm_function;
7229
7230 /*
7231 * The host shall provide the same value for LUN field in the basic
7232 * header and for Input Parameter.
7233 */
7234 treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7235 treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7236
7237 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7238 if (err == -ETIMEDOUT)
7239 return err;
7240
7241 ocs_value = treq.header.ocs & MASK_OCS;
7242 if (ocs_value != OCS_SUCCESS)
7243 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7244 __func__, ocs_value);
7245 else if (tm_response)
7246 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7247 MASK_TM_SERVICE_RESP;
7248 return err;
7249 }
7250
7251 /**
7252 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7253 * @hba: per-adapter instance
7254 * @req_upiu: upiu request
7255 * @rsp_upiu: upiu reply
7256 * @desc_buff: pointer to descriptor buffer, NULL if NA
7257 * @buff_len: descriptor size, 0 if NA
7258 * @cmd_type: specifies the type (NOP, Query...)
7259 * @desc_op: descriptor operation
7260 *
7261 * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7262 * Therefore, it "rides" the device management infrastructure: uses its tag and
7263 * tasks work queues.
7264 *
7265 * Since there is only one available tag for device management commands,
7266 * the caller is expected to hold the hba->dev_cmd.lock mutex.
7267 *
7268 * Return: 0 upon success; < 0 upon failure.
7269 */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)7270 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7271 struct utp_upiu_req *req_upiu,
7272 struct utp_upiu_req *rsp_upiu,
7273 u8 *desc_buff, int *buff_len,
7274 enum dev_cmd_type cmd_type,
7275 enum query_opcode desc_op)
7276 {
7277 const u32 tag = hba->reserved_slot;
7278 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7279 int err = 0;
7280 u8 upiu_flags;
7281
7282 /* Protects use of hba->reserved_slot. */
7283 lockdep_assert_held(&hba->dev_cmd.lock);
7284
7285 ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
7286
7287 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7288
7289 /* update the task tag in the request upiu */
7290 req_upiu->header.task_tag = tag;
7291
7292 /* just copy the upiu request as it is */
7293 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7294 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7295 /* The Data Segment Area is optional depending upon the query
7296 * function value. for WRITE DESCRIPTOR, the data segment
7297 * follows right after the tsf.
7298 */
7299 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7300 *buff_len = 0;
7301 }
7302
7303 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7304
7305 /*
7306 * ignore the returning value here - ufshcd_check_query_response is
7307 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7308 * read the response directly ignoring all errors.
7309 */
7310 ufshcd_issue_dev_cmd(hba, lrbp, tag, dev_cmd_timeout);
7311
7312 /* just copy the upiu response as it is */
7313 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7314 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7315 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7316 u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7317 .data_segment_length);
7318
7319 if (*buff_len >= resp_len) {
7320 memcpy(desc_buff, descp, resp_len);
7321 *buff_len = resp_len;
7322 } else {
7323 dev_warn(hba->dev,
7324 "%s: rsp size %d is bigger than buffer size %d",
7325 __func__, resp_len, *buff_len);
7326 *buff_len = 0;
7327 err = -EINVAL;
7328 }
7329 }
7330
7331 return err;
7332 }
7333
7334 /**
7335 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7336 * @hba: per-adapter instance
7337 * @req_upiu: upiu request
7338 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands
7339 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target
7340 * @desc_buff: pointer to descriptor buffer, NULL if NA
7341 * @buff_len: descriptor size, 0 if NA
7342 * @desc_op: descriptor operation
7343 *
7344 * Supports UTP Transfer requests (nop and query), and UTP Task
7345 * Management requests.
7346 * It is up to the caller to fill the upiu conent properly, as it will
7347 * be copied without any further input validations.
7348 *
7349 * Return: 0 upon success; < 0 upon failure.
7350 */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,enum upiu_request_transaction msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)7351 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7352 struct utp_upiu_req *req_upiu,
7353 struct utp_upiu_req *rsp_upiu,
7354 enum upiu_request_transaction msgcode,
7355 u8 *desc_buff, int *buff_len,
7356 enum query_opcode desc_op)
7357 {
7358 int err;
7359 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7360 struct utp_task_req_desc treq = { };
7361 enum utp_ocs ocs_value;
7362 u8 tm_f = req_upiu->header.tm_function;
7363
7364 switch (msgcode) {
7365 case UPIU_TRANSACTION_NOP_OUT:
7366 cmd_type = DEV_CMD_TYPE_NOP;
7367 fallthrough;
7368 case UPIU_TRANSACTION_QUERY_REQ:
7369 ufshcd_dev_man_lock(hba);
7370 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7371 desc_buff, buff_len,
7372 cmd_type, desc_op);
7373 ufshcd_dev_man_unlock(hba);
7374
7375 break;
7376 case UPIU_TRANSACTION_TASK_REQ:
7377 treq.header.interrupt = 1;
7378 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7379
7380 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7381
7382 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7383 if (err == -ETIMEDOUT)
7384 break;
7385
7386 ocs_value = treq.header.ocs & MASK_OCS;
7387 if (ocs_value != OCS_SUCCESS) {
7388 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7389 ocs_value);
7390 break;
7391 }
7392
7393 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7394
7395 break;
7396 default:
7397 err = -EINVAL;
7398
7399 break;
7400 }
7401
7402 return err;
7403 }
7404
7405 /**
7406 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7407 * @hba: per adapter instance
7408 * @req_upiu: upiu request
7409 * @rsp_upiu: upiu reply
7410 * @req_ehs: EHS field which contains Advanced RPMB Request Message
7411 * @rsp_ehs: EHS field which returns Advanced RPMB Response Message
7412 * @sg_cnt: The number of sg lists actually used
7413 * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7414 * @dir: DMA direction
7415 *
7416 * Return: zero on success, non-zero on failure.
7417 */
ufshcd_advanced_rpmb_req_handler(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,struct ufs_ehs * req_ehs,struct ufs_ehs * rsp_ehs,int sg_cnt,struct scatterlist * sg_list,enum dma_data_direction dir)7418 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7419 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7420 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7421 enum dma_data_direction dir)
7422 {
7423 const u32 tag = hba->reserved_slot;
7424 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7425 int err = 0;
7426 int result;
7427 u8 upiu_flags;
7428 u8 *ehs_data;
7429 u16 ehs_len;
7430 int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7431
7432 /* Protects use of hba->reserved_slot. */
7433 ufshcd_dev_man_lock(hba);
7434
7435 ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag);
7436
7437 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7438
7439 /* update the task tag */
7440 req_upiu->header.task_tag = tag;
7441
7442 /* copy the UPIU(contains CDB) request as it is */
7443 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7444 /* Copy EHS, starting with byte32, immediately after the CDB package */
7445 memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7446
7447 if (dir != DMA_NONE && sg_list)
7448 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7449
7450 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7451
7452 err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7453
7454 if (!err) {
7455 /* Just copy the upiu response as it is */
7456 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7457 /* Get the response UPIU result */
7458 result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7459 lrbp->ucd_rsp_ptr->header.status;
7460
7461 ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7462 /*
7463 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7464 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7465 * Message is 02h
7466 */
7467 if (ehs_len == 2 && rsp_ehs) {
7468 /*
7469 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7470 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7471 */
7472 ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7473 memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7474 }
7475 }
7476
7477 ufshcd_dev_man_unlock(hba);
7478
7479 return err ? : result;
7480 }
7481
7482 /**
7483 * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7484 * @cmd: SCSI command pointer
7485 *
7486 * Return: SUCCESS or FAILED.
7487 */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)7488 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7489 {
7490 unsigned long flags, pending_reqs = 0, not_cleared = 0;
7491 struct Scsi_Host *host;
7492 struct ufs_hba *hba;
7493 struct ufs_hw_queue *hwq;
7494 struct ufshcd_lrb *lrbp;
7495 u32 pos, not_cleared_mask = 0;
7496 int err;
7497 u8 resp = 0xF, lun;
7498
7499 host = cmd->device->host;
7500 hba = shost_priv(host);
7501
7502 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7503 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7504 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7505 if (!err)
7506 err = resp;
7507 goto out;
7508 }
7509
7510 if (hba->mcq_enabled) {
7511 for (pos = 0; pos < hba->nutrs; pos++) {
7512 lrbp = &hba->lrb[pos];
7513 if (ufshcd_cmd_inflight(lrbp->cmd) &&
7514 lrbp->lun == lun) {
7515 ufshcd_clear_cmd(hba, pos);
7516 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7517 ufshcd_mcq_poll_cqe_lock(hba, hwq);
7518 }
7519 }
7520 err = 0;
7521 goto out;
7522 }
7523
7524 /* clear the commands that were pending for corresponding LUN */
7525 spin_lock_irqsave(&hba->outstanding_lock, flags);
7526 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7527 if (hba->lrb[pos].lun == lun)
7528 __set_bit(pos, &pending_reqs);
7529 hba->outstanding_reqs &= ~pending_reqs;
7530 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7531
7532 for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7533 if (ufshcd_clear_cmd(hba, pos) < 0) {
7534 spin_lock_irqsave(&hba->outstanding_lock, flags);
7535 not_cleared = 1U << pos &
7536 ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7537 hba->outstanding_reqs |= not_cleared;
7538 not_cleared_mask |= not_cleared;
7539 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7540
7541 dev_err(hba->dev, "%s: failed to clear request %d\n",
7542 __func__, pos);
7543 }
7544 }
7545 __ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7546
7547 out:
7548 hba->req_abort_count = 0;
7549 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7550 if (!err) {
7551 err = SUCCESS;
7552 } else {
7553 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7554 err = FAILED;
7555 }
7556 return err;
7557 }
7558
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)7559 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7560 {
7561 struct ufshcd_lrb *lrbp;
7562 int tag;
7563
7564 for_each_set_bit(tag, &bitmap, hba->nutrs) {
7565 lrbp = &hba->lrb[tag];
7566 lrbp->req_abort_skip = true;
7567 }
7568 }
7569
7570 /**
7571 * ufshcd_try_to_abort_task - abort a specific task
7572 * @hba: Pointer to adapter instance
7573 * @tag: Task tag/index to be aborted
7574 *
7575 * Abort the pending command in device by sending UFS_ABORT_TASK task management
7576 * command, and in host controller by clearing the door-bell register. There can
7577 * be race between controller sending the command to the device while abort is
7578 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7579 * really issued and then try to abort it.
7580 *
7581 * Return: zero on success, non-zero on failure.
7582 */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)7583 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7584 {
7585 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7586 int err;
7587 int poll_cnt;
7588 u8 resp = 0xF;
7589
7590 for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7591 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7592 UFS_QUERY_TASK, &resp);
7593 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7594 /* cmd pending in the device */
7595 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7596 __func__, tag);
7597 break;
7598 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7599 /*
7600 * cmd not pending in the device, check if it is
7601 * in transition.
7602 */
7603 dev_info(
7604 hba->dev,
7605 "%s: cmd with tag %d not pending in the device.\n",
7606 __func__, tag);
7607 if (!ufshcd_cmd_inflight(lrbp->cmd)) {
7608 dev_info(hba->dev,
7609 "%s: cmd with tag=%d completed.\n",
7610 __func__, tag);
7611 return 0;
7612 }
7613 usleep_range(100, 200);
7614 } else {
7615 dev_err(hba->dev,
7616 "%s: no response from device. tag = %d, err %d\n",
7617 __func__, tag, err);
7618 return err ? : resp;
7619 }
7620 }
7621
7622 if (!poll_cnt)
7623 return -EBUSY;
7624
7625 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7626 UFS_ABORT_TASK, &resp);
7627 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7628 if (!err) {
7629 err = resp; /* service response error */
7630 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7631 __func__, tag, err);
7632 }
7633 return err;
7634 }
7635
7636 err = ufshcd_clear_cmd(hba, tag);
7637 if (err)
7638 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7639 __func__, tag, err);
7640
7641 return err;
7642 }
7643
7644 /**
7645 * ufshcd_abort - scsi host template eh_abort_handler callback
7646 * @cmd: SCSI command pointer
7647 *
7648 * Return: SUCCESS or FAILED.
7649 */
ufshcd_abort(struct scsi_cmnd * cmd)7650 static int ufshcd_abort(struct scsi_cmnd *cmd)
7651 {
7652 struct Scsi_Host *host = cmd->device->host;
7653 struct ufs_hba *hba = shost_priv(host);
7654 int tag = scsi_cmd_to_rq(cmd)->tag;
7655 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7656 unsigned long flags;
7657 int err = FAILED;
7658 bool outstanding;
7659 u32 reg;
7660
7661 ufshcd_hold(hba);
7662
7663 if (!hba->mcq_enabled) {
7664 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7665 if (!test_bit(tag, &hba->outstanding_reqs)) {
7666 /* If command is already aborted/completed, return FAILED. */
7667 dev_err(hba->dev,
7668 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7669 __func__, tag, hba->outstanding_reqs, reg);
7670 goto release;
7671 }
7672 }
7673
7674 /* Print Transfer Request of aborted task */
7675 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7676
7677 /*
7678 * Print detailed info about aborted request.
7679 * As more than one request might get aborted at the same time,
7680 * print full information only for the first aborted request in order
7681 * to reduce repeated printouts. For other aborted requests only print
7682 * basic details.
7683 */
7684 scsi_print_command(cmd);
7685 if (!hba->req_abort_count) {
7686 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7687 ufshcd_print_evt_hist(hba);
7688 ufshcd_print_host_state(hba);
7689 ufshcd_print_pwr_info(hba);
7690 ufshcd_print_tr(hba, tag, true);
7691 } else {
7692 ufshcd_print_tr(hba, tag, false);
7693 }
7694 hba->req_abort_count++;
7695
7696 if (!hba->mcq_enabled && !(reg & (1 << tag))) {
7697 /* only execute this code in single doorbell mode */
7698 dev_err(hba->dev,
7699 "%s: cmd was completed, but without a notifying intr, tag = %d",
7700 __func__, tag);
7701 __ufshcd_transfer_req_compl(hba, 1UL << tag);
7702 goto release;
7703 }
7704
7705 /*
7706 * Task abort to the device W-LUN is illegal. When this command
7707 * will fail, due to spec violation, scsi err handling next step
7708 * will be to send LU reset which, again, is a spec violation.
7709 * To avoid these unnecessary/illegal steps, first we clean up
7710 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7711 * then queue the eh_work and bail.
7712 */
7713 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7714 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7715
7716 spin_lock_irqsave(host->host_lock, flags);
7717 hba->force_reset = true;
7718 ufshcd_schedule_eh_work(hba);
7719 spin_unlock_irqrestore(host->host_lock, flags);
7720 goto release;
7721 }
7722
7723 if (hba->mcq_enabled) {
7724 /* MCQ mode. Branch off to handle abort for mcq mode */
7725 err = ufshcd_mcq_abort(cmd);
7726 goto release;
7727 }
7728
7729 /* Skip task abort in case previous aborts failed and report failure */
7730 if (lrbp->req_abort_skip) {
7731 dev_err(hba->dev, "%s: skipping abort\n", __func__);
7732 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7733 goto release;
7734 }
7735
7736 err = ufshcd_try_to_abort_task(hba, tag);
7737 if (err) {
7738 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7739 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7740 err = FAILED;
7741 goto release;
7742 }
7743
7744 /*
7745 * Clear the corresponding bit from outstanding_reqs since the command
7746 * has been aborted successfully.
7747 */
7748 spin_lock_irqsave(&hba->outstanding_lock, flags);
7749 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7750 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7751
7752 if (outstanding)
7753 ufshcd_release_scsi_cmd(hba, lrbp);
7754
7755 err = SUCCESS;
7756
7757 release:
7758 /* Matches the ufshcd_hold() call at the start of this function. */
7759 ufshcd_release(hba);
7760 return err;
7761 }
7762
7763 /**
7764 * ufshcd_process_probe_result - Process the ufshcd_probe_hba() result.
7765 * @hba: UFS host controller instance.
7766 * @probe_start: time when the ufshcd_probe_hba() call started.
7767 * @ret: ufshcd_probe_hba() return value.
7768 */
ufshcd_process_probe_result(struct ufs_hba * hba,ktime_t probe_start,int ret)7769 static void ufshcd_process_probe_result(struct ufs_hba *hba,
7770 ktime_t probe_start, int ret)
7771 {
7772 unsigned long flags;
7773
7774 spin_lock_irqsave(hba->host->host_lock, flags);
7775 if (ret)
7776 hba->ufshcd_state = UFSHCD_STATE_ERROR;
7777 else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7778 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7779 spin_unlock_irqrestore(hba->host->host_lock, flags);
7780
7781 trace_ufshcd_init(hba, ret,
7782 ktime_to_us(ktime_sub(ktime_get(), probe_start)),
7783 hba->curr_dev_pwr_mode, hba->uic_link_state);
7784 }
7785
7786 /**
7787 * ufshcd_host_reset_and_restore - reset and restore host controller
7788 * @hba: per-adapter instance
7789 *
7790 * Note that host controller reset may issue DME_RESET to
7791 * local and remote (device) Uni-Pro stack and the attributes
7792 * are reset to default state.
7793 *
7794 * Return: zero on success, non-zero on failure.
7795 */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7796 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7797 {
7798 int err;
7799
7800 /*
7801 * Stop the host controller and complete the requests
7802 * cleared by h/w
7803 */
7804 ufshcd_hba_stop(hba);
7805 hba->silence_err_logs = true;
7806 ufshcd_complete_requests(hba, true);
7807 hba->silence_err_logs = false;
7808
7809 /* scale up clocks to max frequency before full reinitialization */
7810 if (ufshcd_is_clkscaling_supported(hba))
7811 ufshcd_scale_clks(hba, ULONG_MAX, true);
7812
7813 err = ufshcd_hba_enable(hba);
7814
7815 /* Establish the link again and restore the device */
7816 if (!err) {
7817 ktime_t probe_start = ktime_get();
7818
7819 err = ufshcd_device_init(hba, /*init_dev_params=*/false);
7820 if (!err)
7821 err = ufshcd_probe_hba(hba, false);
7822 ufshcd_process_probe_result(hba, probe_start, err);
7823 }
7824
7825 if (err)
7826 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7827 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7828 return err;
7829 }
7830
7831 /**
7832 * ufshcd_reset_and_restore - reset and re-initialize host/device
7833 * @hba: per-adapter instance
7834 *
7835 * Reset and recover device, host and re-establish link. This
7836 * is helpful to recover the communication in fatal error conditions.
7837 *
7838 * Return: zero on success, non-zero on failure.
7839 */
ufshcd_reset_and_restore(struct ufs_hba * hba)7840 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7841 {
7842 u32 saved_err = 0;
7843 u32 saved_uic_err = 0;
7844 int err = 0;
7845 unsigned long flags;
7846 int retries = MAX_HOST_RESET_RETRIES;
7847
7848 spin_lock_irqsave(hba->host->host_lock, flags);
7849 do {
7850 /*
7851 * This is a fresh start, cache and clear saved error first,
7852 * in case new error generated during reset and restore.
7853 */
7854 saved_err |= hba->saved_err;
7855 saved_uic_err |= hba->saved_uic_err;
7856 hba->saved_err = 0;
7857 hba->saved_uic_err = 0;
7858 hba->force_reset = false;
7859 hba->ufshcd_state = UFSHCD_STATE_RESET;
7860 spin_unlock_irqrestore(hba->host->host_lock, flags);
7861
7862 /* Reset the attached device */
7863 ufshcd_device_reset(hba);
7864
7865 err = ufshcd_host_reset_and_restore(hba);
7866
7867 spin_lock_irqsave(hba->host->host_lock, flags);
7868 if (err)
7869 continue;
7870 /* Do not exit unless operational or dead */
7871 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7872 hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7873 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7874 err = -EAGAIN;
7875 } while (err && --retries);
7876
7877 /*
7878 * Inform scsi mid-layer that we did reset and allow to handle
7879 * Unit Attention properly.
7880 */
7881 scsi_report_bus_reset(hba->host, 0);
7882 if (err) {
7883 hba->ufshcd_state = UFSHCD_STATE_ERROR;
7884 hba->saved_err |= saved_err;
7885 hba->saved_uic_err |= saved_uic_err;
7886 }
7887 spin_unlock_irqrestore(hba->host->host_lock, flags);
7888
7889 return err;
7890 }
7891
7892 /**
7893 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7894 * @cmd: SCSI command pointer
7895 *
7896 * Return: SUCCESS or FAILED.
7897 */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)7898 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7899 {
7900 int err = SUCCESS;
7901 unsigned long flags;
7902 struct ufs_hba *hba;
7903
7904 hba = shost_priv(cmd->device->host);
7905
7906 /*
7907 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7908 * stuck in this function waiting for flush_work(&hba->eh_work). And
7909 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7910 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7911 */
7912 if (hba->pm_op_in_progress) {
7913 if (ufshcd_link_recovery(hba))
7914 err = FAILED;
7915
7916 return err;
7917 }
7918
7919 spin_lock_irqsave(hba->host->host_lock, flags);
7920 hba->force_reset = true;
7921 ufshcd_schedule_eh_work(hba);
7922 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7923 spin_unlock_irqrestore(hba->host->host_lock, flags);
7924
7925 flush_work(&hba->eh_work);
7926
7927 spin_lock_irqsave(hba->host->host_lock, flags);
7928 if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7929 err = FAILED;
7930 spin_unlock_irqrestore(hba->host->host_lock, flags);
7931
7932 return err;
7933 }
7934
7935 /**
7936 * ufshcd_get_max_icc_level - calculate the ICC level
7937 * @sup_curr_uA: max. current supported by the regulator
7938 * @start_scan: row at the desc table to start scan from
7939 * @buff: power descriptor buffer
7940 *
7941 * Return: calculated max ICC level for specific regulator.
7942 */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,const char * buff)7943 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7944 const char *buff)
7945 {
7946 int i;
7947 int curr_uA;
7948 u16 data;
7949 u16 unit;
7950
7951 for (i = start_scan; i >= 0; i--) {
7952 data = get_unaligned_be16(&buff[2 * i]);
7953 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7954 ATTR_ICC_LVL_UNIT_OFFSET;
7955 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7956 switch (unit) {
7957 case UFSHCD_NANO_AMP:
7958 curr_uA = curr_uA / 1000;
7959 break;
7960 case UFSHCD_MILI_AMP:
7961 curr_uA = curr_uA * 1000;
7962 break;
7963 case UFSHCD_AMP:
7964 curr_uA = curr_uA * 1000 * 1000;
7965 break;
7966 case UFSHCD_MICRO_AMP:
7967 default:
7968 break;
7969 }
7970 if (sup_curr_uA >= curr_uA)
7971 break;
7972 }
7973 if (i < 0) {
7974 i = 0;
7975 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7976 }
7977
7978 return (u32)i;
7979 }
7980
7981 /**
7982 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7983 * In case regulators are not initialized we'll return 0
7984 * @hba: per-adapter instance
7985 * @desc_buf: power descriptor buffer to extract ICC levels from.
7986 *
7987 * Return: calculated ICC level.
7988 */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,const u8 * desc_buf)7989 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7990 const u8 *desc_buf)
7991 {
7992 u32 icc_level = 0;
7993
7994 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7995 !hba->vreg_info.vccq2) {
7996 /*
7997 * Using dev_dbg to avoid messages during runtime PM to avoid
7998 * never-ending cycles of messages written back to storage by
7999 * user space causing runtime resume, causing more messages and
8000 * so on.
8001 */
8002 dev_dbg(hba->dev,
8003 "%s: Regulator capability was not set, actvIccLevel=%d",
8004 __func__, icc_level);
8005 goto out;
8006 }
8007
8008 if (hba->vreg_info.vcc->max_uA)
8009 icc_level = ufshcd_get_max_icc_level(
8010 hba->vreg_info.vcc->max_uA,
8011 POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
8012 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
8013
8014 if (hba->vreg_info.vccq->max_uA)
8015 icc_level = ufshcd_get_max_icc_level(
8016 hba->vreg_info.vccq->max_uA,
8017 icc_level,
8018 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
8019
8020 if (hba->vreg_info.vccq2->max_uA)
8021 icc_level = ufshcd_get_max_icc_level(
8022 hba->vreg_info.vccq2->max_uA,
8023 icc_level,
8024 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
8025 out:
8026 return icc_level;
8027 }
8028
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)8029 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
8030 {
8031 int ret;
8032 u8 *desc_buf;
8033 u32 icc_level;
8034
8035 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8036 if (!desc_buf)
8037 return;
8038
8039 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
8040 desc_buf, QUERY_DESC_MAX_SIZE);
8041 if (ret) {
8042 dev_err(hba->dev,
8043 "%s: Failed reading power descriptor ret = %d",
8044 __func__, ret);
8045 goto out;
8046 }
8047
8048 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
8049 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
8050
8051 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8052 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
8053
8054 if (ret)
8055 dev_err(hba->dev,
8056 "%s: Failed configuring bActiveICCLevel = %d ret = %d",
8057 __func__, icc_level, ret);
8058
8059 out:
8060 kfree(desc_buf);
8061 }
8062
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)8063 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
8064 {
8065 struct Scsi_Host *shost = sdev->host;
8066
8067 scsi_autopm_get_device(sdev);
8068 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
8069 if (sdev->rpm_autosuspend)
8070 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
8071 shost->rpm_autosuspend_delay);
8072 scsi_autopm_put_device(sdev);
8073 }
8074
8075 /**
8076 * ufshcd_scsi_add_wlus - Adds required W-LUs
8077 * @hba: per-adapter instance
8078 *
8079 * UFS device specification requires the UFS devices to support 4 well known
8080 * logical units:
8081 * "REPORT_LUNS" (address: 01h)
8082 * "UFS Device" (address: 50h)
8083 * "RPMB" (address: 44h)
8084 * "BOOT" (address: 30h)
8085 * UFS device's power management needs to be controlled by "POWER CONDITION"
8086 * field of SSU (START STOP UNIT) command. But this "power condition" field
8087 * will take effect only when its sent to "UFS device" well known logical unit
8088 * hence we require the scsi_device instance to represent this logical unit in
8089 * order for the UFS host driver to send the SSU command for power management.
8090 *
8091 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
8092 * Block) LU so user space process can control this LU. User space may also
8093 * want to have access to BOOT LU.
8094 *
8095 * This function adds scsi device instances for each of all well known LUs
8096 * (except "REPORT LUNS" LU).
8097 *
8098 * Return: zero on success (all required W-LUs are added successfully),
8099 * non-zero error value on failure (if failed to add any of the required W-LU).
8100 */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)8101 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8102 {
8103 int ret = 0;
8104 struct scsi_device *sdev_boot, *sdev_rpmb;
8105
8106 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8107 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8108 if (IS_ERR(hba->ufs_device_wlun)) {
8109 ret = PTR_ERR(hba->ufs_device_wlun);
8110 hba->ufs_device_wlun = NULL;
8111 goto out;
8112 }
8113 scsi_device_put(hba->ufs_device_wlun);
8114
8115 sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8116 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8117 if (IS_ERR(sdev_rpmb)) {
8118 ret = PTR_ERR(sdev_rpmb);
8119 goto remove_ufs_device_wlun;
8120 }
8121 ufshcd_blk_pm_runtime_init(sdev_rpmb);
8122 scsi_device_put(sdev_rpmb);
8123
8124 sdev_boot = __scsi_add_device(hba->host, 0, 0,
8125 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8126 if (IS_ERR(sdev_boot)) {
8127 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8128 } else {
8129 ufshcd_blk_pm_runtime_init(sdev_boot);
8130 scsi_device_put(sdev_boot);
8131 }
8132 goto out;
8133
8134 remove_ufs_device_wlun:
8135 scsi_remove_device(hba->ufs_device_wlun);
8136 out:
8137 return ret;
8138 }
8139
ufshcd_wb_probe(struct ufs_hba * hba,const u8 * desc_buf)8140 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8141 {
8142 struct ufs_dev_info *dev_info = &hba->dev_info;
8143 u8 lun;
8144 u32 d_lu_wb_buf_alloc;
8145 u32 ext_ufs_feature;
8146
8147 if (!ufshcd_is_wb_allowed(hba))
8148 return;
8149
8150 /*
8151 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8152 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8153 * enabled
8154 */
8155 if (!(dev_info->wspecversion >= 0x310 ||
8156 dev_info->wspecversion == 0x220 ||
8157 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8158 goto wb_disabled;
8159
8160 ext_ufs_feature = get_unaligned_be32(desc_buf +
8161 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8162
8163 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8164 goto wb_disabled;
8165
8166 /*
8167 * WB may be supported but not configured while provisioning. The spec
8168 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8169 * buffer configured.
8170 */
8171 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8172
8173 dev_info->ext_wb_sup = get_unaligned_be16(desc_buf +
8174 DEVICE_DESC_PARAM_EXT_WB_SUP);
8175
8176 dev_info->b_presrv_uspc_en =
8177 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8178
8179 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8180 if (!get_unaligned_be32(desc_buf +
8181 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8182 goto wb_disabled;
8183 } else {
8184 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8185 d_lu_wb_buf_alloc = 0;
8186 ufshcd_read_unit_desc_param(hba,
8187 lun,
8188 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8189 (u8 *)&d_lu_wb_buf_alloc,
8190 sizeof(d_lu_wb_buf_alloc));
8191 if (d_lu_wb_buf_alloc) {
8192 dev_info->wb_dedicated_lu = lun;
8193 break;
8194 }
8195 }
8196
8197 if (!d_lu_wb_buf_alloc)
8198 goto wb_disabled;
8199 }
8200
8201 if (!ufshcd_is_wb_buf_lifetime_available(hba))
8202 goto wb_disabled;
8203
8204 return;
8205
8206 wb_disabled:
8207 hba->caps &= ~UFSHCD_CAP_WB_EN;
8208 }
8209
ufshcd_temp_notif_probe(struct ufs_hba * hba,const u8 * desc_buf)8210 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8211 {
8212 struct ufs_dev_info *dev_info = &hba->dev_info;
8213 u32 ext_ufs_feature;
8214 u8 mask = 0;
8215
8216 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8217 return;
8218
8219 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8220
8221 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8222 mask |= MASK_EE_TOO_LOW_TEMP;
8223
8224 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8225 mask |= MASK_EE_TOO_HIGH_TEMP;
8226
8227 if (mask) {
8228 ufshcd_enable_ee(hba, mask);
8229 ufs_hwmon_probe(hba, mask);
8230 }
8231 }
8232
ufshcd_device_lvl_exception_probe(struct ufs_hba * hba,u8 * desc_buf)8233 static void ufshcd_device_lvl_exception_probe(struct ufs_hba *hba, u8 *desc_buf)
8234 {
8235 u32 ext_ufs_feature;
8236
8237 if (hba->dev_info.wspecversion < 0x410)
8238 return;
8239
8240 ext_ufs_feature = get_unaligned_be32(desc_buf +
8241 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8242 if (!(ext_ufs_feature & UFS_DEV_LVL_EXCEPTION_SUP))
8243 return;
8244
8245 atomic_set(&hba->dev_lvl_exception_count, 0);
8246 ufshcd_enable_ee(hba, MASK_EE_DEV_LVL_EXCEPTION);
8247 }
8248
ufshcd_set_rtt(struct ufs_hba * hba)8249 static void ufshcd_set_rtt(struct ufs_hba *hba)
8250 {
8251 struct ufs_dev_info *dev_info = &hba->dev_info;
8252 u32 rtt = 0;
8253 u32 dev_rtt = 0;
8254 int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ?
8255 hba->vops->max_num_rtt : hba->nortt;
8256
8257 /* RTT override makes sense only for UFS-4.0 and above */
8258 if (dev_info->wspecversion < 0x400)
8259 return;
8260
8261 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8262 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) {
8263 dev_err(hba->dev, "failed reading bMaxNumOfRTT\n");
8264 return;
8265 }
8266
8267 /* do not override if it was already written */
8268 if (dev_rtt != DEFAULT_MAX_NUM_RTT)
8269 return;
8270
8271 rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap);
8272
8273 if (rtt == dev_rtt)
8274 return;
8275
8276 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8277 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt))
8278 dev_err(hba->dev, "failed writing bMaxNumOfRTT\n");
8279 }
8280
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,const struct ufs_dev_quirk * fixups)8281 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8282 const struct ufs_dev_quirk *fixups)
8283 {
8284 const struct ufs_dev_quirk *f;
8285 struct ufs_dev_info *dev_info = &hba->dev_info;
8286
8287 if (!fixups)
8288 return;
8289
8290 for (f = fixups; f->quirk; f++) {
8291 if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8292 f->wmanufacturerid == UFS_ANY_VENDOR) &&
8293 ((dev_info->model &&
8294 STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8295 !strcmp(f->model, UFS_ANY_MODEL)))
8296 hba->dev_quirks |= f->quirk;
8297 }
8298 }
8299 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8300
ufs_fixup_device_setup(struct ufs_hba * hba)8301 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8302 {
8303 /* fix by general quirk table */
8304 ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8305
8306 /* allow vendors to fix quirks */
8307 ufshcd_vops_fixup_dev_quirks(hba);
8308 }
8309
ufshcd_update_rtc(struct ufs_hba * hba)8310 static void ufshcd_update_rtc(struct ufs_hba *hba)
8311 {
8312 struct timespec64 ts64;
8313 int err;
8314 u32 val;
8315
8316 ktime_get_real_ts64(&ts64);
8317
8318 if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8319 dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8320 return;
8321 }
8322
8323 /*
8324 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8325 * 2146 is required, it is recommended to choose the relative RTC mode.
8326 */
8327 val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8328
8329 /* Skip update RTC if RPM state is not RPM_ACTIVE */
8330 if (ufshcd_rpm_get_if_active(hba) <= 0)
8331 return;
8332
8333 err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8334 0, 0, &val);
8335 ufshcd_rpm_put(hba);
8336
8337 if (err)
8338 dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8339 else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8340 hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8341 }
8342
ufshcd_rtc_work(struct work_struct * work)8343 static void ufshcd_rtc_work(struct work_struct *work)
8344 {
8345 struct ufs_hba *hba;
8346
8347 hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8348
8349 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8350 if (!ufshcd_is_ufs_dev_busy(hba) &&
8351 hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL &&
8352 !hba->clk_gating.active_reqs)
8353 ufshcd_update_rtc(hba);
8354
8355 if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8356 schedule_delayed_work(&hba->ufs_rtc_update_work,
8357 msecs_to_jiffies(hba->dev_info.rtc_update_period));
8358 }
8359
ufs_init_rtc(struct ufs_hba * hba,u8 * desc_buf)8360 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8361 {
8362 u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8363 struct ufs_dev_info *dev_info = &hba->dev_info;
8364
8365 if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8366 dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8367
8368 /*
8369 * The concept of measuring time in Linux as the number of seconds elapsed since
8370 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8371 * 2010 00:00, here we need to adjust ABS baseline.
8372 */
8373 dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8374 mktime64(1970, 1, 1, 0, 0, 0);
8375 } else {
8376 dev_info->rtc_type = UFS_RTC_RELATIVE;
8377 dev_info->rtc_time_baseline = 0;
8378 }
8379
8380 /*
8381 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8382 * how to calculate the specific update period for each time unit. And we disable periodic
8383 * RTC update work, let user configure by sysfs node according to specific circumstance.
8384 */
8385 dev_info->rtc_update_period = 0;
8386 }
8387
ufs_get_device_desc(struct ufs_hba * hba)8388 static int ufs_get_device_desc(struct ufs_hba *hba)
8389 {
8390 int err;
8391 u8 model_index;
8392 u8 *desc_buf;
8393 struct ufs_dev_info *dev_info = &hba->dev_info;
8394
8395 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8396 if (!desc_buf) {
8397 err = -ENOMEM;
8398 goto out;
8399 }
8400
8401 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8402 QUERY_DESC_MAX_SIZE);
8403 if (err) {
8404 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8405 __func__, err);
8406 goto out;
8407 }
8408
8409 /*
8410 * getting vendor (manufacturerID) and Bank Index in big endian
8411 * format
8412 */
8413 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8414 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8415
8416 /* getting Specification Version in big endian format */
8417 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8418 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8419 dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8420
8421 dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP];
8422
8423 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8424
8425 err = ufshcd_read_string_desc(hba, model_index,
8426 &dev_info->model, SD_ASCII_STD);
8427 if (err < 0) {
8428 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8429 __func__, err);
8430 goto out;
8431 }
8432
8433 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8434 desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8435
8436 ufs_fixup_device_setup(hba);
8437
8438 ufshcd_wb_probe(hba, desc_buf);
8439
8440 ufshcd_temp_notif_probe(hba, desc_buf);
8441
8442 if (dev_info->wspecversion >= 0x410) {
8443 hba->critical_health_count = 0;
8444 ufshcd_enable_ee(hba, MASK_EE_HEALTH_CRITICAL);
8445 }
8446
8447 ufs_init_rtc(hba, desc_buf);
8448
8449 ufshcd_device_lvl_exception_probe(hba, desc_buf);
8450
8451 /*
8452 * ufshcd_read_string_desc returns size of the string
8453 * reset the error value
8454 */
8455 err = 0;
8456
8457 out:
8458 kfree(desc_buf);
8459 return err;
8460 }
8461
ufs_put_device_desc(struct ufs_hba * hba)8462 static void ufs_put_device_desc(struct ufs_hba *hba)
8463 {
8464 struct ufs_dev_info *dev_info = &hba->dev_info;
8465
8466 kfree(dev_info->model);
8467 dev_info->model = NULL;
8468 }
8469
8470 /**
8471 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8472 * less than device PA_TACTIVATE time.
8473 * @hba: per-adapter instance
8474 *
8475 * Some UFS devices require host PA_TACTIVATE to be lower than device
8476 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8477 * for such devices.
8478 *
8479 * Return: zero on success, non-zero error value on failure.
8480 */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)8481 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8482 {
8483 int ret = 0;
8484 u32 granularity, peer_granularity;
8485 u32 pa_tactivate, peer_pa_tactivate;
8486 u32 pa_tactivate_us, peer_pa_tactivate_us;
8487 static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8488
8489 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8490 &granularity);
8491 if (ret)
8492 goto out;
8493
8494 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8495 &peer_granularity);
8496 if (ret)
8497 goto out;
8498
8499 if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8500 (granularity > PA_GRANULARITY_MAX_VAL)) {
8501 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8502 __func__, granularity);
8503 return -EINVAL;
8504 }
8505
8506 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8507 (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8508 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8509 __func__, peer_granularity);
8510 return -EINVAL;
8511 }
8512
8513 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8514 if (ret)
8515 goto out;
8516
8517 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8518 &peer_pa_tactivate);
8519 if (ret)
8520 goto out;
8521
8522 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8523 peer_pa_tactivate_us = peer_pa_tactivate *
8524 gran_to_us_table[peer_granularity - 1];
8525
8526 if (pa_tactivate_us >= peer_pa_tactivate_us) {
8527 u32 new_peer_pa_tactivate;
8528
8529 new_peer_pa_tactivate = pa_tactivate_us /
8530 gran_to_us_table[peer_granularity - 1];
8531 new_peer_pa_tactivate++;
8532 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8533 new_peer_pa_tactivate);
8534 }
8535
8536 out:
8537 return ret;
8538 }
8539
8540 /**
8541 * ufshcd_quirk_override_pa_h8time - Ensures proper adjustment of PA_HIBERN8TIME.
8542 * @hba: per-adapter instance
8543 *
8544 * Some UFS devices require specific adjustments to the PA_HIBERN8TIME parameter
8545 * to ensure proper hibernation timing. This function retrieves the current
8546 * PA_HIBERN8TIME value and increments it by 100us.
8547 */
ufshcd_quirk_override_pa_h8time(struct ufs_hba * hba)8548 static void ufshcd_quirk_override_pa_h8time(struct ufs_hba *hba)
8549 {
8550 u32 pa_h8time;
8551 int ret;
8552
8553 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_HIBERN8TIME), &pa_h8time);
8554 if (ret) {
8555 dev_err(hba->dev, "Failed to get PA_HIBERN8TIME: %d\n", ret);
8556 return;
8557 }
8558
8559 /* Increment by 1 to increase hibernation time by 100 µs */
8560 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), pa_h8time + 1);
8561 if (ret)
8562 dev_err(hba->dev, "Failed updating PA_HIBERN8TIME: %d\n", ret);
8563 }
8564
ufshcd_tune_unipro_params(struct ufs_hba * hba)8565 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8566 {
8567 ufshcd_vops_apply_dev_quirks(hba);
8568
8569 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8570 /* set 1ms timeout for PA_TACTIVATE */
8571 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8572
8573 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8574 ufshcd_quirk_tune_host_pa_tactivate(hba);
8575
8576 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_HIBER8TIME)
8577 ufshcd_quirk_override_pa_h8time(hba);
8578 }
8579
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)8580 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8581 {
8582 hba->ufs_stats.hibern8_exit_cnt = 0;
8583 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8584 hba->req_abort_count = 0;
8585 }
8586
ufshcd_device_geo_params_init(struct ufs_hba * hba)8587 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8588 {
8589 int err;
8590 u8 *desc_buf;
8591
8592 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8593 if (!desc_buf) {
8594 err = -ENOMEM;
8595 goto out;
8596 }
8597
8598 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8599 desc_buf, QUERY_DESC_MAX_SIZE);
8600 if (err) {
8601 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8602 __func__, err);
8603 goto out;
8604 }
8605
8606 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8607 hba->dev_info.max_lu_supported = 32;
8608 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8609 hba->dev_info.max_lu_supported = 8;
8610
8611 out:
8612 kfree(desc_buf);
8613 return err;
8614 }
8615
8616 struct ufs_ref_clk {
8617 unsigned long freq_hz;
8618 enum ufs_ref_clk_freq val;
8619 };
8620
8621 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8622 {19200000, REF_CLK_FREQ_19_2_MHZ},
8623 {26000000, REF_CLK_FREQ_26_MHZ},
8624 {38400000, REF_CLK_FREQ_38_4_MHZ},
8625 {52000000, REF_CLK_FREQ_52_MHZ},
8626 {0, REF_CLK_FREQ_INVAL},
8627 };
8628
8629 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)8630 ufs_get_bref_clk_from_hz(unsigned long freq)
8631 {
8632 int i;
8633
8634 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8635 if (ufs_ref_clk_freqs[i].freq_hz == freq)
8636 return ufs_ref_clk_freqs[i].val;
8637
8638 return REF_CLK_FREQ_INVAL;
8639 }
8640
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)8641 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8642 {
8643 unsigned long freq;
8644
8645 freq = clk_get_rate(refclk);
8646
8647 hba->dev_ref_clk_freq =
8648 ufs_get_bref_clk_from_hz(freq);
8649
8650 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8651 dev_err(hba->dev,
8652 "invalid ref_clk setting = %ld\n", freq);
8653 }
8654
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)8655 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8656 {
8657 int err;
8658 u32 ref_clk;
8659 u32 freq = hba->dev_ref_clk_freq;
8660
8661 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8662 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8663
8664 if (err) {
8665 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8666 err);
8667 goto out;
8668 }
8669
8670 if (ref_clk == freq)
8671 goto out; /* nothing to update */
8672
8673 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8674 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8675
8676 if (err) {
8677 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8678 ufs_ref_clk_freqs[freq].freq_hz);
8679 goto out;
8680 }
8681
8682 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8683 ufs_ref_clk_freqs[freq].freq_hz);
8684
8685 out:
8686 return err;
8687 }
8688
ufshcd_device_params_init(struct ufs_hba * hba)8689 static int ufshcd_device_params_init(struct ufs_hba *hba)
8690 {
8691 bool flag;
8692 int ret;
8693
8694 /* Init UFS geometry descriptor related parameters */
8695 ret = ufshcd_device_geo_params_init(hba);
8696 if (ret)
8697 goto out;
8698
8699 /* Check and apply UFS device quirks */
8700 ret = ufs_get_device_desc(hba);
8701 if (ret) {
8702 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8703 __func__, ret);
8704 goto out;
8705 }
8706
8707 ufshcd_set_rtt(hba);
8708
8709 ufshcd_get_ref_clk_gating_wait(hba);
8710
8711 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8712 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8713 hba->dev_info.f_power_on_wp_en = flag;
8714
8715 /* Probe maximum power mode co-supported by both UFS host and device */
8716 if (ufshcd_get_max_pwr_mode(hba))
8717 dev_err(hba->dev,
8718 "%s: Failed getting max supported power mode\n",
8719 __func__);
8720 out:
8721 return ret;
8722 }
8723
ufshcd_set_timestamp_attr(struct ufs_hba * hba)8724 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8725 {
8726 int err;
8727 struct ufs_query_req *request = NULL;
8728 struct ufs_query_res *response = NULL;
8729 struct ufs_dev_info *dev_info = &hba->dev_info;
8730 struct utp_upiu_query_v4_0 *upiu_data;
8731
8732 if (dev_info->wspecversion < 0x400)
8733 return;
8734
8735 ufshcd_dev_man_lock(hba);
8736
8737 ufshcd_init_query(hba, &request, &response,
8738 UPIU_QUERY_OPCODE_WRITE_ATTR,
8739 QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8740
8741 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8742
8743 upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8744
8745 put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8746
8747 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
8748
8749 if (err)
8750 dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8751 __func__, err);
8752
8753 ufshcd_dev_man_unlock(hba);
8754 }
8755
8756 /**
8757 * ufshcd_add_lus - probe and add UFS logical units
8758 * @hba: per-adapter instance
8759 *
8760 * Return: 0 upon success; < 0 upon failure.
8761 */
ufshcd_add_lus(struct ufs_hba * hba)8762 static int ufshcd_add_lus(struct ufs_hba *hba)
8763 {
8764 int ret;
8765
8766 /* Add required well known logical units to scsi mid layer */
8767 ret = ufshcd_scsi_add_wlus(hba);
8768 if (ret)
8769 goto out;
8770
8771 /* Initialize devfreq after UFS device is detected */
8772 if (ufshcd_is_clkscaling_supported(hba)) {
8773 memcpy(&hba->clk_scaling.saved_pwr_info,
8774 &hba->pwr_info,
8775 sizeof(struct ufs_pa_layer_attr));
8776 hba->clk_scaling.is_allowed = true;
8777
8778 ret = ufshcd_devfreq_init(hba);
8779 if (ret)
8780 goto out;
8781
8782 hba->clk_scaling.is_enabled = true;
8783 ufshcd_init_clk_scaling_sysfs(hba);
8784 }
8785
8786 /*
8787 * The RTC update code accesses the hba->ufs_device_wlun->sdev_gendev
8788 * pointer and hence must only be started after the WLUN pointer has
8789 * been initialized by ufshcd_scsi_add_wlus().
8790 */
8791 schedule_delayed_work(&hba->ufs_rtc_update_work,
8792 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8793
8794 ufs_bsg_probe(hba);
8795 scsi_scan_host(hba->host);
8796
8797 out:
8798 return ret;
8799 }
8800
8801 /* SDB - Single Doorbell */
ufshcd_release_sdb_queue(struct ufs_hba * hba,int nutrs)8802 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8803 {
8804 size_t ucdl_size, utrdl_size;
8805
8806 ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8807 dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8808 hba->ucdl_dma_addr);
8809
8810 utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8811 dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8812 hba->utrdl_dma_addr);
8813
8814 devm_kfree(hba->dev, hba->lrb);
8815 }
8816
ufshcd_alloc_mcq(struct ufs_hba * hba)8817 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8818 {
8819 int ret;
8820 int old_nutrs = hba->nutrs;
8821
8822 ret = ufshcd_mcq_decide_queue_depth(hba);
8823 if (ret < 0)
8824 return ret;
8825
8826 hba->nutrs = ret;
8827 ret = ufshcd_mcq_init(hba);
8828 if (ret)
8829 goto err;
8830
8831 /*
8832 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8833 * Number of supported tags in MCQ mode may be larger than SDB mode.
8834 */
8835 if (hba->nutrs != old_nutrs) {
8836 ufshcd_release_sdb_queue(hba, old_nutrs);
8837 ret = ufshcd_memory_alloc(hba);
8838 if (ret)
8839 goto err;
8840 ufshcd_host_memory_configure(hba);
8841 }
8842
8843 ret = ufshcd_mcq_memory_alloc(hba);
8844 if (ret)
8845 goto err;
8846
8847 hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8848 hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8849
8850 return 0;
8851 err:
8852 hba->nutrs = old_nutrs;
8853 return ret;
8854 }
8855
ufshcd_config_mcq(struct ufs_hba * hba)8856 static void ufshcd_config_mcq(struct ufs_hba *hba)
8857 {
8858 int ret;
8859 u32 intrs;
8860
8861 ret = ufshcd_mcq_vops_config_esi(hba);
8862 hba->mcq_esi_enabled = !ret;
8863 dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8864
8865 intrs = UFSHCD_ENABLE_MCQ_INTRS;
8866 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8867 intrs &= ~MCQ_CQ_EVENT_STATUS;
8868 ufshcd_enable_intr(hba, intrs);
8869 ufshcd_mcq_make_queues_operational(hba);
8870 ufshcd_mcq_config_mac(hba, hba->nutrs);
8871
8872 dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8873 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8874 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8875 hba->nutrs);
8876 }
8877
ufshcd_post_device_init(struct ufs_hba * hba)8878 static int ufshcd_post_device_init(struct ufs_hba *hba)
8879 {
8880 int ret;
8881
8882 ufshcd_tune_unipro_params(hba);
8883
8884 /* UFS device is also active now */
8885 ufshcd_set_ufs_dev_active(hba);
8886 ufshcd_force_reset_auto_bkops(hba);
8887
8888 ufshcd_set_timestamp_attr(hba);
8889
8890 if (!hba->max_pwr_info.is_valid)
8891 return 0;
8892
8893 /*
8894 * Set the right value to bRefClkFreq before attempting to
8895 * switch to HS gears.
8896 */
8897 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8898 ufshcd_set_dev_ref_clk(hba);
8899 /* Gear up to HS gear. */
8900 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8901 if (ret) {
8902 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8903 __func__, ret);
8904 return ret;
8905 }
8906
8907 return 0;
8908 }
8909
ufshcd_device_init(struct ufs_hba * hba,bool init_dev_params)8910 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8911 {
8912 int ret;
8913
8914 WARN_ON_ONCE(!hba->scsi_host_added);
8915
8916 hba->ufshcd_state = UFSHCD_STATE_RESET;
8917
8918 ret = ufshcd_link_startup(hba);
8919 if (ret)
8920 return ret;
8921
8922 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8923 return ret;
8924
8925 /* Debug counters initialization */
8926 ufshcd_clear_dbg_ufs_stats(hba);
8927
8928 /* UniPro link is active now */
8929 ufshcd_set_link_active(hba);
8930
8931 /* Reconfigure MCQ upon reset */
8932 if (hba->mcq_enabled && !init_dev_params) {
8933 ufshcd_config_mcq(hba);
8934 ufshcd_mcq_enable(hba);
8935 }
8936
8937 /* Verify device initialization by sending NOP OUT UPIU */
8938 ret = ufshcd_verify_dev_init(hba);
8939 if (ret)
8940 return ret;
8941
8942 /* Initiate UFS initialization, and waiting until completion */
8943 ret = ufshcd_complete_dev_init(hba);
8944 if (ret)
8945 return ret;
8946
8947 /*
8948 * Initialize UFS device parameters used by driver, these
8949 * parameters are associated with UFS descriptors.
8950 */
8951 if (init_dev_params) {
8952 ret = ufshcd_device_params_init(hba);
8953 if (ret)
8954 return ret;
8955 if (is_mcq_supported(hba) &&
8956 hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
8957 ufshcd_config_mcq(hba);
8958 ufshcd_mcq_enable(hba);
8959 }
8960 }
8961
8962 return ufshcd_post_device_init(hba);
8963 }
8964
8965 /**
8966 * ufshcd_probe_hba - probe hba to detect device and initialize it
8967 * @hba: per-adapter instance
8968 * @init_dev_params: whether or not to call ufshcd_device_params_init().
8969 *
8970 * Execute link-startup and verify device initialization
8971 *
8972 * Return: 0 upon success; < 0 upon failure.
8973 */
ufshcd_probe_hba(struct ufs_hba * hba,bool init_dev_params)8974 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8975 {
8976 int ret;
8977
8978 if (!hba->pm_op_in_progress &&
8979 (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8980 /* Reset the device and controller before doing reinit */
8981 ufshcd_device_reset(hba);
8982 ufs_put_device_desc(hba);
8983 ufshcd_hba_stop(hba);
8984 ret = ufshcd_hba_enable(hba);
8985 if (ret) {
8986 dev_err(hba->dev, "Host controller enable failed\n");
8987 ufshcd_print_evt_hist(hba);
8988 ufshcd_print_host_state(hba);
8989 return ret;
8990 }
8991
8992 /* Reinit the device */
8993 ret = ufshcd_device_init(hba, init_dev_params);
8994 if (ret)
8995 return ret;
8996 }
8997
8998 ufshcd_print_pwr_info(hba);
8999
9000 /*
9001 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
9002 * and for removable UFS card as well, hence always set the parameter.
9003 * Note: Error handler may issue the device reset hence resetting
9004 * bActiveICCLevel as well so it is always safe to set this here.
9005 */
9006 ufshcd_set_active_icc_lvl(hba);
9007
9008 /* Enable UFS Write Booster if supported */
9009 ufshcd_configure_wb(hba);
9010
9011 if (hba->ee_usr_mask)
9012 ufshcd_write_ee_control(hba);
9013 ufshcd_configure_auto_hibern8(hba);
9014
9015 return 0;
9016 }
9017
9018 /**
9019 * ufshcd_async_scan - asynchronous execution for probing hba
9020 * @data: data pointer to pass to this function
9021 * @cookie: cookie data
9022 */
ufshcd_async_scan(void * data,async_cookie_t cookie)9023 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
9024 {
9025 struct ufs_hba *hba = (struct ufs_hba *)data;
9026 ktime_t probe_start;
9027 int ret;
9028
9029 down(&hba->host_sem);
9030 /* Initialize hba, detect and initialize UFS device */
9031 probe_start = ktime_get();
9032 ret = ufshcd_probe_hba(hba, true);
9033 ufshcd_process_probe_result(hba, probe_start, ret);
9034 up(&hba->host_sem);
9035 if (ret)
9036 goto out;
9037
9038 /* Probe and add UFS logical units */
9039 ret = ufshcd_add_lus(hba);
9040
9041 out:
9042 pm_runtime_put_sync(hba->dev);
9043
9044 if (ret)
9045 dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
9046 }
9047
ufshcd_eh_timed_out(struct scsi_cmnd * scmd)9048 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
9049 {
9050 struct ufs_hba *hba = shost_priv(scmd->device->host);
9051
9052 if (!hba->system_suspending) {
9053 /* Activate the error handler in the SCSI core. */
9054 return SCSI_EH_NOT_HANDLED;
9055 }
9056
9057 /*
9058 * If we get here we know that no TMFs are outstanding and also that
9059 * the only pending command is a START STOP UNIT command. Handle the
9060 * timeout of that command directly to prevent a deadlock between
9061 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
9062 */
9063 ufshcd_link_recovery(hba);
9064 dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
9065 __func__, hba->outstanding_tasks);
9066
9067 return scsi_host_busy(hba->host) ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
9068 }
9069
9070 static const struct attribute_group *ufshcd_driver_groups[] = {
9071 &ufs_sysfs_unit_descriptor_group,
9072 &ufs_sysfs_lun_attributes_group,
9073 NULL,
9074 };
9075
9076 static struct ufs_hba_variant_params ufs_hba_vps = {
9077 .hba_enable_delay_us = 1000,
9078 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40),
9079 .devfreq_profile.polling_ms = 100,
9080 .devfreq_profile.target = ufshcd_devfreq_target,
9081 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status,
9082 .ondemand_data.upthreshold = 70,
9083 .ondemand_data.downdifferential = 5,
9084 };
9085
9086 static const struct scsi_host_template ufshcd_driver_template = {
9087 .module = THIS_MODULE,
9088 .name = UFSHCD,
9089 .proc_name = UFSHCD,
9090 .map_queues = ufshcd_map_queues,
9091 .queuecommand = ufshcd_queuecommand,
9092 .mq_poll = ufshcd_poll,
9093 .sdev_init = ufshcd_sdev_init,
9094 .sdev_configure = ufshcd_sdev_configure,
9095 .sdev_destroy = ufshcd_sdev_destroy,
9096 .change_queue_depth = ufshcd_change_queue_depth,
9097 .eh_abort_handler = ufshcd_abort,
9098 .eh_device_reset_handler = ufshcd_eh_device_reset_handler,
9099 .eh_host_reset_handler = ufshcd_eh_host_reset_handler,
9100 .eh_timed_out = ufshcd_eh_timed_out,
9101 .this_id = -1,
9102 .sg_tablesize = SG_ALL,
9103 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX,
9104 .max_sectors = SZ_1M / SECTOR_SIZE,
9105 .max_host_blocked = 1,
9106 .track_queue_depth = 1,
9107 .skip_settle_delay = 1,
9108 .sdev_groups = ufshcd_driver_groups,
9109 };
9110
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)9111 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
9112 int ua)
9113 {
9114 int ret;
9115
9116 if (!vreg)
9117 return 0;
9118
9119 /*
9120 * "set_load" operation shall be required on those regulators
9121 * which specifically configured current limitation. Otherwise
9122 * zero max_uA may cause unexpected behavior when regulator is
9123 * enabled or set as high power mode.
9124 */
9125 if (!vreg->max_uA)
9126 return 0;
9127
9128 ret = regulator_set_load(vreg->reg, ua);
9129 if (ret < 0) {
9130 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9131 __func__, vreg->name, ua, ret);
9132 }
9133
9134 return ret;
9135 }
9136
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9137 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9138 struct ufs_vreg *vreg)
9139 {
9140 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9141 }
9142
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9143 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9144 struct ufs_vreg *vreg)
9145 {
9146 if (!vreg)
9147 return 0;
9148
9149 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9150 }
9151
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)9152 static int ufshcd_config_vreg(struct device *dev,
9153 struct ufs_vreg *vreg, bool on)
9154 {
9155 if (regulator_count_voltages(vreg->reg) <= 0)
9156 return 0;
9157
9158 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9159 }
9160
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)9161 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9162 {
9163 int ret = 0;
9164
9165 if (!vreg || vreg->enabled)
9166 goto out;
9167
9168 ret = ufshcd_config_vreg(dev, vreg, true);
9169 if (!ret)
9170 ret = regulator_enable(vreg->reg);
9171
9172 if (!ret)
9173 vreg->enabled = true;
9174 else
9175 dev_err(dev, "%s: %s enable failed, err=%d\n",
9176 __func__, vreg->name, ret);
9177 out:
9178 return ret;
9179 }
9180
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)9181 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9182 {
9183 int ret = 0;
9184
9185 if (!vreg || !vreg->enabled || vreg->always_on)
9186 goto out;
9187
9188 ret = regulator_disable(vreg->reg);
9189
9190 if (!ret) {
9191 /* ignore errors on applying disable config */
9192 ufshcd_config_vreg(dev, vreg, false);
9193 vreg->enabled = false;
9194 } else {
9195 dev_err(dev, "%s: %s disable failed, err=%d\n",
9196 __func__, vreg->name, ret);
9197 }
9198 out:
9199 return ret;
9200 }
9201
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)9202 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9203 {
9204 int ret = 0;
9205 struct device *dev = hba->dev;
9206 struct ufs_vreg_info *info = &hba->vreg_info;
9207
9208 ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9209 if (ret)
9210 goto out;
9211
9212 ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9213 if (ret)
9214 goto out;
9215
9216 ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9217
9218 out:
9219 if (ret) {
9220 ufshcd_toggle_vreg(dev, info->vccq2, false);
9221 ufshcd_toggle_vreg(dev, info->vccq, false);
9222 ufshcd_toggle_vreg(dev, info->vcc, false);
9223 }
9224 return ret;
9225 }
9226
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)9227 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9228 {
9229 struct ufs_vreg_info *info = &hba->vreg_info;
9230
9231 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9232 }
9233
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)9234 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9235 {
9236 int ret = 0;
9237
9238 if (!vreg)
9239 goto out;
9240
9241 vreg->reg = devm_regulator_get(dev, vreg->name);
9242 if (IS_ERR(vreg->reg)) {
9243 ret = PTR_ERR(vreg->reg);
9244 dev_err(dev, "%s: %s get failed, err=%d\n",
9245 __func__, vreg->name, ret);
9246 }
9247 out:
9248 return ret;
9249 }
9250 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9251
ufshcd_init_vreg(struct ufs_hba * hba)9252 static int ufshcd_init_vreg(struct ufs_hba *hba)
9253 {
9254 int ret = 0;
9255 struct device *dev = hba->dev;
9256 struct ufs_vreg_info *info = &hba->vreg_info;
9257
9258 ret = ufshcd_get_vreg(dev, info->vcc);
9259 if (ret)
9260 goto out;
9261
9262 ret = ufshcd_get_vreg(dev, info->vccq);
9263 if (!ret)
9264 ret = ufshcd_get_vreg(dev, info->vccq2);
9265 out:
9266 return ret;
9267 }
9268
ufshcd_init_hba_vreg(struct ufs_hba * hba)9269 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9270 {
9271 struct ufs_vreg_info *info = &hba->vreg_info;
9272
9273 return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9274 }
9275
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)9276 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9277 {
9278 int ret = 0;
9279 struct ufs_clk_info *clki;
9280 struct list_head *head = &hba->clk_list_head;
9281 ktime_t start = ktime_get();
9282 bool clk_state_changed = false;
9283
9284 if (list_empty(head))
9285 goto out;
9286
9287 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9288 if (ret)
9289 return ret;
9290
9291 list_for_each_entry(clki, head, list) {
9292 if (!IS_ERR_OR_NULL(clki->clk)) {
9293 /*
9294 * Don't disable clocks which are needed
9295 * to keep the link active.
9296 */
9297 if (ufshcd_is_link_active(hba) &&
9298 clki->keep_link_active)
9299 continue;
9300
9301 clk_state_changed = on ^ clki->enabled;
9302 if (on && !clki->enabled) {
9303 ret = clk_prepare_enable(clki->clk);
9304 if (ret) {
9305 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9306 __func__, clki->name, ret);
9307 goto out;
9308 }
9309 } else if (!on && clki->enabled) {
9310 clk_disable_unprepare(clki->clk);
9311 }
9312 clki->enabled = on;
9313 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9314 clki->name, on ? "en" : "dis");
9315 }
9316 }
9317
9318 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9319 if (ret)
9320 return ret;
9321
9322 if (!ufshcd_is_clkscaling_supported(hba))
9323 ufshcd_pm_qos_update(hba, on);
9324 out:
9325 if (ret) {
9326 list_for_each_entry(clki, head, list) {
9327 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9328 clk_disable_unprepare(clki->clk);
9329 }
9330 } else if (!ret && on && hba->clk_gating.is_initialized) {
9331 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock)
9332 hba->clk_gating.state = CLKS_ON;
9333 trace_ufshcd_clk_gating(hba,
9334 hba->clk_gating.state);
9335 }
9336
9337 if (clk_state_changed)
9338 trace_ufshcd_profile_clk_gating(hba,
9339 (on ? "on" : "off"),
9340 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9341 return ret;
9342 }
9343
ufshcd_parse_ref_clk_property(struct ufs_hba * hba)9344 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9345 {
9346 u32 freq;
9347 int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9348
9349 if (ret) {
9350 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9351 return REF_CLK_FREQ_INVAL;
9352 }
9353
9354 return ufs_get_bref_clk_from_hz(freq);
9355 }
9356
ufshcd_init_clocks(struct ufs_hba * hba)9357 static int ufshcd_init_clocks(struct ufs_hba *hba)
9358 {
9359 int ret = 0;
9360 struct ufs_clk_info *clki;
9361 struct device *dev = hba->dev;
9362 struct list_head *head = &hba->clk_list_head;
9363
9364 if (list_empty(head))
9365 goto out;
9366
9367 list_for_each_entry(clki, head, list) {
9368 if (!clki->name)
9369 continue;
9370
9371 clki->clk = devm_clk_get(dev, clki->name);
9372 if (IS_ERR(clki->clk)) {
9373 ret = PTR_ERR(clki->clk);
9374 dev_err(dev, "%s: %s clk get failed, %d\n",
9375 __func__, clki->name, ret);
9376 goto out;
9377 }
9378
9379 /*
9380 * Parse device ref clk freq as per device tree "ref_clk".
9381 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9382 * in ufshcd_alloc_host().
9383 */
9384 if (!strcmp(clki->name, "ref_clk"))
9385 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9386
9387 if (clki->max_freq) {
9388 ret = clk_set_rate(clki->clk, clki->max_freq);
9389 if (ret) {
9390 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9391 __func__, clki->name,
9392 clki->max_freq, ret);
9393 goto out;
9394 }
9395 clki->curr_freq = clki->max_freq;
9396 }
9397 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9398 clki->name, clk_get_rate(clki->clk));
9399 }
9400
9401 /* Set Max. frequency for all clocks */
9402 if (hba->use_pm_opp) {
9403 ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9404 if (ret) {
9405 dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9406 ret);
9407 goto out;
9408 }
9409 }
9410
9411 out:
9412 return ret;
9413 }
9414
ufshcd_variant_hba_init(struct ufs_hba * hba)9415 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9416 {
9417 int err = 0;
9418
9419 if (!hba->vops)
9420 goto out;
9421
9422 err = ufshcd_vops_init(hba);
9423 if (err)
9424 dev_err_probe(hba->dev, err,
9425 "%s: variant %s init failed with err %d\n",
9426 __func__, ufshcd_get_var_name(hba), err);
9427 out:
9428 return err;
9429 }
9430
ufshcd_variant_hba_exit(struct ufs_hba * hba)9431 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9432 {
9433 if (!hba->vops)
9434 return;
9435
9436 ufshcd_vops_exit(hba);
9437 }
9438
ufshcd_hba_init(struct ufs_hba * hba)9439 static int ufshcd_hba_init(struct ufs_hba *hba)
9440 {
9441 int err;
9442
9443 /*
9444 * Handle host controller power separately from the UFS device power
9445 * rails as it will help controlling the UFS host controller power
9446 * collapse easily which is different than UFS device power collapse.
9447 * Also, enable the host controller power before we go ahead with rest
9448 * of the initialization here.
9449 */
9450 err = ufshcd_init_hba_vreg(hba);
9451 if (err)
9452 goto out;
9453
9454 err = ufshcd_setup_hba_vreg(hba, true);
9455 if (err)
9456 goto out;
9457
9458 err = ufshcd_init_clocks(hba);
9459 if (err)
9460 goto out_disable_hba_vreg;
9461
9462 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9463 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9464
9465 err = ufshcd_setup_clocks(hba, true);
9466 if (err)
9467 goto out_disable_hba_vreg;
9468
9469 err = ufshcd_init_vreg(hba);
9470 if (err)
9471 goto out_disable_clks;
9472
9473 err = ufshcd_setup_vreg(hba, true);
9474 if (err)
9475 goto out_disable_clks;
9476
9477 err = ufshcd_variant_hba_init(hba);
9478 if (err)
9479 goto out_disable_vreg;
9480
9481 ufs_debugfs_hba_init(hba);
9482 ufs_fault_inject_hba_init(hba);
9483
9484 hba->is_powered = true;
9485 goto out;
9486
9487 out_disable_vreg:
9488 ufshcd_setup_vreg(hba, false);
9489 out_disable_clks:
9490 ufshcd_setup_clocks(hba, false);
9491 out_disable_hba_vreg:
9492 ufshcd_setup_hba_vreg(hba, false);
9493 out:
9494 return err;
9495 }
9496
ufshcd_hba_exit(struct ufs_hba * hba)9497 static void ufshcd_hba_exit(struct ufs_hba *hba)
9498 {
9499 if (hba->is_powered) {
9500 ufshcd_pm_qos_exit(hba);
9501 ufshcd_exit_clk_scaling(hba);
9502 ufshcd_exit_clk_gating(hba);
9503 if (hba->eh_wq)
9504 destroy_workqueue(hba->eh_wq);
9505 ufs_debugfs_hba_exit(hba);
9506 ufshcd_variant_hba_exit(hba);
9507 ufshcd_setup_vreg(hba, false);
9508 ufshcd_setup_clocks(hba, false);
9509 ufshcd_setup_hba_vreg(hba, false);
9510 hba->is_powered = false;
9511 ufs_put_device_desc(hba);
9512 }
9513 }
9514
ufshcd_execute_start_stop(struct scsi_device * sdev,enum ufs_dev_pwr_mode pwr_mode,struct scsi_sense_hdr * sshdr)9515 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9516 enum ufs_dev_pwr_mode pwr_mode,
9517 struct scsi_sense_hdr *sshdr)
9518 {
9519 const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9520 struct scsi_failure failure_defs[] = {
9521 {
9522 .allowed = 2,
9523 .result = SCMD_FAILURE_RESULT_ANY,
9524 },
9525 };
9526 struct scsi_failures failures = {
9527 .failure_definitions = failure_defs,
9528 };
9529 const struct scsi_exec_args args = {
9530 .failures = &failures,
9531 .sshdr = sshdr,
9532 .req_flags = BLK_MQ_REQ_PM,
9533 .scmd_flags = SCMD_FAIL_IF_RECOVERING,
9534 };
9535
9536 return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9537 /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9538 &args);
9539 }
9540
9541 /**
9542 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9543 * power mode
9544 * @hba: per adapter instance
9545 * @pwr_mode: device power mode to set
9546 *
9547 * Return: 0 if requested power mode is set successfully;
9548 * < 0 if failed to set the requested power mode.
9549 */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)9550 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9551 enum ufs_dev_pwr_mode pwr_mode)
9552 {
9553 struct scsi_sense_hdr sshdr;
9554 struct scsi_device *sdp;
9555 unsigned long flags;
9556 int ret;
9557
9558 spin_lock_irqsave(hba->host->host_lock, flags);
9559 sdp = hba->ufs_device_wlun;
9560 if (sdp && scsi_device_online(sdp))
9561 ret = scsi_device_get(sdp);
9562 else
9563 ret = -ENODEV;
9564 spin_unlock_irqrestore(hba->host->host_lock, flags);
9565
9566 if (ret)
9567 return ret;
9568
9569 /*
9570 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9571 * handling, which would wait for host to be resumed. Since we know
9572 * we are functional while we are here, skip host resume in error
9573 * handling context.
9574 */
9575 hba->host->eh_noresume = 1;
9576
9577 /*
9578 * Current function would be generally called from the power management
9579 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9580 * already suspended childs.
9581 */
9582 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9583 if (ret) {
9584 sdev_printk(KERN_WARNING, sdp,
9585 "START_STOP failed for power mode: %d, result %x\n",
9586 pwr_mode, ret);
9587 if (ret > 0) {
9588 if (scsi_sense_valid(&sshdr))
9589 scsi_print_sense_hdr(sdp, NULL, &sshdr);
9590 ret = -EIO;
9591 }
9592 } else {
9593 hba->curr_dev_pwr_mode = pwr_mode;
9594 }
9595
9596 scsi_device_put(sdp);
9597 hba->host->eh_noresume = 0;
9598 return ret;
9599 }
9600
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,bool check_for_bkops)9601 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9602 enum uic_link_state req_link_state,
9603 bool check_for_bkops)
9604 {
9605 int ret = 0;
9606
9607 if (req_link_state == hba->uic_link_state)
9608 return 0;
9609
9610 if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9611 ret = ufshcd_uic_hibern8_enter(hba);
9612 if (!ret) {
9613 ufshcd_set_link_hibern8(hba);
9614 } else {
9615 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9616 __func__, ret);
9617 goto out;
9618 }
9619 }
9620 /*
9621 * If autobkops is enabled, link can't be turned off because
9622 * turning off the link would also turn off the device, except in the
9623 * case of DeepSleep where the device is expected to remain powered.
9624 */
9625 else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9626 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9627 /*
9628 * Let's make sure that link is in low power mode, we are doing
9629 * this currently by putting the link in Hibern8. Otherway to
9630 * put the link in low power mode is to send the DME end point
9631 * to device and then send the DME reset command to local
9632 * unipro. But putting the link in hibern8 is much faster.
9633 *
9634 * Note also that putting the link in Hibern8 is a requirement
9635 * for entering DeepSleep.
9636 */
9637 ret = ufshcd_uic_hibern8_enter(hba);
9638 if (ret) {
9639 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9640 __func__, ret);
9641 goto out;
9642 }
9643 /*
9644 * Change controller state to "reset state" which
9645 * should also put the link in off/reset state
9646 */
9647 ufshcd_hba_stop(hba);
9648 /*
9649 * TODO: Check if we need any delay to make sure that
9650 * controller is reset
9651 */
9652 ufshcd_set_link_off(hba);
9653 }
9654
9655 out:
9656 return ret;
9657 }
9658
ufshcd_vreg_set_lpm(struct ufs_hba * hba)9659 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9660 {
9661 bool vcc_off = false;
9662
9663 /*
9664 * It seems some UFS devices may keep drawing more than sleep current
9665 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9666 * To avoid this situation, add 2ms delay before putting these UFS
9667 * rails in LPM mode.
9668 */
9669 if (!ufshcd_is_link_active(hba) &&
9670 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9671 usleep_range(2000, 2100);
9672
9673 /*
9674 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9675 * power.
9676 *
9677 * If UFS device and link is in OFF state, all power supplies (VCC,
9678 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9679 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9680 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9681 *
9682 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9683 * in low power state which would save some power.
9684 *
9685 * If Write Booster is enabled and the device needs to flush the WB
9686 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9687 */
9688 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9689 !hba->dev_info.is_lu_power_on_wp) {
9690 ufshcd_setup_vreg(hba, false);
9691 vcc_off = true;
9692 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9693 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9694 vcc_off = true;
9695 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9696 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9697 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9698 }
9699 }
9700
9701 /*
9702 * Some UFS devices require delay after VCC power rail is turned-off.
9703 */
9704 if (vcc_off && hba->vreg_info.vcc &&
9705 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9706 usleep_range(5000, 5100);
9707 }
9708
9709 #ifdef CONFIG_PM
ufshcd_vreg_set_hpm(struct ufs_hba * hba)9710 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9711 {
9712 int ret = 0;
9713
9714 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9715 !hba->dev_info.is_lu_power_on_wp) {
9716 ret = ufshcd_setup_vreg(hba, true);
9717 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9718 if (!ufshcd_is_link_active(hba)) {
9719 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9720 if (ret)
9721 goto vcc_disable;
9722 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9723 if (ret)
9724 goto vccq_lpm;
9725 }
9726 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9727 }
9728 goto out;
9729
9730 vccq_lpm:
9731 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9732 vcc_disable:
9733 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9734 out:
9735 return ret;
9736 }
9737 #endif /* CONFIG_PM */
9738
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)9739 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9740 {
9741 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9742 ufshcd_setup_hba_vreg(hba, false);
9743 }
9744
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)9745 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9746 {
9747 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9748 ufshcd_setup_hba_vreg(hba, true);
9749 }
9750
__ufshcd_wl_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)9751 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9752 {
9753 int ret = 0;
9754 bool check_for_bkops;
9755 enum ufs_pm_level pm_lvl;
9756 enum ufs_dev_pwr_mode req_dev_pwr_mode;
9757 enum uic_link_state req_link_state;
9758
9759 hba->pm_op_in_progress = true;
9760 if (pm_op != UFS_SHUTDOWN_PM) {
9761 pm_lvl = pm_op == UFS_RUNTIME_PM ?
9762 hba->rpm_lvl : hba->spm_lvl;
9763 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9764 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9765 } else {
9766 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9767 req_link_state = UIC_LINK_OFF_STATE;
9768 }
9769
9770 /*
9771 * If we can't transition into any of the low power modes
9772 * just gate the clocks.
9773 */
9774 ufshcd_hold(hba);
9775 hba->clk_gating.is_suspended = true;
9776
9777 if (ufshcd_is_clkscaling_supported(hba))
9778 ufshcd_clk_scaling_suspend(hba, true);
9779
9780 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9781 req_link_state == UIC_LINK_ACTIVE_STATE) {
9782 goto vops_suspend;
9783 }
9784
9785 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9786 (req_link_state == hba->uic_link_state))
9787 goto enable_scaling;
9788
9789 /* UFS device & link must be active before we enter in this function */
9790 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9791 /* Wait err handler finish or trigger err recovery */
9792 if (!ufshcd_eh_in_progress(hba))
9793 ufshcd_force_error_recovery(hba);
9794 ret = -EBUSY;
9795 goto enable_scaling;
9796 }
9797
9798 if (pm_op == UFS_RUNTIME_PM) {
9799 if (ufshcd_can_autobkops_during_suspend(hba)) {
9800 /*
9801 * The device is idle with no requests in the queue,
9802 * allow background operations if bkops status shows
9803 * that performance might be impacted.
9804 */
9805 ret = ufshcd_bkops_ctrl(hba);
9806 if (ret) {
9807 /*
9808 * If return err in suspend flow, IO will hang.
9809 * Trigger error handler and break suspend for
9810 * error recovery.
9811 */
9812 ufshcd_force_error_recovery(hba);
9813 ret = -EBUSY;
9814 goto enable_scaling;
9815 }
9816 } else {
9817 /* make sure that auto bkops is disabled */
9818 ufshcd_disable_auto_bkops(hba);
9819 }
9820 /*
9821 * If device needs to do BKOP or WB buffer flush during
9822 * Hibern8, keep device power mode as "active power mode"
9823 * and VCC supply.
9824 */
9825 hba->dev_info.b_rpm_dev_flush_capable =
9826 hba->auto_bkops_enabled ||
9827 (((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9828 ((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9829 ufshcd_is_auto_hibern8_enabled(hba))) &&
9830 ufshcd_wb_need_flush(hba));
9831 }
9832
9833 flush_work(&hba->eeh_work);
9834
9835 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9836 if (ret)
9837 goto enable_scaling;
9838
9839 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9840 if (pm_op != UFS_RUNTIME_PM)
9841 /* ensure that bkops is disabled */
9842 ufshcd_disable_auto_bkops(hba);
9843
9844 if (!hba->dev_info.b_rpm_dev_flush_capable) {
9845 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9846 if (ret && pm_op != UFS_SHUTDOWN_PM) {
9847 /*
9848 * If return err in suspend flow, IO will hang.
9849 * Trigger error handler and break suspend for
9850 * error recovery.
9851 */
9852 ufshcd_force_error_recovery(hba);
9853 ret = -EBUSY;
9854 }
9855 if (ret)
9856 goto enable_scaling;
9857 }
9858 }
9859
9860 /*
9861 * In the case of DeepSleep, the device is expected to remain powered
9862 * with the link off, so do not check for bkops.
9863 */
9864 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9865 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9866 if (ret && pm_op != UFS_SHUTDOWN_PM) {
9867 /*
9868 * If return err in suspend flow, IO will hang.
9869 * Trigger error handler and break suspend for
9870 * error recovery.
9871 */
9872 ufshcd_force_error_recovery(hba);
9873 ret = -EBUSY;
9874 }
9875 if (ret)
9876 goto set_dev_active;
9877
9878 vops_suspend:
9879 /*
9880 * Call vendor specific suspend callback. As these callbacks may access
9881 * vendor specific host controller register space call them before the
9882 * host clocks are ON.
9883 */
9884 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9885 if (ret)
9886 goto set_link_active;
9887
9888 cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9889 goto out;
9890
9891 set_link_active:
9892 /*
9893 * Device hardware reset is required to exit DeepSleep. Also, for
9894 * DeepSleep, the link is off so host reset and restore will be done
9895 * further below.
9896 */
9897 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9898 ufshcd_device_reset(hba);
9899 WARN_ON(!ufshcd_is_link_off(hba));
9900 }
9901 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9902 ufshcd_set_link_active(hba);
9903 else if (ufshcd_is_link_off(hba))
9904 ufshcd_host_reset_and_restore(hba);
9905 set_dev_active:
9906 /* Can also get here needing to exit DeepSleep */
9907 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9908 ufshcd_device_reset(hba);
9909 ufshcd_host_reset_and_restore(hba);
9910 }
9911 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9912 ufshcd_disable_auto_bkops(hba);
9913 enable_scaling:
9914 if (ufshcd_is_clkscaling_supported(hba))
9915 ufshcd_clk_scaling_suspend(hba, false);
9916
9917 hba->dev_info.b_rpm_dev_flush_capable = false;
9918 out:
9919 if (hba->dev_info.b_rpm_dev_flush_capable) {
9920 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9921 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9922 }
9923
9924 if (ret) {
9925 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9926 hba->clk_gating.is_suspended = false;
9927 ufshcd_release(hba);
9928 }
9929 hba->pm_op_in_progress = false;
9930 return ret;
9931 }
9932
9933 #ifdef CONFIG_PM
__ufshcd_wl_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)9934 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9935 {
9936 int ret;
9937 enum uic_link_state old_link_state = hba->uic_link_state;
9938
9939 hba->pm_op_in_progress = true;
9940
9941 /*
9942 * Call vendor specific resume callback. As these callbacks may access
9943 * vendor specific host controller register space call them when the
9944 * host clocks are ON.
9945 */
9946 ret = ufshcd_vops_resume(hba, pm_op);
9947 if (ret)
9948 goto out;
9949
9950 /* For DeepSleep, the only supported option is to have the link off */
9951 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9952
9953 if (ufshcd_is_link_hibern8(hba)) {
9954 ret = ufshcd_uic_hibern8_exit(hba);
9955 if (!ret) {
9956 ufshcd_set_link_active(hba);
9957 } else {
9958 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9959 __func__, ret);
9960 goto vendor_suspend;
9961 }
9962 } else if (ufshcd_is_link_off(hba)) {
9963 /*
9964 * A full initialization of the host and the device is
9965 * required since the link was put to off during suspend.
9966 * Note, in the case of DeepSleep, the device will exit
9967 * DeepSleep due to device reset.
9968 */
9969 ret = ufshcd_reset_and_restore(hba);
9970 /*
9971 * ufshcd_reset_and_restore() should have already
9972 * set the link state as active
9973 */
9974 if (ret || !ufshcd_is_link_active(hba))
9975 goto vendor_suspend;
9976 }
9977
9978 if (!ufshcd_is_ufs_dev_active(hba)) {
9979 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9980 if (ret)
9981 goto set_old_link_state;
9982 ufshcd_set_timestamp_attr(hba);
9983 schedule_delayed_work(&hba->ufs_rtc_update_work,
9984 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
9985 }
9986
9987 if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9988 ufshcd_enable_auto_bkops(hba);
9989 else
9990 /*
9991 * If BKOPs operations are urgently needed at this moment then
9992 * keep auto-bkops enabled or else disable it.
9993 */
9994 ufshcd_bkops_ctrl(hba);
9995
9996 if (hba->ee_usr_mask)
9997 ufshcd_write_ee_control(hba);
9998
9999 if (ufshcd_is_clkscaling_supported(hba))
10000 ufshcd_clk_scaling_suspend(hba, false);
10001
10002 if (hba->dev_info.b_rpm_dev_flush_capable) {
10003 hba->dev_info.b_rpm_dev_flush_capable = false;
10004 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
10005 }
10006
10007 ufshcd_configure_auto_hibern8(hba);
10008
10009 goto out;
10010
10011 set_old_link_state:
10012 ufshcd_link_state_transition(hba, old_link_state, 0);
10013 vendor_suspend:
10014 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
10015 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
10016 out:
10017 if (ret)
10018 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
10019 hba->clk_gating.is_suspended = false;
10020 ufshcd_release(hba);
10021 hba->pm_op_in_progress = false;
10022 return ret;
10023 }
10024
ufshcd_wl_runtime_suspend(struct device * dev)10025 static int ufshcd_wl_runtime_suspend(struct device *dev)
10026 {
10027 struct scsi_device *sdev = to_scsi_device(dev);
10028 struct ufs_hba *hba;
10029 int ret;
10030 ktime_t start = ktime_get();
10031
10032 hba = shost_priv(sdev->host);
10033
10034 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
10035 if (ret)
10036 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10037
10038 trace_ufshcd_wl_runtime_suspend(hba, ret,
10039 ktime_to_us(ktime_sub(ktime_get(), start)),
10040 hba->curr_dev_pwr_mode, hba->uic_link_state);
10041
10042 return ret;
10043 }
10044
ufshcd_wl_runtime_resume(struct device * dev)10045 static int ufshcd_wl_runtime_resume(struct device *dev)
10046 {
10047 struct scsi_device *sdev = to_scsi_device(dev);
10048 struct ufs_hba *hba;
10049 int ret = 0;
10050 ktime_t start = ktime_get();
10051
10052 hba = shost_priv(sdev->host);
10053
10054 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
10055 if (ret)
10056 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10057
10058 trace_ufshcd_wl_runtime_resume(hba, ret,
10059 ktime_to_us(ktime_sub(ktime_get(), start)),
10060 hba->curr_dev_pwr_mode, hba->uic_link_state);
10061
10062 return ret;
10063 }
10064 #endif
10065
10066 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_suspend(struct device * dev)10067 static int ufshcd_wl_suspend(struct device *dev)
10068 {
10069 struct scsi_device *sdev = to_scsi_device(dev);
10070 struct ufs_hba *hba;
10071 int ret = 0;
10072 ktime_t start = ktime_get();
10073
10074 hba = shost_priv(sdev->host);
10075 down(&hba->host_sem);
10076 hba->system_suspending = true;
10077
10078 if (pm_runtime_suspended(dev))
10079 goto out;
10080
10081 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
10082 if (ret) {
10083 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10084 up(&hba->host_sem);
10085 }
10086
10087 out:
10088 if (!ret)
10089 hba->is_sys_suspended = true;
10090 trace_ufshcd_wl_suspend(hba, ret,
10091 ktime_to_us(ktime_sub(ktime_get(), start)),
10092 hba->curr_dev_pwr_mode, hba->uic_link_state);
10093
10094 return ret;
10095 }
10096
ufshcd_wl_resume(struct device * dev)10097 static int ufshcd_wl_resume(struct device *dev)
10098 {
10099 struct scsi_device *sdev = to_scsi_device(dev);
10100 struct ufs_hba *hba;
10101 int ret = 0;
10102 ktime_t start = ktime_get();
10103
10104 hba = shost_priv(sdev->host);
10105
10106 if (pm_runtime_suspended(dev))
10107 goto out;
10108
10109 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
10110 if (ret)
10111 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10112 out:
10113 trace_ufshcd_wl_resume(hba, ret,
10114 ktime_to_us(ktime_sub(ktime_get(), start)),
10115 hba->curr_dev_pwr_mode, hba->uic_link_state);
10116 if (!ret)
10117 hba->is_sys_suspended = false;
10118 hba->system_suspending = false;
10119 up(&hba->host_sem);
10120 return ret;
10121 }
10122 #endif
10123
10124 /**
10125 * ufshcd_suspend - helper function for suspend operations
10126 * @hba: per adapter instance
10127 *
10128 * This function will put disable irqs, turn off clocks
10129 * and set vreg and hba-vreg in lpm mode.
10130 *
10131 * Return: 0 upon success; < 0 upon failure.
10132 */
ufshcd_suspend(struct ufs_hba * hba)10133 static int ufshcd_suspend(struct ufs_hba *hba)
10134 {
10135 int ret;
10136
10137 if (!hba->is_powered)
10138 return 0;
10139 /*
10140 * Disable the host irq as host controller as there won't be any
10141 * host controller transaction expected till resume.
10142 */
10143 ufshcd_disable_irq(hba);
10144 ret = ufshcd_setup_clocks(hba, false);
10145 if (ret) {
10146 ufshcd_enable_irq(hba);
10147 return ret;
10148 }
10149 if (ufshcd_is_clkgating_allowed(hba)) {
10150 hba->clk_gating.state = CLKS_OFF;
10151 trace_ufshcd_clk_gating(hba,
10152 hba->clk_gating.state);
10153 }
10154
10155 ufshcd_vreg_set_lpm(hba);
10156 /* Put the host controller in low power mode if possible */
10157 ufshcd_hba_vreg_set_lpm(hba);
10158 ufshcd_pm_qos_update(hba, false);
10159 return ret;
10160 }
10161
10162 #ifdef CONFIG_PM
10163 /**
10164 * ufshcd_resume - helper function for resume operations
10165 * @hba: per adapter instance
10166 *
10167 * This function basically turns on the regulators, clocks and
10168 * irqs of the hba.
10169 *
10170 * Return: 0 for success and non-zero for failure.
10171 */
ufshcd_resume(struct ufs_hba * hba)10172 static int ufshcd_resume(struct ufs_hba *hba)
10173 {
10174 int ret;
10175
10176 if (!hba->is_powered)
10177 return 0;
10178
10179 ufshcd_hba_vreg_set_hpm(hba);
10180 ret = ufshcd_vreg_set_hpm(hba);
10181 if (ret)
10182 goto out;
10183
10184 /* Make sure clocks are enabled before accessing controller */
10185 ret = ufshcd_setup_clocks(hba, true);
10186 if (ret)
10187 goto disable_vreg;
10188
10189 /* enable the host irq as host controller would be active soon */
10190 ufshcd_enable_irq(hba);
10191
10192 goto out;
10193
10194 disable_vreg:
10195 ufshcd_vreg_set_lpm(hba);
10196 out:
10197 if (ret)
10198 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10199 return ret;
10200 }
10201 #endif /* CONFIG_PM */
10202
10203 #ifdef CONFIG_PM_SLEEP
10204 /**
10205 * ufshcd_system_suspend - system suspend callback
10206 * @dev: Device associated with the UFS controller.
10207 *
10208 * Executed before putting the system into a sleep state in which the contents
10209 * of main memory are preserved.
10210 *
10211 * Return: 0 for success and non-zero for failure.
10212 */
ufshcd_system_suspend(struct device * dev)10213 int ufshcd_system_suspend(struct device *dev)
10214 {
10215 struct ufs_hba *hba = dev_get_drvdata(dev);
10216 int ret = 0;
10217 ktime_t start = ktime_get();
10218
10219 if (pm_runtime_suspended(hba->dev))
10220 goto out;
10221
10222 ret = ufshcd_suspend(hba);
10223 out:
10224 trace_ufshcd_system_suspend(hba, ret,
10225 ktime_to_us(ktime_sub(ktime_get(), start)),
10226 hba->curr_dev_pwr_mode, hba->uic_link_state);
10227 return ret;
10228 }
10229 EXPORT_SYMBOL(ufshcd_system_suspend);
10230
10231 /**
10232 * ufshcd_system_resume - system resume callback
10233 * @dev: Device associated with the UFS controller.
10234 *
10235 * Executed after waking the system up from a sleep state in which the contents
10236 * of main memory were preserved.
10237 *
10238 * Return: 0 for success and non-zero for failure.
10239 */
ufshcd_system_resume(struct device * dev)10240 int ufshcd_system_resume(struct device *dev)
10241 {
10242 struct ufs_hba *hba = dev_get_drvdata(dev);
10243 ktime_t start = ktime_get();
10244 int ret = 0;
10245
10246 if (pm_runtime_suspended(hba->dev))
10247 goto out;
10248
10249 ret = ufshcd_resume(hba);
10250
10251 out:
10252 trace_ufshcd_system_resume(hba, ret,
10253 ktime_to_us(ktime_sub(ktime_get(), start)),
10254 hba->curr_dev_pwr_mode, hba->uic_link_state);
10255
10256 return ret;
10257 }
10258 EXPORT_SYMBOL(ufshcd_system_resume);
10259 #endif /* CONFIG_PM_SLEEP */
10260
10261 #ifdef CONFIG_PM
10262 /**
10263 * ufshcd_runtime_suspend - runtime suspend callback
10264 * @dev: Device associated with the UFS controller.
10265 *
10266 * Check the description of ufshcd_suspend() function for more details.
10267 *
10268 * Return: 0 for success and non-zero for failure.
10269 */
ufshcd_runtime_suspend(struct device * dev)10270 int ufshcd_runtime_suspend(struct device *dev)
10271 {
10272 struct ufs_hba *hba = dev_get_drvdata(dev);
10273 int ret;
10274 ktime_t start = ktime_get();
10275
10276 ret = ufshcd_suspend(hba);
10277
10278 trace_ufshcd_runtime_suspend(hba, ret,
10279 ktime_to_us(ktime_sub(ktime_get(), start)),
10280 hba->curr_dev_pwr_mode, hba->uic_link_state);
10281 return ret;
10282 }
10283 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10284
10285 /**
10286 * ufshcd_runtime_resume - runtime resume routine
10287 * @dev: Device associated with the UFS controller.
10288 *
10289 * This function basically brings controller
10290 * to active state. Following operations are done in this function:
10291 *
10292 * 1. Turn on all the controller related clocks
10293 * 2. Turn ON VCC rail
10294 *
10295 * Return: 0 upon success; < 0 upon failure.
10296 */
ufshcd_runtime_resume(struct device * dev)10297 int ufshcd_runtime_resume(struct device *dev)
10298 {
10299 struct ufs_hba *hba = dev_get_drvdata(dev);
10300 int ret;
10301 ktime_t start = ktime_get();
10302
10303 ret = ufshcd_resume(hba);
10304
10305 trace_ufshcd_runtime_resume(hba, ret,
10306 ktime_to_us(ktime_sub(ktime_get(), start)),
10307 hba->curr_dev_pwr_mode, hba->uic_link_state);
10308 return ret;
10309 }
10310 EXPORT_SYMBOL(ufshcd_runtime_resume);
10311 #endif /* CONFIG_PM */
10312
ufshcd_wl_shutdown(struct device * dev)10313 static void ufshcd_wl_shutdown(struct device *dev)
10314 {
10315 struct scsi_device *sdev = to_scsi_device(dev);
10316 struct ufs_hba *hba = shost_priv(sdev->host);
10317
10318 down(&hba->host_sem);
10319 hba->shutting_down = true;
10320 up(&hba->host_sem);
10321
10322 /* Turn on everything while shutting down */
10323 ufshcd_rpm_get_sync(hba);
10324 scsi_device_quiesce(sdev);
10325 shost_for_each_device(sdev, hba->host) {
10326 if (sdev == hba->ufs_device_wlun)
10327 continue;
10328 mutex_lock(&sdev->state_mutex);
10329 scsi_device_set_state(sdev, SDEV_OFFLINE);
10330 mutex_unlock(&sdev->state_mutex);
10331 }
10332 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10333
10334 /*
10335 * Next, turn off the UFS controller and the UFS regulators. Disable
10336 * clocks.
10337 */
10338 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10339 ufshcd_suspend(hba);
10340
10341 hba->is_powered = false;
10342 }
10343
10344 /**
10345 * ufshcd_remove - de-allocate SCSI host and host memory space
10346 * data structure memory
10347 * @hba: per adapter instance
10348 */
ufshcd_remove(struct ufs_hba * hba)10349 void ufshcd_remove(struct ufs_hba *hba)
10350 {
10351 if (hba->ufs_device_wlun)
10352 ufshcd_rpm_get_sync(hba);
10353 ufs_hwmon_remove(hba);
10354 ufs_bsg_remove(hba);
10355 ufs_sysfs_remove_nodes(hba->dev);
10356 cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10357 blk_mq_destroy_queue(hba->tmf_queue);
10358 blk_put_queue(hba->tmf_queue);
10359 blk_mq_free_tag_set(&hba->tmf_tag_set);
10360 if (hba->scsi_host_added)
10361 scsi_remove_host(hba->host);
10362 /* disable interrupts */
10363 ufshcd_disable_intr(hba, hba->intr_mask);
10364 ufshcd_hba_stop(hba);
10365 ufshcd_hba_exit(hba);
10366 }
10367 EXPORT_SYMBOL_GPL(ufshcd_remove);
10368
10369 #ifdef CONFIG_PM_SLEEP
ufshcd_system_freeze(struct device * dev)10370 int ufshcd_system_freeze(struct device *dev)
10371 {
10372
10373 return ufshcd_system_suspend(dev);
10374
10375 }
10376 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10377
ufshcd_system_restore(struct device * dev)10378 int ufshcd_system_restore(struct device *dev)
10379 {
10380
10381 struct ufs_hba *hba = dev_get_drvdata(dev);
10382 int ret;
10383
10384 ret = ufshcd_system_resume(dev);
10385 if (ret)
10386 return ret;
10387
10388 /* Configure UTRL and UTMRL base address registers */
10389 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10390 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10391 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10392 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10393 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10394 REG_UTP_TASK_REQ_LIST_BASE_L);
10395 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10396 REG_UTP_TASK_REQ_LIST_BASE_H);
10397 /*
10398 * Make sure that UTRL and UTMRL base address registers
10399 * are updated with the latest queue addresses. Only after
10400 * updating these addresses, we can queue the new commands.
10401 */
10402 ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10403
10404 return 0;
10405
10406 }
10407 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10408
ufshcd_system_thaw(struct device * dev)10409 int ufshcd_system_thaw(struct device *dev)
10410 {
10411 return ufshcd_system_resume(dev);
10412 }
10413 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10414 #endif /* CONFIG_PM_SLEEP */
10415
10416 /**
10417 * ufshcd_set_dma_mask - Set dma mask based on the controller
10418 * addressing capability
10419 * @hba: per adapter instance
10420 *
10421 * Return: 0 for success, non-zero for failure.
10422 */
ufshcd_set_dma_mask(struct ufs_hba * hba)10423 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10424 {
10425 if (hba->vops && hba->vops->set_dma_mask)
10426 return hba->vops->set_dma_mask(hba);
10427 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10428 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10429 return 0;
10430 }
10431 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10432 }
10433
10434 /**
10435 * ufshcd_devres_release - devres cleanup handler, invoked during release of
10436 * hba->dev
10437 * @host: pointer to SCSI host
10438 */
ufshcd_devres_release(void * host)10439 static void ufshcd_devres_release(void *host)
10440 {
10441 scsi_host_put(host);
10442 }
10443
10444 /**
10445 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10446 * @dev: pointer to device handle
10447 * @hba_handle: driver private handle
10448 *
10449 * Return: 0 on success, non-zero value on failure.
10450 *
10451 * NOTE: There is no corresponding ufshcd_dealloc_host() because this function
10452 * keeps track of its allocations using devres and deallocates everything on
10453 * device removal automatically.
10454 */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)10455 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10456 {
10457 struct Scsi_Host *host;
10458 struct ufs_hba *hba;
10459 int err = 0;
10460
10461 if (!dev) {
10462 dev_err(dev,
10463 "Invalid memory reference for dev is NULL\n");
10464 err = -ENODEV;
10465 goto out_error;
10466 }
10467
10468 host = scsi_host_alloc(&ufshcd_driver_template,
10469 sizeof(struct ufs_hba));
10470 if (!host) {
10471 dev_err(dev, "scsi_host_alloc failed\n");
10472 err = -ENOMEM;
10473 goto out_error;
10474 }
10475
10476 err = devm_add_action_or_reset(dev, ufshcd_devres_release,
10477 host);
10478 if (err)
10479 return dev_err_probe(dev, err,
10480 "failed to add ufshcd dealloc action\n");
10481
10482 host->nr_maps = HCTX_TYPE_POLL + 1;
10483 hba = shost_priv(host);
10484 hba->host = host;
10485 hba->dev = dev;
10486 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10487 hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10488 ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10489 INIT_LIST_HEAD(&hba->clk_list_head);
10490 spin_lock_init(&hba->outstanding_lock);
10491
10492 *hba_handle = hba;
10493
10494 out_error:
10495 return err;
10496 }
10497 EXPORT_SYMBOL(ufshcd_alloc_host);
10498
10499 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)10500 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10501 const struct blk_mq_queue_data *qd)
10502 {
10503 WARN_ON_ONCE(true);
10504 return BLK_STS_NOTSUPP;
10505 }
10506
10507 static const struct blk_mq_ops ufshcd_tmf_ops = {
10508 .queue_rq = ufshcd_queue_tmf,
10509 };
10510
ufshcd_add_scsi_host(struct ufs_hba * hba)10511 static int ufshcd_add_scsi_host(struct ufs_hba *hba)
10512 {
10513 int err;
10514
10515 if (is_mcq_supported(hba)) {
10516 ufshcd_mcq_enable(hba);
10517 err = ufshcd_alloc_mcq(hba);
10518 if (!err) {
10519 ufshcd_config_mcq(hba);
10520 } else {
10521 /* Continue with SDB mode */
10522 ufshcd_mcq_disable(hba);
10523 use_mcq_mode = false;
10524 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
10525 err);
10526 }
10527 }
10528 if (!is_mcq_supported(hba) && !hba->lsdb_sup) {
10529 dev_err(hba->dev,
10530 "%s: failed to initialize (legacy doorbell mode not supported)\n",
10531 __func__);
10532 return -EINVAL;
10533 }
10534
10535 err = scsi_add_host(hba->host, hba->dev);
10536 if (err) {
10537 dev_err(hba->dev, "scsi_add_host failed\n");
10538 return err;
10539 }
10540 hba->scsi_host_added = true;
10541
10542 hba->tmf_tag_set = (struct blk_mq_tag_set) {
10543 .nr_hw_queues = 1,
10544 .queue_depth = hba->nutmrs,
10545 .ops = &ufshcd_tmf_ops,
10546 };
10547 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10548 if (err < 0)
10549 goto remove_scsi_host;
10550 hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10551 if (IS_ERR(hba->tmf_queue)) {
10552 err = PTR_ERR(hba->tmf_queue);
10553 goto free_tmf_tag_set;
10554 }
10555 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10556 sizeof(*hba->tmf_rqs), GFP_KERNEL);
10557 if (!hba->tmf_rqs) {
10558 err = -ENOMEM;
10559 goto free_tmf_queue;
10560 }
10561
10562 return 0;
10563
10564 free_tmf_queue:
10565 blk_mq_destroy_queue(hba->tmf_queue);
10566 blk_put_queue(hba->tmf_queue);
10567
10568 free_tmf_tag_set:
10569 blk_mq_free_tag_set(&hba->tmf_tag_set);
10570
10571 remove_scsi_host:
10572 if (hba->scsi_host_added)
10573 scsi_remove_host(hba->host);
10574
10575 return err;
10576 }
10577
10578 /**
10579 * ufshcd_init - Driver initialization routine
10580 * @hba: per-adapter instance
10581 * @mmio_base: base register address
10582 * @irq: Interrupt line of device
10583 *
10584 * Return: 0 on success, non-zero value on failure.
10585 */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)10586 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10587 {
10588 int err;
10589 struct Scsi_Host *host = hba->host;
10590 struct device *dev = hba->dev;
10591
10592 /*
10593 * dev_set_drvdata() must be called before any callbacks are registered
10594 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10595 * sysfs).
10596 */
10597 dev_set_drvdata(dev, hba);
10598
10599 if (!mmio_base) {
10600 dev_err(hba->dev,
10601 "Invalid memory reference for mmio_base is NULL\n");
10602 err = -ENODEV;
10603 goto out_error;
10604 }
10605
10606 hba->mmio_base = mmio_base;
10607 hba->irq = irq;
10608 hba->vps = &ufs_hba_vps;
10609
10610 /*
10611 * Initialize clk_gating.lock early since it is being used in
10612 * ufshcd_setup_clocks()
10613 */
10614 spin_lock_init(&hba->clk_gating.lock);
10615
10616 /*
10617 * Set the default power management level for runtime and system PM.
10618 * Host controller drivers can override them in their
10619 * 'ufs_hba_variant_ops::init' callback.
10620 *
10621 * Default power saving mode is to keep UFS link in Hibern8 state
10622 * and UFS device in sleep state.
10623 */
10624 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10625 UFS_SLEEP_PWR_MODE,
10626 UIC_LINK_HIBERN8_STATE);
10627 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10628 UFS_SLEEP_PWR_MODE,
10629 UIC_LINK_HIBERN8_STATE);
10630
10631 init_completion(&hba->dev_cmd.complete);
10632
10633 err = ufshcd_hba_init(hba);
10634 if (err)
10635 goto out_error;
10636
10637 /* Read capabilities registers */
10638 err = ufshcd_hba_capabilities(hba);
10639 if (err)
10640 goto out_disable;
10641
10642 /* Get UFS version supported by the controller */
10643 hba->ufs_version = ufshcd_get_ufs_version(hba);
10644
10645 /* Get Interrupt bit mask per version */
10646 hba->intr_mask = ufshcd_get_intr_mask(hba);
10647
10648 err = ufshcd_set_dma_mask(hba);
10649 if (err) {
10650 dev_err(hba->dev, "set dma mask failed\n");
10651 goto out_disable;
10652 }
10653
10654 /* Allocate memory for host memory space */
10655 err = ufshcd_memory_alloc(hba);
10656 if (err) {
10657 dev_err(hba->dev, "Memory allocation failed\n");
10658 goto out_disable;
10659 }
10660
10661 /* Configure LRB */
10662 ufshcd_host_memory_configure(hba);
10663
10664 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10665 host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10666 host->max_id = UFSHCD_MAX_ID;
10667 host->max_lun = UFS_MAX_LUNS;
10668 host->max_channel = UFSHCD_MAX_CHANNEL;
10669 host->unique_id = host->host_no;
10670 host->max_cmd_len = UFS_CDB_SIZE;
10671 host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10672
10673 /* Use default RPM delay if host not set */
10674 if (host->rpm_autosuspend_delay == 0)
10675 host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10676
10677 hba->max_pwr_info.is_valid = false;
10678
10679 /* Initialize work queues */
10680 hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM,
10681 hba->host->host_no);
10682 if (!hba->eh_wq) {
10683 dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10684 __func__);
10685 err = -ENOMEM;
10686 goto out_disable;
10687 }
10688 INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10689 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10690
10691 sema_init(&hba->host_sem, 1);
10692
10693 /* Initialize UIC command mutex */
10694 mutex_init(&hba->uic_cmd_mutex);
10695
10696 /* Initialize mutex for device management commands */
10697 mutex_init(&hba->dev_cmd.lock);
10698
10699 /* Initialize mutex for exception event control */
10700 mutex_init(&hba->ee_ctrl_mutex);
10701
10702 mutex_init(&hba->wb_mutex);
10703 init_rwsem(&hba->clk_scaling_lock);
10704
10705 ufshcd_init_clk_gating(hba);
10706
10707 ufshcd_init_clk_scaling(hba);
10708
10709 /*
10710 * In order to avoid any spurious interrupt immediately after
10711 * registering UFS controller interrupt handler, clear any pending UFS
10712 * interrupt status and disable all the UFS interrupts.
10713 */
10714 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10715 REG_INTERRUPT_STATUS);
10716 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10717 /*
10718 * Make sure that UFS interrupts are disabled and any pending interrupt
10719 * status is cleared before registering UFS interrupt handler.
10720 */
10721 ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10722
10723 /* IRQ registration */
10724 err = devm_request_threaded_irq(dev, irq, ufshcd_intr, ufshcd_threaded_intr,
10725 IRQF_ONESHOT | IRQF_SHARED, UFSHCD, hba);
10726 if (err) {
10727 dev_err(hba->dev, "request irq failed\n");
10728 goto out_disable;
10729 } else {
10730 hba->is_irq_enabled = true;
10731 }
10732
10733 /* Reset the attached device */
10734 ufshcd_device_reset(hba);
10735
10736 ufshcd_init_crypto(hba);
10737
10738 /* Host controller enable */
10739 err = ufshcd_hba_enable(hba);
10740 if (err) {
10741 dev_err(hba->dev, "Host controller enable failed\n");
10742 ufshcd_print_evt_hist(hba);
10743 ufshcd_print_host_state(hba);
10744 goto out_disable;
10745 }
10746
10747 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10748 INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10749
10750 /* Set the default auto-hiberate idle timer value to 150 ms */
10751 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10752 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10753 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10754 }
10755
10756 /* Hold auto suspend until async scan completes */
10757 pm_runtime_get_sync(dev);
10758
10759 /*
10760 * We are assuming that device wasn't put in sleep/power-down
10761 * state exclusively during the boot stage before kernel.
10762 * This assumption helps avoid doing link startup twice during
10763 * ufshcd_probe_hba().
10764 */
10765 ufshcd_set_ufs_dev_active(hba);
10766
10767 /* Initialize hba, detect and initialize UFS device */
10768 ktime_t probe_start = ktime_get();
10769
10770 hba->ufshcd_state = UFSHCD_STATE_RESET;
10771
10772 err = ufshcd_link_startup(hba);
10773 if (err)
10774 goto out_disable;
10775
10776 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
10777 goto initialized;
10778
10779 /* Debug counters initialization */
10780 ufshcd_clear_dbg_ufs_stats(hba);
10781
10782 /* UniPro link is active now */
10783 ufshcd_set_link_active(hba);
10784
10785 /* Verify device initialization by sending NOP OUT UPIU */
10786 err = ufshcd_verify_dev_init(hba);
10787 if (err)
10788 goto out_disable;
10789
10790 /* Initiate UFS initialization, and waiting until completion */
10791 err = ufshcd_complete_dev_init(hba);
10792 if (err)
10793 goto out_disable;
10794
10795 err = ufshcd_device_params_init(hba);
10796 if (err)
10797 goto out_disable;
10798
10799 err = ufshcd_post_device_init(hba);
10800
10801 initialized:
10802 ufshcd_process_probe_result(hba, probe_start, err);
10803 if (err)
10804 goto out_disable;
10805
10806 err = ufshcd_add_scsi_host(hba);
10807 if (err)
10808 goto out_disable;
10809
10810 async_schedule(ufshcd_async_scan, hba);
10811 ufs_sysfs_add_nodes(hba->dev);
10812
10813 device_enable_async_suspend(dev);
10814 ufshcd_pm_qos_init(hba);
10815 return 0;
10816
10817 out_disable:
10818 hba->is_irq_enabled = false;
10819 ufshcd_hba_exit(hba);
10820 out_error:
10821 return err;
10822 }
10823 EXPORT_SYMBOL_GPL(ufshcd_init);
10824
ufshcd_resume_complete(struct device * dev)10825 void ufshcd_resume_complete(struct device *dev)
10826 {
10827 struct ufs_hba *hba = dev_get_drvdata(dev);
10828
10829 if (hba->complete_put) {
10830 ufshcd_rpm_put(hba);
10831 hba->complete_put = false;
10832 }
10833 }
10834 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10835
ufshcd_rpm_ok_for_spm(struct ufs_hba * hba)10836 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10837 {
10838 struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10839 enum ufs_dev_pwr_mode dev_pwr_mode;
10840 enum uic_link_state link_state;
10841 unsigned long flags;
10842 bool res;
10843
10844 spin_lock_irqsave(&dev->power.lock, flags);
10845 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10846 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10847 res = pm_runtime_suspended(dev) &&
10848 hba->curr_dev_pwr_mode == dev_pwr_mode &&
10849 hba->uic_link_state == link_state &&
10850 !hba->dev_info.b_rpm_dev_flush_capable;
10851 spin_unlock_irqrestore(&dev->power.lock, flags);
10852
10853 return res;
10854 }
10855
__ufshcd_suspend_prepare(struct device * dev,bool rpm_ok_for_spm)10856 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10857 {
10858 struct ufs_hba *hba = dev_get_drvdata(dev);
10859 int ret;
10860
10861 /*
10862 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10863 * are same. And it doesn't wake up the device for system-suspend
10864 * if it's runtime suspended. But ufs doesn't follow that.
10865 * Refer ufshcd_resume_complete()
10866 */
10867 if (hba->ufs_device_wlun) {
10868 /* Prevent runtime suspend */
10869 ufshcd_rpm_get_noresume(hba);
10870 /*
10871 * Check if already runtime suspended in same state as system
10872 * suspend would be.
10873 */
10874 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10875 /* RPM state is not ok for SPM, so runtime resume */
10876 ret = ufshcd_rpm_resume(hba);
10877 if (ret < 0 && ret != -EACCES) {
10878 ufshcd_rpm_put(hba);
10879 return ret;
10880 }
10881 }
10882 hba->complete_put = true;
10883 }
10884 return 0;
10885 }
10886 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10887
ufshcd_suspend_prepare(struct device * dev)10888 int ufshcd_suspend_prepare(struct device *dev)
10889 {
10890 return __ufshcd_suspend_prepare(dev, true);
10891 }
10892 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10893
10894 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_poweroff(struct device * dev)10895 static int ufshcd_wl_poweroff(struct device *dev)
10896 {
10897 struct scsi_device *sdev = to_scsi_device(dev);
10898 struct ufs_hba *hba = shost_priv(sdev->host);
10899
10900 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10901 return 0;
10902 }
10903 #endif
10904
ufshcd_wl_probe(struct device * dev)10905 static int ufshcd_wl_probe(struct device *dev)
10906 {
10907 struct scsi_device *sdev = to_scsi_device(dev);
10908
10909 if (!is_device_wlun(sdev))
10910 return -ENODEV;
10911
10912 blk_pm_runtime_init(sdev->request_queue, dev);
10913 pm_runtime_set_autosuspend_delay(dev, 0);
10914 pm_runtime_allow(dev);
10915
10916 return 0;
10917 }
10918
ufshcd_wl_remove(struct device * dev)10919 static int ufshcd_wl_remove(struct device *dev)
10920 {
10921 pm_runtime_forbid(dev);
10922 return 0;
10923 }
10924
10925 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10926 #ifdef CONFIG_PM_SLEEP
10927 .suspend = ufshcd_wl_suspend,
10928 .resume = ufshcd_wl_resume,
10929 .freeze = ufshcd_wl_suspend,
10930 .thaw = ufshcd_wl_resume,
10931 .poweroff = ufshcd_wl_poweroff,
10932 .restore = ufshcd_wl_resume,
10933 #endif
10934 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10935 };
10936
ufshcd_check_header_layout(void)10937 static void ufshcd_check_header_layout(void)
10938 {
10939 /*
10940 * gcc compilers before version 10 cannot do constant-folding for
10941 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10942 * before.
10943 */
10944 if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10945 return;
10946
10947 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10948 .cci = 3})[0] != 3);
10949
10950 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10951 .ehs_length = 2})[1] != 2);
10952
10953 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10954 .enable_crypto = 1})[2]
10955 != 0x80);
10956
10957 BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10958 .command_type = 5,
10959 .data_direction = 3,
10960 .interrupt = 1,
10961 })[3]) != ((5 << 4) | (3 << 1) | 1));
10962
10963 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10964 .dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10965 cpu_to_le32(0xdeadbeef));
10966
10967 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10968 .ocs = 4})[8] != 4);
10969
10970 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10971 .cds = 5})[9] != 5);
10972
10973 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10974 .dunu = cpu_to_le32(0xbadcafe)})[3] !=
10975 cpu_to_le32(0xbadcafe));
10976
10977 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10978 .iid = 0xf })[4] != 0xf0);
10979
10980 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10981 .command_set_type = 0xf })[4] != 0xf);
10982 }
10983
10984 /*
10985 * ufs_dev_wlun_template - describes ufs device wlun
10986 * ufs-device wlun - used to send pm commands
10987 * All luns are consumers of ufs-device wlun.
10988 *
10989 * Currently, no sd driver is present for wluns.
10990 * Hence the no specific pm operations are performed.
10991 * With ufs design, SSU should be sent to ufs-device wlun.
10992 * Hence register a scsi driver for ufs wluns only.
10993 */
10994 static struct scsi_driver ufs_dev_wlun_template = {
10995 .gendrv = {
10996 .name = "ufs_device_wlun",
10997 .probe = ufshcd_wl_probe,
10998 .remove = ufshcd_wl_remove,
10999 .pm = &ufshcd_wl_pm_ops,
11000 .shutdown = ufshcd_wl_shutdown,
11001 },
11002 };
11003
ufshcd_core_init(void)11004 static int __init ufshcd_core_init(void)
11005 {
11006 int ret;
11007
11008 ufshcd_check_header_layout();
11009
11010 ufs_debugfs_init();
11011
11012 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
11013 if (ret)
11014 ufs_debugfs_exit();
11015 return ret;
11016 }
11017
ufshcd_core_exit(void)11018 static void __exit ufshcd_core_exit(void)
11019 {
11020 ufs_debugfs_exit();
11021 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
11022 }
11023
11024 module_init(ufshcd_core_init);
11025 module_exit(ufshcd_core_exit);
11026
11027 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
11028 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
11029 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
11030 MODULE_SOFTDEP("pre: governor_simpleondemand");
11031 MODULE_LICENSE("GPL");
11032