1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Universal Flash Storage Host controller driver Core
4 * Copyright (C) 2011-2013 Samsung India Software Operations
5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6 *
7 * Authors:
8 * Santosh Yaraganavi <santosh.sy@samsung.com>
9 * Vinayak Holikatti <h.vinayak@samsung.com>
10 */
11
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include <scsi/scsi_tcq.h>
32 #include "ufshcd-priv.h"
33 #include <ufs/ufs_quirks.h>
34 #include <ufs/unipro.h>
35 #include "ufs-sysfs.h"
36 #include "ufs-debugfs.h"
37 #include "ufs-fault-injection.h"
38 #include "ufs_bsg.h"
39 #include "ufshcd-crypto.h"
40 #include <linux/unaligned.h>
41
42 #define CREATE_TRACE_POINTS
43 #include "ufs_trace.h"
44
45 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\
46 UTP_TASK_REQ_COMPL |\
47 UFSHCD_ERROR_MASK)
48
49 /* UIC command timeout, unit: ms */
50 enum {
51 UIC_CMD_TIMEOUT_DEFAULT = 500,
52 UIC_CMD_TIMEOUT_MAX = 5000,
53 };
54 /* NOP OUT retries waiting for NOP IN response */
55 #define NOP_OUT_RETRIES 10
56 /* Timeout after 50 msecs if NOP OUT hangs without response */
57 #define NOP_OUT_TIMEOUT 50 /* msecs */
58
59 /* Query request retries */
60 #define QUERY_REQ_RETRIES 3
61 /* Query request timeout */
62 enum {
63 QUERY_REQ_TIMEOUT_MIN = 1,
64 QUERY_REQ_TIMEOUT_DEFAULT = 1500,
65 QUERY_REQ_TIMEOUT_MAX = 30000
66 };
67
68 /* Advanced RPMB request timeout */
69 #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */
70
71 /* Task management command timeout */
72 #define TM_CMD_TIMEOUT 100 /* msecs */
73
74 /* maximum number of retries for a general UIC command */
75 #define UFS_UIC_COMMAND_RETRIES 3
76
77 /* maximum number of link-startup retries */
78 #define DME_LINKSTARTUP_RETRIES 3
79
80 /* maximum number of reset retries before giving up */
81 #define MAX_HOST_RESET_RETRIES 5
82
83 /* Maximum number of error handler retries before giving up */
84 #define MAX_ERR_HANDLER_RETRIES 5
85
86 /* Expose the flag value from utp_upiu_query.value */
87 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
88
89 /* Interrupt aggregation default timeout, unit: 40us */
90 #define INT_AGGR_DEF_TO 0x02
91
92 /* default delay of autosuspend: 2000 ms */
93 #define RPM_AUTOSUSPEND_DELAY_MS 2000
94
95 /* Default delay of RPM device flush delayed work */
96 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
97
98 /* Default value of wait time before gating device ref clock */
99 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
100
101 /* Polling time to wait for fDeviceInit */
102 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
103
104 /* Default RTC update every 10 seconds */
105 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
106
107 /* bMaxNumOfRTT is equal to two after device manufacturing */
108 #define DEFAULT_MAX_NUM_RTT 2
109
110 /* UFSHC 4.0 compliant HC support this mode. */
111 static bool use_mcq_mode = true;
112
is_mcq_supported(struct ufs_hba * hba)113 static bool is_mcq_supported(struct ufs_hba *hba)
114 {
115 return hba->mcq_sup && use_mcq_mode;
116 }
117
118 module_param(use_mcq_mode, bool, 0644);
119 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
120
121 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT;
122
uic_cmd_timeout_set(const char * val,const struct kernel_param * kp)123 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp)
124 {
125 return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT,
126 UIC_CMD_TIMEOUT_MAX);
127 }
128
129 static const struct kernel_param_ops uic_cmd_timeout_ops = {
130 .set = uic_cmd_timeout_set,
131 .get = param_get_uint,
132 };
133
134 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644);
135 MODULE_PARM_DESC(uic_cmd_timeout,
136 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 5 seconds inclusively");
137
138 static unsigned int dev_cmd_timeout = QUERY_REQ_TIMEOUT_DEFAULT;
139
dev_cmd_timeout_set(const char * val,const struct kernel_param * kp)140 static int dev_cmd_timeout_set(const char *val, const struct kernel_param *kp)
141 {
142 return param_set_uint_minmax(val, kp, QUERY_REQ_TIMEOUT_MIN,
143 QUERY_REQ_TIMEOUT_MAX);
144 }
145
146 static const struct kernel_param_ops dev_cmd_timeout_ops = {
147 .set = dev_cmd_timeout_set,
148 .get = param_get_uint,
149 };
150
151 module_param_cb(dev_cmd_timeout, &dev_cmd_timeout_ops, &dev_cmd_timeout, 0644);
152 MODULE_PARM_DESC(dev_cmd_timeout,
153 "UFS Device command timeout in milliseconds. Defaults to 1.5s. Supported values range from 1ms to 30 seconds inclusively");
154
155 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \
156 ({ \
157 int _ret; \
158 if (_on) \
159 _ret = ufshcd_enable_vreg(_dev, _vreg); \
160 else \
161 _ret = ufshcd_disable_vreg(_dev, _vreg); \
162 _ret; \
163 })
164
165 #define ufshcd_hex_dump(prefix_str, buf, len) do { \
166 size_t __len = (len); \
167 print_hex_dump(KERN_ERR, prefix_str, \
168 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
169 16, 4, buf, __len, false); \
170 } while (0)
171
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)172 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
173 const char *prefix)
174 {
175 u32 *regs;
176 size_t pos;
177
178 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
179 return -EINVAL;
180
181 regs = kzalloc(len, GFP_ATOMIC);
182 if (!regs)
183 return -ENOMEM;
184
185 for (pos = 0; pos < len; pos += 4) {
186 if (offset == 0 &&
187 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
188 pos <= REG_UIC_ERROR_CODE_DME)
189 continue;
190 regs[pos / 4] = ufshcd_readl(hba, offset + pos);
191 }
192
193 ufshcd_hex_dump(prefix, regs, len);
194 kfree(regs);
195
196 return 0;
197 }
198 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
199
200 enum {
201 UFSHCD_MAX_CHANNEL = 0,
202 UFSHCD_MAX_ID = 1,
203 };
204
205 static const char *const ufshcd_state_name[] = {
206 [UFSHCD_STATE_RESET] = "reset",
207 [UFSHCD_STATE_OPERATIONAL] = "operational",
208 [UFSHCD_STATE_ERROR] = "error",
209 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal",
210 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal",
211 };
212
213 /* UFSHCD error handling flags */
214 enum {
215 UFSHCD_EH_IN_PROGRESS = (1 << 0),
216 };
217
218 /* UFSHCD UIC layer error flags */
219 enum {
220 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
221 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
222 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
223 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
224 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
225 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
226 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
227 };
228
229 #define ufshcd_set_eh_in_progress(h) \
230 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
231 #define ufshcd_eh_in_progress(h) \
232 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
233 #define ufshcd_clear_eh_in_progress(h) \
234 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
235
236 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
237 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
238 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
239 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
240 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
241 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
242 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
243 /*
244 * For DeepSleep, the link is first put in hibern8 and then off.
245 * Leaving the link in hibern8 is not supported.
246 */
247 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
248 };
249
250 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)251 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
252 {
253 return ufs_pm_lvl_states[lvl].dev_state;
254 }
255
256 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)257 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
258 {
259 return ufs_pm_lvl_states[lvl].link_state;
260 }
261
262 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)263 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
264 enum uic_link_state link_state)
265 {
266 enum ufs_pm_level lvl;
267
268 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
269 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
270 (ufs_pm_lvl_states[lvl].link_state == link_state))
271 return lvl;
272 }
273
274 /* if no match found, return the level 0 */
275 return UFS_PM_LVL_0;
276 }
277
ufshcd_has_pending_tasks(struct ufs_hba * hba)278 static bool ufshcd_has_pending_tasks(struct ufs_hba *hba)
279 {
280 return hba->outstanding_tasks || hba->active_uic_cmd ||
281 hba->uic_async_done;
282 }
283
ufshcd_is_ufs_dev_busy(struct ufs_hba * hba)284 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
285 {
286 return scsi_host_busy(hba->host) || ufshcd_has_pending_tasks(hba);
287 }
288
289 static const struct ufs_dev_quirk ufs_fixups[] = {
290 /* UFS cards deviations table */
291 { .wmanufacturerid = UFS_VENDOR_MICRON,
292 .model = UFS_ANY_MODEL,
293 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
294 { .wmanufacturerid = UFS_VENDOR_SAMSUNG,
295 .model = UFS_ANY_MODEL,
296 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
297 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
298 UFS_DEVICE_QUIRK_PA_HIBER8TIME |
299 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
300 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
301 .model = UFS_ANY_MODEL,
302 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
303 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
304 .model = "hB8aL1" /*H28U62301AMR*/,
305 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
306 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
307 .model = UFS_ANY_MODEL,
308 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
309 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
310 .model = "THGLF2G9C8KBADG",
311 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
312 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
313 .model = "THGLF2G9D8KBADG",
314 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
315 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
316 .model = "THGJFJT1E45BATP",
317 .quirk = UFS_DEVICE_QUIRK_NO_TIMESTAMP_SUPPORT },
318 {}
319 };
320
321 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
322 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
323 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
324 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
325 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
326 static void ufshcd_hba_exit(struct ufs_hba *hba);
327 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params);
328 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
329 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
330 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
331 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
332 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
333 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
334 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
335 bool scale_up);
336 static irqreturn_t ufshcd_intr(int irq, void *__hba);
337 static int ufshcd_change_power_mode(struct ufs_hba *hba,
338 struct ufs_pa_layer_attr *pwr_mode);
339 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
340 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
341 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
342 struct ufs_vreg *vreg);
343 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
344 bool enable);
345 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
346 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
347
ufshcd_enable_irq(struct ufs_hba * hba)348 void ufshcd_enable_irq(struct ufs_hba *hba)
349 {
350 if (!hba->is_irq_enabled) {
351 enable_irq(hba->irq);
352 hba->is_irq_enabled = true;
353 }
354 }
355 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
356
ufshcd_disable_irq(struct ufs_hba * hba)357 void ufshcd_disable_irq(struct ufs_hba *hba)
358 {
359 if (hba->is_irq_enabled) {
360 disable_irq(hba->irq);
361 hba->is_irq_enabled = false;
362 }
363 }
364 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
365
366 /**
367 * ufshcd_enable_intr - enable interrupts
368 * @hba: per adapter instance
369 * @intrs: interrupt bits
370 */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)371 void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
372 {
373 u32 old_val = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
374 u32 new_val = old_val | intrs;
375
376 if (new_val != old_val)
377 ufshcd_writel(hba, new_val, REG_INTERRUPT_ENABLE);
378 }
379
380 /**
381 * ufshcd_disable_intr - disable interrupts
382 * @hba: per adapter instance
383 * @intrs: interrupt bits
384 */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)385 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
386 {
387 u32 old_val = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
388 u32 new_val = old_val & ~intrs;
389
390 if (new_val != old_val)
391 ufshcd_writel(hba, new_val, REG_INTERRUPT_ENABLE);
392 }
393
ufshcd_configure_wb(struct ufs_hba * hba)394 static void ufshcd_configure_wb(struct ufs_hba *hba)
395 {
396 if (!ufshcd_is_wb_allowed(hba))
397 return;
398
399 ufshcd_wb_toggle(hba, true);
400
401 ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
402
403 if (ufshcd_is_wb_buf_flush_allowed(hba))
404 ufshcd_wb_toggle_buf_flush(hba, true);
405 }
406
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,struct ufshcd_lrb * lrb,enum ufs_trace_str_t str_t)407 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba,
408 struct ufshcd_lrb *lrb,
409 enum ufs_trace_str_t str_t)
410 {
411 struct utp_upiu_req *rq = lrb->ucd_req_ptr;
412 struct utp_upiu_header *header;
413
414 if (!trace_ufshcd_upiu_enabled())
415 return;
416
417 if (str_t == UFS_CMD_SEND)
418 header = &rq->header;
419 else
420 header = &lrb->ucd_rsp_ptr->header;
421
422 trace_ufshcd_upiu(hba, str_t, header, &rq->sc.cdb,
423 UFS_TSF_CDB);
424 }
425
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,enum ufs_trace_str_t str_t,struct utp_upiu_req * rq_rsp)426 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
427 enum ufs_trace_str_t str_t,
428 struct utp_upiu_req *rq_rsp)
429 {
430 if (!trace_ufshcd_upiu_enabled())
431 return;
432
433 trace_ufshcd_upiu(hba, str_t, &rq_rsp->header,
434 &rq_rsp->qr, UFS_TSF_OSF);
435 }
436
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)437 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
438 enum ufs_trace_str_t str_t)
439 {
440 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
441
442 if (!trace_ufshcd_upiu_enabled())
443 return;
444
445 if (str_t == UFS_TM_SEND)
446 trace_ufshcd_upiu(hba, str_t,
447 &descp->upiu_req.req_header,
448 &descp->upiu_req.input_param1,
449 UFS_TSF_TM_INPUT);
450 else
451 trace_ufshcd_upiu(hba, str_t,
452 &descp->upiu_rsp.rsp_header,
453 &descp->upiu_rsp.output_param1,
454 UFS_TSF_TM_OUTPUT);
455 }
456
ufshcd_add_uic_command_trace(struct ufs_hba * hba,const struct uic_command * ucmd,enum ufs_trace_str_t str_t)457 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
458 const struct uic_command *ucmd,
459 enum ufs_trace_str_t str_t)
460 {
461 u32 cmd;
462
463 if (!trace_ufshcd_uic_command_enabled())
464 return;
465
466 if (str_t == UFS_CMD_SEND)
467 cmd = ucmd->command;
468 else
469 cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
470
471 trace_ufshcd_uic_command(hba, str_t, cmd,
472 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
473 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
474 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
475 }
476
ufshcd_add_command_trace(struct ufs_hba * hba,struct scsi_cmnd * cmd,enum ufs_trace_str_t str_t)477 static void ufshcd_add_command_trace(struct ufs_hba *hba, struct scsi_cmnd *cmd,
478 enum ufs_trace_str_t str_t)
479 {
480 u64 lba = 0;
481 u8 opcode = 0, group_id = 0;
482 u32 doorbell = 0;
483 u32 intr;
484 u32 hwq_id = 0;
485 struct request *rq = scsi_cmd_to_rq(cmd);
486 unsigned int tag = rq->tag;
487 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
488 int transfer_len = -1;
489
490 /* trace UPIU also */
491 ufshcd_add_cmd_upiu_trace(hba, lrbp, str_t);
492 if (!trace_ufshcd_command_enabled())
493 return;
494
495 opcode = cmd->cmnd[0];
496
497 if (opcode == READ_10 || opcode == WRITE_10) {
498 /*
499 * Currently we only fully trace read(10) and write(10) commands
500 */
501 transfer_len =
502 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
503 lba = scsi_get_lba(cmd);
504 if (opcode == WRITE_10)
505 group_id = cmd->cmnd[6];
506 } else if (opcode == UNMAP) {
507 /*
508 * The number of Bytes to be unmapped beginning with the lba.
509 */
510 transfer_len = blk_rq_bytes(rq);
511 lba = scsi_get_lba(cmd);
512 }
513
514 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
515
516 if (hba->mcq_enabled) {
517 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
518
519 hwq_id = hwq->id;
520 } else {
521 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
522 }
523 trace_ufshcd_command(cmd->device, hba, str_t, tag, doorbell, hwq_id,
524 transfer_len, intr, lba, opcode, group_id);
525 }
526
ufshcd_print_clk_freqs(struct ufs_hba * hba)527 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
528 {
529 struct ufs_clk_info *clki;
530 struct list_head *head = &hba->clk_list_head;
531
532 if (list_empty(head))
533 return;
534
535 list_for_each_entry(clki, head, list) {
536 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
537 clki->max_freq)
538 dev_err(hba->dev, "clk: %s, rate: %u\n",
539 clki->name, clki->curr_freq);
540 }
541 }
542
ufshcd_print_evt(struct ufs_hba * hba,u32 id,const char * err_name)543 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
544 const char *err_name)
545 {
546 int i;
547 bool found = false;
548 const struct ufs_event_hist *e;
549
550 if (id >= UFS_EVT_CNT)
551 return;
552
553 e = &hba->ufs_stats.event[id];
554
555 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
556 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
557
558 if (e->tstamp[p] == 0)
559 continue;
560 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
561 e->val[p], div_u64(e->tstamp[p], 1000));
562 found = true;
563 }
564
565 if (!found)
566 dev_err(hba->dev, "No record of %s\n", err_name);
567 else
568 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
569 }
570
ufshcd_print_evt_hist(struct ufs_hba * hba)571 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
572 {
573 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
574
575 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
576 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
577 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
578 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
579 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
580 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
581 "auto_hibern8_err");
582 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
583 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
584 "link_startup_fail");
585 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
586 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
587 "suspend_fail");
588 ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
589 ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
590 "wlun suspend_fail");
591 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
592 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
593 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
594
595 ufshcd_vops_dbg_register_dump(hba);
596 }
597
ufshcd_print_tr(struct ufs_hba * hba,struct scsi_cmnd * cmd,bool pr_prdt)598 static void ufshcd_print_tr(struct ufs_hba *hba, struct scsi_cmnd *cmd,
599 bool pr_prdt)
600 {
601 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
602 const int tag = scsi_cmd_to_rq(cmd)->tag;
603 int prdt_length;
604
605 if (hba->monitor.enabled) {
606 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n", tag,
607 div_u64(lrbp->issue_time_stamp_local_clock, 1000));
608 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n", tag,
609 div_u64(lrbp->compl_time_stamp_local_clock, 1000));
610 }
611 dev_err(hba->dev,
612 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
613 tag, (u64)lrbp->utrd_dma_addr);
614
615 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
616 sizeof(struct utp_transfer_req_desc));
617 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
618 (u64)lrbp->ucd_req_dma_addr);
619 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
620 sizeof(struct utp_upiu_req));
621 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
622 (u64)lrbp->ucd_rsp_dma_addr);
623 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
624 sizeof(struct utp_upiu_rsp));
625
626 prdt_length = le16_to_cpu(
627 lrbp->utr_descriptor_ptr->prd_table_length);
628 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
629 prdt_length /= ufshcd_sg_entry_size(hba);
630
631 dev_err(hba->dev,
632 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n",
633 tag, prdt_length,
634 (u64)lrbp->ucd_prdt_dma_addr);
635
636 if (pr_prdt)
637 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
638 ufshcd_sg_entry_size(hba) * prdt_length);
639 }
640
ufshcd_print_tr_iter(struct request * req,void * priv)641 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
642 {
643 struct scsi_device *sdev = req->q->queuedata;
644 struct Scsi_Host *shost = sdev->host;
645 struct ufs_hba *hba = shost_priv(shost);
646
647 if (!blk_mq_is_reserved_rq(req))
648 ufshcd_print_tr(hba, blk_mq_rq_to_pdu(req), *(bool *)priv);
649
650 return true;
651 }
652
653 /**
654 * ufshcd_print_trs_all - print trs for all started requests.
655 * @hba: per-adapter instance.
656 * @pr_prdt: need to print prdt or not.
657 */
ufshcd_print_trs_all(struct ufs_hba * hba,bool pr_prdt)658 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
659 {
660 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
661 }
662
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)663 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
664 {
665 int tag;
666
667 for_each_set_bit(tag, &bitmap, hba->nutmrs) {
668 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
669
670 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
671 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
672 }
673 }
674
ufshcd_print_host_state(struct ufs_hba * hba)675 static void ufshcd_print_host_state(struct ufs_hba *hba)
676 {
677 const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
678
679 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
680 dev_err(hba->dev, "%d outstanding reqs, tasks=0x%lx\n",
681 scsi_host_busy(hba->host), hba->outstanding_tasks);
682 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
683 hba->saved_err, hba->saved_uic_err);
684 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
685 hba->curr_dev_pwr_mode, hba->uic_link_state);
686 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
687 hba->pm_op_in_progress, hba->is_sys_suspended);
688 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
689 hba->auto_bkops_enabled, hba->host->host_self_blocked);
690 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
691 dev_err(hba->dev,
692 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
693 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
694 hba->ufs_stats.hibern8_exit_cnt);
695 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
696 hba->eh_flags, hba->req_abort_count);
697 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
698 hba->ufs_version, hba->capabilities, hba->caps);
699 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
700 hba->dev_quirks);
701 if (sdev_ufs)
702 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
703 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
704
705 ufshcd_print_clk_freqs(hba);
706 }
707
708 /**
709 * ufshcd_print_pwr_info - print power params as saved in hba
710 * power info
711 * @hba: per-adapter instance
712 */
ufshcd_print_pwr_info(struct ufs_hba * hba)713 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
714 {
715 static const char * const names[] = {
716 "INVALID MODE",
717 "FAST MODE",
718 "SLOW_MODE",
719 "INVALID MODE",
720 "FASTAUTO_MODE",
721 "SLOWAUTO_MODE",
722 "INVALID MODE",
723 };
724
725 /*
726 * Using dev_dbg to avoid messages during runtime PM to avoid
727 * never-ending cycles of messages written back to storage by user space
728 * causing runtime resume, causing more messages and so on.
729 */
730 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
731 __func__,
732 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
733 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
734 names[hba->pwr_info.pwr_rx],
735 names[hba->pwr_info.pwr_tx],
736 hba->pwr_info.hs_rate);
737 }
738
ufshcd_device_reset(struct ufs_hba * hba)739 static void ufshcd_device_reset(struct ufs_hba *hba)
740 {
741 int err;
742
743 err = ufshcd_vops_device_reset(hba);
744
745 if (!err) {
746 ufshcd_set_ufs_dev_active(hba);
747 if (ufshcd_is_wb_allowed(hba)) {
748 hba->dev_info.wb_enabled = false;
749 hba->dev_info.wb_buf_flush_enabled = false;
750 }
751 if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
752 hba->dev_info.rtc_time_baseline = 0;
753 }
754 if (err != -EOPNOTSUPP)
755 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
756 }
757
ufshcd_delay_us(unsigned long us,unsigned long tolerance)758 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
759 {
760 if (!us)
761 return;
762
763 if (us < 10)
764 udelay(us);
765 else
766 usleep_range(us, us + tolerance);
767 }
768 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
769
770 /**
771 * ufshcd_wait_for_register - wait for register value to change
772 * @hba: per-adapter interface
773 * @reg: mmio register offset
774 * @mask: mask to apply to the read register value
775 * @val: value to wait for
776 * @interval_us: polling interval in microseconds
777 * @timeout_ms: timeout in milliseconds
778 *
779 * Return: -ETIMEDOUT on error, zero on success.
780 */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)781 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
782 u32 val, unsigned long interval_us,
783 unsigned long timeout_ms)
784 {
785 u32 v;
786
787 val &= mask; /* ignore bits that we don't intend to wait on */
788
789 return read_poll_timeout(ufshcd_readl, v, (v & mask) == val,
790 interval_us, timeout_ms * 1000, false, hba, reg);
791 }
792
793 /**
794 * ufshcd_get_intr_mask - Get the interrupt bit mask
795 * @hba: Pointer to adapter instance
796 *
797 * Return: interrupt bit mask per version
798 */
ufshcd_get_intr_mask(struct ufs_hba * hba)799 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
800 {
801 if (hba->ufs_version <= ufshci_version(2, 0))
802 return INTERRUPT_MASK_ALL_VER_11;
803
804 return INTERRUPT_MASK_ALL_VER_21;
805 }
806
807 /**
808 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
809 * @hba: Pointer to adapter instance
810 *
811 * Return: UFSHCI version supported by the controller
812 */
ufshcd_get_ufs_version(struct ufs_hba * hba)813 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
814 {
815 u32 ufshci_ver;
816
817 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
818 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
819 else
820 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
821
822 /*
823 * UFSHCI v1.x uses a different version scheme, in order
824 * to allow the use of comparisons with the ufshci_version
825 * function, we convert it to the same scheme as ufs 2.0+.
826 */
827 if (ufshci_ver & 0x00010000)
828 return ufshci_version(1, ufshci_ver & 0x00000100);
829
830 return ufshci_ver;
831 }
832
833 /**
834 * ufshcd_is_device_present - Check if any device connected to
835 * the host controller
836 * @hba: pointer to adapter instance
837 *
838 * Return: true if device present, false if no device detected
839 */
ufshcd_is_device_present(struct ufs_hba * hba)840 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
841 {
842 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
843 }
844
845 /**
846 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
847 * @lrbp: pointer to local command reference block
848 * @cqe: pointer to the completion queue entry
849 *
850 * This function is used to get the OCS field from UTRD
851 *
852 * Return: the OCS field in the UTRD.
853 */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp,struct cq_entry * cqe)854 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
855 struct cq_entry *cqe)
856 {
857 if (cqe)
858 return cqe->overall_status & MASK_OCS;
859
860 return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
861 }
862
863 /**
864 * ufshcd_utrl_clear() - Clear requests from the controller request list.
865 * @hba: per adapter instance
866 * @mask: mask with one bit set for each request to be cleared
867 */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 mask)868 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
869 {
870 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
871 mask = ~mask;
872 /*
873 * From the UFSHCI specification: "UTP Transfer Request List CLear
874 * Register (UTRLCLR): This field is bit significant. Each bit
875 * corresponds to a slot in the UTP Transfer Request List, where bit 0
876 * corresponds to request slot 0. A bit in this field is set to ‘0’
877 * by host software to indicate to the host controller that a transfer
878 * request slot is cleared. The host controller
879 * shall free up any resources associated to the request slot
880 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
881 * host software indicates no change to request slots by setting the
882 * associated bits in this field to ‘1’. Bits in this field shall only
883 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
884 */
885 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
886 }
887
888 /**
889 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
890 * @hba: per adapter instance
891 * @pos: position of the bit to be cleared
892 */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)893 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
894 {
895 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
896 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
897 else
898 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
899 }
900
901 /**
902 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
903 * @reg: Register value of host controller status
904 *
905 * Return: 0 on success; a positive value if failed.
906 */
ufshcd_get_lists_status(u32 reg)907 static inline int ufshcd_get_lists_status(u32 reg)
908 {
909 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
910 }
911
912 /**
913 * ufshcd_get_uic_cmd_result - Get the UIC command result
914 * @hba: Pointer to adapter instance
915 *
916 * This function gets the result of UIC command completion
917 *
918 * Return: 0 on success; non-zero value on error.
919 */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)920 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
921 {
922 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
923 MASK_UIC_COMMAND_RESULT;
924 }
925
926 /**
927 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
928 * @hba: Pointer to adapter instance
929 *
930 * This function gets UIC command argument3
931 *
932 * Return: 0 on success; non-zero value on error.
933 */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)934 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
935 {
936 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
937 }
938
939 /**
940 * ufshcd_get_req_rsp - returns the TR response transaction type
941 * @ucd_rsp_ptr: pointer to response UPIU
942 *
943 * Return: UPIU type.
944 */
945 static inline enum upiu_response_transaction
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)946 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
947 {
948 return ucd_rsp_ptr->header.transaction_code;
949 }
950
951 /**
952 * ufshcd_is_exception_event - Check if the device raised an exception event
953 * @ucd_rsp_ptr: pointer to response UPIU
954 *
955 * The function checks if the device raised an exception event indicated in
956 * the Device Information field of response UPIU.
957 *
958 * Return: true if exception is raised, false otherwise.
959 */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)960 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
961 {
962 return ucd_rsp_ptr->header.device_information & 1;
963 }
964
965 /**
966 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
967 * @hba: per adapter instance
968 */
969 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)970 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
971 {
972 ufshcd_writel(hba, INT_AGGR_ENABLE |
973 INT_AGGR_COUNTER_AND_TIMER_RESET,
974 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
975 }
976
977 /**
978 * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
979 * @hba: per adapter instance
980 * @cnt: Interrupt aggregation counter threshold
981 * @tmout: Interrupt aggregation timeout value
982 */
983 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)984 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
985 {
986 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
987 INT_AGGR_COUNTER_THLD_VAL(cnt) |
988 INT_AGGR_TIMEOUT_VAL(tmout),
989 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
990 }
991
992 /**
993 * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
994 * @hba: per adapter instance
995 */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)996 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
997 {
998 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
999 }
1000
1001 /**
1002 * ufshcd_enable_run_stop_reg - Enable run-stop registers,
1003 * When run-stop registers are set to 1, it indicates the
1004 * host controller that it can process the requests
1005 * @hba: per adapter instance
1006 */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)1007 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
1008 {
1009 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
1010 REG_UTP_TASK_REQ_LIST_RUN_STOP);
1011 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
1012 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
1013 }
1014
1015 /**
1016 * ufshcd_hba_start - Start controller initialization sequence
1017 * @hba: per adapter instance
1018 */
ufshcd_hba_start(struct ufs_hba * hba)1019 static inline void ufshcd_hba_start(struct ufs_hba *hba)
1020 {
1021 u32 val = CONTROLLER_ENABLE;
1022
1023 if (ufshcd_crypto_enable(hba))
1024 val |= CRYPTO_GENERAL_ENABLE;
1025
1026 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
1027 }
1028
1029 /**
1030 * ufshcd_is_hba_active - Get controller state
1031 * @hba: per adapter instance
1032 *
1033 * Return: true if and only if the controller is active.
1034 */
ufshcd_is_hba_active(struct ufs_hba * hba)1035 bool ufshcd_is_hba_active(struct ufs_hba *hba)
1036 {
1037 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
1038 }
1039 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
1040
1041 /**
1042 * ufshcd_pm_qos_init - initialize PM QoS request
1043 * @hba: per adapter instance
1044 */
ufshcd_pm_qos_init(struct ufs_hba * hba)1045 void ufshcd_pm_qos_init(struct ufs_hba *hba)
1046 {
1047 guard(mutex)(&hba->pm_qos_mutex);
1048
1049 if (hba->pm_qos_enabled)
1050 return;
1051
1052 cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1053
1054 if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1055 hba->pm_qos_enabled = true;
1056 }
1057
1058 /**
1059 * ufshcd_pm_qos_exit - remove request from PM QoS
1060 * @hba: per adapter instance
1061 */
ufshcd_pm_qos_exit(struct ufs_hba * hba)1062 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1063 {
1064 guard(mutex)(&hba->pm_qos_mutex);
1065
1066 if (!hba->pm_qos_enabled)
1067 return;
1068
1069 cpu_latency_qos_remove_request(&hba->pm_qos_req);
1070 hba->pm_qos_enabled = false;
1071 }
1072
1073 /**
1074 * ufshcd_pm_qos_update - update PM QoS request
1075 * @hba: per adapter instance
1076 * @on: If True, vote for perf PM QoS mode otherwise power save mode
1077 */
ufshcd_pm_qos_update(struct ufs_hba * hba,bool on)1078 void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1079 {
1080 guard(mutex)(&hba->pm_qos_mutex);
1081
1082 if (!hba->pm_qos_enabled)
1083 return;
1084
1085 cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1086 }
1087 EXPORT_SYMBOL_GPL(ufshcd_pm_qos_update);
1088
1089 /**
1090 * ufshcd_set_clk_freq - set UFS controller clock frequencies
1091 * @hba: per adapter instance
1092 * @scale_up: If True, set max possible frequency othewise set low frequency
1093 *
1094 * Return: 0 if successful; < 0 upon failure.
1095 */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)1096 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1097 {
1098 int ret = 0;
1099 struct ufs_clk_info *clki;
1100 struct list_head *head = &hba->clk_list_head;
1101
1102 if (list_empty(head))
1103 goto out;
1104
1105 list_for_each_entry(clki, head, list) {
1106 if (!IS_ERR_OR_NULL(clki->clk)) {
1107 if (scale_up && clki->max_freq) {
1108 if (clki->curr_freq == clki->max_freq)
1109 continue;
1110
1111 ret = clk_set_rate(clki->clk, clki->max_freq);
1112 if (ret) {
1113 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1114 __func__, clki->name,
1115 clki->max_freq, ret);
1116 break;
1117 }
1118 trace_ufshcd_clk_scaling(hba,
1119 "scaled up", clki->name,
1120 clki->curr_freq,
1121 clki->max_freq);
1122
1123 clki->curr_freq = clki->max_freq;
1124
1125 } else if (!scale_up && clki->min_freq) {
1126 if (clki->curr_freq == clki->min_freq)
1127 continue;
1128
1129 ret = clk_set_rate(clki->clk, clki->min_freq);
1130 if (ret) {
1131 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1132 __func__, clki->name,
1133 clki->min_freq, ret);
1134 break;
1135 }
1136 trace_ufshcd_clk_scaling(hba,
1137 "scaled down", clki->name,
1138 clki->curr_freq,
1139 clki->min_freq);
1140 clki->curr_freq = clki->min_freq;
1141 }
1142 }
1143 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1144 clki->name, clk_get_rate(clki->clk));
1145 }
1146
1147 out:
1148 return ret;
1149 }
1150
ufshcd_opp_config_clks(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)1151 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1152 struct dev_pm_opp *opp, void *data,
1153 bool scaling_down)
1154 {
1155 struct ufs_hba *hba = dev_get_drvdata(dev);
1156 struct list_head *head = &hba->clk_list_head;
1157 struct ufs_clk_info *clki;
1158 unsigned long freq;
1159 u8 idx = 0;
1160 int ret;
1161
1162 list_for_each_entry(clki, head, list) {
1163 if (!IS_ERR_OR_NULL(clki->clk)) {
1164 freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1165
1166 /* Do not set rate for clocks having frequency as 0 */
1167 if (!freq)
1168 continue;
1169
1170 ret = clk_set_rate(clki->clk, freq);
1171 if (ret) {
1172 dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1173 __func__, clki->name, freq, ret);
1174 return ret;
1175 }
1176
1177 trace_ufshcd_clk_scaling(hba,
1178 (scaling_down ? "scaled down" : "scaled up"),
1179 clki->name, hba->clk_scaling.target_freq, freq);
1180 }
1181 }
1182
1183 return 0;
1184 }
1185 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1186
ufshcd_opp_set_rate(struct ufs_hba * hba,unsigned long freq)1187 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1188 {
1189 struct dev_pm_opp *opp;
1190 int ret;
1191
1192 opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1193 &freq, 0);
1194 if (IS_ERR(opp))
1195 return PTR_ERR(opp);
1196
1197 ret = dev_pm_opp_set_opp(hba->dev, opp);
1198 dev_pm_opp_put(opp);
1199
1200 return ret;
1201 }
1202
1203 /**
1204 * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1205 * @hba: per adapter instance
1206 * @freq: frequency to scale
1207 * @scale_up: True if scaling up and false if scaling down
1208 *
1209 * Return: 0 if successful; < 0 upon failure.
1210 */
ufshcd_scale_clks(struct ufs_hba * hba,unsigned long freq,bool scale_up)1211 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1212 bool scale_up)
1213 {
1214 int ret = 0;
1215 ktime_t start = ktime_get();
1216
1217 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, PRE_CHANGE);
1218 if (ret)
1219 goto out;
1220
1221 if (hba->use_pm_opp)
1222 ret = ufshcd_opp_set_rate(hba, freq);
1223 else
1224 ret = ufshcd_set_clk_freq(hba, scale_up);
1225 if (ret)
1226 goto out;
1227
1228 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, POST_CHANGE);
1229 if (ret) {
1230 if (hba->use_pm_opp)
1231 ufshcd_opp_set_rate(hba,
1232 hba->devfreq->previous_freq);
1233 else
1234 ufshcd_set_clk_freq(hba, !scale_up);
1235 goto out;
1236 }
1237
1238 ufshcd_pm_qos_update(hba, scale_up);
1239
1240 out:
1241 trace_ufshcd_profile_clk_scaling(hba,
1242 (scale_up ? "up" : "down"),
1243 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1244 return ret;
1245 }
1246
1247 /**
1248 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1249 * @hba: per adapter instance
1250 * @freq: frequency to scale
1251 * @scale_up: True if scaling up and false if scaling down
1252 *
1253 * Return: true if scaling is required, false otherwise.
1254 */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,unsigned long freq,bool scale_up)1255 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1256 unsigned long freq, bool scale_up)
1257 {
1258 struct ufs_clk_info *clki;
1259 struct list_head *head = &hba->clk_list_head;
1260
1261 if (list_empty(head))
1262 return false;
1263
1264 if (hba->use_pm_opp)
1265 return freq != hba->clk_scaling.target_freq;
1266
1267 list_for_each_entry(clki, head, list) {
1268 if (!IS_ERR_OR_NULL(clki->clk)) {
1269 if (scale_up && clki->max_freq) {
1270 if (clki->curr_freq == clki->max_freq)
1271 continue;
1272 return true;
1273 } else if (!scale_up && clki->min_freq) {
1274 if (clki->curr_freq == clki->min_freq)
1275 continue;
1276 return true;
1277 }
1278 }
1279 }
1280
1281 return false;
1282 }
1283
1284 /*
1285 * Determine the number of pending commands by counting the bits in the SCSI
1286 * device budget maps. This approach has been selected because a bit is set in
1287 * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1288 * flag. The host_self_blocked flag can be modified by calling
1289 * scsi_block_requests() or scsi_unblock_requests().
1290 */
ufshcd_pending_cmds(struct ufs_hba * hba)1291 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1292 {
1293 struct scsi_device *sdev;
1294 unsigned long flags;
1295 u32 pending = 0;
1296
1297 spin_lock_irqsave(hba->host->host_lock, flags);
1298 __shost_for_each_device(sdev, hba->host)
1299 pending += scsi_device_busy(sdev);
1300 spin_unlock_irqrestore(hba->host->host_lock, flags);
1301
1302 return pending;
1303 }
1304
1305 /*
1306 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1307 * has expired.
1308 *
1309 * Return: 0 upon success; -EBUSY upon timeout.
1310 */
ufshcd_wait_for_pending_cmds(struct ufs_hba * hba,u64 wait_timeout_us)1311 static int ufshcd_wait_for_pending_cmds(struct ufs_hba *hba,
1312 u64 wait_timeout_us)
1313 {
1314 int ret = 0;
1315 u32 tm_doorbell;
1316 u32 tr_pending;
1317 bool timeout = false, do_last_check = false;
1318 ktime_t start;
1319
1320 ufshcd_hold(hba);
1321 /*
1322 * Wait for all the outstanding tasks/transfer requests.
1323 * Verify by checking the doorbell registers are clear.
1324 */
1325 start = ktime_get();
1326 do {
1327 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1328 ret = -EBUSY;
1329 goto out;
1330 }
1331
1332 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1333 tr_pending = ufshcd_pending_cmds(hba);
1334 if (!tm_doorbell && !tr_pending) {
1335 timeout = false;
1336 break;
1337 } else if (do_last_check) {
1338 break;
1339 }
1340
1341 io_schedule_timeout(msecs_to_jiffies(20));
1342 if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1343 wait_timeout_us) {
1344 timeout = true;
1345 /*
1346 * We might have scheduled out for long time so make
1347 * sure to check if doorbells are cleared by this time
1348 * or not.
1349 */
1350 do_last_check = true;
1351 }
1352 } while (tm_doorbell || tr_pending);
1353
1354 if (timeout) {
1355 dev_err(hba->dev,
1356 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1357 __func__, tm_doorbell, tr_pending);
1358 ret = -EBUSY;
1359 }
1360 out:
1361 ufshcd_release(hba);
1362 return ret;
1363 }
1364
1365 /**
1366 * ufshcd_scale_gear - scale up/down UFS gear
1367 * @hba: per adapter instance
1368 * @target_gear: target gear to scale to
1369 * @scale_up: True for scaling up gear and false for scaling down
1370 *
1371 * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1372 * non-zero for any other errors.
1373 */
ufshcd_scale_gear(struct ufs_hba * hba,u32 target_gear,bool scale_up)1374 static int ufshcd_scale_gear(struct ufs_hba *hba, u32 target_gear, bool scale_up)
1375 {
1376 int ret = 0;
1377 struct ufs_pa_layer_attr new_pwr_info;
1378
1379 if (target_gear) {
1380 new_pwr_info = hba->pwr_info;
1381 new_pwr_info.gear_tx = target_gear;
1382 new_pwr_info.gear_rx = target_gear;
1383
1384 goto config_pwr_mode;
1385 }
1386
1387 /* Legacy gear scaling, in case vops_freq_to_gear_speed() is not implemented */
1388 if (scale_up) {
1389 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1390 sizeof(struct ufs_pa_layer_attr));
1391 } else {
1392 memcpy(&new_pwr_info, &hba->pwr_info,
1393 sizeof(struct ufs_pa_layer_attr));
1394
1395 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1396 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1397 /* save the current power mode */
1398 memcpy(&hba->clk_scaling.saved_pwr_info,
1399 &hba->pwr_info,
1400 sizeof(struct ufs_pa_layer_attr));
1401
1402 /* scale down gear */
1403 new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1404 new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1405 }
1406 }
1407
1408 config_pwr_mode:
1409 /* check if the power mode needs to be changed or not? */
1410 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1411 if (ret)
1412 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1413 __func__, ret,
1414 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1415 new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1416
1417 return ret;
1418 }
1419
1420 /*
1421 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1422 * has expired.
1423 *
1424 * Return: 0 upon success; -EBUSY upon timeout.
1425 */
ufshcd_clock_scaling_prepare(struct ufs_hba * hba,u64 timeout_us)1426 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1427 {
1428 int ret = 0;
1429 /*
1430 * make sure that there are no outstanding requests when
1431 * clock scaling is in progress
1432 */
1433 mutex_lock(&hba->host->scan_mutex);
1434 blk_mq_quiesce_tagset(&hba->host->tag_set);
1435 mutex_lock(&hba->wb_mutex);
1436 down_write(&hba->clk_scaling_lock);
1437
1438 if (!hba->clk_scaling.is_allowed ||
1439 ufshcd_wait_for_pending_cmds(hba, timeout_us)) {
1440 ret = -EBUSY;
1441 up_write(&hba->clk_scaling_lock);
1442 mutex_unlock(&hba->wb_mutex);
1443 blk_mq_unquiesce_tagset(&hba->host->tag_set);
1444 mutex_unlock(&hba->host->scan_mutex);
1445 goto out;
1446 }
1447
1448 /* let's not get into low power until clock scaling is completed */
1449 ufshcd_hold(hba);
1450
1451 out:
1452 return ret;
1453 }
1454
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,int err)1455 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err)
1456 {
1457 up_write(&hba->clk_scaling_lock);
1458
1459 /* Enable Write Booster if current gear requires it else disable it */
1460 if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1461 ufshcd_wb_toggle(hba, hba->pwr_info.gear_rx >= hba->clk_scaling.wb_gear);
1462
1463 mutex_unlock(&hba->wb_mutex);
1464
1465 blk_mq_unquiesce_tagset(&hba->host->tag_set);
1466 mutex_unlock(&hba->host->scan_mutex);
1467 ufshcd_release(hba);
1468 }
1469
1470 /**
1471 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1472 * @hba: per adapter instance
1473 * @freq: frequency to scale
1474 * @scale_up: True for scaling up and false for scalin down
1475 *
1476 * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1477 * for any other errors.
1478 */
ufshcd_devfreq_scale(struct ufs_hba * hba,unsigned long freq,bool scale_up)1479 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1480 bool scale_up)
1481 {
1482 u32 old_gear = hba->pwr_info.gear_rx;
1483 u32 new_gear = 0;
1484 int ret = 0;
1485
1486 new_gear = ufshcd_vops_freq_to_gear_speed(hba, freq);
1487
1488 ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1489 if (ret)
1490 return ret;
1491
1492 /* scale down the gear before scaling down clocks */
1493 if (!scale_up) {
1494 ret = ufshcd_scale_gear(hba, new_gear, false);
1495 if (ret)
1496 goto out_unprepare;
1497 }
1498
1499 ret = ufshcd_scale_clks(hba, freq, scale_up);
1500 if (ret) {
1501 if (!scale_up)
1502 ufshcd_scale_gear(hba, old_gear, true);
1503 goto out_unprepare;
1504 }
1505
1506 /* scale up the gear after scaling up clocks */
1507 if (scale_up) {
1508 ret = ufshcd_scale_gear(hba, new_gear, true);
1509 if (ret) {
1510 ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1511 false);
1512 goto out_unprepare;
1513 }
1514 }
1515
1516 out_unprepare:
1517 ufshcd_clock_scaling_unprepare(hba, ret);
1518 return ret;
1519 }
1520
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1521 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1522 {
1523 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1524 clk_scaling.suspend_work);
1525
1526 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1527 {
1528 if (hba->clk_scaling.active_reqs ||
1529 hba->clk_scaling.is_suspended)
1530 return;
1531
1532 hba->clk_scaling.is_suspended = true;
1533 hba->clk_scaling.window_start_t = 0;
1534 }
1535
1536 devfreq_suspend_device(hba->devfreq);
1537 }
1538
ufshcd_clk_scaling_resume_work(struct work_struct * work)1539 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1540 {
1541 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1542 clk_scaling.resume_work);
1543
1544 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1545 {
1546 if (!hba->clk_scaling.is_suspended)
1547 return;
1548 hba->clk_scaling.is_suspended = false;
1549 }
1550
1551 devfreq_resume_device(hba->devfreq);
1552 }
1553
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1554 static int ufshcd_devfreq_target(struct device *dev,
1555 unsigned long *freq, u32 flags)
1556 {
1557 int ret = 0;
1558 struct ufs_hba *hba = dev_get_drvdata(dev);
1559 ktime_t start;
1560 bool scale_up = false, sched_clk_scaling_suspend_work = false;
1561 struct list_head *clk_list = &hba->clk_list_head;
1562 struct ufs_clk_info *clki;
1563
1564 if (!ufshcd_is_clkscaling_supported(hba))
1565 return -EINVAL;
1566
1567 if (hba->use_pm_opp) {
1568 struct dev_pm_opp *opp;
1569
1570 /* Get the recommended frequency from OPP framework */
1571 opp = devfreq_recommended_opp(dev, freq, flags);
1572 if (IS_ERR(opp))
1573 return PTR_ERR(opp);
1574
1575 dev_pm_opp_put(opp);
1576 } else {
1577 /* Override with the closest supported frequency */
1578 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1579 list);
1580 *freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1581 }
1582
1583 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1584 {
1585 if (ufshcd_eh_in_progress(hba))
1586 return 0;
1587
1588 /* Skip scaling clock when clock scaling is suspended */
1589 if (hba->clk_scaling.is_suspended) {
1590 dev_warn(hba->dev, "clock scaling is suspended, skip");
1591 return 0;
1592 }
1593
1594 if (!hba->clk_scaling.active_reqs)
1595 sched_clk_scaling_suspend_work = true;
1596
1597 if (list_empty(clk_list))
1598 goto out;
1599
1600 /* Decide based on the target or rounded-off frequency and update */
1601 if (hba->use_pm_opp)
1602 scale_up = *freq > hba->clk_scaling.target_freq;
1603 else
1604 scale_up = *freq == clki->max_freq;
1605
1606 if (!hba->use_pm_opp && !scale_up)
1607 *freq = clki->min_freq;
1608
1609 /* Update the frequency */
1610 if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1611 ret = 0;
1612 goto out; /* no state change required */
1613 }
1614 }
1615
1616 start = ktime_get();
1617 ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1618 if (!ret)
1619 hba->clk_scaling.target_freq = *freq;
1620
1621 trace_ufshcd_profile_clk_scaling(hba,
1622 (scale_up ? "up" : "down"),
1623 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1624
1625 out:
1626 if (sched_clk_scaling_suspend_work &&
1627 (!scale_up || hba->clk_scaling.suspend_on_no_request))
1628 queue_work(hba->clk_scaling.workq,
1629 &hba->clk_scaling.suspend_work);
1630
1631 return ret;
1632 }
1633
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1634 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1635 struct devfreq_dev_status *stat)
1636 {
1637 struct ufs_hba *hba = dev_get_drvdata(dev);
1638 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1639 ktime_t curr_t;
1640
1641 if (!ufshcd_is_clkscaling_supported(hba))
1642 return -EINVAL;
1643
1644 memset(stat, 0, sizeof(*stat));
1645
1646 guard(spinlock_irqsave)(&hba->clk_scaling.lock);
1647
1648 curr_t = ktime_get();
1649 if (!scaling->window_start_t)
1650 goto start_window;
1651
1652 /*
1653 * If current frequency is 0, then the ondemand governor considers
1654 * there's no initial frequency set. And it always requests to set
1655 * to max. frequency.
1656 */
1657 if (hba->use_pm_opp) {
1658 stat->current_frequency = hba->clk_scaling.target_freq;
1659 } else {
1660 struct list_head *clk_list = &hba->clk_list_head;
1661 struct ufs_clk_info *clki;
1662
1663 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1664 stat->current_frequency = clki->curr_freq;
1665 }
1666
1667 if (scaling->is_busy_started)
1668 scaling->tot_busy_t += ktime_us_delta(curr_t,
1669 scaling->busy_start_t);
1670 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1671 stat->busy_time = scaling->tot_busy_t;
1672 start_window:
1673 scaling->window_start_t = curr_t;
1674 scaling->tot_busy_t = 0;
1675
1676 if (scaling->active_reqs) {
1677 scaling->busy_start_t = curr_t;
1678 scaling->is_busy_started = true;
1679 } else {
1680 scaling->busy_start_t = 0;
1681 scaling->is_busy_started = false;
1682 }
1683
1684 return 0;
1685 }
1686
ufshcd_devfreq_init(struct ufs_hba * hba)1687 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1688 {
1689 struct list_head *clk_list = &hba->clk_list_head;
1690 struct ufs_clk_info *clki;
1691 struct devfreq *devfreq;
1692 int ret;
1693
1694 /* Skip devfreq if we don't have any clocks in the list */
1695 if (list_empty(clk_list))
1696 return 0;
1697
1698 if (!hba->use_pm_opp) {
1699 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1700 dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1701 dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1702 }
1703
1704 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1705 &hba->vps->ondemand_data);
1706 devfreq = devfreq_add_device(hba->dev,
1707 &hba->vps->devfreq_profile,
1708 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1709 &hba->vps->ondemand_data);
1710 if (IS_ERR(devfreq)) {
1711 ret = PTR_ERR(devfreq);
1712 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1713
1714 if (!hba->use_pm_opp) {
1715 dev_pm_opp_remove(hba->dev, clki->min_freq);
1716 dev_pm_opp_remove(hba->dev, clki->max_freq);
1717 }
1718 return ret;
1719 }
1720
1721 hba->devfreq = devfreq;
1722
1723 return 0;
1724 }
1725
ufshcd_devfreq_remove(struct ufs_hba * hba)1726 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1727 {
1728 struct list_head *clk_list = &hba->clk_list_head;
1729
1730 if (!hba->devfreq)
1731 return;
1732
1733 devfreq_remove_device(hba->devfreq);
1734 hba->devfreq = NULL;
1735
1736 if (!hba->use_pm_opp) {
1737 struct ufs_clk_info *clki;
1738
1739 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1740 dev_pm_opp_remove(hba->dev, clki->min_freq);
1741 dev_pm_opp_remove(hba->dev, clki->max_freq);
1742 }
1743 }
1744
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1745 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1746 {
1747 bool suspend = false;
1748
1749 cancel_work_sync(&hba->clk_scaling.suspend_work);
1750 cancel_work_sync(&hba->clk_scaling.resume_work);
1751
1752 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1753 {
1754 if (!hba->clk_scaling.is_suspended) {
1755 suspend = true;
1756 hba->clk_scaling.is_suspended = true;
1757 hba->clk_scaling.window_start_t = 0;
1758 }
1759 }
1760
1761 if (suspend)
1762 devfreq_suspend_device(hba->devfreq);
1763 }
1764
ufshcd_resume_clkscaling(struct ufs_hba * hba)1765 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1766 {
1767 bool resume = false;
1768
1769 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1770 {
1771 if (hba->clk_scaling.is_suspended) {
1772 resume = true;
1773 hba->clk_scaling.is_suspended = false;
1774 }
1775 }
1776
1777 if (resume)
1778 devfreq_resume_device(hba->devfreq);
1779 }
1780
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1781 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1782 struct device_attribute *attr, char *buf)
1783 {
1784 struct ufs_hba *hba = dev_get_drvdata(dev);
1785
1786 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1787 }
1788
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1789 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1790 struct device_attribute *attr, const char *buf, size_t count)
1791 {
1792 struct ufs_hba *hba = dev_get_drvdata(dev);
1793 struct ufs_clk_info *clki;
1794 unsigned long freq;
1795 u32 value;
1796 int err = 0;
1797
1798 if (kstrtou32(buf, 0, &value))
1799 return -EINVAL;
1800
1801 down(&hba->host_sem);
1802 if (!ufshcd_is_user_access_allowed(hba)) {
1803 err = -EBUSY;
1804 goto out;
1805 }
1806
1807 value = !!value;
1808 if (value == hba->clk_scaling.is_enabled)
1809 goto out;
1810
1811 ufshcd_rpm_get_sync(hba);
1812 ufshcd_hold(hba);
1813
1814 hba->clk_scaling.is_enabled = value;
1815
1816 if (value) {
1817 ufshcd_resume_clkscaling(hba);
1818 goto out_rel;
1819 }
1820
1821 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1822 freq = clki->max_freq;
1823
1824 ufshcd_suspend_clkscaling(hba);
1825
1826 if (!ufshcd_is_devfreq_scaling_required(hba, freq, true))
1827 goto out_rel;
1828
1829 err = ufshcd_devfreq_scale(hba, freq, true);
1830 if (err)
1831 dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1832 __func__, err);
1833 else
1834 hba->clk_scaling.target_freq = freq;
1835
1836 out_rel:
1837 ufshcd_release(hba);
1838 ufshcd_rpm_put_sync(hba);
1839 out:
1840 up(&hba->host_sem);
1841 return err ? err : count;
1842 }
1843
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1844 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1845 {
1846 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1847 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1848 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1849 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1850 hba->clk_scaling.enable_attr.attr.mode = 0644;
1851 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1852 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1853 }
1854
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1855 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1856 {
1857 if (hba->clk_scaling.enable_attr.attr.name)
1858 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1859 }
1860
ufshcd_init_clk_scaling(struct ufs_hba * hba)1861 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1862 {
1863 if (!ufshcd_is_clkscaling_supported(hba))
1864 return;
1865
1866 if (!hba->clk_scaling.min_gear)
1867 hba->clk_scaling.min_gear = UFS_HS_G1;
1868
1869 if (!hba->clk_scaling.wb_gear)
1870 /* Use intermediate gear speed HS_G3 as the default wb_gear */
1871 hba->clk_scaling.wb_gear = UFS_HS_G3;
1872
1873 INIT_WORK(&hba->clk_scaling.suspend_work,
1874 ufshcd_clk_scaling_suspend_work);
1875 INIT_WORK(&hba->clk_scaling.resume_work,
1876 ufshcd_clk_scaling_resume_work);
1877
1878 spin_lock_init(&hba->clk_scaling.lock);
1879
1880 hba->clk_scaling.workq = alloc_ordered_workqueue(
1881 "ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no);
1882
1883 hba->clk_scaling.is_initialized = true;
1884 }
1885
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1886 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1887 {
1888 if (!hba->clk_scaling.is_initialized)
1889 return;
1890
1891 ufshcd_remove_clk_scaling_sysfs(hba);
1892 destroy_workqueue(hba->clk_scaling.workq);
1893 ufshcd_devfreq_remove(hba);
1894 hba->clk_scaling.is_initialized = false;
1895 }
1896
ufshcd_ungate_work(struct work_struct * work)1897 static void ufshcd_ungate_work(struct work_struct *work)
1898 {
1899 int ret;
1900 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1901 clk_gating.ungate_work);
1902
1903 cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1904
1905 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
1906 if (hba->clk_gating.state == CLKS_ON)
1907 return;
1908 }
1909
1910 ufshcd_hba_vreg_set_hpm(hba);
1911 ufshcd_setup_clocks(hba, true);
1912
1913 ufshcd_enable_irq(hba);
1914
1915 /* Exit from hibern8 */
1916 if (ufshcd_can_hibern8_during_gating(hba)) {
1917 /* Prevent gating in this path */
1918 hba->clk_gating.is_suspended = true;
1919 if (ufshcd_is_link_hibern8(hba)) {
1920 ret = ufshcd_uic_hibern8_exit(hba);
1921 if (ret)
1922 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1923 __func__, ret);
1924 else
1925 ufshcd_set_link_active(hba);
1926 }
1927 hba->clk_gating.is_suspended = false;
1928 }
1929 }
1930
1931 /**
1932 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1933 * Also, exit from hibern8 mode and set the link as active.
1934 * @hba: per adapter instance
1935 */
ufshcd_hold(struct ufs_hba * hba)1936 void ufshcd_hold(struct ufs_hba *hba)
1937 {
1938 bool flush_result;
1939 unsigned long flags;
1940
1941 if (!ufshcd_is_clkgating_allowed(hba) ||
1942 !hba->clk_gating.is_initialized)
1943 return;
1944 spin_lock_irqsave(&hba->clk_gating.lock, flags);
1945 hba->clk_gating.active_reqs++;
1946
1947 start:
1948 switch (hba->clk_gating.state) {
1949 case CLKS_ON:
1950 /*
1951 * Wait for the ungate work to complete if in progress.
1952 * Though the clocks may be in ON state, the link could
1953 * still be in hibner8 state if hibern8 is allowed
1954 * during clock gating.
1955 * Make sure we exit hibern8 state also in addition to
1956 * clocks being ON.
1957 */
1958 if (ufshcd_can_hibern8_during_gating(hba) &&
1959 ufshcd_is_link_hibern8(hba)) {
1960 spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1961 flush_result = flush_work(&hba->clk_gating.ungate_work);
1962 if (hba->clk_gating.is_suspended && !flush_result)
1963 return;
1964 spin_lock_irqsave(&hba->clk_gating.lock, flags);
1965 goto start;
1966 }
1967 break;
1968 case REQ_CLKS_OFF:
1969 if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1970 hba->clk_gating.state = CLKS_ON;
1971 trace_ufshcd_clk_gating(hba,
1972 hba->clk_gating.state);
1973 break;
1974 }
1975 /*
1976 * If we are here, it means gating work is either done or
1977 * currently running. Hence, fall through to cancel gating
1978 * work and to enable clocks.
1979 */
1980 fallthrough;
1981 case CLKS_OFF:
1982 hba->clk_gating.state = REQ_CLKS_ON;
1983 trace_ufshcd_clk_gating(hba,
1984 hba->clk_gating.state);
1985 queue_work(hba->clk_gating.clk_gating_workq,
1986 &hba->clk_gating.ungate_work);
1987 /*
1988 * fall through to check if we should wait for this
1989 * work to be done or not.
1990 */
1991 fallthrough;
1992 case REQ_CLKS_ON:
1993 spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1994 flush_work(&hba->clk_gating.ungate_work);
1995 /* Make sure state is CLKS_ON before returning */
1996 spin_lock_irqsave(&hba->clk_gating.lock, flags);
1997 goto start;
1998 default:
1999 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
2000 __func__, hba->clk_gating.state);
2001 break;
2002 }
2003 spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
2004 }
2005 EXPORT_SYMBOL_GPL(ufshcd_hold);
2006
ufshcd_gate_work(struct work_struct * work)2007 static void ufshcd_gate_work(struct work_struct *work)
2008 {
2009 struct ufs_hba *hba = container_of(work, struct ufs_hba,
2010 clk_gating.gate_work.work);
2011 int ret;
2012
2013 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
2014 /*
2015 * In case you are here to cancel this work the gating state
2016 * would be marked as REQ_CLKS_ON. In this case save time by
2017 * skipping the gating work and exit after changing the clock
2018 * state to CLKS_ON.
2019 */
2020 if (hba->clk_gating.is_suspended ||
2021 hba->clk_gating.state != REQ_CLKS_OFF) {
2022 hba->clk_gating.state = CLKS_ON;
2023 trace_ufshcd_clk_gating(hba,
2024 hba->clk_gating.state);
2025 return;
2026 }
2027
2028 if (hba->clk_gating.active_reqs)
2029 return;
2030 }
2031
2032 scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2033 if (ufshcd_is_ufs_dev_busy(hba) ||
2034 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2035 return;
2036 }
2037
2038 /* put the link into hibern8 mode before turning off clocks */
2039 if (ufshcd_can_hibern8_during_gating(hba)) {
2040 ret = ufshcd_uic_hibern8_enter(hba);
2041 if (ret) {
2042 hba->clk_gating.state = CLKS_ON;
2043 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
2044 __func__, ret);
2045 trace_ufshcd_clk_gating(hba,
2046 hba->clk_gating.state);
2047 return;
2048 }
2049 ufshcd_set_link_hibern8(hba);
2050 }
2051
2052 ufshcd_disable_irq(hba);
2053
2054 ufshcd_setup_clocks(hba, false);
2055
2056 /* Put the host controller in low power mode if possible */
2057 ufshcd_hba_vreg_set_lpm(hba);
2058 /*
2059 * In case you are here to cancel this work the gating state
2060 * would be marked as REQ_CLKS_ON. In this case keep the state
2061 * as REQ_CLKS_ON which would anyway imply that clocks are off
2062 * and a request to turn them on is pending. By doing this way,
2063 * we keep the state machine in tact and this would ultimately
2064 * prevent from doing cancel work multiple times when there are
2065 * new requests arriving before the current cancel work is done.
2066 */
2067 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2068 if (hba->clk_gating.state == REQ_CLKS_OFF) {
2069 hba->clk_gating.state = CLKS_OFF;
2070 trace_ufshcd_clk_gating(hba,
2071 hba->clk_gating.state);
2072 }
2073 }
2074
__ufshcd_release(struct ufs_hba * hba)2075 static void __ufshcd_release(struct ufs_hba *hba)
2076 {
2077 lockdep_assert_held(&hba->clk_gating.lock);
2078
2079 if (!ufshcd_is_clkgating_allowed(hba))
2080 return;
2081
2082 hba->clk_gating.active_reqs--;
2083
2084 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2085 !hba->clk_gating.is_initialized ||
2086 hba->clk_gating.state == CLKS_OFF)
2087 return;
2088
2089 scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2090 if (ufshcd_has_pending_tasks(hba) ||
2091 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2092 return;
2093 }
2094
2095 hba->clk_gating.state = REQ_CLKS_OFF;
2096 trace_ufshcd_clk_gating(hba, hba->clk_gating.state);
2097 queue_delayed_work(hba->clk_gating.clk_gating_workq,
2098 &hba->clk_gating.gate_work,
2099 msecs_to_jiffies(hba->clk_gating.delay_ms));
2100 }
2101
ufshcd_release(struct ufs_hba * hba)2102 void ufshcd_release(struct ufs_hba *hba)
2103 {
2104 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2105 __ufshcd_release(hba);
2106 }
2107 EXPORT_SYMBOL_GPL(ufshcd_release);
2108
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)2109 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2110 struct device_attribute *attr, char *buf)
2111 {
2112 struct ufs_hba *hba = dev_get_drvdata(dev);
2113
2114 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2115 }
2116
ufshcd_clkgate_delay_set(struct device * dev,unsigned long value)2117 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2118 {
2119 struct ufs_hba *hba = dev_get_drvdata(dev);
2120
2121 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2122 hba->clk_gating.delay_ms = value;
2123 }
2124 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2125
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2126 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2127 struct device_attribute *attr, const char *buf, size_t count)
2128 {
2129 unsigned long value;
2130
2131 if (kstrtoul(buf, 0, &value))
2132 return -EINVAL;
2133
2134 ufshcd_clkgate_delay_set(dev, value);
2135 return count;
2136 }
2137
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)2138 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2139 struct device_attribute *attr, char *buf)
2140 {
2141 struct ufs_hba *hba = dev_get_drvdata(dev);
2142
2143 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2144 }
2145
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2146 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2147 struct device_attribute *attr, const char *buf, size_t count)
2148 {
2149 struct ufs_hba *hba = dev_get_drvdata(dev);
2150 u32 value;
2151
2152 if (kstrtou32(buf, 0, &value))
2153 return -EINVAL;
2154
2155 value = !!value;
2156
2157 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2158
2159 if (value == hba->clk_gating.is_enabled)
2160 return count;
2161
2162 if (value)
2163 __ufshcd_release(hba);
2164 else
2165 hba->clk_gating.active_reqs++;
2166
2167 hba->clk_gating.is_enabled = value;
2168
2169 return count;
2170 }
2171
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)2172 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2173 {
2174 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2175 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2176 sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2177 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2178 hba->clk_gating.delay_attr.attr.mode = 0644;
2179 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2180 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2181
2182 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2183 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2184 sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2185 hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2186 hba->clk_gating.enable_attr.attr.mode = 0644;
2187 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2188 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2189 }
2190
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)2191 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2192 {
2193 if (hba->clk_gating.delay_attr.attr.name)
2194 device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2195 if (hba->clk_gating.enable_attr.attr.name)
2196 device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2197 }
2198
ufshcd_init_clk_gating(struct ufs_hba * hba)2199 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2200 {
2201 if (!ufshcd_is_clkgating_allowed(hba))
2202 return;
2203
2204 hba->clk_gating.state = CLKS_ON;
2205
2206 hba->clk_gating.delay_ms = 150;
2207 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2208 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2209
2210 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(
2211 "ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI,
2212 hba->host->host_no);
2213
2214 ufshcd_init_clk_gating_sysfs(hba);
2215
2216 hba->clk_gating.is_enabled = true;
2217 hba->clk_gating.is_initialized = true;
2218 }
2219
ufshcd_exit_clk_gating(struct ufs_hba * hba)2220 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2221 {
2222 if (!hba->clk_gating.is_initialized)
2223 return;
2224
2225 ufshcd_remove_clk_gating_sysfs(hba);
2226
2227 /* Ungate the clock if necessary. */
2228 ufshcd_hold(hba);
2229 hba->clk_gating.is_initialized = false;
2230 ufshcd_release(hba);
2231
2232 destroy_workqueue(hba->clk_gating.clk_gating_workq);
2233 }
2234
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)2235 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2236 {
2237 bool queue_resume_work = false;
2238 ktime_t curr_t;
2239
2240 if (!ufshcd_is_clkscaling_supported(hba))
2241 return;
2242
2243 curr_t = ktime_get();
2244
2245 guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2246
2247 if (!hba->clk_scaling.active_reqs++)
2248 queue_resume_work = true;
2249
2250 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress)
2251 return;
2252
2253 if (queue_resume_work)
2254 queue_work(hba->clk_scaling.workq,
2255 &hba->clk_scaling.resume_work);
2256
2257 if (!hba->clk_scaling.window_start_t) {
2258 hba->clk_scaling.window_start_t = curr_t;
2259 hba->clk_scaling.tot_busy_t = 0;
2260 hba->clk_scaling.is_busy_started = false;
2261 }
2262
2263 if (!hba->clk_scaling.is_busy_started) {
2264 hba->clk_scaling.busy_start_t = curr_t;
2265 hba->clk_scaling.is_busy_started = true;
2266 }
2267 }
2268
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)2269 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2270 {
2271 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2272
2273 if (!ufshcd_is_clkscaling_supported(hba))
2274 return;
2275
2276 guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2277
2278 hba->clk_scaling.active_reqs--;
2279 if (!scaling->active_reqs && scaling->is_busy_started) {
2280 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2281 scaling->busy_start_t));
2282 scaling->busy_start_t = 0;
2283 scaling->is_busy_started = false;
2284 }
2285 }
2286
ufshcd_monitor_opcode2dir(u8 opcode)2287 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2288 {
2289 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2290 return READ;
2291 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2292 return WRITE;
2293 else
2294 return -EINVAL;
2295 }
2296
2297 /* Must only be called for SCSI commands. */
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct scsi_cmnd * cmd)2298 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2299 struct scsi_cmnd *cmd)
2300 {
2301 const struct ufs_hba_monitor *m = &hba->monitor;
2302 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2303
2304 return m->enabled &&
2305 (!m->chunk_size || m->chunk_size == cmd->sdb.length) &&
2306 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp);
2307 }
2308
ufshcd_start_monitor(struct ufs_hba * hba,struct scsi_cmnd * cmd)2309 static void ufshcd_start_monitor(struct ufs_hba *hba, struct scsi_cmnd *cmd)
2310 {
2311 int dir = ufshcd_monitor_opcode2dir(cmd->cmnd[0]);
2312 unsigned long flags;
2313
2314 spin_lock_irqsave(hba->host->host_lock, flags);
2315 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2316 hba->monitor.busy_start_ts[dir] = ktime_get();
2317 spin_unlock_irqrestore(hba->host->host_lock, flags);
2318 }
2319
ufshcd_update_monitor(struct ufs_hba * hba,struct scsi_cmnd * cmd)2320 static void ufshcd_update_monitor(struct ufs_hba *hba, struct scsi_cmnd *cmd)
2321 {
2322 struct request *req = scsi_cmd_to_rq(cmd);
2323 const struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2324 int dir = ufshcd_monitor_opcode2dir(cmd->cmnd[0]);
2325 unsigned long flags;
2326
2327 spin_lock_irqsave(hba->host->host_lock, flags);
2328 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2329 struct ufs_hba_monitor *m = &hba->monitor;
2330 ktime_t now, inc, lat;
2331
2332 now = lrbp->compl_time_stamp;
2333 inc = ktime_sub(now, m->busy_start_ts[dir]);
2334 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2335 m->nr_sec_rw[dir] += blk_rq_sectors(req);
2336
2337 /* Update latencies */
2338 m->nr_req[dir]++;
2339 lat = ktime_sub(now, lrbp->issue_time_stamp);
2340 m->lat_sum[dir] += lat;
2341 if (m->lat_max[dir] < lat || !m->lat_max[dir])
2342 m->lat_max[dir] = lat;
2343 if (m->lat_min[dir] > lat || !m->lat_min[dir])
2344 m->lat_min[dir] = lat;
2345
2346 m->nr_queued[dir]--;
2347 /* Push forward the busy start of monitor */
2348 m->busy_start_ts[dir] = now;
2349 }
2350 spin_unlock_irqrestore(hba->host->host_lock, flags);
2351 }
2352
2353 /* Returns %true for SCSI commands and %false for device management commands. */
ufshcd_is_scsi_cmd(struct scsi_cmnd * cmd)2354 static bool ufshcd_is_scsi_cmd(struct scsi_cmnd *cmd)
2355 {
2356 return !blk_mq_is_reserved_rq(scsi_cmd_to_rq(cmd));
2357 }
2358
2359 /**
2360 * ufshcd_send_command - Send SCSI or device management commands
2361 * @hba: per adapter instance
2362 * @cmd: SCSI command or device management command pointer
2363 * @hwq: pointer to hardware queue instance
2364 */
ufshcd_send_command(struct ufs_hba * hba,struct scsi_cmnd * cmd,struct ufs_hw_queue * hwq)2365 static inline void ufshcd_send_command(struct ufs_hba *hba,
2366 struct scsi_cmnd *cmd,
2367 struct ufs_hw_queue *hwq)
2368 {
2369 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2370 const int tag = scsi_cmd_to_rq(cmd)->tag;
2371 unsigned long flags;
2372
2373 if (hba->monitor.enabled) {
2374 lrbp->issue_time_stamp = ktime_get();
2375 lrbp->issue_time_stamp_local_clock = local_clock();
2376 lrbp->compl_time_stamp = ktime_set(0, 0);
2377 lrbp->compl_time_stamp_local_clock = 0;
2378 }
2379 if (ufshcd_is_scsi_cmd(cmd)) {
2380 ufshcd_add_command_trace(hba, cmd, UFS_CMD_SEND);
2381 ufshcd_clk_scaling_start_busy(hba);
2382 if (unlikely(ufshcd_should_inform_monitor(hba, cmd)))
2383 ufshcd_start_monitor(hba, cmd);
2384 }
2385
2386 if (hba->mcq_enabled) {
2387 int utrd_size = sizeof(struct utp_transfer_req_desc);
2388 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2389 struct utp_transfer_req_desc *dest;
2390
2391 spin_lock(&hwq->sq_lock);
2392 dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2393 memcpy(dest, src, utrd_size);
2394 ufshcd_inc_sq_tail(hwq);
2395 spin_unlock(&hwq->sq_lock);
2396 } else {
2397 spin_lock_irqsave(&hba->outstanding_lock, flags);
2398 if (hba->vops && hba->vops->setup_xfer_req)
2399 hba->vops->setup_xfer_req(hba, tag,
2400 ufshcd_is_scsi_cmd(cmd));
2401 __set_bit(tag, &hba->outstanding_reqs);
2402 ufshcd_writel(hba, 1 << tag, REG_UTP_TRANSFER_REQ_DOOR_BELL);
2403 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2404 }
2405 }
2406
2407 /**
2408 * ufshcd_copy_sense_data - Copy sense data in case of check condition
2409 * @cmd: SCSI command
2410 */
ufshcd_copy_sense_data(struct scsi_cmnd * cmd)2411 static inline void ufshcd_copy_sense_data(struct scsi_cmnd *cmd)
2412 {
2413 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2414 u8 *const sense_buffer = cmd->sense_buffer;
2415 u16 resp_len;
2416 int len;
2417
2418 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2419 if (sense_buffer && resp_len) {
2420 int len_to_copy;
2421
2422 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2423 len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2424
2425 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2426 len_to_copy);
2427 }
2428 }
2429
2430 /**
2431 * ufshcd_copy_query_response() - Copy the Query Response and the data
2432 * descriptor
2433 * @hba: per adapter instance
2434 * @lrbp: pointer to local reference block
2435 *
2436 * Return: 0 upon success; < 0 upon failure.
2437 */
2438 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2439 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2440 {
2441 struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2442
2443 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2444
2445 /* Get the descriptor */
2446 if (hba->dev_cmd.query.descriptor &&
2447 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2448 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2449 GENERAL_UPIU_REQUEST_SIZE;
2450 u16 resp_len;
2451 u16 buf_len;
2452
2453 /* data segment length */
2454 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2455 .data_segment_length);
2456 buf_len = be16_to_cpu(
2457 hba->dev_cmd.query.request.upiu_req.length);
2458 if (likely(buf_len >= resp_len)) {
2459 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2460 } else {
2461 dev_warn(hba->dev,
2462 "%s: rsp size %d is bigger than buffer size %d",
2463 __func__, resp_len, buf_len);
2464 return -EINVAL;
2465 }
2466 }
2467
2468 return 0;
2469 }
2470
2471 /**
2472 * ufshcd_hba_capabilities - Read controller capabilities
2473 * @hba: per adapter instance
2474 *
2475 * Return: 0 on success, negative on error.
2476 */
ufshcd_hba_capabilities(struct ufs_hba * hba)2477 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2478 {
2479 int err;
2480
2481 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2482
2483 /* nutrs and nutmrs are 0 based values */
2484 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1;
2485 hba->nutmrs =
2486 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2487
2488 hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1;
2489
2490 /* Read crypto capabilities */
2491 err = ufshcd_hba_init_crypto_capabilities(hba);
2492 if (err) {
2493 dev_err(hba->dev, "crypto setup failed\n");
2494 return err;
2495 }
2496
2497 /*
2498 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2499 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2500 * means we can simply read values regardless of version.
2501 */
2502 hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2503 /*
2504 * 0h: legacy single doorbell support is available
2505 * 1h: indicate that legacy single doorbell support has been removed
2506 */
2507 if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP))
2508 hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2509 else
2510 hba->lsdb_sup = true;
2511
2512 hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2513
2514 return 0;
2515 }
2516
2517 /**
2518 * ufshcd_ready_for_uic_cmd - Check if controller is ready
2519 * to accept UIC commands
2520 * @hba: per adapter instance
2521 *
2522 * Return: true on success, else false.
2523 */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2524 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2525 {
2526 u32 val;
2527 int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2528 500, uic_cmd_timeout * 1000, false, hba,
2529 REG_CONTROLLER_STATUS);
2530 return ret == 0;
2531 }
2532
2533 /**
2534 * ufshcd_get_upmcrs - Get the power mode change request status
2535 * @hba: Pointer to adapter instance
2536 *
2537 * This function gets the UPMCRS field of HCS register
2538 *
2539 * Return: value of UPMCRS field.
2540 */
ufshcd_get_upmcrs(struct ufs_hba * hba)2541 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2542 {
2543 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2544 }
2545
2546 /**
2547 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2548 * @hba: per adapter instance
2549 * @uic_cmd: UIC command
2550 */
2551 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2552 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2553 {
2554 lockdep_assert_held(&hba->uic_cmd_mutex);
2555
2556 WARN_ON(hba->active_uic_cmd);
2557
2558 hba->active_uic_cmd = uic_cmd;
2559
2560 /* Write Args */
2561 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2562 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2563 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2564
2565 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2566
2567 /* Write UIC Cmd */
2568 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2569 REG_UIC_COMMAND);
2570 }
2571
2572 /**
2573 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2574 * @hba: per adapter instance
2575 * @uic_cmd: UIC command
2576 *
2577 * Return: 0 only if success.
2578 */
2579 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2580 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2581 {
2582 int ret;
2583 unsigned long flags;
2584
2585 lockdep_assert_held(&hba->uic_cmd_mutex);
2586
2587 if (wait_for_completion_timeout(&uic_cmd->done,
2588 msecs_to_jiffies(uic_cmd_timeout))) {
2589 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2590 } else {
2591 ret = -ETIMEDOUT;
2592 dev_err(hba->dev,
2593 "uic cmd 0x%x with arg3 0x%x completion timeout\n",
2594 uic_cmd->command, uic_cmd->argument3);
2595
2596 if (!uic_cmd->cmd_active) {
2597 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2598 __func__);
2599 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2600 }
2601 }
2602
2603 spin_lock_irqsave(hba->host->host_lock, flags);
2604 hba->active_uic_cmd = NULL;
2605 spin_unlock_irqrestore(hba->host->host_lock, flags);
2606
2607 return ret;
2608 }
2609
2610 /**
2611 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2612 * @hba: per adapter instance
2613 * @uic_cmd: UIC command
2614 *
2615 * Return: 0 if successful; < 0 upon failure.
2616 */
2617 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2618 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2619 {
2620 lockdep_assert_held(&hba->uic_cmd_mutex);
2621
2622 if (!ufshcd_ready_for_uic_cmd(hba)) {
2623 dev_err(hba->dev,
2624 "Controller not ready to accept UIC commands\n");
2625 return -EIO;
2626 }
2627
2628 init_completion(&uic_cmd->done);
2629
2630 uic_cmd->cmd_active = true;
2631 ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2632
2633 return 0;
2634 }
2635
2636 /**
2637 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2638 * @hba: per adapter instance
2639 * @uic_cmd: UIC command
2640 *
2641 * Return: 0 only if success.
2642 */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2643 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2644 {
2645 unsigned long flags;
2646 int ret;
2647
2648 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2649 return 0;
2650
2651 ufshcd_hold(hba);
2652 mutex_lock(&hba->uic_cmd_mutex);
2653 ufshcd_add_delay_before_dme_cmd(hba);
2654
2655 spin_lock_irqsave(hba->host->host_lock, flags);
2656 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
2657 spin_unlock_irqrestore(hba->host->host_lock, flags);
2658
2659 ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2660 if (!ret)
2661 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2662
2663 mutex_unlock(&hba->uic_cmd_mutex);
2664
2665 ufshcd_release(hba);
2666 return ret;
2667 }
2668
2669 /**
2670 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2671 * @hba: per-adapter instance
2672 * @lrbp: pointer to local reference block
2673 * @sg_entries: The number of sg lists actually used
2674 * @sg_list: Pointer to SG list
2675 */
ufshcd_sgl_to_prdt(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int sg_entries,struct scatterlist * sg_list)2676 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2677 struct scatterlist *sg_list)
2678 {
2679 struct ufshcd_sg_entry *prd;
2680 struct scatterlist *sg;
2681 int i;
2682
2683 if (sg_entries) {
2684
2685 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2686 lrbp->utr_descriptor_ptr->prd_table_length =
2687 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2688 else
2689 lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2690
2691 prd = lrbp->ucd_prdt_ptr;
2692
2693 for_each_sg(sg_list, sg, sg_entries, i) {
2694 const unsigned int len = sg_dma_len(sg);
2695
2696 /*
2697 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2698 * based value that indicates the length, in bytes, of
2699 * the data block. A maximum of length of 256KB may
2700 * exist for any entry. Bits 1:0 of this field shall be
2701 * 11b to indicate Dword granularity. A value of '3'
2702 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2703 */
2704 WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2705 prd->size = cpu_to_le32(len - 1);
2706 prd->addr = cpu_to_le64(sg->dma_address);
2707 prd->reserved = 0;
2708 prd = (void *)prd + ufshcd_sg_entry_size(hba);
2709 }
2710 } else {
2711 lrbp->utr_descriptor_ptr->prd_table_length = 0;
2712 }
2713 }
2714
2715 /**
2716 * ufshcd_map_sg - Map scatter-gather list to prdt
2717 * @hba: per adapter instance
2718 * @cmd: SCSI command
2719 *
2720 * Return: 0 in case of success, non-zero value in case of failure.
2721 */
ufshcd_map_sg(struct ufs_hba * hba,struct scsi_cmnd * cmd)2722 static int ufshcd_map_sg(struct ufs_hba *hba, struct scsi_cmnd *cmd)
2723 {
2724 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2725 int sg_segments = scsi_dma_map(cmd);
2726
2727 if (sg_segments < 0)
2728 return sg_segments;
2729
2730 ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2731
2732 return ufshcd_crypto_fill_prdt(hba, cmd);
2733 }
2734
2735 /**
2736 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2737 * descriptor according to request
2738 * @hba: per adapter instance
2739 * @lrbp: pointer to local reference block
2740 * @upiu_flags: flags required in the header
2741 * @cmd_dir: requests data direction
2742 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2743 */
2744 static void
ufshcd_prepare_req_desc_hdr(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir,int ehs_length)2745 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2746 u8 *upiu_flags, enum dma_data_direction cmd_dir,
2747 int ehs_length)
2748 {
2749 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2750 struct request_desc_header *h = &req_desc->header;
2751 enum utp_data_direction data_direction;
2752
2753 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2754
2755 *h = (typeof(*h)){ };
2756
2757 if (cmd_dir == DMA_FROM_DEVICE) {
2758 data_direction = UTP_DEVICE_TO_HOST;
2759 *upiu_flags = UPIU_CMD_FLAGS_READ;
2760 } else if (cmd_dir == DMA_TO_DEVICE) {
2761 data_direction = UTP_HOST_TO_DEVICE;
2762 *upiu_flags = UPIU_CMD_FLAGS_WRITE;
2763 } else {
2764 data_direction = UTP_NO_DATA_TRANSFER;
2765 *upiu_flags = UPIU_CMD_FLAGS_NONE;
2766 }
2767
2768 h->command_type = lrbp->command_type;
2769 h->data_direction = data_direction;
2770 h->ehs_length = ehs_length;
2771
2772 if (lrbp->intr_cmd)
2773 h->interrupt = 1;
2774
2775 /* Prepare crypto related dwords */
2776 ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2777
2778 /*
2779 * assigning invalid value for command status. Controller
2780 * updates OCS on command completion, with the command
2781 * status
2782 */
2783 h->ocs = OCS_INVALID_COMMAND_STATUS;
2784
2785 req_desc->prd_table_length = 0;
2786 }
2787
2788 /**
2789 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2790 * for scsi commands
2791 * @cmd: SCSI command
2792 * @upiu_flags: flags
2793 */
ufshcd_prepare_utp_scsi_cmd_upiu(struct scsi_cmnd * cmd,u8 upiu_flags)2794 static void ufshcd_prepare_utp_scsi_cmd_upiu(struct scsi_cmnd *cmd,
2795 u8 upiu_flags)
2796 {
2797 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2798 const int tag = scsi_cmd_to_rq(cmd)->tag;
2799 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2800 unsigned short cdb_len;
2801
2802 ucd_req_ptr->header = (struct utp_upiu_header){
2803 .transaction_code = UPIU_TRANSACTION_COMMAND,
2804 .flags = upiu_flags,
2805 .lun = lrbp->lun,
2806 .task_tag = tag,
2807 .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2808 };
2809
2810 WARN_ON_ONCE(ucd_req_ptr->header.task_tag != tag);
2811
2812 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2813
2814 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2815 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2816
2817 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2818 }
2819
2820 /**
2821 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2822 * @hba: UFS hba
2823 * @cmd: SCSI command pointer
2824 * @upiu_flags: flags
2825 */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct scsi_cmnd * cmd,u8 upiu_flags)2826 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2827 struct scsi_cmnd *cmd, u8 upiu_flags)
2828 {
2829 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2830 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2831 const int tag = scsi_cmd_to_rq(cmd)->tag;
2832 struct ufs_query *query = &hba->dev_cmd.query;
2833 u16 len = be16_to_cpu(query->request.upiu_req.length);
2834
2835 /* Query request header */
2836 ucd_req_ptr->header = (struct utp_upiu_header){
2837 .transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2838 .flags = upiu_flags,
2839 .lun = lrbp->lun,
2840 .task_tag = tag,
2841 .query_function = query->request.query_func,
2842 /* Data segment length only need for WRITE_DESC */
2843 .data_segment_length =
2844 query->request.upiu_req.opcode ==
2845 UPIU_QUERY_OPCODE_WRITE_DESC ?
2846 cpu_to_be16(len) :
2847 0,
2848 };
2849
2850 /* Copy the Query Request buffer as is */
2851 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2852 QUERY_OSF_SIZE);
2853
2854 /* Copy the Descriptor */
2855 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2856 memcpy(ucd_req_ptr + 1, query->descriptor, len);
2857 }
2858
ufshcd_prepare_utp_nop_upiu(struct scsi_cmnd * cmd)2859 static inline void ufshcd_prepare_utp_nop_upiu(struct scsi_cmnd *cmd)
2860 {
2861 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2862 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2863 const int tag = scsi_cmd_to_rq(cmd)->tag;
2864
2865 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2866
2867 ucd_req_ptr->header = (struct utp_upiu_header){
2868 .transaction_code = UPIU_TRANSACTION_NOP_OUT,
2869 .task_tag = tag,
2870 };
2871 }
2872
2873 /**
2874 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2875 * for Device Management Purposes
2876 * @hba: per adapter instance
2877 * @cmd: SCSI command pointer
2878 *
2879 * Return: 0 upon success; < 0 upon failure.
2880 */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct scsi_cmnd * cmd)2881 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2882 struct scsi_cmnd *cmd)
2883 {
2884 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2885 u8 upiu_flags;
2886 int ret = 0;
2887
2888 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2889
2890 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2891 ufshcd_prepare_utp_query_req_upiu(hba, cmd, upiu_flags);
2892 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2893 ufshcd_prepare_utp_nop_upiu(cmd);
2894 else
2895 ret = -EINVAL;
2896
2897 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2898
2899 return ret;
2900 }
2901
2902 /**
2903 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2904 * for SCSI Purposes
2905 * @hba: per adapter instance
2906 * @cmd: SCSI command
2907 */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct scsi_cmnd * cmd)2908 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct scsi_cmnd *cmd)
2909 {
2910 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2911 struct request *rq = scsi_cmd_to_rq(cmd);
2912 unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2913 u8 upiu_flags;
2914
2915 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags,
2916 cmd->sc_data_direction, 0);
2917 if (ioprio_class == IOPRIO_CLASS_RT)
2918 upiu_flags |= UPIU_CMD_FLAGS_CP;
2919 ufshcd_prepare_utp_scsi_cmd_upiu(cmd, upiu_flags);
2920 }
2921
ufshcd_init_lrb(struct ufs_hba * hba,struct scsi_cmnd * cmd)2922 static void ufshcd_init_lrb(struct ufs_hba *hba, struct scsi_cmnd *cmd)
2923 {
2924 const int i = scsi_cmd_to_rq(cmd)->tag;
2925 struct utp_transfer_cmd_desc *cmd_descp =
2926 (void *)hba->ucdl_base_addr + i * ufshcd_get_ucd_size(hba);
2927 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2928 dma_addr_t cmd_desc_element_addr =
2929 hba->ucdl_dma_addr + i * ufshcd_get_ucd_size(hba);
2930 u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset);
2931 u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset);
2932 struct ufshcd_lrb *lrb = scsi_cmd_priv(cmd);
2933
2934 lrb->utr_descriptor_ptr = utrdlp + i;
2935 lrb->utrd_dma_addr =
2936 hba->utrdl_dma_addr + i * sizeof(struct utp_transfer_req_desc);
2937 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2938 lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2939 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2940 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2941 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2942 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2943 }
2944
__ufshcd_setup_cmd(struct ufs_hba * hba,struct scsi_cmnd * cmd,u8 lun,int tag)2945 static void __ufshcd_setup_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd,
2946 u8 lun, int tag)
2947 {
2948 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2949
2950 ufshcd_init_lrb(hba, cmd);
2951
2952 memset(lrbp->ucd_req_ptr, 0, sizeof(*lrbp->ucd_req_ptr));
2953
2954 lrbp->lun = lun;
2955 ufshcd_prepare_lrbp_crypto(ufshcd_is_scsi_cmd(cmd) ?
2956 scsi_cmd_to_rq(cmd) : NULL, lrbp);
2957 }
2958
ufshcd_setup_scsi_cmd(struct ufs_hba * hba,struct scsi_cmnd * cmd,u8 lun,int tag)2959 static void ufshcd_setup_scsi_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd,
2960 u8 lun, int tag)
2961 {
2962 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2963
2964 __ufshcd_setup_cmd(hba, cmd, lun, tag);
2965 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2966 lrbp->req_abort_skip = false;
2967
2968 ufshcd_comp_scsi_upiu(hba, cmd);
2969 }
2970
2971 /**
2972 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2973 * @upiu_wlun_id: UPIU W-LUN id
2974 *
2975 * Return: SCSI W-LUN id.
2976 */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2977 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2978 {
2979 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2980 }
2981
is_device_wlun(struct scsi_device * sdev)2982 static inline bool is_device_wlun(struct scsi_device *sdev)
2983 {
2984 return sdev->lun ==
2985 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2986 }
2987
2988 /*
2989 * Associate the UFS controller queue with the default and poll HCTX types.
2990 * Initialize the mq_map[] arrays.
2991 */
ufshcd_map_queues(struct Scsi_Host * shost)2992 static void ufshcd_map_queues(struct Scsi_Host *shost)
2993 {
2994 struct ufs_hba *hba = shost_priv(shost);
2995 int i, queue_offset = 0;
2996
2997 if (!is_mcq_supported(hba)) {
2998 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2999 hba->nr_queues[HCTX_TYPE_READ] = 0;
3000 hba->nr_queues[HCTX_TYPE_POLL] = 1;
3001 hba->nr_hw_queues = 1;
3002 }
3003
3004 for (i = 0; i < shost->nr_maps; i++) {
3005 struct blk_mq_queue_map *map = &shost->tag_set.map[i];
3006
3007 map->nr_queues = hba->nr_queues[i];
3008 if (!map->nr_queues)
3009 continue;
3010 map->queue_offset = queue_offset;
3011 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
3012 map->queue_offset = 0;
3013
3014 blk_mq_map_queues(map);
3015 queue_offset += map->nr_queues;
3016 }
3017 }
3018
3019 /*
3020 * The only purpose of this function is to make the SCSI core skip the memset()
3021 * call for the private command data.
3022 */
ufshcd_init_cmd_priv(struct Scsi_Host * host,struct scsi_cmnd * cmd)3023 static int ufshcd_init_cmd_priv(struct Scsi_Host *host, struct scsi_cmnd *cmd)
3024 {
3025 return 0;
3026 }
3027
3028 /**
3029 * ufshcd_queuecommand - main entry point for SCSI requests
3030 * @host: SCSI host pointer
3031 * @cmd: command from SCSI Midlayer
3032 *
3033 * Return: 0 for success, non-zero in case of failure.
3034 */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)3035 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
3036 {
3037 struct ufs_hba *hba = shost_priv(host);
3038 int tag = scsi_cmd_to_rq(cmd)->tag;
3039 int err = 0;
3040 struct ufs_hw_queue *hwq = NULL;
3041
3042 switch (hba->ufshcd_state) {
3043 case UFSHCD_STATE_OPERATIONAL:
3044 break;
3045 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
3046 /*
3047 * SCSI error handler can call ->queuecommand() while UFS error
3048 * handler is in progress. Error interrupts could change the
3049 * state from UFSHCD_STATE_RESET to
3050 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
3051 * being issued in that case.
3052 */
3053 if (ufshcd_eh_in_progress(hba)) {
3054 err = SCSI_MLQUEUE_HOST_BUSY;
3055 goto out;
3056 }
3057 break;
3058 case UFSHCD_STATE_EH_SCHEDULED_FATAL:
3059 /*
3060 * pm_runtime_get_sync() is used at error handling preparation
3061 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
3062 * PM ops, it can never be finished if we let SCSI layer keep
3063 * retrying it, which gets err handler stuck forever. Neither
3064 * can we let the scsi cmd pass through, because UFS is in bad
3065 * state, the scsi cmd may eventually time out, which will get
3066 * err handler blocked for too long. So, just fail the scsi cmd
3067 * sent from PM ops, err handler can recover PM error anyways.
3068 */
3069 if (hba->pm_op_in_progress) {
3070 hba->force_reset = true;
3071 set_host_byte(cmd, DID_BAD_TARGET);
3072 scsi_done(cmd);
3073 goto out;
3074 }
3075 fallthrough;
3076 case UFSHCD_STATE_RESET:
3077 err = SCSI_MLQUEUE_HOST_BUSY;
3078 goto out;
3079 case UFSHCD_STATE_ERROR:
3080 set_host_byte(cmd, DID_ERROR);
3081 scsi_done(cmd);
3082 goto out;
3083 }
3084
3085 hba->req_abort_count = 0;
3086
3087 ufshcd_hold(hba);
3088
3089 ufshcd_setup_scsi_cmd(hba, cmd,
3090 ufshcd_scsi_to_upiu_lun(cmd->device->lun), tag);
3091
3092 err = ufshcd_map_sg(hba, cmd);
3093 if (err) {
3094 ufshcd_release(hba);
3095 goto out;
3096 }
3097
3098 if (hba->mcq_enabled)
3099 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3100
3101 ufshcd_send_command(hba, cmd, hwq);
3102
3103 out:
3104 if (ufs_trigger_eh(hba)) {
3105 unsigned long flags;
3106
3107 spin_lock_irqsave(hba->host->host_lock, flags);
3108 ufshcd_schedule_eh_work(hba);
3109 spin_unlock_irqrestore(hba->host->host_lock, flags);
3110 }
3111
3112 return err;
3113 }
3114
ufshcd_queue_reserved_command(struct Scsi_Host * host,struct scsi_cmnd * cmd)3115 static int ufshcd_queue_reserved_command(struct Scsi_Host *host,
3116 struct scsi_cmnd *cmd)
3117 {
3118 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
3119 struct request *rq = scsi_cmd_to_rq(cmd);
3120 struct ufs_hba *hba = shost_priv(host);
3121 struct ufs_hw_queue *hwq =
3122 hba->mcq_enabled ? ufshcd_mcq_req_to_hwq(hba, rq) : NULL;
3123
3124 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3125 ufshcd_send_command(hba, cmd, hwq);
3126 return 0;
3127 }
3128
ufshcd_setup_dev_cmd(struct ufs_hba * hba,struct scsi_cmnd * cmd,enum dev_cmd_type cmd_type,u8 lun,int tag)3129 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd,
3130 enum dev_cmd_type cmd_type, u8 lun, int tag)
3131 {
3132 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
3133
3134 __ufshcd_setup_cmd(hba, cmd, lun, tag);
3135 lrbp->intr_cmd = true; /* No interrupt aggregation */
3136 hba->dev_cmd.type = cmd_type;
3137 }
3138
3139 /*
3140 * Return: 0 upon success; < 0 upon failure.
3141 */
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct scsi_cmnd * cmd,enum dev_cmd_type cmd_type,int tag)3142 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd,
3143 enum dev_cmd_type cmd_type, int tag)
3144 {
3145 ufshcd_setup_dev_cmd(hba, cmd, cmd_type, 0, tag);
3146
3147 return ufshcd_compose_devman_upiu(hba, cmd);
3148 }
3149
3150 /*
3151 * Check with the block layer if the command is inflight
3152 * @cmd: command to check.
3153 *
3154 * Return: true if command is inflight; false if not.
3155 */
ufshcd_cmd_inflight(struct scsi_cmnd * cmd)3156 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3157 {
3158 return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3159 }
3160
3161 /*
3162 * Clear the pending command in the controller and wait until
3163 * the controller confirms that the command has been cleared.
3164 * @hba: per adapter instance
3165 * @task_tag: The tag number of the command to be cleared.
3166 */
ufshcd_clear_cmd(struct ufs_hba * hba,u32 task_tag)3167 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3168 {
3169 u32 mask;
3170 int err;
3171
3172 if (hba->mcq_enabled) {
3173 /*
3174 * MCQ mode. Clean up the MCQ resources similar to
3175 * what the ufshcd_utrl_clear() does for SDB mode.
3176 */
3177 err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3178 if (err) {
3179 dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3180 __func__, task_tag, err);
3181 return err;
3182 }
3183 return 0;
3184 }
3185
3186 mask = 1U << task_tag;
3187
3188 /* clear outstanding transaction before retry */
3189 ufshcd_utrl_clear(hba, mask);
3190
3191 /*
3192 * wait for h/w to clear corresponding bit in door-bell.
3193 * max. wait is 1 sec.
3194 */
3195 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3196 mask, ~mask, 1000, 1000);
3197 }
3198
3199 /**
3200 * ufshcd_dev_cmd_completion() - handles device management command responses
3201 * @hba: per adapter instance
3202 * @lrbp: pointer to local reference block
3203 *
3204 * Return: 0 upon success; < 0 upon failure.
3205 */
3206 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)3207 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3208 {
3209 enum upiu_response_transaction resp;
3210 int err = 0;
3211
3212 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3213 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3214
3215 switch (resp) {
3216 case UPIU_TRANSACTION_NOP_IN:
3217 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3218 err = -EINVAL;
3219 dev_err(hba->dev, "%s: unexpected response %x\n",
3220 __func__, resp);
3221 }
3222 break;
3223 case UPIU_TRANSACTION_QUERY_RSP: {
3224 u8 response = lrbp->ucd_rsp_ptr->header.response;
3225
3226 if (response == 0) {
3227 err = ufshcd_copy_query_response(hba, lrbp);
3228 } else {
3229 err = -EINVAL;
3230 dev_err(hba->dev, "%s: unexpected response in Query RSP: %x\n",
3231 __func__, response);
3232 }
3233 break;
3234 }
3235 case UPIU_TRANSACTION_REJECT_UPIU:
3236 /* TODO: handle Reject UPIU Response */
3237 err = -EPERM;
3238 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3239 __func__);
3240 break;
3241 case UPIU_TRANSACTION_RESPONSE:
3242 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3243 err = -EINVAL;
3244 dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3245 }
3246 break;
3247 default:
3248 err = -EINVAL;
3249 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3250 __func__, resp);
3251 break;
3252 }
3253
3254 WARN_ONCE(err > 0, "Incorrect return value %d > 0\n", err);
3255 return err;
3256 }
3257
ufshcd_dev_man_lock(struct ufs_hba * hba)3258 static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3259 {
3260 ufshcd_hold(hba);
3261 mutex_lock(&hba->dev_cmd.lock);
3262 down_read(&hba->clk_scaling_lock);
3263 }
3264
ufshcd_dev_man_unlock(struct ufs_hba * hba)3265 static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3266 {
3267 up_read(&hba->clk_scaling_lock);
3268 mutex_unlock(&hba->dev_cmd.lock);
3269 ufshcd_release(hba);
3270 }
3271
ufshcd_get_dev_mgmt_cmd(struct ufs_hba * hba)3272 static struct scsi_cmnd *ufshcd_get_dev_mgmt_cmd(struct ufs_hba *hba)
3273 {
3274 /*
3275 * The caller must hold this lock to guarantee that the NOWAIT
3276 * allocation will succeed.
3277 */
3278 lockdep_assert_held(&hba->dev_cmd.lock);
3279
3280 return scsi_get_internal_cmd(
3281 hba->host->pseudo_sdev, DMA_TO_DEVICE,
3282 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
3283 }
3284
ufshcd_put_dev_mgmt_cmd(struct scsi_cmnd * cmd)3285 static void ufshcd_put_dev_mgmt_cmd(struct scsi_cmnd *cmd)
3286 {
3287 scsi_put_internal_cmd(cmd);
3288 }
3289
3290 /*
3291 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3292 * < 0 if another error occurred.
3293 */
ufshcd_issue_dev_cmd(struct ufs_hba * hba,struct scsi_cmnd * cmd,const u32 tag,int timeout)3294 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd,
3295 const u32 tag, int timeout)
3296 {
3297 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
3298 struct request *rq = scsi_cmd_to_rq(cmd);
3299 blk_status_t sts;
3300
3301 rq->timeout = timeout;
3302 sts = blk_execute_rq(rq, true);
3303 if (sts != BLK_STS_OK)
3304 return blk_status_to_errno(sts);
3305 return lrbp->utr_descriptor_ptr->header.ocs;
3306 }
3307
3308 /**
3309 * ufshcd_exec_dev_cmd - API for sending device management requests
3310 * @hba: UFS hba
3311 * @cmd_type: specifies the type (NOP, Query...)
3312 * @timeout: timeout in milliseconds
3313 *
3314 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3315 * < 0 if another error occurred.
3316 *
3317 * NOTE: Since there is only one available tag for device management commands,
3318 * it is expected you hold the hba->dev_cmd.lock mutex.
3319 */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)3320 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3321 enum dev_cmd_type cmd_type, int timeout)
3322 {
3323 struct scsi_cmnd *cmd = ufshcd_get_dev_mgmt_cmd(hba);
3324 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
3325 u32 tag;
3326 int err;
3327
3328 /* Protects use of hba->dev_cmd. */
3329 lockdep_assert_held(&hba->dev_cmd.lock);
3330
3331 if (WARN_ON_ONCE(!cmd))
3332 return -ENOMEM;
3333
3334 tag = scsi_cmd_to_rq(cmd)->tag;
3335
3336 err = ufshcd_compose_dev_cmd(hba, cmd, cmd_type, tag);
3337 if (unlikely(err))
3338 goto out;
3339
3340 err = ufshcd_issue_dev_cmd(hba, cmd, tag, timeout);
3341 if (err == 0)
3342 err = ufshcd_dev_cmd_completion(hba, lrbp);
3343
3344 out:
3345 ufshcd_put_dev_mgmt_cmd(cmd);
3346
3347 return err;
3348 }
3349
3350 /**
3351 * ufshcd_init_query() - init the query response and request parameters
3352 * @hba: per-adapter instance
3353 * @request: address of the request pointer to be initialized
3354 * @response: address of the response pointer to be initialized
3355 * @opcode: operation to perform
3356 * @idn: flag idn to access
3357 * @index: LU number to access
3358 * @selector: query/flag/descriptor further identification
3359 */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)3360 static inline void ufshcd_init_query(struct ufs_hba *hba,
3361 struct ufs_query_req **request, struct ufs_query_res **response,
3362 enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3363 {
3364 *request = &hba->dev_cmd.query.request;
3365 *response = &hba->dev_cmd.query.response;
3366 memset(*request, 0, sizeof(struct ufs_query_req));
3367 memset(*response, 0, sizeof(struct ufs_query_res));
3368 (*request)->upiu_req.opcode = opcode;
3369 (*request)->upiu_req.idn = idn;
3370 (*request)->upiu_req.index = index;
3371 (*request)->upiu_req.selector = selector;
3372 }
3373
3374 /*
3375 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3376 * < 0 if another error occurred.
3377 */
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3378 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3379 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3380 {
3381 int ret;
3382 int retries;
3383
3384 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3385 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3386 if (ret)
3387 dev_dbg(hba->dev,
3388 "%s: failed with error %d, retries %d\n",
3389 __func__, ret, retries);
3390 else
3391 break;
3392 }
3393
3394 if (ret)
3395 dev_err(hba->dev,
3396 "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3397 __func__, opcode, idn, ret, retries);
3398 return ret;
3399 }
3400
3401 /**
3402 * ufshcd_query_flag() - API function for sending flag query requests
3403 * @hba: per-adapter instance
3404 * @opcode: flag query to perform
3405 * @idn: flag idn to access
3406 * @index: flag index to access
3407 * @flag_res: the flag value after the query request completes
3408 *
3409 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3410 * < 0 if another error occurred.
3411 */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3412 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3413 enum flag_idn idn, u8 index, bool *flag_res)
3414 {
3415 struct ufs_query_req *request = NULL;
3416 struct ufs_query_res *response = NULL;
3417 int err, selector = 0;
3418 int timeout = dev_cmd_timeout;
3419
3420 BUG_ON(!hba);
3421
3422 ufshcd_dev_man_lock(hba);
3423
3424 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3425 selector);
3426
3427 switch (opcode) {
3428 case UPIU_QUERY_OPCODE_SET_FLAG:
3429 case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3430 case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3431 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3432 break;
3433 case UPIU_QUERY_OPCODE_READ_FLAG:
3434 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3435 if (!flag_res) {
3436 /* No dummy reads */
3437 dev_err(hba->dev, "%s: Invalid argument for read request\n",
3438 __func__);
3439 err = -EINVAL;
3440 goto out_unlock;
3441 }
3442 break;
3443 default:
3444 dev_err(hba->dev,
3445 "%s: Expected query flag opcode but got = %d\n",
3446 __func__, opcode);
3447 err = -EINVAL;
3448 goto out_unlock;
3449 }
3450
3451 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3452
3453 if (err) {
3454 dev_err(hba->dev,
3455 "%s: Sending flag query for idn %d failed, err = %d\n",
3456 __func__, idn, err);
3457 goto out_unlock;
3458 }
3459
3460 if (flag_res)
3461 *flag_res = (be32_to_cpu(response->upiu_res.value) &
3462 MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3463
3464 out_unlock:
3465 ufshcd_dev_man_unlock(hba);
3466 return err;
3467 }
3468
3469 /**
3470 * ufshcd_query_attr - API function for sending attribute requests
3471 * @hba: per-adapter instance
3472 * @opcode: attribute opcode
3473 * @idn: attribute idn to access
3474 * @index: index field
3475 * @selector: selector field
3476 * @attr_val: the attribute value after the query request completes
3477 *
3478 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3479 * < 0 if another error occurred.
3480 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3481 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3482 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3483 {
3484 struct ufs_query_req *request = NULL;
3485 struct ufs_query_res *response = NULL;
3486 int err;
3487
3488 BUG_ON(!hba);
3489
3490 if (!attr_val) {
3491 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3492 __func__, opcode);
3493 return -EINVAL;
3494 }
3495
3496 ufshcd_dev_man_lock(hba);
3497
3498 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3499 selector);
3500
3501 switch (opcode) {
3502 case UPIU_QUERY_OPCODE_WRITE_ATTR:
3503 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3504 request->upiu_req.value = cpu_to_be32(*attr_val);
3505 break;
3506 case UPIU_QUERY_OPCODE_READ_ATTR:
3507 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3508 break;
3509 default:
3510 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3511 __func__, opcode);
3512 err = -EINVAL;
3513 goto out_unlock;
3514 }
3515
3516 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
3517
3518 if (err) {
3519 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3520 __func__, opcode, idn, index, err);
3521 goto out_unlock;
3522 }
3523
3524 *attr_val = be32_to_cpu(response->upiu_res.value);
3525
3526 out_unlock:
3527 ufshcd_dev_man_unlock(hba);
3528 return err;
3529 }
3530
3531 /**
3532 * ufshcd_query_attr_retry() - API function for sending query
3533 * attribute with retries
3534 * @hba: per-adapter instance
3535 * @opcode: attribute opcode
3536 * @idn: attribute idn to access
3537 * @index: index field
3538 * @selector: selector field
3539 * @attr_val: the attribute value after the query request
3540 * completes
3541 *
3542 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3543 * < 0 if another error occurred.
3544 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3545 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3546 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3547 u32 *attr_val)
3548 {
3549 int ret = 0;
3550 u32 retries;
3551
3552 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3553 ret = ufshcd_query_attr(hba, opcode, idn, index,
3554 selector, attr_val);
3555 if (ret)
3556 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3557 __func__, ret, retries);
3558 else
3559 break;
3560 }
3561
3562 if (ret)
3563 dev_err(hba->dev,
3564 "%s: query attribute, idn %d, failed with error %d after %d retries\n",
3565 __func__, idn, ret, QUERY_REQ_RETRIES);
3566 return ret;
3567 }
3568
3569 /*
3570 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3571 * < 0 if another error occurred.
3572 */
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3573 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3574 enum query_opcode opcode, enum desc_idn idn, u8 index,
3575 u8 selector, u8 *desc_buf, int *buf_len)
3576 {
3577 struct ufs_query_req *request = NULL;
3578 struct ufs_query_res *response = NULL;
3579 int err;
3580
3581 BUG_ON(!hba);
3582
3583 if (!desc_buf) {
3584 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3585 __func__, opcode);
3586 return -EINVAL;
3587 }
3588
3589 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3590 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3591 __func__, *buf_len);
3592 return -EINVAL;
3593 }
3594
3595 ufshcd_dev_man_lock(hba);
3596
3597 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3598 selector);
3599 hba->dev_cmd.query.descriptor = desc_buf;
3600 request->upiu_req.length = cpu_to_be16(*buf_len);
3601
3602 switch (opcode) {
3603 case UPIU_QUERY_OPCODE_WRITE_DESC:
3604 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3605 break;
3606 case UPIU_QUERY_OPCODE_READ_DESC:
3607 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3608 break;
3609 default:
3610 dev_err(hba->dev,
3611 "%s: Expected query descriptor opcode but got = 0x%.2x\n",
3612 __func__, opcode);
3613 err = -EINVAL;
3614 goto out_unlock;
3615 }
3616
3617 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
3618
3619 if (err) {
3620 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3621 __func__, opcode, idn, index, err);
3622 goto out_unlock;
3623 }
3624
3625 *buf_len = be16_to_cpu(response->upiu_res.length);
3626
3627 out_unlock:
3628 hba->dev_cmd.query.descriptor = NULL;
3629 ufshcd_dev_man_unlock(hba);
3630 return err;
3631 }
3632
3633 /**
3634 * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3635 * @hba: per-adapter instance
3636 * @opcode: attribute opcode
3637 * @idn: attribute idn to access
3638 * @index: index field
3639 * @selector: selector field
3640 * @desc_buf: the buffer that contains the descriptor
3641 * @buf_len: length parameter passed to the device
3642 *
3643 * The buf_len parameter will contain, on return, the length parameter
3644 * received on the response.
3645 *
3646 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3647 * < 0 if another error occurred.
3648 */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3649 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3650 enum query_opcode opcode,
3651 enum desc_idn idn, u8 index,
3652 u8 selector,
3653 u8 *desc_buf, int *buf_len)
3654 {
3655 int err;
3656 int retries;
3657
3658 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3659 err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3660 selector, desc_buf, buf_len);
3661 if (!err || err == -EINVAL)
3662 break;
3663 }
3664
3665 return err;
3666 }
3667
3668 /**
3669 * ufshcd_read_desc_param - read the specified descriptor parameter
3670 * @hba: Pointer to adapter instance
3671 * @desc_id: descriptor idn value
3672 * @desc_index: descriptor index
3673 * @param_offset: offset of the parameter to read
3674 * @param_read_buf: pointer to buffer where parameter would be read
3675 * @param_size: sizeof(param_read_buf)
3676 *
3677 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3678 * < 0 if another error occurred.
3679 */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3680 int ufshcd_read_desc_param(struct ufs_hba *hba,
3681 enum desc_idn desc_id,
3682 int desc_index,
3683 u8 param_offset,
3684 u8 *param_read_buf,
3685 u8 param_size)
3686 {
3687 int ret;
3688 u8 *desc_buf;
3689 int buff_len = QUERY_DESC_MAX_SIZE;
3690 bool is_kmalloc = true;
3691
3692 /* Safety check */
3693 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3694 return -EINVAL;
3695
3696 /* Check whether we need temp memory */
3697 if (param_offset != 0 || param_size < buff_len) {
3698 desc_buf = kzalloc(buff_len, GFP_KERNEL);
3699 if (!desc_buf)
3700 return -ENOMEM;
3701 } else {
3702 desc_buf = param_read_buf;
3703 is_kmalloc = false;
3704 }
3705
3706 /* Request for full descriptor */
3707 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3708 desc_id, desc_index, 0,
3709 desc_buf, &buff_len);
3710 if (ret) {
3711 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3712 __func__, desc_id, desc_index, param_offset, ret);
3713 goto out;
3714 }
3715
3716 /* Update descriptor length */
3717 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3718
3719 if (param_offset >= buff_len) {
3720 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3721 __func__, param_offset, desc_id, buff_len);
3722 ret = -EINVAL;
3723 goto out;
3724 }
3725
3726 /* Sanity check */
3727 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3728 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3729 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3730 ret = -EINVAL;
3731 goto out;
3732 }
3733
3734 if (is_kmalloc) {
3735 /* Make sure we don't copy more data than available */
3736 if (param_offset >= buff_len)
3737 ret = -EINVAL;
3738 else
3739 memcpy(param_read_buf, &desc_buf[param_offset],
3740 min_t(u32, param_size, buff_len - param_offset));
3741 }
3742 out:
3743 if (is_kmalloc)
3744 kfree(desc_buf);
3745 return ret;
3746 }
3747
3748 /**
3749 * struct uc_string_id - unicode string
3750 *
3751 * @len: size of this descriptor inclusive
3752 * @type: descriptor type
3753 * @uc: unicode string character
3754 */
3755 struct uc_string_id {
3756 u8 len;
3757 u8 type;
3758 wchar_t uc[];
3759 } __packed;
3760
3761 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3762 static inline char ufshcd_remove_non_printable(u8 ch)
3763 {
3764 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3765 }
3766
3767 /**
3768 * ufshcd_read_string_desc - read string descriptor
3769 * @hba: pointer to adapter instance
3770 * @desc_index: descriptor index
3771 * @buf: pointer to buffer where descriptor would be read,
3772 * the caller should free the memory.
3773 * @fmt: if %SD_ASCII_STD, convert from UTF-16 to ASCII
3774 *
3775 * Return:
3776 * * string size on success.
3777 * * -ENOMEM: on allocation failure
3778 * * -EINVAL: on a wrong parameter
3779 */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,enum ufs_descr_fmt fmt)3780 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index, u8 **buf, enum ufs_descr_fmt fmt)
3781 {
3782 struct uc_string_id *uc_str;
3783 u8 *str;
3784 int ret;
3785
3786 if (!buf)
3787 return -EINVAL;
3788
3789 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3790 if (!uc_str)
3791 return -ENOMEM;
3792
3793 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3794 (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3795 if (ret < 0) {
3796 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3797 QUERY_REQ_RETRIES, ret);
3798 str = NULL;
3799 goto out;
3800 }
3801
3802 if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3803 dev_dbg(hba->dev, "String Desc is of zero length\n");
3804 str = NULL;
3805 ret = 0;
3806 goto out;
3807 }
3808
3809 if (fmt == SD_ASCII_STD) {
3810 ssize_t ascii_len;
3811 int i;
3812 /* remove header and divide by 2 to move from UTF16 to UTF8 */
3813 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3814 str = kzalloc(ascii_len, GFP_KERNEL);
3815 if (!str) {
3816 ret = -ENOMEM;
3817 goto out;
3818 }
3819
3820 /*
3821 * the descriptor contains string in UTF16 format
3822 * we need to convert to utf-8 so it can be displayed
3823 */
3824 ret = utf16s_to_utf8s(uc_str->uc,
3825 uc_str->len - QUERY_DESC_HDR_SIZE,
3826 UTF16_BIG_ENDIAN, str, ascii_len - 1);
3827
3828 /* replace non-printable or non-ASCII characters with spaces */
3829 for (i = 0; i < ret; i++)
3830 str[i] = ufshcd_remove_non_printable(str[i]);
3831
3832 str[ret++] = '\0';
3833
3834 } else {
3835 str = kmemdup(uc_str->uc, uc_str->len, GFP_KERNEL);
3836 if (!str) {
3837 ret = -ENOMEM;
3838 goto out;
3839 }
3840 ret = uc_str->len;
3841 }
3842 out:
3843 *buf = str;
3844 kfree(uc_str);
3845 return ret;
3846 }
3847
3848 /**
3849 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3850 * @hba: Pointer to adapter instance
3851 * @lun: lun id
3852 * @param_offset: offset of the parameter to read
3853 * @param_read_buf: pointer to buffer where parameter would be read
3854 * @param_size: sizeof(param_read_buf)
3855 *
3856 * Return: 0 in case of success; < 0 upon failure.
3857 */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3858 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3859 int lun,
3860 enum unit_desc_param param_offset,
3861 u8 *param_read_buf,
3862 u32 param_size)
3863 {
3864 /*
3865 * Unit descriptors are only available for general purpose LUs (LUN id
3866 * from 0 to 7) and RPMB Well known LU.
3867 */
3868 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3869 return -EOPNOTSUPP;
3870
3871 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3872 param_offset, param_read_buf, param_size);
3873 }
3874
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3875 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3876 {
3877 int err = 0;
3878 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3879
3880 if (hba->dev_info.wspecversion >= 0x300) {
3881 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3882 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3883 &gating_wait);
3884 if (err)
3885 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3886 err, gating_wait);
3887
3888 if (gating_wait == 0) {
3889 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3890 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3891 gating_wait);
3892 }
3893
3894 hba->dev_info.clk_gating_wait_us = gating_wait;
3895 }
3896
3897 return err;
3898 }
3899
3900 /**
3901 * ufshcd_memory_alloc - allocate memory for host memory space data structures
3902 * @hba: per adapter instance
3903 *
3904 * 1. Allocate DMA memory for Command Descriptor array
3905 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3906 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3907 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3908 * (UTMRDL)
3909 * 4. Allocate memory for local reference block(lrb).
3910 *
3911 * Return: 0 for success, non-zero in case of failure.
3912 */
ufshcd_memory_alloc(struct ufs_hba * hba)3913 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3914 {
3915 size_t utmrdl_size, utrdl_size, ucdl_size;
3916
3917 /* Allocate memory for UTP command descriptors */
3918 ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3919 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3920 ucdl_size,
3921 &hba->ucdl_dma_addr,
3922 GFP_KERNEL);
3923
3924 /*
3925 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3926 */
3927 if (!hba->ucdl_base_addr ||
3928 WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3929 dev_err(hba->dev,
3930 "Command Descriptor Memory allocation failed\n");
3931 goto out;
3932 }
3933
3934 /*
3935 * Allocate memory for UTP Transfer descriptors
3936 * UFSHCI requires 1KB alignment of UTRD
3937 */
3938 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3939 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3940 utrdl_size,
3941 &hba->utrdl_dma_addr,
3942 GFP_KERNEL);
3943 if (!hba->utrdl_base_addr ||
3944 WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3945 dev_err(hba->dev,
3946 "Transfer Descriptor Memory allocation failed\n");
3947 goto out;
3948 }
3949
3950 /*
3951 * Skip utmrdl allocation; it may have been
3952 * allocated during first pass and not released during
3953 * MCQ memory allocation.
3954 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3955 */
3956 if (hba->utmrdl_base_addr)
3957 goto skip_utmrdl;
3958 /*
3959 * Allocate memory for UTP Task Management descriptors
3960 * UFSHCI requires 1KB alignment of UTMRD
3961 */
3962 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3963 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3964 utmrdl_size,
3965 &hba->utmrdl_dma_addr,
3966 GFP_KERNEL);
3967 if (!hba->utmrdl_base_addr ||
3968 WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3969 dev_err(hba->dev,
3970 "Task Management Descriptor Memory allocation failed\n");
3971 goto out;
3972 }
3973
3974 skip_utmrdl:
3975 return 0;
3976 out:
3977 return -ENOMEM;
3978 }
3979
3980 /**
3981 * ufshcd_host_memory_configure - configure local reference block with
3982 * memory offsets
3983 * @hba: per adapter instance
3984 *
3985 * Configure Host memory space
3986 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3987 * address.
3988 * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3989 * and PRDT offset.
3990 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3991 * into local reference block.
3992 */
ufshcd_host_memory_configure(struct ufs_hba * hba)3993 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3994 {
3995 struct utp_transfer_req_desc *utrdlp;
3996 dma_addr_t cmd_desc_dma_addr;
3997 dma_addr_t cmd_desc_element_addr;
3998 u16 response_offset;
3999 u16 prdt_offset;
4000 int cmd_desc_size;
4001 int i;
4002
4003 utrdlp = hba->utrdl_base_addr;
4004
4005 response_offset =
4006 offsetof(struct utp_transfer_cmd_desc, response_upiu);
4007 prdt_offset =
4008 offsetof(struct utp_transfer_cmd_desc, prd_table);
4009
4010 cmd_desc_size = ufshcd_get_ucd_size(hba);
4011 cmd_desc_dma_addr = hba->ucdl_dma_addr;
4012
4013 for (i = 0; i < hba->nutrs; i++) {
4014 /* Configure UTRD with command descriptor base address */
4015 cmd_desc_element_addr =
4016 (cmd_desc_dma_addr + (cmd_desc_size * i));
4017 utrdlp[i].command_desc_base_addr =
4018 cpu_to_le64(cmd_desc_element_addr);
4019
4020 /* Response upiu and prdt offset should be in double words */
4021 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
4022 utrdlp[i].response_upiu_offset =
4023 cpu_to_le16(response_offset);
4024 utrdlp[i].prd_table_offset =
4025 cpu_to_le16(prdt_offset);
4026 utrdlp[i].response_upiu_length =
4027 cpu_to_le16(ALIGNED_UPIU_SIZE);
4028 } else {
4029 utrdlp[i].response_upiu_offset =
4030 cpu_to_le16(response_offset >> 2);
4031 utrdlp[i].prd_table_offset =
4032 cpu_to_le16(prdt_offset >> 2);
4033 utrdlp[i].response_upiu_length =
4034 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
4035 }
4036 }
4037 }
4038
4039 /**
4040 * ufshcd_dme_link_startup - Notify Unipro to perform link startup
4041 * @hba: per adapter instance
4042 *
4043 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
4044 * in order to initialize the Unipro link startup procedure.
4045 * Once the Unipro links are up, the device connected to the controller
4046 * is detected.
4047 *
4048 * Return: 0 on success, non-zero value on failure.
4049 */
ufshcd_dme_link_startup(struct ufs_hba * hba)4050 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
4051 {
4052 struct uic_command uic_cmd = {
4053 .command = UIC_CMD_DME_LINK_STARTUP,
4054 };
4055 int ret;
4056
4057 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4058 if (ret)
4059 dev_dbg(hba->dev,
4060 "dme-link-startup: error code %d\n", ret);
4061 return ret;
4062 }
4063 /**
4064 * ufshcd_dme_reset - UIC command for DME_RESET
4065 * @hba: per adapter instance
4066 *
4067 * DME_RESET command is issued in order to reset UniPro stack.
4068 * This function now deals with cold reset.
4069 *
4070 * Return: 0 on success, non-zero value on failure.
4071 */
ufshcd_dme_reset(struct ufs_hba * hba)4072 int ufshcd_dme_reset(struct ufs_hba *hba)
4073 {
4074 struct uic_command uic_cmd = {
4075 .command = UIC_CMD_DME_RESET,
4076 };
4077 int ret;
4078
4079 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4080 if (ret)
4081 dev_err(hba->dev,
4082 "dme-reset: error code %d\n", ret);
4083
4084 return ret;
4085 }
4086 EXPORT_SYMBOL_GPL(ufshcd_dme_reset);
4087
ufshcd_dme_configure_adapt(struct ufs_hba * hba,int agreed_gear,int adapt_val)4088 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4089 int agreed_gear,
4090 int adapt_val)
4091 {
4092 int ret;
4093
4094 if (agreed_gear < UFS_HS_G4)
4095 adapt_val = PA_NO_ADAPT;
4096
4097 ret = ufshcd_dme_set(hba,
4098 UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4099 adapt_val);
4100 return ret;
4101 }
4102 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4103
4104 /**
4105 * ufshcd_dme_enable - UIC command for DME_ENABLE
4106 * @hba: per adapter instance
4107 *
4108 * DME_ENABLE command is issued in order to enable UniPro stack.
4109 *
4110 * Return: 0 on success, non-zero value on failure.
4111 */
ufshcd_dme_enable(struct ufs_hba * hba)4112 int ufshcd_dme_enable(struct ufs_hba *hba)
4113 {
4114 struct uic_command uic_cmd = {
4115 .command = UIC_CMD_DME_ENABLE,
4116 };
4117 int ret;
4118
4119 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4120 if (ret)
4121 dev_err(hba->dev,
4122 "dme-enable: error code %d\n", ret);
4123
4124 return ret;
4125 }
4126 EXPORT_SYMBOL_GPL(ufshcd_dme_enable);
4127
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)4128 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4129 {
4130 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000
4131 unsigned long min_sleep_time_us;
4132
4133 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4134 return;
4135
4136 /*
4137 * last_dme_cmd_tstamp will be 0 only for 1st call to
4138 * this function
4139 */
4140 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4141 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4142 } else {
4143 unsigned long delta =
4144 (unsigned long) ktime_to_us(
4145 ktime_sub(ktime_get(),
4146 hba->last_dme_cmd_tstamp));
4147
4148 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4149 min_sleep_time_us =
4150 MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4151 else
4152 min_sleep_time_us = 0; /* no more delay required */
4153 }
4154
4155 if (min_sleep_time_us > 0) {
4156 /* allow sleep for extra 50us if needed */
4157 usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4158 }
4159
4160 /* update the last_dme_cmd_tstamp */
4161 hba->last_dme_cmd_tstamp = ktime_get();
4162 }
4163
4164 /**
4165 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4166 * @hba: per adapter instance
4167 * @attr_sel: uic command argument1
4168 * @attr_set: attribute set type as uic command argument2
4169 * @mib_val: setting value as uic command argument3
4170 * @peer: indicate whether peer or local
4171 *
4172 * Return: 0 on success, non-zero value on failure.
4173 */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)4174 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4175 u8 attr_set, u32 mib_val, u8 peer)
4176 {
4177 struct uic_command uic_cmd = {
4178 .command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET,
4179 .argument1 = attr_sel,
4180 .argument2 = UIC_ARG_ATTR_TYPE(attr_set),
4181 .argument3 = mib_val,
4182 };
4183 static const char *const action[] = {
4184 "dme-set",
4185 "dme-peer-set"
4186 };
4187 const char *set = action[!!peer];
4188 int ret;
4189 int retries = UFS_UIC_COMMAND_RETRIES;
4190
4191 do {
4192 /* for peer attributes we retry upon failure */
4193 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4194 if (ret)
4195 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4196 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4197 } while (ret && peer && --retries);
4198
4199 if (ret)
4200 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4201 set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4202 UFS_UIC_COMMAND_RETRIES - retries);
4203
4204 return ret;
4205 }
4206 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4207
4208 /**
4209 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4210 * @hba: per adapter instance
4211 * @attr_sel: uic command argument1
4212 * @mib_val: the value of the attribute as returned by the UIC command
4213 * @peer: indicate whether peer or local
4214 *
4215 * Return: 0 on success, non-zero value on failure.
4216 */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)4217 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4218 u32 *mib_val, u8 peer)
4219 {
4220 struct uic_command uic_cmd = {
4221 .command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET,
4222 .argument1 = attr_sel,
4223 };
4224 static const char *const action[] = {
4225 "dme-get",
4226 "dme-peer-get"
4227 };
4228 const char *get = action[!!peer];
4229 int ret;
4230 int retries = UFS_UIC_COMMAND_RETRIES;
4231 struct ufs_pa_layer_attr orig_pwr_info;
4232 struct ufs_pa_layer_attr temp_pwr_info;
4233 bool pwr_mode_change = false;
4234
4235 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4236 orig_pwr_info = hba->pwr_info;
4237 temp_pwr_info = orig_pwr_info;
4238
4239 if (orig_pwr_info.pwr_tx == FAST_MODE ||
4240 orig_pwr_info.pwr_rx == FAST_MODE) {
4241 temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4242 temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4243 pwr_mode_change = true;
4244 } else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4245 orig_pwr_info.pwr_rx == SLOW_MODE) {
4246 temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4247 temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4248 pwr_mode_change = true;
4249 }
4250 if (pwr_mode_change) {
4251 ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4252 if (ret)
4253 goto out;
4254 }
4255 }
4256
4257 do {
4258 /* for peer attributes we retry upon failure */
4259 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4260 if (ret)
4261 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4262 get, UIC_GET_ATTR_ID(attr_sel), ret);
4263 } while (ret && peer && --retries);
4264
4265 if (ret)
4266 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4267 get, UIC_GET_ATTR_ID(attr_sel),
4268 UFS_UIC_COMMAND_RETRIES - retries);
4269
4270 if (mib_val)
4271 *mib_val = ret == 0 ? uic_cmd.argument3 : 0;
4272
4273 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4274 && pwr_mode_change)
4275 ufshcd_change_power_mode(hba, &orig_pwr_info);
4276 out:
4277 return ret;
4278 }
4279 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4280
4281 /**
4282 * ufshcd_dme_rmw - get modify set a DME attribute
4283 * @hba: per adapter instance
4284 * @mask: indicates which bits to clear from the value that has been read
4285 * @val: actual value to write
4286 * @attr: dme attribute
4287 */
ufshcd_dme_rmw(struct ufs_hba * hba,u32 mask,u32 val,u32 attr)4288 int ufshcd_dme_rmw(struct ufs_hba *hba, u32 mask,
4289 u32 val, u32 attr)
4290 {
4291 u32 cfg = 0;
4292 int err;
4293
4294 err = ufshcd_dme_get(hba, UIC_ARG_MIB(attr), &cfg);
4295 if (err)
4296 return err;
4297
4298 cfg &= ~mask;
4299 cfg |= (val & mask);
4300
4301 return ufshcd_dme_set(hba, UIC_ARG_MIB(attr), cfg);
4302 }
4303 EXPORT_SYMBOL_GPL(ufshcd_dme_rmw);
4304
4305 /**
4306 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4307 * state) and waits for it to take effect.
4308 *
4309 * @hba: per adapter instance
4310 * @cmd: UIC command to execute
4311 *
4312 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4313 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4314 * and device UniPro link and hence it's final completion would be indicated by
4315 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4316 * addition to normal UIC command completion Status (UCCS). This function only
4317 * returns after the relevant status bits indicate the completion.
4318 *
4319 * Return: 0 on success, non-zero value on failure.
4320 */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)4321 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4322 {
4323 DECLARE_COMPLETION_ONSTACK(uic_async_done);
4324 unsigned long flags;
4325 u8 status;
4326 int ret;
4327
4328 mutex_lock(&hba->uic_cmd_mutex);
4329 ufshcd_add_delay_before_dme_cmd(hba);
4330
4331 spin_lock_irqsave(hba->host->host_lock, flags);
4332 if (ufshcd_is_link_broken(hba)) {
4333 ret = -ENOLINK;
4334 goto out_unlock;
4335 }
4336 hba->uic_async_done = &uic_async_done;
4337 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4338 spin_unlock_irqrestore(hba->host->host_lock, flags);
4339 ret = __ufshcd_send_uic_cmd(hba, cmd);
4340 if (ret) {
4341 dev_err(hba->dev,
4342 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4343 cmd->command, cmd->argument3, ret);
4344 goto out;
4345 }
4346
4347 if (!wait_for_completion_timeout(hba->uic_async_done,
4348 msecs_to_jiffies(uic_cmd_timeout))) {
4349 dev_err(hba->dev,
4350 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4351 cmd->command, cmd->argument3);
4352
4353 if (!cmd->cmd_active) {
4354 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4355 __func__);
4356 goto check_upmcrs;
4357 }
4358
4359 ret = -ETIMEDOUT;
4360 goto out;
4361 }
4362
4363 check_upmcrs:
4364 status = ufshcd_get_upmcrs(hba);
4365 if (status != PWR_LOCAL) {
4366 dev_err(hba->dev,
4367 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4368 cmd->command, status);
4369 ret = (status != PWR_OK) ? status : -1;
4370 }
4371 out:
4372 if (ret) {
4373 ufshcd_print_host_state(hba);
4374 ufshcd_print_pwr_info(hba);
4375 ufshcd_print_evt_hist(hba);
4376 }
4377
4378 spin_lock_irqsave(hba->host->host_lock, flags);
4379 hba->active_uic_cmd = NULL;
4380 hba->uic_async_done = NULL;
4381 if (ret && !hba->pm_op_in_progress) {
4382 ufshcd_set_link_broken(hba);
4383 ufshcd_schedule_eh_work(hba);
4384 }
4385 out_unlock:
4386 spin_unlock_irqrestore(hba->host->host_lock, flags);
4387 mutex_unlock(&hba->uic_cmd_mutex);
4388
4389 /*
4390 * If the h8 exit fails during the runtime resume process, it becomes
4391 * stuck and cannot be recovered through the error handler. To fix
4392 * this, use link recovery instead of the error handler.
4393 */
4394 if (ret && hba->pm_op_in_progress)
4395 ret = ufshcd_link_recovery(hba);
4396
4397 return ret;
4398 }
4399
4400 /**
4401 * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result
4402 * @hba: per adapter instance
4403 * @uic_cmd: UIC command
4404 *
4405 * Return: 0 only if success.
4406 */
ufshcd_send_bsg_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)4407 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
4408 {
4409 int ret;
4410
4411 if (uic_cmd->argument1 != UIC_ARG_MIB(PA_PWRMODE) ||
4412 uic_cmd->command != UIC_CMD_DME_SET)
4413 return ufshcd_send_uic_cmd(hba, uic_cmd);
4414
4415 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
4416 return 0;
4417
4418 ufshcd_hold(hba);
4419 ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd);
4420 ufshcd_release(hba);
4421
4422 return ret;
4423 }
4424
4425 /**
4426 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4427 * using DME_SET primitives.
4428 * @hba: per adapter instance
4429 * @mode: powr mode value
4430 *
4431 * Return: 0 on success, non-zero value on failure.
4432 */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4433 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4434 {
4435 struct uic_command uic_cmd = {
4436 .command = UIC_CMD_DME_SET,
4437 .argument1 = UIC_ARG_MIB(PA_PWRMODE),
4438 .argument3 = mode,
4439 };
4440 int ret;
4441
4442 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4443 ret = ufshcd_dme_set(hba,
4444 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4445 if (ret) {
4446 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4447 __func__, ret);
4448 goto out;
4449 }
4450 }
4451
4452 ufshcd_hold(hba);
4453 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4454 ufshcd_release(hba);
4455
4456 out:
4457 return ret;
4458 }
4459 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4460
ufshcd_link_recovery(struct ufs_hba * hba)4461 int ufshcd_link_recovery(struct ufs_hba *hba)
4462 {
4463 int ret;
4464 unsigned long flags;
4465
4466 spin_lock_irqsave(hba->host->host_lock, flags);
4467 hba->ufshcd_state = UFSHCD_STATE_RESET;
4468 ufshcd_set_eh_in_progress(hba);
4469 spin_unlock_irqrestore(hba->host->host_lock, flags);
4470
4471 /* Reset the attached device */
4472 ufshcd_device_reset(hba);
4473
4474 ret = ufshcd_host_reset_and_restore(hba);
4475
4476 spin_lock_irqsave(hba->host->host_lock, flags);
4477 if (ret)
4478 hba->ufshcd_state = UFSHCD_STATE_ERROR;
4479 ufshcd_clear_eh_in_progress(hba);
4480 spin_unlock_irqrestore(hba->host->host_lock, flags);
4481
4482 if (ret)
4483 dev_err(hba->dev, "%s: link recovery failed, err %d",
4484 __func__, ret);
4485
4486 return ret;
4487 }
4488 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4489
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4490 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4491 {
4492 struct uic_command uic_cmd = {
4493 .command = UIC_CMD_DME_HIBER_ENTER,
4494 };
4495 ktime_t start = ktime_get();
4496 int ret;
4497
4498 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4499
4500 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4501 trace_ufshcd_profile_hibern8(hba, "enter",
4502 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4503
4504 if (ret)
4505 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4506 __func__, ret);
4507 else
4508 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4509 POST_CHANGE);
4510
4511 return ret;
4512 }
4513 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4514
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4515 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4516 {
4517 struct uic_command uic_cmd = {
4518 .command = UIC_CMD_DME_HIBER_EXIT,
4519 };
4520 int ret;
4521 ktime_t start = ktime_get();
4522
4523 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4524
4525 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4526 trace_ufshcd_profile_hibern8(hba, "exit",
4527 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4528
4529 if (ret) {
4530 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4531 __func__, ret);
4532 } else {
4533 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4534 POST_CHANGE);
4535 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4536 hba->ufs_stats.hibern8_exit_cnt++;
4537 }
4538
4539 return ret;
4540 }
4541 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4542
ufshcd_configure_auto_hibern8(struct ufs_hba * hba)4543 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4544 {
4545 if (!ufshcd_is_auto_hibern8_supported(hba))
4546 return;
4547
4548 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4549 }
4550
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4551 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4552 {
4553 const u32 cur_ahit = READ_ONCE(hba->ahit);
4554
4555 if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4556 return;
4557
4558 WRITE_ONCE(hba->ahit, ahit);
4559 if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4560 ufshcd_rpm_get_sync(hba);
4561 ufshcd_hold(hba);
4562 ufshcd_configure_auto_hibern8(hba);
4563 ufshcd_release(hba);
4564 ufshcd_rpm_put_sync(hba);
4565 }
4566 }
4567 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4568
4569 /**
4570 * ufshcd_init_pwr_info - setting the POR (power on reset)
4571 * values in hba power info
4572 * @hba: per-adapter instance
4573 */
ufshcd_init_pwr_info(struct ufs_hba * hba)4574 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4575 {
4576 hba->pwr_info.gear_rx = UFS_PWM_G1;
4577 hba->pwr_info.gear_tx = UFS_PWM_G1;
4578 hba->pwr_info.lane_rx = UFS_LANE_1;
4579 hba->pwr_info.lane_tx = UFS_LANE_1;
4580 hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4581 hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4582 hba->pwr_info.hs_rate = 0;
4583 }
4584
4585 /**
4586 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4587 * @hba: per-adapter instance
4588 *
4589 * Return: 0 upon success; < 0 upon failure.
4590 */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4591 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4592 {
4593 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4594
4595 if (hba->max_pwr_info.is_valid)
4596 return 0;
4597
4598 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4599 pwr_info->pwr_tx = FASTAUTO_MODE;
4600 pwr_info->pwr_rx = FASTAUTO_MODE;
4601 } else {
4602 pwr_info->pwr_tx = FAST_MODE;
4603 pwr_info->pwr_rx = FAST_MODE;
4604 }
4605 pwr_info->hs_rate = PA_HS_MODE_B;
4606
4607 /* Get the connected lane count */
4608 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4609 &pwr_info->lane_rx);
4610 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4611 &pwr_info->lane_tx);
4612
4613 if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4614 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4615 __func__,
4616 pwr_info->lane_rx,
4617 pwr_info->lane_tx);
4618 return -EINVAL;
4619 }
4620
4621 if (pwr_info->lane_rx != pwr_info->lane_tx) {
4622 dev_err(hba->dev, "%s: asymmetric connected lanes. rx=%d, tx=%d\n",
4623 __func__,
4624 pwr_info->lane_rx,
4625 pwr_info->lane_tx);
4626 return -EINVAL;
4627 }
4628
4629 /*
4630 * First, get the maximum gears of HS speed.
4631 * If a zero value, it means there is no HSGEAR capability.
4632 * Then, get the maximum gears of PWM speed.
4633 */
4634 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4635 if (!pwr_info->gear_rx) {
4636 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4637 &pwr_info->gear_rx);
4638 if (!pwr_info->gear_rx) {
4639 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4640 __func__, pwr_info->gear_rx);
4641 return -EINVAL;
4642 }
4643 pwr_info->pwr_rx = SLOW_MODE;
4644 }
4645
4646 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4647 &pwr_info->gear_tx);
4648 if (!pwr_info->gear_tx) {
4649 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4650 &pwr_info->gear_tx);
4651 if (!pwr_info->gear_tx) {
4652 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4653 __func__, pwr_info->gear_tx);
4654 return -EINVAL;
4655 }
4656 pwr_info->pwr_tx = SLOW_MODE;
4657 }
4658
4659 hba->max_pwr_info.is_valid = true;
4660 return 0;
4661 }
4662
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4663 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4664 struct ufs_pa_layer_attr *pwr_mode)
4665 {
4666 int ret;
4667
4668 /* if already configured to the requested pwr_mode */
4669 if (!hba->force_pmc &&
4670 pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4671 pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4672 pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4673 pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4674 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4675 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4676 pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4677 dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4678 return 0;
4679 }
4680
4681 /*
4682 * Configure attributes for power mode change with below.
4683 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4684 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4685 * - PA_HSSERIES
4686 */
4687 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4688 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4689 pwr_mode->lane_rx);
4690 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4691 pwr_mode->pwr_rx == FAST_MODE)
4692 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4693 else
4694 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4695
4696 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4697 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4698 pwr_mode->lane_tx);
4699 if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4700 pwr_mode->pwr_tx == FAST_MODE)
4701 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4702 else
4703 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4704
4705 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4706 pwr_mode->pwr_tx == FASTAUTO_MODE ||
4707 pwr_mode->pwr_rx == FAST_MODE ||
4708 pwr_mode->pwr_tx == FAST_MODE)
4709 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4710 pwr_mode->hs_rate);
4711
4712 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4713 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4714 DL_FC0ProtectionTimeOutVal_Default);
4715 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4716 DL_TC0ReplayTimeOutVal_Default);
4717 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4718 DL_AFC0ReqTimeOutVal_Default);
4719 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4720 DL_FC1ProtectionTimeOutVal_Default);
4721 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4722 DL_TC1ReplayTimeOutVal_Default);
4723 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4724 DL_AFC1ReqTimeOutVal_Default);
4725
4726 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4727 DL_FC0ProtectionTimeOutVal_Default);
4728 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4729 DL_TC0ReplayTimeOutVal_Default);
4730 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4731 DL_AFC0ReqTimeOutVal_Default);
4732 }
4733
4734 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4735 | pwr_mode->pwr_tx);
4736
4737 if (ret) {
4738 dev_err(hba->dev,
4739 "%s: power mode change failed %d\n", __func__, ret);
4740 } else {
4741 memcpy(&hba->pwr_info, pwr_mode,
4742 sizeof(struct ufs_pa_layer_attr));
4743 }
4744
4745 return ret;
4746 }
4747
4748 /**
4749 * ufshcd_config_pwr_mode - configure a new power mode
4750 * @hba: per-adapter instance
4751 * @desired_pwr_mode: desired power configuration
4752 *
4753 * Return: 0 upon success; < 0 upon failure.
4754 */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4755 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4756 struct ufs_pa_layer_attr *desired_pwr_mode)
4757 {
4758 struct ufs_pa_layer_attr final_params = { 0 };
4759 int ret;
4760
4761 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4762 desired_pwr_mode, &final_params);
4763
4764 if (ret)
4765 memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4766
4767 ret = ufshcd_change_power_mode(hba, &final_params);
4768
4769 if (!ret)
4770 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4771 &final_params);
4772
4773 return ret;
4774 }
4775 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4776
4777 /**
4778 * ufshcd_complete_dev_init() - checks device readiness
4779 * @hba: per-adapter instance
4780 *
4781 * Set fDeviceInit flag and poll until device toggles it.
4782 *
4783 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
4784 * < 0 if another error occurred.
4785 */
ufshcd_complete_dev_init(struct ufs_hba * hba)4786 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4787 {
4788 int err;
4789 bool flag_res = true;
4790 ktime_t timeout;
4791
4792 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4793 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4794 if (err) {
4795 dev_err(hba->dev,
4796 "%s: setting fDeviceInit flag failed with error %d\n",
4797 __func__, err);
4798 goto out;
4799 }
4800
4801 /* Poll fDeviceInit flag to be cleared */
4802 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4803 do {
4804 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4805 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4806 if (!flag_res)
4807 break;
4808 usleep_range(500, 1000);
4809 } while (ktime_before(ktime_get(), timeout));
4810
4811 if (err) {
4812 dev_err(hba->dev,
4813 "%s: reading fDeviceInit flag failed with error %d\n",
4814 __func__, err);
4815 } else if (flag_res) {
4816 dev_err(hba->dev,
4817 "%s: fDeviceInit was not cleared by the device\n",
4818 __func__);
4819 err = -EBUSY;
4820 }
4821 out:
4822 return err;
4823 }
4824
4825 /**
4826 * ufshcd_make_hba_operational - Make UFS controller operational
4827 * @hba: per adapter instance
4828 *
4829 * To bring UFS host controller to operational state,
4830 * 1. Enable required interrupts
4831 * 2. Configure interrupt aggregation
4832 * 3. Program UTRL and UTMRL base address
4833 * 4. Configure run-stop-registers
4834 *
4835 * Return: 0 if successful; < 0 upon failure.
4836 */
ufshcd_make_hba_operational(struct ufs_hba * hba)4837 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4838 {
4839 int err = 0;
4840 u32 reg;
4841
4842 /* Enable required interrupts */
4843 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4844
4845 /* Configure interrupt aggregation */
4846 if (ufshcd_is_intr_aggr_allowed(hba))
4847 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4848 else
4849 ufshcd_disable_intr_aggr(hba);
4850
4851 /* Configure UTRL and UTMRL base address registers */
4852 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4853 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4854 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4855 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4856 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4857 REG_UTP_TASK_REQ_LIST_BASE_L);
4858 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4859 REG_UTP_TASK_REQ_LIST_BASE_H);
4860
4861 /*
4862 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4863 */
4864 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4865 if (!(ufshcd_get_lists_status(reg))) {
4866 ufshcd_enable_run_stop_reg(hba);
4867 } else {
4868 dev_err(hba->dev,
4869 "Host controller not ready to process requests");
4870 err = -EIO;
4871 }
4872
4873 return err;
4874 }
4875 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4876
4877 /**
4878 * ufshcd_hba_stop - Send controller to reset state
4879 * @hba: per adapter instance
4880 */
ufshcd_hba_stop(struct ufs_hba * hba)4881 void ufshcd_hba_stop(struct ufs_hba *hba)
4882 {
4883 int err;
4884
4885 ufshcd_disable_irq(hba);
4886 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE);
4887 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4888 CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4889 10, 1);
4890 ufshcd_enable_irq(hba);
4891 if (err)
4892 dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4893 }
4894 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4895
4896 /**
4897 * ufshcd_hba_execute_hce - initialize the controller
4898 * @hba: per adapter instance
4899 *
4900 * The controller resets itself and controller firmware initialization
4901 * sequence kicks off. When controller is ready it will set
4902 * the Host Controller Enable bit to 1.
4903 *
4904 * Return: 0 on success, non-zero value on failure.
4905 */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4906 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4907 {
4908 int retry;
4909
4910 for (retry = 3; retry > 0; retry--) {
4911 if (ufshcd_is_hba_active(hba))
4912 /* change controller state to "reset state" */
4913 ufshcd_hba_stop(hba);
4914
4915 /* UniPro link is disabled at this point */
4916 ufshcd_set_link_off(hba);
4917
4918 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4919
4920 /* start controller initialization sequence */
4921 ufshcd_hba_start(hba);
4922
4923 /*
4924 * To initialize a UFS host controller HCE bit must be set to 1.
4925 * During initialization the HCE bit value changes from 1->0->1.
4926 * When the host controller completes initialization sequence
4927 * it sets the value of HCE bit to 1. The same HCE bit is read back
4928 * to check if the controller has completed initialization sequence.
4929 * So without this delay the value HCE = 1, set in the previous
4930 * instruction might be read back.
4931 * This delay can be changed based on the controller.
4932 */
4933 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4934
4935 /* wait for the host controller to complete initialization */
4936 if (!ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE,
4937 CONTROLLER_ENABLE, 1000, 50))
4938 break;
4939
4940 dev_err(hba->dev, "Enabling the controller failed\n");
4941 }
4942
4943 if (!retry)
4944 return -EIO;
4945
4946 /* enable UIC related interrupts */
4947 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4948
4949 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4950
4951 return 0;
4952 }
4953
ufshcd_hba_enable(struct ufs_hba * hba)4954 int ufshcd_hba_enable(struct ufs_hba *hba)
4955 {
4956 int ret;
4957
4958 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4959 ufshcd_set_link_off(hba);
4960 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4961
4962 /* enable UIC related interrupts */
4963 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4964 ret = ufshcd_dme_reset(hba);
4965 if (ret) {
4966 dev_err(hba->dev, "DME_RESET failed\n");
4967 return ret;
4968 }
4969
4970 ret = ufshcd_dme_enable(hba);
4971 if (ret) {
4972 dev_err(hba->dev, "Enabling DME failed\n");
4973 return ret;
4974 }
4975
4976 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4977 } else {
4978 ret = ufshcd_hba_execute_hce(hba);
4979 }
4980
4981 return ret;
4982 }
4983 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4984
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4985 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4986 {
4987 int tx_lanes, i, err = 0;
4988
4989 if (!peer)
4990 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4991 &tx_lanes);
4992 else
4993 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4994 &tx_lanes);
4995 for (i = 0; i < tx_lanes; i++) {
4996 if (!peer)
4997 err = ufshcd_dme_set(hba,
4998 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4999 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
5000 0);
5001 else
5002 err = ufshcd_dme_peer_set(hba,
5003 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
5004 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
5005 0);
5006 if (err) {
5007 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
5008 __func__, peer, i, err);
5009 break;
5010 }
5011 }
5012
5013 return err;
5014 }
5015
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)5016 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
5017 {
5018 return ufshcd_disable_tx_lcc(hba, true);
5019 }
5020
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)5021 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
5022 {
5023 struct ufs_event_hist *e;
5024
5025 if (id >= UFS_EVT_CNT)
5026 return;
5027
5028 e = &hba->ufs_stats.event[id];
5029 e->val[e->pos] = val;
5030 e->tstamp[e->pos] = local_clock();
5031 e->cnt += 1;
5032 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
5033
5034 ufshcd_vops_event_notify(hba, id, &val);
5035 }
5036 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
5037
5038 /**
5039 * ufshcd_link_startup - Initialize unipro link startup
5040 * @hba: per adapter instance
5041 *
5042 * Return: 0 for success, non-zero in case of failure.
5043 */
ufshcd_link_startup(struct ufs_hba * hba)5044 static int ufshcd_link_startup(struct ufs_hba *hba)
5045 {
5046 int ret;
5047 int retries = DME_LINKSTARTUP_RETRIES;
5048 bool link_startup_again = false;
5049
5050 /*
5051 * If UFS device isn't active then we will have to issue link startup
5052 * 2 times to make sure the device state move to active.
5053 */
5054 if (!(hba->quirks & UFSHCD_QUIRK_PERFORM_LINK_STARTUP_ONCE) &&
5055 !ufshcd_is_ufs_dev_active(hba))
5056 link_startup_again = true;
5057
5058 link_startup:
5059 do {
5060 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
5061
5062 ret = ufshcd_dme_link_startup(hba);
5063
5064 /* check if device is detected by inter-connect layer */
5065 if (!ret && !ufshcd_is_device_present(hba)) {
5066 ufshcd_update_evt_hist(hba,
5067 UFS_EVT_LINK_STARTUP_FAIL,
5068 0);
5069 dev_err(hba->dev, "%s: Device not present\n", __func__);
5070 ret = -ENXIO;
5071 goto out;
5072 }
5073
5074 /*
5075 * DME link lost indication is only received when link is up,
5076 * but we can't be sure if the link is up until link startup
5077 * succeeds. So reset the local Uni-Pro and try again.
5078 */
5079 if (ret && retries && ufshcd_hba_enable(hba)) {
5080 ufshcd_update_evt_hist(hba,
5081 UFS_EVT_LINK_STARTUP_FAIL,
5082 (u32)ret);
5083 goto out;
5084 }
5085 } while (ret && retries--);
5086
5087 if (ret) {
5088 /* failed to get the link up... retire */
5089 ufshcd_update_evt_hist(hba,
5090 UFS_EVT_LINK_STARTUP_FAIL,
5091 (u32)ret);
5092 goto out;
5093 }
5094
5095 if (link_startup_again) {
5096 link_startup_again = false;
5097 retries = DME_LINKSTARTUP_RETRIES;
5098 goto link_startup;
5099 }
5100
5101 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5102 ufshcd_init_pwr_info(hba);
5103 ufshcd_print_pwr_info(hba);
5104
5105 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5106 ret = ufshcd_disable_device_tx_lcc(hba);
5107 if (ret)
5108 goto out;
5109 }
5110
5111 /* Include any host controller configuration via UIC commands */
5112 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5113 if (ret)
5114 goto out;
5115
5116 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5117 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5118 ret = ufshcd_make_hba_operational(hba);
5119 out:
5120 if (ret)
5121 dev_err(hba->dev, "link startup failed %d\n", ret);
5122 return ret;
5123 }
5124
5125 /**
5126 * ufshcd_verify_dev_init() - Verify device initialization
5127 * @hba: per-adapter instance
5128 *
5129 * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5130 * device Transport Protocol (UTP) layer is ready after a reset.
5131 * If the UTP layer at the device side is not initialized, it may
5132 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5133 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5134 *
5135 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
5136 * < 0 if another error occurred.
5137 */
ufshcd_verify_dev_init(struct ufs_hba * hba)5138 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5139 {
5140 int err = 0;
5141 int retries;
5142
5143 ufshcd_dev_man_lock(hba);
5144
5145 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5146 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5147 hba->nop_out_timeout);
5148
5149 if (!err || err == -ETIMEDOUT)
5150 break;
5151
5152 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5153 }
5154
5155 ufshcd_dev_man_unlock(hba);
5156
5157 if (err)
5158 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5159 return err;
5160 }
5161
5162 /**
5163 * ufshcd_setup_links - associate link b/w device wlun and other luns
5164 * @sdev: pointer to SCSI device
5165 * @hba: pointer to ufs hba
5166 */
ufshcd_setup_links(struct ufs_hba * hba,struct scsi_device * sdev)5167 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5168 {
5169 struct device_link *link;
5170
5171 /*
5172 * Device wlun is the supplier & rest of the luns are consumers.
5173 * This ensures that device wlun suspends after all other luns.
5174 */
5175 if (hba->ufs_device_wlun) {
5176 link = device_link_add(&sdev->sdev_gendev,
5177 &hba->ufs_device_wlun->sdev_gendev,
5178 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5179 if (!link) {
5180 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5181 dev_name(&hba->ufs_device_wlun->sdev_gendev));
5182 return;
5183 }
5184 hba->luns_avail--;
5185 /* Ignore REPORT_LUN wlun probing */
5186 if (hba->luns_avail == 1) {
5187 ufshcd_rpm_put(hba);
5188 return;
5189 }
5190 } else {
5191 /*
5192 * Device wlun is probed. The assumption is that WLUNs are
5193 * scanned before other LUNs.
5194 */
5195 hba->luns_avail--;
5196 }
5197 }
5198
5199 /**
5200 * ufshcd_lu_init - Initialize the relevant parameters of the LU
5201 * @hba: per-adapter instance
5202 * @sdev: pointer to SCSI device
5203 */
ufshcd_lu_init(struct ufs_hba * hba,struct scsi_device * sdev)5204 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5205 {
5206 int len = QUERY_DESC_MAX_SIZE;
5207 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5208 u8 lun_qdepth = hba->nutrs;
5209 u8 *desc_buf;
5210 int ret;
5211
5212 desc_buf = kzalloc(len, GFP_KERNEL);
5213 if (!desc_buf)
5214 goto set_qdepth;
5215
5216 ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5217 if (ret < 0) {
5218 if (ret == -EOPNOTSUPP)
5219 /* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5220 lun_qdepth = 1;
5221 kfree(desc_buf);
5222 goto set_qdepth;
5223 }
5224
5225 if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5226 /*
5227 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5228 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5229 */
5230 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5231 }
5232 /*
5233 * According to UFS device specification, the write protection mode is only supported by
5234 * normal LU, not supported by WLUN.
5235 */
5236 if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5237 !hba->dev_info.is_lu_power_on_wp &&
5238 desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5239 hba->dev_info.is_lu_power_on_wp = true;
5240
5241 /* In case of RPMB LU, check if advanced RPMB mode is enabled, and get region size */
5242 if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN) {
5243 if (desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5244 hba->dev_info.b_advanced_rpmb_en = true;
5245 hba->dev_info.rpmb_region_size[0] = desc_buf[RPMB_UNIT_DESC_PARAM_REGION0_SIZE];
5246 hba->dev_info.rpmb_region_size[1] = desc_buf[RPMB_UNIT_DESC_PARAM_REGION1_SIZE];
5247 hba->dev_info.rpmb_region_size[2] = desc_buf[RPMB_UNIT_DESC_PARAM_REGION2_SIZE];
5248 hba->dev_info.rpmb_region_size[3] = desc_buf[RPMB_UNIT_DESC_PARAM_REGION3_SIZE];
5249 }
5250
5251
5252 kfree(desc_buf);
5253 set_qdepth:
5254 /*
5255 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5256 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5257 */
5258 dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5259 scsi_change_queue_depth(sdev, lun_qdepth);
5260 }
5261
5262 /**
5263 * ufshcd_sdev_init - handle initial SCSI device configurations
5264 * @sdev: pointer to SCSI device
5265 *
5266 * Return: success.
5267 */
ufshcd_sdev_init(struct scsi_device * sdev)5268 static int ufshcd_sdev_init(struct scsi_device *sdev)
5269 {
5270 struct ufs_hba *hba;
5271
5272 hba = shost_priv(sdev->host);
5273
5274 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5275 sdev->use_10_for_ms = 1;
5276
5277 /* DBD field should be set to 1 in mode sense(10) */
5278 sdev->set_dbd_for_ms = 1;
5279
5280 /* allow SCSI layer to restart the device in case of errors */
5281 sdev->allow_restart = 1;
5282
5283 /* REPORT SUPPORTED OPERATION CODES is not supported */
5284 sdev->no_report_opcodes = 1;
5285
5286 /* WRITE_SAME command is not supported */
5287 sdev->no_write_same = 1;
5288
5289 ufshcd_lu_init(hba, sdev);
5290
5291 ufshcd_setup_links(hba, sdev);
5292
5293 return 0;
5294 }
5295
5296 /**
5297 * ufshcd_change_queue_depth - change queue depth
5298 * @sdev: pointer to SCSI device
5299 * @depth: required depth to set
5300 *
5301 * Change queue depth and make sure the max. limits are not crossed.
5302 *
5303 * Return: new queue depth.
5304 */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)5305 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5306 {
5307 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5308 }
5309
5310 /**
5311 * ufshcd_sdev_configure - adjust SCSI device configurations
5312 * @sdev: pointer to SCSI device
5313 * @lim: queue limits
5314 *
5315 * Return: 0 (success).
5316 */
ufshcd_sdev_configure(struct scsi_device * sdev,struct queue_limits * lim)5317 static int ufshcd_sdev_configure(struct scsi_device *sdev,
5318 struct queue_limits *lim)
5319 {
5320 struct ufs_hba *hba = shost_priv(sdev->host);
5321 struct request_queue *q = sdev->request_queue;
5322
5323 lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1;
5324
5325 /*
5326 * Block runtime-pm until all consumers are added.
5327 * Refer ufshcd_setup_links().
5328 */
5329 if (is_device_wlun(sdev))
5330 pm_runtime_get_noresume(&sdev->sdev_gendev);
5331 else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5332 sdev->rpm_autosuspend = 1;
5333 /*
5334 * Do not print messages during runtime PM to avoid never-ending cycles
5335 * of messages written back to storage by user space causing runtime
5336 * resume, causing more messages and so on.
5337 */
5338 sdev->silence_suspend = 1;
5339
5340 if (hba->vops && hba->vops->config_scsi_dev)
5341 hba->vops->config_scsi_dev(sdev);
5342
5343 ufshcd_crypto_register(hba, q);
5344
5345 return 0;
5346 }
5347
5348 /**
5349 * ufshcd_sdev_destroy - remove SCSI device configurations
5350 * @sdev: pointer to SCSI device
5351 */
ufshcd_sdev_destroy(struct scsi_device * sdev)5352 static void ufshcd_sdev_destroy(struct scsi_device *sdev)
5353 {
5354 struct ufs_hba *hba;
5355 unsigned long flags;
5356
5357 hba = shost_priv(sdev->host);
5358
5359 /* Drop the reference as it won't be needed anymore */
5360 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5361 spin_lock_irqsave(hba->host->host_lock, flags);
5362 hba->ufs_device_wlun = NULL;
5363 spin_unlock_irqrestore(hba->host->host_lock, flags);
5364 } else if (hba->ufs_device_wlun) {
5365 struct device *supplier = NULL;
5366
5367 /* Ensure UFS Device WLUN exists and does not disappear */
5368 spin_lock_irqsave(hba->host->host_lock, flags);
5369 if (hba->ufs_device_wlun) {
5370 supplier = &hba->ufs_device_wlun->sdev_gendev;
5371 get_device(supplier);
5372 }
5373 spin_unlock_irqrestore(hba->host->host_lock, flags);
5374
5375 if (supplier) {
5376 /*
5377 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5378 * device will not have been registered but can still
5379 * have a device link holding a reference to the device.
5380 */
5381 device_link_remove(&sdev->sdev_gendev, supplier);
5382 put_device(supplier);
5383 }
5384 }
5385 }
5386
5387 /**
5388 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5389 * @cmd: SCSI command
5390 * @scsi_status: SCSI command status
5391 *
5392 * Return: value base on SCSI command status.
5393 */
ufshcd_scsi_cmd_status(struct scsi_cmnd * cmd,int scsi_status)5394 static inline int ufshcd_scsi_cmd_status(struct scsi_cmnd *cmd, int scsi_status)
5395 {
5396 int result = 0;
5397
5398 switch (scsi_status) {
5399 case SAM_STAT_CHECK_CONDITION:
5400 ufshcd_copy_sense_data(cmd);
5401 fallthrough;
5402 case SAM_STAT_GOOD:
5403 result |= DID_OK << 16 | scsi_status;
5404 break;
5405 case SAM_STAT_TASK_SET_FULL:
5406 case SAM_STAT_BUSY:
5407 case SAM_STAT_TASK_ABORTED:
5408 ufshcd_copy_sense_data(cmd);
5409 result |= scsi_status;
5410 break;
5411 default:
5412 result |= DID_ERROR << 16;
5413 break;
5414 } /* end of switch */
5415
5416 return result;
5417 }
5418
5419 /**
5420 * ufshcd_transfer_rsp_status - Get overall status of the response
5421 * @hba: per adapter instance
5422 * @cmd: SCSI command
5423 * @cqe: pointer to the completion queue entry
5424 *
5425 * Return: result of the command to notify SCSI midlayer.
5426 */
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct scsi_cmnd * cmd,struct cq_entry * cqe)5427 static inline int ufshcd_transfer_rsp_status(struct ufs_hba *hba,
5428 struct scsi_cmnd *cmd,
5429 struct cq_entry *cqe)
5430 {
5431 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
5432 const int tag = scsi_cmd_to_rq(cmd)->tag;
5433 int result = 0;
5434 int scsi_status;
5435 enum utp_ocs ocs;
5436 u8 upiu_flags;
5437 u32 resid;
5438
5439 upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5440 resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5441 /*
5442 * Test !overflow instead of underflow to support UFS devices that do
5443 * not set either flag.
5444 */
5445 if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5446 scsi_set_resid(cmd, resid);
5447
5448 /* overall command status of utrd */
5449 ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5450
5451 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5452 if (lrbp->ucd_rsp_ptr->header.response ||
5453 lrbp->ucd_rsp_ptr->header.status)
5454 ocs = OCS_SUCCESS;
5455 }
5456
5457 switch (ocs) {
5458 case OCS_SUCCESS:
5459 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5460 switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5461 case UPIU_TRANSACTION_RESPONSE:
5462 /*
5463 * get the result based on SCSI status response
5464 * to notify the SCSI midlayer of the command status
5465 */
5466 scsi_status = lrbp->ucd_rsp_ptr->header.status;
5467 result = ufshcd_scsi_cmd_status(cmd, scsi_status);
5468
5469 /*
5470 * Currently we are only supporting BKOPs exception
5471 * events hence we can ignore BKOPs exception event
5472 * during power management callbacks. BKOPs exception
5473 * event is not expected to be raised in runtime suspend
5474 * callback as it allows the urgent bkops.
5475 * During system suspend, we are anyway forcefully
5476 * disabling the bkops and if urgent bkops is needed
5477 * it will be enabled on system resume. Long term
5478 * solution could be to abort the system suspend if
5479 * UFS device needs urgent BKOPs.
5480 */
5481 if (!hba->pm_op_in_progress &&
5482 !ufshcd_eh_in_progress(hba) &&
5483 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5484 /* Flushed in suspend */
5485 schedule_work(&hba->eeh_work);
5486 break;
5487 case UPIU_TRANSACTION_REJECT_UPIU:
5488 /* TODO: handle Reject UPIU Response */
5489 result = DID_ERROR << 16;
5490 dev_err(hba->dev,
5491 "Reject UPIU not fully implemented\n");
5492 break;
5493 default:
5494 dev_err(hba->dev,
5495 "Unexpected request response code = %x\n",
5496 result);
5497 result = DID_ERROR << 16;
5498 break;
5499 }
5500 break;
5501 case OCS_ABORTED:
5502 case OCS_INVALID_COMMAND_STATUS:
5503 result |= DID_REQUEUE << 16;
5504 dev_warn(hba->dev, "OCS %s from controller for tag %d\n",
5505 ocs == OCS_ABORTED ? "aborted" : "invalid", tag);
5506 break;
5507 case OCS_INVALID_CMD_TABLE_ATTR:
5508 case OCS_INVALID_PRDT_ATTR:
5509 case OCS_MISMATCH_DATA_BUF_SIZE:
5510 case OCS_MISMATCH_RESP_UPIU_SIZE:
5511 case OCS_PEER_COMM_FAILURE:
5512 case OCS_FATAL_ERROR:
5513 case OCS_DEVICE_FATAL_ERROR:
5514 case OCS_INVALID_CRYPTO_CONFIG:
5515 case OCS_GENERAL_CRYPTO_ERROR:
5516 default:
5517 result |= DID_ERROR << 16;
5518 dev_err(hba->dev, "OCS error from controller = %x for tag %d\n",
5519 ocs, tag);
5520 ufshcd_print_evt_hist(hba);
5521 ufshcd_print_host_state(hba);
5522 break;
5523 } /* end of switch */
5524
5525 if ((host_byte(result) != DID_OK) &&
5526 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs) {
5527 if (cqe)
5528 ufshcd_hex_dump("UPIU CQE: ", cqe, sizeof(struct cq_entry));
5529 ufshcd_print_tr(hba, cmd, true);
5530 }
5531 return result;
5532 }
5533
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5534 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5535 u32 intr_mask)
5536 {
5537 if (!ufshcd_is_auto_hibern8_supported(hba) ||
5538 !ufshcd_is_auto_hibern8_enabled(hba))
5539 return false;
5540
5541 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5542 return false;
5543
5544 if (hba->active_uic_cmd &&
5545 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5546 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5547 return false;
5548
5549 return true;
5550 }
5551
5552 /**
5553 * ufshcd_uic_cmd_compl - handle completion of uic command
5554 * @hba: per adapter instance
5555 * @intr_status: interrupt status generated by the controller
5556 *
5557 * Return:
5558 * IRQ_HANDLED - If interrupt is valid
5559 * IRQ_NONE - If invalid interrupt
5560 */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5561 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5562 {
5563 irqreturn_t retval = IRQ_NONE;
5564 struct uic_command *cmd;
5565
5566 guard(spinlock_irqsave)(hba->host->host_lock);
5567 cmd = hba->active_uic_cmd;
5568 if (!cmd)
5569 return retval;
5570
5571 if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5572 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5573
5574 if (intr_status & UIC_COMMAND_COMPL) {
5575 cmd->argument2 |= ufshcd_get_uic_cmd_result(hba);
5576 cmd->argument3 = ufshcd_get_dme_attr_val(hba);
5577 if (!hba->uic_async_done)
5578 cmd->cmd_active = false;
5579 complete(&cmd->done);
5580 retval = IRQ_HANDLED;
5581 }
5582
5583 if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) {
5584 cmd->cmd_active = false;
5585 complete(hba->uic_async_done);
5586 retval = IRQ_HANDLED;
5587 }
5588
5589 if (retval == IRQ_HANDLED)
5590 ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP);
5591
5592 return retval;
5593 }
5594
5595 /* Release the resources allocated for processing a SCSI command. */
ufshcd_release_scsi_cmd(struct ufs_hba * hba,struct scsi_cmnd * cmd)5596 void ufshcd_release_scsi_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd)
5597 {
5598 scsi_dma_unmap(cmd);
5599 ufshcd_crypto_clear_prdt(hba, cmd);
5600 ufshcd_release(hba);
5601 ufshcd_clk_scaling_update_busy(hba);
5602 }
5603
5604 /**
5605 * ufshcd_compl_one_cqe - handle a completion queue entry
5606 * @hba: per adapter instance
5607 * @task_tag: the task tag of the request to be completed
5608 * @cqe: pointer to the completion queue entry
5609 */
ufshcd_compl_one_cqe(struct ufs_hba * hba,int task_tag,struct cq_entry * cqe)5610 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5611 struct cq_entry *cqe)
5612 {
5613 struct scsi_cmnd *cmd = ufshcd_tag_to_cmd(hba, task_tag);
5614 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
5615 enum utp_ocs ocs;
5616
5617 if (WARN_ONCE(!cmd, "cqe->command_desc_base_addr = %#llx\n",
5618 le64_to_cpu(cqe->command_desc_base_addr)))
5619 return;
5620
5621 if (hba->monitor.enabled) {
5622 lrbp->compl_time_stamp = ktime_get();
5623 lrbp->compl_time_stamp_local_clock = local_clock();
5624 }
5625 if (ufshcd_is_scsi_cmd(cmd)) {
5626 if (unlikely(ufshcd_should_inform_monitor(hba, cmd)))
5627 ufshcd_update_monitor(hba, cmd);
5628 ufshcd_add_command_trace(hba, cmd, UFS_CMD_COMP);
5629 cmd->result = ufshcd_transfer_rsp_status(hba, cmd, cqe);
5630 ufshcd_release_scsi_cmd(hba, cmd);
5631 } else {
5632 if (cqe) {
5633 ocs = cqe->overall_status & MASK_OCS;
5634 lrbp->utr_descriptor_ptr->header.ocs = ocs;
5635 } else {
5636 ocs = lrbp->utr_descriptor_ptr->header.ocs;
5637 }
5638 ufshcd_add_query_upiu_trace(
5639 hba,
5640 ocs == OCS_SUCCESS ? UFS_QUERY_COMP : UFS_QUERY_ERR,
5641 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
5642 cmd->result = 0;
5643 }
5644 /* Do not touch lrbp after scsi_done() has been called. */
5645 scsi_done(cmd);
5646 }
5647
5648 /**
5649 * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5650 * @hba: per adapter instance
5651 * @completed_reqs: bitmask that indicates which requests to complete
5652 */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)5653 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5654 unsigned long completed_reqs)
5655 {
5656 int tag;
5657
5658 for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5659 ufshcd_compl_one_cqe(hba, tag, NULL);
5660 }
5661
5662 /* Any value that is not an existing queue number is fine for this constant. */
5663 enum {
5664 UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5665 };
5666
ufshcd_clear_polled(struct ufs_hba * hba,unsigned long * completed_reqs)5667 static void ufshcd_clear_polled(struct ufs_hba *hba,
5668 unsigned long *completed_reqs)
5669 {
5670 int tag;
5671
5672 for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5673 struct scsi_cmnd *cmd = scsi_host_find_tag(hba->host, tag);
5674
5675 if (!cmd)
5676 continue;
5677 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5678 __clear_bit(tag, completed_reqs);
5679 }
5680 }
5681
5682 /*
5683 * Return: > 0 if one or more commands have been completed or 0 if no
5684 * requests have been completed.
5685 */
ufshcd_poll(struct Scsi_Host * shost,unsigned int queue_num)5686 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5687 {
5688 struct ufs_hba *hba = shost_priv(shost);
5689 unsigned long completed_reqs, flags;
5690 u32 tr_doorbell;
5691 struct ufs_hw_queue *hwq;
5692
5693 if (hba->mcq_enabled) {
5694 hwq = &hba->uhq[queue_num];
5695
5696 return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5697 }
5698
5699 spin_lock_irqsave(&hba->outstanding_lock, flags);
5700 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5701 completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5702 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5703 "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5704 hba->outstanding_reqs);
5705 if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5706 /* Do not complete polled requests from interrupt context. */
5707 ufshcd_clear_polled(hba, &completed_reqs);
5708 }
5709 hba->outstanding_reqs &= ~completed_reqs;
5710 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5711
5712 if (completed_reqs)
5713 __ufshcd_transfer_req_compl(hba, completed_reqs);
5714
5715 return completed_reqs != 0;
5716 }
5717
ufshcd_mcq_force_compl_one(struct request * rq,void * priv)5718 static bool ufshcd_mcq_force_compl_one(struct request *rq, void *priv)
5719 {
5720 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
5721 struct scsi_device *sdev = rq->q->queuedata;
5722 struct Scsi_Host *shost = sdev->host;
5723 struct ufs_hba *hba = shost_priv(shost);
5724 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
5725
5726 if (blk_mq_is_reserved_rq(rq) || !hwq)
5727 return true;
5728
5729 ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5730
5731 /*
5732 * For those cmds of which the cqes are not present in the cq, complete
5733 * them explicitly.
5734 */
5735 scoped_guard(spinlock_irqsave, &hwq->cq_lock) {
5736 if (!test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5737 set_host_byte(cmd, DID_REQUEUE);
5738 ufshcd_release_scsi_cmd(hba, cmd);
5739 scsi_done(cmd);
5740 }
5741 }
5742
5743 return true;
5744 }
5745
ufshcd_mcq_compl_one(struct request * rq,void * priv)5746 static bool ufshcd_mcq_compl_one(struct request *rq, void *priv)
5747 {
5748 struct scsi_device *sdev = rq->q->queuedata;
5749 struct Scsi_Host *shost = sdev->host;
5750 struct ufs_hba *hba = shost_priv(shost);
5751 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
5752
5753 if (!blk_mq_is_reserved_rq(rq) && hwq)
5754 ufshcd_mcq_poll_cqe_lock(hba, hwq);
5755
5756 return true;
5757 }
5758
5759 /**
5760 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5761 * invoked from the error handler context or ufshcd_host_reset_and_restore()
5762 * to complete the pending transfers and free the resources associated with
5763 * the scsi command.
5764 *
5765 * @hba: per adapter instance
5766 * @force_compl: This flag is set to true when invoked
5767 * from ufshcd_host_reset_and_restore() in which case it requires special
5768 * handling because the host controller has been reset by ufshcd_hba_stop().
5769 */
ufshcd_mcq_compl_pending_transfer(struct ufs_hba * hba,bool force_compl)5770 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5771 bool force_compl)
5772 {
5773 blk_mq_tagset_busy_iter(&hba->host->tag_set,
5774 force_compl ? ufshcd_mcq_force_compl_one :
5775 ufshcd_mcq_compl_one,
5776 NULL);
5777 }
5778
5779 /**
5780 * ufshcd_transfer_req_compl - handle SCSI and query command completion
5781 * @hba: per adapter instance
5782 *
5783 * Return:
5784 * IRQ_HANDLED - If interrupt is valid
5785 * IRQ_NONE - If invalid interrupt
5786 */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5787 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5788 {
5789 /* Resetting interrupt aggregation counters first and reading the
5790 * DOOR_BELL afterward allows us to handle all the completed requests.
5791 * In order to prevent other interrupts starvation the DB is read once
5792 * after reset. The down side of this solution is the possibility of
5793 * false interrupt if device completes another request after resetting
5794 * aggregation and before reading the DB.
5795 */
5796 if (ufshcd_is_intr_aggr_allowed(hba) &&
5797 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5798 ufshcd_reset_intr_aggr(hba);
5799
5800 if (ufs_fail_completion(hba))
5801 return IRQ_HANDLED;
5802
5803 /*
5804 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5805 * do not want polling to trigger spurious interrupt complaints.
5806 */
5807 ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5808
5809 return IRQ_HANDLED;
5810 }
5811
__ufshcd_write_ee_control(struct ufs_hba * hba,u32 ee_ctrl_mask)5812 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5813 {
5814 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5815 QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5816 &ee_ctrl_mask);
5817 }
5818
ufshcd_write_ee_control(struct ufs_hba * hba)5819 int ufshcd_write_ee_control(struct ufs_hba *hba)
5820 {
5821 int err;
5822
5823 mutex_lock(&hba->ee_ctrl_mutex);
5824 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5825 mutex_unlock(&hba->ee_ctrl_mutex);
5826 if (err)
5827 dev_err(hba->dev, "%s: failed to write ee control %d\n",
5828 __func__, err);
5829 return err;
5830 }
5831
ufshcd_update_ee_control(struct ufs_hba * hba,u16 * mask,const u16 * other_mask,u16 set,u16 clr)5832 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5833 const u16 *other_mask, u16 set, u16 clr)
5834 {
5835 u16 new_mask, ee_ctrl_mask;
5836 int err = 0;
5837
5838 mutex_lock(&hba->ee_ctrl_mutex);
5839 new_mask = (*mask & ~clr) | set;
5840 ee_ctrl_mask = new_mask | *other_mask;
5841 if (ee_ctrl_mask != hba->ee_ctrl_mask)
5842 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5843 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5844 if (!err) {
5845 hba->ee_ctrl_mask = ee_ctrl_mask;
5846 *mask = new_mask;
5847 }
5848 mutex_unlock(&hba->ee_ctrl_mutex);
5849 return err;
5850 }
5851
5852 /**
5853 * ufshcd_disable_ee - disable exception event
5854 * @hba: per-adapter instance
5855 * @mask: exception event to disable
5856 *
5857 * Disables exception event in the device so that the EVENT_ALERT
5858 * bit is not set.
5859 *
5860 * Return: zero on success, non-zero error value on failure.
5861 */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5862 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5863 {
5864 return ufshcd_update_ee_drv_mask(hba, 0, mask);
5865 }
5866
5867 /**
5868 * ufshcd_enable_ee - enable exception event
5869 * @hba: per-adapter instance
5870 * @mask: exception event to enable
5871 *
5872 * Enable corresponding exception event in the device to allow
5873 * device to alert host in critical scenarios.
5874 *
5875 * Return: zero on success, non-zero error value on failure.
5876 */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5877 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5878 {
5879 return ufshcd_update_ee_drv_mask(hba, mask, 0);
5880 }
5881
5882 /**
5883 * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5884 * @hba: per-adapter instance
5885 *
5886 * Allow device to manage background operations on its own. Enabling
5887 * this might lead to inconsistent latencies during normal data transfers
5888 * as the device is allowed to manage its own way of handling background
5889 * operations.
5890 *
5891 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
5892 * < 0 if another error occurred.
5893 */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5894 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5895 {
5896 int err = 0;
5897
5898 if (hba->auto_bkops_enabled)
5899 goto out;
5900
5901 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5902 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5903 if (err) {
5904 dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5905 __func__, err);
5906 goto out;
5907 }
5908
5909 hba->auto_bkops_enabled = true;
5910 trace_ufshcd_auto_bkops_state(hba, "Enabled");
5911
5912 /* No need of URGENT_BKOPS exception from the device */
5913 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5914 if (err)
5915 dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5916 __func__, err);
5917 out:
5918 return err;
5919 }
5920
5921 /**
5922 * ufshcd_disable_auto_bkops - block device in doing background operations
5923 * @hba: per-adapter instance
5924 *
5925 * Disabling background operations improves command response latency but
5926 * has drawback of device moving into critical state where the device is
5927 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5928 * host is idle so that BKOPS are managed effectively without any negative
5929 * impacts.
5930 *
5931 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
5932 * < 0 if another error occurred.
5933 */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5934 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5935 {
5936 int err = 0;
5937
5938 if (!hba->auto_bkops_enabled)
5939 goto out;
5940
5941 /*
5942 * If host assisted BKOPs is to be enabled, make sure
5943 * urgent bkops exception is allowed.
5944 */
5945 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5946 if (err) {
5947 dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5948 __func__, err);
5949 goto out;
5950 }
5951
5952 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5953 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5954 if (err) {
5955 dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5956 __func__, err);
5957 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5958 goto out;
5959 }
5960
5961 hba->auto_bkops_enabled = false;
5962 trace_ufshcd_auto_bkops_state(hba, "Disabled");
5963 hba->is_urgent_bkops_lvl_checked = false;
5964 out:
5965 return err;
5966 }
5967
5968 /**
5969 * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5970 * @hba: per adapter instance
5971 *
5972 * After a device reset the device may toggle the BKOPS_EN flag
5973 * to default value. The s/w tracking variables should be updated
5974 * as well. This function would change the auto-bkops state based on
5975 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5976 */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5977 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5978 {
5979 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5980 hba->auto_bkops_enabled = false;
5981 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5982 ufshcd_enable_auto_bkops(hba);
5983 } else {
5984 hba->auto_bkops_enabled = true;
5985 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5986 ufshcd_disable_auto_bkops(hba);
5987 }
5988 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5989 hba->is_urgent_bkops_lvl_checked = false;
5990 }
5991
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5992 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5993 {
5994 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5995 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5996 }
5997
5998 /**
5999 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
6000 * @hba: per-adapter instance
6001 *
6002 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
6003 * flag in the device to permit background operations if the device
6004 * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl",
6005 * disable otherwise.
6006 *
6007 * Return: 0 for success, non-zero in case of failure.
6008 *
6009 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
6010 * to know whether auto bkops is enabled or disabled after this function
6011 * returns control to it.
6012 */
ufshcd_bkops_ctrl(struct ufs_hba * hba)6013 static int ufshcd_bkops_ctrl(struct ufs_hba *hba)
6014 {
6015 enum bkops_status status = hba->urgent_bkops_lvl;
6016 u32 curr_status = 0;
6017 int err;
6018
6019 err = ufshcd_get_bkops_status(hba, &curr_status);
6020 if (err) {
6021 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
6022 __func__, err);
6023 goto out;
6024 } else if (curr_status > BKOPS_STATUS_MAX) {
6025 dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
6026 __func__, curr_status);
6027 err = -EINVAL;
6028 goto out;
6029 }
6030
6031 if (curr_status >= status)
6032 err = ufshcd_enable_auto_bkops(hba);
6033 else
6034 err = ufshcd_disable_auto_bkops(hba);
6035 out:
6036 return err;
6037 }
6038
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)6039 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
6040 {
6041 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6042 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
6043 }
6044
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)6045 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
6046 {
6047 int err;
6048 u32 curr_status = 0;
6049
6050 if (hba->is_urgent_bkops_lvl_checked)
6051 goto enable_auto_bkops;
6052
6053 err = ufshcd_get_bkops_status(hba, &curr_status);
6054 if (err) {
6055 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
6056 __func__, err);
6057 goto out;
6058 }
6059
6060 /*
6061 * We are seeing that some devices are raising the urgent bkops
6062 * exception events even when BKOPS status doesn't indicate performace
6063 * impacted or critical. Handle these device by determining their urgent
6064 * bkops status at runtime.
6065 */
6066 if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
6067 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
6068 __func__, curr_status);
6069 /* update the current status as the urgent bkops level */
6070 hba->urgent_bkops_lvl = curr_status;
6071 hba->is_urgent_bkops_lvl_checked = true;
6072 }
6073
6074 enable_auto_bkops:
6075 err = ufshcd_enable_auto_bkops(hba);
6076 out:
6077 if (err < 0)
6078 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
6079 __func__, err);
6080 }
6081
6082 /*
6083 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
6084 * < 0 if another error occurred.
6085 */
ufshcd_read_device_lvl_exception_id(struct ufs_hba * hba,u64 * exception_id)6086 int ufshcd_read_device_lvl_exception_id(struct ufs_hba *hba, u64 *exception_id)
6087 {
6088 struct utp_upiu_query_v4_0 *upiu_resp;
6089 struct ufs_query_req *request = NULL;
6090 struct ufs_query_res *response = NULL;
6091 int err;
6092
6093 if (hba->dev_info.wspecversion < 0x410)
6094 return -EOPNOTSUPP;
6095
6096 ufshcd_hold(hba);
6097 mutex_lock(&hba->dev_cmd.lock);
6098
6099 ufshcd_init_query(hba, &request, &response,
6100 UPIU_QUERY_OPCODE_READ_ATTR,
6101 QUERY_ATTR_IDN_DEV_LVL_EXCEPTION_ID, 0, 0);
6102
6103 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
6104
6105 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
6106
6107 if (err) {
6108 dev_err(hba->dev, "%s: failed to read device level exception %d\n",
6109 __func__, err);
6110 goto out;
6111 }
6112
6113 upiu_resp = (struct utp_upiu_query_v4_0 *)response;
6114 *exception_id = get_unaligned_be64(&upiu_resp->osf3);
6115 out:
6116 mutex_unlock(&hba->dev_cmd.lock);
6117 ufshcd_release(hba);
6118
6119 return err;
6120 }
6121
__ufshcd_wb_toggle(struct ufs_hba * hba,bool set,enum flag_idn idn)6122 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
6123 {
6124 u8 index;
6125 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
6126 UPIU_QUERY_OPCODE_CLEAR_FLAG;
6127
6128 index = ufshcd_wb_get_query_index(hba);
6129 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
6130 }
6131
ufshcd_wb_toggle(struct ufs_hba * hba,bool enable)6132 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
6133 {
6134 int ret;
6135
6136 if (!ufshcd_is_wb_allowed(hba) ||
6137 hba->dev_info.wb_enabled == enable)
6138 return 0;
6139
6140 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
6141 if (ret) {
6142 dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
6143 __func__, enable ? "enabling" : "disabling", ret);
6144 return ret;
6145 }
6146
6147 hba->dev_info.wb_enabled = enable;
6148 dev_dbg(hba->dev, "%s: Write Booster %s\n",
6149 __func__, enable ? "enabled" : "disabled");
6150
6151 return ret;
6152 }
6153
ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba * hba,bool enable)6154 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6155 bool enable)
6156 {
6157 int ret;
6158
6159 ret = __ufshcd_wb_toggle(hba, enable,
6160 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6161 if (ret) {
6162 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6163 __func__, enable ? "enabling" : "disabling", ret);
6164 return;
6165 }
6166 dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6167 __func__, enable ? "enabled" : "disabled");
6168 }
6169
ufshcd_wb_toggle_buf_flush(struct ufs_hba * hba,bool enable)6170 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6171 {
6172 int ret;
6173
6174 if (!ufshcd_is_wb_allowed(hba) ||
6175 hba->dev_info.wb_buf_flush_enabled == enable)
6176 return 0;
6177
6178 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6179 if (ret) {
6180 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6181 __func__, enable ? "enabling" : "disabling", ret);
6182 return ret;
6183 }
6184
6185 hba->dev_info.wb_buf_flush_enabled = enable;
6186 dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6187 __func__, enable ? "enabled" : "disabled");
6188
6189 return ret;
6190 }
6191
ufshcd_wb_set_resize_en(struct ufs_hba * hba,enum wb_resize_en en_mode)6192 int ufshcd_wb_set_resize_en(struct ufs_hba *hba, enum wb_resize_en en_mode)
6193 {
6194 int ret;
6195 u8 index;
6196
6197 index = ufshcd_wb_get_query_index(hba);
6198 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
6199 QUERY_ATTR_IDN_WB_BUF_RESIZE_EN, index, 0, &en_mode);
6200 if (ret)
6201 dev_err(hba->dev, "%s: Enable WB buf resize operation failed %d\n",
6202 __func__, ret);
6203
6204 return ret;
6205 }
6206
ufshcd_wb_curr_buff_threshold_check(struct ufs_hba * hba,u32 avail_buf)6207 static bool ufshcd_wb_curr_buff_threshold_check(struct ufs_hba *hba,
6208 u32 avail_buf)
6209 {
6210 u32 cur_buf;
6211 int ret;
6212 u8 index;
6213
6214 index = ufshcd_wb_get_query_index(hba);
6215 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6216 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6217 index, 0, &cur_buf);
6218 if (ret) {
6219 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6220 __func__, ret);
6221 return false;
6222 }
6223
6224 if (!cur_buf) {
6225 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6226 cur_buf);
6227 return false;
6228 }
6229 /* Let it continue to flush when available buffer exceeds threshold */
6230 return avail_buf < hba->vps->wb_flush_threshold;
6231 }
6232
ufshcd_wb_force_disable(struct ufs_hba * hba)6233 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6234 {
6235 if (ufshcd_is_wb_buf_flush_allowed(hba))
6236 ufshcd_wb_toggle_buf_flush(hba, false);
6237
6238 ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6239 ufshcd_wb_toggle(hba, false);
6240 hba->caps &= ~UFSHCD_CAP_WB_EN;
6241
6242 dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6243 }
6244
ufshcd_is_wb_buf_lifetime_available(struct ufs_hba * hba)6245 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6246 {
6247 u32 lifetime;
6248 int ret;
6249 u8 index;
6250
6251 index = ufshcd_wb_get_query_index(hba);
6252 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6253 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6254 index, 0, &lifetime);
6255 if (ret) {
6256 dev_err(hba->dev,
6257 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6258 __func__, ret);
6259 return false;
6260 }
6261
6262 if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6263 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6264 __func__, lifetime);
6265 return false;
6266 }
6267
6268 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6269 __func__, lifetime);
6270
6271 return true;
6272 }
6273
ufshcd_wb_need_flush(struct ufs_hba * hba)6274 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6275 {
6276 int ret;
6277 u32 avail_buf;
6278 u8 index;
6279
6280 if (!ufshcd_is_wb_allowed(hba))
6281 return false;
6282
6283 if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6284 ufshcd_wb_force_disable(hba);
6285 return false;
6286 }
6287
6288 /*
6289 * With user-space reduction enabled, it's enough to enable flush
6290 * by checking only the available buffer. The threshold
6291 * defined here is > 90% full.
6292 * With user-space preserved enabled, the current-buffer
6293 * should be checked too because the wb buffer size can reduce
6294 * when disk tends to be full. This info is provided by current
6295 * buffer (dCurrentWriteBoosterBufferSize).
6296 */
6297 index = ufshcd_wb_get_query_index(hba);
6298 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6299 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6300 index, 0, &avail_buf);
6301 if (ret) {
6302 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6303 __func__, ret);
6304 return false;
6305 }
6306
6307 if (!hba->dev_info.b_presrv_uspc_en)
6308 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6309
6310 return ufshcd_wb_curr_buff_threshold_check(hba, avail_buf);
6311 }
6312
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)6313 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6314 {
6315 struct ufs_hba *hba = container_of(to_delayed_work(work),
6316 struct ufs_hba,
6317 rpm_dev_flush_recheck_work);
6318 /*
6319 * To prevent unnecessary VCC power drain after device finishes
6320 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6321 * after a certain delay to recheck the threshold by next runtime
6322 * suspend.
6323 */
6324 ufshcd_rpm_get_sync(hba);
6325 ufshcd_rpm_put_sync(hba);
6326 }
6327
6328 /**
6329 * ufshcd_exception_event_handler - handle exceptions raised by device
6330 * @work: pointer to work data
6331 *
6332 * Read bExceptionEventStatus attribute from the device and handle the
6333 * exception event accordingly.
6334 */
ufshcd_exception_event_handler(struct work_struct * work)6335 static void ufshcd_exception_event_handler(struct work_struct *work)
6336 {
6337 struct ufs_hba *hba;
6338 int err;
6339 u32 status = 0;
6340 hba = container_of(work, struct ufs_hba, eeh_work);
6341
6342 err = ufshcd_get_ee_status(hba, &status);
6343 if (err) {
6344 dev_err(hba->dev, "%s: failed to get exception status %d\n",
6345 __func__, err);
6346 return;
6347 }
6348
6349 trace_ufshcd_exception_event(hba, status);
6350
6351 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6352 ufshcd_bkops_exception_event_handler(hba);
6353
6354 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6355 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
6356
6357 if (status & hba->ee_drv_mask & MASK_EE_HEALTH_CRITICAL) {
6358 hba->critical_health_count++;
6359 sysfs_notify(&hba->dev->kobj, NULL, "critical_health");
6360 }
6361
6362 if (status & hba->ee_drv_mask & MASK_EE_DEV_LVL_EXCEPTION) {
6363 atomic_inc(&hba->dev_lvl_exception_count);
6364 sysfs_notify(&hba->dev->kobj, NULL, "device_lvl_exception_count");
6365 }
6366
6367 ufs_debugfs_exception_event(hba, status);
6368 }
6369
6370 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba,bool force_compl)6371 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6372 {
6373 if (hba->mcq_enabled)
6374 ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6375 else
6376 ufshcd_transfer_req_compl(hba);
6377
6378 ufshcd_tmc_handler(hba);
6379 }
6380
6381 /**
6382 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6383 * to recover from the DL NAC errors or not.
6384 * @hba: per-adapter instance
6385 *
6386 * Return: true if error handling is required, false otherwise.
6387 */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)6388 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6389 {
6390 unsigned long flags;
6391 bool err_handling = true;
6392
6393 spin_lock_irqsave(hba->host->host_lock, flags);
6394 /*
6395 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6396 * device fatal error and/or DL NAC & REPLAY timeout errors.
6397 */
6398 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6399 goto out;
6400
6401 if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6402 ((hba->saved_err & UIC_ERROR) &&
6403 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6404 goto out;
6405
6406 if ((hba->saved_err & UIC_ERROR) &&
6407 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6408 int err;
6409 /*
6410 * wait for 50ms to see if we can get any other errors or not.
6411 */
6412 spin_unlock_irqrestore(hba->host->host_lock, flags);
6413 msleep(50);
6414 spin_lock_irqsave(hba->host->host_lock, flags);
6415
6416 /*
6417 * now check if we have got any other severe errors other than
6418 * DL NAC error?
6419 */
6420 if ((hba->saved_err & INT_FATAL_ERRORS) ||
6421 ((hba->saved_err & UIC_ERROR) &&
6422 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6423 goto out;
6424
6425 /*
6426 * As DL NAC is the only error received so far, send out NOP
6427 * command to confirm if link is still active or not.
6428 * - If we don't get any response then do error recovery.
6429 * - If we get response then clear the DL NAC error bit.
6430 */
6431
6432 spin_unlock_irqrestore(hba->host->host_lock, flags);
6433 err = ufshcd_verify_dev_init(hba);
6434 spin_lock_irqsave(hba->host->host_lock, flags);
6435
6436 if (err)
6437 goto out;
6438
6439 /* Link seems to be alive hence ignore the DL NAC errors */
6440 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6441 hba->saved_err &= ~UIC_ERROR;
6442 /* clear NAC error */
6443 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6444 if (!hba->saved_uic_err)
6445 err_handling = false;
6446 }
6447 out:
6448 spin_unlock_irqrestore(hba->host->host_lock, flags);
6449 return err_handling;
6450 }
6451
6452 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)6453 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6454 {
6455 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6456 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6457 }
6458
ufshcd_schedule_eh_work(struct ufs_hba * hba)6459 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6460 {
6461 lockdep_assert_held(hba->host->host_lock);
6462
6463 /* handle fatal errors only when link is not in error state */
6464 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6465 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6466 ufshcd_is_saved_err_fatal(hba))
6467 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6468 else
6469 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6470 queue_work(hba->eh_wq, &hba->eh_work);
6471 }
6472 }
6473
ufshcd_force_error_recovery(struct ufs_hba * hba)6474 void ufshcd_force_error_recovery(struct ufs_hba *hba)
6475 {
6476 spin_lock_irq(hba->host->host_lock);
6477 hba->force_reset = true;
6478 ufshcd_schedule_eh_work(hba);
6479 spin_unlock_irq(hba->host->host_lock);
6480 }
6481 EXPORT_SYMBOL_GPL(ufshcd_force_error_recovery);
6482
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)6483 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6484 {
6485 mutex_lock(&hba->wb_mutex);
6486 down_write(&hba->clk_scaling_lock);
6487 hba->clk_scaling.is_allowed = allow;
6488 up_write(&hba->clk_scaling_lock);
6489 mutex_unlock(&hba->wb_mutex);
6490 }
6491
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)6492 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6493 {
6494 if (suspend) {
6495 if (hba->clk_scaling.is_enabled)
6496 ufshcd_suspend_clkscaling(hba);
6497 ufshcd_clk_scaling_allow(hba, false);
6498 } else {
6499 ufshcd_clk_scaling_allow(hba, true);
6500 if (hba->clk_scaling.is_enabled)
6501 ufshcd_resume_clkscaling(hba);
6502 }
6503 }
6504
ufshcd_err_handling_prepare(struct ufs_hba * hba)6505 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6506 {
6507 ufshcd_rpm_get_sync(hba);
6508 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6509 hba->is_sys_suspended) {
6510 enum ufs_pm_op pm_op;
6511
6512 /*
6513 * Don't assume anything of resume, if
6514 * resume fails, irq and clocks can be OFF, and powers
6515 * can be OFF or in LPM.
6516 */
6517 ufshcd_setup_hba_vreg(hba, true);
6518 ufshcd_enable_irq(hba);
6519 ufshcd_setup_vreg(hba, true);
6520 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6521 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6522 ufshcd_hold(hba);
6523 if (!ufshcd_is_clkgating_allowed(hba))
6524 ufshcd_setup_clocks(hba, true);
6525 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6526 ufshcd_vops_resume(hba, pm_op);
6527 } else {
6528 ufshcd_hold(hba);
6529 if (ufshcd_is_clkscaling_supported(hba) &&
6530 hba->clk_scaling.is_enabled)
6531 ufshcd_suspend_clkscaling(hba);
6532 ufshcd_clk_scaling_allow(hba, false);
6533 }
6534 /* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6535 blk_mq_quiesce_tagset(&hba->host->tag_set);
6536 cancel_work_sync(&hba->eeh_work);
6537 }
6538
ufshcd_err_handling_unprepare(struct ufs_hba * hba)6539 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6540 {
6541 blk_mq_unquiesce_tagset(&hba->host->tag_set);
6542 ufshcd_release(hba);
6543 if (ufshcd_is_clkscaling_supported(hba))
6544 ufshcd_clk_scaling_suspend(hba, false);
6545 ufshcd_rpm_put(hba);
6546 }
6547
ufshcd_err_handling_should_stop(struct ufs_hba * hba)6548 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6549 {
6550 return (!hba->is_powered || hba->shutting_down ||
6551 !hba->ufs_device_wlun ||
6552 hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6553 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6554 ufshcd_is_link_broken(hba))));
6555 }
6556
6557 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)6558 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6559 {
6560 struct Scsi_Host *shost = hba->host;
6561 struct scsi_device *sdev;
6562 struct request_queue *q;
6563 int ret;
6564
6565 hba->is_sys_suspended = false;
6566 /*
6567 * Set RPM status of wlun device to RPM_ACTIVE,
6568 * this also clears its runtime error.
6569 */
6570 ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6571
6572 /* hba device might have a runtime error otherwise */
6573 if (ret)
6574 ret = pm_runtime_set_active(hba->dev);
6575 /*
6576 * If wlun device had runtime error, we also need to resume those
6577 * consumer scsi devices in case any of them has failed to be
6578 * resumed due to supplier runtime resume failure. This is to unblock
6579 * blk_queue_enter in case there are bios waiting inside it.
6580 */
6581 if (!ret) {
6582 shost_for_each_device(sdev, shost) {
6583 q = sdev->request_queue;
6584 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6585 q->rpm_status == RPM_SUSPENDING))
6586 pm_request_resume(q->dev);
6587 }
6588 }
6589 }
6590 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)6591 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6592 {
6593 }
6594 #endif
6595
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)6596 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6597 {
6598 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6599 u32 mode;
6600
6601 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6602
6603 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6604 return true;
6605
6606 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6607 return true;
6608
6609 return false;
6610 }
6611
ufshcd_abort_one(struct request * rq,void * priv)6612 static bool ufshcd_abort_one(struct request *rq, void *priv)
6613 {
6614 int *ret = priv;
6615 u32 tag = rq->tag;
6616 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6617 struct scsi_device *sdev = cmd->device;
6618 struct Scsi_Host *shost = sdev->host;
6619 struct ufs_hba *hba = shost_priv(shost);
6620
6621 if (blk_mq_is_reserved_rq(rq))
6622 return true;
6623
6624 *ret = ufshcd_try_to_abort_task(hba, tag);
6625 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6626 ufshcd_is_scsi_cmd(cmd) ? cmd->cmnd[0] : -1,
6627 *ret ? "failed" : "succeeded");
6628
6629 return *ret == 0;
6630 }
6631
6632 /**
6633 * ufshcd_abort_all - Abort all pending commands.
6634 * @hba: Host bus adapter pointer.
6635 *
6636 * Return: true if and only if the host controller needs to be reset.
6637 */
ufshcd_abort_all(struct ufs_hba * hba)6638 static bool ufshcd_abort_all(struct ufs_hba *hba)
6639 {
6640 int tag, ret = 0;
6641
6642 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6643 if (ret)
6644 goto out;
6645
6646 /* Clear pending task management requests */
6647 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6648 ret = ufshcd_clear_tm_cmd(hba, tag);
6649 if (ret)
6650 goto out;
6651 }
6652
6653 out:
6654 /* Complete the requests that are cleared by s/w */
6655 ufshcd_complete_requests(hba, false);
6656
6657 return ret != 0;
6658 }
6659
6660 /**
6661 * ufshcd_err_handler - handle UFS errors that require s/w attention
6662 * @work: pointer to work structure
6663 */
ufshcd_err_handler(struct work_struct * work)6664 static void ufshcd_err_handler(struct work_struct *work)
6665 {
6666 int retries = MAX_ERR_HANDLER_RETRIES;
6667 struct ufs_hba *hba;
6668 unsigned long flags;
6669 bool needs_restore;
6670 bool needs_reset;
6671 int pmc_err;
6672
6673 hba = container_of(work, struct ufs_hba, eh_work);
6674
6675 dev_info(hba->dev,
6676 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = 0x%x; saved_uic_err = 0x%x; force_reset = %d%s\n",
6677 __func__, ufshcd_state_name[hba->ufshcd_state],
6678 hba->is_powered, hba->shutting_down, hba->saved_err,
6679 hba->saved_uic_err, hba->force_reset,
6680 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6681
6682 /*
6683 * Use ufshcd_rpm_get_noresume() here to safely perform link recovery
6684 * even if an error occurs during runtime suspend or runtime resume.
6685 * This avoids potential deadlocks that could happen if we tried to
6686 * resume the device while a PM operation is already in progress.
6687 */
6688 ufshcd_rpm_get_noresume(hba);
6689 if (hba->pm_op_in_progress) {
6690 ufshcd_link_recovery(hba);
6691 ufshcd_rpm_put(hba);
6692 return;
6693 }
6694 ufshcd_rpm_put(hba);
6695
6696 down(&hba->host_sem);
6697 spin_lock_irqsave(hba->host->host_lock, flags);
6698 if (ufshcd_err_handling_should_stop(hba)) {
6699 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6700 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6701 spin_unlock_irqrestore(hba->host->host_lock, flags);
6702 up(&hba->host_sem);
6703 return;
6704 }
6705 spin_unlock_irqrestore(hba->host->host_lock, flags);
6706
6707 ufshcd_err_handling_prepare(hba);
6708
6709 spin_lock_irqsave(hba->host->host_lock, flags);
6710 ufshcd_set_eh_in_progress(hba);
6711 spin_unlock_irqrestore(hba->host->host_lock, flags);
6712
6713 /* Complete requests that have door-bell cleared by h/w */
6714 ufshcd_complete_requests(hba, false);
6715 spin_lock_irqsave(hba->host->host_lock, flags);
6716 again:
6717 needs_restore = false;
6718 needs_reset = false;
6719
6720 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6721 hba->ufshcd_state = UFSHCD_STATE_RESET;
6722 /*
6723 * A full reset and restore might have happened after preparation
6724 * is finished, double check whether we should stop.
6725 */
6726 if (ufshcd_err_handling_should_stop(hba))
6727 goto skip_err_handling;
6728
6729 if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6730 !hba->force_reset) {
6731 bool ret;
6732
6733 spin_unlock_irqrestore(hba->host->host_lock, flags);
6734 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6735 ret = ufshcd_quirk_dl_nac_errors(hba);
6736 spin_lock_irqsave(hba->host->host_lock, flags);
6737 if (!ret && ufshcd_err_handling_should_stop(hba))
6738 goto skip_err_handling;
6739 }
6740
6741 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6742 (hba->saved_uic_err &&
6743 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6744 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6745
6746 spin_unlock_irqrestore(hba->host->host_lock, flags);
6747 ufshcd_print_host_state(hba);
6748 ufshcd_print_pwr_info(hba);
6749 ufshcd_print_evt_hist(hba);
6750 ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6751 ufshcd_print_trs_all(hba, pr_prdt);
6752 spin_lock_irqsave(hba->host->host_lock, flags);
6753 }
6754
6755 /*
6756 * if host reset is required then skip clearing the pending
6757 * transfers forcefully because they will get cleared during
6758 * host reset and restore
6759 */
6760 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6761 ufshcd_is_saved_err_fatal(hba) ||
6762 ((hba->saved_err & UIC_ERROR) &&
6763 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6764 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6765 needs_reset = true;
6766 goto do_reset;
6767 }
6768
6769 /*
6770 * If LINERESET was caught, UFS might have been put to PWM mode,
6771 * check if power mode restore is needed.
6772 */
6773 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6774 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6775 if (!hba->saved_uic_err)
6776 hba->saved_err &= ~UIC_ERROR;
6777 spin_unlock_irqrestore(hba->host->host_lock, flags);
6778 if (ufshcd_is_pwr_mode_restore_needed(hba))
6779 needs_restore = true;
6780 spin_lock_irqsave(hba->host->host_lock, flags);
6781 if (!hba->saved_err && !needs_restore)
6782 goto skip_err_handling;
6783 }
6784
6785 hba->silence_err_logs = true;
6786 /* release lock as clear command might sleep */
6787 spin_unlock_irqrestore(hba->host->host_lock, flags);
6788
6789 needs_reset = ufshcd_abort_all(hba);
6790
6791 spin_lock_irqsave(hba->host->host_lock, flags);
6792 hba->silence_err_logs = false;
6793 if (needs_reset)
6794 goto do_reset;
6795
6796 /*
6797 * After all reqs and tasks are cleared from doorbell,
6798 * now it is safe to retore power mode.
6799 */
6800 if (needs_restore) {
6801 spin_unlock_irqrestore(hba->host->host_lock, flags);
6802 /*
6803 * Hold the scaling lock just in case dev cmds
6804 * are sent via bsg and/or sysfs.
6805 */
6806 down_write(&hba->clk_scaling_lock);
6807 hba->force_pmc = true;
6808 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6809 if (pmc_err) {
6810 needs_reset = true;
6811 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6812 __func__, pmc_err);
6813 }
6814 hba->force_pmc = false;
6815 ufshcd_print_pwr_info(hba);
6816 up_write(&hba->clk_scaling_lock);
6817 spin_lock_irqsave(hba->host->host_lock, flags);
6818 }
6819
6820 do_reset:
6821 /* Fatal errors need reset */
6822 if (needs_reset) {
6823 int err;
6824
6825 hba->force_reset = false;
6826 spin_unlock_irqrestore(hba->host->host_lock, flags);
6827 err = ufshcd_reset_and_restore(hba);
6828 if (err)
6829 dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6830 __func__, err);
6831 else
6832 ufshcd_recover_pm_error(hba);
6833 spin_lock_irqsave(hba->host->host_lock, flags);
6834 }
6835
6836 skip_err_handling:
6837 if (!needs_reset) {
6838 if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6839 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6840 if (hba->saved_err || hba->saved_uic_err)
6841 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6842 __func__, hba->saved_err, hba->saved_uic_err);
6843 }
6844 /* Exit in an operational state or dead */
6845 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6846 hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6847 if (--retries)
6848 goto again;
6849 hba->ufshcd_state = UFSHCD_STATE_ERROR;
6850 }
6851 ufshcd_clear_eh_in_progress(hba);
6852 spin_unlock_irqrestore(hba->host->host_lock, flags);
6853 ufshcd_err_handling_unprepare(hba);
6854 up(&hba->host_sem);
6855
6856 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6857 ufshcd_state_name[hba->ufshcd_state]);
6858 }
6859
6860 /**
6861 * ufshcd_update_uic_error - check and set fatal UIC error flags.
6862 * @hba: per-adapter instance
6863 *
6864 * Return:
6865 * IRQ_HANDLED - If interrupt is valid
6866 * IRQ_NONE - If invalid interrupt
6867 */
ufshcd_update_uic_error(struct ufs_hba * hba)6868 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6869 {
6870 u32 reg;
6871 irqreturn_t retval = IRQ_NONE;
6872
6873 /* PHY layer error */
6874 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6875 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6876 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6877 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6878 /*
6879 * To know whether this error is fatal or not, DB timeout
6880 * must be checked but this error is handled separately.
6881 */
6882 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6883 dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6884 __func__);
6885
6886 /* Got a LINERESET indication. */
6887 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6888 struct uic_command *cmd = NULL;
6889
6890 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6891 if (hba->uic_async_done && hba->active_uic_cmd)
6892 cmd = hba->active_uic_cmd;
6893 /*
6894 * Ignore the LINERESET during power mode change
6895 * operation via DME_SET command.
6896 */
6897 if (cmd && (cmd->command == UIC_CMD_DME_SET))
6898 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6899 }
6900 retval |= IRQ_HANDLED;
6901 }
6902
6903 /* PA_INIT_ERROR is fatal and needs UIC reset */
6904 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6905 if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6906 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6907 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6908
6909 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6910 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6911 else if (hba->dev_quirks &
6912 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6913 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6914 hba->uic_error |=
6915 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6916 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6917 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6918 }
6919 retval |= IRQ_HANDLED;
6920 }
6921
6922 /* UIC NL/TL/DME errors needs software retry */
6923 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6924 if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6925 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6926 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6927 hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6928 retval |= IRQ_HANDLED;
6929 }
6930
6931 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6932 if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6933 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6934 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6935 hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6936 retval |= IRQ_HANDLED;
6937 }
6938
6939 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6940 if ((reg & UIC_DME_ERROR) &&
6941 (reg & UIC_DME_ERROR_CODE_MASK)) {
6942 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6943 hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6944 retval |= IRQ_HANDLED;
6945 }
6946
6947 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6948 __func__, hba->uic_error);
6949 return retval;
6950 }
6951
6952 /**
6953 * ufshcd_check_errors - Check for errors that need s/w attention
6954 * @hba: per-adapter instance
6955 * @intr_status: interrupt status generated by the controller
6956 *
6957 * Return:
6958 * IRQ_HANDLED - If interrupt is valid
6959 * IRQ_NONE - If invalid interrupt
6960 */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)6961 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6962 {
6963 bool queue_eh_work = false;
6964 irqreturn_t retval = IRQ_NONE;
6965
6966 guard(spinlock_irqsave)(hba->host->host_lock);
6967 hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6968
6969 if (hba->errors & INT_FATAL_ERRORS) {
6970 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6971 hba->errors);
6972 queue_eh_work = true;
6973 }
6974
6975 if (hba->errors & UIC_ERROR) {
6976 hba->uic_error = 0;
6977 retval = ufshcd_update_uic_error(hba);
6978 if (hba->uic_error)
6979 queue_eh_work = true;
6980 }
6981
6982 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6983 dev_err(hba->dev,
6984 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6985 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6986 "Enter" : "Exit",
6987 hba->errors, ufshcd_get_upmcrs(hba));
6988 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6989 hba->errors);
6990 ufshcd_set_link_broken(hba);
6991 queue_eh_work = true;
6992 }
6993
6994 if (queue_eh_work) {
6995 /*
6996 * update the transfer error masks to sticky bits, let's do this
6997 * irrespective of current ufshcd_state.
6998 */
6999 hba->saved_err |= hba->errors;
7000 hba->saved_uic_err |= hba->uic_error;
7001
7002 /* dump controller state before resetting */
7003 if ((hba->saved_err &
7004 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
7005 (hba->saved_uic_err &&
7006 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
7007 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
7008 __func__, hba->saved_err,
7009 hba->saved_uic_err);
7010 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
7011 "host_regs: ");
7012 ufshcd_print_pwr_info(hba);
7013 }
7014 ufshcd_schedule_eh_work(hba);
7015 retval |= IRQ_HANDLED;
7016 }
7017 /*
7018 * if (!queue_eh_work) -
7019 * Other errors are either non-fatal where host recovers
7020 * itself without s/w intervention or errors that will be
7021 * handled by the SCSI core layer.
7022 */
7023 hba->errors = 0;
7024 hba->uic_error = 0;
7025
7026 return retval;
7027 }
7028
7029 /**
7030 * ufshcd_tmc_handler - handle task management function completion
7031 * @hba: per adapter instance
7032 *
7033 * Return:
7034 * IRQ_HANDLED - If interrupt is valid
7035 * IRQ_NONE - If invalid interrupt
7036 */
ufshcd_tmc_handler(struct ufs_hba * hba)7037 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
7038 {
7039 unsigned long flags, pending, issued;
7040 irqreturn_t ret = IRQ_NONE;
7041 int tag;
7042
7043 spin_lock_irqsave(hba->host->host_lock, flags);
7044 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
7045 issued = hba->outstanding_tasks & ~pending;
7046 for_each_set_bit(tag, &issued, hba->nutmrs) {
7047 struct request *req = hba->tmf_rqs[tag];
7048 struct completion *c = req->end_io_data;
7049
7050 complete(c);
7051 ret = IRQ_HANDLED;
7052 }
7053 spin_unlock_irqrestore(hba->host->host_lock, flags);
7054
7055 return ret;
7056 }
7057
7058 /**
7059 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
7060 * @hba: per adapter instance
7061 *
7062 * Return: IRQ_HANDLED if interrupt is handled.
7063 */
ufshcd_handle_mcq_cq_events(struct ufs_hba * hba)7064 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
7065 {
7066 struct ufs_hw_queue *hwq;
7067 unsigned long outstanding_cqs;
7068 unsigned int nr_queues;
7069 int i, ret;
7070 u32 events;
7071
7072 ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
7073 if (ret)
7074 outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
7075
7076 /* Exclude the poll queues */
7077 nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
7078 for_each_set_bit(i, &outstanding_cqs, nr_queues) {
7079 hwq = &hba->uhq[i];
7080
7081 events = ufshcd_mcq_read_cqis(hba, i);
7082 if (events)
7083 ufshcd_mcq_write_cqis(hba, events, i);
7084
7085 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
7086 ufshcd_mcq_poll_cqe_lock(hba, hwq);
7087 }
7088
7089 return IRQ_HANDLED;
7090 }
7091
7092 /**
7093 * ufshcd_sl_intr - Interrupt service routine
7094 * @hba: per adapter instance
7095 * @intr_status: contains interrupts generated by the controller
7096 *
7097 * Return:
7098 * IRQ_HANDLED - If interrupt is valid
7099 * IRQ_NONE - If invalid interrupt
7100 */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)7101 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
7102 {
7103 irqreturn_t retval = IRQ_NONE;
7104
7105 if (intr_status & UFSHCD_UIC_MASK)
7106 retval |= ufshcd_uic_cmd_compl(hba, intr_status);
7107
7108 if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
7109 retval |= ufshcd_check_errors(hba, intr_status);
7110
7111 if (intr_status & UTP_TASK_REQ_COMPL)
7112 retval |= ufshcd_tmc_handler(hba);
7113
7114 if (intr_status & UTP_TRANSFER_REQ_COMPL)
7115 retval |= ufshcd_transfer_req_compl(hba);
7116
7117 if (intr_status & MCQ_CQ_EVENT_STATUS)
7118 retval |= ufshcd_handle_mcq_cq_events(hba);
7119
7120 return retval;
7121 }
7122
7123 /**
7124 * ufshcd_threaded_intr - Threaded interrupt service routine
7125 * @irq: irq number
7126 * @__hba: pointer to adapter instance
7127 *
7128 * Return:
7129 * IRQ_HANDLED - If interrupt is valid
7130 * IRQ_NONE - If invalid interrupt
7131 */
ufshcd_threaded_intr(int irq,void * __hba)7132 static irqreturn_t ufshcd_threaded_intr(int irq, void *__hba)
7133 {
7134 u32 last_intr_status, intr_status, enabled_intr_status = 0;
7135 irqreturn_t retval = IRQ_NONE;
7136 struct ufs_hba *hba = __hba;
7137 int retries = hba->nutrs;
7138
7139 last_intr_status = intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7140
7141 /*
7142 * There could be max of hba->nutrs reqs in flight and in worst case
7143 * if the reqs get finished 1 by 1 after the interrupt status is
7144 * read, make sure we handle them by checking the interrupt status
7145 * again in a loop until we process all of the reqs before returning.
7146 */
7147 while (intr_status && retries--) {
7148 enabled_intr_status =
7149 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7150 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7151 if (enabled_intr_status)
7152 retval |= ufshcd_sl_intr(hba, enabled_intr_status);
7153
7154 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7155 }
7156
7157 if (enabled_intr_status && retval == IRQ_NONE &&
7158 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
7159 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
7160 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
7161 __func__,
7162 intr_status,
7163 last_intr_status,
7164 enabled_intr_status);
7165 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
7166 }
7167
7168 return retval;
7169 }
7170
7171 /**
7172 * ufshcd_intr - Main interrupt service routine
7173 * @irq: irq number
7174 * @__hba: pointer to adapter instance
7175 *
7176 * Return:
7177 * IRQ_HANDLED - If interrupt is valid
7178 * IRQ_WAKE_THREAD - If handling is moved to threaded handled
7179 * IRQ_NONE - If invalid interrupt
7180 */
ufshcd_intr(int irq,void * __hba)7181 static irqreturn_t ufshcd_intr(int irq, void *__hba)
7182 {
7183 struct ufs_hba *hba = __hba;
7184 u32 intr_status, enabled_intr_status;
7185
7186 /* Move interrupt handling to thread when MCQ & ESI are not enabled */
7187 if (!hba->mcq_enabled || !hba->mcq_esi_enabled)
7188 return IRQ_WAKE_THREAD;
7189
7190 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7191 enabled_intr_status = intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7192
7193 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7194
7195 /* Directly handle interrupts since MCQ ESI handlers does the hard job */
7196 return ufshcd_sl_intr(hba, enabled_intr_status);
7197 }
7198
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)7199 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
7200 {
7201 int err = 0;
7202 u32 mask = 1 << tag;
7203
7204 if (!test_bit(tag, &hba->outstanding_tasks))
7205 goto out;
7206
7207 ufshcd_utmrl_clear(hba, tag);
7208
7209 /* poll for max. 1 sec to clear door bell register by h/w */
7210 err = ufshcd_wait_for_register(hba,
7211 REG_UTP_TASK_REQ_DOOR_BELL,
7212 mask, 0, 1000, 1000);
7213
7214 dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7215 tag, err < 0 ? "failed" : "succeeded");
7216
7217 out:
7218 return err;
7219 }
7220
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)7221 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7222 struct utp_task_req_desc *treq, u8 tm_function)
7223 {
7224 struct request_queue *q = hba->tmf_queue;
7225 struct Scsi_Host *host = hba->host;
7226 DECLARE_COMPLETION_ONSTACK(wait);
7227 struct request *req;
7228 unsigned long flags;
7229 int task_tag, err;
7230
7231 /*
7232 * blk_mq_alloc_request() is used here only to get a free tag.
7233 */
7234 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7235 if (IS_ERR(req))
7236 return PTR_ERR(req);
7237
7238 req->end_io_data = &wait;
7239 ufshcd_hold(hba);
7240
7241 spin_lock_irqsave(host->host_lock, flags);
7242
7243 task_tag = req->tag;
7244 hba->tmf_rqs[req->tag] = req;
7245 treq->upiu_req.req_header.task_tag = task_tag;
7246
7247 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7248 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7249
7250 __set_bit(task_tag, &hba->outstanding_tasks);
7251
7252 spin_unlock_irqrestore(host->host_lock, flags);
7253
7254 /* send command to the controller */
7255 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7256
7257 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7258
7259 /* wait until the task management command is completed */
7260 err = wait_for_completion_io_timeout(&wait,
7261 msecs_to_jiffies(TM_CMD_TIMEOUT));
7262 if (!err) {
7263 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7264 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7265 __func__, tm_function);
7266 if (ufshcd_clear_tm_cmd(hba, task_tag))
7267 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7268 __func__, task_tag);
7269 err = -ETIMEDOUT;
7270 } else {
7271 err = 0;
7272 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7273
7274 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7275 }
7276
7277 spin_lock_irqsave(hba->host->host_lock, flags);
7278 hba->tmf_rqs[req->tag] = NULL;
7279 __clear_bit(task_tag, &hba->outstanding_tasks);
7280 spin_unlock_irqrestore(hba->host->host_lock, flags);
7281
7282 ufshcd_release(hba);
7283 blk_mq_free_request(req);
7284
7285 return err;
7286 }
7287
7288 /**
7289 * ufshcd_issue_tm_cmd - issues task management commands to controller
7290 * @hba: per adapter instance
7291 * @lun_id: LUN ID to which TM command is sent
7292 * @task_id: task ID to which the TM command is applicable
7293 * @tm_function: task management function opcode
7294 * @tm_response: task management service response return value
7295 *
7296 * Return: non-zero value on error, zero on success.
7297 */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)7298 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7299 u8 tm_function, u8 *tm_response)
7300 {
7301 struct utp_task_req_desc treq = { };
7302 enum utp_ocs ocs_value;
7303 int err;
7304
7305 /* Configure task request descriptor */
7306 treq.header.interrupt = 1;
7307 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7308
7309 /* Configure task request UPIU */
7310 treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7311 treq.upiu_req.req_header.lun = lun_id;
7312 treq.upiu_req.req_header.tm_function = tm_function;
7313
7314 /*
7315 * The host shall provide the same value for LUN field in the basic
7316 * header and for Input Parameter.
7317 */
7318 treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7319 treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7320
7321 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7322 if (err == -ETIMEDOUT)
7323 return err;
7324
7325 ocs_value = treq.header.ocs & MASK_OCS;
7326 if (ocs_value != OCS_SUCCESS)
7327 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7328 __func__, ocs_value);
7329 else if (tm_response)
7330 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7331 MASK_TM_SERVICE_RESP;
7332 return err;
7333 }
7334
7335 /**
7336 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7337 * @hba: per-adapter instance
7338 * @req_upiu: upiu request
7339 * @rsp_upiu: upiu reply
7340 * @desc_buff: pointer to descriptor buffer, NULL if NA
7341 * @buff_len: descriptor size, 0 if NA
7342 * @cmd_type: specifies the type (NOP, Query...)
7343 * @desc_op: descriptor operation
7344 *
7345 * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7346 * Therefore, it "rides" the device management infrastructure: uses its tag and
7347 * tasks work queues.
7348 *
7349 * Since there is only one available tag for device management commands,
7350 * the caller is expected to hold the hba->dev_cmd.lock mutex.
7351 *
7352 * Return: 0 upon success; < 0 upon failure.
7353 */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)7354 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7355 struct utp_upiu_req *req_upiu,
7356 struct utp_upiu_req *rsp_upiu,
7357 u8 *desc_buff, int *buff_len,
7358 enum dev_cmd_type cmd_type,
7359 enum query_opcode desc_op)
7360 {
7361 struct scsi_cmnd *cmd = ufshcd_get_dev_mgmt_cmd(hba);
7362 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
7363 u32 tag;
7364 int err = 0;
7365 u8 upiu_flags;
7366
7367 /* Protects use of hba->dev_cmd. */
7368 lockdep_assert_held(&hba->dev_cmd.lock);
7369
7370 if (WARN_ON_ONCE(!cmd))
7371 return -ENOMEM;
7372
7373 tag = scsi_cmd_to_rq(cmd)->tag;
7374
7375 ufshcd_setup_dev_cmd(hba, cmd, cmd_type, 0, tag);
7376
7377 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7378
7379 /* update the task tag in the request upiu */
7380 req_upiu->header.task_tag = tag;
7381
7382 /* just copy the upiu request as it is */
7383 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7384 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7385 /* The Data Segment Area is optional depending upon the query
7386 * function value. for WRITE DESCRIPTOR, the data segment
7387 * follows right after the tsf.
7388 */
7389 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7390 *buff_len = 0;
7391 }
7392
7393 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7394
7395 err = ufshcd_issue_dev_cmd(hba, cmd, tag, dev_cmd_timeout);
7396 if (err)
7397 goto put_dev_mgmt_cmd;
7398
7399 /* just copy the upiu response as it is */
7400 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7401 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7402 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7403 u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7404 .data_segment_length);
7405
7406 if (*buff_len >= resp_len) {
7407 memcpy(desc_buff, descp, resp_len);
7408 *buff_len = resp_len;
7409 } else {
7410 dev_warn(hba->dev,
7411 "%s: rsp size %d is bigger than buffer size %d",
7412 __func__, resp_len, *buff_len);
7413 *buff_len = 0;
7414 err = -EINVAL;
7415 }
7416 }
7417
7418 put_dev_mgmt_cmd:
7419 ufshcd_put_dev_mgmt_cmd(cmd);
7420
7421 return err;
7422 }
7423
7424 /**
7425 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7426 * @hba: per-adapter instance
7427 * @req_upiu: upiu request
7428 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands
7429 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target
7430 * @desc_buff: pointer to descriptor buffer, NULL if NA
7431 * @buff_len: descriptor size, 0 if NA
7432 * @desc_op: descriptor operation
7433 *
7434 * Supports UTP Transfer requests (nop and query), and UTP Task
7435 * Management requests.
7436 * It is up to the caller to fill the upiu conent properly, as it will
7437 * be copied without any further input validations.
7438 *
7439 * Return: 0 upon success; < 0 upon failure.
7440 */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,enum upiu_request_transaction msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)7441 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7442 struct utp_upiu_req *req_upiu,
7443 struct utp_upiu_req *rsp_upiu,
7444 enum upiu_request_transaction msgcode,
7445 u8 *desc_buff, int *buff_len,
7446 enum query_opcode desc_op)
7447 {
7448 int err;
7449 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7450 struct utp_task_req_desc treq = { };
7451 enum utp_ocs ocs_value;
7452 u8 tm_f = req_upiu->header.tm_function;
7453
7454 switch (msgcode) {
7455 case UPIU_TRANSACTION_NOP_OUT:
7456 cmd_type = DEV_CMD_TYPE_NOP;
7457 fallthrough;
7458 case UPIU_TRANSACTION_QUERY_REQ:
7459 ufshcd_dev_man_lock(hba);
7460 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7461 desc_buff, buff_len,
7462 cmd_type, desc_op);
7463 ufshcd_dev_man_unlock(hba);
7464
7465 break;
7466 case UPIU_TRANSACTION_TASK_REQ:
7467 treq.header.interrupt = 1;
7468 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7469
7470 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7471
7472 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7473 if (err == -ETIMEDOUT)
7474 break;
7475
7476 ocs_value = treq.header.ocs & MASK_OCS;
7477 if (ocs_value != OCS_SUCCESS) {
7478 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7479 ocs_value);
7480 break;
7481 }
7482
7483 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7484
7485 break;
7486 default:
7487 err = -EINVAL;
7488
7489 break;
7490 }
7491
7492 return err;
7493 }
7494
7495 /**
7496 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7497 * @hba: per adapter instance
7498 * @req_upiu: upiu request
7499 * @rsp_upiu: upiu reply
7500 * @req_ehs: EHS field which contains Advanced RPMB Request Message
7501 * @rsp_ehs: EHS field which returns Advanced RPMB Response Message
7502 * @sg_cnt: The number of sg lists actually used
7503 * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7504 * @dir: DMA direction
7505 *
7506 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
7507 * < 0 if another error occurred.
7508 */
ufshcd_advanced_rpmb_req_handler(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,struct ufs_ehs * req_ehs,struct ufs_ehs * rsp_ehs,int sg_cnt,struct scatterlist * sg_list,enum dma_data_direction dir)7509 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7510 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7511 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7512 enum dma_data_direction dir)
7513 {
7514 struct scsi_cmnd *cmd;
7515 struct ufshcd_lrb *lrbp;
7516 u32 tag;
7517 int err = 0;
7518 int result;
7519 u8 upiu_flags;
7520 u8 *ehs_data;
7521 u16 ehs_len;
7522 int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7523
7524 ufshcd_dev_man_lock(hba);
7525
7526 cmd = ufshcd_get_dev_mgmt_cmd(hba);
7527
7528 if (WARN_ON_ONCE(!cmd)) {
7529 err = -ENOMEM;
7530 goto unlock;
7531 }
7532
7533 lrbp = scsi_cmd_priv(cmd);
7534 tag = scsi_cmd_to_rq(cmd)->tag;
7535
7536 ufshcd_setup_dev_cmd(hba, cmd, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN,
7537 tag);
7538
7539 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7540
7541 /* update the task tag */
7542 req_upiu->header.task_tag = tag;
7543
7544 /* copy the UPIU(contains CDB) request as it is */
7545 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7546 /* Copy EHS, starting with byte32, immediately after the CDB package */
7547 memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7548
7549 if (dir != DMA_NONE && sg_list)
7550 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7551
7552 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7553
7554 err = ufshcd_issue_dev_cmd(hba, cmd, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7555 if (err)
7556 goto put_dev_mgmt_cmd;
7557
7558 err = ufshcd_dev_cmd_completion(hba, lrbp);
7559 if (!err) {
7560 /* Just copy the upiu response as it is */
7561 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7562 /* Get the response UPIU result */
7563 result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7564 lrbp->ucd_rsp_ptr->header.status;
7565
7566 ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7567 /*
7568 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7569 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7570 * Message is 02h
7571 */
7572 if (ehs_len == 2 && rsp_ehs) {
7573 /*
7574 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7575 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7576 */
7577 ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7578 memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7579 }
7580 }
7581
7582 put_dev_mgmt_cmd:
7583 ufshcd_put_dev_mgmt_cmd(cmd);
7584
7585 unlock:
7586 ufshcd_dev_man_unlock(hba);
7587
7588 return err ? : result;
7589 }
7590
ufshcd_clear_lu_cmds(struct request * req,void * priv)7591 static bool ufshcd_clear_lu_cmds(struct request *req, void *priv)
7592 {
7593 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
7594 struct scsi_device *sdev = cmd->device;
7595 struct Scsi_Host *shost = sdev->host;
7596 struct ufs_hba *hba = shost_priv(shost);
7597 const u64 lun = *(u64 *)priv;
7598 const u32 tag = req->tag;
7599
7600 if (blk_mq_is_reserved_rq(req) || sdev->lun != lun)
7601 return true;
7602
7603 if (ufshcd_clear_cmd(hba, tag) < 0) {
7604 dev_err(hba->dev, "%s: failed to clear request %d\n", __func__,
7605 tag);
7606 return true;
7607 }
7608
7609 if (hba->mcq_enabled) {
7610 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, req);
7611
7612 if (hwq)
7613 ufshcd_mcq_poll_cqe_lock(hba, hwq);
7614 return true;
7615 }
7616
7617 ufshcd_compl_one_cqe(hba, tag, NULL);
7618 return true;
7619 }
7620
7621 /**
7622 * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7623 * @cmd: SCSI command pointer
7624 *
7625 * Return: SUCCESS or FAILED.
7626 */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)7627 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7628 {
7629 struct Scsi_Host *host;
7630 struct ufs_hba *hba;
7631 int err;
7632 u8 resp = 0xF, lun;
7633
7634 host = cmd->device->host;
7635 hba = shost_priv(host);
7636
7637 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7638 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7639 if (err) {
7640 } else if (resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7641 err = resp;
7642 } else {
7643 /* clear the commands that were pending for corresponding LUN */
7644 blk_mq_tagset_busy_iter(&hba->host->tag_set,
7645 ufshcd_clear_lu_cmds,
7646 &cmd->device->lun);
7647 }
7648
7649 hba->req_abort_count = 0;
7650 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7651 if (!err) {
7652 err = SUCCESS;
7653 } else {
7654 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7655 err = FAILED;
7656 }
7657 return err;
7658 }
7659
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)7660 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7661 {
7662 int tag;
7663
7664 for_each_set_bit(tag, &bitmap, hba->nutrs) {
7665 struct scsi_cmnd *cmd = ufshcd_tag_to_cmd(hba, tag);
7666 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
7667
7668 lrbp->req_abort_skip = true;
7669 }
7670 }
7671
7672 /**
7673 * ufshcd_try_to_abort_task - abort a specific task
7674 * @hba: Pointer to adapter instance
7675 * @tag: Tag of the task to be aborted
7676 *
7677 * Abort the pending command in device by sending UFS_ABORT_TASK task management
7678 * command, and in host controller by clearing the door-bell register. There can
7679 * be race between controller sending the command to the device while abort is
7680 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7681 * really issued and then try to abort it.
7682 *
7683 * Return: zero on success, non-zero on failure.
7684 */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)7685 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7686 {
7687 struct scsi_cmnd *cmd = ufshcd_tag_to_cmd(hba, tag);
7688 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
7689 int err;
7690 int poll_cnt;
7691 u8 resp = 0xF;
7692
7693 for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7694 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, tag, UFS_QUERY_TASK,
7695 &resp);
7696 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7697 /* cmd pending in the device */
7698 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7699 __func__, tag);
7700 break;
7701 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7702 /*
7703 * cmd not pending in the device, check if it is
7704 * in transition.
7705 */
7706 dev_info(
7707 hba->dev,
7708 "%s: cmd with tag %d not pending in the device.\n",
7709 __func__, tag);
7710 if (!ufshcd_cmd_inflight(cmd)) {
7711 dev_info(hba->dev,
7712 "%s: cmd with tag=%d completed.\n",
7713 __func__, tag);
7714 return 0;
7715 }
7716 usleep_range(100, 200);
7717 } else {
7718 dev_err(hba->dev,
7719 "%s: no response from device. tag = %d, err %d\n",
7720 __func__, tag, err);
7721 return err ? : resp;
7722 }
7723 }
7724
7725 if (!poll_cnt)
7726 return -EBUSY;
7727
7728 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, tag, UFS_ABORT_TASK, &resp);
7729 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7730 if (!err) {
7731 err = resp; /* service response error */
7732 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7733 __func__, tag, err);
7734 }
7735 return err;
7736 }
7737
7738 err = ufshcd_clear_cmd(hba, tag);
7739 if (err)
7740 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7741 __func__, tag, err);
7742
7743 return err;
7744 }
7745
7746 /**
7747 * ufshcd_abort - scsi host template eh_abort_handler callback
7748 * @cmd: SCSI command pointer
7749 *
7750 * Return: SUCCESS or FAILED.
7751 */
ufshcd_abort(struct scsi_cmnd * cmd)7752 static int ufshcd_abort(struct scsi_cmnd *cmd)
7753 {
7754 struct Scsi_Host *host = cmd->device->host;
7755 struct ufs_hba *hba = shost_priv(host);
7756 struct request *rq = scsi_cmd_to_rq(cmd);
7757 int tag = rq->tag;
7758 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
7759 unsigned long flags;
7760 int err = FAILED;
7761 bool outstanding;
7762 u32 reg;
7763
7764 ufshcd_hold(hba);
7765
7766 if (!hba->mcq_enabled) {
7767 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7768 if (!test_bit(tag, &hba->outstanding_reqs)) {
7769 /* If command is already aborted/completed, return FAILED. */
7770 dev_err(hba->dev,
7771 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7772 __func__, tag, hba->outstanding_reqs, reg);
7773 goto release;
7774 }
7775 }
7776
7777 /* Print Transfer Request of aborted task */
7778 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7779
7780 /*
7781 * Print detailed info about aborted request.
7782 * As more than one request might get aborted at the same time,
7783 * print full information only for the first aborted request in order
7784 * to reduce repeated printouts. For other aborted requests only print
7785 * basic details.
7786 */
7787 if (ufshcd_is_scsi_cmd(cmd))
7788 scsi_print_command(cmd);
7789 if (!hba->req_abort_count) {
7790 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7791 ufshcd_print_evt_hist(hba);
7792 ufshcd_print_host_state(hba);
7793 ufshcd_print_pwr_info(hba);
7794 ufshcd_print_tr(hba, cmd, true);
7795 } else {
7796 ufshcd_print_tr(hba, cmd, false);
7797 }
7798 hba->req_abort_count++;
7799
7800 if (!hba->mcq_enabled && !(reg & (1 << tag))) {
7801 /* only execute this code in single doorbell mode */
7802 dev_err(hba->dev,
7803 "%s: cmd was completed, but without a notifying intr, tag = %d",
7804 __func__, tag);
7805 __ufshcd_transfer_req_compl(hba, 1UL << tag);
7806 goto release;
7807 }
7808
7809 /*
7810 * Task abort to the device W-LUN is illegal. When this command
7811 * will fail, due to spec violation, scsi err handling next step
7812 * will be to send LU reset which, again, is a spec violation.
7813 * To avoid these unnecessary/illegal steps, first we clean up
7814 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7815 * then queue the eh_work and bail.
7816 */
7817 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7818 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7819
7820 spin_lock_irqsave(host->host_lock, flags);
7821 hba->force_reset = true;
7822 ufshcd_schedule_eh_work(hba);
7823 spin_unlock_irqrestore(host->host_lock, flags);
7824 goto release;
7825 }
7826
7827 if (hba->mcq_enabled) {
7828 /* MCQ mode. Branch off to handle abort for mcq mode */
7829 err = ufshcd_mcq_abort(cmd);
7830 goto release;
7831 }
7832
7833 /* Skip task abort in case previous aborts failed and report failure */
7834 if (lrbp->req_abort_skip) {
7835 dev_err(hba->dev, "%s: skipping abort\n", __func__);
7836 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7837 goto release;
7838 }
7839
7840 if (blk_mq_is_reserved_rq(rq))
7841 err = ufshcd_clear_cmd(hba, tag);
7842 else
7843 err = ufshcd_try_to_abort_task(hba, tag);
7844 if (err) {
7845 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7846 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7847 err = FAILED;
7848 goto release;
7849 }
7850
7851 /*
7852 * Clear the corresponding bit from outstanding_reqs since the command
7853 * has been aborted successfully.
7854 */
7855 spin_lock_irqsave(&hba->outstanding_lock, flags);
7856 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7857 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7858
7859 if (outstanding)
7860 ufshcd_release_scsi_cmd(hba, cmd);
7861
7862 err = SUCCESS;
7863
7864 release:
7865 /* Matches the ufshcd_hold() call at the start of this function. */
7866 ufshcd_release(hba);
7867 return err;
7868 }
7869
7870 /**
7871 * ufshcd_process_probe_result - Process the ufshcd_probe_hba() result.
7872 * @hba: UFS host controller instance.
7873 * @probe_start: time when the ufshcd_probe_hba() call started.
7874 * @ret: ufshcd_probe_hba() return value.
7875 */
ufshcd_process_probe_result(struct ufs_hba * hba,ktime_t probe_start,int ret)7876 static void ufshcd_process_probe_result(struct ufs_hba *hba,
7877 ktime_t probe_start, int ret)
7878 {
7879 unsigned long flags;
7880
7881 spin_lock_irqsave(hba->host->host_lock, flags);
7882 if (ret)
7883 hba->ufshcd_state = UFSHCD_STATE_ERROR;
7884 else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7885 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7886 spin_unlock_irqrestore(hba->host->host_lock, flags);
7887
7888 trace_ufshcd_init(hba, ret,
7889 ktime_to_us(ktime_sub(ktime_get(), probe_start)),
7890 hba->curr_dev_pwr_mode, hba->uic_link_state);
7891 }
7892
7893 /**
7894 * ufshcd_host_reset_and_restore - reset and restore host controller
7895 * @hba: per-adapter instance
7896 *
7897 * Note that host controller reset may issue DME_RESET to
7898 * local and remote (device) Uni-Pro stack and the attributes
7899 * are reset to default state.
7900 *
7901 * Return: zero on success, non-zero on failure.
7902 */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7903 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7904 {
7905 int err;
7906
7907 /*
7908 * Stop the host controller and complete the requests
7909 * cleared by h/w
7910 */
7911 ufshcd_hba_stop(hba);
7912 hba->silence_err_logs = true;
7913 ufshcd_complete_requests(hba, true);
7914 hba->silence_err_logs = false;
7915
7916 /* scale up clocks to max frequency before full reinitialization */
7917 if (ufshcd_is_clkscaling_supported(hba))
7918 ufshcd_scale_clks(hba, ULONG_MAX, true);
7919
7920 err = ufshcd_hba_enable(hba);
7921
7922 /* Establish the link again and restore the device */
7923 if (!err) {
7924 ktime_t probe_start = ktime_get();
7925
7926 err = ufshcd_device_init(hba, /*init_dev_params=*/false);
7927 if (!err)
7928 err = ufshcd_probe_hba(hba, false);
7929 ufshcd_process_probe_result(hba, probe_start, err);
7930 }
7931
7932 if (err)
7933 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7934 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7935 return err;
7936 }
7937
7938 /**
7939 * ufshcd_reset_and_restore - reset and re-initialize host/device
7940 * @hba: per-adapter instance
7941 *
7942 * Reset and recover device, host and re-establish link. This
7943 * is helpful to recover the communication in fatal error conditions.
7944 *
7945 * Return: zero on success, non-zero on failure.
7946 */
ufshcd_reset_and_restore(struct ufs_hba * hba)7947 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7948 {
7949 u32 saved_err = 0;
7950 u32 saved_uic_err = 0;
7951 int err = 0;
7952 unsigned long flags;
7953 int retries = MAX_HOST_RESET_RETRIES;
7954
7955 spin_lock_irqsave(hba->host->host_lock, flags);
7956 do {
7957 /*
7958 * This is a fresh start, cache and clear saved error first,
7959 * in case new error generated during reset and restore.
7960 */
7961 saved_err |= hba->saved_err;
7962 saved_uic_err |= hba->saved_uic_err;
7963 hba->saved_err = 0;
7964 hba->saved_uic_err = 0;
7965 hba->force_reset = false;
7966 hba->ufshcd_state = UFSHCD_STATE_RESET;
7967 spin_unlock_irqrestore(hba->host->host_lock, flags);
7968
7969 /* Reset the attached device */
7970 ufshcd_device_reset(hba);
7971
7972 err = ufshcd_host_reset_and_restore(hba);
7973
7974 spin_lock_irqsave(hba->host->host_lock, flags);
7975 if (err)
7976 continue;
7977 /* Do not exit unless operational or dead */
7978 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7979 hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7980 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7981 err = -EAGAIN;
7982 } while (err && --retries);
7983
7984 /*
7985 * Inform scsi mid-layer that we did reset and allow to handle
7986 * Unit Attention properly.
7987 */
7988 scsi_report_bus_reset(hba->host, 0);
7989 if (err) {
7990 hba->ufshcd_state = UFSHCD_STATE_ERROR;
7991 hba->saved_err |= saved_err;
7992 hba->saved_uic_err |= saved_uic_err;
7993 }
7994 spin_unlock_irqrestore(hba->host->host_lock, flags);
7995
7996 return err;
7997 }
7998
7999 /**
8000 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
8001 * @cmd: SCSI command pointer
8002 *
8003 * Return: SUCCESS or FAILED.
8004 */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)8005 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
8006 {
8007 int err = SUCCESS;
8008 unsigned long flags;
8009 struct ufs_hba *hba;
8010
8011 hba = shost_priv(cmd->device->host);
8012
8013 /*
8014 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
8015 * stuck in this function waiting for flush_work(&hba->eh_work). And
8016 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
8017 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
8018 */
8019 if (hba->pm_op_in_progress) {
8020 if (ufshcd_link_recovery(hba))
8021 err = FAILED;
8022
8023 return err;
8024 }
8025
8026 spin_lock_irqsave(hba->host->host_lock, flags);
8027 hba->force_reset = true;
8028 ufshcd_schedule_eh_work(hba);
8029 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
8030 spin_unlock_irqrestore(hba->host->host_lock, flags);
8031
8032 flush_work(&hba->eh_work);
8033
8034 spin_lock_irqsave(hba->host->host_lock, flags);
8035 if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
8036 err = FAILED;
8037 spin_unlock_irqrestore(hba->host->host_lock, flags);
8038
8039 return err;
8040 }
8041
8042 /**
8043 * ufshcd_get_max_icc_level - calculate the ICC level
8044 * @sup_curr_uA: max. current supported by the regulator
8045 * @start_scan: row at the desc table to start scan from
8046 * @buff: power descriptor buffer
8047 *
8048 * Return: calculated max ICC level for specific regulator.
8049 */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,const char * buff)8050 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
8051 const char *buff)
8052 {
8053 int i;
8054 int curr_uA;
8055 u16 data;
8056 u16 unit;
8057
8058 for (i = start_scan; i >= 0; i--) {
8059 data = get_unaligned_be16(&buff[2 * i]);
8060 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
8061 ATTR_ICC_LVL_UNIT_OFFSET;
8062 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
8063 switch (unit) {
8064 case UFSHCD_NANO_AMP:
8065 curr_uA = curr_uA / 1000;
8066 break;
8067 case UFSHCD_MILI_AMP:
8068 curr_uA = curr_uA * 1000;
8069 break;
8070 case UFSHCD_AMP:
8071 curr_uA = curr_uA * 1000 * 1000;
8072 break;
8073 case UFSHCD_MICRO_AMP:
8074 default:
8075 break;
8076 }
8077 if (sup_curr_uA >= curr_uA)
8078 break;
8079 }
8080 if (i < 0) {
8081 i = 0;
8082 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
8083 }
8084
8085 return (u32)i;
8086 }
8087
8088 /**
8089 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
8090 * In case regulators are not initialized we'll return 0
8091 * @hba: per-adapter instance
8092 * @desc_buf: power descriptor buffer to extract ICC levels from.
8093 *
8094 * Return: calculated ICC level.
8095 */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,const u8 * desc_buf)8096 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
8097 const u8 *desc_buf)
8098 {
8099 u32 icc_level = 0;
8100
8101 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
8102 !hba->vreg_info.vccq2) {
8103 /*
8104 * Using dev_dbg to avoid messages during runtime PM to avoid
8105 * never-ending cycles of messages written back to storage by
8106 * user space causing runtime resume, causing more messages and
8107 * so on.
8108 */
8109 dev_dbg(hba->dev,
8110 "%s: Regulator capability was not set, actvIccLevel=%d",
8111 __func__, icc_level);
8112 goto out;
8113 }
8114
8115 if (hba->vreg_info.vcc->max_uA)
8116 icc_level = ufshcd_get_max_icc_level(
8117 hba->vreg_info.vcc->max_uA,
8118 POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
8119 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
8120
8121 if (hba->vreg_info.vccq->max_uA)
8122 icc_level = ufshcd_get_max_icc_level(
8123 hba->vreg_info.vccq->max_uA,
8124 icc_level,
8125 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
8126
8127 if (hba->vreg_info.vccq2->max_uA)
8128 icc_level = ufshcd_get_max_icc_level(
8129 hba->vreg_info.vccq2->max_uA,
8130 icc_level,
8131 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
8132 out:
8133 return icc_level;
8134 }
8135
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)8136 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
8137 {
8138 int ret;
8139 u8 *desc_buf;
8140 u32 icc_level;
8141
8142 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8143 if (!desc_buf)
8144 return;
8145
8146 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
8147 desc_buf, QUERY_DESC_MAX_SIZE);
8148 if (ret) {
8149 dev_err(hba->dev,
8150 "%s: Failed reading power descriptor ret = %d",
8151 __func__, ret);
8152 goto out;
8153 }
8154
8155 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
8156 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
8157
8158 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8159 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
8160
8161 if (ret)
8162 dev_err(hba->dev,
8163 "%s: Failed configuring bActiveICCLevel = %d ret = %d",
8164 __func__, icc_level, ret);
8165
8166 out:
8167 kfree(desc_buf);
8168 }
8169
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)8170 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
8171 {
8172 struct Scsi_Host *shost = sdev->host;
8173
8174 scsi_autopm_get_device(sdev);
8175 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
8176 if (sdev->rpm_autosuspend)
8177 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
8178 shost->rpm_autosuspend_delay);
8179 scsi_autopm_put_device(sdev);
8180 }
8181
8182 /**
8183 * ufshcd_scsi_add_wlus - Adds required W-LUs
8184 * @hba: per-adapter instance
8185 *
8186 * UFS device specification requires the UFS devices to support 4 well known
8187 * logical units:
8188 * "REPORT_LUNS" (address: 01h)
8189 * "UFS Device" (address: 50h)
8190 * "RPMB" (address: 44h)
8191 * "BOOT" (address: 30h)
8192 * UFS device's power management needs to be controlled by "POWER CONDITION"
8193 * field of SSU (START STOP UNIT) command. But this "power condition" field
8194 * will take effect only when its sent to "UFS device" well known logical unit
8195 * hence we require the scsi_device instance to represent this logical unit in
8196 * order for the UFS host driver to send the SSU command for power management.
8197 *
8198 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
8199 * Block) LU so user space process can control this LU. User space may also
8200 * want to have access to BOOT LU.
8201 *
8202 * This function adds scsi device instances for each of all well known LUs
8203 * (except "REPORT LUNS" LU).
8204 *
8205 * Return: zero on success (all required W-LUs are added successfully),
8206 * non-zero error value on failure (if failed to add any of the required W-LU).
8207 */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)8208 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8209 {
8210 int ret = 0;
8211 struct scsi_device *sdev_boot, *sdev_rpmb;
8212
8213 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8214 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8215 if (IS_ERR(hba->ufs_device_wlun)) {
8216 ret = PTR_ERR(hba->ufs_device_wlun);
8217 hba->ufs_device_wlun = NULL;
8218 goto out;
8219 }
8220 scsi_device_put(hba->ufs_device_wlun);
8221
8222 sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8223 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8224 if (IS_ERR(sdev_rpmb)) {
8225 ret = PTR_ERR(sdev_rpmb);
8226 hba->ufs_rpmb_wlun = NULL;
8227 dev_err(hba->dev, "%s: RPMB WLUN not found\n", __func__);
8228 goto remove_ufs_device_wlun;
8229 }
8230 hba->ufs_rpmb_wlun = sdev_rpmb;
8231 ufshcd_blk_pm_runtime_init(sdev_rpmb);
8232 scsi_device_put(sdev_rpmb);
8233
8234 sdev_boot = __scsi_add_device(hba->host, 0, 0,
8235 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8236 if (IS_ERR(sdev_boot)) {
8237 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8238 } else {
8239 ufshcd_blk_pm_runtime_init(sdev_boot);
8240 scsi_device_put(sdev_boot);
8241 }
8242 goto out;
8243
8244 remove_ufs_device_wlun:
8245 scsi_remove_device(hba->ufs_device_wlun);
8246 out:
8247 return ret;
8248 }
8249
ufshcd_wb_probe(struct ufs_hba * hba,const u8 * desc_buf)8250 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8251 {
8252 struct ufs_dev_info *dev_info = &hba->dev_info;
8253 u8 lun;
8254 u32 d_lu_wb_buf_alloc;
8255 u32 ext_ufs_feature;
8256
8257 if (!ufshcd_is_wb_allowed(hba))
8258 return;
8259
8260 /*
8261 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8262 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8263 * enabled
8264 */
8265 if (!(dev_info->wspecversion >= 0x310 ||
8266 dev_info->wspecversion == 0x220 ||
8267 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8268 goto wb_disabled;
8269
8270 ext_ufs_feature = get_unaligned_be32(desc_buf +
8271 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8272
8273 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8274 goto wb_disabled;
8275
8276 /*
8277 * WB may be supported but not configured while provisioning. The spec
8278 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8279 * buffer configured.
8280 */
8281 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8282
8283 dev_info->ext_wb_sup = get_unaligned_be16(desc_buf +
8284 DEVICE_DESC_PARAM_EXT_WB_SUP);
8285
8286 dev_info->b_presrv_uspc_en =
8287 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8288
8289 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8290 if (!get_unaligned_be32(desc_buf +
8291 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8292 goto wb_disabled;
8293 } else {
8294 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8295 d_lu_wb_buf_alloc = 0;
8296 ufshcd_read_unit_desc_param(hba,
8297 lun,
8298 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8299 (u8 *)&d_lu_wb_buf_alloc,
8300 sizeof(d_lu_wb_buf_alloc));
8301 if (d_lu_wb_buf_alloc) {
8302 dev_info->wb_dedicated_lu = lun;
8303 break;
8304 }
8305 }
8306
8307 if (!d_lu_wb_buf_alloc)
8308 goto wb_disabled;
8309 }
8310
8311 if (!ufshcd_is_wb_buf_lifetime_available(hba))
8312 goto wb_disabled;
8313
8314 return;
8315
8316 wb_disabled:
8317 hba->caps &= ~UFSHCD_CAP_WB_EN;
8318 }
8319
ufshcd_temp_notif_probe(struct ufs_hba * hba,const u8 * desc_buf)8320 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8321 {
8322 struct ufs_dev_info *dev_info = &hba->dev_info;
8323 u32 ext_ufs_feature;
8324 u8 mask = 0;
8325
8326 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8327 return;
8328
8329 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8330
8331 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8332 mask |= MASK_EE_TOO_LOW_TEMP;
8333
8334 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8335 mask |= MASK_EE_TOO_HIGH_TEMP;
8336
8337 if (mask) {
8338 ufshcd_enable_ee(hba, mask);
8339 ufs_hwmon_probe(hba, mask);
8340 }
8341 }
8342
ufshcd_device_lvl_exception_probe(struct ufs_hba * hba,u8 * desc_buf)8343 static void ufshcd_device_lvl_exception_probe(struct ufs_hba *hba, u8 *desc_buf)
8344 {
8345 u32 ext_ufs_feature;
8346
8347 if (hba->dev_info.wspecversion < 0x410)
8348 return;
8349
8350 ext_ufs_feature = get_unaligned_be32(desc_buf +
8351 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8352 if (!(ext_ufs_feature & UFS_DEV_LVL_EXCEPTION_SUP))
8353 return;
8354
8355 atomic_set(&hba->dev_lvl_exception_count, 0);
8356 ufshcd_enable_ee(hba, MASK_EE_DEV_LVL_EXCEPTION);
8357 }
8358
ufshcd_set_rtt(struct ufs_hba * hba)8359 static void ufshcd_set_rtt(struct ufs_hba *hba)
8360 {
8361 struct ufs_dev_info *dev_info = &hba->dev_info;
8362 u32 rtt = 0;
8363 u32 dev_rtt = 0;
8364 int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ?
8365 hba->vops->max_num_rtt : hba->nortt;
8366
8367 /* RTT override makes sense only for UFS-4.0 and above */
8368 if (dev_info->wspecversion < 0x400)
8369 return;
8370
8371 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8372 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) {
8373 dev_err(hba->dev, "failed reading bMaxNumOfRTT\n");
8374 return;
8375 }
8376
8377 /* do not override if it was already written */
8378 if (dev_rtt != DEFAULT_MAX_NUM_RTT)
8379 return;
8380
8381 rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap);
8382
8383 if (rtt == dev_rtt)
8384 return;
8385
8386 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8387 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt))
8388 dev_err(hba->dev, "failed writing bMaxNumOfRTT\n");
8389 }
8390
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,const struct ufs_dev_quirk * fixups)8391 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8392 const struct ufs_dev_quirk *fixups)
8393 {
8394 const struct ufs_dev_quirk *f;
8395 struct ufs_dev_info *dev_info = &hba->dev_info;
8396
8397 if (!fixups)
8398 return;
8399
8400 for (f = fixups; f->quirk; f++) {
8401 if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8402 f->wmanufacturerid == UFS_ANY_VENDOR) &&
8403 ((dev_info->model &&
8404 STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8405 !strcmp(f->model, UFS_ANY_MODEL)))
8406 hba->dev_quirks |= f->quirk;
8407 }
8408 }
8409 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8410
ufs_fixup_device_setup(struct ufs_hba * hba)8411 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8412 {
8413 /* fix by general quirk table */
8414 ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8415
8416 /* allow vendors to fix quirks */
8417 ufshcd_vops_fixup_dev_quirks(hba);
8418 }
8419
ufshcd_update_rtc(struct ufs_hba * hba)8420 static void ufshcd_update_rtc(struct ufs_hba *hba)
8421 {
8422 struct timespec64 ts64;
8423 int err;
8424 u32 val;
8425
8426 ktime_get_real_ts64(&ts64);
8427
8428 if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8429 dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8430 return;
8431 }
8432
8433 /*
8434 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8435 * 2146 is required, it is recommended to choose the relative RTC mode.
8436 */
8437 val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8438
8439 /* Skip update RTC if RPM state is not RPM_ACTIVE */
8440 if (ufshcd_rpm_get_if_active(hba) <= 0)
8441 return;
8442
8443 err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8444 0, 0, &val);
8445 ufshcd_rpm_put(hba);
8446
8447 if (err)
8448 dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8449 else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8450 hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8451 }
8452
ufshcd_rtc_work(struct work_struct * work)8453 static void ufshcd_rtc_work(struct work_struct *work)
8454 {
8455 struct ufs_hba *hba;
8456
8457 hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8458
8459 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8460 if (!ufshcd_is_ufs_dev_busy(hba) &&
8461 hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL &&
8462 !hba->clk_gating.active_reqs)
8463 ufshcd_update_rtc(hba);
8464
8465 if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8466 schedule_delayed_work(&hba->ufs_rtc_update_work,
8467 msecs_to_jiffies(hba->dev_info.rtc_update_period));
8468 }
8469
ufs_init_rtc(struct ufs_hba * hba,u8 * desc_buf)8470 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8471 {
8472 u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8473 struct ufs_dev_info *dev_info = &hba->dev_info;
8474
8475 if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8476 dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8477
8478 /*
8479 * The concept of measuring time in Linux as the number of seconds elapsed since
8480 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8481 * 2010 00:00, here we need to adjust ABS baseline.
8482 */
8483 dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8484 mktime64(1970, 1, 1, 0, 0, 0);
8485 } else {
8486 dev_info->rtc_type = UFS_RTC_RELATIVE;
8487 dev_info->rtc_time_baseline = 0;
8488 }
8489
8490 /*
8491 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8492 * how to calculate the specific update period for each time unit. And we disable periodic
8493 * RTC update work, let user configure by sysfs node according to specific circumstance.
8494 */
8495 dev_info->rtc_update_period = 0;
8496 }
8497
8498 /**
8499 * ufshcd_create_device_id - Generate unique device identifier string
8500 * @hba: per-adapter instance
8501 * @desc_buf: device descriptor buffer
8502 *
8503 * Creates a unique device ID string combining manufacturer ID, spec version,
8504 * model name, serial number (as hex), device version, and manufacture date.
8505 *
8506 * Returns: Allocated device ID string on success, NULL on failure
8507 */
ufshcd_create_device_id(struct ufs_hba * hba,u8 * desc_buf)8508 static char *ufshcd_create_device_id(struct ufs_hba *hba, u8 *desc_buf)
8509 {
8510 struct ufs_dev_info *dev_info = &hba->dev_info;
8511 u16 manufacture_date;
8512 u16 device_version;
8513 u8 *serial_number;
8514 char *serial_hex;
8515 char *device_id;
8516 u8 serial_index;
8517 int serial_len;
8518 int ret;
8519
8520 serial_index = desc_buf[DEVICE_DESC_PARAM_SN];
8521
8522 ret = ufshcd_read_string_desc(hba, serial_index, &serial_number, SD_RAW);
8523 if (ret < 0) {
8524 dev_err(hba->dev, "Failed reading Serial Number. err = %d\n", ret);
8525 return NULL;
8526 }
8527
8528 device_version = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_DEV_VER]);
8529 manufacture_date = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_MANF_DATE]);
8530
8531 serial_len = ret;
8532 /* Allocate buffer for hex string: 2 chars per byte + null terminator */
8533 serial_hex = kzalloc(serial_len * 2 + 1, GFP_KERNEL);
8534 if (!serial_hex) {
8535 kfree(serial_number);
8536 return NULL;
8537 }
8538
8539 bin2hex(serial_hex, serial_number, serial_len);
8540
8541 /*
8542 * Device ID format is ABI with secure world - do not change without firmware
8543 * coordination.
8544 */
8545 device_id = kasprintf(GFP_KERNEL, "%04X-%04X-%s-%s-%04X-%04X",
8546 dev_info->wmanufacturerid, dev_info->wspecversion,
8547 dev_info->model, serial_hex, device_version,
8548 manufacture_date);
8549
8550 kfree(serial_hex);
8551 kfree(serial_number);
8552
8553 if (!device_id)
8554 dev_warn(hba->dev, "Failed to allocate unique device ID\n");
8555
8556 return device_id;
8557 }
8558
ufs_get_device_desc(struct ufs_hba * hba)8559 static int ufs_get_device_desc(struct ufs_hba *hba)
8560 {
8561 struct ufs_dev_info *dev_info = &hba->dev_info;
8562 struct Scsi_Host *shost = hba->host;
8563 int err;
8564 u8 model_index;
8565 u8 *desc_buf;
8566
8567 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8568 if (!desc_buf) {
8569 err = -ENOMEM;
8570 goto out;
8571 }
8572
8573 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8574 QUERY_DESC_MAX_SIZE);
8575 if (err) {
8576 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8577 __func__, err);
8578 goto out;
8579 }
8580
8581 /*
8582 * getting vendor (manufacturerID) and Bank Index in big endian
8583 * format
8584 */
8585 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8586 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8587
8588 /* getting Specification Version in big endian format */
8589 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8590 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8591 dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8592
8593 /*
8594 * According to the UFS standard, the UFS device queue depth
8595 * (bQueueDepth) must be in the range 1..255 if the shared queueing
8596 * architecture is supported. bQueueDepth is zero if the shared queueing
8597 * architecture is not supported.
8598 */
8599 if (dev_info->bqueuedepth)
8600 shost->cmd_per_lun = min(hba->nutrs, dev_info->bqueuedepth) -
8601 UFSHCD_NUM_RESERVED;
8602 else
8603 shost->cmd_per_lun = shost->can_queue;
8604
8605 dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP];
8606
8607 dev_info->hid_sup = get_unaligned_be32(desc_buf +
8608 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP) &
8609 UFS_DEV_HID_SUPPORT;
8610
8611 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8612
8613 err = ufshcd_read_string_desc(hba, model_index,
8614 &dev_info->model, SD_ASCII_STD);
8615 if (err < 0) {
8616 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8617 __func__, err);
8618 goto out;
8619 }
8620
8621 /* Generate unique device ID */
8622 dev_info->device_id = ufshcd_create_device_id(hba, desc_buf);
8623
8624 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8625 desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8626
8627 ufs_fixup_device_setup(hba);
8628
8629 ufshcd_wb_probe(hba, desc_buf);
8630
8631 ufshcd_temp_notif_probe(hba, desc_buf);
8632
8633 if (dev_info->wspecversion >= 0x410) {
8634 hba->critical_health_count = 0;
8635 ufshcd_enable_ee(hba, MASK_EE_HEALTH_CRITICAL);
8636 }
8637
8638 ufs_init_rtc(hba, desc_buf);
8639
8640 ufshcd_device_lvl_exception_probe(hba, desc_buf);
8641
8642 /*
8643 * ufshcd_read_string_desc returns size of the string
8644 * reset the error value
8645 */
8646 err = 0;
8647
8648 out:
8649 kfree(desc_buf);
8650 return err;
8651 }
8652
ufs_put_device_desc(struct ufs_hba * hba)8653 static void ufs_put_device_desc(struct ufs_hba *hba)
8654 {
8655 struct ufs_dev_info *dev_info = &hba->dev_info;
8656
8657 kfree(dev_info->model);
8658 dev_info->model = NULL;
8659 kfree(dev_info->device_id);
8660 dev_info->device_id = NULL;
8661 }
8662
8663 /**
8664 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8665 * less than device PA_TACTIVATE time.
8666 * @hba: per-adapter instance
8667 *
8668 * Some UFS devices require host PA_TACTIVATE to be lower than device
8669 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8670 * for such devices.
8671 *
8672 * Return: zero on success, non-zero error value on failure.
8673 */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)8674 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8675 {
8676 int ret = 0;
8677 u32 granularity, peer_granularity;
8678 u32 pa_tactivate, peer_pa_tactivate;
8679 u32 pa_tactivate_us, peer_pa_tactivate_us;
8680 static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8681
8682 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8683 &granularity);
8684 if (ret)
8685 goto out;
8686
8687 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8688 &peer_granularity);
8689 if (ret)
8690 goto out;
8691
8692 if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8693 (granularity > PA_GRANULARITY_MAX_VAL)) {
8694 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8695 __func__, granularity);
8696 return -EINVAL;
8697 }
8698
8699 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8700 (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8701 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8702 __func__, peer_granularity);
8703 return -EINVAL;
8704 }
8705
8706 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8707 if (ret)
8708 goto out;
8709
8710 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8711 &peer_pa_tactivate);
8712 if (ret)
8713 goto out;
8714
8715 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8716 peer_pa_tactivate_us = peer_pa_tactivate *
8717 gran_to_us_table[peer_granularity - 1];
8718
8719 if (pa_tactivate_us >= peer_pa_tactivate_us) {
8720 u32 new_peer_pa_tactivate;
8721
8722 new_peer_pa_tactivate = pa_tactivate_us /
8723 gran_to_us_table[peer_granularity - 1];
8724 new_peer_pa_tactivate++;
8725 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8726 new_peer_pa_tactivate);
8727 }
8728
8729 out:
8730 return ret;
8731 }
8732
8733 /**
8734 * ufshcd_quirk_override_pa_h8time - Ensures proper adjustment of PA_HIBERN8TIME.
8735 * @hba: per-adapter instance
8736 *
8737 * Some UFS devices require specific adjustments to the PA_HIBERN8TIME parameter
8738 * to ensure proper hibernation timing. This function retrieves the current
8739 * PA_HIBERN8TIME value and increments it by 100us.
8740 */
ufshcd_quirk_override_pa_h8time(struct ufs_hba * hba)8741 static void ufshcd_quirk_override_pa_h8time(struct ufs_hba *hba)
8742 {
8743 u32 pa_h8time;
8744 int ret;
8745
8746 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_HIBERN8TIME), &pa_h8time);
8747 if (ret) {
8748 dev_err(hba->dev, "Failed to get PA_HIBERN8TIME: %d\n", ret);
8749 return;
8750 }
8751
8752 /* Increment by 1 to increase hibernation time by 100 µs */
8753 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), pa_h8time + 1);
8754 if (ret)
8755 dev_err(hba->dev, "Failed updating PA_HIBERN8TIME: %d\n", ret);
8756 }
8757
ufshcd_tune_unipro_params(struct ufs_hba * hba)8758 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8759 {
8760 ufshcd_vops_apply_dev_quirks(hba);
8761
8762 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8763 /* set 1ms timeout for PA_TACTIVATE */
8764 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8765
8766 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8767 ufshcd_quirk_tune_host_pa_tactivate(hba);
8768
8769 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_HIBER8TIME)
8770 ufshcd_quirk_override_pa_h8time(hba);
8771 }
8772
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)8773 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8774 {
8775 hba->ufs_stats.hibern8_exit_cnt = 0;
8776 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8777 hba->req_abort_count = 0;
8778 }
8779
ufshcd_device_geo_params_init(struct ufs_hba * hba)8780 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8781 {
8782 int err;
8783 u8 *desc_buf;
8784
8785 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8786 if (!desc_buf) {
8787 err = -ENOMEM;
8788 goto out;
8789 }
8790
8791 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8792 desc_buf, QUERY_DESC_MAX_SIZE);
8793 if (err) {
8794 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8795 __func__, err);
8796 goto out;
8797 }
8798
8799 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8800 hba->dev_info.max_lu_supported = 32;
8801 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8802 hba->dev_info.max_lu_supported = 8;
8803
8804 hba->dev_info.rpmb_io_size = desc_buf[GEOMETRY_DESC_PARAM_RPMB_RW_SIZE];
8805
8806 out:
8807 kfree(desc_buf);
8808 return err;
8809 }
8810
8811 struct ufs_ref_clk {
8812 unsigned long freq_hz;
8813 enum ufs_ref_clk_freq val;
8814 };
8815
8816 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8817 {19200000, REF_CLK_FREQ_19_2_MHZ},
8818 {26000000, REF_CLK_FREQ_26_MHZ},
8819 {38400000, REF_CLK_FREQ_38_4_MHZ},
8820 {52000000, REF_CLK_FREQ_52_MHZ},
8821 {0, REF_CLK_FREQ_INVAL},
8822 };
8823
8824 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)8825 ufs_get_bref_clk_from_hz(unsigned long freq)
8826 {
8827 int i;
8828
8829 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8830 if (ufs_ref_clk_freqs[i].freq_hz == freq)
8831 return ufs_ref_clk_freqs[i].val;
8832
8833 return REF_CLK_FREQ_INVAL;
8834 }
8835
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)8836 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8837 {
8838 unsigned long freq;
8839
8840 freq = clk_get_rate(refclk);
8841
8842 hba->dev_ref_clk_freq =
8843 ufs_get_bref_clk_from_hz(freq);
8844
8845 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8846 dev_err(hba->dev,
8847 "invalid ref_clk setting = %ld\n", freq);
8848 }
8849
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)8850 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8851 {
8852 int err;
8853 u32 ref_clk;
8854 u32 freq = hba->dev_ref_clk_freq;
8855
8856 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8857 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8858
8859 if (err) {
8860 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8861 err);
8862 goto out;
8863 }
8864
8865 if (ref_clk == freq)
8866 goto out; /* nothing to update */
8867
8868 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8869 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8870
8871 if (err) {
8872 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8873 ufs_ref_clk_freqs[freq].freq_hz);
8874 goto out;
8875 }
8876
8877 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8878 ufs_ref_clk_freqs[freq].freq_hz);
8879
8880 out:
8881 return err;
8882 }
8883
ufshcd_device_params_init(struct ufs_hba * hba)8884 static int ufshcd_device_params_init(struct ufs_hba *hba)
8885 {
8886 bool flag;
8887 int ret;
8888
8889 /* Init UFS geometry descriptor related parameters */
8890 ret = ufshcd_device_geo_params_init(hba);
8891 if (ret)
8892 goto out;
8893
8894 /* Check and apply UFS device quirks */
8895 ret = ufs_get_device_desc(hba);
8896 if (ret) {
8897 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8898 __func__, ret);
8899 goto out;
8900 }
8901
8902 ufshcd_set_rtt(hba);
8903
8904 ufshcd_get_ref_clk_gating_wait(hba);
8905
8906 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8907 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8908 hba->dev_info.f_power_on_wp_en = flag;
8909
8910 /* Probe maximum power mode co-supported by both UFS host and device */
8911 if (ufshcd_get_max_pwr_mode(hba))
8912 dev_err(hba->dev,
8913 "%s: Failed getting max supported power mode\n",
8914 __func__);
8915 out:
8916 return ret;
8917 }
8918
ufshcd_set_timestamp_attr(struct ufs_hba * hba)8919 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8920 {
8921 int err;
8922 struct ufs_query_req *request = NULL;
8923 struct ufs_query_res *response = NULL;
8924 struct ufs_dev_info *dev_info = &hba->dev_info;
8925 struct utp_upiu_query_v4_0 *upiu_data;
8926
8927 if (dev_info->wspecversion < 0x400 ||
8928 hba->dev_quirks & UFS_DEVICE_QUIRK_NO_TIMESTAMP_SUPPORT)
8929 return;
8930
8931 ufshcd_dev_man_lock(hba);
8932
8933 ufshcd_init_query(hba, &request, &response,
8934 UPIU_QUERY_OPCODE_WRITE_ATTR,
8935 QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8936
8937 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8938
8939 upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8940
8941 put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8942
8943 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
8944
8945 if (err)
8946 dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8947 __func__, err);
8948
8949 ufshcd_dev_man_unlock(hba);
8950 }
8951
8952 /**
8953 * ufshcd_add_lus - probe and add UFS logical units
8954 * @hba: per-adapter instance
8955 *
8956 * Return: 0 upon success; < 0 upon failure.
8957 */
ufshcd_add_lus(struct ufs_hba * hba)8958 static int ufshcd_add_lus(struct ufs_hba *hba)
8959 {
8960 int ret;
8961
8962 /* Add required well known logical units to scsi mid layer */
8963 ret = ufshcd_scsi_add_wlus(hba);
8964 if (ret)
8965 goto out;
8966
8967 /* Initialize devfreq after UFS device is detected */
8968 if (ufshcd_is_clkscaling_supported(hba)) {
8969 memcpy(&hba->clk_scaling.saved_pwr_info,
8970 &hba->pwr_info,
8971 sizeof(struct ufs_pa_layer_attr));
8972 hba->clk_scaling.is_allowed = true;
8973
8974 ret = ufshcd_devfreq_init(hba);
8975 if (ret)
8976 goto out;
8977
8978 hba->clk_scaling.is_enabled = true;
8979 ufshcd_init_clk_scaling_sysfs(hba);
8980 }
8981
8982 /*
8983 * The RTC update code accesses the hba->ufs_device_wlun->sdev_gendev
8984 * pointer and hence must only be started after the WLUN pointer has
8985 * been initialized by ufshcd_scsi_add_wlus().
8986 */
8987 schedule_delayed_work(&hba->ufs_rtc_update_work,
8988 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8989
8990 ufs_bsg_probe(hba);
8991 scsi_scan_host(hba->host);
8992 ufs_rpmb_probe(hba);
8993
8994 out:
8995 return ret;
8996 }
8997
8998 /* SDB - Single Doorbell */
ufshcd_release_sdb_queue(struct ufs_hba * hba,int nutrs)8999 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
9000 {
9001 size_t ucdl_size, utrdl_size;
9002
9003 ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
9004 dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
9005 hba->ucdl_dma_addr);
9006
9007 utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
9008 dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
9009 hba->utrdl_dma_addr);
9010 }
9011
ufshcd_alloc_mcq(struct ufs_hba * hba)9012 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
9013 {
9014 int ret;
9015 int old_nutrs = hba->nutrs;
9016
9017 ret = ufshcd_get_hba_mac(hba);
9018 if (ret < 0)
9019 return ret;
9020
9021 hba->nutrs = ret;
9022 ret = ufshcd_mcq_init(hba);
9023 if (ret)
9024 goto err;
9025
9026 /*
9027 * Previously allocated memory for nutrs may not be enough in MCQ mode.
9028 * Number of supported tags in MCQ mode may be larger than SDB mode.
9029 */
9030 if (hba->nutrs != old_nutrs) {
9031 ufshcd_release_sdb_queue(hba, old_nutrs);
9032 ret = ufshcd_memory_alloc(hba);
9033 if (ret)
9034 goto err;
9035 ufshcd_host_memory_configure(hba);
9036 }
9037
9038 ret = ufshcd_mcq_memory_alloc(hba);
9039 if (ret)
9040 goto err;
9041
9042 hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
9043
9044 return 0;
9045 err:
9046 hba->nutrs = old_nutrs;
9047 return ret;
9048 }
9049
ufshcd_config_mcq(struct ufs_hba * hba)9050 static void ufshcd_config_mcq(struct ufs_hba *hba)
9051 {
9052 int ret;
9053
9054 ret = ufshcd_mcq_vops_config_esi(hba);
9055 hba->mcq_esi_enabled = !ret;
9056 dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
9057
9058 ufshcd_mcq_make_queues_operational(hba);
9059 ufshcd_mcq_config_mac(hba, hba->nutrs);
9060
9061 dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
9062 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
9063 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
9064 hba->nutrs);
9065 }
9066
ufshcd_post_device_init(struct ufs_hba * hba)9067 static int ufshcd_post_device_init(struct ufs_hba *hba)
9068 {
9069 int ret;
9070
9071 ufshcd_tune_unipro_params(hba);
9072
9073 /* UFS device is also active now */
9074 ufshcd_set_ufs_dev_active(hba);
9075 ufshcd_force_reset_auto_bkops(hba);
9076
9077 ufshcd_set_timestamp_attr(hba);
9078
9079 if (!hba->max_pwr_info.is_valid)
9080 return 0;
9081
9082 /*
9083 * Set the right value to bRefClkFreq before attempting to
9084 * switch to HS gears.
9085 */
9086 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
9087 ufshcd_set_dev_ref_clk(hba);
9088 /* Gear up to HS gear. */
9089 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
9090 if (ret) {
9091 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
9092 __func__, ret);
9093 return ret;
9094 }
9095
9096 return 0;
9097 }
9098
ufshcd_device_init(struct ufs_hba * hba,bool init_dev_params)9099 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
9100 {
9101 int ret;
9102
9103 WARN_ON_ONCE(!hba->scsi_host_added);
9104
9105 hba->ufshcd_state = UFSHCD_STATE_RESET;
9106
9107 ret = ufshcd_link_startup(hba);
9108 if (ret)
9109 return ret;
9110
9111 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
9112 return ret;
9113
9114 /* Debug counters initialization */
9115 ufshcd_clear_dbg_ufs_stats(hba);
9116
9117 /* UniPro link is active now */
9118 ufshcd_set_link_active(hba);
9119
9120 /* Reconfigure MCQ upon reset */
9121 if (hba->mcq_enabled && !init_dev_params) {
9122 ufshcd_config_mcq(hba);
9123 ufshcd_mcq_enable(hba);
9124 }
9125
9126 /* Verify device initialization by sending NOP OUT UPIU */
9127 ret = ufshcd_verify_dev_init(hba);
9128 if (ret)
9129 return ret;
9130
9131 /* Initiate UFS initialization, and waiting until completion */
9132 ret = ufshcd_complete_dev_init(hba);
9133 if (ret)
9134 return ret;
9135
9136 /*
9137 * Initialize UFS device parameters used by driver, these
9138 * parameters are associated with UFS descriptors.
9139 */
9140 if (init_dev_params) {
9141 ret = ufshcd_device_params_init(hba);
9142 if (ret)
9143 return ret;
9144 if (is_mcq_supported(hba) &&
9145 hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
9146 ufshcd_config_mcq(hba);
9147 ufshcd_mcq_enable(hba);
9148 }
9149 }
9150
9151 return ufshcd_post_device_init(hba);
9152 }
9153
9154 /**
9155 * ufshcd_probe_hba - probe hba to detect device and initialize it
9156 * @hba: per-adapter instance
9157 * @init_dev_params: whether or not to call ufshcd_device_params_init().
9158 *
9159 * Execute link-startup and verify device initialization
9160 *
9161 * Return: 0 upon success; < 0 upon failure.
9162 */
ufshcd_probe_hba(struct ufs_hba * hba,bool init_dev_params)9163 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
9164 {
9165 int ret;
9166
9167 if (!hba->pm_op_in_progress &&
9168 (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
9169 /* Reset the device and controller before doing reinit */
9170 ufshcd_device_reset(hba);
9171 ufs_put_device_desc(hba);
9172 ufshcd_hba_stop(hba);
9173 ret = ufshcd_hba_enable(hba);
9174 if (ret) {
9175 dev_err(hba->dev, "Host controller enable failed\n");
9176 ufshcd_print_evt_hist(hba);
9177 ufshcd_print_host_state(hba);
9178 return ret;
9179 }
9180
9181 /* Reinit the device */
9182 ret = ufshcd_device_init(hba, init_dev_params);
9183 if (ret)
9184 return ret;
9185 }
9186
9187 ufshcd_print_pwr_info(hba);
9188
9189 /*
9190 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
9191 * and for removable UFS card as well, hence always set the parameter.
9192 * Note: Error handler may issue the device reset hence resetting
9193 * bActiveICCLevel as well so it is always safe to set this here.
9194 */
9195 ufshcd_set_active_icc_lvl(hba);
9196
9197 /* Enable UFS Write Booster if supported */
9198 ufshcd_configure_wb(hba);
9199
9200 if (hba->ee_usr_mask)
9201 ufshcd_write_ee_control(hba);
9202 ufshcd_configure_auto_hibern8(hba);
9203
9204 return 0;
9205 }
9206
9207 /**
9208 * ufshcd_async_scan - asynchronous execution for probing hba
9209 * @data: data pointer to pass to this function
9210 * @cookie: cookie data
9211 */
ufshcd_async_scan(void * data,async_cookie_t cookie)9212 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
9213 {
9214 struct ufs_hba *hba = (struct ufs_hba *)data;
9215 ktime_t probe_start;
9216 int ret;
9217
9218 down(&hba->host_sem);
9219 /* Initialize hba, detect and initialize UFS device */
9220 probe_start = ktime_get();
9221 ret = ufshcd_probe_hba(hba, true);
9222 ufshcd_process_probe_result(hba, probe_start, ret);
9223 up(&hba->host_sem);
9224 if (ret)
9225 goto out;
9226
9227 /* Probe and add UFS logical units */
9228 ret = ufshcd_add_lus(hba);
9229
9230 out:
9231 pm_runtime_put_sync(hba->dev);
9232
9233 if (ret)
9234 dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
9235 }
9236
ufshcd_eh_timed_out(struct scsi_cmnd * scmd)9237 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
9238 {
9239 struct ufs_hba *hba = shost_priv(scmd->device->host);
9240
9241 if (!hba->system_suspending) {
9242 /* Activate the error handler in the SCSI core. */
9243 return SCSI_EH_NOT_HANDLED;
9244 }
9245
9246 /*
9247 * If we get here we know that no TMFs are outstanding and also that
9248 * the only pending command is a START STOP UNIT command. Handle the
9249 * timeout of that command directly to prevent a deadlock between
9250 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
9251 */
9252 ufshcd_link_recovery(hba);
9253 dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
9254 __func__, hba->outstanding_tasks);
9255
9256 return scsi_host_busy(hba->host) ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
9257 }
9258
9259 static const struct attribute_group *ufshcd_driver_groups[] = {
9260 &ufs_sysfs_unit_descriptor_group,
9261 &ufs_sysfs_lun_attributes_group,
9262 NULL,
9263 };
9264
9265 static struct ufs_hba_variant_params ufs_hba_vps = {
9266 .hba_enable_delay_us = 1000,
9267 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40),
9268 .devfreq_profile.polling_ms = 100,
9269 .devfreq_profile.target = ufshcd_devfreq_target,
9270 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status,
9271 .ondemand_data.upthreshold = 70,
9272 .ondemand_data.downdifferential = 5,
9273 };
9274
9275 static const struct scsi_host_template ufshcd_driver_template = {
9276 .module = THIS_MODULE,
9277 .name = UFSHCD,
9278 .proc_name = UFSHCD,
9279 .map_queues = ufshcd_map_queues,
9280 .cmd_size = sizeof(struct ufshcd_lrb),
9281 .init_cmd_priv = ufshcd_init_cmd_priv,
9282 .queuecommand = ufshcd_queuecommand,
9283 .queue_reserved_command = ufshcd_queue_reserved_command,
9284 .nr_reserved_cmds = UFSHCD_NUM_RESERVED,
9285 .mq_poll = ufshcd_poll,
9286 .sdev_init = ufshcd_sdev_init,
9287 .sdev_configure = ufshcd_sdev_configure,
9288 .sdev_destroy = ufshcd_sdev_destroy,
9289 .change_queue_depth = ufshcd_change_queue_depth,
9290 .eh_abort_handler = ufshcd_abort,
9291 .eh_device_reset_handler = ufshcd_eh_device_reset_handler,
9292 .eh_host_reset_handler = ufshcd_eh_host_reset_handler,
9293 .eh_timed_out = ufshcd_eh_timed_out,
9294 .this_id = -1,
9295 .sg_tablesize = SG_ALL,
9296 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX,
9297 .max_sectors = SZ_1M / SECTOR_SIZE,
9298 .max_host_blocked = 1,
9299 .track_queue_depth = 1,
9300 .skip_settle_delay = 1,
9301 .sdev_groups = ufshcd_driver_groups,
9302 };
9303
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)9304 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
9305 int ua)
9306 {
9307 int ret;
9308
9309 if (!vreg)
9310 return 0;
9311
9312 /*
9313 * "set_load" operation shall be required on those regulators
9314 * which specifically configured current limitation. Otherwise
9315 * zero max_uA may cause unexpected behavior when regulator is
9316 * enabled or set as high power mode.
9317 */
9318 if (!vreg->max_uA)
9319 return 0;
9320
9321 ret = regulator_set_load(vreg->reg, ua);
9322 if (ret < 0) {
9323 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9324 __func__, vreg->name, ua, ret);
9325 }
9326
9327 return ret;
9328 }
9329
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9330 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9331 struct ufs_vreg *vreg)
9332 {
9333 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9334 }
9335
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9336 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9337 struct ufs_vreg *vreg)
9338 {
9339 if (!vreg)
9340 return 0;
9341
9342 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9343 }
9344
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)9345 static int ufshcd_config_vreg(struct device *dev,
9346 struct ufs_vreg *vreg, bool on)
9347 {
9348 if (regulator_count_voltages(vreg->reg) <= 0)
9349 return 0;
9350
9351 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9352 }
9353
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)9354 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9355 {
9356 int ret = 0;
9357
9358 if (!vreg || vreg->enabled)
9359 goto out;
9360
9361 ret = ufshcd_config_vreg(dev, vreg, true);
9362 if (!ret)
9363 ret = regulator_enable(vreg->reg);
9364
9365 if (!ret)
9366 vreg->enabled = true;
9367 else
9368 dev_err(dev, "%s: %s enable failed, err=%d\n",
9369 __func__, vreg->name, ret);
9370 out:
9371 return ret;
9372 }
9373
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)9374 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9375 {
9376 int ret = 0;
9377
9378 if (!vreg || !vreg->enabled || vreg->always_on)
9379 goto out;
9380
9381 ret = regulator_disable(vreg->reg);
9382
9383 if (!ret) {
9384 /* ignore errors on applying disable config */
9385 ufshcd_config_vreg(dev, vreg, false);
9386 vreg->enabled = false;
9387 } else {
9388 dev_err(dev, "%s: %s disable failed, err=%d\n",
9389 __func__, vreg->name, ret);
9390 }
9391 out:
9392 return ret;
9393 }
9394
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)9395 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9396 {
9397 int ret = 0;
9398 struct device *dev = hba->dev;
9399 struct ufs_vreg_info *info = &hba->vreg_info;
9400
9401 ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9402 if (ret)
9403 goto out;
9404
9405 ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9406 if (ret)
9407 goto out;
9408
9409 ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9410
9411 out:
9412 if (ret) {
9413 ufshcd_toggle_vreg(dev, info->vccq2, false);
9414 ufshcd_toggle_vreg(dev, info->vccq, false);
9415 ufshcd_toggle_vreg(dev, info->vcc, false);
9416 }
9417 return ret;
9418 }
9419
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)9420 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9421 {
9422 struct ufs_vreg_info *info = &hba->vreg_info;
9423
9424 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9425 }
9426
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)9427 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9428 {
9429 int ret = 0;
9430
9431 if (!vreg)
9432 goto out;
9433
9434 vreg->reg = devm_regulator_get(dev, vreg->name);
9435 if (IS_ERR(vreg->reg)) {
9436 ret = PTR_ERR(vreg->reg);
9437 dev_err(dev, "%s: %s get failed, err=%d\n",
9438 __func__, vreg->name, ret);
9439 }
9440 out:
9441 return ret;
9442 }
9443 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9444
ufshcd_init_vreg(struct ufs_hba * hba)9445 static int ufshcd_init_vreg(struct ufs_hba *hba)
9446 {
9447 int ret = 0;
9448 struct device *dev = hba->dev;
9449 struct ufs_vreg_info *info = &hba->vreg_info;
9450
9451 ret = ufshcd_get_vreg(dev, info->vcc);
9452 if (ret)
9453 goto out;
9454
9455 ret = ufshcd_get_vreg(dev, info->vccq);
9456 if (!ret)
9457 ret = ufshcd_get_vreg(dev, info->vccq2);
9458 out:
9459 return ret;
9460 }
9461
ufshcd_init_hba_vreg(struct ufs_hba * hba)9462 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9463 {
9464 struct ufs_vreg_info *info = &hba->vreg_info;
9465
9466 return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9467 }
9468
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)9469 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9470 {
9471 int ret = 0;
9472 struct ufs_clk_info *clki;
9473 struct list_head *head = &hba->clk_list_head;
9474 ktime_t start = ktime_get();
9475 bool clk_state_changed = false;
9476
9477 if (list_empty(head))
9478 goto out;
9479
9480 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9481 if (ret)
9482 return ret;
9483
9484 list_for_each_entry(clki, head, list) {
9485 if (!IS_ERR_OR_NULL(clki->clk)) {
9486 /*
9487 * Don't disable clocks which are needed
9488 * to keep the link active.
9489 */
9490 if (ufshcd_is_link_active(hba) &&
9491 clki->keep_link_active)
9492 continue;
9493
9494 clk_state_changed = on ^ clki->enabled;
9495 if (on && !clki->enabled) {
9496 ret = clk_prepare_enable(clki->clk);
9497 if (ret) {
9498 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9499 __func__, clki->name, ret);
9500 goto out;
9501 }
9502 } else if (!on && clki->enabled) {
9503 clk_disable_unprepare(clki->clk);
9504 }
9505 clki->enabled = on;
9506 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9507 clki->name, on ? "en" : "dis");
9508 }
9509 }
9510
9511 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9512 if (ret)
9513 return ret;
9514
9515 if (!ufshcd_is_clkscaling_supported(hba))
9516 ufshcd_pm_qos_update(hba, on);
9517 out:
9518 if (ret) {
9519 list_for_each_entry(clki, head, list) {
9520 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9521 clk_disable_unprepare(clki->clk);
9522 }
9523 } else if (!ret && on && hba->clk_gating.is_initialized) {
9524 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock)
9525 hba->clk_gating.state = CLKS_ON;
9526 trace_ufshcd_clk_gating(hba,
9527 hba->clk_gating.state);
9528 }
9529
9530 if (clk_state_changed)
9531 trace_ufshcd_profile_clk_gating(hba,
9532 (on ? "on" : "off"),
9533 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9534 return ret;
9535 }
9536
ufshcd_parse_ref_clk_property(struct ufs_hba * hba)9537 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9538 {
9539 u32 freq;
9540 int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9541
9542 if (ret) {
9543 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9544 return REF_CLK_FREQ_INVAL;
9545 }
9546
9547 return ufs_get_bref_clk_from_hz(freq);
9548 }
9549
ufshcd_init_clocks(struct ufs_hba * hba)9550 static int ufshcd_init_clocks(struct ufs_hba *hba)
9551 {
9552 int ret = 0;
9553 struct ufs_clk_info *clki;
9554 struct device *dev = hba->dev;
9555 struct list_head *head = &hba->clk_list_head;
9556
9557 if (list_empty(head))
9558 goto out;
9559
9560 list_for_each_entry(clki, head, list) {
9561 if (!clki->name)
9562 continue;
9563
9564 clki->clk = devm_clk_get(dev, clki->name);
9565 if (IS_ERR(clki->clk)) {
9566 ret = PTR_ERR(clki->clk);
9567 dev_err(dev, "%s: %s clk get failed, %d\n",
9568 __func__, clki->name, ret);
9569 goto out;
9570 }
9571
9572 /*
9573 * Parse device ref clk freq as per device tree "ref_clk".
9574 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9575 * in ufshcd_alloc_host().
9576 */
9577 if (!strcmp(clki->name, "ref_clk"))
9578 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9579
9580 if (clki->max_freq) {
9581 ret = clk_set_rate(clki->clk, clki->max_freq);
9582 if (ret) {
9583 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9584 __func__, clki->name,
9585 clki->max_freq, ret);
9586 goto out;
9587 }
9588 clki->curr_freq = clki->max_freq;
9589 }
9590 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9591 clki->name, clk_get_rate(clki->clk));
9592 }
9593
9594 /* Set Max. frequency for all clocks */
9595 if (hba->use_pm_opp) {
9596 ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9597 if (ret) {
9598 dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9599 ret);
9600 goto out;
9601 }
9602 }
9603
9604 out:
9605 return ret;
9606 }
9607
ufshcd_variant_hba_init(struct ufs_hba * hba)9608 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9609 {
9610 int err = 0;
9611
9612 if (!hba->vops)
9613 goto out;
9614
9615 err = ufshcd_vops_init(hba);
9616 if (err)
9617 dev_err_probe(hba->dev, err,
9618 "%s: variant %s init failed with err %d\n",
9619 __func__, ufshcd_get_var_name(hba), err);
9620 out:
9621 return err;
9622 }
9623
ufshcd_variant_hba_exit(struct ufs_hba * hba)9624 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9625 {
9626 if (!hba->vops)
9627 return;
9628
9629 ufshcd_vops_exit(hba);
9630 }
9631
ufshcd_hba_init(struct ufs_hba * hba)9632 static int ufshcd_hba_init(struct ufs_hba *hba)
9633 {
9634 int err;
9635
9636 /*
9637 * Handle host controller power separately from the UFS device power
9638 * rails as it will help controlling the UFS host controller power
9639 * collapse easily which is different than UFS device power collapse.
9640 * Also, enable the host controller power before we go ahead with rest
9641 * of the initialization here.
9642 */
9643 err = ufshcd_init_hba_vreg(hba);
9644 if (err)
9645 goto out;
9646
9647 err = ufshcd_setup_hba_vreg(hba, true);
9648 if (err)
9649 goto out;
9650
9651 err = ufshcd_init_clocks(hba);
9652 if (err)
9653 goto out_disable_hba_vreg;
9654
9655 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9656 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9657
9658 err = ufshcd_setup_clocks(hba, true);
9659 if (err)
9660 goto out_disable_hba_vreg;
9661
9662 err = ufshcd_init_vreg(hba);
9663 if (err)
9664 goto out_disable_clks;
9665
9666 err = ufshcd_setup_vreg(hba, true);
9667 if (err)
9668 goto out_disable_clks;
9669
9670 err = ufshcd_variant_hba_init(hba);
9671 if (err)
9672 goto out_disable_vreg;
9673
9674 ufs_debugfs_hba_init(hba);
9675 ufs_fault_inject_hba_init(hba);
9676
9677 hba->is_powered = true;
9678 goto out;
9679
9680 out_disable_vreg:
9681 ufshcd_setup_vreg(hba, false);
9682 out_disable_clks:
9683 ufshcd_setup_clocks(hba, false);
9684 out_disable_hba_vreg:
9685 ufshcd_setup_hba_vreg(hba, false);
9686 out:
9687 return err;
9688 }
9689
ufshcd_hba_exit(struct ufs_hba * hba)9690 static void ufshcd_hba_exit(struct ufs_hba *hba)
9691 {
9692 if (hba->is_powered) {
9693 ufshcd_pm_qos_exit(hba);
9694 ufshcd_exit_clk_scaling(hba);
9695 ufshcd_exit_clk_gating(hba);
9696 if (hba->eh_wq)
9697 destroy_workqueue(hba->eh_wq);
9698 ufs_debugfs_hba_exit(hba);
9699 ufshcd_variant_hba_exit(hba);
9700 ufshcd_setup_vreg(hba, false);
9701 ufshcd_setup_clocks(hba, false);
9702 ufshcd_setup_hba_vreg(hba, false);
9703 hba->is_powered = false;
9704 ufs_put_device_desc(hba);
9705 }
9706 }
9707
ufshcd_execute_start_stop(struct scsi_device * sdev,enum ufs_dev_pwr_mode pwr_mode,struct scsi_sense_hdr * sshdr)9708 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9709 enum ufs_dev_pwr_mode pwr_mode,
9710 struct scsi_sense_hdr *sshdr)
9711 {
9712 const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9713 struct scsi_failure failure_defs[] = {
9714 {
9715 .allowed = 2,
9716 .result = SCMD_FAILURE_RESULT_ANY,
9717 },
9718 };
9719 struct scsi_failures failures = {
9720 .failure_definitions = failure_defs,
9721 };
9722 const struct scsi_exec_args args = {
9723 .failures = &failures,
9724 .sshdr = sshdr,
9725 .req_flags = BLK_MQ_REQ_PM,
9726 .scmd_flags = SCMD_FAIL_IF_RECOVERING,
9727 };
9728
9729 return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9730 /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9731 &args);
9732 }
9733
9734 /**
9735 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9736 * power mode
9737 * @hba: per adapter instance
9738 * @pwr_mode: device power mode to set
9739 *
9740 * Return: 0 if requested power mode is set successfully;
9741 * < 0 if failed to set the requested power mode.
9742 */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)9743 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9744 enum ufs_dev_pwr_mode pwr_mode)
9745 {
9746 struct scsi_sense_hdr sshdr;
9747 struct scsi_device *sdp;
9748 unsigned long flags;
9749 int ret;
9750
9751 spin_lock_irqsave(hba->host->host_lock, flags);
9752 sdp = hba->ufs_device_wlun;
9753 if (sdp && scsi_device_online(sdp))
9754 ret = scsi_device_get(sdp);
9755 else
9756 ret = -ENODEV;
9757 spin_unlock_irqrestore(hba->host->host_lock, flags);
9758
9759 if (ret)
9760 return ret;
9761
9762 /*
9763 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9764 * handling, which would wait for host to be resumed. Since we know
9765 * we are functional while we are here, skip host resume in error
9766 * handling context.
9767 */
9768 hba->host->eh_noresume = 1;
9769
9770 /*
9771 * Current function would be generally called from the power management
9772 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9773 * already suspended childs.
9774 */
9775 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9776 if (ret) {
9777 sdev_printk(KERN_WARNING, sdp,
9778 "START_STOP failed for power mode: %d, result %x\n",
9779 pwr_mode, ret);
9780 if (ret > 0) {
9781 if (scsi_sense_valid(&sshdr))
9782 scsi_print_sense_hdr(sdp, NULL, &sshdr);
9783 ret = -EIO;
9784 }
9785 } else {
9786 hba->curr_dev_pwr_mode = pwr_mode;
9787 }
9788
9789 scsi_device_put(sdp);
9790 hba->host->eh_noresume = 0;
9791 return ret;
9792 }
9793
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,bool check_for_bkops)9794 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9795 enum uic_link_state req_link_state,
9796 bool check_for_bkops)
9797 {
9798 int ret = 0;
9799
9800 if (req_link_state == hba->uic_link_state)
9801 return 0;
9802
9803 if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9804 ret = ufshcd_uic_hibern8_enter(hba);
9805 if (!ret) {
9806 ufshcd_set_link_hibern8(hba);
9807 } else {
9808 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9809 __func__, ret);
9810 goto out;
9811 }
9812 }
9813 /*
9814 * If autobkops is enabled, link can't be turned off because
9815 * turning off the link would also turn off the device, except in the
9816 * case of DeepSleep where the device is expected to remain powered.
9817 */
9818 else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9819 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9820 /*
9821 * Let's make sure that link is in low power mode, we are doing
9822 * this currently by putting the link in Hibern8. Otherway to
9823 * put the link in low power mode is to send the DME end point
9824 * to device and then send the DME reset command to local
9825 * unipro. But putting the link in hibern8 is much faster.
9826 *
9827 * Note also that putting the link in Hibern8 is a requirement
9828 * for entering DeepSleep.
9829 */
9830 ret = ufshcd_uic_hibern8_enter(hba);
9831 if (ret) {
9832 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9833 __func__, ret);
9834 goto out;
9835 }
9836 /*
9837 * Change controller state to "reset state" which
9838 * should also put the link in off/reset state
9839 */
9840 ufshcd_hba_stop(hba);
9841 /*
9842 * TODO: Check if we need any delay to make sure that
9843 * controller is reset
9844 */
9845 ufshcd_set_link_off(hba);
9846 }
9847
9848 out:
9849 return ret;
9850 }
9851
ufshcd_vreg_set_lpm(struct ufs_hba * hba)9852 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9853 {
9854 bool vcc_off = false;
9855
9856 /*
9857 * It seems some UFS devices may keep drawing more than sleep current
9858 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9859 * To avoid this situation, add 2ms delay before putting these UFS
9860 * rails in LPM mode.
9861 */
9862 if (!ufshcd_is_link_active(hba) &&
9863 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9864 usleep_range(2000, 2100);
9865
9866 /*
9867 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9868 * power.
9869 *
9870 * If UFS device and link is in OFF state, all power supplies (VCC,
9871 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9872 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9873 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9874 *
9875 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9876 * in low power state which would save some power.
9877 *
9878 * If Write Booster is enabled and the device needs to flush the WB
9879 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9880 */
9881 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9882 !hba->dev_info.is_lu_power_on_wp) {
9883 ufshcd_setup_vreg(hba, false);
9884 vcc_off = true;
9885 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9886 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9887 vcc_off = true;
9888 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9889 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9890 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9891 }
9892 }
9893
9894 /*
9895 * All UFS devices require delay after VCC power rail is turned-off.
9896 */
9897 if (vcc_off && hba->vreg_info.vcc && !hba->vreg_info.vcc->always_on)
9898 usleep_range(hba->vcc_off_delay_us,
9899 hba->vcc_off_delay_us + 100);
9900 }
9901
9902 #ifdef CONFIG_PM
ufshcd_vreg_set_hpm(struct ufs_hba * hba)9903 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9904 {
9905 int ret = 0;
9906
9907 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9908 !hba->dev_info.is_lu_power_on_wp) {
9909 ret = ufshcd_setup_vreg(hba, true);
9910 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9911 if (!ufshcd_is_link_active(hba)) {
9912 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9913 if (ret)
9914 goto vcc_disable;
9915 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9916 if (ret)
9917 goto vccq_lpm;
9918 }
9919 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9920 }
9921 goto out;
9922
9923 vccq_lpm:
9924 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9925 vcc_disable:
9926 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9927 out:
9928 return ret;
9929 }
9930 #endif /* CONFIG_PM */
9931
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)9932 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9933 {
9934 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9935 ufshcd_setup_hba_vreg(hba, false);
9936 }
9937
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)9938 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9939 {
9940 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9941 ufshcd_setup_hba_vreg(hba, true);
9942 }
9943
__ufshcd_wl_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)9944 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9945 {
9946 int ret = 0;
9947 bool check_for_bkops;
9948 enum ufs_pm_level pm_lvl;
9949 enum ufs_dev_pwr_mode req_dev_pwr_mode;
9950 enum uic_link_state req_link_state;
9951
9952 hba->pm_op_in_progress = true;
9953 if (pm_op != UFS_SHUTDOWN_PM) {
9954 pm_lvl = pm_op == UFS_RUNTIME_PM ?
9955 hba->rpm_lvl : hba->spm_lvl;
9956 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9957 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9958 } else {
9959 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9960 req_link_state = UIC_LINK_OFF_STATE;
9961 }
9962
9963 /*
9964 * If we can't transition into any of the low power modes
9965 * just gate the clocks.
9966 */
9967 ufshcd_hold(hba);
9968 hba->clk_gating.is_suspended = true;
9969
9970 if (ufshcd_is_clkscaling_supported(hba))
9971 ufshcd_clk_scaling_suspend(hba, true);
9972
9973 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9974 req_link_state == UIC_LINK_ACTIVE_STATE) {
9975 goto vops_suspend;
9976 }
9977
9978 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9979 (req_link_state == hba->uic_link_state))
9980 goto enable_scaling;
9981
9982 /* UFS device & link must be active before we enter in this function */
9983 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9984 /* Wait err handler finish or trigger err recovery */
9985 if (!ufshcd_eh_in_progress(hba))
9986 ufshcd_force_error_recovery(hba);
9987 ret = -EBUSY;
9988 goto enable_scaling;
9989 }
9990
9991 if (pm_op == UFS_RUNTIME_PM) {
9992 if (ufshcd_can_autobkops_during_suspend(hba)) {
9993 /*
9994 * The device is idle with no requests in the queue,
9995 * allow background operations if bkops status shows
9996 * that performance might be impacted.
9997 */
9998 ret = ufshcd_bkops_ctrl(hba);
9999 if (ret) {
10000 /*
10001 * If return err in suspend flow, IO will hang.
10002 * Trigger error handler and break suspend for
10003 * error recovery.
10004 */
10005 ufshcd_force_error_recovery(hba);
10006 ret = -EBUSY;
10007 goto enable_scaling;
10008 }
10009 } else {
10010 /* make sure that auto bkops is disabled */
10011 ufshcd_disable_auto_bkops(hba);
10012 }
10013 /*
10014 * If device needs to do BKOP or WB buffer flush during
10015 * Hibern8, keep device power mode as "active power mode"
10016 * and VCC supply.
10017 */
10018 hba->dev_info.b_rpm_dev_flush_capable =
10019 hba->auto_bkops_enabled ||
10020 (((req_link_state == UIC_LINK_HIBERN8_STATE) ||
10021 ((req_link_state == UIC_LINK_ACTIVE_STATE) &&
10022 ufshcd_is_auto_hibern8_enabled(hba))) &&
10023 ufshcd_wb_need_flush(hba));
10024 }
10025
10026 flush_work(&hba->eeh_work);
10027
10028 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
10029 if (ret)
10030 goto enable_scaling;
10031
10032 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
10033 if (pm_op != UFS_RUNTIME_PM)
10034 /* ensure that bkops is disabled */
10035 ufshcd_disable_auto_bkops(hba);
10036
10037 if (!hba->dev_info.b_rpm_dev_flush_capable) {
10038 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
10039 if (ret && pm_op != UFS_SHUTDOWN_PM) {
10040 /*
10041 * If return err in suspend flow, IO will hang.
10042 * Trigger error handler and break suspend for
10043 * error recovery.
10044 */
10045 ufshcd_force_error_recovery(hba);
10046 ret = -EBUSY;
10047 }
10048 if (ret)
10049 goto enable_scaling;
10050 }
10051 }
10052
10053 /*
10054 * In the case of DeepSleep, the device is expected to remain powered
10055 * with the link off, so do not check for bkops.
10056 */
10057 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
10058 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
10059 if (ret && pm_op != UFS_SHUTDOWN_PM) {
10060 /*
10061 * If return err in suspend flow, IO will hang.
10062 * Trigger error handler and break suspend for
10063 * error recovery.
10064 */
10065 ufshcd_force_error_recovery(hba);
10066 ret = -EBUSY;
10067 }
10068 if (ret)
10069 goto set_dev_active;
10070
10071 vops_suspend:
10072 /*
10073 * Call vendor specific suspend callback. As these callbacks may access
10074 * vendor specific host controller register space call them before the
10075 * host clocks are ON.
10076 */
10077 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
10078 if (ret)
10079 goto set_link_active;
10080
10081 cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10082 goto out;
10083
10084 set_link_active:
10085 /*
10086 * Device hardware reset is required to exit DeepSleep. Also, for
10087 * DeepSleep, the link is off so host reset and restore will be done
10088 * further below.
10089 */
10090 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
10091 ufshcd_device_reset(hba);
10092 WARN_ON(!ufshcd_is_link_off(hba));
10093 }
10094 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
10095 ufshcd_set_link_active(hba);
10096 else if (ufshcd_is_link_off(hba))
10097 ufshcd_host_reset_and_restore(hba);
10098 set_dev_active:
10099 /* Can also get here needing to exit DeepSleep */
10100 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
10101 ufshcd_device_reset(hba);
10102 ufshcd_host_reset_and_restore(hba);
10103 }
10104 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
10105 ufshcd_disable_auto_bkops(hba);
10106 enable_scaling:
10107 if (ufshcd_is_clkscaling_supported(hba))
10108 ufshcd_clk_scaling_suspend(hba, false);
10109
10110 hba->dev_info.b_rpm_dev_flush_capable = false;
10111 out:
10112 if (hba->dev_info.b_rpm_dev_flush_capable) {
10113 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
10114 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
10115 }
10116
10117 if (ret) {
10118 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
10119 hba->clk_gating.is_suspended = false;
10120 ufshcd_release(hba);
10121 }
10122 hba->pm_op_in_progress = false;
10123 return ret;
10124 }
10125
10126 #ifdef CONFIG_PM
__ufshcd_wl_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)10127 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
10128 {
10129 int ret;
10130 enum uic_link_state old_link_state = hba->uic_link_state;
10131
10132 hba->pm_op_in_progress = true;
10133
10134 /*
10135 * Call vendor specific resume callback. As these callbacks may access
10136 * vendor specific host controller register space call them when the
10137 * host clocks are ON.
10138 */
10139 ret = ufshcd_vops_resume(hba, pm_op);
10140 if (ret)
10141 goto out;
10142
10143 /* For DeepSleep, the only supported option is to have the link off */
10144 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
10145
10146 if (ufshcd_is_link_hibern8(hba)) {
10147 ret = ufshcd_uic_hibern8_exit(hba);
10148 if (!ret) {
10149 ufshcd_set_link_active(hba);
10150 } else {
10151 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
10152 __func__, ret);
10153 goto vendor_suspend;
10154 }
10155 } else if (ufshcd_is_link_off(hba)) {
10156 /*
10157 * A full initialization of the host and the device is
10158 * required since the link was put to off during suspend.
10159 * Note, in the case of DeepSleep, the device will exit
10160 * DeepSleep due to device reset.
10161 */
10162 ret = ufshcd_reset_and_restore(hba);
10163 /*
10164 * ufshcd_reset_and_restore() should have already
10165 * set the link state as active
10166 */
10167 if (ret || !ufshcd_is_link_active(hba))
10168 goto vendor_suspend;
10169 }
10170
10171 if (!ufshcd_is_ufs_dev_active(hba)) {
10172 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
10173 if (ret)
10174 goto set_old_link_state;
10175 ufshcd_set_timestamp_attr(hba);
10176 schedule_delayed_work(&hba->ufs_rtc_update_work,
10177 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
10178 }
10179
10180 if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
10181 ufshcd_enable_auto_bkops(hba);
10182 else
10183 /*
10184 * If BKOPs operations are urgently needed at this moment then
10185 * keep auto-bkops enabled or else disable it.
10186 */
10187 ufshcd_bkops_ctrl(hba);
10188
10189 if (hba->ee_usr_mask)
10190 ufshcd_write_ee_control(hba);
10191
10192 if (ufshcd_is_clkscaling_supported(hba))
10193 ufshcd_clk_scaling_suspend(hba, false);
10194
10195 if (hba->dev_info.b_rpm_dev_flush_capable) {
10196 hba->dev_info.b_rpm_dev_flush_capable = false;
10197 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
10198 }
10199
10200 ufshcd_configure_auto_hibern8(hba);
10201
10202 goto out;
10203
10204 set_old_link_state:
10205 ufshcd_link_state_transition(hba, old_link_state, 0);
10206 vendor_suspend:
10207 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
10208 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
10209 out:
10210 if (ret)
10211 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
10212 hba->clk_gating.is_suspended = false;
10213 ufshcd_release(hba);
10214 hba->pm_op_in_progress = false;
10215 return ret;
10216 }
10217
ufshcd_wl_runtime_suspend(struct device * dev)10218 static int ufshcd_wl_runtime_suspend(struct device *dev)
10219 {
10220 struct scsi_device *sdev = to_scsi_device(dev);
10221 struct ufs_hba *hba;
10222 int ret;
10223 ktime_t start = ktime_get();
10224
10225 hba = shost_priv(sdev->host);
10226
10227 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
10228 if (ret)
10229 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10230
10231 trace_ufshcd_wl_runtime_suspend(hba, ret,
10232 ktime_to_us(ktime_sub(ktime_get(), start)),
10233 hba->curr_dev_pwr_mode, hba->uic_link_state);
10234
10235 return ret;
10236 }
10237
ufshcd_wl_runtime_resume(struct device * dev)10238 static int ufshcd_wl_runtime_resume(struct device *dev)
10239 {
10240 struct scsi_device *sdev = to_scsi_device(dev);
10241 struct ufs_hba *hba;
10242 int ret = 0;
10243 ktime_t start = ktime_get();
10244
10245 hba = shost_priv(sdev->host);
10246
10247 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
10248 if (ret)
10249 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10250
10251 trace_ufshcd_wl_runtime_resume(hba, ret,
10252 ktime_to_us(ktime_sub(ktime_get(), start)),
10253 hba->curr_dev_pwr_mode, hba->uic_link_state);
10254
10255 return ret;
10256 }
10257 #endif
10258
10259 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_suspend(struct device * dev)10260 static int ufshcd_wl_suspend(struct device *dev)
10261 {
10262 struct scsi_device *sdev = to_scsi_device(dev);
10263 struct ufs_hba *hba;
10264 int ret = 0;
10265 ktime_t start = ktime_get();
10266
10267 hba = shost_priv(sdev->host);
10268 down(&hba->host_sem);
10269 hba->system_suspending = true;
10270
10271 if (pm_runtime_suspended(dev))
10272 goto out;
10273
10274 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
10275 if (ret) {
10276 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10277 up(&hba->host_sem);
10278 }
10279
10280 out:
10281 if (!ret)
10282 hba->is_sys_suspended = true;
10283 trace_ufshcd_wl_suspend(hba, ret,
10284 ktime_to_us(ktime_sub(ktime_get(), start)),
10285 hba->curr_dev_pwr_mode, hba->uic_link_state);
10286
10287 return ret;
10288 }
10289
ufshcd_wl_resume(struct device * dev)10290 static int ufshcd_wl_resume(struct device *dev)
10291 {
10292 struct scsi_device *sdev = to_scsi_device(dev);
10293 struct ufs_hba *hba;
10294 int ret = 0;
10295 ktime_t start = ktime_get();
10296
10297 hba = shost_priv(sdev->host);
10298
10299 if (pm_runtime_suspended(dev))
10300 goto out;
10301
10302 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
10303 if (ret)
10304 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10305 out:
10306 trace_ufshcd_wl_resume(hba, ret,
10307 ktime_to_us(ktime_sub(ktime_get(), start)),
10308 hba->curr_dev_pwr_mode, hba->uic_link_state);
10309 if (!ret)
10310 hba->is_sys_suspended = false;
10311 hba->system_suspending = false;
10312 up(&hba->host_sem);
10313 return ret;
10314 }
10315 #endif
10316
10317 /**
10318 * ufshcd_suspend - helper function for suspend operations
10319 * @hba: per adapter instance
10320 *
10321 * This function will put disable irqs, turn off clocks
10322 * and set vreg and hba-vreg in lpm mode.
10323 *
10324 * Return: 0 upon success; < 0 upon failure.
10325 */
ufshcd_suspend(struct ufs_hba * hba)10326 static int ufshcd_suspend(struct ufs_hba *hba)
10327 {
10328 int ret;
10329
10330 if (!hba->is_powered)
10331 return 0;
10332 /*
10333 * Disable the host irq as host controller as there won't be any
10334 * host controller transaction expected till resume.
10335 */
10336 ufshcd_disable_irq(hba);
10337 ret = ufshcd_setup_clocks(hba, false);
10338 if (ret) {
10339 ufshcd_enable_irq(hba);
10340 return ret;
10341 }
10342 if (ufshcd_is_clkgating_allowed(hba)) {
10343 hba->clk_gating.state = CLKS_OFF;
10344 trace_ufshcd_clk_gating(hba,
10345 hba->clk_gating.state);
10346 }
10347
10348 ufshcd_vreg_set_lpm(hba);
10349 /* Put the host controller in low power mode if possible */
10350 ufshcd_hba_vreg_set_lpm(hba);
10351 ufshcd_pm_qos_update(hba, false);
10352 return ret;
10353 }
10354
10355 #ifdef CONFIG_PM
10356 /**
10357 * ufshcd_resume - helper function for resume operations
10358 * @hba: per adapter instance
10359 *
10360 * This function basically turns on the regulators, clocks and
10361 * irqs of the hba.
10362 *
10363 * Return: 0 for success and non-zero for failure.
10364 */
ufshcd_resume(struct ufs_hba * hba)10365 static int ufshcd_resume(struct ufs_hba *hba)
10366 {
10367 int ret;
10368
10369 if (!hba->is_powered)
10370 return 0;
10371
10372 ufshcd_hba_vreg_set_hpm(hba);
10373 ret = ufshcd_vreg_set_hpm(hba);
10374 if (ret)
10375 goto out;
10376
10377 /* Make sure clocks are enabled before accessing controller */
10378 ret = ufshcd_setup_clocks(hba, true);
10379 if (ret)
10380 goto disable_vreg;
10381
10382 /* enable the host irq as host controller would be active soon */
10383 ufshcd_enable_irq(hba);
10384
10385 goto out;
10386
10387 disable_vreg:
10388 ufshcd_vreg_set_lpm(hba);
10389 out:
10390 if (ret)
10391 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10392 return ret;
10393 }
10394 #endif /* CONFIG_PM */
10395
10396 #ifdef CONFIG_PM_SLEEP
10397 /**
10398 * ufshcd_system_suspend - system suspend callback
10399 * @dev: Device associated with the UFS controller.
10400 *
10401 * Executed before putting the system into a sleep state in which the contents
10402 * of main memory are preserved.
10403 *
10404 * Return: 0 for success and non-zero for failure.
10405 */
ufshcd_system_suspend(struct device * dev)10406 int ufshcd_system_suspend(struct device *dev)
10407 {
10408 struct ufs_hba *hba = dev_get_drvdata(dev);
10409 int ret = 0;
10410 ktime_t start = ktime_get();
10411
10412 if (pm_runtime_suspended(hba->dev))
10413 goto out;
10414
10415 ret = ufshcd_suspend(hba);
10416 out:
10417 trace_ufshcd_system_suspend(hba, ret,
10418 ktime_to_us(ktime_sub(ktime_get(), start)),
10419 hba->curr_dev_pwr_mode, hba->uic_link_state);
10420 return ret;
10421 }
10422 EXPORT_SYMBOL(ufshcd_system_suspend);
10423
10424 /**
10425 * ufshcd_system_resume - system resume callback
10426 * @dev: Device associated with the UFS controller.
10427 *
10428 * Executed after waking the system up from a sleep state in which the contents
10429 * of main memory were preserved.
10430 *
10431 * Return: 0 for success and non-zero for failure.
10432 */
ufshcd_system_resume(struct device * dev)10433 int ufshcd_system_resume(struct device *dev)
10434 {
10435 struct ufs_hba *hba = dev_get_drvdata(dev);
10436 ktime_t start = ktime_get();
10437 int ret = 0;
10438
10439 if (pm_runtime_suspended(hba->dev))
10440 goto out;
10441
10442 ret = ufshcd_resume(hba);
10443
10444 out:
10445 trace_ufshcd_system_resume(hba, ret,
10446 ktime_to_us(ktime_sub(ktime_get(), start)),
10447 hba->curr_dev_pwr_mode, hba->uic_link_state);
10448
10449 return ret;
10450 }
10451 EXPORT_SYMBOL(ufshcd_system_resume);
10452 #endif /* CONFIG_PM_SLEEP */
10453
10454 #ifdef CONFIG_PM
10455 /**
10456 * ufshcd_runtime_suspend - runtime suspend callback
10457 * @dev: Device associated with the UFS controller.
10458 *
10459 * Check the description of ufshcd_suspend() function for more details.
10460 *
10461 * Return: 0 for success and non-zero for failure.
10462 */
ufshcd_runtime_suspend(struct device * dev)10463 int ufshcd_runtime_suspend(struct device *dev)
10464 {
10465 struct ufs_hba *hba = dev_get_drvdata(dev);
10466 int ret;
10467 ktime_t start = ktime_get();
10468
10469 ret = ufshcd_suspend(hba);
10470
10471 trace_ufshcd_runtime_suspend(hba, ret,
10472 ktime_to_us(ktime_sub(ktime_get(), start)),
10473 hba->curr_dev_pwr_mode, hba->uic_link_state);
10474 return ret;
10475 }
10476 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10477
10478 /**
10479 * ufshcd_runtime_resume - runtime resume routine
10480 * @dev: Device associated with the UFS controller.
10481 *
10482 * This function basically brings controller
10483 * to active state. Following operations are done in this function:
10484 *
10485 * 1. Turn on all the controller related clocks
10486 * 2. Turn ON VCC rail
10487 *
10488 * Return: 0 upon success; < 0 upon failure.
10489 */
ufshcd_runtime_resume(struct device * dev)10490 int ufshcd_runtime_resume(struct device *dev)
10491 {
10492 struct ufs_hba *hba = dev_get_drvdata(dev);
10493 int ret;
10494 ktime_t start = ktime_get();
10495
10496 ret = ufshcd_resume(hba);
10497
10498 trace_ufshcd_runtime_resume(hba, ret,
10499 ktime_to_us(ktime_sub(ktime_get(), start)),
10500 hba->curr_dev_pwr_mode, hba->uic_link_state);
10501 return ret;
10502 }
10503 EXPORT_SYMBOL(ufshcd_runtime_resume);
10504 #endif /* CONFIG_PM */
10505
ufshcd_wl_shutdown(struct device * dev)10506 static void ufshcd_wl_shutdown(struct device *dev)
10507 {
10508 struct scsi_device *sdev = to_scsi_device(dev);
10509 struct ufs_hba *hba = shost_priv(sdev->host);
10510
10511 down(&hba->host_sem);
10512 hba->shutting_down = true;
10513 up(&hba->host_sem);
10514
10515 /* Turn on everything while shutting down */
10516 ufshcd_rpm_get_sync(hba);
10517 scsi_device_quiesce(sdev);
10518 shost_for_each_device(sdev, hba->host) {
10519 if (sdev == hba->ufs_device_wlun)
10520 continue;
10521 mutex_lock(&sdev->state_mutex);
10522 scsi_device_set_state(sdev, SDEV_OFFLINE);
10523 mutex_unlock(&sdev->state_mutex);
10524 }
10525 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10526
10527 /*
10528 * Next, turn off the UFS controller and the UFS regulators. Disable
10529 * clocks.
10530 */
10531 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10532 ufshcd_suspend(hba);
10533
10534 hba->is_powered = false;
10535 }
10536
10537 /**
10538 * ufshcd_remove - de-allocate SCSI host and host memory space
10539 * data structure memory
10540 * @hba: per adapter instance
10541 */
ufshcd_remove(struct ufs_hba * hba)10542 void ufshcd_remove(struct ufs_hba *hba)
10543 {
10544 if (hba->ufs_device_wlun)
10545 ufshcd_rpm_get_sync(hba);
10546 ufs_hwmon_remove(hba);
10547 ufs_bsg_remove(hba);
10548 ufs_rpmb_remove(hba);
10549 ufs_sysfs_remove_nodes(hba->dev);
10550 cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10551 blk_mq_destroy_queue(hba->tmf_queue);
10552 blk_put_queue(hba->tmf_queue);
10553 blk_mq_free_tag_set(&hba->tmf_tag_set);
10554 if (hba->scsi_host_added)
10555 scsi_remove_host(hba->host);
10556 /* disable interrupts */
10557 ufshcd_disable_intr(hba, hba->intr_mask);
10558 ufshcd_hba_stop(hba);
10559 ufshcd_hba_exit(hba);
10560 }
10561 EXPORT_SYMBOL_GPL(ufshcd_remove);
10562
10563 #ifdef CONFIG_PM_SLEEP
ufshcd_system_freeze(struct device * dev)10564 int ufshcd_system_freeze(struct device *dev)
10565 {
10566
10567 return ufshcd_system_suspend(dev);
10568
10569 }
10570 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10571
ufshcd_system_restore(struct device * dev)10572 int ufshcd_system_restore(struct device *dev)
10573 {
10574
10575 struct ufs_hba *hba = dev_get_drvdata(dev);
10576 int ret;
10577
10578 ret = ufshcd_system_resume(dev);
10579 if (ret)
10580 return ret;
10581
10582 /* Configure UTRL and UTMRL base address registers */
10583 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10584 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10585 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10586 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10587 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10588 REG_UTP_TASK_REQ_LIST_BASE_L);
10589 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10590 REG_UTP_TASK_REQ_LIST_BASE_H);
10591 /*
10592 * Make sure that UTRL and UTMRL base address registers
10593 * are updated with the latest queue addresses. Only after
10594 * updating these addresses, we can queue the new commands.
10595 */
10596 ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10597
10598 return 0;
10599
10600 }
10601 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10602
ufshcd_system_thaw(struct device * dev)10603 int ufshcd_system_thaw(struct device *dev)
10604 {
10605 return ufshcd_system_resume(dev);
10606 }
10607 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10608 #endif /* CONFIG_PM_SLEEP */
10609
10610 /**
10611 * ufshcd_set_dma_mask - Set dma mask based on the controller
10612 * addressing capability
10613 * @hba: per adapter instance
10614 *
10615 * Return: 0 for success, non-zero for failure.
10616 */
ufshcd_set_dma_mask(struct ufs_hba * hba)10617 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10618 {
10619 if (hba->vops && hba->vops->set_dma_mask)
10620 return hba->vops->set_dma_mask(hba);
10621 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10622 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10623 return 0;
10624 }
10625 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10626 }
10627
10628 /**
10629 * ufshcd_devres_release - devres cleanup handler, invoked during release of
10630 * hba->dev
10631 * @host: pointer to SCSI host
10632 */
ufshcd_devres_release(void * host)10633 static void ufshcd_devres_release(void *host)
10634 {
10635 scsi_host_put(host);
10636 }
10637
10638 /**
10639 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10640 * @dev: pointer to device handle
10641 * @hba_handle: driver private handle
10642 *
10643 * Return: 0 on success, non-zero value on failure.
10644 *
10645 * NOTE: There is no corresponding ufshcd_dealloc_host() because this function
10646 * keeps track of its allocations using devres and deallocates everything on
10647 * device removal automatically.
10648 */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)10649 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10650 {
10651 struct Scsi_Host *host;
10652 struct ufs_hba *hba;
10653 int err = 0;
10654
10655 if (!dev) {
10656 dev_err(dev,
10657 "Invalid memory reference for dev is NULL\n");
10658 err = -ENODEV;
10659 goto out_error;
10660 }
10661
10662 host = scsi_host_alloc(&ufshcd_driver_template,
10663 sizeof(struct ufs_hba));
10664 if (!host) {
10665 dev_err(dev, "scsi_host_alloc failed\n");
10666 err = -ENOMEM;
10667 goto out_error;
10668 }
10669
10670 err = devm_add_action_or_reset(dev, ufshcd_devres_release,
10671 host);
10672 if (err)
10673 return err;
10674
10675 host->nr_maps = HCTX_TYPE_POLL + 1;
10676 hba = shost_priv(host);
10677 hba->host = host;
10678 hba->dev = dev;
10679 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10680 hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10681 ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10682 INIT_LIST_HEAD(&hba->clk_list_head);
10683 spin_lock_init(&hba->outstanding_lock);
10684
10685 *hba_handle = hba;
10686
10687 out_error:
10688 return err;
10689 }
10690 EXPORT_SYMBOL(ufshcd_alloc_host);
10691
10692 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)10693 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10694 const struct blk_mq_queue_data *qd)
10695 {
10696 WARN_ON_ONCE(true);
10697 return BLK_STS_NOTSUPP;
10698 }
10699
10700 static const struct blk_mq_ops ufshcd_tmf_ops = {
10701 .queue_rq = ufshcd_queue_tmf,
10702 };
10703
ufshcd_add_scsi_host(struct ufs_hba * hba)10704 static int ufshcd_add_scsi_host(struct ufs_hba *hba)
10705 {
10706 int err;
10707
10708 WARN_ON_ONCE(!hba->host->can_queue);
10709 WARN_ON_ONCE(!hba->host->cmd_per_lun);
10710
10711 if (is_mcq_supported(hba)) {
10712 ufshcd_mcq_enable(hba);
10713 err = ufshcd_alloc_mcq(hba);
10714 if (!err) {
10715 ufshcd_config_mcq(hba);
10716 } else {
10717 /* Continue with SDB mode */
10718 ufshcd_mcq_disable(hba);
10719 use_mcq_mode = false;
10720 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
10721 err);
10722 }
10723 }
10724 if (!is_mcq_supported(hba) && !hba->lsdb_sup) {
10725 dev_err(hba->dev,
10726 "%s: failed to initialize (legacy doorbell mode not supported)\n",
10727 __func__);
10728 return -EINVAL;
10729 }
10730
10731 err = scsi_add_host(hba->host, hba->dev);
10732 if (err) {
10733 dev_err(hba->dev, "scsi_add_host failed\n");
10734 return err;
10735 }
10736 hba->scsi_host_added = true;
10737
10738 hba->tmf_tag_set = (struct blk_mq_tag_set) {
10739 .nr_hw_queues = 1,
10740 .queue_depth = hba->nutmrs,
10741 .ops = &ufshcd_tmf_ops,
10742 };
10743 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10744 if (err < 0)
10745 goto remove_scsi_host;
10746 hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10747 if (IS_ERR(hba->tmf_queue)) {
10748 err = PTR_ERR(hba->tmf_queue);
10749 goto free_tmf_tag_set;
10750 }
10751 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10752 sizeof(*hba->tmf_rqs), GFP_KERNEL);
10753 if (!hba->tmf_rqs) {
10754 err = -ENOMEM;
10755 goto free_tmf_queue;
10756 }
10757
10758 return 0;
10759
10760 free_tmf_queue:
10761 blk_mq_destroy_queue(hba->tmf_queue);
10762 blk_put_queue(hba->tmf_queue);
10763
10764 free_tmf_tag_set:
10765 blk_mq_free_tag_set(&hba->tmf_tag_set);
10766
10767 remove_scsi_host:
10768 if (hba->scsi_host_added)
10769 scsi_remove_host(hba->host);
10770
10771 return err;
10772 }
10773
10774 /**
10775 * ufshcd_init - Driver initialization routine
10776 * @hba: per-adapter instance
10777 * @mmio_base: base register address
10778 * @irq: Interrupt line of device
10779 *
10780 * Return: 0 on success; < 0 on failure.
10781 */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)10782 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10783 {
10784 int err;
10785 struct Scsi_Host *host = hba->host;
10786 struct device *dev = hba->dev;
10787
10788 /*
10789 * dev_set_drvdata() must be called before any callbacks are registered
10790 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10791 * sysfs).
10792 */
10793 dev_set_drvdata(dev, hba);
10794
10795 if (!mmio_base) {
10796 dev_err(hba->dev,
10797 "Invalid memory reference for mmio_base is NULL\n");
10798 err = -ENODEV;
10799 goto out_error;
10800 }
10801
10802 hba->mmio_base = mmio_base;
10803 hba->irq = irq;
10804 hba->vps = &ufs_hba_vps;
10805
10806 /*
10807 * Initialize clk_gating.lock early since it is being used in
10808 * ufshcd_setup_clocks()
10809 */
10810 spin_lock_init(&hba->clk_gating.lock);
10811
10812 /* Initialize mutex for PM QoS request synchronization */
10813 mutex_init(&hba->pm_qos_mutex);
10814
10815 /*
10816 * Set the default power management level for runtime and system PM.
10817 * Host controller drivers can override them in their
10818 * 'ufs_hba_variant_ops::init' callback.
10819 *
10820 * Default power saving mode is to keep UFS link in Hibern8 state
10821 * and UFS device in sleep state.
10822 */
10823 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10824 UFS_SLEEP_PWR_MODE,
10825 UIC_LINK_HIBERN8_STATE);
10826 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10827 UFS_SLEEP_PWR_MODE,
10828 UIC_LINK_HIBERN8_STATE);
10829
10830 /*
10831 * Most ufs devices require 1ms delay after vcc is powered off before
10832 * it can be powered on again. Set the default to 2ms. The platform
10833 * drivers can override this setting as needed.
10834 */
10835 hba->vcc_off_delay_us = 2000;
10836
10837 err = ufshcd_hba_init(hba);
10838 if (err)
10839 goto out_error;
10840
10841 /* Read capabilities registers */
10842 err = ufshcd_hba_capabilities(hba);
10843 if (err)
10844 goto out_disable;
10845
10846 /* Get UFS version supported by the controller */
10847 hba->ufs_version = ufshcd_get_ufs_version(hba);
10848
10849 /* Get Interrupt bit mask per version */
10850 hba->intr_mask = ufshcd_get_intr_mask(hba);
10851
10852 err = ufshcd_set_dma_mask(hba);
10853 if (err) {
10854 dev_err(hba->dev, "set dma mask failed\n");
10855 goto out_disable;
10856 }
10857
10858 /* Allocate memory for host memory space */
10859 err = ufshcd_memory_alloc(hba);
10860 if (err) {
10861 dev_err(hba->dev, "Memory allocation failed\n");
10862 goto out_disable;
10863 }
10864
10865 /* Configure LRB */
10866 ufshcd_host_memory_configure(hba);
10867
10868 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10869 /*
10870 * Set the queue depth for WLUNs. ufs_get_device_desc() will increase
10871 * host->cmd_per_lun to a larger value.
10872 */
10873 host->cmd_per_lun = 1;
10874 host->max_id = UFSHCD_MAX_ID;
10875 host->max_lun = UFS_MAX_LUNS;
10876 host->max_channel = UFSHCD_MAX_CHANNEL;
10877 host->unique_id = host->host_no;
10878 host->max_cmd_len = UFS_CDB_SIZE;
10879 host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10880
10881 /* Use default RPM delay if host not set */
10882 if (host->rpm_autosuspend_delay == 0)
10883 host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10884
10885 hba->max_pwr_info.is_valid = false;
10886
10887 /* Initialize work queues */
10888 hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM,
10889 hba->host->host_no);
10890 if (!hba->eh_wq) {
10891 dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10892 __func__);
10893 err = -ENOMEM;
10894 goto out_disable;
10895 }
10896 INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10897 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10898
10899 sema_init(&hba->host_sem, 1);
10900
10901 /* Initialize UIC command mutex */
10902 mutex_init(&hba->uic_cmd_mutex);
10903
10904 /* Initialize mutex for device management commands */
10905 mutex_init(&hba->dev_cmd.lock);
10906
10907 /* Initialize mutex for exception event control */
10908 mutex_init(&hba->ee_ctrl_mutex);
10909
10910 mutex_init(&hba->wb_mutex);
10911
10912 init_rwsem(&hba->clk_scaling_lock);
10913
10914 ufshcd_init_clk_gating(hba);
10915
10916 ufshcd_init_clk_scaling(hba);
10917
10918 /*
10919 * In order to avoid any spurious interrupt immediately after
10920 * registering UFS controller interrupt handler, clear any pending UFS
10921 * interrupt status and disable all the UFS interrupts.
10922 */
10923 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10924 REG_INTERRUPT_STATUS);
10925 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10926 /*
10927 * Make sure that UFS interrupts are disabled and any pending interrupt
10928 * status is cleared before registering UFS interrupt handler.
10929 */
10930 ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10931
10932 /* IRQ registration */
10933 err = devm_request_threaded_irq(dev, irq, ufshcd_intr, ufshcd_threaded_intr,
10934 IRQF_ONESHOT | IRQF_SHARED, UFSHCD, hba);
10935 if (err) {
10936 dev_err(hba->dev, "request irq failed\n");
10937 goto out_disable;
10938 } else {
10939 hba->is_irq_enabled = true;
10940 }
10941
10942 /* Reset the attached device */
10943 ufshcd_device_reset(hba);
10944
10945 ufshcd_init_crypto(hba);
10946
10947 /* Host controller enable */
10948 err = ufshcd_hba_enable(hba);
10949 if (err) {
10950 dev_err(hba->dev, "Host controller enable failed\n");
10951 ufshcd_print_evt_hist(hba);
10952 ufshcd_print_host_state(hba);
10953 goto out_disable;
10954 }
10955
10956 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10957 INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10958
10959 /* Set the default auto-hiberate idle timer value to 150 ms */
10960 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10961 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10962 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10963 }
10964
10965 err = ufshcd_add_scsi_host(hba);
10966 if (err)
10967 goto out_disable;
10968
10969 /* Hold auto suspend until async scan completes */
10970 pm_runtime_get_sync(dev);
10971
10972 /*
10973 * We are assuming that device wasn't put in sleep/power-down
10974 * state exclusively during the boot stage before kernel.
10975 * This assumption helps avoid doing link startup twice during
10976 * ufshcd_probe_hba().
10977 */
10978 ufshcd_set_ufs_dev_active(hba);
10979
10980 /* Initialize hba, detect and initialize UFS device */
10981 ktime_t probe_start = ktime_get();
10982
10983 hba->ufshcd_state = UFSHCD_STATE_RESET;
10984
10985 err = ufshcd_link_startup(hba);
10986 if (err)
10987 goto out_disable;
10988
10989 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
10990 goto initialized;
10991
10992 /* Debug counters initialization */
10993 ufshcd_clear_dbg_ufs_stats(hba);
10994
10995 /* UniPro link is active now */
10996 ufshcd_set_link_active(hba);
10997
10998 /* Verify device initialization by sending NOP OUT UPIU */
10999 err = ufshcd_verify_dev_init(hba);
11000 if (err)
11001 goto out_disable;
11002
11003 /* Initiate UFS initialization, and waiting until completion */
11004 err = ufshcd_complete_dev_init(hba);
11005 if (err)
11006 goto out_disable;
11007
11008 err = ufshcd_device_params_init(hba);
11009 if (err)
11010 goto out_disable;
11011
11012 err = ufshcd_post_device_init(hba);
11013
11014 initialized:
11015 ufshcd_process_probe_result(hba, probe_start, err);
11016 if (err)
11017 goto out_disable;
11018
11019 ufs_sysfs_add_nodes(hba->dev);
11020 async_schedule(ufshcd_async_scan, hba);
11021
11022 device_enable_async_suspend(dev);
11023 ufshcd_pm_qos_init(hba);
11024 return 0;
11025
11026 out_disable:
11027 hba->is_irq_enabled = false;
11028 ufshcd_hba_exit(hba);
11029 out_error:
11030 return err > 0 ? -EIO : err;
11031 }
11032 EXPORT_SYMBOL_GPL(ufshcd_init);
11033
ufshcd_resume_complete(struct device * dev)11034 void ufshcd_resume_complete(struct device *dev)
11035 {
11036 struct ufs_hba *hba = dev_get_drvdata(dev);
11037
11038 if (hba->complete_put) {
11039 ufshcd_rpm_put(hba);
11040 hba->complete_put = false;
11041 }
11042 }
11043 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
11044
ufshcd_rpm_ok_for_spm(struct ufs_hba * hba)11045 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
11046 {
11047 struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
11048 enum ufs_dev_pwr_mode dev_pwr_mode;
11049 enum uic_link_state link_state;
11050 unsigned long flags;
11051 bool res;
11052
11053 spin_lock_irqsave(&dev->power.lock, flags);
11054 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
11055 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
11056 res = pm_runtime_suspended(dev) &&
11057 hba->curr_dev_pwr_mode == dev_pwr_mode &&
11058 hba->uic_link_state == link_state &&
11059 !hba->dev_info.b_rpm_dev_flush_capable;
11060 spin_unlock_irqrestore(&dev->power.lock, flags);
11061
11062 return res;
11063 }
11064
__ufshcd_suspend_prepare(struct device * dev,bool rpm_ok_for_spm)11065 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
11066 {
11067 struct ufs_hba *hba = dev_get_drvdata(dev);
11068 int ret;
11069
11070 /*
11071 * SCSI assumes that runtime-pm and system-pm for scsi drivers
11072 * are same. And it doesn't wake up the device for system-suspend
11073 * if it's runtime suspended. But ufs doesn't follow that.
11074 * Refer ufshcd_resume_complete()
11075 */
11076 if (hba->ufs_device_wlun) {
11077 /* Prevent runtime suspend */
11078 ufshcd_rpm_get_noresume(hba);
11079 /*
11080 * Check if already runtime suspended in same state as system
11081 * suspend would be.
11082 */
11083 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
11084 /* RPM state is not ok for SPM, so runtime resume */
11085 ret = ufshcd_rpm_resume(hba);
11086 if (ret < 0 && ret != -EACCES) {
11087 ufshcd_rpm_put(hba);
11088 return ret;
11089 }
11090 }
11091 hba->complete_put = true;
11092 }
11093 return 0;
11094 }
11095 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
11096
ufshcd_suspend_prepare(struct device * dev)11097 int ufshcd_suspend_prepare(struct device *dev)
11098 {
11099 return __ufshcd_suspend_prepare(dev, true);
11100 }
11101 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
11102
11103 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_poweroff(struct device * dev)11104 static int ufshcd_wl_poweroff(struct device *dev)
11105 {
11106 struct scsi_device *sdev = to_scsi_device(dev);
11107 struct ufs_hba *hba = shost_priv(sdev->host);
11108
11109 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
11110 return 0;
11111 }
11112 #endif
11113
ufshcd_wl_probe(struct device * dev)11114 static int ufshcd_wl_probe(struct device *dev)
11115 {
11116 struct scsi_device *sdev = to_scsi_device(dev);
11117
11118 if (!is_device_wlun(sdev))
11119 return -ENODEV;
11120
11121 blk_pm_runtime_init(sdev->request_queue, dev);
11122 pm_runtime_set_autosuspend_delay(dev, 0);
11123 pm_runtime_allow(dev);
11124
11125 return 0;
11126 }
11127
ufshcd_wl_remove(struct device * dev)11128 static int ufshcd_wl_remove(struct device *dev)
11129 {
11130 pm_runtime_forbid(dev);
11131 return 0;
11132 }
11133
11134 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
11135 #ifdef CONFIG_PM_SLEEP
11136 .suspend = ufshcd_wl_suspend,
11137 .resume = ufshcd_wl_resume,
11138 .freeze = ufshcd_wl_suspend,
11139 .thaw = ufshcd_wl_resume,
11140 .poweroff = ufshcd_wl_poweroff,
11141 .restore = ufshcd_wl_resume,
11142 #endif
11143 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
11144 };
11145
ufshcd_check_header_layout(void)11146 static void ufshcd_check_header_layout(void)
11147 {
11148 /*
11149 * gcc compilers before version 10 cannot do constant-folding for
11150 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
11151 * before.
11152 */
11153 if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
11154 return;
11155
11156 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11157 .cci = 3})[0] != 3);
11158
11159 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11160 .ehs_length = 2})[1] != 2);
11161
11162 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11163 .enable_crypto = 1})[2]
11164 != 0x80);
11165
11166 BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
11167 .command_type = 5,
11168 .data_direction = 3,
11169 .interrupt = 1,
11170 })[3]) != ((5 << 4) | (3 << 1) | 1));
11171
11172 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
11173 .dunl = cpu_to_le32(0xdeadbeef)})[1] !=
11174 cpu_to_le32(0xdeadbeef));
11175
11176 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11177 .ocs = 4})[8] != 4);
11178
11179 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11180 .cds = 5})[9] != 5);
11181
11182 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
11183 .dunu = cpu_to_le32(0xbadcafe)})[3] !=
11184 cpu_to_le32(0xbadcafe));
11185
11186 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
11187 .iid = 0xf })[4] != 0xf0);
11188
11189 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
11190 .command_set_type = 0xf })[4] != 0xf);
11191 }
11192
11193 /*
11194 * ufs_dev_wlun_template - describes ufs device wlun
11195 * ufs-device wlun - used to send pm commands
11196 * All luns are consumers of ufs-device wlun.
11197 *
11198 * Currently, no sd driver is present for wluns.
11199 * Hence the no specific pm operations are performed.
11200 * With ufs design, SSU should be sent to ufs-device wlun.
11201 * Hence register a scsi driver for ufs wluns only.
11202 */
11203 static struct scsi_driver ufs_dev_wlun_template = {
11204 .gendrv = {
11205 .name = "ufs_device_wlun",
11206 .probe = ufshcd_wl_probe,
11207 .remove = ufshcd_wl_remove,
11208 .pm = &ufshcd_wl_pm_ops,
11209 .shutdown = ufshcd_wl_shutdown,
11210 },
11211 };
11212
ufshcd_core_init(void)11213 static int __init ufshcd_core_init(void)
11214 {
11215 int ret;
11216
11217 ufshcd_check_header_layout();
11218
11219 ufs_debugfs_init();
11220
11221 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
11222 if (ret)
11223 ufs_debugfs_exit();
11224 return ret;
11225 }
11226
ufshcd_core_exit(void)11227 static void __exit ufshcd_core_exit(void)
11228 {
11229 ufs_debugfs_exit();
11230 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
11231 }
11232
11233 module_init(ufshcd_core_init);
11234 module_exit(ufshcd_core_exit);
11235
11236 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
11237 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
11238 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
11239 MODULE_SOFTDEP("pre: governor_simpleondemand");
11240 MODULE_LICENSE("GPL");
11241