xref: /linux/drivers/ufs/core/ufshcd.c (revision 3e93d5bbcbfc3808f83712c0701f9d4c148cc8ed)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <linux/unaligned.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include "ufs_trace.h"
43 
44 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
45 				 UTP_TASK_REQ_COMPL |\
46 				 UFSHCD_ERROR_MASK)
47 
48 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
49 				 UFSHCD_ERROR_MASK |\
50 				 MCQ_CQ_EVENT_STATUS)
51 
52 
53 /* UIC command timeout, unit: ms */
54 enum {
55 	UIC_CMD_TIMEOUT_DEFAULT	= 500,
56 	UIC_CMD_TIMEOUT_MAX	= 5000,
57 };
58 /* NOP OUT retries waiting for NOP IN response */
59 #define NOP_OUT_RETRIES    10
60 /* Timeout after 50 msecs if NOP OUT hangs without response */
61 #define NOP_OUT_TIMEOUT    50 /* msecs */
62 
63 /* Query request retries */
64 #define QUERY_REQ_RETRIES 3
65 /* Query request timeout */
66 enum {
67 	QUERY_REQ_TIMEOUT_MIN     = 1,
68 	QUERY_REQ_TIMEOUT_DEFAULT = 1500,
69 	QUERY_REQ_TIMEOUT_MAX     = 30000
70 };
71 
72 /* Advanced RPMB request timeout */
73 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
74 
75 /* Task management command timeout */
76 #define TM_CMD_TIMEOUT	100 /* msecs */
77 
78 /* maximum number of retries for a general UIC command  */
79 #define UFS_UIC_COMMAND_RETRIES 3
80 
81 /* maximum number of link-startup retries */
82 #define DME_LINKSTARTUP_RETRIES 3
83 
84 /* maximum number of reset retries before giving up */
85 #define MAX_HOST_RESET_RETRIES 5
86 
87 /* Maximum number of error handler retries before giving up */
88 #define MAX_ERR_HANDLER_RETRIES 5
89 
90 /* Expose the flag value from utp_upiu_query.value */
91 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
92 
93 /* Interrupt aggregation default timeout, unit: 40us */
94 #define INT_AGGR_DEF_TO	0x02
95 
96 /* default delay of autosuspend: 2000 ms */
97 #define RPM_AUTOSUSPEND_DELAY_MS 2000
98 
99 /* Default delay of RPM device flush delayed work */
100 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
101 
102 /* Default value of wait time before gating device ref clock */
103 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
104 
105 /* Polling time to wait for fDeviceInit */
106 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
107 
108 /* Default RTC update every 10 seconds */
109 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
110 
111 /* bMaxNumOfRTT is equal to two after device manufacturing */
112 #define DEFAULT_MAX_NUM_RTT 2
113 
114 /* UFSHC 4.0 compliant HC support this mode. */
115 static bool use_mcq_mode = true;
116 
is_mcq_supported(struct ufs_hba * hba)117 static bool is_mcq_supported(struct ufs_hba *hba)
118 {
119 	return hba->mcq_sup && use_mcq_mode;
120 }
121 
122 module_param(use_mcq_mode, bool, 0644);
123 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
124 
125 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT;
126 
uic_cmd_timeout_set(const char * val,const struct kernel_param * kp)127 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp)
128 {
129 	return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT,
130 				     UIC_CMD_TIMEOUT_MAX);
131 }
132 
133 static const struct kernel_param_ops uic_cmd_timeout_ops = {
134 	.set = uic_cmd_timeout_set,
135 	.get = param_get_uint,
136 };
137 
138 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644);
139 MODULE_PARM_DESC(uic_cmd_timeout,
140 		 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 5 seconds inclusively");
141 
142 static unsigned int dev_cmd_timeout = QUERY_REQ_TIMEOUT_DEFAULT;
143 
dev_cmd_timeout_set(const char * val,const struct kernel_param * kp)144 static int dev_cmd_timeout_set(const char *val, const struct kernel_param *kp)
145 {
146 	return param_set_uint_minmax(val, kp, QUERY_REQ_TIMEOUT_MIN,
147 				     QUERY_REQ_TIMEOUT_MAX);
148 }
149 
150 static const struct kernel_param_ops dev_cmd_timeout_ops = {
151 	.set = dev_cmd_timeout_set,
152 	.get = param_get_uint,
153 };
154 
155 module_param_cb(dev_cmd_timeout, &dev_cmd_timeout_ops, &dev_cmd_timeout, 0644);
156 MODULE_PARM_DESC(dev_cmd_timeout,
157 		 "UFS Device command timeout in milliseconds. Defaults to 1.5s. Supported values range from 1ms to 30 seconds inclusively");
158 
159 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
160 	({                                                              \
161 		int _ret;                                               \
162 		if (_on)                                                \
163 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
164 		else                                                    \
165 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
166 		_ret;                                                   \
167 	})
168 
169 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
170 	size_t __len = (len);                                            \
171 	print_hex_dump(KERN_ERR, prefix_str,                             \
172 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
173 		       16, 4, buf, __len, false);                        \
174 } while (0)
175 
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)176 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
177 		     const char *prefix)
178 {
179 	u32 *regs;
180 	size_t pos;
181 
182 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
183 		return -EINVAL;
184 
185 	regs = kzalloc(len, GFP_ATOMIC);
186 	if (!regs)
187 		return -ENOMEM;
188 
189 	for (pos = 0; pos < len; pos += 4) {
190 		if (offset == 0 &&
191 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
192 		    pos <= REG_UIC_ERROR_CODE_DME)
193 			continue;
194 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
195 	}
196 
197 	ufshcd_hex_dump(prefix, regs, len);
198 	kfree(regs);
199 
200 	return 0;
201 }
202 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
203 
204 enum {
205 	UFSHCD_MAX_CHANNEL	= 0,
206 	UFSHCD_MAX_ID		= 1,
207 };
208 
209 static const char *const ufshcd_state_name[] = {
210 	[UFSHCD_STATE_RESET]			= "reset",
211 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
212 	[UFSHCD_STATE_ERROR]			= "error",
213 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
214 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
215 };
216 
217 /* UFSHCD error handling flags */
218 enum {
219 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
220 };
221 
222 /* UFSHCD UIC layer error flags */
223 enum {
224 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
225 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
226 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
227 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
228 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
229 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
230 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
231 };
232 
233 #define ufshcd_set_eh_in_progress(h) \
234 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
235 #define ufshcd_eh_in_progress(h) \
236 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
237 #define ufshcd_clear_eh_in_progress(h) \
238 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
239 
240 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
241 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
242 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
243 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
244 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
245 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
246 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
247 	/*
248 	 * For DeepSleep, the link is first put in hibern8 and then off.
249 	 * Leaving the link in hibern8 is not supported.
250 	 */
251 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
252 };
253 
254 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)255 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
256 {
257 	return ufs_pm_lvl_states[lvl].dev_state;
258 }
259 
260 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)261 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
262 {
263 	return ufs_pm_lvl_states[lvl].link_state;
264 }
265 
266 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)267 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
268 					enum uic_link_state link_state)
269 {
270 	enum ufs_pm_level lvl;
271 
272 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
273 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
274 			(ufs_pm_lvl_states[lvl].link_state == link_state))
275 			return lvl;
276 	}
277 
278 	/* if no match found, return the level 0 */
279 	return UFS_PM_LVL_0;
280 }
281 
ufshcd_has_pending_tasks(struct ufs_hba * hba)282 static bool ufshcd_has_pending_tasks(struct ufs_hba *hba)
283 {
284 	return hba->outstanding_tasks || hba->active_uic_cmd ||
285 	       hba->uic_async_done;
286 }
287 
ufshcd_is_ufs_dev_busy(struct ufs_hba * hba)288 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
289 {
290 	return scsi_host_busy(hba->host) || ufshcd_has_pending_tasks(hba);
291 }
292 
293 static const struct ufs_dev_quirk ufs_fixups[] = {
294 	/* UFS cards deviations table */
295 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
296 	  .model = UFS_ANY_MODEL,
297 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
298 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
299 	  .model = UFS_ANY_MODEL,
300 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
301 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
302 		   UFS_DEVICE_QUIRK_PA_HIBER8TIME |
303 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
304 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
305 	  .model = UFS_ANY_MODEL,
306 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
307 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
308 	  .model = "hB8aL1" /*H28U62301AMR*/,
309 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
310 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
311 	  .model = UFS_ANY_MODEL,
312 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
313 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
314 	  .model = "THGLF2G9C8KBADG",
315 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
316 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
317 	  .model = "THGLF2G9D8KBADG",
318 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
319 	{}
320 };
321 
322 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
323 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
324 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
325 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
326 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
327 static void ufshcd_hba_exit(struct ufs_hba *hba);
328 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params);
329 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
330 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
331 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
332 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
333 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
334 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
335 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
336 			     bool scale_up);
337 static irqreturn_t ufshcd_intr(int irq, void *__hba);
338 static int ufshcd_change_power_mode(struct ufs_hba *hba,
339 			     struct ufs_pa_layer_attr *pwr_mode);
340 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
341 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
342 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
343 					 struct ufs_vreg *vreg);
344 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
345 						 bool enable);
346 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
347 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
348 
ufshcd_enable_irq(struct ufs_hba * hba)349 void ufshcd_enable_irq(struct ufs_hba *hba)
350 {
351 	if (!hba->is_irq_enabled) {
352 		enable_irq(hba->irq);
353 		hba->is_irq_enabled = true;
354 	}
355 }
356 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
357 
ufshcd_disable_irq(struct ufs_hba * hba)358 void ufshcd_disable_irq(struct ufs_hba *hba)
359 {
360 	if (hba->is_irq_enabled) {
361 		disable_irq(hba->irq);
362 		hba->is_irq_enabled = false;
363 	}
364 }
365 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
366 
367 /**
368  * ufshcd_enable_intr - enable interrupts
369  * @hba: per adapter instance
370  * @intrs: interrupt bits
371  */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)372 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
373 {
374 	u32 old_val = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
375 	u32 new_val = old_val | intrs;
376 
377 	if (new_val != old_val)
378 		ufshcd_writel(hba, new_val, REG_INTERRUPT_ENABLE);
379 }
380 
381 /**
382  * ufshcd_disable_intr - disable interrupts
383  * @hba: per adapter instance
384  * @intrs: interrupt bits
385  */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)386 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
387 {
388 	u32 old_val = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
389 	u32 new_val = old_val & ~intrs;
390 
391 	if (new_val != old_val)
392 		ufshcd_writel(hba, new_val, REG_INTERRUPT_ENABLE);
393 }
394 
ufshcd_configure_wb(struct ufs_hba * hba)395 static void ufshcd_configure_wb(struct ufs_hba *hba)
396 {
397 	if (!ufshcd_is_wb_allowed(hba))
398 		return;
399 
400 	ufshcd_wb_toggle(hba, true);
401 
402 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
403 
404 	if (ufshcd_is_wb_buf_flush_allowed(hba))
405 		ufshcd_wb_toggle_buf_flush(hba, true);
406 }
407 
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)408 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
409 				      enum ufs_trace_str_t str_t)
410 {
411 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
412 	struct utp_upiu_header *header;
413 
414 	if (!trace_ufshcd_upiu_enabled())
415 		return;
416 
417 	if (str_t == UFS_CMD_SEND)
418 		header = &rq->header;
419 	else
420 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
421 
422 	trace_ufshcd_upiu(hba, str_t, header, &rq->sc.cdb,
423 			  UFS_TSF_CDB);
424 }
425 
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,enum ufs_trace_str_t str_t,struct utp_upiu_req * rq_rsp)426 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
427 					enum ufs_trace_str_t str_t,
428 					struct utp_upiu_req *rq_rsp)
429 {
430 	if (!trace_ufshcd_upiu_enabled())
431 		return;
432 
433 	trace_ufshcd_upiu(hba, str_t, &rq_rsp->header,
434 			  &rq_rsp->qr, UFS_TSF_OSF);
435 }
436 
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)437 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
438 				     enum ufs_trace_str_t str_t)
439 {
440 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
441 
442 	if (!trace_ufshcd_upiu_enabled())
443 		return;
444 
445 	if (str_t == UFS_TM_SEND)
446 		trace_ufshcd_upiu(hba, str_t,
447 				  &descp->upiu_req.req_header,
448 				  &descp->upiu_req.input_param1,
449 				  UFS_TSF_TM_INPUT);
450 	else
451 		trace_ufshcd_upiu(hba, str_t,
452 				  &descp->upiu_rsp.rsp_header,
453 				  &descp->upiu_rsp.output_param1,
454 				  UFS_TSF_TM_OUTPUT);
455 }
456 
ufshcd_add_uic_command_trace(struct ufs_hba * hba,const struct uic_command * ucmd,enum ufs_trace_str_t str_t)457 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
458 					 const struct uic_command *ucmd,
459 					 enum ufs_trace_str_t str_t)
460 {
461 	u32 cmd;
462 
463 	if (!trace_ufshcd_uic_command_enabled())
464 		return;
465 
466 	if (str_t == UFS_CMD_SEND)
467 		cmd = ucmd->command;
468 	else
469 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
470 
471 	trace_ufshcd_uic_command(hba, str_t, cmd,
472 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
473 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
474 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
475 }
476 
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)477 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
478 				     enum ufs_trace_str_t str_t)
479 {
480 	u64 lba = 0;
481 	u8 opcode = 0, group_id = 0;
482 	u32 doorbell = 0;
483 	u32 intr;
484 	u32 hwq_id = 0;
485 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
486 	struct scsi_cmnd *cmd = lrbp->cmd;
487 	struct request *rq = scsi_cmd_to_rq(cmd);
488 	int transfer_len = -1;
489 
490 	if (!cmd)
491 		return;
492 
493 	/* trace UPIU also */
494 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
495 	if (!trace_ufshcd_command_enabled())
496 		return;
497 
498 	opcode = cmd->cmnd[0];
499 
500 	if (opcode == READ_10 || opcode == WRITE_10) {
501 		/*
502 		 * Currently we only fully trace read(10) and write(10) commands
503 		 */
504 		transfer_len =
505 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
506 		lba = scsi_get_lba(cmd);
507 		if (opcode == WRITE_10)
508 			group_id = lrbp->cmd->cmnd[6];
509 	} else if (opcode == UNMAP) {
510 		/*
511 		 * The number of Bytes to be unmapped beginning with the lba.
512 		 */
513 		transfer_len = blk_rq_bytes(rq);
514 		lba = scsi_get_lba(cmd);
515 	}
516 
517 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
518 
519 	if (hba->mcq_enabled) {
520 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
521 
522 		hwq_id = hwq->id;
523 	} else {
524 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
525 	}
526 	trace_ufshcd_command(cmd->device, hba, str_t, tag, doorbell, hwq_id,
527 			     transfer_len, intr, lba, opcode, group_id);
528 }
529 
ufshcd_print_clk_freqs(struct ufs_hba * hba)530 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
531 {
532 	struct ufs_clk_info *clki;
533 	struct list_head *head = &hba->clk_list_head;
534 
535 	if (list_empty(head))
536 		return;
537 
538 	list_for_each_entry(clki, head, list) {
539 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
540 				clki->max_freq)
541 			dev_err(hba->dev, "clk: %s, rate: %u\n",
542 					clki->name, clki->curr_freq);
543 	}
544 }
545 
ufshcd_print_evt(struct ufs_hba * hba,u32 id,const char * err_name)546 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
547 			     const char *err_name)
548 {
549 	int i;
550 	bool found = false;
551 	const struct ufs_event_hist *e;
552 
553 	if (id >= UFS_EVT_CNT)
554 		return;
555 
556 	e = &hba->ufs_stats.event[id];
557 
558 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
559 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
560 
561 		if (e->tstamp[p] == 0)
562 			continue;
563 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
564 			e->val[p], div_u64(e->tstamp[p], 1000));
565 		found = true;
566 	}
567 
568 	if (!found)
569 		dev_err(hba->dev, "No record of %s\n", err_name);
570 	else
571 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
572 }
573 
ufshcd_print_evt_hist(struct ufs_hba * hba)574 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
575 {
576 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
577 
578 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
579 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
580 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
581 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
582 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
583 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
584 			 "auto_hibern8_err");
585 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
586 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
587 			 "link_startup_fail");
588 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
589 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
590 			 "suspend_fail");
591 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
592 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
593 			 "wlun suspend_fail");
594 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
595 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
596 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
597 
598 	ufshcd_vops_dbg_register_dump(hba);
599 }
600 
601 static
ufshcd_print_tr(struct ufs_hba * hba,int tag,bool pr_prdt)602 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
603 {
604 	const struct ufshcd_lrb *lrbp;
605 	int prdt_length;
606 
607 	lrbp = &hba->lrb[tag];
608 
609 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
610 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
611 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
612 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
613 	dev_err(hba->dev,
614 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
615 		tag, (u64)lrbp->utrd_dma_addr);
616 
617 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
618 			sizeof(struct utp_transfer_req_desc));
619 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
620 		(u64)lrbp->ucd_req_dma_addr);
621 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
622 			sizeof(struct utp_upiu_req));
623 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
624 		(u64)lrbp->ucd_rsp_dma_addr);
625 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
626 			sizeof(struct utp_upiu_rsp));
627 
628 	prdt_length = le16_to_cpu(
629 		lrbp->utr_descriptor_ptr->prd_table_length);
630 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
631 		prdt_length /= ufshcd_sg_entry_size(hba);
632 
633 	dev_err(hba->dev,
634 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
635 		tag, prdt_length,
636 		(u64)lrbp->ucd_prdt_dma_addr);
637 
638 	if (pr_prdt)
639 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
640 			ufshcd_sg_entry_size(hba) * prdt_length);
641 }
642 
ufshcd_print_tr_iter(struct request * req,void * priv)643 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
644 {
645 	struct scsi_device *sdev = req->q->queuedata;
646 	struct Scsi_Host *shost = sdev->host;
647 	struct ufs_hba *hba = shost_priv(shost);
648 
649 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
650 
651 	return true;
652 }
653 
654 /**
655  * ufshcd_print_trs_all - print trs for all started requests.
656  * @hba: per-adapter instance.
657  * @pr_prdt: need to print prdt or not.
658  */
ufshcd_print_trs_all(struct ufs_hba * hba,bool pr_prdt)659 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
660 {
661 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
662 }
663 
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)664 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
665 {
666 	int tag;
667 
668 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
669 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
670 
671 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
672 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
673 	}
674 }
675 
ufshcd_print_host_state(struct ufs_hba * hba)676 static void ufshcd_print_host_state(struct ufs_hba *hba)
677 {
678 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
679 
680 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
681 	dev_err(hba->dev, "%d outstanding reqs, tasks=0x%lx\n",
682 		scsi_host_busy(hba->host), hba->outstanding_tasks);
683 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
684 		hba->saved_err, hba->saved_uic_err);
685 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
686 		hba->curr_dev_pwr_mode, hba->uic_link_state);
687 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
688 		hba->pm_op_in_progress, hba->is_sys_suspended);
689 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
690 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
691 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
692 	dev_err(hba->dev,
693 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
694 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
695 		hba->ufs_stats.hibern8_exit_cnt);
696 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
697 		hba->eh_flags, hba->req_abort_count);
698 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
699 		hba->ufs_version, hba->capabilities, hba->caps);
700 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
701 		hba->dev_quirks);
702 	if (sdev_ufs)
703 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
704 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
705 
706 	ufshcd_print_clk_freqs(hba);
707 }
708 
709 /**
710  * ufshcd_print_pwr_info - print power params as saved in hba
711  * power info
712  * @hba: per-adapter instance
713  */
ufshcd_print_pwr_info(struct ufs_hba * hba)714 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
715 {
716 	static const char * const names[] = {
717 		"INVALID MODE",
718 		"FAST MODE",
719 		"SLOW_MODE",
720 		"INVALID MODE",
721 		"FASTAUTO_MODE",
722 		"SLOWAUTO_MODE",
723 		"INVALID MODE",
724 	};
725 
726 	/*
727 	 * Using dev_dbg to avoid messages during runtime PM to avoid
728 	 * never-ending cycles of messages written back to storage by user space
729 	 * causing runtime resume, causing more messages and so on.
730 	 */
731 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
732 		 __func__,
733 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
734 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
735 		 names[hba->pwr_info.pwr_rx],
736 		 names[hba->pwr_info.pwr_tx],
737 		 hba->pwr_info.hs_rate);
738 }
739 
ufshcd_device_reset(struct ufs_hba * hba)740 static void ufshcd_device_reset(struct ufs_hba *hba)
741 {
742 	int err;
743 
744 	err = ufshcd_vops_device_reset(hba);
745 
746 	if (!err) {
747 		ufshcd_set_ufs_dev_active(hba);
748 		if (ufshcd_is_wb_allowed(hba)) {
749 			hba->dev_info.wb_enabled = false;
750 			hba->dev_info.wb_buf_flush_enabled = false;
751 		}
752 		if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
753 			hba->dev_info.rtc_time_baseline = 0;
754 	}
755 	if (err != -EOPNOTSUPP)
756 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
757 }
758 
ufshcd_delay_us(unsigned long us,unsigned long tolerance)759 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
760 {
761 	if (!us)
762 		return;
763 
764 	if (us < 10)
765 		udelay(us);
766 	else
767 		usleep_range(us, us + tolerance);
768 }
769 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
770 
771 /**
772  * ufshcd_wait_for_register - wait for register value to change
773  * @hba: per-adapter interface
774  * @reg: mmio register offset
775  * @mask: mask to apply to the read register value
776  * @val: value to wait for
777  * @interval_us: polling interval in microseconds
778  * @timeout_ms: timeout in milliseconds
779  *
780  * Return: -ETIMEDOUT on error, zero on success.
781  */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)782 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
783 				    u32 val, unsigned long interval_us,
784 				    unsigned long timeout_ms)
785 {
786 	u32 v;
787 
788 	val &= mask; /* ignore bits that we don't intend to wait on */
789 
790 	return read_poll_timeout(ufshcd_readl, v, (v & mask) == val,
791 				 interval_us, timeout_ms * 1000, false, hba, reg);
792 }
793 
794 /**
795  * ufshcd_get_intr_mask - Get the interrupt bit mask
796  * @hba: Pointer to adapter instance
797  *
798  * Return: interrupt bit mask per version
799  */
ufshcd_get_intr_mask(struct ufs_hba * hba)800 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
801 {
802 	if (hba->ufs_version <= ufshci_version(2, 0))
803 		return INTERRUPT_MASK_ALL_VER_11;
804 
805 	return INTERRUPT_MASK_ALL_VER_21;
806 }
807 
808 /**
809  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
810  * @hba: Pointer to adapter instance
811  *
812  * Return: UFSHCI version supported by the controller
813  */
ufshcd_get_ufs_version(struct ufs_hba * hba)814 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
815 {
816 	u32 ufshci_ver;
817 
818 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
819 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
820 	else
821 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
822 
823 	/*
824 	 * UFSHCI v1.x uses a different version scheme, in order
825 	 * to allow the use of comparisons with the ufshci_version
826 	 * function, we convert it to the same scheme as ufs 2.0+.
827 	 */
828 	if (ufshci_ver & 0x00010000)
829 		return ufshci_version(1, ufshci_ver & 0x00000100);
830 
831 	return ufshci_ver;
832 }
833 
834 /**
835  * ufshcd_is_device_present - Check if any device connected to
836  *			      the host controller
837  * @hba: pointer to adapter instance
838  *
839  * Return: true if device present, false if no device detected
840  */
ufshcd_is_device_present(struct ufs_hba * hba)841 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
842 {
843 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
844 }
845 
846 /**
847  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
848  * @lrbp: pointer to local command reference block
849  * @cqe: pointer to the completion queue entry
850  *
851  * This function is used to get the OCS field from UTRD
852  *
853  * Return: the OCS field in the UTRD.
854  */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp,struct cq_entry * cqe)855 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
856 				      struct cq_entry *cqe)
857 {
858 	if (cqe)
859 		return le32_to_cpu(cqe->status) & MASK_OCS;
860 
861 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
862 }
863 
864 /**
865  * ufshcd_utrl_clear() - Clear requests from the controller request list.
866  * @hba: per adapter instance
867  * @mask: mask with one bit set for each request to be cleared
868  */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 mask)869 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
870 {
871 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
872 		mask = ~mask;
873 	/*
874 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
875 	 * Register (UTRLCLR): This field is bit significant. Each bit
876 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
877 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
878 	 * by host software to indicate to the host controller that a transfer
879 	 * request slot is cleared. The host controller
880 	 * shall free up any resources associated to the request slot
881 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
882 	 * host software indicates no change to request slots by setting the
883 	 * associated bits in this field to ‘1’. Bits in this field shall only
884 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
885 	 */
886 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
887 }
888 
889 /**
890  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
891  * @hba: per adapter instance
892  * @pos: position of the bit to be cleared
893  */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)894 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
895 {
896 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
897 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
898 	else
899 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
900 }
901 
902 /**
903  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
904  * @reg: Register value of host controller status
905  *
906  * Return: 0 on success; a positive value if failed.
907  */
ufshcd_get_lists_status(u32 reg)908 static inline int ufshcd_get_lists_status(u32 reg)
909 {
910 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
911 }
912 
913 /**
914  * ufshcd_get_uic_cmd_result - Get the UIC command result
915  * @hba: Pointer to adapter instance
916  *
917  * This function gets the result of UIC command completion
918  *
919  * Return: 0 on success; non-zero value on error.
920  */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)921 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
922 {
923 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
924 	       MASK_UIC_COMMAND_RESULT;
925 }
926 
927 /**
928  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
929  * @hba: Pointer to adapter instance
930  *
931  * This function gets UIC command argument3
932  *
933  * Return: 0 on success; non-zero value on error.
934  */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)935 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
936 {
937 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
938 }
939 
940 /**
941  * ufshcd_get_req_rsp - returns the TR response transaction type
942  * @ucd_rsp_ptr: pointer to response UPIU
943  *
944  * Return: UPIU type.
945  */
946 static inline enum upiu_response_transaction
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)947 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
948 {
949 	return ucd_rsp_ptr->header.transaction_code;
950 }
951 
952 /**
953  * ufshcd_is_exception_event - Check if the device raised an exception event
954  * @ucd_rsp_ptr: pointer to response UPIU
955  *
956  * The function checks if the device raised an exception event indicated in
957  * the Device Information field of response UPIU.
958  *
959  * Return: true if exception is raised, false otherwise.
960  */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)961 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
962 {
963 	return ucd_rsp_ptr->header.device_information & 1;
964 }
965 
966 /**
967  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
968  * @hba: per adapter instance
969  */
970 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)971 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
972 {
973 	ufshcd_writel(hba, INT_AGGR_ENABLE |
974 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
975 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
976 }
977 
978 /**
979  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
980  * @hba: per adapter instance
981  * @cnt: Interrupt aggregation counter threshold
982  * @tmout: Interrupt aggregation timeout value
983  */
984 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)985 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
986 {
987 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
988 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
989 		      INT_AGGR_TIMEOUT_VAL(tmout),
990 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
991 }
992 
993 /**
994  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
995  * @hba: per adapter instance
996  */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)997 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
998 {
999 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
1000 }
1001 
1002 /**
1003  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
1004  *			When run-stop registers are set to 1, it indicates the
1005  *			host controller that it can process the requests
1006  * @hba: per adapter instance
1007  */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)1008 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
1009 {
1010 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
1011 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
1012 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
1013 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
1014 }
1015 
1016 /**
1017  * ufshcd_hba_start - Start controller initialization sequence
1018  * @hba: per adapter instance
1019  */
ufshcd_hba_start(struct ufs_hba * hba)1020 static inline void ufshcd_hba_start(struct ufs_hba *hba)
1021 {
1022 	u32 val = CONTROLLER_ENABLE;
1023 
1024 	if (ufshcd_crypto_enable(hba))
1025 		val |= CRYPTO_GENERAL_ENABLE;
1026 
1027 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
1028 }
1029 
1030 /**
1031  * ufshcd_is_hba_active - Get controller state
1032  * @hba: per adapter instance
1033  *
1034  * Return: true if and only if the controller is active.
1035  */
ufshcd_is_hba_active(struct ufs_hba * hba)1036 bool ufshcd_is_hba_active(struct ufs_hba *hba)
1037 {
1038 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
1039 }
1040 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
1041 
1042 /**
1043  * ufshcd_pm_qos_init - initialize PM QoS request
1044  * @hba: per adapter instance
1045  */
ufshcd_pm_qos_init(struct ufs_hba * hba)1046 void ufshcd_pm_qos_init(struct ufs_hba *hba)
1047 {
1048 
1049 	if (hba->pm_qos_enabled)
1050 		return;
1051 
1052 	cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1053 
1054 	if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1055 		hba->pm_qos_enabled = true;
1056 }
1057 
1058 /**
1059  * ufshcd_pm_qos_exit - remove request from PM QoS
1060  * @hba: per adapter instance
1061  */
ufshcd_pm_qos_exit(struct ufs_hba * hba)1062 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1063 {
1064 	if (!hba->pm_qos_enabled)
1065 		return;
1066 
1067 	cpu_latency_qos_remove_request(&hba->pm_qos_req);
1068 	hba->pm_qos_enabled = false;
1069 }
1070 
1071 /**
1072  * ufshcd_pm_qos_update - update PM QoS request
1073  * @hba: per adapter instance
1074  * @on: If True, vote for perf PM QoS mode otherwise power save mode
1075  */
ufshcd_pm_qos_update(struct ufs_hba * hba,bool on)1076 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1077 {
1078 	if (!hba->pm_qos_enabled)
1079 		return;
1080 
1081 	cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1082 }
1083 
1084 /**
1085  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1086  * @hba: per adapter instance
1087  * @scale_up: If True, set max possible frequency othewise set low frequency
1088  *
1089  * Return: 0 if successful; < 0 upon failure.
1090  */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)1091 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1092 {
1093 	int ret = 0;
1094 	struct ufs_clk_info *clki;
1095 	struct list_head *head = &hba->clk_list_head;
1096 
1097 	if (list_empty(head))
1098 		goto out;
1099 
1100 	list_for_each_entry(clki, head, list) {
1101 		if (!IS_ERR_OR_NULL(clki->clk)) {
1102 			if (scale_up && clki->max_freq) {
1103 				if (clki->curr_freq == clki->max_freq)
1104 					continue;
1105 
1106 				ret = clk_set_rate(clki->clk, clki->max_freq);
1107 				if (ret) {
1108 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1109 						__func__, clki->name,
1110 						clki->max_freq, ret);
1111 					break;
1112 				}
1113 				trace_ufshcd_clk_scaling(hba,
1114 						"scaled up", clki->name,
1115 						clki->curr_freq,
1116 						clki->max_freq);
1117 
1118 				clki->curr_freq = clki->max_freq;
1119 
1120 			} else if (!scale_up && clki->min_freq) {
1121 				if (clki->curr_freq == clki->min_freq)
1122 					continue;
1123 
1124 				ret = clk_set_rate(clki->clk, clki->min_freq);
1125 				if (ret) {
1126 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1127 						__func__, clki->name,
1128 						clki->min_freq, ret);
1129 					break;
1130 				}
1131 				trace_ufshcd_clk_scaling(hba,
1132 						"scaled down", clki->name,
1133 						clki->curr_freq,
1134 						clki->min_freq);
1135 				clki->curr_freq = clki->min_freq;
1136 			}
1137 		}
1138 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1139 				clki->name, clk_get_rate(clki->clk));
1140 	}
1141 
1142 out:
1143 	return ret;
1144 }
1145 
ufshcd_opp_config_clks(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)1146 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1147 			   struct dev_pm_opp *opp, void *data,
1148 			   bool scaling_down)
1149 {
1150 	struct ufs_hba *hba = dev_get_drvdata(dev);
1151 	struct list_head *head = &hba->clk_list_head;
1152 	struct ufs_clk_info *clki;
1153 	unsigned long freq;
1154 	u8 idx = 0;
1155 	int ret;
1156 
1157 	list_for_each_entry(clki, head, list) {
1158 		if (!IS_ERR_OR_NULL(clki->clk)) {
1159 			freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1160 
1161 			/* Do not set rate for clocks having frequency as 0 */
1162 			if (!freq)
1163 				continue;
1164 
1165 			ret = clk_set_rate(clki->clk, freq);
1166 			if (ret) {
1167 				dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1168 					__func__, clki->name, freq, ret);
1169 				return ret;
1170 			}
1171 
1172 			trace_ufshcd_clk_scaling(hba,
1173 				(scaling_down ? "scaled down" : "scaled up"),
1174 				clki->name, hba->clk_scaling.target_freq, freq);
1175 		}
1176 	}
1177 
1178 	return 0;
1179 }
1180 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1181 
ufshcd_opp_set_rate(struct ufs_hba * hba,unsigned long freq)1182 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1183 {
1184 	struct dev_pm_opp *opp;
1185 	int ret;
1186 
1187 	opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1188 						 &freq, 0);
1189 	if (IS_ERR(opp))
1190 		return PTR_ERR(opp);
1191 
1192 	ret = dev_pm_opp_set_opp(hba->dev, opp);
1193 	dev_pm_opp_put(opp);
1194 
1195 	return ret;
1196 }
1197 
1198 /**
1199  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1200  * @hba: per adapter instance
1201  * @freq: frequency to scale
1202  * @scale_up: True if scaling up and false if scaling down
1203  *
1204  * Return: 0 if successful; < 0 upon failure.
1205  */
ufshcd_scale_clks(struct ufs_hba * hba,unsigned long freq,bool scale_up)1206 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1207 			     bool scale_up)
1208 {
1209 	int ret = 0;
1210 	ktime_t start = ktime_get();
1211 
1212 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, PRE_CHANGE);
1213 	if (ret)
1214 		goto out;
1215 
1216 	if (hba->use_pm_opp)
1217 		ret = ufshcd_opp_set_rate(hba, freq);
1218 	else
1219 		ret = ufshcd_set_clk_freq(hba, scale_up);
1220 	if (ret)
1221 		goto out;
1222 
1223 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, POST_CHANGE);
1224 	if (ret) {
1225 		if (hba->use_pm_opp)
1226 			ufshcd_opp_set_rate(hba,
1227 					    hba->devfreq->previous_freq);
1228 		else
1229 			ufshcd_set_clk_freq(hba, !scale_up);
1230 		goto out;
1231 	}
1232 
1233 	ufshcd_pm_qos_update(hba, scale_up);
1234 
1235 out:
1236 	trace_ufshcd_profile_clk_scaling(hba,
1237 			(scale_up ? "up" : "down"),
1238 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1239 	return ret;
1240 }
1241 
1242 /**
1243  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1244  * @hba: per adapter instance
1245  * @freq: frequency to scale
1246  * @scale_up: True if scaling up and false if scaling down
1247  *
1248  * Return: true if scaling is required, false otherwise.
1249  */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,unsigned long freq,bool scale_up)1250 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1251 					       unsigned long freq, bool scale_up)
1252 {
1253 	struct ufs_clk_info *clki;
1254 	struct list_head *head = &hba->clk_list_head;
1255 
1256 	if (list_empty(head))
1257 		return false;
1258 
1259 	if (hba->use_pm_opp)
1260 		return freq != hba->clk_scaling.target_freq;
1261 
1262 	list_for_each_entry(clki, head, list) {
1263 		if (!IS_ERR_OR_NULL(clki->clk)) {
1264 			if (scale_up && clki->max_freq) {
1265 				if (clki->curr_freq == clki->max_freq)
1266 					continue;
1267 				return true;
1268 			} else if (!scale_up && clki->min_freq) {
1269 				if (clki->curr_freq == clki->min_freq)
1270 					continue;
1271 				return true;
1272 			}
1273 		}
1274 	}
1275 
1276 	return false;
1277 }
1278 
1279 /*
1280  * Determine the number of pending commands by counting the bits in the SCSI
1281  * device budget maps. This approach has been selected because a bit is set in
1282  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1283  * flag. The host_self_blocked flag can be modified by calling
1284  * scsi_block_requests() or scsi_unblock_requests().
1285  */
ufshcd_pending_cmds(struct ufs_hba * hba)1286 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1287 {
1288 	const struct scsi_device *sdev;
1289 	unsigned long flags;
1290 	u32 pending = 0;
1291 
1292 	spin_lock_irqsave(hba->host->host_lock, flags);
1293 	__shost_for_each_device(sdev, hba->host)
1294 		pending += sbitmap_weight(&sdev->budget_map);
1295 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1296 
1297 	return pending;
1298 }
1299 
1300 /*
1301  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1302  * has expired.
1303  *
1304  * Return: 0 upon success; -EBUSY upon timeout.
1305  */
ufshcd_wait_for_pending_cmds(struct ufs_hba * hba,u64 wait_timeout_us)1306 static int ufshcd_wait_for_pending_cmds(struct ufs_hba *hba,
1307 					u64 wait_timeout_us)
1308 {
1309 	int ret = 0;
1310 	u32 tm_doorbell;
1311 	u32 tr_pending;
1312 	bool timeout = false, do_last_check = false;
1313 	ktime_t start;
1314 
1315 	ufshcd_hold(hba);
1316 	/*
1317 	 * Wait for all the outstanding tasks/transfer requests.
1318 	 * Verify by checking the doorbell registers are clear.
1319 	 */
1320 	start = ktime_get();
1321 	do {
1322 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1323 			ret = -EBUSY;
1324 			goto out;
1325 		}
1326 
1327 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1328 		tr_pending = ufshcd_pending_cmds(hba);
1329 		if (!tm_doorbell && !tr_pending) {
1330 			timeout = false;
1331 			break;
1332 		} else if (do_last_check) {
1333 			break;
1334 		}
1335 
1336 		io_schedule_timeout(msecs_to_jiffies(20));
1337 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1338 		    wait_timeout_us) {
1339 			timeout = true;
1340 			/*
1341 			 * We might have scheduled out for long time so make
1342 			 * sure to check if doorbells are cleared by this time
1343 			 * or not.
1344 			 */
1345 			do_last_check = true;
1346 		}
1347 	} while (tm_doorbell || tr_pending);
1348 
1349 	if (timeout) {
1350 		dev_err(hba->dev,
1351 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1352 			__func__, tm_doorbell, tr_pending);
1353 		ret = -EBUSY;
1354 	}
1355 out:
1356 	ufshcd_release(hba);
1357 	return ret;
1358 }
1359 
1360 /**
1361  * ufshcd_scale_gear - scale up/down UFS gear
1362  * @hba: per adapter instance
1363  * @target_gear: target gear to scale to
1364  * @scale_up: True for scaling up gear and false for scaling down
1365  *
1366  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1367  * non-zero for any other errors.
1368  */
ufshcd_scale_gear(struct ufs_hba * hba,u32 target_gear,bool scale_up)1369 static int ufshcd_scale_gear(struct ufs_hba *hba, u32 target_gear, bool scale_up)
1370 {
1371 	int ret = 0;
1372 	struct ufs_pa_layer_attr new_pwr_info;
1373 
1374 	if (target_gear) {
1375 		new_pwr_info = hba->pwr_info;
1376 		new_pwr_info.gear_tx = target_gear;
1377 		new_pwr_info.gear_rx = target_gear;
1378 
1379 		goto config_pwr_mode;
1380 	}
1381 
1382 	/* Legacy gear scaling, in case vops_freq_to_gear_speed() is not implemented */
1383 	if (scale_up) {
1384 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1385 		       sizeof(struct ufs_pa_layer_attr));
1386 	} else {
1387 		memcpy(&new_pwr_info, &hba->pwr_info,
1388 		       sizeof(struct ufs_pa_layer_attr));
1389 
1390 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1391 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1392 			/* save the current power mode */
1393 			memcpy(&hba->clk_scaling.saved_pwr_info,
1394 				&hba->pwr_info,
1395 				sizeof(struct ufs_pa_layer_attr));
1396 
1397 			/* scale down gear */
1398 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1399 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1400 		}
1401 	}
1402 
1403 config_pwr_mode:
1404 	/* check if the power mode needs to be changed or not? */
1405 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1406 	if (ret)
1407 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1408 			__func__, ret,
1409 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1410 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1411 
1412 	return ret;
1413 }
1414 
1415 /*
1416  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1417  * has expired.
1418  *
1419  * Return: 0 upon success; -EBUSY upon timeout.
1420  */
ufshcd_clock_scaling_prepare(struct ufs_hba * hba,u64 timeout_us)1421 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1422 {
1423 	int ret = 0;
1424 	/*
1425 	 * make sure that there are no outstanding requests when
1426 	 * clock scaling is in progress
1427 	 */
1428 	mutex_lock(&hba->host->scan_mutex);
1429 	blk_mq_quiesce_tagset(&hba->host->tag_set);
1430 	mutex_lock(&hba->wb_mutex);
1431 	down_write(&hba->clk_scaling_lock);
1432 
1433 	if (!hba->clk_scaling.is_allowed ||
1434 	    ufshcd_wait_for_pending_cmds(hba, timeout_us)) {
1435 		ret = -EBUSY;
1436 		up_write(&hba->clk_scaling_lock);
1437 		mutex_unlock(&hba->wb_mutex);
1438 		blk_mq_unquiesce_tagset(&hba->host->tag_set);
1439 		mutex_unlock(&hba->host->scan_mutex);
1440 		goto out;
1441 	}
1442 
1443 	/* let's not get into low power until clock scaling is completed */
1444 	ufshcd_hold(hba);
1445 
1446 out:
1447 	return ret;
1448 }
1449 
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,int err)1450 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err)
1451 {
1452 	up_write(&hba->clk_scaling_lock);
1453 
1454 	/* Enable Write Booster if current gear requires it else disable it */
1455 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1456 		ufshcd_wb_toggle(hba, hba->pwr_info.gear_rx >= hba->clk_scaling.wb_gear);
1457 
1458 	mutex_unlock(&hba->wb_mutex);
1459 
1460 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
1461 	mutex_unlock(&hba->host->scan_mutex);
1462 	ufshcd_release(hba);
1463 }
1464 
1465 /**
1466  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1467  * @hba: per adapter instance
1468  * @freq: frequency to scale
1469  * @scale_up: True for scaling up and false for scalin down
1470  *
1471  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1472  * for any other errors.
1473  */
ufshcd_devfreq_scale(struct ufs_hba * hba,unsigned long freq,bool scale_up)1474 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1475 				bool scale_up)
1476 {
1477 	u32 old_gear = hba->pwr_info.gear_rx;
1478 	u32 new_gear = 0;
1479 	int ret = 0;
1480 
1481 	new_gear = ufshcd_vops_freq_to_gear_speed(hba, freq);
1482 
1483 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1484 	if (ret)
1485 		return ret;
1486 
1487 	/* scale down the gear before scaling down clocks */
1488 	if (!scale_up) {
1489 		ret = ufshcd_scale_gear(hba, new_gear, false);
1490 		if (ret)
1491 			goto out_unprepare;
1492 	}
1493 
1494 	ret = ufshcd_scale_clks(hba, freq, scale_up);
1495 	if (ret) {
1496 		if (!scale_up)
1497 			ufshcd_scale_gear(hba, old_gear, true);
1498 		goto out_unprepare;
1499 	}
1500 
1501 	/* scale up the gear after scaling up clocks */
1502 	if (scale_up) {
1503 		ret = ufshcd_scale_gear(hba, new_gear, true);
1504 		if (ret) {
1505 			ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1506 					  false);
1507 			goto out_unprepare;
1508 		}
1509 	}
1510 
1511 out_unprepare:
1512 	ufshcd_clock_scaling_unprepare(hba, ret);
1513 	return ret;
1514 }
1515 
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1516 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1517 {
1518 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1519 					   clk_scaling.suspend_work);
1520 
1521 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1522 	{
1523 		if (hba->clk_scaling.active_reqs ||
1524 		    hba->clk_scaling.is_suspended)
1525 			return;
1526 
1527 		hba->clk_scaling.is_suspended = true;
1528 		hba->clk_scaling.window_start_t = 0;
1529 	}
1530 
1531 	devfreq_suspend_device(hba->devfreq);
1532 }
1533 
ufshcd_clk_scaling_resume_work(struct work_struct * work)1534 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1535 {
1536 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1537 					   clk_scaling.resume_work);
1538 
1539 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1540 	{
1541 		if (!hba->clk_scaling.is_suspended)
1542 			return;
1543 		hba->clk_scaling.is_suspended = false;
1544 	}
1545 
1546 	devfreq_resume_device(hba->devfreq);
1547 }
1548 
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1549 static int ufshcd_devfreq_target(struct device *dev,
1550 				unsigned long *freq, u32 flags)
1551 {
1552 	int ret = 0;
1553 	struct ufs_hba *hba = dev_get_drvdata(dev);
1554 	ktime_t start;
1555 	bool scale_up = false, sched_clk_scaling_suspend_work = false;
1556 	struct list_head *clk_list = &hba->clk_list_head;
1557 	struct ufs_clk_info *clki;
1558 
1559 	if (!ufshcd_is_clkscaling_supported(hba))
1560 		return -EINVAL;
1561 
1562 	if (hba->use_pm_opp) {
1563 		struct dev_pm_opp *opp;
1564 
1565 		/* Get the recommended frequency from OPP framework */
1566 		opp = devfreq_recommended_opp(dev, freq, flags);
1567 		if (IS_ERR(opp))
1568 			return PTR_ERR(opp);
1569 
1570 		dev_pm_opp_put(opp);
1571 	} else {
1572 		/* Override with the closest supported frequency */
1573 		clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1574 					list);
1575 		*freq =	(unsigned long) clk_round_rate(clki->clk, *freq);
1576 	}
1577 
1578 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1579 	{
1580 		if (ufshcd_eh_in_progress(hba))
1581 			return 0;
1582 
1583 		/* Skip scaling clock when clock scaling is suspended */
1584 		if (hba->clk_scaling.is_suspended) {
1585 			dev_warn(hba->dev, "clock scaling is suspended, skip");
1586 			return 0;
1587 		}
1588 
1589 		if (!hba->clk_scaling.active_reqs)
1590 			sched_clk_scaling_suspend_work = true;
1591 
1592 		if (list_empty(clk_list))
1593 			goto out;
1594 
1595 		/* Decide based on the target or rounded-off frequency and update */
1596 		if (hba->use_pm_opp)
1597 			scale_up = *freq > hba->clk_scaling.target_freq;
1598 		else
1599 			scale_up = *freq == clki->max_freq;
1600 
1601 		if (!hba->use_pm_opp && !scale_up)
1602 			*freq = clki->min_freq;
1603 
1604 		/* Update the frequency */
1605 		if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1606 			ret = 0;
1607 			goto out; /* no state change required */
1608 		}
1609 	}
1610 
1611 	start = ktime_get();
1612 	ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1613 	if (!ret)
1614 		hba->clk_scaling.target_freq = *freq;
1615 
1616 	trace_ufshcd_profile_clk_scaling(hba,
1617 		(scale_up ? "up" : "down"),
1618 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1619 
1620 out:
1621 	if (sched_clk_scaling_suspend_work &&
1622 			(!scale_up || hba->clk_scaling.suspend_on_no_request))
1623 		queue_work(hba->clk_scaling.workq,
1624 			   &hba->clk_scaling.suspend_work);
1625 
1626 	return ret;
1627 }
1628 
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1629 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1630 		struct devfreq_dev_status *stat)
1631 {
1632 	struct ufs_hba *hba = dev_get_drvdata(dev);
1633 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1634 	ktime_t curr_t;
1635 
1636 	if (!ufshcd_is_clkscaling_supported(hba))
1637 		return -EINVAL;
1638 
1639 	memset(stat, 0, sizeof(*stat));
1640 
1641 	guard(spinlock_irqsave)(&hba->clk_scaling.lock);
1642 
1643 	curr_t = ktime_get();
1644 	if (!scaling->window_start_t)
1645 		goto start_window;
1646 
1647 	/*
1648 	 * If current frequency is 0, then the ondemand governor considers
1649 	 * there's no initial frequency set. And it always requests to set
1650 	 * to max. frequency.
1651 	 */
1652 	if (hba->use_pm_opp) {
1653 		stat->current_frequency = hba->clk_scaling.target_freq;
1654 	} else {
1655 		struct list_head *clk_list = &hba->clk_list_head;
1656 		struct ufs_clk_info *clki;
1657 
1658 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1659 		stat->current_frequency = clki->curr_freq;
1660 	}
1661 
1662 	if (scaling->is_busy_started)
1663 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1664 				scaling->busy_start_t);
1665 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1666 	stat->busy_time = scaling->tot_busy_t;
1667 start_window:
1668 	scaling->window_start_t = curr_t;
1669 	scaling->tot_busy_t = 0;
1670 
1671 	if (scaling->active_reqs) {
1672 		scaling->busy_start_t = curr_t;
1673 		scaling->is_busy_started = true;
1674 	} else {
1675 		scaling->busy_start_t = 0;
1676 		scaling->is_busy_started = false;
1677 	}
1678 
1679 	return 0;
1680 }
1681 
ufshcd_devfreq_init(struct ufs_hba * hba)1682 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1683 {
1684 	struct list_head *clk_list = &hba->clk_list_head;
1685 	struct ufs_clk_info *clki;
1686 	struct devfreq *devfreq;
1687 	int ret;
1688 
1689 	/* Skip devfreq if we don't have any clocks in the list */
1690 	if (list_empty(clk_list))
1691 		return 0;
1692 
1693 	if (!hba->use_pm_opp) {
1694 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1695 		dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1696 		dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1697 	}
1698 
1699 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1700 					 &hba->vps->ondemand_data);
1701 	devfreq = devfreq_add_device(hba->dev,
1702 			&hba->vps->devfreq_profile,
1703 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1704 			&hba->vps->ondemand_data);
1705 	if (IS_ERR(devfreq)) {
1706 		ret = PTR_ERR(devfreq);
1707 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1708 
1709 		if (!hba->use_pm_opp) {
1710 			dev_pm_opp_remove(hba->dev, clki->min_freq);
1711 			dev_pm_opp_remove(hba->dev, clki->max_freq);
1712 		}
1713 		return ret;
1714 	}
1715 
1716 	hba->devfreq = devfreq;
1717 
1718 	return 0;
1719 }
1720 
ufshcd_devfreq_remove(struct ufs_hba * hba)1721 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1722 {
1723 	struct list_head *clk_list = &hba->clk_list_head;
1724 
1725 	if (!hba->devfreq)
1726 		return;
1727 
1728 	devfreq_remove_device(hba->devfreq);
1729 	hba->devfreq = NULL;
1730 
1731 	if (!hba->use_pm_opp) {
1732 		struct ufs_clk_info *clki;
1733 
1734 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1735 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1736 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1737 	}
1738 }
1739 
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1740 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1741 {
1742 	bool suspend = false;
1743 
1744 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1745 	cancel_work_sync(&hba->clk_scaling.resume_work);
1746 
1747 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1748 	{
1749 		if (!hba->clk_scaling.is_suspended) {
1750 			suspend = true;
1751 			hba->clk_scaling.is_suspended = true;
1752 			hba->clk_scaling.window_start_t = 0;
1753 		}
1754 	}
1755 
1756 	if (suspend)
1757 		devfreq_suspend_device(hba->devfreq);
1758 }
1759 
ufshcd_resume_clkscaling(struct ufs_hba * hba)1760 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1761 {
1762 	bool resume = false;
1763 
1764 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1765 	{
1766 		if (hba->clk_scaling.is_suspended) {
1767 			resume = true;
1768 			hba->clk_scaling.is_suspended = false;
1769 		}
1770 	}
1771 
1772 	if (resume)
1773 		devfreq_resume_device(hba->devfreq);
1774 }
1775 
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1776 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1777 		struct device_attribute *attr, char *buf)
1778 {
1779 	struct ufs_hba *hba = dev_get_drvdata(dev);
1780 
1781 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1782 }
1783 
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1784 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1785 		struct device_attribute *attr, const char *buf, size_t count)
1786 {
1787 	struct ufs_hba *hba = dev_get_drvdata(dev);
1788 	struct ufs_clk_info *clki;
1789 	unsigned long freq;
1790 	u32 value;
1791 	int err = 0;
1792 
1793 	if (kstrtou32(buf, 0, &value))
1794 		return -EINVAL;
1795 
1796 	down(&hba->host_sem);
1797 	if (!ufshcd_is_user_access_allowed(hba)) {
1798 		err = -EBUSY;
1799 		goto out;
1800 	}
1801 
1802 	value = !!value;
1803 	if (value == hba->clk_scaling.is_enabled)
1804 		goto out;
1805 
1806 	ufshcd_rpm_get_sync(hba);
1807 	ufshcd_hold(hba);
1808 
1809 	hba->clk_scaling.is_enabled = value;
1810 
1811 	if (value) {
1812 		ufshcd_resume_clkscaling(hba);
1813 		goto out_rel;
1814 	}
1815 
1816 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1817 	freq = clki->max_freq;
1818 
1819 	ufshcd_suspend_clkscaling(hba);
1820 
1821 	if (!ufshcd_is_devfreq_scaling_required(hba, freq, true))
1822 		goto out_rel;
1823 
1824 	err = ufshcd_devfreq_scale(hba, freq, true);
1825 	if (err)
1826 		dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1827 				__func__, err);
1828 	else
1829 		hba->clk_scaling.target_freq = freq;
1830 
1831 out_rel:
1832 	ufshcd_release(hba);
1833 	ufshcd_rpm_put_sync(hba);
1834 out:
1835 	up(&hba->host_sem);
1836 	return err ? err : count;
1837 }
1838 
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1839 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1840 {
1841 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1842 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1843 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1844 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1845 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1846 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1847 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1848 }
1849 
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1850 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1851 {
1852 	if (hba->clk_scaling.enable_attr.attr.name)
1853 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1854 }
1855 
ufshcd_init_clk_scaling(struct ufs_hba * hba)1856 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1857 {
1858 	if (!ufshcd_is_clkscaling_supported(hba))
1859 		return;
1860 
1861 	if (!hba->clk_scaling.min_gear)
1862 		hba->clk_scaling.min_gear = UFS_HS_G1;
1863 
1864 	if (!hba->clk_scaling.wb_gear)
1865 		/* Use intermediate gear speed HS_G3 as the default wb_gear */
1866 		hba->clk_scaling.wb_gear = UFS_HS_G3;
1867 
1868 	INIT_WORK(&hba->clk_scaling.suspend_work,
1869 		  ufshcd_clk_scaling_suspend_work);
1870 	INIT_WORK(&hba->clk_scaling.resume_work,
1871 		  ufshcd_clk_scaling_resume_work);
1872 
1873 	spin_lock_init(&hba->clk_scaling.lock);
1874 
1875 	hba->clk_scaling.workq = alloc_ordered_workqueue(
1876 		"ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no);
1877 
1878 	hba->clk_scaling.is_initialized = true;
1879 }
1880 
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1881 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1882 {
1883 	if (!hba->clk_scaling.is_initialized)
1884 		return;
1885 
1886 	ufshcd_remove_clk_scaling_sysfs(hba);
1887 	destroy_workqueue(hba->clk_scaling.workq);
1888 	ufshcd_devfreq_remove(hba);
1889 	hba->clk_scaling.is_initialized = false;
1890 }
1891 
ufshcd_ungate_work(struct work_struct * work)1892 static void ufshcd_ungate_work(struct work_struct *work)
1893 {
1894 	int ret;
1895 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1896 			clk_gating.ungate_work);
1897 
1898 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1899 
1900 	scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
1901 		if (hba->clk_gating.state == CLKS_ON)
1902 			return;
1903 	}
1904 
1905 	ufshcd_hba_vreg_set_hpm(hba);
1906 	ufshcd_setup_clocks(hba, true);
1907 
1908 	ufshcd_enable_irq(hba);
1909 
1910 	/* Exit from hibern8 */
1911 	if (ufshcd_can_hibern8_during_gating(hba)) {
1912 		/* Prevent gating in this path */
1913 		hba->clk_gating.is_suspended = true;
1914 		if (ufshcd_is_link_hibern8(hba)) {
1915 			ret = ufshcd_uic_hibern8_exit(hba);
1916 			if (ret)
1917 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1918 					__func__, ret);
1919 			else
1920 				ufshcd_set_link_active(hba);
1921 		}
1922 		hba->clk_gating.is_suspended = false;
1923 	}
1924 }
1925 
1926 /**
1927  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1928  * Also, exit from hibern8 mode and set the link as active.
1929  * @hba: per adapter instance
1930  */
ufshcd_hold(struct ufs_hba * hba)1931 void ufshcd_hold(struct ufs_hba *hba)
1932 {
1933 	bool flush_result;
1934 	unsigned long flags;
1935 
1936 	if (!ufshcd_is_clkgating_allowed(hba) ||
1937 	    !hba->clk_gating.is_initialized)
1938 		return;
1939 	spin_lock_irqsave(&hba->clk_gating.lock, flags);
1940 	hba->clk_gating.active_reqs++;
1941 
1942 start:
1943 	switch (hba->clk_gating.state) {
1944 	case CLKS_ON:
1945 		/*
1946 		 * Wait for the ungate work to complete if in progress.
1947 		 * Though the clocks may be in ON state, the link could
1948 		 * still be in hibner8 state if hibern8 is allowed
1949 		 * during clock gating.
1950 		 * Make sure we exit hibern8 state also in addition to
1951 		 * clocks being ON.
1952 		 */
1953 		if (ufshcd_can_hibern8_during_gating(hba) &&
1954 		    ufshcd_is_link_hibern8(hba)) {
1955 			spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1956 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1957 			if (hba->clk_gating.is_suspended && !flush_result)
1958 				return;
1959 			spin_lock_irqsave(&hba->clk_gating.lock, flags);
1960 			goto start;
1961 		}
1962 		break;
1963 	case REQ_CLKS_OFF:
1964 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1965 			hba->clk_gating.state = CLKS_ON;
1966 			trace_ufshcd_clk_gating(hba,
1967 						hba->clk_gating.state);
1968 			break;
1969 		}
1970 		/*
1971 		 * If we are here, it means gating work is either done or
1972 		 * currently running. Hence, fall through to cancel gating
1973 		 * work and to enable clocks.
1974 		 */
1975 		fallthrough;
1976 	case CLKS_OFF:
1977 		hba->clk_gating.state = REQ_CLKS_ON;
1978 		trace_ufshcd_clk_gating(hba,
1979 					hba->clk_gating.state);
1980 		queue_work(hba->clk_gating.clk_gating_workq,
1981 			   &hba->clk_gating.ungate_work);
1982 		/*
1983 		 * fall through to check if we should wait for this
1984 		 * work to be done or not.
1985 		 */
1986 		fallthrough;
1987 	case REQ_CLKS_ON:
1988 		spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1989 		flush_work(&hba->clk_gating.ungate_work);
1990 		/* Make sure state is CLKS_ON before returning */
1991 		spin_lock_irqsave(&hba->clk_gating.lock, flags);
1992 		goto start;
1993 	default:
1994 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1995 				__func__, hba->clk_gating.state);
1996 		break;
1997 	}
1998 	spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1999 }
2000 EXPORT_SYMBOL_GPL(ufshcd_hold);
2001 
ufshcd_gate_work(struct work_struct * work)2002 static void ufshcd_gate_work(struct work_struct *work)
2003 {
2004 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
2005 			clk_gating.gate_work.work);
2006 	int ret;
2007 
2008 	scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
2009 		/*
2010 		 * In case you are here to cancel this work the gating state
2011 		 * would be marked as REQ_CLKS_ON. In this case save time by
2012 		 * skipping the gating work and exit after changing the clock
2013 		 * state to CLKS_ON.
2014 		 */
2015 		if (hba->clk_gating.is_suspended ||
2016 		    hba->clk_gating.state != REQ_CLKS_OFF) {
2017 			hba->clk_gating.state = CLKS_ON;
2018 			trace_ufshcd_clk_gating(hba,
2019 						hba->clk_gating.state);
2020 			return;
2021 		}
2022 
2023 		if (hba->clk_gating.active_reqs)
2024 			return;
2025 	}
2026 
2027 	scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2028 		if (ufshcd_is_ufs_dev_busy(hba) ||
2029 		    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2030 			return;
2031 	}
2032 
2033 	/* put the link into hibern8 mode before turning off clocks */
2034 	if (ufshcd_can_hibern8_during_gating(hba)) {
2035 		ret = ufshcd_uic_hibern8_enter(hba);
2036 		if (ret) {
2037 			hba->clk_gating.state = CLKS_ON;
2038 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
2039 					__func__, ret);
2040 			trace_ufshcd_clk_gating(hba,
2041 						hba->clk_gating.state);
2042 			return;
2043 		}
2044 		ufshcd_set_link_hibern8(hba);
2045 	}
2046 
2047 	ufshcd_disable_irq(hba);
2048 
2049 	ufshcd_setup_clocks(hba, false);
2050 
2051 	/* Put the host controller in low power mode if possible */
2052 	ufshcd_hba_vreg_set_lpm(hba);
2053 	/*
2054 	 * In case you are here to cancel this work the gating state
2055 	 * would be marked as REQ_CLKS_ON. In this case keep the state
2056 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
2057 	 * and a request to turn them on is pending. By doing this way,
2058 	 * we keep the state machine in tact and this would ultimately
2059 	 * prevent from doing cancel work multiple times when there are
2060 	 * new requests arriving before the current cancel work is done.
2061 	 */
2062 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2063 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
2064 		hba->clk_gating.state = CLKS_OFF;
2065 		trace_ufshcd_clk_gating(hba,
2066 					hba->clk_gating.state);
2067 	}
2068 }
2069 
__ufshcd_release(struct ufs_hba * hba)2070 static void __ufshcd_release(struct ufs_hba *hba)
2071 {
2072 	lockdep_assert_held(&hba->clk_gating.lock);
2073 
2074 	if (!ufshcd_is_clkgating_allowed(hba))
2075 		return;
2076 
2077 	hba->clk_gating.active_reqs--;
2078 
2079 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2080 	    !hba->clk_gating.is_initialized ||
2081 	    hba->clk_gating.state == CLKS_OFF)
2082 		return;
2083 
2084 	scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2085 		if (ufshcd_has_pending_tasks(hba) ||
2086 		    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2087 			return;
2088 	}
2089 
2090 	hba->clk_gating.state = REQ_CLKS_OFF;
2091 	trace_ufshcd_clk_gating(hba, hba->clk_gating.state);
2092 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
2093 			   &hba->clk_gating.gate_work,
2094 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
2095 }
2096 
ufshcd_release(struct ufs_hba * hba)2097 void ufshcd_release(struct ufs_hba *hba)
2098 {
2099 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2100 	__ufshcd_release(hba);
2101 }
2102 EXPORT_SYMBOL_GPL(ufshcd_release);
2103 
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)2104 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2105 		struct device_attribute *attr, char *buf)
2106 {
2107 	struct ufs_hba *hba = dev_get_drvdata(dev);
2108 
2109 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2110 }
2111 
ufshcd_clkgate_delay_set(struct device * dev,unsigned long value)2112 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2113 {
2114 	struct ufs_hba *hba = dev_get_drvdata(dev);
2115 
2116 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2117 	hba->clk_gating.delay_ms = value;
2118 }
2119 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2120 
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2121 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2122 		struct device_attribute *attr, const char *buf, size_t count)
2123 {
2124 	unsigned long value;
2125 
2126 	if (kstrtoul(buf, 0, &value))
2127 		return -EINVAL;
2128 
2129 	ufshcd_clkgate_delay_set(dev, value);
2130 	return count;
2131 }
2132 
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)2133 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2134 		struct device_attribute *attr, char *buf)
2135 {
2136 	struct ufs_hba *hba = dev_get_drvdata(dev);
2137 
2138 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2139 }
2140 
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2141 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2142 		struct device_attribute *attr, const char *buf, size_t count)
2143 {
2144 	struct ufs_hba *hba = dev_get_drvdata(dev);
2145 	u32 value;
2146 
2147 	if (kstrtou32(buf, 0, &value))
2148 		return -EINVAL;
2149 
2150 	value = !!value;
2151 
2152 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2153 
2154 	if (value == hba->clk_gating.is_enabled)
2155 		return count;
2156 
2157 	if (value)
2158 		__ufshcd_release(hba);
2159 	else
2160 		hba->clk_gating.active_reqs++;
2161 
2162 	hba->clk_gating.is_enabled = value;
2163 
2164 	return count;
2165 }
2166 
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)2167 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2168 {
2169 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2170 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2171 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2172 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2173 	hba->clk_gating.delay_attr.attr.mode = 0644;
2174 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2175 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2176 
2177 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2178 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2179 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2180 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2181 	hba->clk_gating.enable_attr.attr.mode = 0644;
2182 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2183 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2184 }
2185 
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)2186 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2187 {
2188 	if (hba->clk_gating.delay_attr.attr.name)
2189 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2190 	if (hba->clk_gating.enable_attr.attr.name)
2191 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2192 }
2193 
ufshcd_init_clk_gating(struct ufs_hba * hba)2194 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2195 {
2196 	if (!ufshcd_is_clkgating_allowed(hba))
2197 		return;
2198 
2199 	hba->clk_gating.state = CLKS_ON;
2200 
2201 	hba->clk_gating.delay_ms = 150;
2202 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2203 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2204 
2205 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(
2206 		"ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI,
2207 		hba->host->host_no);
2208 
2209 	ufshcd_init_clk_gating_sysfs(hba);
2210 
2211 	hba->clk_gating.is_enabled = true;
2212 	hba->clk_gating.is_initialized = true;
2213 }
2214 
ufshcd_exit_clk_gating(struct ufs_hba * hba)2215 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2216 {
2217 	if (!hba->clk_gating.is_initialized)
2218 		return;
2219 
2220 	ufshcd_remove_clk_gating_sysfs(hba);
2221 
2222 	/* Ungate the clock if necessary. */
2223 	ufshcd_hold(hba);
2224 	hba->clk_gating.is_initialized = false;
2225 	ufshcd_release(hba);
2226 
2227 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2228 }
2229 
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)2230 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2231 {
2232 	bool queue_resume_work = false;
2233 	ktime_t curr_t = ktime_get();
2234 
2235 	if (!ufshcd_is_clkscaling_supported(hba))
2236 		return;
2237 
2238 	guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2239 
2240 	if (!hba->clk_scaling.active_reqs++)
2241 		queue_resume_work = true;
2242 
2243 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress)
2244 		return;
2245 
2246 	if (queue_resume_work)
2247 		queue_work(hba->clk_scaling.workq,
2248 			   &hba->clk_scaling.resume_work);
2249 
2250 	if (!hba->clk_scaling.window_start_t) {
2251 		hba->clk_scaling.window_start_t = curr_t;
2252 		hba->clk_scaling.tot_busy_t = 0;
2253 		hba->clk_scaling.is_busy_started = false;
2254 	}
2255 
2256 	if (!hba->clk_scaling.is_busy_started) {
2257 		hba->clk_scaling.busy_start_t = curr_t;
2258 		hba->clk_scaling.is_busy_started = true;
2259 	}
2260 }
2261 
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)2262 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2263 {
2264 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2265 
2266 	if (!ufshcd_is_clkscaling_supported(hba))
2267 		return;
2268 
2269 	guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2270 
2271 	hba->clk_scaling.active_reqs--;
2272 	if (!scaling->active_reqs && scaling->is_busy_started) {
2273 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2274 					scaling->busy_start_t));
2275 		scaling->busy_start_t = 0;
2276 		scaling->is_busy_started = false;
2277 	}
2278 }
2279 
ufshcd_monitor_opcode2dir(u8 opcode)2280 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2281 {
2282 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2283 		return READ;
2284 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2285 		return WRITE;
2286 	else
2287 		return -EINVAL;
2288 }
2289 
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2290 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2291 						struct ufshcd_lrb *lrbp)
2292 {
2293 	const struct ufs_hba_monitor *m = &hba->monitor;
2294 
2295 	return (m->enabled && lrbp && lrbp->cmd &&
2296 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2297 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2298 }
2299 
ufshcd_start_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2300 static void ufshcd_start_monitor(struct ufs_hba *hba,
2301 				 const struct ufshcd_lrb *lrbp)
2302 {
2303 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2304 	unsigned long flags;
2305 
2306 	spin_lock_irqsave(hba->host->host_lock, flags);
2307 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2308 		hba->monitor.busy_start_ts[dir] = ktime_get();
2309 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2310 }
2311 
ufshcd_update_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2312 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2313 {
2314 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2315 	unsigned long flags;
2316 
2317 	spin_lock_irqsave(hba->host->host_lock, flags);
2318 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2319 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2320 		struct ufs_hba_monitor *m = &hba->monitor;
2321 		ktime_t now, inc, lat;
2322 
2323 		now = lrbp->compl_time_stamp;
2324 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2325 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2326 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2327 
2328 		/* Update latencies */
2329 		m->nr_req[dir]++;
2330 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2331 		m->lat_sum[dir] += lat;
2332 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2333 			m->lat_max[dir] = lat;
2334 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2335 			m->lat_min[dir] = lat;
2336 
2337 		m->nr_queued[dir]--;
2338 		/* Push forward the busy start of monitor */
2339 		m->busy_start_ts[dir] = now;
2340 	}
2341 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2342 }
2343 
2344 /**
2345  * ufshcd_send_command - Send SCSI or device management commands
2346  * @hba: per adapter instance
2347  * @task_tag: Task tag of the command
2348  * @hwq: pointer to hardware queue instance
2349  */
2350 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag,struct ufs_hw_queue * hwq)2351 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2352 			 struct ufs_hw_queue *hwq)
2353 {
2354 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2355 	unsigned long flags;
2356 
2357 	lrbp->issue_time_stamp = ktime_get();
2358 	lrbp->issue_time_stamp_local_clock = local_clock();
2359 	lrbp->compl_time_stamp = ktime_set(0, 0);
2360 	lrbp->compl_time_stamp_local_clock = 0;
2361 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2362 	if (lrbp->cmd)
2363 		ufshcd_clk_scaling_start_busy(hba);
2364 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2365 		ufshcd_start_monitor(hba, lrbp);
2366 
2367 	if (hba->mcq_enabled) {
2368 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2369 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2370 		struct utp_transfer_req_desc *dest;
2371 
2372 		spin_lock(&hwq->sq_lock);
2373 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2374 		memcpy(dest, src, utrd_size);
2375 		ufshcd_inc_sq_tail(hwq);
2376 		spin_unlock(&hwq->sq_lock);
2377 	} else {
2378 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2379 		if (hba->vops && hba->vops->setup_xfer_req)
2380 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2381 						  !!lrbp->cmd);
2382 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2383 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2384 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2385 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2386 	}
2387 }
2388 
2389 /**
2390  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2391  * @lrbp: pointer to local reference block
2392  */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)2393 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2394 {
2395 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2396 	u16 resp_len;
2397 	int len;
2398 
2399 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2400 	if (sense_buffer && resp_len) {
2401 		int len_to_copy;
2402 
2403 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2404 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2405 
2406 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2407 		       len_to_copy);
2408 	}
2409 }
2410 
2411 /**
2412  * ufshcd_copy_query_response() - Copy the Query Response and the data
2413  * descriptor
2414  * @hba: per adapter instance
2415  * @lrbp: pointer to local reference block
2416  *
2417  * Return: 0 upon success; < 0 upon failure.
2418  */
2419 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2420 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2421 {
2422 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2423 
2424 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2425 
2426 	/* Get the descriptor */
2427 	if (hba->dev_cmd.query.descriptor &&
2428 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2429 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2430 				GENERAL_UPIU_REQUEST_SIZE;
2431 		u16 resp_len;
2432 		u16 buf_len;
2433 
2434 		/* data segment length */
2435 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2436 				       .data_segment_length);
2437 		buf_len = be16_to_cpu(
2438 				hba->dev_cmd.query.request.upiu_req.length);
2439 		if (likely(buf_len >= resp_len)) {
2440 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2441 		} else {
2442 			dev_warn(hba->dev,
2443 				 "%s: rsp size %d is bigger than buffer size %d",
2444 				 __func__, resp_len, buf_len);
2445 			return -EINVAL;
2446 		}
2447 	}
2448 
2449 	return 0;
2450 }
2451 
2452 /**
2453  * ufshcd_hba_capabilities - Read controller capabilities
2454  * @hba: per adapter instance
2455  *
2456  * Return: 0 on success, negative on error.
2457  */
ufshcd_hba_capabilities(struct ufs_hba * hba)2458 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2459 {
2460 	int err;
2461 
2462 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2463 
2464 	/* nutrs and nutmrs are 0 based values */
2465 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1;
2466 	hba->nutmrs =
2467 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2468 	hba->reserved_slot = hba->nutrs - 1;
2469 
2470 	hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1;
2471 
2472 	/* Read crypto capabilities */
2473 	err = ufshcd_hba_init_crypto_capabilities(hba);
2474 	if (err) {
2475 		dev_err(hba->dev, "crypto setup failed\n");
2476 		return err;
2477 	}
2478 
2479 	/*
2480 	 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2481 	 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2482 	 * means we can simply read values regardless of version.
2483 	 */
2484 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2485 	/*
2486 	 * 0h: legacy single doorbell support is available
2487 	 * 1h: indicate that legacy single doorbell support has been removed
2488 	 */
2489 	if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP))
2490 		hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2491 	else
2492 		hba->lsdb_sup = true;
2493 
2494 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2495 
2496 	return 0;
2497 }
2498 
2499 /**
2500  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2501  *                            to accept UIC commands
2502  * @hba: per adapter instance
2503  *
2504  * Return: true on success, else false.
2505  */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2506 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2507 {
2508 	u32 val;
2509 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2510 				    500, uic_cmd_timeout * 1000, false, hba,
2511 				    REG_CONTROLLER_STATUS);
2512 	return ret == 0;
2513 }
2514 
2515 /**
2516  * ufshcd_get_upmcrs - Get the power mode change request status
2517  * @hba: Pointer to adapter instance
2518  *
2519  * This function gets the UPMCRS field of HCS register
2520  *
2521  * Return: value of UPMCRS field.
2522  */
ufshcd_get_upmcrs(struct ufs_hba * hba)2523 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2524 {
2525 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2526 }
2527 
2528 /**
2529  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2530  * @hba: per adapter instance
2531  * @uic_cmd: UIC command
2532  */
2533 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2534 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2535 {
2536 	lockdep_assert_held(&hba->uic_cmd_mutex);
2537 
2538 	WARN_ON(hba->active_uic_cmd);
2539 
2540 	hba->active_uic_cmd = uic_cmd;
2541 
2542 	/* Write Args */
2543 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2544 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2545 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2546 
2547 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2548 
2549 	/* Write UIC Cmd */
2550 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2551 		      REG_UIC_COMMAND);
2552 }
2553 
2554 /**
2555  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2556  * @hba: per adapter instance
2557  * @uic_cmd: UIC command
2558  *
2559  * Return: 0 only if success.
2560  */
2561 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2562 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2563 {
2564 	int ret;
2565 	unsigned long flags;
2566 
2567 	lockdep_assert_held(&hba->uic_cmd_mutex);
2568 
2569 	if (wait_for_completion_timeout(&uic_cmd->done,
2570 					msecs_to_jiffies(uic_cmd_timeout))) {
2571 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2572 	} else {
2573 		ret = -ETIMEDOUT;
2574 		dev_err(hba->dev,
2575 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2576 			uic_cmd->command, uic_cmd->argument3);
2577 
2578 		if (!uic_cmd->cmd_active) {
2579 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2580 				__func__);
2581 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2582 		}
2583 	}
2584 
2585 	spin_lock_irqsave(hba->host->host_lock, flags);
2586 	hba->active_uic_cmd = NULL;
2587 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2588 
2589 	return ret;
2590 }
2591 
2592 /**
2593  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2594  * @hba: per adapter instance
2595  * @uic_cmd: UIC command
2596  *
2597  * Return: 0 if successful; < 0 upon failure.
2598  */
2599 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2600 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2601 {
2602 	lockdep_assert_held(&hba->uic_cmd_mutex);
2603 
2604 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2605 		dev_err(hba->dev,
2606 			"Controller not ready to accept UIC commands\n");
2607 		return -EIO;
2608 	}
2609 
2610 	init_completion(&uic_cmd->done);
2611 
2612 	uic_cmd->cmd_active = 1;
2613 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2614 
2615 	return 0;
2616 }
2617 
2618 /**
2619  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2620  * @hba: per adapter instance
2621  * @uic_cmd: UIC command
2622  *
2623  * Return: 0 only if success.
2624  */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2625 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2626 {
2627 	unsigned long flags;
2628 	int ret;
2629 
2630 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2631 		return 0;
2632 
2633 	ufshcd_hold(hba);
2634 	mutex_lock(&hba->uic_cmd_mutex);
2635 	ufshcd_add_delay_before_dme_cmd(hba);
2636 
2637 	spin_lock_irqsave(hba->host->host_lock, flags);
2638 	ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
2639 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2640 
2641 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2642 	if (!ret)
2643 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2644 
2645 	mutex_unlock(&hba->uic_cmd_mutex);
2646 
2647 	ufshcd_release(hba);
2648 	return ret;
2649 }
2650 
2651 /**
2652  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2653  * @hba:	per-adapter instance
2654  * @lrbp:	pointer to local reference block
2655  * @sg_entries:	The number of sg lists actually used
2656  * @sg_list:	Pointer to SG list
2657  */
ufshcd_sgl_to_prdt(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int sg_entries,struct scatterlist * sg_list)2658 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2659 			       struct scatterlist *sg_list)
2660 {
2661 	struct ufshcd_sg_entry *prd;
2662 	struct scatterlist *sg;
2663 	int i;
2664 
2665 	if (sg_entries) {
2666 
2667 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2668 			lrbp->utr_descriptor_ptr->prd_table_length =
2669 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2670 		else
2671 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2672 
2673 		prd = lrbp->ucd_prdt_ptr;
2674 
2675 		for_each_sg(sg_list, sg, sg_entries, i) {
2676 			const unsigned int len = sg_dma_len(sg);
2677 
2678 			/*
2679 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2680 			 * based value that indicates the length, in bytes, of
2681 			 * the data block. A maximum of length of 256KB may
2682 			 * exist for any entry. Bits 1:0 of this field shall be
2683 			 * 11b to indicate Dword granularity. A value of '3'
2684 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2685 			 */
2686 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2687 			prd->size = cpu_to_le32(len - 1);
2688 			prd->addr = cpu_to_le64(sg->dma_address);
2689 			prd->reserved = 0;
2690 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2691 		}
2692 	} else {
2693 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2694 	}
2695 }
2696 
2697 /**
2698  * ufshcd_map_sg - Map scatter-gather list to prdt
2699  * @hba: per adapter instance
2700  * @lrbp: pointer to local reference block
2701  *
2702  * Return: 0 in case of success, non-zero value in case of failure.
2703  */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2704 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2705 {
2706 	struct scsi_cmnd *cmd = lrbp->cmd;
2707 	int sg_segments = scsi_dma_map(cmd);
2708 
2709 	if (sg_segments < 0)
2710 		return sg_segments;
2711 
2712 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2713 
2714 	return ufshcd_crypto_fill_prdt(hba, lrbp);
2715 }
2716 
2717 /**
2718  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2719  * descriptor according to request
2720  * @hba: per adapter instance
2721  * @lrbp: pointer to local reference block
2722  * @upiu_flags: flags required in the header
2723  * @cmd_dir: requests data direction
2724  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2725  */
2726 static void
ufshcd_prepare_req_desc_hdr(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir,int ehs_length)2727 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2728 			    u8 *upiu_flags, enum dma_data_direction cmd_dir,
2729 			    int ehs_length)
2730 {
2731 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2732 	struct request_desc_header *h = &req_desc->header;
2733 	enum utp_data_direction data_direction;
2734 
2735 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2736 
2737 	*h = (typeof(*h)){ };
2738 
2739 	if (cmd_dir == DMA_FROM_DEVICE) {
2740 		data_direction = UTP_DEVICE_TO_HOST;
2741 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2742 	} else if (cmd_dir == DMA_TO_DEVICE) {
2743 		data_direction = UTP_HOST_TO_DEVICE;
2744 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2745 	} else {
2746 		data_direction = UTP_NO_DATA_TRANSFER;
2747 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2748 	}
2749 
2750 	h->command_type = lrbp->command_type;
2751 	h->data_direction = data_direction;
2752 	h->ehs_length = ehs_length;
2753 
2754 	if (lrbp->intr_cmd)
2755 		h->interrupt = 1;
2756 
2757 	/* Prepare crypto related dwords */
2758 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2759 
2760 	/*
2761 	 * assigning invalid value for command status. Controller
2762 	 * updates OCS on command completion, with the command
2763 	 * status
2764 	 */
2765 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2766 
2767 	req_desc->prd_table_length = 0;
2768 }
2769 
2770 /**
2771  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2772  * for scsi commands
2773  * @lrbp: local reference block pointer
2774  * @upiu_flags: flags
2775  */
2776 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2777 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2778 {
2779 	struct scsi_cmnd *cmd = lrbp->cmd;
2780 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2781 	unsigned short cdb_len;
2782 
2783 	ucd_req_ptr->header = (struct utp_upiu_header){
2784 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2785 		.flags = upiu_flags,
2786 		.lun = lrbp->lun,
2787 		.task_tag = lrbp->task_tag,
2788 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2789 	};
2790 
2791 	WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2792 
2793 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2794 
2795 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2796 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2797 
2798 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2799 }
2800 
2801 /**
2802  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2803  * @hba: UFS hba
2804  * @lrbp: local reference block pointer
2805  * @upiu_flags: flags
2806  */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2807 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2808 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2809 {
2810 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2811 	struct ufs_query *query = &hba->dev_cmd.query;
2812 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2813 
2814 	/* Query request header */
2815 	ucd_req_ptr->header = (struct utp_upiu_header){
2816 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2817 		.flags = upiu_flags,
2818 		.lun = lrbp->lun,
2819 		.task_tag = lrbp->task_tag,
2820 		.query_function = query->request.query_func,
2821 		/* Data segment length only need for WRITE_DESC */
2822 		.data_segment_length =
2823 			query->request.upiu_req.opcode ==
2824 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2825 				cpu_to_be16(len) :
2826 				0,
2827 	};
2828 
2829 	/* Copy the Query Request buffer as is */
2830 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2831 			QUERY_OSF_SIZE);
2832 
2833 	/* Copy the Descriptor */
2834 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2835 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2836 }
2837 
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2838 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2839 {
2840 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2841 
2842 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2843 
2844 	ucd_req_ptr->header = (struct utp_upiu_header){
2845 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2846 		.task_tag = lrbp->task_tag,
2847 	};
2848 }
2849 
2850 /**
2851  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2852  *			     for Device Management Purposes
2853  * @hba: per adapter instance
2854  * @lrbp: pointer to local reference block
2855  *
2856  * Return: 0 upon success; < 0 upon failure.
2857  */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2858 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2859 				      struct ufshcd_lrb *lrbp)
2860 {
2861 	u8 upiu_flags;
2862 	int ret = 0;
2863 
2864 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2865 
2866 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2867 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2868 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2869 		ufshcd_prepare_utp_nop_upiu(lrbp);
2870 	else
2871 		ret = -EINVAL;
2872 
2873 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2874 
2875 	return ret;
2876 }
2877 
2878 /**
2879  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2880  *			   for SCSI Purposes
2881  * @hba: per adapter instance
2882  * @lrbp: pointer to local reference block
2883  */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2884 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2885 {
2886 	struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2887 	unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2888 	u8 upiu_flags;
2889 
2890 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2891 	if (ioprio_class == IOPRIO_CLASS_RT)
2892 		upiu_flags |= UPIU_CMD_FLAGS_CP;
2893 	ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2894 }
2895 
__ufshcd_setup_cmd(struct ufshcd_lrb * lrbp,struct scsi_cmnd * cmd,u8 lun,int tag)2896 static void __ufshcd_setup_cmd(struct ufshcd_lrb *lrbp, struct scsi_cmnd *cmd, u8 lun, int tag)
2897 {
2898 	memset(lrbp->ucd_req_ptr, 0, sizeof(*lrbp->ucd_req_ptr));
2899 
2900 	lrbp->cmd = cmd;
2901 	lrbp->task_tag = tag;
2902 	lrbp->lun = lun;
2903 	ufshcd_prepare_lrbp_crypto(cmd ? scsi_cmd_to_rq(cmd) : NULL, lrbp);
2904 }
2905 
ufshcd_setup_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct scsi_cmnd * cmd,u8 lun,int tag)2906 static void ufshcd_setup_scsi_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2907 				  struct scsi_cmnd *cmd, u8 lun, int tag)
2908 {
2909 	__ufshcd_setup_cmd(lrbp, cmd, lun, tag);
2910 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2911 	lrbp->req_abort_skip = false;
2912 
2913 	ufshcd_comp_scsi_upiu(hba, lrbp);
2914 }
2915 
2916 /**
2917  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2918  * @upiu_wlun_id: UPIU W-LUN id
2919  *
2920  * Return: SCSI W-LUN id.
2921  */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2922 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2923 {
2924 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2925 }
2926 
is_device_wlun(struct scsi_device * sdev)2927 static inline bool is_device_wlun(struct scsi_device *sdev)
2928 {
2929 	return sdev->lun ==
2930 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2931 }
2932 
2933 /*
2934  * Associate the UFS controller queue with the default and poll HCTX types.
2935  * Initialize the mq_map[] arrays.
2936  */
ufshcd_map_queues(struct Scsi_Host * shost)2937 static void ufshcd_map_queues(struct Scsi_Host *shost)
2938 {
2939 	struct ufs_hba *hba = shost_priv(shost);
2940 	int i, queue_offset = 0;
2941 
2942 	if (!is_mcq_supported(hba)) {
2943 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2944 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2945 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2946 		hba->nr_hw_queues = 1;
2947 	}
2948 
2949 	for (i = 0; i < shost->nr_maps; i++) {
2950 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2951 
2952 		map->nr_queues = hba->nr_queues[i];
2953 		if (!map->nr_queues)
2954 			continue;
2955 		map->queue_offset = queue_offset;
2956 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2957 			map->queue_offset = 0;
2958 
2959 		blk_mq_map_queues(map);
2960 		queue_offset += map->nr_queues;
2961 	}
2962 }
2963 
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2964 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2965 {
2966 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2967 		i * ufshcd_get_ucd_size(hba);
2968 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2969 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2970 		i * ufshcd_get_ucd_size(hba);
2971 	u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset);
2972 	u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset);
2973 
2974 	lrb->utr_descriptor_ptr = utrdlp + i;
2975 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2976 		i * sizeof(struct utp_transfer_req_desc);
2977 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2978 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2979 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2980 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2981 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2982 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2983 }
2984 
2985 /**
2986  * ufshcd_queuecommand - main entry point for SCSI requests
2987  * @host: SCSI host pointer
2988  * @cmd: command from SCSI Midlayer
2989  *
2990  * Return: 0 for success, non-zero in case of failure.
2991  */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2992 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2993 {
2994 	struct ufs_hba *hba = shost_priv(host);
2995 	int tag = scsi_cmd_to_rq(cmd)->tag;
2996 	struct ufshcd_lrb *lrbp;
2997 	int err = 0;
2998 	struct ufs_hw_queue *hwq = NULL;
2999 
3000 	switch (hba->ufshcd_state) {
3001 	case UFSHCD_STATE_OPERATIONAL:
3002 		break;
3003 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
3004 		/*
3005 		 * SCSI error handler can call ->queuecommand() while UFS error
3006 		 * handler is in progress. Error interrupts could change the
3007 		 * state from UFSHCD_STATE_RESET to
3008 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
3009 		 * being issued in that case.
3010 		 */
3011 		if (ufshcd_eh_in_progress(hba)) {
3012 			err = SCSI_MLQUEUE_HOST_BUSY;
3013 			goto out;
3014 		}
3015 		break;
3016 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
3017 		/*
3018 		 * pm_runtime_get_sync() is used at error handling preparation
3019 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
3020 		 * PM ops, it can never be finished if we let SCSI layer keep
3021 		 * retrying it, which gets err handler stuck forever. Neither
3022 		 * can we let the scsi cmd pass through, because UFS is in bad
3023 		 * state, the scsi cmd may eventually time out, which will get
3024 		 * err handler blocked for too long. So, just fail the scsi cmd
3025 		 * sent from PM ops, err handler can recover PM error anyways.
3026 		 */
3027 		if (hba->pm_op_in_progress) {
3028 			hba->force_reset = true;
3029 			set_host_byte(cmd, DID_BAD_TARGET);
3030 			scsi_done(cmd);
3031 			goto out;
3032 		}
3033 		fallthrough;
3034 	case UFSHCD_STATE_RESET:
3035 		err = SCSI_MLQUEUE_HOST_BUSY;
3036 		goto out;
3037 	case UFSHCD_STATE_ERROR:
3038 		set_host_byte(cmd, DID_ERROR);
3039 		scsi_done(cmd);
3040 		goto out;
3041 	}
3042 
3043 	hba->req_abort_count = 0;
3044 
3045 	ufshcd_hold(hba);
3046 
3047 	lrbp = &hba->lrb[tag];
3048 
3049 	ufshcd_setup_scsi_cmd(hba, lrbp, cmd, ufshcd_scsi_to_upiu_lun(cmd->device->lun), tag);
3050 
3051 	err = ufshcd_map_sg(hba, lrbp);
3052 	if (err) {
3053 		ufshcd_release(hba);
3054 		goto out;
3055 	}
3056 
3057 	if (hba->mcq_enabled)
3058 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3059 
3060 	ufshcd_send_command(hba, tag, hwq);
3061 
3062 out:
3063 	if (ufs_trigger_eh(hba)) {
3064 		unsigned long flags;
3065 
3066 		spin_lock_irqsave(hba->host->host_lock, flags);
3067 		ufshcd_schedule_eh_work(hba);
3068 		spin_unlock_irqrestore(hba->host->host_lock, flags);
3069 	}
3070 
3071 	return err;
3072 }
3073 
ufshcd_setup_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,u8 lun,int tag)3074 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3075 			     enum dev_cmd_type cmd_type, u8 lun, int tag)
3076 {
3077 	__ufshcd_setup_cmd(lrbp, NULL, lun, tag);
3078 	lrbp->intr_cmd = true; /* No interrupt aggregation */
3079 	hba->dev_cmd.type = cmd_type;
3080 }
3081 
3082 /*
3083  * Return: 0 upon success; < 0 upon failure.
3084  */
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)3085 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3086 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3087 {
3088 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
3089 
3090 	return ufshcd_compose_devman_upiu(hba, lrbp);
3091 }
3092 
3093 /*
3094  * Check with the block layer if the command is inflight
3095  * @cmd: command to check.
3096  *
3097  * Return: true if command is inflight; false if not.
3098  */
ufshcd_cmd_inflight(struct scsi_cmnd * cmd)3099 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3100 {
3101 	return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3102 }
3103 
3104 /*
3105  * Clear the pending command in the controller and wait until
3106  * the controller confirms that the command has been cleared.
3107  * @hba: per adapter instance
3108  * @task_tag: The tag number of the command to be cleared.
3109  */
ufshcd_clear_cmd(struct ufs_hba * hba,u32 task_tag)3110 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3111 {
3112 	u32 mask;
3113 	int err;
3114 
3115 	if (hba->mcq_enabled) {
3116 		/*
3117 		 * MCQ mode. Clean up the MCQ resources similar to
3118 		 * what the ufshcd_utrl_clear() does for SDB mode.
3119 		 */
3120 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3121 		if (err) {
3122 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3123 				__func__, task_tag, err);
3124 			return err;
3125 		}
3126 		return 0;
3127 	}
3128 
3129 	mask = 1U << task_tag;
3130 
3131 	/* clear outstanding transaction before retry */
3132 	ufshcd_utrl_clear(hba, mask);
3133 
3134 	/*
3135 	 * wait for h/w to clear corresponding bit in door-bell.
3136 	 * max. wait is 1 sec.
3137 	 */
3138 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3139 					mask, ~mask, 1000, 1000);
3140 }
3141 
3142 /**
3143  * ufshcd_dev_cmd_completion() - handles device management command responses
3144  * @hba: per adapter instance
3145  * @lrbp: pointer to local reference block
3146  *
3147  * Return: 0 upon success; < 0 upon failure.
3148  */
3149 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)3150 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3151 {
3152 	enum upiu_response_transaction resp;
3153 	int err = 0;
3154 
3155 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3156 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3157 
3158 	switch (resp) {
3159 	case UPIU_TRANSACTION_NOP_IN:
3160 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3161 			err = -EINVAL;
3162 			dev_err(hba->dev, "%s: unexpected response %x\n",
3163 					__func__, resp);
3164 		}
3165 		break;
3166 	case UPIU_TRANSACTION_QUERY_RSP: {
3167 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3168 
3169 		if (response == 0) {
3170 			err = ufshcd_copy_query_response(hba, lrbp);
3171 		} else {
3172 			err = -EINVAL;
3173 			dev_err(hba->dev, "%s: unexpected response in Query RSP: %x\n",
3174 					__func__, response);
3175 		}
3176 		break;
3177 	}
3178 	case UPIU_TRANSACTION_REJECT_UPIU:
3179 		/* TODO: handle Reject UPIU Response */
3180 		err = -EPERM;
3181 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3182 				__func__);
3183 		break;
3184 	case UPIU_TRANSACTION_RESPONSE:
3185 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3186 			err = -EINVAL;
3187 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3188 		}
3189 		break;
3190 	default:
3191 		err = -EINVAL;
3192 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3193 				__func__, resp);
3194 		break;
3195 	}
3196 
3197 	WARN_ONCE(err > 0, "Incorrect return value %d > 0\n", err);
3198 	return err;
3199 }
3200 
3201 /*
3202  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3203  * < 0 if another error occurred.
3204  */
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)3205 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3206 		struct ufshcd_lrb *lrbp, int max_timeout)
3207 {
3208 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3209 	unsigned long flags;
3210 	bool pending;
3211 	int err;
3212 
3213 retry:
3214 	time_left = wait_for_completion_timeout(&hba->dev_cmd.complete,
3215 						time_left);
3216 
3217 	if (likely(time_left)) {
3218 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3219 		if (!err)
3220 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3221 	} else {
3222 		err = -ETIMEDOUT;
3223 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3224 			__func__, lrbp->task_tag);
3225 
3226 		/* MCQ mode */
3227 		if (hba->mcq_enabled) {
3228 			/* successfully cleared the command, retry if needed */
3229 			if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3230 				err = -EAGAIN;
3231 			return err;
3232 		}
3233 
3234 		/* SDB mode */
3235 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3236 			/* successfully cleared the command, retry if needed */
3237 			err = -EAGAIN;
3238 			/*
3239 			 * Since clearing the command succeeded we also need to
3240 			 * clear the task tag bit from the outstanding_reqs
3241 			 * variable.
3242 			 */
3243 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3244 			pending = test_bit(lrbp->task_tag,
3245 					   &hba->outstanding_reqs);
3246 			if (pending)
3247 				__clear_bit(lrbp->task_tag,
3248 					    &hba->outstanding_reqs);
3249 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3250 
3251 			if (!pending) {
3252 				/*
3253 				 * The completion handler ran while we tried to
3254 				 * clear the command.
3255 				 */
3256 				time_left = 1;
3257 				goto retry;
3258 			}
3259 		} else {
3260 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3261 				__func__, lrbp->task_tag);
3262 
3263 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3264 			pending = test_bit(lrbp->task_tag,
3265 					   &hba->outstanding_reqs);
3266 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3267 
3268 			if (!pending) {
3269 				/*
3270 				 * The completion handler ran while we tried to
3271 				 * clear the command.
3272 				 */
3273 				time_left = 1;
3274 				goto retry;
3275 			}
3276 		}
3277 	}
3278 
3279 	return err;
3280 }
3281 
ufshcd_dev_man_lock(struct ufs_hba * hba)3282 static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3283 {
3284 	ufshcd_hold(hba);
3285 	mutex_lock(&hba->dev_cmd.lock);
3286 	down_read(&hba->clk_scaling_lock);
3287 }
3288 
ufshcd_dev_man_unlock(struct ufs_hba * hba)3289 static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3290 {
3291 	up_read(&hba->clk_scaling_lock);
3292 	mutex_unlock(&hba->dev_cmd.lock);
3293 	ufshcd_release(hba);
3294 }
3295 
3296 /*
3297  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3298  * < 0 if another error occurred.
3299  */
ufshcd_issue_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,const u32 tag,int timeout)3300 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3301 			  const u32 tag, int timeout)
3302 {
3303 	int err;
3304 
3305 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3306 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3307 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3308 
3309 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3310 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3311 
3312 	return err;
3313 }
3314 
3315 /**
3316  * ufshcd_exec_dev_cmd - API for sending device management requests
3317  * @hba: UFS hba
3318  * @cmd_type: specifies the type (NOP, Query...)
3319  * @timeout: timeout in milliseconds
3320  *
3321  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3322  * < 0 if another error occurred.
3323  *
3324  * NOTE: Since there is only one available tag for device management commands,
3325  * it is expected you hold the hba->dev_cmd.lock mutex.
3326  */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)3327 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3328 		enum dev_cmd_type cmd_type, int timeout)
3329 {
3330 	const u32 tag = hba->reserved_slot;
3331 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
3332 	int err;
3333 
3334 	/* Protects use of hba->reserved_slot. */
3335 	lockdep_assert_held(&hba->dev_cmd.lock);
3336 
3337 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3338 	if (unlikely(err))
3339 		return err;
3340 
3341 	return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout);
3342 }
3343 
3344 /**
3345  * ufshcd_init_query() - init the query response and request parameters
3346  * @hba: per-adapter instance
3347  * @request: address of the request pointer to be initialized
3348  * @response: address of the response pointer to be initialized
3349  * @opcode: operation to perform
3350  * @idn: flag idn to access
3351  * @index: LU number to access
3352  * @selector: query/flag/descriptor further identification
3353  */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)3354 static inline void ufshcd_init_query(struct ufs_hba *hba,
3355 		struct ufs_query_req **request, struct ufs_query_res **response,
3356 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3357 {
3358 	*request = &hba->dev_cmd.query.request;
3359 	*response = &hba->dev_cmd.query.response;
3360 	memset(*request, 0, sizeof(struct ufs_query_req));
3361 	memset(*response, 0, sizeof(struct ufs_query_res));
3362 	(*request)->upiu_req.opcode = opcode;
3363 	(*request)->upiu_req.idn = idn;
3364 	(*request)->upiu_req.index = index;
3365 	(*request)->upiu_req.selector = selector;
3366 }
3367 
3368 /*
3369  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3370  * < 0 if another error occurred.
3371  */
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3372 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3373 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3374 {
3375 	int ret;
3376 	int retries;
3377 
3378 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3379 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3380 		if (ret)
3381 			dev_dbg(hba->dev,
3382 				"%s: failed with error %d, retries %d\n",
3383 				__func__, ret, retries);
3384 		else
3385 			break;
3386 	}
3387 
3388 	if (ret)
3389 		dev_err(hba->dev,
3390 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3391 			__func__, opcode, idn, ret, retries);
3392 	return ret;
3393 }
3394 
3395 /**
3396  * ufshcd_query_flag() - API function for sending flag query requests
3397  * @hba: per-adapter instance
3398  * @opcode: flag query to perform
3399  * @idn: flag idn to access
3400  * @index: flag index to access
3401  * @flag_res: the flag value after the query request completes
3402  *
3403  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3404  * < 0 if another error occurred.
3405  */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3406 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3407 			enum flag_idn idn, u8 index, bool *flag_res)
3408 {
3409 	struct ufs_query_req *request = NULL;
3410 	struct ufs_query_res *response = NULL;
3411 	int err, selector = 0;
3412 	int timeout = dev_cmd_timeout;
3413 
3414 	BUG_ON(!hba);
3415 
3416 	ufshcd_dev_man_lock(hba);
3417 
3418 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3419 			selector);
3420 
3421 	switch (opcode) {
3422 	case UPIU_QUERY_OPCODE_SET_FLAG:
3423 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3424 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3425 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3426 		break;
3427 	case UPIU_QUERY_OPCODE_READ_FLAG:
3428 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3429 		if (!flag_res) {
3430 			/* No dummy reads */
3431 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3432 					__func__);
3433 			err = -EINVAL;
3434 			goto out_unlock;
3435 		}
3436 		break;
3437 	default:
3438 		dev_err(hba->dev,
3439 			"%s: Expected query flag opcode but got = %d\n",
3440 			__func__, opcode);
3441 		err = -EINVAL;
3442 		goto out_unlock;
3443 	}
3444 
3445 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3446 
3447 	if (err) {
3448 		dev_err(hba->dev,
3449 			"%s: Sending flag query for idn %d failed, err = %d\n",
3450 			__func__, idn, err);
3451 		goto out_unlock;
3452 	}
3453 
3454 	if (flag_res)
3455 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3456 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3457 
3458 out_unlock:
3459 	ufshcd_dev_man_unlock(hba);
3460 	return err;
3461 }
3462 
3463 /**
3464  * ufshcd_query_attr - API function for sending attribute requests
3465  * @hba: per-adapter instance
3466  * @opcode: attribute opcode
3467  * @idn: attribute idn to access
3468  * @index: index field
3469  * @selector: selector field
3470  * @attr_val: the attribute value after the query request completes
3471  *
3472  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3473  * < 0 if another error occurred.
3474  */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3475 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3476 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3477 {
3478 	struct ufs_query_req *request = NULL;
3479 	struct ufs_query_res *response = NULL;
3480 	int err;
3481 
3482 	BUG_ON(!hba);
3483 
3484 	if (!attr_val) {
3485 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3486 				__func__, opcode);
3487 		return -EINVAL;
3488 	}
3489 
3490 	ufshcd_dev_man_lock(hba);
3491 
3492 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3493 			selector);
3494 
3495 	switch (opcode) {
3496 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3497 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3498 		request->upiu_req.value = cpu_to_be32(*attr_val);
3499 		break;
3500 	case UPIU_QUERY_OPCODE_READ_ATTR:
3501 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3502 		break;
3503 	default:
3504 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3505 				__func__, opcode);
3506 		err = -EINVAL;
3507 		goto out_unlock;
3508 	}
3509 
3510 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
3511 
3512 	if (err) {
3513 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3514 				__func__, opcode, idn, index, err);
3515 		goto out_unlock;
3516 	}
3517 
3518 	*attr_val = be32_to_cpu(response->upiu_res.value);
3519 
3520 out_unlock:
3521 	ufshcd_dev_man_unlock(hba);
3522 	return err;
3523 }
3524 
3525 /**
3526  * ufshcd_query_attr_retry() - API function for sending query
3527  * attribute with retries
3528  * @hba: per-adapter instance
3529  * @opcode: attribute opcode
3530  * @idn: attribute idn to access
3531  * @index: index field
3532  * @selector: selector field
3533  * @attr_val: the attribute value after the query request
3534  * completes
3535  *
3536  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3537  * < 0 if another error occurred.
3538  */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3539 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3540 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3541 	u32 *attr_val)
3542 {
3543 	int ret = 0;
3544 	u32 retries;
3545 
3546 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3547 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3548 						selector, attr_val);
3549 		if (ret)
3550 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3551 				__func__, ret, retries);
3552 		else
3553 			break;
3554 	}
3555 
3556 	if (ret)
3557 		dev_err(hba->dev,
3558 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3559 			__func__, idn, ret, QUERY_REQ_RETRIES);
3560 	return ret;
3561 }
3562 
3563 /*
3564  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3565  * < 0 if another error occurred.
3566  */
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3567 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3568 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3569 			u8 selector, u8 *desc_buf, int *buf_len)
3570 {
3571 	struct ufs_query_req *request = NULL;
3572 	struct ufs_query_res *response = NULL;
3573 	int err;
3574 
3575 	BUG_ON(!hba);
3576 
3577 	if (!desc_buf) {
3578 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3579 				__func__, opcode);
3580 		return -EINVAL;
3581 	}
3582 
3583 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3584 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3585 				__func__, *buf_len);
3586 		return -EINVAL;
3587 	}
3588 
3589 	ufshcd_dev_man_lock(hba);
3590 
3591 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3592 			selector);
3593 	hba->dev_cmd.query.descriptor = desc_buf;
3594 	request->upiu_req.length = cpu_to_be16(*buf_len);
3595 
3596 	switch (opcode) {
3597 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3598 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3599 		break;
3600 	case UPIU_QUERY_OPCODE_READ_DESC:
3601 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3602 		break;
3603 	default:
3604 		dev_err(hba->dev,
3605 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3606 				__func__, opcode);
3607 		err = -EINVAL;
3608 		goto out_unlock;
3609 	}
3610 
3611 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
3612 
3613 	if (err) {
3614 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3615 				__func__, opcode, idn, index, err);
3616 		goto out_unlock;
3617 	}
3618 
3619 	*buf_len = be16_to_cpu(response->upiu_res.length);
3620 
3621 out_unlock:
3622 	hba->dev_cmd.query.descriptor = NULL;
3623 	ufshcd_dev_man_unlock(hba);
3624 	return err;
3625 }
3626 
3627 /**
3628  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3629  * @hba: per-adapter instance
3630  * @opcode: attribute opcode
3631  * @idn: attribute idn to access
3632  * @index: index field
3633  * @selector: selector field
3634  * @desc_buf: the buffer that contains the descriptor
3635  * @buf_len: length parameter passed to the device
3636  *
3637  * The buf_len parameter will contain, on return, the length parameter
3638  * received on the response.
3639  *
3640  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3641  * < 0 if another error occurred.
3642  */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3643 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3644 				  enum query_opcode opcode,
3645 				  enum desc_idn idn, u8 index,
3646 				  u8 selector,
3647 				  u8 *desc_buf, int *buf_len)
3648 {
3649 	int err;
3650 	int retries;
3651 
3652 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3653 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3654 						selector, desc_buf, buf_len);
3655 		if (!err || err == -EINVAL)
3656 			break;
3657 	}
3658 
3659 	return err;
3660 }
3661 
3662 /**
3663  * ufshcd_read_desc_param - read the specified descriptor parameter
3664  * @hba: Pointer to adapter instance
3665  * @desc_id: descriptor idn value
3666  * @desc_index: descriptor index
3667  * @param_offset: offset of the parameter to read
3668  * @param_read_buf: pointer to buffer where parameter would be read
3669  * @param_size: sizeof(param_read_buf)
3670  *
3671  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3672  * < 0 if another error occurred.
3673  */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3674 int ufshcd_read_desc_param(struct ufs_hba *hba,
3675 			   enum desc_idn desc_id,
3676 			   int desc_index,
3677 			   u8 param_offset,
3678 			   u8 *param_read_buf,
3679 			   u8 param_size)
3680 {
3681 	int ret;
3682 	u8 *desc_buf;
3683 	int buff_len = QUERY_DESC_MAX_SIZE;
3684 	bool is_kmalloc = true;
3685 
3686 	/* Safety check */
3687 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3688 		return -EINVAL;
3689 
3690 	/* Check whether we need temp memory */
3691 	if (param_offset != 0 || param_size < buff_len) {
3692 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3693 		if (!desc_buf)
3694 			return -ENOMEM;
3695 	} else {
3696 		desc_buf = param_read_buf;
3697 		is_kmalloc = false;
3698 	}
3699 
3700 	/* Request for full descriptor */
3701 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3702 					    desc_id, desc_index, 0,
3703 					    desc_buf, &buff_len);
3704 	if (ret) {
3705 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3706 			__func__, desc_id, desc_index, param_offset, ret);
3707 		goto out;
3708 	}
3709 
3710 	/* Update descriptor length */
3711 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3712 
3713 	if (param_offset >= buff_len) {
3714 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3715 			__func__, param_offset, desc_id, buff_len);
3716 		ret = -EINVAL;
3717 		goto out;
3718 	}
3719 
3720 	/* Sanity check */
3721 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3722 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3723 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3724 		ret = -EINVAL;
3725 		goto out;
3726 	}
3727 
3728 	if (is_kmalloc) {
3729 		/* Make sure we don't copy more data than available */
3730 		if (param_offset >= buff_len)
3731 			ret = -EINVAL;
3732 		else
3733 			memcpy(param_read_buf, &desc_buf[param_offset],
3734 			       min_t(u32, param_size, buff_len - param_offset));
3735 	}
3736 out:
3737 	if (is_kmalloc)
3738 		kfree(desc_buf);
3739 	return ret;
3740 }
3741 
3742 /**
3743  * struct uc_string_id - unicode string
3744  *
3745  * @len: size of this descriptor inclusive
3746  * @type: descriptor type
3747  * @uc: unicode string character
3748  */
3749 struct uc_string_id {
3750 	u8 len;
3751 	u8 type;
3752 	wchar_t uc[];
3753 } __packed;
3754 
3755 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3756 static inline char ufshcd_remove_non_printable(u8 ch)
3757 {
3758 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3759 }
3760 
3761 /**
3762  * ufshcd_read_string_desc - read string descriptor
3763  * @hba: pointer to adapter instance
3764  * @desc_index: descriptor index
3765  * @buf: pointer to buffer where descriptor would be read,
3766  *       the caller should free the memory.
3767  * @ascii: if true convert from unicode to ascii characters
3768  *         null terminated string.
3769  *
3770  * Return:
3771  * *      string size on success.
3772  * *      -ENOMEM: on allocation failure
3773  * *      -EINVAL: on a wrong parameter
3774  */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3775 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3776 			    u8 **buf, bool ascii)
3777 {
3778 	struct uc_string_id *uc_str;
3779 	u8 *str;
3780 	int ret;
3781 
3782 	if (!buf)
3783 		return -EINVAL;
3784 
3785 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3786 	if (!uc_str)
3787 		return -ENOMEM;
3788 
3789 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3790 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3791 	if (ret < 0) {
3792 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3793 			QUERY_REQ_RETRIES, ret);
3794 		str = NULL;
3795 		goto out;
3796 	}
3797 
3798 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3799 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3800 		str = NULL;
3801 		ret = 0;
3802 		goto out;
3803 	}
3804 
3805 	if (ascii) {
3806 		ssize_t ascii_len;
3807 		int i;
3808 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3809 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3810 		str = kzalloc(ascii_len, GFP_KERNEL);
3811 		if (!str) {
3812 			ret = -ENOMEM;
3813 			goto out;
3814 		}
3815 
3816 		/*
3817 		 * the descriptor contains string in UTF16 format
3818 		 * we need to convert to utf-8 so it can be displayed
3819 		 */
3820 		ret = utf16s_to_utf8s(uc_str->uc,
3821 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3822 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3823 
3824 		/* replace non-printable or non-ASCII characters with spaces */
3825 		for (i = 0; i < ret; i++)
3826 			str[i] = ufshcd_remove_non_printable(str[i]);
3827 
3828 		str[ret++] = '\0';
3829 
3830 	} else {
3831 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3832 		if (!str) {
3833 			ret = -ENOMEM;
3834 			goto out;
3835 		}
3836 		ret = uc_str->len;
3837 	}
3838 out:
3839 	*buf = str;
3840 	kfree(uc_str);
3841 	return ret;
3842 }
3843 
3844 /**
3845  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3846  * @hba: Pointer to adapter instance
3847  * @lun: lun id
3848  * @param_offset: offset of the parameter to read
3849  * @param_read_buf: pointer to buffer where parameter would be read
3850  * @param_size: sizeof(param_read_buf)
3851  *
3852  * Return: 0 in case of success; < 0 upon failure.
3853  */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3854 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3855 					      int lun,
3856 					      enum unit_desc_param param_offset,
3857 					      u8 *param_read_buf,
3858 					      u32 param_size)
3859 {
3860 	/*
3861 	 * Unit descriptors are only available for general purpose LUs (LUN id
3862 	 * from 0 to 7) and RPMB Well known LU.
3863 	 */
3864 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3865 		return -EOPNOTSUPP;
3866 
3867 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3868 				      param_offset, param_read_buf, param_size);
3869 }
3870 
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3871 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3872 {
3873 	int err = 0;
3874 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3875 
3876 	if (hba->dev_info.wspecversion >= 0x300) {
3877 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3878 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3879 				&gating_wait);
3880 		if (err)
3881 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3882 					 err, gating_wait);
3883 
3884 		if (gating_wait == 0) {
3885 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3886 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3887 					 gating_wait);
3888 		}
3889 
3890 		hba->dev_info.clk_gating_wait_us = gating_wait;
3891 	}
3892 
3893 	return err;
3894 }
3895 
3896 /**
3897  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3898  * @hba: per adapter instance
3899  *
3900  * 1. Allocate DMA memory for Command Descriptor array
3901  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3902  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3903  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3904  *	(UTMRDL)
3905  * 4. Allocate memory for local reference block(lrb).
3906  *
3907  * Return: 0 for success, non-zero in case of failure.
3908  */
ufshcd_memory_alloc(struct ufs_hba * hba)3909 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3910 {
3911 	size_t utmrdl_size, utrdl_size, ucdl_size;
3912 
3913 	/* Allocate memory for UTP command descriptors */
3914 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3915 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3916 						  ucdl_size,
3917 						  &hba->ucdl_dma_addr,
3918 						  GFP_KERNEL);
3919 
3920 	/*
3921 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3922 	 */
3923 	if (!hba->ucdl_base_addr ||
3924 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3925 		dev_err(hba->dev,
3926 			"Command Descriptor Memory allocation failed\n");
3927 		goto out;
3928 	}
3929 
3930 	/*
3931 	 * Allocate memory for UTP Transfer descriptors
3932 	 * UFSHCI requires 1KB alignment of UTRD
3933 	 */
3934 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3935 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3936 						   utrdl_size,
3937 						   &hba->utrdl_dma_addr,
3938 						   GFP_KERNEL);
3939 	if (!hba->utrdl_base_addr ||
3940 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3941 		dev_err(hba->dev,
3942 			"Transfer Descriptor Memory allocation failed\n");
3943 		goto out;
3944 	}
3945 
3946 	/*
3947 	 * Skip utmrdl allocation; it may have been
3948 	 * allocated during first pass and not released during
3949 	 * MCQ memory allocation.
3950 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3951 	 */
3952 	if (hba->utmrdl_base_addr)
3953 		goto skip_utmrdl;
3954 	/*
3955 	 * Allocate memory for UTP Task Management descriptors
3956 	 * UFSHCI requires 1KB alignment of UTMRD
3957 	 */
3958 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3959 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3960 						    utmrdl_size,
3961 						    &hba->utmrdl_dma_addr,
3962 						    GFP_KERNEL);
3963 	if (!hba->utmrdl_base_addr ||
3964 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3965 		dev_err(hba->dev,
3966 		"Task Management Descriptor Memory allocation failed\n");
3967 		goto out;
3968 	}
3969 
3970 skip_utmrdl:
3971 	/* Allocate memory for local reference block */
3972 	hba->lrb = devm_kcalloc(hba->dev,
3973 				hba->nutrs, sizeof(struct ufshcd_lrb),
3974 				GFP_KERNEL);
3975 	if (!hba->lrb) {
3976 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3977 		goto out;
3978 	}
3979 	return 0;
3980 out:
3981 	return -ENOMEM;
3982 }
3983 
3984 /**
3985  * ufshcd_host_memory_configure - configure local reference block with
3986  *				memory offsets
3987  * @hba: per adapter instance
3988  *
3989  * Configure Host memory space
3990  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3991  * address.
3992  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3993  * and PRDT offset.
3994  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3995  * into local reference block.
3996  */
ufshcd_host_memory_configure(struct ufs_hba * hba)3997 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3998 {
3999 	struct utp_transfer_req_desc *utrdlp;
4000 	dma_addr_t cmd_desc_dma_addr;
4001 	dma_addr_t cmd_desc_element_addr;
4002 	u16 response_offset;
4003 	u16 prdt_offset;
4004 	int cmd_desc_size;
4005 	int i;
4006 
4007 	utrdlp = hba->utrdl_base_addr;
4008 
4009 	response_offset =
4010 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
4011 	prdt_offset =
4012 		offsetof(struct utp_transfer_cmd_desc, prd_table);
4013 
4014 	cmd_desc_size = ufshcd_get_ucd_size(hba);
4015 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
4016 
4017 	for (i = 0; i < hba->nutrs; i++) {
4018 		/* Configure UTRD with command descriptor base address */
4019 		cmd_desc_element_addr =
4020 				(cmd_desc_dma_addr + (cmd_desc_size * i));
4021 		utrdlp[i].command_desc_base_addr =
4022 				cpu_to_le64(cmd_desc_element_addr);
4023 
4024 		/* Response upiu and prdt offset should be in double words */
4025 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
4026 			utrdlp[i].response_upiu_offset =
4027 				cpu_to_le16(response_offset);
4028 			utrdlp[i].prd_table_offset =
4029 				cpu_to_le16(prdt_offset);
4030 			utrdlp[i].response_upiu_length =
4031 				cpu_to_le16(ALIGNED_UPIU_SIZE);
4032 		} else {
4033 			utrdlp[i].response_upiu_offset =
4034 				cpu_to_le16(response_offset >> 2);
4035 			utrdlp[i].prd_table_offset =
4036 				cpu_to_le16(prdt_offset >> 2);
4037 			utrdlp[i].response_upiu_length =
4038 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
4039 		}
4040 
4041 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
4042 	}
4043 }
4044 
4045 /**
4046  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
4047  * @hba: per adapter instance
4048  *
4049  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
4050  * in order to initialize the Unipro link startup procedure.
4051  * Once the Unipro links are up, the device connected to the controller
4052  * is detected.
4053  *
4054  * Return: 0 on success, non-zero value on failure.
4055  */
ufshcd_dme_link_startup(struct ufs_hba * hba)4056 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
4057 {
4058 	struct uic_command uic_cmd = {
4059 		.command = UIC_CMD_DME_LINK_STARTUP,
4060 	};
4061 	int ret;
4062 
4063 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4064 	if (ret)
4065 		dev_dbg(hba->dev,
4066 			"dme-link-startup: error code %d\n", ret);
4067 	return ret;
4068 }
4069 /**
4070  * ufshcd_dme_reset - UIC command for DME_RESET
4071  * @hba: per adapter instance
4072  *
4073  * DME_RESET command is issued in order to reset UniPro stack.
4074  * This function now deals with cold reset.
4075  *
4076  * Return: 0 on success, non-zero value on failure.
4077  */
ufshcd_dme_reset(struct ufs_hba * hba)4078 int ufshcd_dme_reset(struct ufs_hba *hba)
4079 {
4080 	struct uic_command uic_cmd = {
4081 		.command = UIC_CMD_DME_RESET,
4082 	};
4083 	int ret;
4084 
4085 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4086 	if (ret)
4087 		dev_err(hba->dev,
4088 			"dme-reset: error code %d\n", ret);
4089 
4090 	return ret;
4091 }
4092 EXPORT_SYMBOL_GPL(ufshcd_dme_reset);
4093 
ufshcd_dme_configure_adapt(struct ufs_hba * hba,int agreed_gear,int adapt_val)4094 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4095 			       int agreed_gear,
4096 			       int adapt_val)
4097 {
4098 	int ret;
4099 
4100 	if (agreed_gear < UFS_HS_G4)
4101 		adapt_val = PA_NO_ADAPT;
4102 
4103 	ret = ufshcd_dme_set(hba,
4104 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4105 			     adapt_val);
4106 	return ret;
4107 }
4108 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4109 
4110 /**
4111  * ufshcd_dme_enable - UIC command for DME_ENABLE
4112  * @hba: per adapter instance
4113  *
4114  * DME_ENABLE command is issued in order to enable UniPro stack.
4115  *
4116  * Return: 0 on success, non-zero value on failure.
4117  */
ufshcd_dme_enable(struct ufs_hba * hba)4118 int ufshcd_dme_enable(struct ufs_hba *hba)
4119 {
4120 	struct uic_command uic_cmd = {
4121 		.command = UIC_CMD_DME_ENABLE,
4122 	};
4123 	int ret;
4124 
4125 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4126 	if (ret)
4127 		dev_err(hba->dev,
4128 			"dme-enable: error code %d\n", ret);
4129 
4130 	return ret;
4131 }
4132 EXPORT_SYMBOL_GPL(ufshcd_dme_enable);
4133 
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)4134 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4135 {
4136 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
4137 	unsigned long min_sleep_time_us;
4138 
4139 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4140 		return;
4141 
4142 	/*
4143 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4144 	 * this function
4145 	 */
4146 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4147 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4148 	} else {
4149 		unsigned long delta =
4150 			(unsigned long) ktime_to_us(
4151 				ktime_sub(ktime_get(),
4152 				hba->last_dme_cmd_tstamp));
4153 
4154 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4155 			min_sleep_time_us =
4156 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4157 		else
4158 			min_sleep_time_us = 0; /* no more delay required */
4159 	}
4160 
4161 	if (min_sleep_time_us > 0) {
4162 		/* allow sleep for extra 50us if needed */
4163 		usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4164 	}
4165 
4166 	/* update the last_dme_cmd_tstamp */
4167 	hba->last_dme_cmd_tstamp = ktime_get();
4168 }
4169 
4170 /**
4171  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4172  * @hba: per adapter instance
4173  * @attr_sel: uic command argument1
4174  * @attr_set: attribute set type as uic command argument2
4175  * @mib_val: setting value as uic command argument3
4176  * @peer: indicate whether peer or local
4177  *
4178  * Return: 0 on success, non-zero value on failure.
4179  */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)4180 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4181 			u8 attr_set, u32 mib_val, u8 peer)
4182 {
4183 	struct uic_command uic_cmd = {
4184 		.command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET,
4185 		.argument1 = attr_sel,
4186 		.argument2 = UIC_ARG_ATTR_TYPE(attr_set),
4187 		.argument3 = mib_val,
4188 	};
4189 	static const char *const action[] = {
4190 		"dme-set",
4191 		"dme-peer-set"
4192 	};
4193 	const char *set = action[!!peer];
4194 	int ret;
4195 	int retries = UFS_UIC_COMMAND_RETRIES;
4196 
4197 	do {
4198 		/* for peer attributes we retry upon failure */
4199 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4200 		if (ret)
4201 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4202 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4203 	} while (ret && peer && --retries);
4204 
4205 	if (ret)
4206 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4207 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4208 			UFS_UIC_COMMAND_RETRIES - retries);
4209 
4210 	return ret;
4211 }
4212 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4213 
4214 /**
4215  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4216  * @hba: per adapter instance
4217  * @attr_sel: uic command argument1
4218  * @mib_val: the value of the attribute as returned by the UIC command
4219  * @peer: indicate whether peer or local
4220  *
4221  * Return: 0 on success, non-zero value on failure.
4222  */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)4223 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4224 			u32 *mib_val, u8 peer)
4225 {
4226 	struct uic_command uic_cmd = {
4227 		.command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET,
4228 		.argument1 = attr_sel,
4229 	};
4230 	static const char *const action[] = {
4231 		"dme-get",
4232 		"dme-peer-get"
4233 	};
4234 	const char *get = action[!!peer];
4235 	int ret;
4236 	int retries = UFS_UIC_COMMAND_RETRIES;
4237 	struct ufs_pa_layer_attr orig_pwr_info;
4238 	struct ufs_pa_layer_attr temp_pwr_info;
4239 	bool pwr_mode_change = false;
4240 
4241 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4242 		orig_pwr_info = hba->pwr_info;
4243 		temp_pwr_info = orig_pwr_info;
4244 
4245 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4246 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4247 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4248 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4249 			pwr_mode_change = true;
4250 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4251 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4252 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4253 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4254 			pwr_mode_change = true;
4255 		}
4256 		if (pwr_mode_change) {
4257 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4258 			if (ret)
4259 				goto out;
4260 		}
4261 	}
4262 
4263 	do {
4264 		/* for peer attributes we retry upon failure */
4265 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4266 		if (ret)
4267 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4268 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4269 	} while (ret && peer && --retries);
4270 
4271 	if (ret)
4272 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4273 			get, UIC_GET_ATTR_ID(attr_sel),
4274 			UFS_UIC_COMMAND_RETRIES - retries);
4275 
4276 	if (mib_val && !ret)
4277 		*mib_val = uic_cmd.argument3;
4278 
4279 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4280 	    && pwr_mode_change)
4281 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4282 out:
4283 	return ret;
4284 }
4285 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4286 
4287 /**
4288  * ufshcd_dme_rmw - get modify set a DME attribute
4289  * @hba: per adapter instance
4290  * @mask: indicates which bits to clear from the value that has been read
4291  * @val: actual value to write
4292  * @attr: dme attribute
4293  */
ufshcd_dme_rmw(struct ufs_hba * hba,u32 mask,u32 val,u32 attr)4294 int ufshcd_dme_rmw(struct ufs_hba *hba, u32 mask,
4295 		   u32 val, u32 attr)
4296 {
4297 	u32 cfg = 0;
4298 	int err;
4299 
4300 	err = ufshcd_dme_get(hba, UIC_ARG_MIB(attr), &cfg);
4301 	if (err)
4302 		return err;
4303 
4304 	cfg &= ~mask;
4305 	cfg |= (val & mask);
4306 
4307 	return ufshcd_dme_set(hba, UIC_ARG_MIB(attr), cfg);
4308 }
4309 EXPORT_SYMBOL_GPL(ufshcd_dme_rmw);
4310 
4311 /**
4312  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4313  * state) and waits for it to take effect.
4314  *
4315  * @hba: per adapter instance
4316  * @cmd: UIC command to execute
4317  *
4318  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4319  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4320  * and device UniPro link and hence it's final completion would be indicated by
4321  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4322  * addition to normal UIC command completion Status (UCCS). This function only
4323  * returns after the relevant status bits indicate the completion.
4324  *
4325  * Return: 0 on success, non-zero value on failure.
4326  */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)4327 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4328 {
4329 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4330 	unsigned long flags;
4331 	u8 status;
4332 	int ret;
4333 
4334 	mutex_lock(&hba->uic_cmd_mutex);
4335 	ufshcd_add_delay_before_dme_cmd(hba);
4336 
4337 	spin_lock_irqsave(hba->host->host_lock, flags);
4338 	if (ufshcd_is_link_broken(hba)) {
4339 		ret = -ENOLINK;
4340 		goto out_unlock;
4341 	}
4342 	hba->uic_async_done = &uic_async_done;
4343 	ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4344 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4345 	ret = __ufshcd_send_uic_cmd(hba, cmd);
4346 	if (ret) {
4347 		dev_err(hba->dev,
4348 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4349 			cmd->command, cmd->argument3, ret);
4350 		goto out;
4351 	}
4352 
4353 	if (!wait_for_completion_timeout(hba->uic_async_done,
4354 					 msecs_to_jiffies(uic_cmd_timeout))) {
4355 		dev_err(hba->dev,
4356 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4357 			cmd->command, cmd->argument3);
4358 
4359 		if (!cmd->cmd_active) {
4360 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4361 				__func__);
4362 			goto check_upmcrs;
4363 		}
4364 
4365 		ret = -ETIMEDOUT;
4366 		goto out;
4367 	}
4368 
4369 check_upmcrs:
4370 	status = ufshcd_get_upmcrs(hba);
4371 	if (status != PWR_LOCAL) {
4372 		dev_err(hba->dev,
4373 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4374 			cmd->command, status);
4375 		ret = (status != PWR_OK) ? status : -1;
4376 	}
4377 out:
4378 	if (ret) {
4379 		ufshcd_print_host_state(hba);
4380 		ufshcd_print_pwr_info(hba);
4381 		ufshcd_print_evt_hist(hba);
4382 	}
4383 
4384 	spin_lock_irqsave(hba->host->host_lock, flags);
4385 	hba->active_uic_cmd = NULL;
4386 	hba->uic_async_done = NULL;
4387 	if (ret && !hba->pm_op_in_progress) {
4388 		ufshcd_set_link_broken(hba);
4389 		ufshcd_schedule_eh_work(hba);
4390 	}
4391 out_unlock:
4392 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4393 	mutex_unlock(&hba->uic_cmd_mutex);
4394 
4395 	/*
4396 	 * If the h8 exit fails during the runtime resume process, it becomes
4397 	 * stuck and cannot be recovered through the error handler.  To fix
4398 	 * this, use link recovery instead of the error handler.
4399 	 */
4400 	if (ret && hba->pm_op_in_progress)
4401 		ret = ufshcd_link_recovery(hba);
4402 
4403 	return ret;
4404 }
4405 
4406 /**
4407  * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result
4408  * @hba: per adapter instance
4409  * @uic_cmd: UIC command
4410  *
4411  * Return: 0 only if success.
4412  */
ufshcd_send_bsg_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)4413 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
4414 {
4415 	int ret;
4416 
4417 	if (uic_cmd->argument1 != UIC_ARG_MIB(PA_PWRMODE) ||
4418 	    uic_cmd->command != UIC_CMD_DME_SET)
4419 		return ufshcd_send_uic_cmd(hba, uic_cmd);
4420 
4421 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
4422 		return 0;
4423 
4424 	ufshcd_hold(hba);
4425 	ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd);
4426 	ufshcd_release(hba);
4427 
4428 	return ret;
4429 }
4430 
4431 /**
4432  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4433  *				using DME_SET primitives.
4434  * @hba: per adapter instance
4435  * @mode: powr mode value
4436  *
4437  * Return: 0 on success, non-zero value on failure.
4438  */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4439 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4440 {
4441 	struct uic_command uic_cmd = {
4442 		.command = UIC_CMD_DME_SET,
4443 		.argument1 = UIC_ARG_MIB(PA_PWRMODE),
4444 		.argument3 = mode,
4445 	};
4446 	int ret;
4447 
4448 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4449 		ret = ufshcd_dme_set(hba,
4450 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4451 		if (ret) {
4452 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4453 						__func__, ret);
4454 			goto out;
4455 		}
4456 	}
4457 
4458 	ufshcd_hold(hba);
4459 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4460 	ufshcd_release(hba);
4461 
4462 out:
4463 	return ret;
4464 }
4465 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4466 
ufshcd_link_recovery(struct ufs_hba * hba)4467 int ufshcd_link_recovery(struct ufs_hba *hba)
4468 {
4469 	int ret;
4470 	unsigned long flags;
4471 
4472 	spin_lock_irqsave(hba->host->host_lock, flags);
4473 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4474 	ufshcd_set_eh_in_progress(hba);
4475 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4476 
4477 	/* Reset the attached device */
4478 	ufshcd_device_reset(hba);
4479 
4480 	ret = ufshcd_host_reset_and_restore(hba);
4481 
4482 	spin_lock_irqsave(hba->host->host_lock, flags);
4483 	if (ret)
4484 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4485 	ufshcd_clear_eh_in_progress(hba);
4486 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4487 
4488 	if (ret)
4489 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4490 			__func__, ret);
4491 
4492 	return ret;
4493 }
4494 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4495 
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4496 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4497 {
4498 	struct uic_command uic_cmd = {
4499 		.command = UIC_CMD_DME_HIBER_ENTER,
4500 	};
4501 	ktime_t start = ktime_get();
4502 	int ret;
4503 
4504 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4505 
4506 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4507 	trace_ufshcd_profile_hibern8(hba, "enter",
4508 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4509 
4510 	if (ret)
4511 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4512 			__func__, ret);
4513 	else
4514 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4515 								POST_CHANGE);
4516 
4517 	return ret;
4518 }
4519 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4520 
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4521 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4522 {
4523 	struct uic_command uic_cmd = {
4524 		.command = UIC_CMD_DME_HIBER_EXIT,
4525 	};
4526 	int ret;
4527 	ktime_t start = ktime_get();
4528 
4529 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4530 
4531 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4532 	trace_ufshcd_profile_hibern8(hba, "exit",
4533 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4534 
4535 	if (ret) {
4536 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4537 			__func__, ret);
4538 	} else {
4539 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4540 								POST_CHANGE);
4541 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4542 		hba->ufs_stats.hibern8_exit_cnt++;
4543 	}
4544 
4545 	return ret;
4546 }
4547 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4548 
ufshcd_configure_auto_hibern8(struct ufs_hba * hba)4549 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4550 {
4551 	if (!ufshcd_is_auto_hibern8_supported(hba))
4552 		return;
4553 
4554 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4555 }
4556 
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4557 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4558 {
4559 	const u32 cur_ahit = READ_ONCE(hba->ahit);
4560 
4561 	if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4562 		return;
4563 
4564 	WRITE_ONCE(hba->ahit, ahit);
4565 	if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4566 		ufshcd_rpm_get_sync(hba);
4567 		ufshcd_hold(hba);
4568 		ufshcd_configure_auto_hibern8(hba);
4569 		ufshcd_release(hba);
4570 		ufshcd_rpm_put_sync(hba);
4571 	}
4572 }
4573 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4574 
4575  /**
4576  * ufshcd_init_pwr_info - setting the POR (power on reset)
4577  * values in hba power info
4578  * @hba: per-adapter instance
4579  */
ufshcd_init_pwr_info(struct ufs_hba * hba)4580 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4581 {
4582 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4583 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4584 	hba->pwr_info.lane_rx = UFS_LANE_1;
4585 	hba->pwr_info.lane_tx = UFS_LANE_1;
4586 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4587 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4588 	hba->pwr_info.hs_rate = 0;
4589 }
4590 
4591 /**
4592  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4593  * @hba: per-adapter instance
4594  *
4595  * Return: 0 upon success; < 0 upon failure.
4596  */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4597 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4598 {
4599 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4600 
4601 	if (hba->max_pwr_info.is_valid)
4602 		return 0;
4603 
4604 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4605 		pwr_info->pwr_tx = FASTAUTO_MODE;
4606 		pwr_info->pwr_rx = FASTAUTO_MODE;
4607 	} else {
4608 		pwr_info->pwr_tx = FAST_MODE;
4609 		pwr_info->pwr_rx = FAST_MODE;
4610 	}
4611 	pwr_info->hs_rate = PA_HS_MODE_B;
4612 
4613 	/* Get the connected lane count */
4614 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4615 			&pwr_info->lane_rx);
4616 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4617 			&pwr_info->lane_tx);
4618 
4619 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4620 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4621 				__func__,
4622 				pwr_info->lane_rx,
4623 				pwr_info->lane_tx);
4624 		return -EINVAL;
4625 	}
4626 
4627 	if (pwr_info->lane_rx != pwr_info->lane_tx) {
4628 		dev_err(hba->dev, "%s: asymmetric connected lanes. rx=%d, tx=%d\n",
4629 			__func__,
4630 				pwr_info->lane_rx,
4631 				pwr_info->lane_tx);
4632 		return -EINVAL;
4633 	}
4634 
4635 	/*
4636 	 * First, get the maximum gears of HS speed.
4637 	 * If a zero value, it means there is no HSGEAR capability.
4638 	 * Then, get the maximum gears of PWM speed.
4639 	 */
4640 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4641 	if (!pwr_info->gear_rx) {
4642 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4643 				&pwr_info->gear_rx);
4644 		if (!pwr_info->gear_rx) {
4645 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4646 				__func__, pwr_info->gear_rx);
4647 			return -EINVAL;
4648 		}
4649 		pwr_info->pwr_rx = SLOW_MODE;
4650 	}
4651 
4652 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4653 			&pwr_info->gear_tx);
4654 	if (!pwr_info->gear_tx) {
4655 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4656 				&pwr_info->gear_tx);
4657 		if (!pwr_info->gear_tx) {
4658 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4659 				__func__, pwr_info->gear_tx);
4660 			return -EINVAL;
4661 		}
4662 		pwr_info->pwr_tx = SLOW_MODE;
4663 	}
4664 
4665 	hba->max_pwr_info.is_valid = true;
4666 	return 0;
4667 }
4668 
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4669 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4670 			     struct ufs_pa_layer_attr *pwr_mode)
4671 {
4672 	int ret;
4673 
4674 	/* if already configured to the requested pwr_mode */
4675 	if (!hba->force_pmc &&
4676 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4677 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4678 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4679 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4680 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4681 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4682 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4683 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4684 		return 0;
4685 	}
4686 
4687 	/*
4688 	 * Configure attributes for power mode change with below.
4689 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4690 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4691 	 * - PA_HSSERIES
4692 	 */
4693 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4694 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4695 			pwr_mode->lane_rx);
4696 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4697 			pwr_mode->pwr_rx == FAST_MODE)
4698 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4699 	else
4700 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4701 
4702 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4703 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4704 			pwr_mode->lane_tx);
4705 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4706 			pwr_mode->pwr_tx == FAST_MODE)
4707 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4708 	else
4709 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4710 
4711 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4712 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4713 	    pwr_mode->pwr_rx == FAST_MODE ||
4714 	    pwr_mode->pwr_tx == FAST_MODE)
4715 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4716 						pwr_mode->hs_rate);
4717 
4718 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4719 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4720 				DL_FC0ProtectionTimeOutVal_Default);
4721 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4722 				DL_TC0ReplayTimeOutVal_Default);
4723 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4724 				DL_AFC0ReqTimeOutVal_Default);
4725 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4726 				DL_FC1ProtectionTimeOutVal_Default);
4727 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4728 				DL_TC1ReplayTimeOutVal_Default);
4729 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4730 				DL_AFC1ReqTimeOutVal_Default);
4731 
4732 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4733 				DL_FC0ProtectionTimeOutVal_Default);
4734 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4735 				DL_TC0ReplayTimeOutVal_Default);
4736 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4737 				DL_AFC0ReqTimeOutVal_Default);
4738 	}
4739 
4740 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4741 			| pwr_mode->pwr_tx);
4742 
4743 	if (ret) {
4744 		dev_err(hba->dev,
4745 			"%s: power mode change failed %d\n", __func__, ret);
4746 	} else {
4747 		memcpy(&hba->pwr_info, pwr_mode,
4748 			sizeof(struct ufs_pa_layer_attr));
4749 	}
4750 
4751 	return ret;
4752 }
4753 
4754 /**
4755  * ufshcd_config_pwr_mode - configure a new power mode
4756  * @hba: per-adapter instance
4757  * @desired_pwr_mode: desired power configuration
4758  *
4759  * Return: 0 upon success; < 0 upon failure.
4760  */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4761 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4762 		struct ufs_pa_layer_attr *desired_pwr_mode)
4763 {
4764 	struct ufs_pa_layer_attr final_params = { 0 };
4765 	int ret;
4766 
4767 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4768 					desired_pwr_mode, &final_params);
4769 
4770 	if (ret)
4771 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4772 
4773 	ret = ufshcd_change_power_mode(hba, &final_params);
4774 
4775 	if (!ret)
4776 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4777 					&final_params);
4778 
4779 	return ret;
4780 }
4781 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4782 
4783 /**
4784  * ufshcd_complete_dev_init() - checks device readiness
4785  * @hba: per-adapter instance
4786  *
4787  * Set fDeviceInit flag and poll until device toggles it.
4788  *
4789  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
4790  * < 0 if another error occurred.
4791  */
ufshcd_complete_dev_init(struct ufs_hba * hba)4792 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4793 {
4794 	int err;
4795 	bool flag_res = true;
4796 	ktime_t timeout;
4797 
4798 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4799 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4800 	if (err) {
4801 		dev_err(hba->dev,
4802 			"%s: setting fDeviceInit flag failed with error %d\n",
4803 			__func__, err);
4804 		goto out;
4805 	}
4806 
4807 	/* Poll fDeviceInit flag to be cleared */
4808 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4809 	do {
4810 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4811 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4812 		if (!flag_res)
4813 			break;
4814 		usleep_range(500, 1000);
4815 	} while (ktime_before(ktime_get(), timeout));
4816 
4817 	if (err) {
4818 		dev_err(hba->dev,
4819 				"%s: reading fDeviceInit flag failed with error %d\n",
4820 				__func__, err);
4821 	} else if (flag_res) {
4822 		dev_err(hba->dev,
4823 				"%s: fDeviceInit was not cleared by the device\n",
4824 				__func__);
4825 		err = -EBUSY;
4826 	}
4827 out:
4828 	return err;
4829 }
4830 
4831 /**
4832  * ufshcd_make_hba_operational - Make UFS controller operational
4833  * @hba: per adapter instance
4834  *
4835  * To bring UFS host controller to operational state,
4836  * 1. Enable required interrupts
4837  * 2. Configure interrupt aggregation
4838  * 3. Program UTRL and UTMRL base address
4839  * 4. Configure run-stop-registers
4840  *
4841  * Return: 0 if successful; < 0 upon failure.
4842  */
ufshcd_make_hba_operational(struct ufs_hba * hba)4843 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4844 {
4845 	int err = 0;
4846 	u32 reg;
4847 
4848 	/* Enable required interrupts */
4849 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4850 
4851 	/* Configure interrupt aggregation */
4852 	if (ufshcd_is_intr_aggr_allowed(hba))
4853 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4854 	else
4855 		ufshcd_disable_intr_aggr(hba);
4856 
4857 	/* Configure UTRL and UTMRL base address registers */
4858 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4859 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4860 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4861 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4862 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4863 			REG_UTP_TASK_REQ_LIST_BASE_L);
4864 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4865 			REG_UTP_TASK_REQ_LIST_BASE_H);
4866 
4867 	/*
4868 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4869 	 */
4870 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4871 	if (!(ufshcd_get_lists_status(reg))) {
4872 		ufshcd_enable_run_stop_reg(hba);
4873 	} else {
4874 		dev_err(hba->dev,
4875 			"Host controller not ready to process requests");
4876 		err = -EIO;
4877 	}
4878 
4879 	return err;
4880 }
4881 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4882 
4883 /**
4884  * ufshcd_hba_stop - Send controller to reset state
4885  * @hba: per adapter instance
4886  */
ufshcd_hba_stop(struct ufs_hba * hba)4887 void ufshcd_hba_stop(struct ufs_hba *hba)
4888 {
4889 	int err;
4890 
4891 	ufshcd_disable_irq(hba);
4892 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4893 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4894 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4895 					10, 1);
4896 	ufshcd_enable_irq(hba);
4897 	if (err)
4898 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4899 }
4900 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4901 
4902 /**
4903  * ufshcd_hba_execute_hce - initialize the controller
4904  * @hba: per adapter instance
4905  *
4906  * The controller resets itself and controller firmware initialization
4907  * sequence kicks off. When controller is ready it will set
4908  * the Host Controller Enable bit to 1.
4909  *
4910  * Return: 0 on success, non-zero value on failure.
4911  */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4912 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4913 {
4914 	int retry;
4915 
4916 	for (retry = 3; retry > 0; retry--) {
4917 		if (ufshcd_is_hba_active(hba))
4918 			/* change controller state to "reset state" */
4919 			ufshcd_hba_stop(hba);
4920 
4921 		/* UniPro link is disabled at this point */
4922 		ufshcd_set_link_off(hba);
4923 
4924 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4925 
4926 		/* start controller initialization sequence */
4927 		ufshcd_hba_start(hba);
4928 
4929 		/*
4930 		 * To initialize a UFS host controller HCE bit must be set to 1.
4931 		 * During initialization the HCE bit value changes from 1->0->1.
4932 		 * When the host controller completes initialization sequence
4933 		 * it sets the value of HCE bit to 1. The same HCE bit is read back
4934 		 * to check if the controller has completed initialization sequence.
4935 		 * So without this delay the value HCE = 1, set in the previous
4936 		 * instruction might be read back.
4937 		 * This delay can be changed based on the controller.
4938 		 */
4939 		ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4940 
4941 		/* wait for the host controller to complete initialization */
4942 		if (!ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE,
4943 					      CONTROLLER_ENABLE, 1000, 50))
4944 			break;
4945 
4946 		dev_err(hba->dev, "Enabling the controller failed\n");
4947 	}
4948 
4949 	if (!retry)
4950 		return -EIO;
4951 
4952 	/* enable UIC related interrupts */
4953 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4954 
4955 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4956 
4957 	return 0;
4958 }
4959 
ufshcd_hba_enable(struct ufs_hba * hba)4960 int ufshcd_hba_enable(struct ufs_hba *hba)
4961 {
4962 	int ret;
4963 
4964 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4965 		ufshcd_set_link_off(hba);
4966 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4967 
4968 		/* enable UIC related interrupts */
4969 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4970 		ret = ufshcd_dme_reset(hba);
4971 		if (ret) {
4972 			dev_err(hba->dev, "DME_RESET failed\n");
4973 			return ret;
4974 		}
4975 
4976 		ret = ufshcd_dme_enable(hba);
4977 		if (ret) {
4978 			dev_err(hba->dev, "Enabling DME failed\n");
4979 			return ret;
4980 		}
4981 
4982 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4983 	} else {
4984 		ret = ufshcd_hba_execute_hce(hba);
4985 	}
4986 
4987 	return ret;
4988 }
4989 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4990 
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4991 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4992 {
4993 	int tx_lanes = 0, i, err = 0;
4994 
4995 	if (!peer)
4996 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4997 			       &tx_lanes);
4998 	else
4999 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
5000 				    &tx_lanes);
5001 	for (i = 0; i < tx_lanes; i++) {
5002 		if (!peer)
5003 			err = ufshcd_dme_set(hba,
5004 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
5005 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
5006 					0);
5007 		else
5008 			err = ufshcd_dme_peer_set(hba,
5009 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
5010 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
5011 					0);
5012 		if (err) {
5013 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
5014 				__func__, peer, i, err);
5015 			break;
5016 		}
5017 	}
5018 
5019 	return err;
5020 }
5021 
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)5022 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
5023 {
5024 	return ufshcd_disable_tx_lcc(hba, true);
5025 }
5026 
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)5027 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
5028 {
5029 	struct ufs_event_hist *e;
5030 
5031 	if (id >= UFS_EVT_CNT)
5032 		return;
5033 
5034 	e = &hba->ufs_stats.event[id];
5035 	e->val[e->pos] = val;
5036 	e->tstamp[e->pos] = local_clock();
5037 	e->cnt += 1;
5038 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
5039 
5040 	ufshcd_vops_event_notify(hba, id, &val);
5041 }
5042 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
5043 
5044 /**
5045  * ufshcd_link_startup - Initialize unipro link startup
5046  * @hba: per adapter instance
5047  *
5048  * Return: 0 for success, non-zero in case of failure.
5049  */
ufshcd_link_startup(struct ufs_hba * hba)5050 static int ufshcd_link_startup(struct ufs_hba *hba)
5051 {
5052 	int ret;
5053 	int retries = DME_LINKSTARTUP_RETRIES;
5054 	bool link_startup_again = false;
5055 
5056 	/*
5057 	 * If UFS device isn't active then we will have to issue link startup
5058 	 * 2 times to make sure the device state move to active.
5059 	 */
5060 	if (!ufshcd_is_ufs_dev_active(hba))
5061 		link_startup_again = true;
5062 
5063 link_startup:
5064 	do {
5065 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
5066 
5067 		ret = ufshcd_dme_link_startup(hba);
5068 
5069 		/* check if device is detected by inter-connect layer */
5070 		if (!ret && !ufshcd_is_device_present(hba)) {
5071 			ufshcd_update_evt_hist(hba,
5072 					       UFS_EVT_LINK_STARTUP_FAIL,
5073 					       0);
5074 			dev_err(hba->dev, "%s: Device not present\n", __func__);
5075 			ret = -ENXIO;
5076 			goto out;
5077 		}
5078 
5079 		/*
5080 		 * DME link lost indication is only received when link is up,
5081 		 * but we can't be sure if the link is up until link startup
5082 		 * succeeds. So reset the local Uni-Pro and try again.
5083 		 */
5084 		if (ret && retries && ufshcd_hba_enable(hba)) {
5085 			ufshcd_update_evt_hist(hba,
5086 					       UFS_EVT_LINK_STARTUP_FAIL,
5087 					       (u32)ret);
5088 			goto out;
5089 		}
5090 	} while (ret && retries--);
5091 
5092 	if (ret) {
5093 		/* failed to get the link up... retire */
5094 		ufshcd_update_evt_hist(hba,
5095 				       UFS_EVT_LINK_STARTUP_FAIL,
5096 				       (u32)ret);
5097 		goto out;
5098 	}
5099 
5100 	if (link_startup_again) {
5101 		link_startup_again = false;
5102 		retries = DME_LINKSTARTUP_RETRIES;
5103 		goto link_startup;
5104 	}
5105 
5106 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5107 	ufshcd_init_pwr_info(hba);
5108 	ufshcd_print_pwr_info(hba);
5109 
5110 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5111 		ret = ufshcd_disable_device_tx_lcc(hba);
5112 		if (ret)
5113 			goto out;
5114 	}
5115 
5116 	/* Include any host controller configuration via UIC commands */
5117 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5118 	if (ret)
5119 		goto out;
5120 
5121 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5122 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5123 	ret = ufshcd_make_hba_operational(hba);
5124 out:
5125 	if (ret) {
5126 		dev_err(hba->dev, "link startup failed %d\n", ret);
5127 		ufshcd_print_host_state(hba);
5128 		ufshcd_print_pwr_info(hba);
5129 		ufshcd_print_evt_hist(hba);
5130 	}
5131 	return ret;
5132 }
5133 
5134 /**
5135  * ufshcd_verify_dev_init() - Verify device initialization
5136  * @hba: per-adapter instance
5137  *
5138  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5139  * device Transport Protocol (UTP) layer is ready after a reset.
5140  * If the UTP layer at the device side is not initialized, it may
5141  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5142  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5143  *
5144  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
5145  * < 0 if another error occurred.
5146  */
ufshcd_verify_dev_init(struct ufs_hba * hba)5147 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5148 {
5149 	int err = 0;
5150 	int retries;
5151 
5152 	ufshcd_dev_man_lock(hba);
5153 
5154 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5155 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5156 					  hba->nop_out_timeout);
5157 
5158 		if (!err || err == -ETIMEDOUT)
5159 			break;
5160 
5161 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5162 	}
5163 
5164 	ufshcd_dev_man_unlock(hba);
5165 
5166 	if (err)
5167 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5168 	return err;
5169 }
5170 
5171 /**
5172  * ufshcd_setup_links - associate link b/w device wlun and other luns
5173  * @sdev: pointer to SCSI device
5174  * @hba: pointer to ufs hba
5175  */
ufshcd_setup_links(struct ufs_hba * hba,struct scsi_device * sdev)5176 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5177 {
5178 	struct device_link *link;
5179 
5180 	/*
5181 	 * Device wlun is the supplier & rest of the luns are consumers.
5182 	 * This ensures that device wlun suspends after all other luns.
5183 	 */
5184 	if (hba->ufs_device_wlun) {
5185 		link = device_link_add(&sdev->sdev_gendev,
5186 				       &hba->ufs_device_wlun->sdev_gendev,
5187 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5188 		if (!link) {
5189 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5190 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5191 			return;
5192 		}
5193 		hba->luns_avail--;
5194 		/* Ignore REPORT_LUN wlun probing */
5195 		if (hba->luns_avail == 1) {
5196 			ufshcd_rpm_put(hba);
5197 			return;
5198 		}
5199 	} else {
5200 		/*
5201 		 * Device wlun is probed. The assumption is that WLUNs are
5202 		 * scanned before other LUNs.
5203 		 */
5204 		hba->luns_avail--;
5205 	}
5206 }
5207 
5208 /**
5209  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5210  * @hba: per-adapter instance
5211  * @sdev: pointer to SCSI device
5212  */
ufshcd_lu_init(struct ufs_hba * hba,struct scsi_device * sdev)5213 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5214 {
5215 	int len = QUERY_DESC_MAX_SIZE;
5216 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5217 	u8 lun_qdepth = hba->nutrs;
5218 	u8 *desc_buf;
5219 	int ret;
5220 
5221 	desc_buf = kzalloc(len, GFP_KERNEL);
5222 	if (!desc_buf)
5223 		goto set_qdepth;
5224 
5225 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5226 	if (ret < 0) {
5227 		if (ret == -EOPNOTSUPP)
5228 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5229 			lun_qdepth = 1;
5230 		kfree(desc_buf);
5231 		goto set_qdepth;
5232 	}
5233 
5234 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5235 		/*
5236 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5237 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5238 		 */
5239 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5240 	}
5241 	/*
5242 	 * According to UFS device specification, the write protection mode is only supported by
5243 	 * normal LU, not supported by WLUN.
5244 	 */
5245 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5246 	    !hba->dev_info.is_lu_power_on_wp &&
5247 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5248 		hba->dev_info.is_lu_power_on_wp = true;
5249 
5250 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5251 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5252 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5253 		hba->dev_info.b_advanced_rpmb_en = true;
5254 
5255 
5256 	kfree(desc_buf);
5257 set_qdepth:
5258 	/*
5259 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5260 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5261 	 */
5262 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5263 	scsi_change_queue_depth(sdev, lun_qdepth);
5264 }
5265 
5266 /**
5267  * ufshcd_sdev_init - handle initial SCSI device configurations
5268  * @sdev: pointer to SCSI device
5269  *
5270  * Return: success.
5271  */
ufshcd_sdev_init(struct scsi_device * sdev)5272 static int ufshcd_sdev_init(struct scsi_device *sdev)
5273 {
5274 	struct ufs_hba *hba;
5275 
5276 	hba = shost_priv(sdev->host);
5277 
5278 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5279 	sdev->use_10_for_ms = 1;
5280 
5281 	/* DBD field should be set to 1 in mode sense(10) */
5282 	sdev->set_dbd_for_ms = 1;
5283 
5284 	/* allow SCSI layer to restart the device in case of errors */
5285 	sdev->allow_restart = 1;
5286 
5287 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5288 	sdev->no_report_opcodes = 1;
5289 
5290 	/* WRITE_SAME command is not supported */
5291 	sdev->no_write_same = 1;
5292 
5293 	ufshcd_lu_init(hba, sdev);
5294 
5295 	ufshcd_setup_links(hba, sdev);
5296 
5297 	return 0;
5298 }
5299 
5300 /**
5301  * ufshcd_change_queue_depth - change queue depth
5302  * @sdev: pointer to SCSI device
5303  * @depth: required depth to set
5304  *
5305  * Change queue depth and make sure the max. limits are not crossed.
5306  *
5307  * Return: new queue depth.
5308  */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)5309 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5310 {
5311 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5312 }
5313 
5314 /**
5315  * ufshcd_sdev_configure - adjust SCSI device configurations
5316  * @sdev: pointer to SCSI device
5317  * @lim: queue limits
5318  *
5319  * Return: 0 (success).
5320  */
ufshcd_sdev_configure(struct scsi_device * sdev,struct queue_limits * lim)5321 static int ufshcd_sdev_configure(struct scsi_device *sdev,
5322 				 struct queue_limits *lim)
5323 {
5324 	struct ufs_hba *hba = shost_priv(sdev->host);
5325 	struct request_queue *q = sdev->request_queue;
5326 
5327 	lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1;
5328 
5329 	/*
5330 	 * Block runtime-pm until all consumers are added.
5331 	 * Refer ufshcd_setup_links().
5332 	 */
5333 	if (is_device_wlun(sdev))
5334 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5335 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5336 		sdev->rpm_autosuspend = 1;
5337 	/*
5338 	 * Do not print messages during runtime PM to avoid never-ending cycles
5339 	 * of messages written back to storage by user space causing runtime
5340 	 * resume, causing more messages and so on.
5341 	 */
5342 	sdev->silence_suspend = 1;
5343 
5344 	if (hba->vops && hba->vops->config_scsi_dev)
5345 		hba->vops->config_scsi_dev(sdev);
5346 
5347 	ufshcd_crypto_register(hba, q);
5348 
5349 	return 0;
5350 }
5351 
5352 /**
5353  * ufshcd_sdev_destroy - remove SCSI device configurations
5354  * @sdev: pointer to SCSI device
5355  */
ufshcd_sdev_destroy(struct scsi_device * sdev)5356 static void ufshcd_sdev_destroy(struct scsi_device *sdev)
5357 {
5358 	struct ufs_hba *hba;
5359 	unsigned long flags;
5360 
5361 	hba = shost_priv(sdev->host);
5362 
5363 	/* Drop the reference as it won't be needed anymore */
5364 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5365 		spin_lock_irqsave(hba->host->host_lock, flags);
5366 		hba->ufs_device_wlun = NULL;
5367 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5368 	} else if (hba->ufs_device_wlun) {
5369 		struct device *supplier = NULL;
5370 
5371 		/* Ensure UFS Device WLUN exists and does not disappear */
5372 		spin_lock_irqsave(hba->host->host_lock, flags);
5373 		if (hba->ufs_device_wlun) {
5374 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5375 			get_device(supplier);
5376 		}
5377 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5378 
5379 		if (supplier) {
5380 			/*
5381 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5382 			 * device will not have been registered but can still
5383 			 * have a device link holding a reference to the device.
5384 			 */
5385 			device_link_remove(&sdev->sdev_gendev, supplier);
5386 			put_device(supplier);
5387 		}
5388 	}
5389 }
5390 
5391 /**
5392  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5393  * @lrbp: pointer to local reference block of completed command
5394  * @scsi_status: SCSI command status
5395  *
5396  * Return: value base on SCSI command status.
5397  */
5398 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)5399 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5400 {
5401 	int result = 0;
5402 
5403 	switch (scsi_status) {
5404 	case SAM_STAT_CHECK_CONDITION:
5405 		ufshcd_copy_sense_data(lrbp);
5406 		fallthrough;
5407 	case SAM_STAT_GOOD:
5408 		result |= DID_OK << 16 | scsi_status;
5409 		break;
5410 	case SAM_STAT_TASK_SET_FULL:
5411 	case SAM_STAT_BUSY:
5412 	case SAM_STAT_TASK_ABORTED:
5413 		ufshcd_copy_sense_data(lrbp);
5414 		result |= scsi_status;
5415 		break;
5416 	default:
5417 		result |= DID_ERROR << 16;
5418 		break;
5419 	} /* end of switch */
5420 
5421 	return result;
5422 }
5423 
5424 /**
5425  * ufshcd_transfer_rsp_status - Get overall status of the response
5426  * @hba: per adapter instance
5427  * @lrbp: pointer to local reference block of completed command
5428  * @cqe: pointer to the completion queue entry
5429  *
5430  * Return: result of the command to notify SCSI midlayer.
5431  */
5432 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct cq_entry * cqe)5433 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5434 			   struct cq_entry *cqe)
5435 {
5436 	int result = 0;
5437 	int scsi_status;
5438 	enum utp_ocs ocs;
5439 	u8 upiu_flags;
5440 	u32 resid;
5441 
5442 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5443 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5444 	/*
5445 	 * Test !overflow instead of underflow to support UFS devices that do
5446 	 * not set either flag.
5447 	 */
5448 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5449 		scsi_set_resid(lrbp->cmd, resid);
5450 
5451 	/* overall command status of utrd */
5452 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5453 
5454 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5455 		if (lrbp->ucd_rsp_ptr->header.response ||
5456 		    lrbp->ucd_rsp_ptr->header.status)
5457 			ocs = OCS_SUCCESS;
5458 	}
5459 
5460 	switch (ocs) {
5461 	case OCS_SUCCESS:
5462 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5463 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5464 		case UPIU_TRANSACTION_RESPONSE:
5465 			/*
5466 			 * get the result based on SCSI status response
5467 			 * to notify the SCSI midlayer of the command status
5468 			 */
5469 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5470 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5471 
5472 			/*
5473 			 * Currently we are only supporting BKOPs exception
5474 			 * events hence we can ignore BKOPs exception event
5475 			 * during power management callbacks. BKOPs exception
5476 			 * event is not expected to be raised in runtime suspend
5477 			 * callback as it allows the urgent bkops.
5478 			 * During system suspend, we are anyway forcefully
5479 			 * disabling the bkops and if urgent bkops is needed
5480 			 * it will be enabled on system resume. Long term
5481 			 * solution could be to abort the system suspend if
5482 			 * UFS device needs urgent BKOPs.
5483 			 */
5484 			if (!hba->pm_op_in_progress &&
5485 			    !ufshcd_eh_in_progress(hba) &&
5486 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5487 				/* Flushed in suspend */
5488 				schedule_work(&hba->eeh_work);
5489 			break;
5490 		case UPIU_TRANSACTION_REJECT_UPIU:
5491 			/* TODO: handle Reject UPIU Response */
5492 			result = DID_ERROR << 16;
5493 			dev_err(hba->dev,
5494 				"Reject UPIU not fully implemented\n");
5495 			break;
5496 		default:
5497 			dev_err(hba->dev,
5498 				"Unexpected request response code = %x\n",
5499 				result);
5500 			result = DID_ERROR << 16;
5501 			break;
5502 		}
5503 		break;
5504 	case OCS_ABORTED:
5505 	case OCS_INVALID_COMMAND_STATUS:
5506 		result |= DID_REQUEUE << 16;
5507 		dev_warn(hba->dev,
5508 				"OCS %s from controller for tag %d\n",
5509 				(ocs == OCS_ABORTED ? "aborted" : "invalid"),
5510 				lrbp->task_tag);
5511 		break;
5512 	case OCS_INVALID_CMD_TABLE_ATTR:
5513 	case OCS_INVALID_PRDT_ATTR:
5514 	case OCS_MISMATCH_DATA_BUF_SIZE:
5515 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5516 	case OCS_PEER_COMM_FAILURE:
5517 	case OCS_FATAL_ERROR:
5518 	case OCS_DEVICE_FATAL_ERROR:
5519 	case OCS_INVALID_CRYPTO_CONFIG:
5520 	case OCS_GENERAL_CRYPTO_ERROR:
5521 	default:
5522 		result |= DID_ERROR << 16;
5523 		dev_err(hba->dev,
5524 				"OCS error from controller = %x for tag %d\n",
5525 				ocs, lrbp->task_tag);
5526 		ufshcd_print_evt_hist(hba);
5527 		ufshcd_print_host_state(hba);
5528 		break;
5529 	} /* end of switch */
5530 
5531 	if ((host_byte(result) != DID_OK) &&
5532 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5533 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5534 	return result;
5535 }
5536 
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5537 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5538 					 u32 intr_mask)
5539 {
5540 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5541 	    !ufshcd_is_auto_hibern8_enabled(hba))
5542 		return false;
5543 
5544 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5545 		return false;
5546 
5547 	if (hba->active_uic_cmd &&
5548 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5549 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5550 		return false;
5551 
5552 	return true;
5553 }
5554 
5555 /**
5556  * ufshcd_uic_cmd_compl - handle completion of uic command
5557  * @hba: per adapter instance
5558  * @intr_status: interrupt status generated by the controller
5559  *
5560  * Return:
5561  *  IRQ_HANDLED - If interrupt is valid
5562  *  IRQ_NONE    - If invalid interrupt
5563  */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5564 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5565 {
5566 	irqreturn_t retval = IRQ_NONE;
5567 	struct uic_command *cmd;
5568 
5569 	guard(spinlock_irqsave)(hba->host->host_lock);
5570 	cmd = hba->active_uic_cmd;
5571 	if (!cmd)
5572 		goto unlock;
5573 
5574 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5575 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5576 
5577 	if (intr_status & UIC_COMMAND_COMPL) {
5578 		cmd->argument2 |= ufshcd_get_uic_cmd_result(hba);
5579 		cmd->argument3 = ufshcd_get_dme_attr_val(hba);
5580 		if (!hba->uic_async_done)
5581 			cmd->cmd_active = 0;
5582 		complete(&cmd->done);
5583 		retval = IRQ_HANDLED;
5584 	}
5585 
5586 	if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) {
5587 		cmd->cmd_active = 0;
5588 		complete(hba->uic_async_done);
5589 		retval = IRQ_HANDLED;
5590 	}
5591 
5592 	if (retval == IRQ_HANDLED)
5593 		ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP);
5594 
5595 unlock:
5596 	return retval;
5597 }
5598 
5599 /* Release the resources allocated for processing a SCSI command. */
ufshcd_release_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5600 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5601 			     struct ufshcd_lrb *lrbp)
5602 {
5603 	struct scsi_cmnd *cmd = lrbp->cmd;
5604 
5605 	scsi_dma_unmap(cmd);
5606 	ufshcd_crypto_clear_prdt(hba, lrbp);
5607 	ufshcd_release(hba);
5608 	ufshcd_clk_scaling_update_busy(hba);
5609 }
5610 
5611 /**
5612  * ufshcd_compl_one_cqe - handle a completion queue entry
5613  * @hba: per adapter instance
5614  * @task_tag: the task tag of the request to be completed
5615  * @cqe: pointer to the completion queue entry
5616  */
ufshcd_compl_one_cqe(struct ufs_hba * hba,int task_tag,struct cq_entry * cqe)5617 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5618 			  struct cq_entry *cqe)
5619 {
5620 	struct ufshcd_lrb *lrbp;
5621 	struct scsi_cmnd *cmd;
5622 	enum utp_ocs ocs;
5623 
5624 	lrbp = &hba->lrb[task_tag];
5625 	lrbp->compl_time_stamp = ktime_get();
5626 	lrbp->compl_time_stamp_local_clock = local_clock();
5627 	cmd = lrbp->cmd;
5628 	if (cmd) {
5629 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5630 			ufshcd_update_monitor(hba, lrbp);
5631 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5632 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5633 		ufshcd_release_scsi_cmd(hba, lrbp);
5634 		/* Do not touch lrbp after scsi done */
5635 		scsi_done(cmd);
5636 	} else {
5637 		if (cqe) {
5638 			ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5639 			lrbp->utr_descriptor_ptr->header.ocs = ocs;
5640 		}
5641 		complete(&hba->dev_cmd.complete);
5642 	}
5643 }
5644 
5645 /**
5646  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5647  * @hba: per adapter instance
5648  * @completed_reqs: bitmask that indicates which requests to complete
5649  */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)5650 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5651 					unsigned long completed_reqs)
5652 {
5653 	int tag;
5654 
5655 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5656 		ufshcd_compl_one_cqe(hba, tag, NULL);
5657 }
5658 
5659 /* Any value that is not an existing queue number is fine for this constant. */
5660 enum {
5661 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5662 };
5663 
ufshcd_clear_polled(struct ufs_hba * hba,unsigned long * completed_reqs)5664 static void ufshcd_clear_polled(struct ufs_hba *hba,
5665 				unsigned long *completed_reqs)
5666 {
5667 	int tag;
5668 
5669 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5670 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5671 
5672 		if (!cmd)
5673 			continue;
5674 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5675 			__clear_bit(tag, completed_reqs);
5676 	}
5677 }
5678 
5679 /*
5680  * Return: > 0 if one or more commands have been completed or 0 if no
5681  * requests have been completed.
5682  */
ufshcd_poll(struct Scsi_Host * shost,unsigned int queue_num)5683 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5684 {
5685 	struct ufs_hba *hba = shost_priv(shost);
5686 	unsigned long completed_reqs, flags;
5687 	u32 tr_doorbell;
5688 	struct ufs_hw_queue *hwq;
5689 
5690 	if (hba->mcq_enabled) {
5691 		hwq = &hba->uhq[queue_num];
5692 
5693 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5694 	}
5695 
5696 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5697 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5698 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5699 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5700 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5701 		  hba->outstanding_reqs);
5702 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5703 		/* Do not complete polled requests from interrupt context. */
5704 		ufshcd_clear_polled(hba, &completed_reqs);
5705 	}
5706 	hba->outstanding_reqs &= ~completed_reqs;
5707 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5708 
5709 	if (completed_reqs)
5710 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5711 
5712 	return completed_reqs != 0;
5713 }
5714 
5715 /**
5716  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5717  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5718  * to complete the pending transfers and free the resources associated with
5719  * the scsi command.
5720  *
5721  * @hba: per adapter instance
5722  * @force_compl: This flag is set to true when invoked
5723  * from ufshcd_host_reset_and_restore() in which case it requires special
5724  * handling because the host controller has been reset by ufshcd_hba_stop().
5725  */
ufshcd_mcq_compl_pending_transfer(struct ufs_hba * hba,bool force_compl)5726 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5727 					      bool force_compl)
5728 {
5729 	struct ufs_hw_queue *hwq;
5730 	struct ufshcd_lrb *lrbp;
5731 	struct scsi_cmnd *cmd;
5732 	unsigned long flags;
5733 	int tag;
5734 
5735 	for (tag = 0; tag < hba->nutrs; tag++) {
5736 		lrbp = &hba->lrb[tag];
5737 		cmd = lrbp->cmd;
5738 		if (!ufshcd_cmd_inflight(cmd) ||
5739 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5740 			continue;
5741 
5742 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
5743 		if (!hwq)
5744 			continue;
5745 
5746 		if (force_compl) {
5747 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5748 			/*
5749 			 * For those cmds of which the cqes are not present
5750 			 * in the cq, complete them explicitly.
5751 			 */
5752 			spin_lock_irqsave(&hwq->cq_lock, flags);
5753 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5754 				set_host_byte(cmd, DID_REQUEUE);
5755 				ufshcd_release_scsi_cmd(hba, lrbp);
5756 				scsi_done(cmd);
5757 			}
5758 			spin_unlock_irqrestore(&hwq->cq_lock, flags);
5759 		} else {
5760 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5761 		}
5762 	}
5763 }
5764 
5765 /**
5766  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5767  * @hba: per adapter instance
5768  *
5769  * Return:
5770  *  IRQ_HANDLED - If interrupt is valid
5771  *  IRQ_NONE    - If invalid interrupt
5772  */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5773 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5774 {
5775 	/* Resetting interrupt aggregation counters first and reading the
5776 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5777 	 * In order to prevent other interrupts starvation the DB is read once
5778 	 * after reset. The down side of this solution is the possibility of
5779 	 * false interrupt if device completes another request after resetting
5780 	 * aggregation and before reading the DB.
5781 	 */
5782 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5783 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5784 		ufshcd_reset_intr_aggr(hba);
5785 
5786 	if (ufs_fail_completion(hba))
5787 		return IRQ_HANDLED;
5788 
5789 	/*
5790 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5791 	 * do not want polling to trigger spurious interrupt complaints.
5792 	 */
5793 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5794 
5795 	return IRQ_HANDLED;
5796 }
5797 
__ufshcd_write_ee_control(struct ufs_hba * hba,u32 ee_ctrl_mask)5798 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5799 {
5800 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5801 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5802 				       &ee_ctrl_mask);
5803 }
5804 
ufshcd_write_ee_control(struct ufs_hba * hba)5805 int ufshcd_write_ee_control(struct ufs_hba *hba)
5806 {
5807 	int err;
5808 
5809 	mutex_lock(&hba->ee_ctrl_mutex);
5810 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5811 	mutex_unlock(&hba->ee_ctrl_mutex);
5812 	if (err)
5813 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5814 			__func__, err);
5815 	return err;
5816 }
5817 
ufshcd_update_ee_control(struct ufs_hba * hba,u16 * mask,const u16 * other_mask,u16 set,u16 clr)5818 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5819 			     const u16 *other_mask, u16 set, u16 clr)
5820 {
5821 	u16 new_mask, ee_ctrl_mask;
5822 	int err = 0;
5823 
5824 	mutex_lock(&hba->ee_ctrl_mutex);
5825 	new_mask = (*mask & ~clr) | set;
5826 	ee_ctrl_mask = new_mask | *other_mask;
5827 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5828 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5829 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5830 	if (!err) {
5831 		hba->ee_ctrl_mask = ee_ctrl_mask;
5832 		*mask = new_mask;
5833 	}
5834 	mutex_unlock(&hba->ee_ctrl_mutex);
5835 	return err;
5836 }
5837 
5838 /**
5839  * ufshcd_disable_ee - disable exception event
5840  * @hba: per-adapter instance
5841  * @mask: exception event to disable
5842  *
5843  * Disables exception event in the device so that the EVENT_ALERT
5844  * bit is not set.
5845  *
5846  * Return: zero on success, non-zero error value on failure.
5847  */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5848 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5849 {
5850 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5851 }
5852 
5853 /**
5854  * ufshcd_enable_ee - enable exception event
5855  * @hba: per-adapter instance
5856  * @mask: exception event to enable
5857  *
5858  * Enable corresponding exception event in the device to allow
5859  * device to alert host in critical scenarios.
5860  *
5861  * Return: zero on success, non-zero error value on failure.
5862  */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5863 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5864 {
5865 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5866 }
5867 
5868 /**
5869  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5870  * @hba: per-adapter instance
5871  *
5872  * Allow device to manage background operations on its own. Enabling
5873  * this might lead to inconsistent latencies during normal data transfers
5874  * as the device is allowed to manage its own way of handling background
5875  * operations.
5876  *
5877  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
5878  * < 0 if another error occurred.
5879  */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5880 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5881 {
5882 	int err = 0;
5883 
5884 	if (hba->auto_bkops_enabled)
5885 		goto out;
5886 
5887 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5888 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5889 	if (err) {
5890 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5891 				__func__, err);
5892 		goto out;
5893 	}
5894 
5895 	hba->auto_bkops_enabled = true;
5896 	trace_ufshcd_auto_bkops_state(hba, "Enabled");
5897 
5898 	/* No need of URGENT_BKOPS exception from the device */
5899 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5900 	if (err)
5901 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5902 				__func__, err);
5903 out:
5904 	return err;
5905 }
5906 
5907 /**
5908  * ufshcd_disable_auto_bkops - block device in doing background operations
5909  * @hba: per-adapter instance
5910  *
5911  * Disabling background operations improves command response latency but
5912  * has drawback of device moving into critical state where the device is
5913  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5914  * host is idle so that BKOPS are managed effectively without any negative
5915  * impacts.
5916  *
5917  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
5918  * < 0 if another error occurred.
5919  */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5920 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5921 {
5922 	int err = 0;
5923 
5924 	if (!hba->auto_bkops_enabled)
5925 		goto out;
5926 
5927 	/*
5928 	 * If host assisted BKOPs is to be enabled, make sure
5929 	 * urgent bkops exception is allowed.
5930 	 */
5931 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5932 	if (err) {
5933 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5934 				__func__, err);
5935 		goto out;
5936 	}
5937 
5938 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5939 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5940 	if (err) {
5941 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5942 				__func__, err);
5943 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5944 		goto out;
5945 	}
5946 
5947 	hba->auto_bkops_enabled = false;
5948 	trace_ufshcd_auto_bkops_state(hba, "Disabled");
5949 	hba->is_urgent_bkops_lvl_checked = false;
5950 out:
5951 	return err;
5952 }
5953 
5954 /**
5955  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5956  * @hba: per adapter instance
5957  *
5958  * After a device reset the device may toggle the BKOPS_EN flag
5959  * to default value. The s/w tracking variables should be updated
5960  * as well. This function would change the auto-bkops state based on
5961  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5962  */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5963 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5964 {
5965 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5966 		hba->auto_bkops_enabled = false;
5967 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5968 		ufshcd_enable_auto_bkops(hba);
5969 	} else {
5970 		hba->auto_bkops_enabled = true;
5971 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5972 		ufshcd_disable_auto_bkops(hba);
5973 	}
5974 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5975 	hba->is_urgent_bkops_lvl_checked = false;
5976 }
5977 
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5978 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5979 {
5980 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5981 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5982 }
5983 
5984 /**
5985  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5986  * @hba: per-adapter instance
5987  *
5988  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5989  * flag in the device to permit background operations if the device
5990  * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl",
5991  * disable otherwise.
5992  *
5993  * Return: 0 for success, non-zero in case of failure.
5994  *
5995  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5996  * to know whether auto bkops is enabled or disabled after this function
5997  * returns control to it.
5998  */
ufshcd_bkops_ctrl(struct ufs_hba * hba)5999 static int ufshcd_bkops_ctrl(struct ufs_hba *hba)
6000 {
6001 	enum bkops_status status = hba->urgent_bkops_lvl;
6002 	u32 curr_status = 0;
6003 	int err;
6004 
6005 	err = ufshcd_get_bkops_status(hba, &curr_status);
6006 	if (err) {
6007 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
6008 				__func__, err);
6009 		goto out;
6010 	} else if (curr_status > BKOPS_STATUS_MAX) {
6011 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
6012 				__func__, curr_status);
6013 		err = -EINVAL;
6014 		goto out;
6015 	}
6016 
6017 	if (curr_status >= status)
6018 		err = ufshcd_enable_auto_bkops(hba);
6019 	else
6020 		err = ufshcd_disable_auto_bkops(hba);
6021 out:
6022 	return err;
6023 }
6024 
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)6025 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
6026 {
6027 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6028 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
6029 }
6030 
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)6031 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
6032 {
6033 	int err;
6034 	u32 curr_status = 0;
6035 
6036 	if (hba->is_urgent_bkops_lvl_checked)
6037 		goto enable_auto_bkops;
6038 
6039 	err = ufshcd_get_bkops_status(hba, &curr_status);
6040 	if (err) {
6041 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
6042 				__func__, err);
6043 		goto out;
6044 	}
6045 
6046 	/*
6047 	 * We are seeing that some devices are raising the urgent bkops
6048 	 * exception events even when BKOPS status doesn't indicate performace
6049 	 * impacted or critical. Handle these device by determining their urgent
6050 	 * bkops status at runtime.
6051 	 */
6052 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
6053 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
6054 				__func__, curr_status);
6055 		/* update the current status as the urgent bkops level */
6056 		hba->urgent_bkops_lvl = curr_status;
6057 		hba->is_urgent_bkops_lvl_checked = true;
6058 	}
6059 
6060 enable_auto_bkops:
6061 	err = ufshcd_enable_auto_bkops(hba);
6062 out:
6063 	if (err < 0)
6064 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
6065 				__func__, err);
6066 }
6067 
6068 /*
6069  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
6070  * < 0 if another error occurred.
6071  */
ufshcd_read_device_lvl_exception_id(struct ufs_hba * hba,u64 * exception_id)6072 int ufshcd_read_device_lvl_exception_id(struct ufs_hba *hba, u64 *exception_id)
6073 {
6074 	struct utp_upiu_query_v4_0 *upiu_resp;
6075 	struct ufs_query_req *request = NULL;
6076 	struct ufs_query_res *response = NULL;
6077 	int err;
6078 
6079 	if (hba->dev_info.wspecversion < 0x410)
6080 		return -EOPNOTSUPP;
6081 
6082 	ufshcd_hold(hba);
6083 	mutex_lock(&hba->dev_cmd.lock);
6084 
6085 	ufshcd_init_query(hba, &request, &response,
6086 			  UPIU_QUERY_OPCODE_READ_ATTR,
6087 			  QUERY_ATTR_IDN_DEV_LVL_EXCEPTION_ID, 0, 0);
6088 
6089 	request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
6090 
6091 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
6092 
6093 	if (err) {
6094 		dev_err(hba->dev, "%s: failed to read device level exception %d\n",
6095 			__func__, err);
6096 		goto out;
6097 	}
6098 
6099 	upiu_resp = (struct utp_upiu_query_v4_0 *)response;
6100 	*exception_id = get_unaligned_be64(&upiu_resp->osf3);
6101 out:
6102 	mutex_unlock(&hba->dev_cmd.lock);
6103 	ufshcd_release(hba);
6104 
6105 	return err;
6106 }
6107 
__ufshcd_wb_toggle(struct ufs_hba * hba,bool set,enum flag_idn idn)6108 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
6109 {
6110 	u8 index;
6111 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
6112 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
6113 
6114 	index = ufshcd_wb_get_query_index(hba);
6115 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
6116 }
6117 
ufshcd_wb_toggle(struct ufs_hba * hba,bool enable)6118 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
6119 {
6120 	int ret;
6121 
6122 	if (!ufshcd_is_wb_allowed(hba) ||
6123 	    hba->dev_info.wb_enabled == enable)
6124 		return 0;
6125 
6126 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
6127 	if (ret) {
6128 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
6129 			__func__, enable ? "enabling" : "disabling", ret);
6130 		return ret;
6131 	}
6132 
6133 	hba->dev_info.wb_enabled = enable;
6134 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
6135 			__func__, enable ? "enabled" : "disabled");
6136 
6137 	return ret;
6138 }
6139 
ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba * hba,bool enable)6140 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6141 						 bool enable)
6142 {
6143 	int ret;
6144 
6145 	ret = __ufshcd_wb_toggle(hba, enable,
6146 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6147 	if (ret) {
6148 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6149 			__func__, enable ? "enabling" : "disabling", ret);
6150 		return;
6151 	}
6152 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6153 			__func__, enable ? "enabled" : "disabled");
6154 }
6155 
ufshcd_wb_toggle_buf_flush(struct ufs_hba * hba,bool enable)6156 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6157 {
6158 	int ret;
6159 
6160 	if (!ufshcd_is_wb_allowed(hba) ||
6161 	    hba->dev_info.wb_buf_flush_enabled == enable)
6162 		return 0;
6163 
6164 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6165 	if (ret) {
6166 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6167 			__func__, enable ? "enabling" : "disabling", ret);
6168 		return ret;
6169 	}
6170 
6171 	hba->dev_info.wb_buf_flush_enabled = enable;
6172 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6173 			__func__, enable ? "enabled" : "disabled");
6174 
6175 	return ret;
6176 }
6177 
ufshcd_wb_set_resize_en(struct ufs_hba * hba,enum wb_resize_en en_mode)6178 int ufshcd_wb_set_resize_en(struct ufs_hba *hba, enum wb_resize_en en_mode)
6179 {
6180 	int ret;
6181 	u8 index;
6182 
6183 	index = ufshcd_wb_get_query_index(hba);
6184 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
6185 				QUERY_ATTR_IDN_WB_BUF_RESIZE_EN, index, 0, &en_mode);
6186 	if (ret)
6187 		dev_err(hba->dev, "%s: Enable WB buf resize operation failed %d\n",
6188 			__func__, ret);
6189 
6190 	return ret;
6191 }
6192 
ufshcd_wb_curr_buff_threshold_check(struct ufs_hba * hba,u32 avail_buf)6193 static bool ufshcd_wb_curr_buff_threshold_check(struct ufs_hba *hba,
6194 						u32 avail_buf)
6195 {
6196 	u32 cur_buf;
6197 	int ret;
6198 	u8 index;
6199 
6200 	index = ufshcd_wb_get_query_index(hba);
6201 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6202 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6203 					      index, 0, &cur_buf);
6204 	if (ret) {
6205 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6206 			__func__, ret);
6207 		return false;
6208 	}
6209 
6210 	if (!cur_buf) {
6211 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6212 			 cur_buf);
6213 		return false;
6214 	}
6215 	/* Let it continue to flush when available buffer exceeds threshold */
6216 	return avail_buf < hba->vps->wb_flush_threshold;
6217 }
6218 
ufshcd_wb_force_disable(struct ufs_hba * hba)6219 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6220 {
6221 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6222 		ufshcd_wb_toggle_buf_flush(hba, false);
6223 
6224 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6225 	ufshcd_wb_toggle(hba, false);
6226 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6227 
6228 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6229 }
6230 
ufshcd_is_wb_buf_lifetime_available(struct ufs_hba * hba)6231 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6232 {
6233 	u32 lifetime;
6234 	int ret;
6235 	u8 index;
6236 
6237 	index = ufshcd_wb_get_query_index(hba);
6238 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6239 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6240 				      index, 0, &lifetime);
6241 	if (ret) {
6242 		dev_err(hba->dev,
6243 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6244 			__func__, ret);
6245 		return false;
6246 	}
6247 
6248 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6249 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6250 			__func__, lifetime);
6251 		return false;
6252 	}
6253 
6254 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6255 		__func__, lifetime);
6256 
6257 	return true;
6258 }
6259 
ufshcd_wb_need_flush(struct ufs_hba * hba)6260 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6261 {
6262 	int ret;
6263 	u32 avail_buf;
6264 	u8 index;
6265 
6266 	if (!ufshcd_is_wb_allowed(hba))
6267 		return false;
6268 
6269 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6270 		ufshcd_wb_force_disable(hba);
6271 		return false;
6272 	}
6273 
6274 	/*
6275 	 * With user-space reduction enabled, it's enough to enable flush
6276 	 * by checking only the available buffer. The threshold
6277 	 * defined here is > 90% full.
6278 	 * With user-space preserved enabled, the current-buffer
6279 	 * should be checked too because the wb buffer size can reduce
6280 	 * when disk tends to be full. This info is provided by current
6281 	 * buffer (dCurrentWriteBoosterBufferSize).
6282 	 */
6283 	index = ufshcd_wb_get_query_index(hba);
6284 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6285 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6286 				      index, 0, &avail_buf);
6287 	if (ret) {
6288 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6289 			 __func__, ret);
6290 		return false;
6291 	}
6292 
6293 	if (!hba->dev_info.b_presrv_uspc_en)
6294 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6295 
6296 	return ufshcd_wb_curr_buff_threshold_check(hba, avail_buf);
6297 }
6298 
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)6299 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6300 {
6301 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6302 					   struct ufs_hba,
6303 					   rpm_dev_flush_recheck_work);
6304 	/*
6305 	 * To prevent unnecessary VCC power drain after device finishes
6306 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6307 	 * after a certain delay to recheck the threshold by next runtime
6308 	 * suspend.
6309 	 */
6310 	ufshcd_rpm_get_sync(hba);
6311 	ufshcd_rpm_put_sync(hba);
6312 }
6313 
6314 /**
6315  * ufshcd_exception_event_handler - handle exceptions raised by device
6316  * @work: pointer to work data
6317  *
6318  * Read bExceptionEventStatus attribute from the device and handle the
6319  * exception event accordingly.
6320  */
ufshcd_exception_event_handler(struct work_struct * work)6321 static void ufshcd_exception_event_handler(struct work_struct *work)
6322 {
6323 	struct ufs_hba *hba;
6324 	int err;
6325 	u32 status = 0;
6326 	hba = container_of(work, struct ufs_hba, eeh_work);
6327 
6328 	err = ufshcd_get_ee_status(hba, &status);
6329 	if (err) {
6330 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6331 				__func__, err);
6332 		return;
6333 	}
6334 
6335 	trace_ufshcd_exception_event(hba, status);
6336 
6337 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6338 		ufshcd_bkops_exception_event_handler(hba);
6339 
6340 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6341 		ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
6342 
6343 	if (status & hba->ee_drv_mask & MASK_EE_HEALTH_CRITICAL) {
6344 		hba->critical_health_count++;
6345 		sysfs_notify(&hba->dev->kobj, NULL, "critical_health");
6346 	}
6347 
6348 	if (status & hba->ee_drv_mask & MASK_EE_DEV_LVL_EXCEPTION) {
6349 		atomic_inc(&hba->dev_lvl_exception_count);
6350 		sysfs_notify(&hba->dev->kobj, NULL, "device_lvl_exception_count");
6351 	}
6352 
6353 	ufs_debugfs_exception_event(hba, status);
6354 }
6355 
6356 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba,bool force_compl)6357 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6358 {
6359 	if (hba->mcq_enabled)
6360 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6361 	else
6362 		ufshcd_transfer_req_compl(hba);
6363 
6364 	ufshcd_tmc_handler(hba);
6365 }
6366 
6367 /**
6368  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6369  *				to recover from the DL NAC errors or not.
6370  * @hba: per-adapter instance
6371  *
6372  * Return: true if error handling is required, false otherwise.
6373  */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)6374 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6375 {
6376 	unsigned long flags;
6377 	bool err_handling = true;
6378 
6379 	spin_lock_irqsave(hba->host->host_lock, flags);
6380 	/*
6381 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6382 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6383 	 */
6384 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6385 		goto out;
6386 
6387 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6388 	    ((hba->saved_err & UIC_ERROR) &&
6389 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6390 		goto out;
6391 
6392 	if ((hba->saved_err & UIC_ERROR) &&
6393 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6394 		int err;
6395 		/*
6396 		 * wait for 50ms to see if we can get any other errors or not.
6397 		 */
6398 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6399 		msleep(50);
6400 		spin_lock_irqsave(hba->host->host_lock, flags);
6401 
6402 		/*
6403 		 * now check if we have got any other severe errors other than
6404 		 * DL NAC error?
6405 		 */
6406 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6407 		    ((hba->saved_err & UIC_ERROR) &&
6408 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6409 			goto out;
6410 
6411 		/*
6412 		 * As DL NAC is the only error received so far, send out NOP
6413 		 * command to confirm if link is still active or not.
6414 		 *   - If we don't get any response then do error recovery.
6415 		 *   - If we get response then clear the DL NAC error bit.
6416 		 */
6417 
6418 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6419 		err = ufshcd_verify_dev_init(hba);
6420 		spin_lock_irqsave(hba->host->host_lock, flags);
6421 
6422 		if (err)
6423 			goto out;
6424 
6425 		/* Link seems to be alive hence ignore the DL NAC errors */
6426 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6427 			hba->saved_err &= ~UIC_ERROR;
6428 		/* clear NAC error */
6429 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6430 		if (!hba->saved_uic_err)
6431 			err_handling = false;
6432 	}
6433 out:
6434 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6435 	return err_handling;
6436 }
6437 
6438 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)6439 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6440 {
6441 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6442 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6443 }
6444 
ufshcd_schedule_eh_work(struct ufs_hba * hba)6445 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6446 {
6447 	lockdep_assert_held(hba->host->host_lock);
6448 
6449 	/* handle fatal errors only when link is not in error state */
6450 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6451 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6452 		    ufshcd_is_saved_err_fatal(hba))
6453 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6454 		else
6455 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6456 		queue_work(hba->eh_wq, &hba->eh_work);
6457 	}
6458 }
6459 
ufshcd_force_error_recovery(struct ufs_hba * hba)6460 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6461 {
6462 	spin_lock_irq(hba->host->host_lock);
6463 	hba->force_reset = true;
6464 	ufshcd_schedule_eh_work(hba);
6465 	spin_unlock_irq(hba->host->host_lock);
6466 }
6467 
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)6468 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6469 {
6470 	mutex_lock(&hba->wb_mutex);
6471 	down_write(&hba->clk_scaling_lock);
6472 	hba->clk_scaling.is_allowed = allow;
6473 	up_write(&hba->clk_scaling_lock);
6474 	mutex_unlock(&hba->wb_mutex);
6475 }
6476 
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)6477 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6478 {
6479 	if (suspend) {
6480 		if (hba->clk_scaling.is_enabled)
6481 			ufshcd_suspend_clkscaling(hba);
6482 		ufshcd_clk_scaling_allow(hba, false);
6483 	} else {
6484 		ufshcd_clk_scaling_allow(hba, true);
6485 		if (hba->clk_scaling.is_enabled)
6486 			ufshcd_resume_clkscaling(hba);
6487 	}
6488 }
6489 
ufshcd_err_handling_prepare(struct ufs_hba * hba)6490 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6491 {
6492 	ufshcd_rpm_get_sync(hba);
6493 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6494 	    hba->is_sys_suspended) {
6495 		enum ufs_pm_op pm_op;
6496 
6497 		/*
6498 		 * Don't assume anything of resume, if
6499 		 * resume fails, irq and clocks can be OFF, and powers
6500 		 * can be OFF or in LPM.
6501 		 */
6502 		ufshcd_setup_hba_vreg(hba, true);
6503 		ufshcd_enable_irq(hba);
6504 		ufshcd_setup_vreg(hba, true);
6505 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6506 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6507 		ufshcd_hold(hba);
6508 		if (!ufshcd_is_clkgating_allowed(hba))
6509 			ufshcd_setup_clocks(hba, true);
6510 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6511 		ufshcd_vops_resume(hba, pm_op);
6512 	} else {
6513 		ufshcd_hold(hba);
6514 		if (ufshcd_is_clkscaling_supported(hba) &&
6515 		    hba->clk_scaling.is_enabled)
6516 			ufshcd_suspend_clkscaling(hba);
6517 		ufshcd_clk_scaling_allow(hba, false);
6518 	}
6519 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6520 	blk_mq_quiesce_tagset(&hba->host->tag_set);
6521 	cancel_work_sync(&hba->eeh_work);
6522 }
6523 
ufshcd_err_handling_unprepare(struct ufs_hba * hba)6524 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6525 {
6526 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
6527 	ufshcd_release(hba);
6528 	if (ufshcd_is_clkscaling_supported(hba))
6529 		ufshcd_clk_scaling_suspend(hba, false);
6530 	ufshcd_rpm_put(hba);
6531 }
6532 
ufshcd_err_handling_should_stop(struct ufs_hba * hba)6533 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6534 {
6535 	return (!hba->is_powered || hba->shutting_down ||
6536 		!hba->ufs_device_wlun ||
6537 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6538 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6539 		   ufshcd_is_link_broken(hba))));
6540 }
6541 
6542 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)6543 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6544 {
6545 	struct Scsi_Host *shost = hba->host;
6546 	struct scsi_device *sdev;
6547 	struct request_queue *q;
6548 	int ret;
6549 
6550 	hba->is_sys_suspended = false;
6551 	/*
6552 	 * Set RPM status of wlun device to RPM_ACTIVE,
6553 	 * this also clears its runtime error.
6554 	 */
6555 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6556 
6557 	/* hba device might have a runtime error otherwise */
6558 	if (ret)
6559 		ret = pm_runtime_set_active(hba->dev);
6560 	/*
6561 	 * If wlun device had runtime error, we also need to resume those
6562 	 * consumer scsi devices in case any of them has failed to be
6563 	 * resumed due to supplier runtime resume failure. This is to unblock
6564 	 * blk_queue_enter in case there are bios waiting inside it.
6565 	 */
6566 	if (!ret) {
6567 		shost_for_each_device(sdev, shost) {
6568 			q = sdev->request_queue;
6569 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6570 				       q->rpm_status == RPM_SUSPENDING))
6571 				pm_request_resume(q->dev);
6572 		}
6573 	}
6574 }
6575 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)6576 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6577 {
6578 }
6579 #endif
6580 
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)6581 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6582 {
6583 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6584 	u32 mode;
6585 
6586 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6587 
6588 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6589 		return true;
6590 
6591 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6592 		return true;
6593 
6594 	return false;
6595 }
6596 
ufshcd_abort_one(struct request * rq,void * priv)6597 static bool ufshcd_abort_one(struct request *rq, void *priv)
6598 {
6599 	int *ret = priv;
6600 	u32 tag = rq->tag;
6601 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6602 	struct scsi_device *sdev = cmd->device;
6603 	struct Scsi_Host *shost = sdev->host;
6604 	struct ufs_hba *hba = shost_priv(shost);
6605 
6606 	*ret = ufshcd_try_to_abort_task(hba, tag);
6607 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6608 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6609 		*ret ? "failed" : "succeeded");
6610 
6611 	return *ret == 0;
6612 }
6613 
6614 /**
6615  * ufshcd_abort_all - Abort all pending commands.
6616  * @hba: Host bus adapter pointer.
6617  *
6618  * Return: true if and only if the host controller needs to be reset.
6619  */
ufshcd_abort_all(struct ufs_hba * hba)6620 static bool ufshcd_abort_all(struct ufs_hba *hba)
6621 {
6622 	int tag, ret = 0;
6623 
6624 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6625 	if (ret)
6626 		goto out;
6627 
6628 	/* Clear pending task management requests */
6629 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6630 		ret = ufshcd_clear_tm_cmd(hba, tag);
6631 		if (ret)
6632 			goto out;
6633 	}
6634 
6635 out:
6636 	/* Complete the requests that are cleared by s/w */
6637 	ufshcd_complete_requests(hba, false);
6638 
6639 	return ret != 0;
6640 }
6641 
6642 /**
6643  * ufshcd_err_handler - handle UFS errors that require s/w attention
6644  * @work: pointer to work structure
6645  */
ufshcd_err_handler(struct work_struct * work)6646 static void ufshcd_err_handler(struct work_struct *work)
6647 {
6648 	int retries = MAX_ERR_HANDLER_RETRIES;
6649 	struct ufs_hba *hba;
6650 	unsigned long flags;
6651 	bool needs_restore;
6652 	bool needs_reset;
6653 	int pmc_err;
6654 
6655 	hba = container_of(work, struct ufs_hba, eh_work);
6656 
6657 	dev_info(hba->dev,
6658 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = 0x%x; saved_uic_err = 0x%x; force_reset = %d%s\n",
6659 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6660 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6661 		 hba->saved_uic_err, hba->force_reset,
6662 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6663 
6664 	down(&hba->host_sem);
6665 	spin_lock_irqsave(hba->host->host_lock, flags);
6666 	if (ufshcd_err_handling_should_stop(hba)) {
6667 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6668 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6669 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6670 		up(&hba->host_sem);
6671 		return;
6672 	}
6673 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6674 
6675 	ufshcd_err_handling_prepare(hba);
6676 
6677 	spin_lock_irqsave(hba->host->host_lock, flags);
6678 	ufshcd_set_eh_in_progress(hba);
6679 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6680 
6681 	/* Complete requests that have door-bell cleared by h/w */
6682 	ufshcd_complete_requests(hba, false);
6683 	spin_lock_irqsave(hba->host->host_lock, flags);
6684 again:
6685 	needs_restore = false;
6686 	needs_reset = false;
6687 
6688 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6689 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6690 	/*
6691 	 * A full reset and restore might have happened after preparation
6692 	 * is finished, double check whether we should stop.
6693 	 */
6694 	if (ufshcd_err_handling_should_stop(hba))
6695 		goto skip_err_handling;
6696 
6697 	if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6698 	    !hba->force_reset) {
6699 		bool ret;
6700 
6701 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6702 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6703 		ret = ufshcd_quirk_dl_nac_errors(hba);
6704 		spin_lock_irqsave(hba->host->host_lock, flags);
6705 		if (!ret && ufshcd_err_handling_should_stop(hba))
6706 			goto skip_err_handling;
6707 	}
6708 
6709 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6710 	    (hba->saved_uic_err &&
6711 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6712 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6713 
6714 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6715 		ufshcd_print_host_state(hba);
6716 		ufshcd_print_pwr_info(hba);
6717 		ufshcd_print_evt_hist(hba);
6718 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6719 		ufshcd_print_trs_all(hba, pr_prdt);
6720 		spin_lock_irqsave(hba->host->host_lock, flags);
6721 	}
6722 
6723 	/*
6724 	 * if host reset is required then skip clearing the pending
6725 	 * transfers forcefully because they will get cleared during
6726 	 * host reset and restore
6727 	 */
6728 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6729 	    ufshcd_is_saved_err_fatal(hba) ||
6730 	    ((hba->saved_err & UIC_ERROR) &&
6731 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6732 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6733 		needs_reset = true;
6734 		goto do_reset;
6735 	}
6736 
6737 	/*
6738 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6739 	 * check if power mode restore is needed.
6740 	 */
6741 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6742 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6743 		if (!hba->saved_uic_err)
6744 			hba->saved_err &= ~UIC_ERROR;
6745 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6746 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6747 			needs_restore = true;
6748 		spin_lock_irqsave(hba->host->host_lock, flags);
6749 		if (!hba->saved_err && !needs_restore)
6750 			goto skip_err_handling;
6751 	}
6752 
6753 	hba->silence_err_logs = true;
6754 	/* release lock as clear command might sleep */
6755 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6756 
6757 	needs_reset = ufshcd_abort_all(hba);
6758 
6759 	spin_lock_irqsave(hba->host->host_lock, flags);
6760 	hba->silence_err_logs = false;
6761 	if (needs_reset)
6762 		goto do_reset;
6763 
6764 	/*
6765 	 * After all reqs and tasks are cleared from doorbell,
6766 	 * now it is safe to retore power mode.
6767 	 */
6768 	if (needs_restore) {
6769 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6770 		/*
6771 		 * Hold the scaling lock just in case dev cmds
6772 		 * are sent via bsg and/or sysfs.
6773 		 */
6774 		down_write(&hba->clk_scaling_lock);
6775 		hba->force_pmc = true;
6776 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6777 		if (pmc_err) {
6778 			needs_reset = true;
6779 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6780 					__func__, pmc_err);
6781 		}
6782 		hba->force_pmc = false;
6783 		ufshcd_print_pwr_info(hba);
6784 		up_write(&hba->clk_scaling_lock);
6785 		spin_lock_irqsave(hba->host->host_lock, flags);
6786 	}
6787 
6788 do_reset:
6789 	/* Fatal errors need reset */
6790 	if (needs_reset) {
6791 		int err;
6792 
6793 		hba->force_reset = false;
6794 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6795 		err = ufshcd_reset_and_restore(hba);
6796 		if (err)
6797 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6798 					__func__, err);
6799 		else
6800 			ufshcd_recover_pm_error(hba);
6801 		spin_lock_irqsave(hba->host->host_lock, flags);
6802 	}
6803 
6804 skip_err_handling:
6805 	if (!needs_reset) {
6806 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6807 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6808 		if (hba->saved_err || hba->saved_uic_err)
6809 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6810 			    __func__, hba->saved_err, hba->saved_uic_err);
6811 	}
6812 	/* Exit in an operational state or dead */
6813 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6814 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6815 		if (--retries)
6816 			goto again;
6817 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6818 	}
6819 	ufshcd_clear_eh_in_progress(hba);
6820 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6821 	ufshcd_err_handling_unprepare(hba);
6822 	up(&hba->host_sem);
6823 
6824 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6825 		 ufshcd_state_name[hba->ufshcd_state]);
6826 }
6827 
6828 /**
6829  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6830  * @hba: per-adapter instance
6831  *
6832  * Return:
6833  *  IRQ_HANDLED - If interrupt is valid
6834  *  IRQ_NONE    - If invalid interrupt
6835  */
ufshcd_update_uic_error(struct ufs_hba * hba)6836 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6837 {
6838 	u32 reg;
6839 	irqreturn_t retval = IRQ_NONE;
6840 
6841 	/* PHY layer error */
6842 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6843 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6844 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6845 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6846 		/*
6847 		 * To know whether this error is fatal or not, DB timeout
6848 		 * must be checked but this error is handled separately.
6849 		 */
6850 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6851 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6852 					__func__);
6853 
6854 		/* Got a LINERESET indication. */
6855 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6856 			struct uic_command *cmd = NULL;
6857 
6858 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6859 			if (hba->uic_async_done && hba->active_uic_cmd)
6860 				cmd = hba->active_uic_cmd;
6861 			/*
6862 			 * Ignore the LINERESET during power mode change
6863 			 * operation via DME_SET command.
6864 			 */
6865 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6866 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6867 		}
6868 		retval |= IRQ_HANDLED;
6869 	}
6870 
6871 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6872 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6873 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6874 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6875 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6876 
6877 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6878 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6879 		else if (hba->dev_quirks &
6880 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6881 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6882 				hba->uic_error |=
6883 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6884 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6885 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6886 		}
6887 		retval |= IRQ_HANDLED;
6888 	}
6889 
6890 	/* UIC NL/TL/DME errors needs software retry */
6891 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6892 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6893 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6894 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6895 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6896 		retval |= IRQ_HANDLED;
6897 	}
6898 
6899 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6900 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6901 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6902 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6903 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6904 		retval |= IRQ_HANDLED;
6905 	}
6906 
6907 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6908 	if ((reg & UIC_DME_ERROR) &&
6909 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6910 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6911 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6912 		retval |= IRQ_HANDLED;
6913 	}
6914 
6915 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6916 			__func__, hba->uic_error);
6917 	return retval;
6918 }
6919 
6920 /**
6921  * ufshcd_check_errors - Check for errors that need s/w attention
6922  * @hba: per-adapter instance
6923  * @intr_status: interrupt status generated by the controller
6924  *
6925  * Return:
6926  *  IRQ_HANDLED - If interrupt is valid
6927  *  IRQ_NONE    - If invalid interrupt
6928  */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)6929 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6930 {
6931 	bool queue_eh_work = false;
6932 	irqreturn_t retval = IRQ_NONE;
6933 
6934 	guard(spinlock_irqsave)(hba->host->host_lock);
6935 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6936 
6937 	if (hba->errors & INT_FATAL_ERRORS) {
6938 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6939 				       hba->errors);
6940 		queue_eh_work = true;
6941 	}
6942 
6943 	if (hba->errors & UIC_ERROR) {
6944 		hba->uic_error = 0;
6945 		retval = ufshcd_update_uic_error(hba);
6946 		if (hba->uic_error)
6947 			queue_eh_work = true;
6948 	}
6949 
6950 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6951 		dev_err(hba->dev,
6952 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6953 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6954 			"Enter" : "Exit",
6955 			hba->errors, ufshcd_get_upmcrs(hba));
6956 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6957 				       hba->errors);
6958 		ufshcd_set_link_broken(hba);
6959 		queue_eh_work = true;
6960 	}
6961 
6962 	if (queue_eh_work) {
6963 		/*
6964 		 * update the transfer error masks to sticky bits, let's do this
6965 		 * irrespective of current ufshcd_state.
6966 		 */
6967 		hba->saved_err |= hba->errors;
6968 		hba->saved_uic_err |= hba->uic_error;
6969 
6970 		/* dump controller state before resetting */
6971 		if ((hba->saved_err &
6972 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6973 		    (hba->saved_uic_err &&
6974 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6975 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6976 					__func__, hba->saved_err,
6977 					hba->saved_uic_err);
6978 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6979 					 "host_regs: ");
6980 			ufshcd_print_pwr_info(hba);
6981 		}
6982 		ufshcd_schedule_eh_work(hba);
6983 		retval |= IRQ_HANDLED;
6984 	}
6985 	/*
6986 	 * if (!queue_eh_work) -
6987 	 * Other errors are either non-fatal where host recovers
6988 	 * itself without s/w intervention or errors that will be
6989 	 * handled by the SCSI core layer.
6990 	 */
6991 	hba->errors = 0;
6992 	hba->uic_error = 0;
6993 
6994 	return retval;
6995 }
6996 
6997 /**
6998  * ufshcd_tmc_handler - handle task management function completion
6999  * @hba: per adapter instance
7000  *
7001  * Return:
7002  *  IRQ_HANDLED - If interrupt is valid
7003  *  IRQ_NONE    - If invalid interrupt
7004  */
ufshcd_tmc_handler(struct ufs_hba * hba)7005 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
7006 {
7007 	unsigned long flags, pending, issued;
7008 	irqreturn_t ret = IRQ_NONE;
7009 	int tag;
7010 
7011 	spin_lock_irqsave(hba->host->host_lock, flags);
7012 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
7013 	issued = hba->outstanding_tasks & ~pending;
7014 	for_each_set_bit(tag, &issued, hba->nutmrs) {
7015 		struct request *req = hba->tmf_rqs[tag];
7016 		struct completion *c = req->end_io_data;
7017 
7018 		complete(c);
7019 		ret = IRQ_HANDLED;
7020 	}
7021 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7022 
7023 	return ret;
7024 }
7025 
7026 /**
7027  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
7028  * @hba: per adapter instance
7029  *
7030  * Return: IRQ_HANDLED if interrupt is handled.
7031  */
ufshcd_handle_mcq_cq_events(struct ufs_hba * hba)7032 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
7033 {
7034 	struct ufs_hw_queue *hwq;
7035 	unsigned long outstanding_cqs;
7036 	unsigned int nr_queues;
7037 	int i, ret;
7038 	u32 events;
7039 
7040 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
7041 	if (ret)
7042 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
7043 
7044 	/* Exclude the poll queues */
7045 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
7046 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
7047 		hwq = &hba->uhq[i];
7048 
7049 		events = ufshcd_mcq_read_cqis(hba, i);
7050 		if (events)
7051 			ufshcd_mcq_write_cqis(hba, events, i);
7052 
7053 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
7054 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
7055 	}
7056 
7057 	return IRQ_HANDLED;
7058 }
7059 
7060 /**
7061  * ufshcd_sl_intr - Interrupt service routine
7062  * @hba: per adapter instance
7063  * @intr_status: contains interrupts generated by the controller
7064  *
7065  * Return:
7066  *  IRQ_HANDLED - If interrupt is valid
7067  *  IRQ_NONE    - If invalid interrupt
7068  */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)7069 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
7070 {
7071 	irqreturn_t retval = IRQ_NONE;
7072 
7073 	if (intr_status & UFSHCD_UIC_MASK)
7074 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
7075 
7076 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
7077 		retval |= ufshcd_check_errors(hba, intr_status);
7078 
7079 	if (intr_status & UTP_TASK_REQ_COMPL)
7080 		retval |= ufshcd_tmc_handler(hba);
7081 
7082 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
7083 		retval |= ufshcd_transfer_req_compl(hba);
7084 
7085 	if (intr_status & MCQ_CQ_EVENT_STATUS)
7086 		retval |= ufshcd_handle_mcq_cq_events(hba);
7087 
7088 	return retval;
7089 }
7090 
7091 /**
7092  * ufshcd_threaded_intr - Threaded interrupt service routine
7093  * @irq: irq number
7094  * @__hba: pointer to adapter instance
7095  *
7096  * Return:
7097  *  IRQ_HANDLED - If interrupt is valid
7098  *  IRQ_NONE    - If invalid interrupt
7099  */
ufshcd_threaded_intr(int irq,void * __hba)7100 static irqreturn_t ufshcd_threaded_intr(int irq, void *__hba)
7101 {
7102 	u32 last_intr_status, intr_status, enabled_intr_status = 0;
7103 	irqreturn_t retval = IRQ_NONE;
7104 	struct ufs_hba *hba = __hba;
7105 	int retries = hba->nutrs;
7106 
7107 	last_intr_status = intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7108 
7109 	/*
7110 	 * There could be max of hba->nutrs reqs in flight and in worst case
7111 	 * if the reqs get finished 1 by 1 after the interrupt status is
7112 	 * read, make sure we handle them by checking the interrupt status
7113 	 * again in a loop until we process all of the reqs before returning.
7114 	 */
7115 	while (intr_status && retries--) {
7116 		enabled_intr_status =
7117 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7118 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7119 		if (enabled_intr_status)
7120 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
7121 
7122 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7123 	}
7124 
7125 	if (enabled_intr_status && retval == IRQ_NONE &&
7126 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
7127 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
7128 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
7129 					__func__,
7130 					intr_status,
7131 					last_intr_status,
7132 					enabled_intr_status);
7133 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
7134 	}
7135 
7136 	return retval;
7137 }
7138 
7139 /**
7140  * ufshcd_intr - Main interrupt service routine
7141  * @irq: irq number
7142  * @__hba: pointer to adapter instance
7143  *
7144  * Return:
7145  *  IRQ_HANDLED     - If interrupt is valid
7146  *  IRQ_WAKE_THREAD - If handling is moved to threaded handled
7147  *  IRQ_NONE        - If invalid interrupt
7148  */
ufshcd_intr(int irq,void * __hba)7149 static irqreturn_t ufshcd_intr(int irq, void *__hba)
7150 {
7151 	struct ufs_hba *hba = __hba;
7152 	u32 intr_status, enabled_intr_status;
7153 
7154 	/* Move interrupt handling to thread when MCQ & ESI are not enabled */
7155 	if (!hba->mcq_enabled || !hba->mcq_esi_enabled)
7156 		return IRQ_WAKE_THREAD;
7157 
7158 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7159 	enabled_intr_status = intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7160 
7161 	ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7162 
7163 	/* Directly handle interrupts since MCQ ESI handlers does the hard job */
7164 	return ufshcd_sl_intr(hba, enabled_intr_status);
7165 }
7166 
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)7167 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
7168 {
7169 	int err = 0;
7170 	u32 mask = 1 << tag;
7171 
7172 	if (!test_bit(tag, &hba->outstanding_tasks))
7173 		goto out;
7174 
7175 	ufshcd_utmrl_clear(hba, tag);
7176 
7177 	/* poll for max. 1 sec to clear door bell register by h/w */
7178 	err = ufshcd_wait_for_register(hba,
7179 			REG_UTP_TASK_REQ_DOOR_BELL,
7180 			mask, 0, 1000, 1000);
7181 
7182 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7183 		tag, err < 0 ? "failed" : "succeeded");
7184 
7185 out:
7186 	return err;
7187 }
7188 
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)7189 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7190 		struct utp_task_req_desc *treq, u8 tm_function)
7191 {
7192 	struct request_queue *q = hba->tmf_queue;
7193 	struct Scsi_Host *host = hba->host;
7194 	DECLARE_COMPLETION_ONSTACK(wait);
7195 	struct request *req;
7196 	unsigned long flags;
7197 	int task_tag, err;
7198 
7199 	/*
7200 	 * blk_mq_alloc_request() is used here only to get a free tag.
7201 	 */
7202 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7203 	if (IS_ERR(req))
7204 		return PTR_ERR(req);
7205 
7206 	req->end_io_data = &wait;
7207 	ufshcd_hold(hba);
7208 
7209 	spin_lock_irqsave(host->host_lock, flags);
7210 
7211 	task_tag = req->tag;
7212 	hba->tmf_rqs[req->tag] = req;
7213 	treq->upiu_req.req_header.task_tag = task_tag;
7214 
7215 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7216 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7217 
7218 	__set_bit(task_tag, &hba->outstanding_tasks);
7219 
7220 	spin_unlock_irqrestore(host->host_lock, flags);
7221 
7222 	/* send command to the controller */
7223 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7224 
7225 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7226 
7227 	/* wait until the task management command is completed */
7228 	err = wait_for_completion_io_timeout(&wait,
7229 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7230 	if (!err) {
7231 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7232 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7233 				__func__, tm_function);
7234 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7235 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7236 					__func__, task_tag);
7237 		err = -ETIMEDOUT;
7238 	} else {
7239 		err = 0;
7240 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7241 
7242 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7243 	}
7244 
7245 	spin_lock_irqsave(hba->host->host_lock, flags);
7246 	hba->tmf_rqs[req->tag] = NULL;
7247 	__clear_bit(task_tag, &hba->outstanding_tasks);
7248 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7249 
7250 	ufshcd_release(hba);
7251 	blk_mq_free_request(req);
7252 
7253 	return err;
7254 }
7255 
7256 /**
7257  * ufshcd_issue_tm_cmd - issues task management commands to controller
7258  * @hba: per adapter instance
7259  * @lun_id: LUN ID to which TM command is sent
7260  * @task_id: task ID to which the TM command is applicable
7261  * @tm_function: task management function opcode
7262  * @tm_response: task management service response return value
7263  *
7264  * Return: non-zero value on error, zero on success.
7265  */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)7266 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7267 		u8 tm_function, u8 *tm_response)
7268 {
7269 	struct utp_task_req_desc treq = { };
7270 	enum utp_ocs ocs_value;
7271 	int err;
7272 
7273 	/* Configure task request descriptor */
7274 	treq.header.interrupt = 1;
7275 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7276 
7277 	/* Configure task request UPIU */
7278 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7279 	treq.upiu_req.req_header.lun = lun_id;
7280 	treq.upiu_req.req_header.tm_function = tm_function;
7281 
7282 	/*
7283 	 * The host shall provide the same value for LUN field in the basic
7284 	 * header and for Input Parameter.
7285 	 */
7286 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7287 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7288 
7289 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7290 	if (err == -ETIMEDOUT)
7291 		return err;
7292 
7293 	ocs_value = treq.header.ocs & MASK_OCS;
7294 	if (ocs_value != OCS_SUCCESS)
7295 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7296 				__func__, ocs_value);
7297 	else if (tm_response)
7298 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7299 				MASK_TM_SERVICE_RESP;
7300 	return err;
7301 }
7302 
7303 /**
7304  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7305  * @hba:	per-adapter instance
7306  * @req_upiu:	upiu request
7307  * @rsp_upiu:	upiu reply
7308  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7309  * @buff_len:	descriptor size, 0 if NA
7310  * @cmd_type:	specifies the type (NOP, Query...)
7311  * @desc_op:	descriptor operation
7312  *
7313  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7314  * Therefore, it "rides" the device management infrastructure: uses its tag and
7315  * tasks work queues.
7316  *
7317  * Since there is only one available tag for device management commands,
7318  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7319  *
7320  * Return: 0 upon success; < 0 upon failure.
7321  */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)7322 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7323 					struct utp_upiu_req *req_upiu,
7324 					struct utp_upiu_req *rsp_upiu,
7325 					u8 *desc_buff, int *buff_len,
7326 					enum dev_cmd_type cmd_type,
7327 					enum query_opcode desc_op)
7328 {
7329 	const u32 tag = hba->reserved_slot;
7330 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7331 	int err = 0;
7332 	u8 upiu_flags;
7333 
7334 	/* Protects use of hba->reserved_slot. */
7335 	lockdep_assert_held(&hba->dev_cmd.lock);
7336 
7337 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
7338 
7339 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7340 
7341 	/* update the task tag in the request upiu */
7342 	req_upiu->header.task_tag = tag;
7343 
7344 	/* just copy the upiu request as it is */
7345 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7346 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7347 		/* The Data Segment Area is optional depending upon the query
7348 		 * function value. for WRITE DESCRIPTOR, the data segment
7349 		 * follows right after the tsf.
7350 		 */
7351 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7352 		*buff_len = 0;
7353 	}
7354 
7355 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7356 
7357 	/*
7358 	 * ignore the returning value here - ufshcd_check_query_response is
7359 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7360 	 * read the response directly ignoring all errors.
7361 	 */
7362 	ufshcd_issue_dev_cmd(hba, lrbp, tag, dev_cmd_timeout);
7363 
7364 	/* just copy the upiu response as it is */
7365 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7366 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7367 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7368 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7369 					   .data_segment_length);
7370 
7371 		if (*buff_len >= resp_len) {
7372 			memcpy(desc_buff, descp, resp_len);
7373 			*buff_len = resp_len;
7374 		} else {
7375 			dev_warn(hba->dev,
7376 				 "%s: rsp size %d is bigger than buffer size %d",
7377 				 __func__, resp_len, *buff_len);
7378 			*buff_len = 0;
7379 			err = -EINVAL;
7380 		}
7381 	}
7382 
7383 	return err;
7384 }
7385 
7386 /**
7387  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7388  * @hba:	per-adapter instance
7389  * @req_upiu:	upiu request
7390  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7391  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7392  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7393  * @buff_len:	descriptor size, 0 if NA
7394  * @desc_op:	descriptor operation
7395  *
7396  * Supports UTP Transfer requests (nop and query), and UTP Task
7397  * Management requests.
7398  * It is up to the caller to fill the upiu conent properly, as it will
7399  * be copied without any further input validations.
7400  *
7401  * Return: 0 upon success; < 0 upon failure.
7402  */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,enum upiu_request_transaction msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)7403 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7404 			     struct utp_upiu_req *req_upiu,
7405 			     struct utp_upiu_req *rsp_upiu,
7406 			     enum upiu_request_transaction msgcode,
7407 			     u8 *desc_buff, int *buff_len,
7408 			     enum query_opcode desc_op)
7409 {
7410 	int err;
7411 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7412 	struct utp_task_req_desc treq = { };
7413 	enum utp_ocs ocs_value;
7414 	u8 tm_f = req_upiu->header.tm_function;
7415 
7416 	switch (msgcode) {
7417 	case UPIU_TRANSACTION_NOP_OUT:
7418 		cmd_type = DEV_CMD_TYPE_NOP;
7419 		fallthrough;
7420 	case UPIU_TRANSACTION_QUERY_REQ:
7421 		ufshcd_dev_man_lock(hba);
7422 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7423 						   desc_buff, buff_len,
7424 						   cmd_type, desc_op);
7425 		ufshcd_dev_man_unlock(hba);
7426 
7427 		break;
7428 	case UPIU_TRANSACTION_TASK_REQ:
7429 		treq.header.interrupt = 1;
7430 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7431 
7432 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7433 
7434 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7435 		if (err == -ETIMEDOUT)
7436 			break;
7437 
7438 		ocs_value = treq.header.ocs & MASK_OCS;
7439 		if (ocs_value != OCS_SUCCESS) {
7440 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7441 				ocs_value);
7442 			break;
7443 		}
7444 
7445 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7446 
7447 		break;
7448 	default:
7449 		err = -EINVAL;
7450 
7451 		break;
7452 	}
7453 
7454 	return err;
7455 }
7456 
7457 /**
7458  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7459  * @hba:	per adapter instance
7460  * @req_upiu:	upiu request
7461  * @rsp_upiu:	upiu reply
7462  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7463  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7464  * @sg_cnt:	The number of sg lists actually used
7465  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7466  * @dir:	DMA direction
7467  *
7468  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
7469  * < 0 if another error occurred.
7470  */
ufshcd_advanced_rpmb_req_handler(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,struct ufs_ehs * req_ehs,struct ufs_ehs * rsp_ehs,int sg_cnt,struct scatterlist * sg_list,enum dma_data_direction dir)7471 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7472 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7473 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7474 			 enum dma_data_direction dir)
7475 {
7476 	const u32 tag = hba->reserved_slot;
7477 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7478 	int err = 0;
7479 	int result;
7480 	u8 upiu_flags;
7481 	u8 *ehs_data;
7482 	u16 ehs_len;
7483 	int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7484 
7485 	/* Protects use of hba->reserved_slot. */
7486 	ufshcd_dev_man_lock(hba);
7487 
7488 	ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag);
7489 
7490 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7491 
7492 	/* update the task tag */
7493 	req_upiu->header.task_tag = tag;
7494 
7495 	/* copy the UPIU(contains CDB) request as it is */
7496 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7497 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7498 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7499 
7500 	if (dir != DMA_NONE && sg_list)
7501 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7502 
7503 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7504 
7505 	err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7506 
7507 	if (!err) {
7508 		/* Just copy the upiu response as it is */
7509 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7510 		/* Get the response UPIU result */
7511 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7512 			lrbp->ucd_rsp_ptr->header.status;
7513 
7514 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7515 		/*
7516 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7517 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7518 		 * Message is 02h
7519 		 */
7520 		if (ehs_len == 2 && rsp_ehs) {
7521 			/*
7522 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7523 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7524 			 */
7525 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7526 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7527 		}
7528 	}
7529 
7530 	ufshcd_dev_man_unlock(hba);
7531 
7532 	return err ? : result;
7533 }
7534 
7535 /**
7536  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7537  * @cmd: SCSI command pointer
7538  *
7539  * Return: SUCCESS or FAILED.
7540  */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)7541 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7542 {
7543 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7544 	struct Scsi_Host *host;
7545 	struct ufs_hba *hba;
7546 	struct ufs_hw_queue *hwq;
7547 	struct ufshcd_lrb *lrbp;
7548 	u32 pos, not_cleared_mask = 0;
7549 	int err;
7550 	u8 resp = 0xF, lun;
7551 
7552 	host = cmd->device->host;
7553 	hba = shost_priv(host);
7554 
7555 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7556 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7557 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7558 		if (!err)
7559 			err = resp;
7560 		goto out;
7561 	}
7562 
7563 	if (hba->mcq_enabled) {
7564 		for (pos = 0; pos < hba->nutrs; pos++) {
7565 			lrbp = &hba->lrb[pos];
7566 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7567 			    lrbp->lun == lun) {
7568 				ufshcd_clear_cmd(hba, pos);
7569 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7570 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7571 			}
7572 		}
7573 		err = 0;
7574 		goto out;
7575 	}
7576 
7577 	/* clear the commands that were pending for corresponding LUN */
7578 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7579 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7580 		if (hba->lrb[pos].lun == lun)
7581 			__set_bit(pos, &pending_reqs);
7582 	hba->outstanding_reqs &= ~pending_reqs;
7583 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7584 
7585 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7586 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7587 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7588 			not_cleared = 1U << pos &
7589 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7590 			hba->outstanding_reqs |= not_cleared;
7591 			not_cleared_mask |= not_cleared;
7592 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7593 
7594 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7595 				__func__, pos);
7596 		}
7597 	}
7598 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7599 
7600 out:
7601 	hba->req_abort_count = 0;
7602 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7603 	if (!err) {
7604 		err = SUCCESS;
7605 	} else {
7606 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7607 		err = FAILED;
7608 	}
7609 	return err;
7610 }
7611 
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)7612 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7613 {
7614 	struct ufshcd_lrb *lrbp;
7615 	int tag;
7616 
7617 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7618 		lrbp = &hba->lrb[tag];
7619 		lrbp->req_abort_skip = true;
7620 	}
7621 }
7622 
7623 /**
7624  * ufshcd_try_to_abort_task - abort a specific task
7625  * @hba: Pointer to adapter instance
7626  * @tag: Task tag/index to be aborted
7627  *
7628  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7629  * command, and in host controller by clearing the door-bell register. There can
7630  * be race between controller sending the command to the device while abort is
7631  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7632  * really issued and then try to abort it.
7633  *
7634  * Return: zero on success, non-zero on failure.
7635  */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)7636 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7637 {
7638 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7639 	int err;
7640 	int poll_cnt;
7641 	u8 resp = 0xF;
7642 
7643 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7644 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7645 				UFS_QUERY_TASK, &resp);
7646 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7647 			/* cmd pending in the device */
7648 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7649 				__func__, tag);
7650 			break;
7651 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7652 			/*
7653 			 * cmd not pending in the device, check if it is
7654 			 * in transition.
7655 			 */
7656 			dev_info(
7657 				hba->dev,
7658 				"%s: cmd with tag %d not pending in the device.\n",
7659 				__func__, tag);
7660 			if (!ufshcd_cmd_inflight(lrbp->cmd)) {
7661 				dev_info(hba->dev,
7662 					 "%s: cmd with tag=%d completed.\n",
7663 					 __func__, tag);
7664 				return 0;
7665 			}
7666 			usleep_range(100, 200);
7667 		} else {
7668 			dev_err(hba->dev,
7669 				"%s: no response from device. tag = %d, err %d\n",
7670 				__func__, tag, err);
7671 			return err ? : resp;
7672 		}
7673 	}
7674 
7675 	if (!poll_cnt)
7676 		return -EBUSY;
7677 
7678 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7679 			UFS_ABORT_TASK, &resp);
7680 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7681 		if (!err) {
7682 			err = resp; /* service response error */
7683 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7684 				__func__, tag, err);
7685 		}
7686 		return err;
7687 	}
7688 
7689 	err = ufshcd_clear_cmd(hba, tag);
7690 	if (err)
7691 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7692 			__func__, tag, err);
7693 
7694 	return err;
7695 }
7696 
7697 /**
7698  * ufshcd_abort - scsi host template eh_abort_handler callback
7699  * @cmd: SCSI command pointer
7700  *
7701  * Return: SUCCESS or FAILED.
7702  */
ufshcd_abort(struct scsi_cmnd * cmd)7703 static int ufshcd_abort(struct scsi_cmnd *cmd)
7704 {
7705 	struct Scsi_Host *host = cmd->device->host;
7706 	struct ufs_hba *hba = shost_priv(host);
7707 	int tag = scsi_cmd_to_rq(cmd)->tag;
7708 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7709 	unsigned long flags;
7710 	int err = FAILED;
7711 	bool outstanding;
7712 	u32 reg;
7713 
7714 	ufshcd_hold(hba);
7715 
7716 	if (!hba->mcq_enabled) {
7717 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7718 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7719 			/* If command is already aborted/completed, return FAILED. */
7720 			dev_err(hba->dev,
7721 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7722 				__func__, tag, hba->outstanding_reqs, reg);
7723 			goto release;
7724 		}
7725 	}
7726 
7727 	/* Print Transfer Request of aborted task */
7728 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7729 
7730 	/*
7731 	 * Print detailed info about aborted request.
7732 	 * As more than one request might get aborted at the same time,
7733 	 * print full information only for the first aborted request in order
7734 	 * to reduce repeated printouts. For other aborted requests only print
7735 	 * basic details.
7736 	 */
7737 	scsi_print_command(cmd);
7738 	if (!hba->req_abort_count) {
7739 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7740 		ufshcd_print_evt_hist(hba);
7741 		ufshcd_print_host_state(hba);
7742 		ufshcd_print_pwr_info(hba);
7743 		ufshcd_print_tr(hba, tag, true);
7744 	} else {
7745 		ufshcd_print_tr(hba, tag, false);
7746 	}
7747 	hba->req_abort_count++;
7748 
7749 	if (!hba->mcq_enabled && !(reg & (1 << tag))) {
7750 		/* only execute this code in single doorbell mode */
7751 		dev_err(hba->dev,
7752 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7753 		__func__, tag);
7754 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7755 		goto release;
7756 	}
7757 
7758 	/*
7759 	 * Task abort to the device W-LUN is illegal. When this command
7760 	 * will fail, due to spec violation, scsi err handling next step
7761 	 * will be to send LU reset which, again, is a spec violation.
7762 	 * To avoid these unnecessary/illegal steps, first we clean up
7763 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7764 	 * then queue the eh_work and bail.
7765 	 */
7766 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7767 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7768 
7769 		spin_lock_irqsave(host->host_lock, flags);
7770 		hba->force_reset = true;
7771 		ufshcd_schedule_eh_work(hba);
7772 		spin_unlock_irqrestore(host->host_lock, flags);
7773 		goto release;
7774 	}
7775 
7776 	if (hba->mcq_enabled) {
7777 		/* MCQ mode. Branch off to handle abort for mcq mode */
7778 		err = ufshcd_mcq_abort(cmd);
7779 		goto release;
7780 	}
7781 
7782 	/* Skip task abort in case previous aborts failed and report failure */
7783 	if (lrbp->req_abort_skip) {
7784 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7785 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7786 		goto release;
7787 	}
7788 
7789 	err = ufshcd_try_to_abort_task(hba, tag);
7790 	if (err) {
7791 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7792 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7793 		err = FAILED;
7794 		goto release;
7795 	}
7796 
7797 	/*
7798 	 * Clear the corresponding bit from outstanding_reqs since the command
7799 	 * has been aborted successfully.
7800 	 */
7801 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7802 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7803 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7804 
7805 	if (outstanding)
7806 		ufshcd_release_scsi_cmd(hba, lrbp);
7807 
7808 	err = SUCCESS;
7809 
7810 release:
7811 	/* Matches the ufshcd_hold() call at the start of this function. */
7812 	ufshcd_release(hba);
7813 	return err;
7814 }
7815 
7816 /**
7817  * ufshcd_process_probe_result - Process the ufshcd_probe_hba() result.
7818  * @hba: UFS host controller instance.
7819  * @probe_start: time when the ufshcd_probe_hba() call started.
7820  * @ret: ufshcd_probe_hba() return value.
7821  */
ufshcd_process_probe_result(struct ufs_hba * hba,ktime_t probe_start,int ret)7822 static void ufshcd_process_probe_result(struct ufs_hba *hba,
7823 					ktime_t probe_start, int ret)
7824 {
7825 	unsigned long flags;
7826 
7827 	spin_lock_irqsave(hba->host->host_lock, flags);
7828 	if (ret)
7829 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7830 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7831 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7832 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7833 
7834 	trace_ufshcd_init(hba, ret,
7835 			  ktime_to_us(ktime_sub(ktime_get(), probe_start)),
7836 			  hba->curr_dev_pwr_mode, hba->uic_link_state);
7837 }
7838 
7839 /**
7840  * ufshcd_host_reset_and_restore - reset and restore host controller
7841  * @hba: per-adapter instance
7842  *
7843  * Note that host controller reset may issue DME_RESET to
7844  * local and remote (device) Uni-Pro stack and the attributes
7845  * are reset to default state.
7846  *
7847  * Return: zero on success, non-zero on failure.
7848  */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7849 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7850 {
7851 	int err;
7852 
7853 	/*
7854 	 * Stop the host controller and complete the requests
7855 	 * cleared by h/w
7856 	 */
7857 	ufshcd_hba_stop(hba);
7858 	hba->silence_err_logs = true;
7859 	ufshcd_complete_requests(hba, true);
7860 	hba->silence_err_logs = false;
7861 
7862 	/* scale up clocks to max frequency before full reinitialization */
7863 	if (ufshcd_is_clkscaling_supported(hba))
7864 		ufshcd_scale_clks(hba, ULONG_MAX, true);
7865 
7866 	err = ufshcd_hba_enable(hba);
7867 
7868 	/* Establish the link again and restore the device */
7869 	if (!err) {
7870 		ktime_t probe_start = ktime_get();
7871 
7872 		err = ufshcd_device_init(hba, /*init_dev_params=*/false);
7873 		if (!err)
7874 			err = ufshcd_probe_hba(hba, false);
7875 		ufshcd_process_probe_result(hba, probe_start, err);
7876 	}
7877 
7878 	if (err)
7879 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7880 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7881 	return err;
7882 }
7883 
7884 /**
7885  * ufshcd_reset_and_restore - reset and re-initialize host/device
7886  * @hba: per-adapter instance
7887  *
7888  * Reset and recover device, host and re-establish link. This
7889  * is helpful to recover the communication in fatal error conditions.
7890  *
7891  * Return: zero on success, non-zero on failure.
7892  */
ufshcd_reset_and_restore(struct ufs_hba * hba)7893 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7894 {
7895 	u32 saved_err = 0;
7896 	u32 saved_uic_err = 0;
7897 	int err = 0;
7898 	unsigned long flags;
7899 	int retries = MAX_HOST_RESET_RETRIES;
7900 
7901 	spin_lock_irqsave(hba->host->host_lock, flags);
7902 	do {
7903 		/*
7904 		 * This is a fresh start, cache and clear saved error first,
7905 		 * in case new error generated during reset and restore.
7906 		 */
7907 		saved_err |= hba->saved_err;
7908 		saved_uic_err |= hba->saved_uic_err;
7909 		hba->saved_err = 0;
7910 		hba->saved_uic_err = 0;
7911 		hba->force_reset = false;
7912 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7913 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7914 
7915 		/* Reset the attached device */
7916 		ufshcd_device_reset(hba);
7917 
7918 		err = ufshcd_host_reset_and_restore(hba);
7919 
7920 		spin_lock_irqsave(hba->host->host_lock, flags);
7921 		if (err)
7922 			continue;
7923 		/* Do not exit unless operational or dead */
7924 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7925 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7926 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7927 			err = -EAGAIN;
7928 	} while (err && --retries);
7929 
7930 	/*
7931 	 * Inform scsi mid-layer that we did reset and allow to handle
7932 	 * Unit Attention properly.
7933 	 */
7934 	scsi_report_bus_reset(hba->host, 0);
7935 	if (err) {
7936 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7937 		hba->saved_err |= saved_err;
7938 		hba->saved_uic_err |= saved_uic_err;
7939 	}
7940 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7941 
7942 	return err;
7943 }
7944 
7945 /**
7946  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7947  * @cmd: SCSI command pointer
7948  *
7949  * Return: SUCCESS or FAILED.
7950  */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)7951 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7952 {
7953 	int err = SUCCESS;
7954 	unsigned long flags;
7955 	struct ufs_hba *hba;
7956 
7957 	hba = shost_priv(cmd->device->host);
7958 
7959 	/*
7960 	 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7961 	 * stuck in this function waiting for flush_work(&hba->eh_work). And
7962 	 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7963 	 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7964 	 */
7965 	if (hba->pm_op_in_progress) {
7966 		if (ufshcd_link_recovery(hba))
7967 			err = FAILED;
7968 
7969 		return err;
7970 	}
7971 
7972 	spin_lock_irqsave(hba->host->host_lock, flags);
7973 	hba->force_reset = true;
7974 	ufshcd_schedule_eh_work(hba);
7975 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7976 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7977 
7978 	flush_work(&hba->eh_work);
7979 
7980 	spin_lock_irqsave(hba->host->host_lock, flags);
7981 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7982 		err = FAILED;
7983 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7984 
7985 	return err;
7986 }
7987 
7988 /**
7989  * ufshcd_get_max_icc_level - calculate the ICC level
7990  * @sup_curr_uA: max. current supported by the regulator
7991  * @start_scan: row at the desc table to start scan from
7992  * @buff: power descriptor buffer
7993  *
7994  * Return: calculated max ICC level for specific regulator.
7995  */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,const char * buff)7996 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7997 				    const char *buff)
7998 {
7999 	int i;
8000 	int curr_uA;
8001 	u16 data;
8002 	u16 unit;
8003 
8004 	for (i = start_scan; i >= 0; i--) {
8005 		data = get_unaligned_be16(&buff[2 * i]);
8006 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
8007 						ATTR_ICC_LVL_UNIT_OFFSET;
8008 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
8009 		switch (unit) {
8010 		case UFSHCD_NANO_AMP:
8011 			curr_uA = curr_uA / 1000;
8012 			break;
8013 		case UFSHCD_MILI_AMP:
8014 			curr_uA = curr_uA * 1000;
8015 			break;
8016 		case UFSHCD_AMP:
8017 			curr_uA = curr_uA * 1000 * 1000;
8018 			break;
8019 		case UFSHCD_MICRO_AMP:
8020 		default:
8021 			break;
8022 		}
8023 		if (sup_curr_uA >= curr_uA)
8024 			break;
8025 	}
8026 	if (i < 0) {
8027 		i = 0;
8028 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
8029 	}
8030 
8031 	return (u32)i;
8032 }
8033 
8034 /**
8035  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
8036  * In case regulators are not initialized we'll return 0
8037  * @hba: per-adapter instance
8038  * @desc_buf: power descriptor buffer to extract ICC levels from.
8039  *
8040  * Return: calculated ICC level.
8041  */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,const u8 * desc_buf)8042 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
8043 						const u8 *desc_buf)
8044 {
8045 	u32 icc_level = 0;
8046 
8047 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
8048 						!hba->vreg_info.vccq2) {
8049 		/*
8050 		 * Using dev_dbg to avoid messages during runtime PM to avoid
8051 		 * never-ending cycles of messages written back to storage by
8052 		 * user space causing runtime resume, causing more messages and
8053 		 * so on.
8054 		 */
8055 		dev_dbg(hba->dev,
8056 			"%s: Regulator capability was not set, actvIccLevel=%d",
8057 							__func__, icc_level);
8058 		goto out;
8059 	}
8060 
8061 	if (hba->vreg_info.vcc->max_uA)
8062 		icc_level = ufshcd_get_max_icc_level(
8063 				hba->vreg_info.vcc->max_uA,
8064 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
8065 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
8066 
8067 	if (hba->vreg_info.vccq->max_uA)
8068 		icc_level = ufshcd_get_max_icc_level(
8069 				hba->vreg_info.vccq->max_uA,
8070 				icc_level,
8071 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
8072 
8073 	if (hba->vreg_info.vccq2->max_uA)
8074 		icc_level = ufshcd_get_max_icc_level(
8075 				hba->vreg_info.vccq2->max_uA,
8076 				icc_level,
8077 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
8078 out:
8079 	return icc_level;
8080 }
8081 
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)8082 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
8083 {
8084 	int ret;
8085 	u8 *desc_buf;
8086 	u32 icc_level;
8087 
8088 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8089 	if (!desc_buf)
8090 		return;
8091 
8092 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
8093 				     desc_buf, QUERY_DESC_MAX_SIZE);
8094 	if (ret) {
8095 		dev_err(hba->dev,
8096 			"%s: Failed reading power descriptor ret = %d",
8097 			__func__, ret);
8098 		goto out;
8099 	}
8100 
8101 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
8102 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
8103 
8104 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8105 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
8106 
8107 	if (ret)
8108 		dev_err(hba->dev,
8109 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
8110 			__func__, icc_level, ret);
8111 
8112 out:
8113 	kfree(desc_buf);
8114 }
8115 
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)8116 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
8117 {
8118 	struct Scsi_Host *shost = sdev->host;
8119 
8120 	scsi_autopm_get_device(sdev);
8121 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
8122 	if (sdev->rpm_autosuspend)
8123 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
8124 						 shost->rpm_autosuspend_delay);
8125 	scsi_autopm_put_device(sdev);
8126 }
8127 
8128 /**
8129  * ufshcd_scsi_add_wlus - Adds required W-LUs
8130  * @hba: per-adapter instance
8131  *
8132  * UFS device specification requires the UFS devices to support 4 well known
8133  * logical units:
8134  *	"REPORT_LUNS" (address: 01h)
8135  *	"UFS Device" (address: 50h)
8136  *	"RPMB" (address: 44h)
8137  *	"BOOT" (address: 30h)
8138  * UFS device's power management needs to be controlled by "POWER CONDITION"
8139  * field of SSU (START STOP UNIT) command. But this "power condition" field
8140  * will take effect only when its sent to "UFS device" well known logical unit
8141  * hence we require the scsi_device instance to represent this logical unit in
8142  * order for the UFS host driver to send the SSU command for power management.
8143  *
8144  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
8145  * Block) LU so user space process can control this LU. User space may also
8146  * want to have access to BOOT LU.
8147  *
8148  * This function adds scsi device instances for each of all well known LUs
8149  * (except "REPORT LUNS" LU).
8150  *
8151  * Return: zero on success (all required W-LUs are added successfully),
8152  * non-zero error value on failure (if failed to add any of the required W-LU).
8153  */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)8154 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8155 {
8156 	int ret = 0;
8157 	struct scsi_device *sdev_boot, *sdev_rpmb;
8158 
8159 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8160 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8161 	if (IS_ERR(hba->ufs_device_wlun)) {
8162 		ret = PTR_ERR(hba->ufs_device_wlun);
8163 		hba->ufs_device_wlun = NULL;
8164 		goto out;
8165 	}
8166 	scsi_device_put(hba->ufs_device_wlun);
8167 
8168 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8169 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8170 	if (IS_ERR(sdev_rpmb)) {
8171 		ret = PTR_ERR(sdev_rpmb);
8172 		goto remove_ufs_device_wlun;
8173 	}
8174 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
8175 	scsi_device_put(sdev_rpmb);
8176 
8177 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
8178 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8179 	if (IS_ERR(sdev_boot)) {
8180 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8181 	} else {
8182 		ufshcd_blk_pm_runtime_init(sdev_boot);
8183 		scsi_device_put(sdev_boot);
8184 	}
8185 	goto out;
8186 
8187 remove_ufs_device_wlun:
8188 	scsi_remove_device(hba->ufs_device_wlun);
8189 out:
8190 	return ret;
8191 }
8192 
ufshcd_wb_probe(struct ufs_hba * hba,const u8 * desc_buf)8193 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8194 {
8195 	struct ufs_dev_info *dev_info = &hba->dev_info;
8196 	u8 lun;
8197 	u32 d_lu_wb_buf_alloc;
8198 	u32 ext_ufs_feature;
8199 
8200 	if (!ufshcd_is_wb_allowed(hba))
8201 		return;
8202 
8203 	/*
8204 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8205 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8206 	 * enabled
8207 	 */
8208 	if (!(dev_info->wspecversion >= 0x310 ||
8209 	      dev_info->wspecversion == 0x220 ||
8210 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8211 		goto wb_disabled;
8212 
8213 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8214 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8215 
8216 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8217 		goto wb_disabled;
8218 
8219 	/*
8220 	 * WB may be supported but not configured while provisioning. The spec
8221 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8222 	 * buffer configured.
8223 	 */
8224 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8225 
8226 	dev_info->ext_wb_sup =  get_unaligned_be16(desc_buf +
8227 						DEVICE_DESC_PARAM_EXT_WB_SUP);
8228 
8229 	dev_info->b_presrv_uspc_en =
8230 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8231 
8232 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8233 		if (!get_unaligned_be32(desc_buf +
8234 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8235 			goto wb_disabled;
8236 	} else {
8237 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8238 			d_lu_wb_buf_alloc = 0;
8239 			ufshcd_read_unit_desc_param(hba,
8240 					lun,
8241 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8242 					(u8 *)&d_lu_wb_buf_alloc,
8243 					sizeof(d_lu_wb_buf_alloc));
8244 			if (d_lu_wb_buf_alloc) {
8245 				dev_info->wb_dedicated_lu = lun;
8246 				break;
8247 			}
8248 		}
8249 
8250 		if (!d_lu_wb_buf_alloc)
8251 			goto wb_disabled;
8252 	}
8253 
8254 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8255 		goto wb_disabled;
8256 
8257 	return;
8258 
8259 wb_disabled:
8260 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8261 }
8262 
ufshcd_temp_notif_probe(struct ufs_hba * hba,const u8 * desc_buf)8263 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8264 {
8265 	struct ufs_dev_info *dev_info = &hba->dev_info;
8266 	u32 ext_ufs_feature;
8267 	u8 mask = 0;
8268 
8269 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8270 		return;
8271 
8272 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8273 
8274 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8275 		mask |= MASK_EE_TOO_LOW_TEMP;
8276 
8277 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8278 		mask |= MASK_EE_TOO_HIGH_TEMP;
8279 
8280 	if (mask) {
8281 		ufshcd_enable_ee(hba, mask);
8282 		ufs_hwmon_probe(hba, mask);
8283 	}
8284 }
8285 
ufshcd_device_lvl_exception_probe(struct ufs_hba * hba,u8 * desc_buf)8286 static void ufshcd_device_lvl_exception_probe(struct ufs_hba *hba, u8 *desc_buf)
8287 {
8288 	u32 ext_ufs_feature;
8289 
8290 	if (hba->dev_info.wspecversion < 0x410)
8291 		return;
8292 
8293 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8294 				DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8295 	if (!(ext_ufs_feature & UFS_DEV_LVL_EXCEPTION_SUP))
8296 		return;
8297 
8298 	atomic_set(&hba->dev_lvl_exception_count, 0);
8299 	ufshcd_enable_ee(hba, MASK_EE_DEV_LVL_EXCEPTION);
8300 }
8301 
ufshcd_set_rtt(struct ufs_hba * hba)8302 static void ufshcd_set_rtt(struct ufs_hba *hba)
8303 {
8304 	struct ufs_dev_info *dev_info = &hba->dev_info;
8305 	u32 rtt = 0;
8306 	u32 dev_rtt = 0;
8307 	int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ?
8308 			   hba->vops->max_num_rtt : hba->nortt;
8309 
8310 	/* RTT override makes sense only for UFS-4.0 and above */
8311 	if (dev_info->wspecversion < 0x400)
8312 		return;
8313 
8314 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8315 				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) {
8316 		dev_err(hba->dev, "failed reading bMaxNumOfRTT\n");
8317 		return;
8318 	}
8319 
8320 	/* do not override if it was already written */
8321 	if (dev_rtt != DEFAULT_MAX_NUM_RTT)
8322 		return;
8323 
8324 	rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap);
8325 
8326 	if (rtt == dev_rtt)
8327 		return;
8328 
8329 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8330 				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt))
8331 		dev_err(hba->dev, "failed writing bMaxNumOfRTT\n");
8332 }
8333 
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,const struct ufs_dev_quirk * fixups)8334 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8335 			     const struct ufs_dev_quirk *fixups)
8336 {
8337 	const struct ufs_dev_quirk *f;
8338 	struct ufs_dev_info *dev_info = &hba->dev_info;
8339 
8340 	if (!fixups)
8341 		return;
8342 
8343 	for (f = fixups; f->quirk; f++) {
8344 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8345 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8346 		     ((dev_info->model &&
8347 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8348 		      !strcmp(f->model, UFS_ANY_MODEL)))
8349 			hba->dev_quirks |= f->quirk;
8350 	}
8351 }
8352 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8353 
ufs_fixup_device_setup(struct ufs_hba * hba)8354 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8355 {
8356 	/* fix by general quirk table */
8357 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8358 
8359 	/* allow vendors to fix quirks */
8360 	ufshcd_vops_fixup_dev_quirks(hba);
8361 }
8362 
ufshcd_update_rtc(struct ufs_hba * hba)8363 static void ufshcd_update_rtc(struct ufs_hba *hba)
8364 {
8365 	struct timespec64 ts64;
8366 	int err;
8367 	u32 val;
8368 
8369 	ktime_get_real_ts64(&ts64);
8370 
8371 	if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8372 		dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8373 		return;
8374 	}
8375 
8376 	/*
8377 	 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8378 	 * 2146 is required, it is recommended to choose the relative RTC mode.
8379 	 */
8380 	val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8381 
8382 	/* Skip update RTC if RPM state is not RPM_ACTIVE */
8383 	if (ufshcd_rpm_get_if_active(hba) <= 0)
8384 		return;
8385 
8386 	err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8387 				0, 0, &val);
8388 	ufshcd_rpm_put(hba);
8389 
8390 	if (err)
8391 		dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8392 	else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8393 		hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8394 }
8395 
ufshcd_rtc_work(struct work_struct * work)8396 static void ufshcd_rtc_work(struct work_struct *work)
8397 {
8398 	struct ufs_hba *hba;
8399 
8400 	hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8401 
8402 	 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8403 	if (!ufshcd_is_ufs_dev_busy(hba) &&
8404 	    hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL &&
8405 	    !hba->clk_gating.active_reqs)
8406 		ufshcd_update_rtc(hba);
8407 
8408 	if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8409 		schedule_delayed_work(&hba->ufs_rtc_update_work,
8410 				      msecs_to_jiffies(hba->dev_info.rtc_update_period));
8411 }
8412 
ufs_init_rtc(struct ufs_hba * hba,u8 * desc_buf)8413 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8414 {
8415 	u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8416 	struct ufs_dev_info *dev_info = &hba->dev_info;
8417 
8418 	if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8419 		dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8420 
8421 		/*
8422 		 * The concept of measuring time in Linux as the number of seconds elapsed since
8423 		 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8424 		 * 2010 00:00, here we need to adjust ABS baseline.
8425 		 */
8426 		dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8427 							mktime64(1970, 1, 1, 0, 0, 0);
8428 	} else {
8429 		dev_info->rtc_type = UFS_RTC_RELATIVE;
8430 		dev_info->rtc_time_baseline = 0;
8431 	}
8432 
8433 	/*
8434 	 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8435 	 * how to calculate the specific update period for each time unit. And we disable periodic
8436 	 * RTC update work, let user configure by sysfs node according to specific circumstance.
8437 	 */
8438 	dev_info->rtc_update_period = 0;
8439 }
8440 
ufs_get_device_desc(struct ufs_hba * hba)8441 static int ufs_get_device_desc(struct ufs_hba *hba)
8442 {
8443 	int err;
8444 	u8 model_index;
8445 	u8 *desc_buf;
8446 	struct ufs_dev_info *dev_info = &hba->dev_info;
8447 
8448 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8449 	if (!desc_buf) {
8450 		err = -ENOMEM;
8451 		goto out;
8452 	}
8453 
8454 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8455 				     QUERY_DESC_MAX_SIZE);
8456 	if (err) {
8457 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8458 			__func__, err);
8459 		goto out;
8460 	}
8461 
8462 	/*
8463 	 * getting vendor (manufacturerID) and Bank Index in big endian
8464 	 * format
8465 	 */
8466 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8467 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8468 
8469 	/* getting Specification Version in big endian format */
8470 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8471 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8472 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8473 
8474 	dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP];
8475 
8476 	dev_info->hid_sup = get_unaligned_be32(desc_buf +
8477 				DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP) &
8478 				UFS_DEV_HID_SUPPORT;
8479 
8480 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8481 
8482 	err = ufshcd_read_string_desc(hba, model_index,
8483 				      &dev_info->model, SD_ASCII_STD);
8484 	if (err < 0) {
8485 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8486 			__func__, err);
8487 		goto out;
8488 	}
8489 
8490 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8491 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8492 
8493 	ufs_fixup_device_setup(hba);
8494 
8495 	ufshcd_wb_probe(hba, desc_buf);
8496 
8497 	ufshcd_temp_notif_probe(hba, desc_buf);
8498 
8499 	if (dev_info->wspecversion >= 0x410) {
8500 		hba->critical_health_count = 0;
8501 		ufshcd_enable_ee(hba, MASK_EE_HEALTH_CRITICAL);
8502 	}
8503 
8504 	ufs_init_rtc(hba, desc_buf);
8505 
8506 	ufshcd_device_lvl_exception_probe(hba, desc_buf);
8507 
8508 	/*
8509 	 * ufshcd_read_string_desc returns size of the string
8510 	 * reset the error value
8511 	 */
8512 	err = 0;
8513 
8514 out:
8515 	kfree(desc_buf);
8516 	return err;
8517 }
8518 
ufs_put_device_desc(struct ufs_hba * hba)8519 static void ufs_put_device_desc(struct ufs_hba *hba)
8520 {
8521 	struct ufs_dev_info *dev_info = &hba->dev_info;
8522 
8523 	kfree(dev_info->model);
8524 	dev_info->model = NULL;
8525 }
8526 
8527 /**
8528  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8529  * less than device PA_TACTIVATE time.
8530  * @hba: per-adapter instance
8531  *
8532  * Some UFS devices require host PA_TACTIVATE to be lower than device
8533  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8534  * for such devices.
8535  *
8536  * Return: zero on success, non-zero error value on failure.
8537  */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)8538 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8539 {
8540 	int ret = 0;
8541 	u32 granularity, peer_granularity;
8542 	u32 pa_tactivate, peer_pa_tactivate;
8543 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8544 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8545 
8546 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8547 				  &granularity);
8548 	if (ret)
8549 		goto out;
8550 
8551 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8552 				  &peer_granularity);
8553 	if (ret)
8554 		goto out;
8555 
8556 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8557 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8558 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8559 			__func__, granularity);
8560 		return -EINVAL;
8561 	}
8562 
8563 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8564 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8565 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8566 			__func__, peer_granularity);
8567 		return -EINVAL;
8568 	}
8569 
8570 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8571 	if (ret)
8572 		goto out;
8573 
8574 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8575 				  &peer_pa_tactivate);
8576 	if (ret)
8577 		goto out;
8578 
8579 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8580 	peer_pa_tactivate_us = peer_pa_tactivate *
8581 			     gran_to_us_table[peer_granularity - 1];
8582 
8583 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8584 		u32 new_peer_pa_tactivate;
8585 
8586 		new_peer_pa_tactivate = pa_tactivate_us /
8587 				      gran_to_us_table[peer_granularity - 1];
8588 		new_peer_pa_tactivate++;
8589 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8590 					  new_peer_pa_tactivate);
8591 	}
8592 
8593 out:
8594 	return ret;
8595 }
8596 
8597 /**
8598  * ufshcd_quirk_override_pa_h8time - Ensures proper adjustment of PA_HIBERN8TIME.
8599  * @hba: per-adapter instance
8600  *
8601  * Some UFS devices require specific adjustments to the PA_HIBERN8TIME parameter
8602  * to ensure proper hibernation timing. This function retrieves the current
8603  * PA_HIBERN8TIME value and increments it by 100us.
8604  */
ufshcd_quirk_override_pa_h8time(struct ufs_hba * hba)8605 static void ufshcd_quirk_override_pa_h8time(struct ufs_hba *hba)
8606 {
8607 	u32 pa_h8time;
8608 	int ret;
8609 
8610 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_HIBERN8TIME), &pa_h8time);
8611 	if (ret) {
8612 		dev_err(hba->dev, "Failed to get PA_HIBERN8TIME: %d\n", ret);
8613 		return;
8614 	}
8615 
8616 	/* Increment by 1 to increase hibernation time by 100 µs */
8617 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), pa_h8time + 1);
8618 	if (ret)
8619 		dev_err(hba->dev, "Failed updating PA_HIBERN8TIME: %d\n", ret);
8620 }
8621 
ufshcd_tune_unipro_params(struct ufs_hba * hba)8622 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8623 {
8624 	ufshcd_vops_apply_dev_quirks(hba);
8625 
8626 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8627 		/* set 1ms timeout for PA_TACTIVATE */
8628 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8629 
8630 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8631 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8632 
8633 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_HIBER8TIME)
8634 		ufshcd_quirk_override_pa_h8time(hba);
8635 }
8636 
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)8637 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8638 {
8639 	hba->ufs_stats.hibern8_exit_cnt = 0;
8640 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8641 	hba->req_abort_count = 0;
8642 }
8643 
ufshcd_device_geo_params_init(struct ufs_hba * hba)8644 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8645 {
8646 	int err;
8647 	u8 *desc_buf;
8648 
8649 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8650 	if (!desc_buf) {
8651 		err = -ENOMEM;
8652 		goto out;
8653 	}
8654 
8655 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8656 				     desc_buf, QUERY_DESC_MAX_SIZE);
8657 	if (err) {
8658 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8659 				__func__, err);
8660 		goto out;
8661 	}
8662 
8663 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8664 		hba->dev_info.max_lu_supported = 32;
8665 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8666 		hba->dev_info.max_lu_supported = 8;
8667 
8668 out:
8669 	kfree(desc_buf);
8670 	return err;
8671 }
8672 
8673 struct ufs_ref_clk {
8674 	unsigned long freq_hz;
8675 	enum ufs_ref_clk_freq val;
8676 };
8677 
8678 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8679 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8680 	{26000000, REF_CLK_FREQ_26_MHZ},
8681 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8682 	{52000000, REF_CLK_FREQ_52_MHZ},
8683 	{0, REF_CLK_FREQ_INVAL},
8684 };
8685 
8686 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)8687 ufs_get_bref_clk_from_hz(unsigned long freq)
8688 {
8689 	int i;
8690 
8691 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8692 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8693 			return ufs_ref_clk_freqs[i].val;
8694 
8695 	return REF_CLK_FREQ_INVAL;
8696 }
8697 
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)8698 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8699 {
8700 	unsigned long freq;
8701 
8702 	freq = clk_get_rate(refclk);
8703 
8704 	hba->dev_ref_clk_freq =
8705 		ufs_get_bref_clk_from_hz(freq);
8706 
8707 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8708 		dev_err(hba->dev,
8709 		"invalid ref_clk setting = %ld\n", freq);
8710 }
8711 
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)8712 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8713 {
8714 	int err;
8715 	u32 ref_clk;
8716 	u32 freq = hba->dev_ref_clk_freq;
8717 
8718 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8719 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8720 
8721 	if (err) {
8722 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8723 			err);
8724 		goto out;
8725 	}
8726 
8727 	if (ref_clk == freq)
8728 		goto out; /* nothing to update */
8729 
8730 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8731 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8732 
8733 	if (err) {
8734 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8735 			ufs_ref_clk_freqs[freq].freq_hz);
8736 		goto out;
8737 	}
8738 
8739 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8740 			ufs_ref_clk_freqs[freq].freq_hz);
8741 
8742 out:
8743 	return err;
8744 }
8745 
ufshcd_device_params_init(struct ufs_hba * hba)8746 static int ufshcd_device_params_init(struct ufs_hba *hba)
8747 {
8748 	bool flag;
8749 	int ret;
8750 
8751 	/* Init UFS geometry descriptor related parameters */
8752 	ret = ufshcd_device_geo_params_init(hba);
8753 	if (ret)
8754 		goto out;
8755 
8756 	/* Check and apply UFS device quirks */
8757 	ret = ufs_get_device_desc(hba);
8758 	if (ret) {
8759 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8760 			__func__, ret);
8761 		goto out;
8762 	}
8763 
8764 	ufshcd_set_rtt(hba);
8765 
8766 	ufshcd_get_ref_clk_gating_wait(hba);
8767 
8768 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8769 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8770 		hba->dev_info.f_power_on_wp_en = flag;
8771 
8772 	/* Probe maximum power mode co-supported by both UFS host and device */
8773 	if (ufshcd_get_max_pwr_mode(hba))
8774 		dev_err(hba->dev,
8775 			"%s: Failed getting max supported power mode\n",
8776 			__func__);
8777 out:
8778 	return ret;
8779 }
8780 
ufshcd_set_timestamp_attr(struct ufs_hba * hba)8781 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8782 {
8783 	int err;
8784 	struct ufs_query_req *request = NULL;
8785 	struct ufs_query_res *response = NULL;
8786 	struct ufs_dev_info *dev_info = &hba->dev_info;
8787 	struct utp_upiu_query_v4_0 *upiu_data;
8788 
8789 	if (dev_info->wspecversion < 0x400)
8790 		return;
8791 
8792 	ufshcd_dev_man_lock(hba);
8793 
8794 	ufshcd_init_query(hba, &request, &response,
8795 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8796 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8797 
8798 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8799 
8800 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8801 
8802 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8803 
8804 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
8805 
8806 	if (err)
8807 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8808 			__func__, err);
8809 
8810 	ufshcd_dev_man_unlock(hba);
8811 }
8812 
8813 /**
8814  * ufshcd_add_lus - probe and add UFS logical units
8815  * @hba: per-adapter instance
8816  *
8817  * Return: 0 upon success; < 0 upon failure.
8818  */
ufshcd_add_lus(struct ufs_hba * hba)8819 static int ufshcd_add_lus(struct ufs_hba *hba)
8820 {
8821 	int ret;
8822 
8823 	/* Add required well known logical units to scsi mid layer */
8824 	ret = ufshcd_scsi_add_wlus(hba);
8825 	if (ret)
8826 		goto out;
8827 
8828 	/* Initialize devfreq after UFS device is detected */
8829 	if (ufshcd_is_clkscaling_supported(hba)) {
8830 		memcpy(&hba->clk_scaling.saved_pwr_info,
8831 			&hba->pwr_info,
8832 			sizeof(struct ufs_pa_layer_attr));
8833 		hba->clk_scaling.is_allowed = true;
8834 
8835 		ret = ufshcd_devfreq_init(hba);
8836 		if (ret)
8837 			goto out;
8838 
8839 		hba->clk_scaling.is_enabled = true;
8840 		ufshcd_init_clk_scaling_sysfs(hba);
8841 	}
8842 
8843 	/*
8844 	 * The RTC update code accesses the hba->ufs_device_wlun->sdev_gendev
8845 	 * pointer and hence must only be started after the WLUN pointer has
8846 	 * been initialized by ufshcd_scsi_add_wlus().
8847 	 */
8848 	schedule_delayed_work(&hba->ufs_rtc_update_work,
8849 			      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8850 
8851 	ufs_bsg_probe(hba);
8852 	scsi_scan_host(hba->host);
8853 
8854 out:
8855 	return ret;
8856 }
8857 
8858 /* SDB - Single Doorbell */
ufshcd_release_sdb_queue(struct ufs_hba * hba,int nutrs)8859 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8860 {
8861 	size_t ucdl_size, utrdl_size;
8862 
8863 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8864 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8865 			   hba->ucdl_dma_addr);
8866 
8867 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8868 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8869 			   hba->utrdl_dma_addr);
8870 
8871 	devm_kfree(hba->dev, hba->lrb);
8872 }
8873 
ufshcd_alloc_mcq(struct ufs_hba * hba)8874 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8875 {
8876 	int ret;
8877 	int old_nutrs = hba->nutrs;
8878 
8879 	ret = ufshcd_mcq_decide_queue_depth(hba);
8880 	if (ret < 0)
8881 		return ret;
8882 
8883 	hba->nutrs = ret;
8884 	ret = ufshcd_mcq_init(hba);
8885 	if (ret)
8886 		goto err;
8887 
8888 	/*
8889 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8890 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8891 	 */
8892 	if (hba->nutrs != old_nutrs) {
8893 		ufshcd_release_sdb_queue(hba, old_nutrs);
8894 		ret = ufshcd_memory_alloc(hba);
8895 		if (ret)
8896 			goto err;
8897 		ufshcd_host_memory_configure(hba);
8898 	}
8899 
8900 	ret = ufshcd_mcq_memory_alloc(hba);
8901 	if (ret)
8902 		goto err;
8903 
8904 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8905 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8906 
8907 	return 0;
8908 err:
8909 	hba->nutrs = old_nutrs;
8910 	return ret;
8911 }
8912 
ufshcd_config_mcq(struct ufs_hba * hba)8913 static void ufshcd_config_mcq(struct ufs_hba *hba)
8914 {
8915 	int ret;
8916 	u32 intrs;
8917 
8918 	ret = ufshcd_mcq_vops_config_esi(hba);
8919 	hba->mcq_esi_enabled = !ret;
8920 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8921 
8922 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8923 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8924 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8925 	ufshcd_enable_intr(hba, intrs);
8926 	ufshcd_mcq_make_queues_operational(hba);
8927 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8928 
8929 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8930 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8931 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8932 		 hba->nutrs);
8933 }
8934 
ufshcd_post_device_init(struct ufs_hba * hba)8935 static int ufshcd_post_device_init(struct ufs_hba *hba)
8936 {
8937 	int ret;
8938 
8939 	ufshcd_tune_unipro_params(hba);
8940 
8941 	/* UFS device is also active now */
8942 	ufshcd_set_ufs_dev_active(hba);
8943 	ufshcd_force_reset_auto_bkops(hba);
8944 
8945 	ufshcd_set_timestamp_attr(hba);
8946 
8947 	if (!hba->max_pwr_info.is_valid)
8948 		return 0;
8949 
8950 	/*
8951 	 * Set the right value to bRefClkFreq before attempting to
8952 	 * switch to HS gears.
8953 	 */
8954 	if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8955 		ufshcd_set_dev_ref_clk(hba);
8956 	/* Gear up to HS gear. */
8957 	ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8958 	if (ret) {
8959 		dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8960 			__func__, ret);
8961 		return ret;
8962 	}
8963 
8964 	return 0;
8965 }
8966 
ufshcd_device_init(struct ufs_hba * hba,bool init_dev_params)8967 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8968 {
8969 	int ret;
8970 
8971 	WARN_ON_ONCE(!hba->scsi_host_added);
8972 
8973 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8974 
8975 	ret = ufshcd_link_startup(hba);
8976 	if (ret)
8977 		return ret;
8978 
8979 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8980 		return ret;
8981 
8982 	/* Debug counters initialization */
8983 	ufshcd_clear_dbg_ufs_stats(hba);
8984 
8985 	/* UniPro link is active now */
8986 	ufshcd_set_link_active(hba);
8987 
8988 	/* Reconfigure MCQ upon reset */
8989 	if (hba->mcq_enabled && !init_dev_params) {
8990 		ufshcd_config_mcq(hba);
8991 		ufshcd_mcq_enable(hba);
8992 	}
8993 
8994 	/* Verify device initialization by sending NOP OUT UPIU */
8995 	ret = ufshcd_verify_dev_init(hba);
8996 	if (ret)
8997 		return ret;
8998 
8999 	/* Initiate UFS initialization, and waiting until completion */
9000 	ret = ufshcd_complete_dev_init(hba);
9001 	if (ret)
9002 		return ret;
9003 
9004 	/*
9005 	 * Initialize UFS device parameters used by driver, these
9006 	 * parameters are associated with UFS descriptors.
9007 	 */
9008 	if (init_dev_params) {
9009 		ret = ufshcd_device_params_init(hba);
9010 		if (ret)
9011 			return ret;
9012 		if (is_mcq_supported(hba) &&
9013 		    hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
9014 			ufshcd_config_mcq(hba);
9015 			ufshcd_mcq_enable(hba);
9016 		}
9017 	}
9018 
9019 	return ufshcd_post_device_init(hba);
9020 }
9021 
9022 /**
9023  * ufshcd_probe_hba - probe hba to detect device and initialize it
9024  * @hba: per-adapter instance
9025  * @init_dev_params: whether or not to call ufshcd_device_params_init().
9026  *
9027  * Execute link-startup and verify device initialization
9028  *
9029  * Return: 0 upon success; < 0 upon failure.
9030  */
ufshcd_probe_hba(struct ufs_hba * hba,bool init_dev_params)9031 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
9032 {
9033 	int ret;
9034 
9035 	if (!hba->pm_op_in_progress &&
9036 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
9037 		/* Reset the device and controller before doing reinit */
9038 		ufshcd_device_reset(hba);
9039 		ufs_put_device_desc(hba);
9040 		ufshcd_hba_stop(hba);
9041 		ret = ufshcd_hba_enable(hba);
9042 		if (ret) {
9043 			dev_err(hba->dev, "Host controller enable failed\n");
9044 			ufshcd_print_evt_hist(hba);
9045 			ufshcd_print_host_state(hba);
9046 			return ret;
9047 		}
9048 
9049 		/* Reinit the device */
9050 		ret = ufshcd_device_init(hba, init_dev_params);
9051 		if (ret)
9052 			return ret;
9053 	}
9054 
9055 	ufshcd_print_pwr_info(hba);
9056 
9057 	/*
9058 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
9059 	 * and for removable UFS card as well, hence always set the parameter.
9060 	 * Note: Error handler may issue the device reset hence resetting
9061 	 * bActiveICCLevel as well so it is always safe to set this here.
9062 	 */
9063 	ufshcd_set_active_icc_lvl(hba);
9064 
9065 	/* Enable UFS Write Booster if supported */
9066 	ufshcd_configure_wb(hba);
9067 
9068 	if (hba->ee_usr_mask)
9069 		ufshcd_write_ee_control(hba);
9070 	ufshcd_configure_auto_hibern8(hba);
9071 
9072 	return 0;
9073 }
9074 
9075 /**
9076  * ufshcd_async_scan - asynchronous execution for probing hba
9077  * @data: data pointer to pass to this function
9078  * @cookie: cookie data
9079  */
ufshcd_async_scan(void * data,async_cookie_t cookie)9080 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
9081 {
9082 	struct ufs_hba *hba = (struct ufs_hba *)data;
9083 	ktime_t probe_start;
9084 	int ret;
9085 
9086 	down(&hba->host_sem);
9087 	/* Initialize hba, detect and initialize UFS device */
9088 	probe_start = ktime_get();
9089 	ret = ufshcd_probe_hba(hba, true);
9090 	ufshcd_process_probe_result(hba, probe_start, ret);
9091 	up(&hba->host_sem);
9092 	if (ret)
9093 		goto out;
9094 
9095 	/* Probe and add UFS logical units  */
9096 	ret = ufshcd_add_lus(hba);
9097 
9098 out:
9099 	pm_runtime_put_sync(hba->dev);
9100 
9101 	if (ret)
9102 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
9103 }
9104 
ufshcd_eh_timed_out(struct scsi_cmnd * scmd)9105 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
9106 {
9107 	struct ufs_hba *hba = shost_priv(scmd->device->host);
9108 
9109 	if (!hba->system_suspending) {
9110 		/* Activate the error handler in the SCSI core. */
9111 		return SCSI_EH_NOT_HANDLED;
9112 	}
9113 
9114 	/*
9115 	 * If we get here we know that no TMFs are outstanding and also that
9116 	 * the only pending command is a START STOP UNIT command. Handle the
9117 	 * timeout of that command directly to prevent a deadlock between
9118 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
9119 	 */
9120 	ufshcd_link_recovery(hba);
9121 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
9122 		 __func__, hba->outstanding_tasks);
9123 
9124 	return scsi_host_busy(hba->host) ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
9125 }
9126 
9127 static const struct attribute_group *ufshcd_driver_groups[] = {
9128 	&ufs_sysfs_unit_descriptor_group,
9129 	&ufs_sysfs_lun_attributes_group,
9130 	NULL,
9131 };
9132 
9133 static struct ufs_hba_variant_params ufs_hba_vps = {
9134 	.hba_enable_delay_us		= 1000,
9135 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
9136 	.devfreq_profile.polling_ms	= 100,
9137 	.devfreq_profile.target		= ufshcd_devfreq_target,
9138 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
9139 	.ondemand_data.upthreshold	= 70,
9140 	.ondemand_data.downdifferential	= 5,
9141 };
9142 
9143 static const struct scsi_host_template ufshcd_driver_template = {
9144 	.module			= THIS_MODULE,
9145 	.name			= UFSHCD,
9146 	.proc_name		= UFSHCD,
9147 	.map_queues		= ufshcd_map_queues,
9148 	.queuecommand		= ufshcd_queuecommand,
9149 	.mq_poll		= ufshcd_poll,
9150 	.sdev_init		= ufshcd_sdev_init,
9151 	.sdev_configure		= ufshcd_sdev_configure,
9152 	.sdev_destroy		= ufshcd_sdev_destroy,
9153 	.change_queue_depth	= ufshcd_change_queue_depth,
9154 	.eh_abort_handler	= ufshcd_abort,
9155 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
9156 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
9157 	.eh_timed_out		= ufshcd_eh_timed_out,
9158 	.this_id		= -1,
9159 	.sg_tablesize		= SG_ALL,
9160 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
9161 	.max_sectors		= SZ_1M / SECTOR_SIZE,
9162 	.max_host_blocked	= 1,
9163 	.track_queue_depth	= 1,
9164 	.skip_settle_delay	= 1,
9165 	.sdev_groups		= ufshcd_driver_groups,
9166 };
9167 
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)9168 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
9169 				   int ua)
9170 {
9171 	int ret;
9172 
9173 	if (!vreg)
9174 		return 0;
9175 
9176 	/*
9177 	 * "set_load" operation shall be required on those regulators
9178 	 * which specifically configured current limitation. Otherwise
9179 	 * zero max_uA may cause unexpected behavior when regulator is
9180 	 * enabled or set as high power mode.
9181 	 */
9182 	if (!vreg->max_uA)
9183 		return 0;
9184 
9185 	ret = regulator_set_load(vreg->reg, ua);
9186 	if (ret < 0) {
9187 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9188 				__func__, vreg->name, ua, ret);
9189 	}
9190 
9191 	return ret;
9192 }
9193 
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9194 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9195 					 struct ufs_vreg *vreg)
9196 {
9197 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9198 }
9199 
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9200 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9201 					 struct ufs_vreg *vreg)
9202 {
9203 	if (!vreg)
9204 		return 0;
9205 
9206 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9207 }
9208 
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)9209 static int ufshcd_config_vreg(struct device *dev,
9210 		struct ufs_vreg *vreg, bool on)
9211 {
9212 	if (regulator_count_voltages(vreg->reg) <= 0)
9213 		return 0;
9214 
9215 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9216 }
9217 
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)9218 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9219 {
9220 	int ret = 0;
9221 
9222 	if (!vreg || vreg->enabled)
9223 		goto out;
9224 
9225 	ret = ufshcd_config_vreg(dev, vreg, true);
9226 	if (!ret)
9227 		ret = regulator_enable(vreg->reg);
9228 
9229 	if (!ret)
9230 		vreg->enabled = true;
9231 	else
9232 		dev_err(dev, "%s: %s enable failed, err=%d\n",
9233 				__func__, vreg->name, ret);
9234 out:
9235 	return ret;
9236 }
9237 
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)9238 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9239 {
9240 	int ret = 0;
9241 
9242 	if (!vreg || !vreg->enabled || vreg->always_on)
9243 		goto out;
9244 
9245 	ret = regulator_disable(vreg->reg);
9246 
9247 	if (!ret) {
9248 		/* ignore errors on applying disable config */
9249 		ufshcd_config_vreg(dev, vreg, false);
9250 		vreg->enabled = false;
9251 	} else {
9252 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9253 				__func__, vreg->name, ret);
9254 	}
9255 out:
9256 	return ret;
9257 }
9258 
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)9259 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9260 {
9261 	int ret = 0;
9262 	struct device *dev = hba->dev;
9263 	struct ufs_vreg_info *info = &hba->vreg_info;
9264 
9265 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9266 	if (ret)
9267 		goto out;
9268 
9269 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9270 	if (ret)
9271 		goto out;
9272 
9273 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9274 
9275 out:
9276 	if (ret) {
9277 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9278 		ufshcd_toggle_vreg(dev, info->vccq, false);
9279 		ufshcd_toggle_vreg(dev, info->vcc, false);
9280 	}
9281 	return ret;
9282 }
9283 
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)9284 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9285 {
9286 	struct ufs_vreg_info *info = &hba->vreg_info;
9287 
9288 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9289 }
9290 
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)9291 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9292 {
9293 	int ret = 0;
9294 
9295 	if (!vreg)
9296 		goto out;
9297 
9298 	vreg->reg = devm_regulator_get(dev, vreg->name);
9299 	if (IS_ERR(vreg->reg)) {
9300 		ret = PTR_ERR(vreg->reg);
9301 		dev_err(dev, "%s: %s get failed, err=%d\n",
9302 				__func__, vreg->name, ret);
9303 	}
9304 out:
9305 	return ret;
9306 }
9307 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9308 
ufshcd_init_vreg(struct ufs_hba * hba)9309 static int ufshcd_init_vreg(struct ufs_hba *hba)
9310 {
9311 	int ret = 0;
9312 	struct device *dev = hba->dev;
9313 	struct ufs_vreg_info *info = &hba->vreg_info;
9314 
9315 	ret = ufshcd_get_vreg(dev, info->vcc);
9316 	if (ret)
9317 		goto out;
9318 
9319 	ret = ufshcd_get_vreg(dev, info->vccq);
9320 	if (!ret)
9321 		ret = ufshcd_get_vreg(dev, info->vccq2);
9322 out:
9323 	return ret;
9324 }
9325 
ufshcd_init_hba_vreg(struct ufs_hba * hba)9326 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9327 {
9328 	struct ufs_vreg_info *info = &hba->vreg_info;
9329 
9330 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9331 }
9332 
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)9333 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9334 {
9335 	int ret = 0;
9336 	struct ufs_clk_info *clki;
9337 	struct list_head *head = &hba->clk_list_head;
9338 	ktime_t start = ktime_get();
9339 	bool clk_state_changed = false;
9340 
9341 	if (list_empty(head))
9342 		goto out;
9343 
9344 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9345 	if (ret)
9346 		return ret;
9347 
9348 	list_for_each_entry(clki, head, list) {
9349 		if (!IS_ERR_OR_NULL(clki->clk)) {
9350 			/*
9351 			 * Don't disable clocks which are needed
9352 			 * to keep the link active.
9353 			 */
9354 			if (ufshcd_is_link_active(hba) &&
9355 			    clki->keep_link_active)
9356 				continue;
9357 
9358 			clk_state_changed = on ^ clki->enabled;
9359 			if (on && !clki->enabled) {
9360 				ret = clk_prepare_enable(clki->clk);
9361 				if (ret) {
9362 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9363 						__func__, clki->name, ret);
9364 					goto out;
9365 				}
9366 			} else if (!on && clki->enabled) {
9367 				clk_disable_unprepare(clki->clk);
9368 			}
9369 			clki->enabled = on;
9370 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9371 					clki->name, on ? "en" : "dis");
9372 		}
9373 	}
9374 
9375 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9376 	if (ret)
9377 		return ret;
9378 
9379 	if (!ufshcd_is_clkscaling_supported(hba))
9380 		ufshcd_pm_qos_update(hba, on);
9381 out:
9382 	if (ret) {
9383 		list_for_each_entry(clki, head, list) {
9384 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9385 				clk_disable_unprepare(clki->clk);
9386 		}
9387 	} else if (!ret && on && hba->clk_gating.is_initialized) {
9388 		scoped_guard(spinlock_irqsave, &hba->clk_gating.lock)
9389 			hba->clk_gating.state = CLKS_ON;
9390 		trace_ufshcd_clk_gating(hba,
9391 					hba->clk_gating.state);
9392 	}
9393 
9394 	if (clk_state_changed)
9395 		trace_ufshcd_profile_clk_gating(hba,
9396 			(on ? "on" : "off"),
9397 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9398 	return ret;
9399 }
9400 
ufshcd_parse_ref_clk_property(struct ufs_hba * hba)9401 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9402 {
9403 	u32 freq;
9404 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9405 
9406 	if (ret) {
9407 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9408 		return REF_CLK_FREQ_INVAL;
9409 	}
9410 
9411 	return ufs_get_bref_clk_from_hz(freq);
9412 }
9413 
ufshcd_init_clocks(struct ufs_hba * hba)9414 static int ufshcd_init_clocks(struct ufs_hba *hba)
9415 {
9416 	int ret = 0;
9417 	struct ufs_clk_info *clki;
9418 	struct device *dev = hba->dev;
9419 	struct list_head *head = &hba->clk_list_head;
9420 
9421 	if (list_empty(head))
9422 		goto out;
9423 
9424 	list_for_each_entry(clki, head, list) {
9425 		if (!clki->name)
9426 			continue;
9427 
9428 		clki->clk = devm_clk_get(dev, clki->name);
9429 		if (IS_ERR(clki->clk)) {
9430 			ret = PTR_ERR(clki->clk);
9431 			dev_err(dev, "%s: %s clk get failed, %d\n",
9432 					__func__, clki->name, ret);
9433 			goto out;
9434 		}
9435 
9436 		/*
9437 		 * Parse device ref clk freq as per device tree "ref_clk".
9438 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9439 		 * in ufshcd_alloc_host().
9440 		 */
9441 		if (!strcmp(clki->name, "ref_clk"))
9442 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9443 
9444 		if (clki->max_freq) {
9445 			ret = clk_set_rate(clki->clk, clki->max_freq);
9446 			if (ret) {
9447 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9448 					__func__, clki->name,
9449 					clki->max_freq, ret);
9450 				goto out;
9451 			}
9452 			clki->curr_freq = clki->max_freq;
9453 		}
9454 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9455 				clki->name, clk_get_rate(clki->clk));
9456 	}
9457 
9458 	/* Set Max. frequency for all clocks */
9459 	if (hba->use_pm_opp) {
9460 		ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9461 		if (ret) {
9462 			dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9463 				ret);
9464 			goto out;
9465 		}
9466 	}
9467 
9468 out:
9469 	return ret;
9470 }
9471 
ufshcd_variant_hba_init(struct ufs_hba * hba)9472 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9473 {
9474 	int err = 0;
9475 
9476 	if (!hba->vops)
9477 		goto out;
9478 
9479 	err = ufshcd_vops_init(hba);
9480 	if (err)
9481 		dev_err_probe(hba->dev, err,
9482 			      "%s: variant %s init failed with err %d\n",
9483 			      __func__, ufshcd_get_var_name(hba), err);
9484 out:
9485 	return err;
9486 }
9487 
ufshcd_variant_hba_exit(struct ufs_hba * hba)9488 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9489 {
9490 	if (!hba->vops)
9491 		return;
9492 
9493 	ufshcd_vops_exit(hba);
9494 }
9495 
ufshcd_hba_init(struct ufs_hba * hba)9496 static int ufshcd_hba_init(struct ufs_hba *hba)
9497 {
9498 	int err;
9499 
9500 	/*
9501 	 * Handle host controller power separately from the UFS device power
9502 	 * rails as it will help controlling the UFS host controller power
9503 	 * collapse easily which is different than UFS device power collapse.
9504 	 * Also, enable the host controller power before we go ahead with rest
9505 	 * of the initialization here.
9506 	 */
9507 	err = ufshcd_init_hba_vreg(hba);
9508 	if (err)
9509 		goto out;
9510 
9511 	err = ufshcd_setup_hba_vreg(hba, true);
9512 	if (err)
9513 		goto out;
9514 
9515 	err = ufshcd_init_clocks(hba);
9516 	if (err)
9517 		goto out_disable_hba_vreg;
9518 
9519 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9520 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9521 
9522 	err = ufshcd_setup_clocks(hba, true);
9523 	if (err)
9524 		goto out_disable_hba_vreg;
9525 
9526 	err = ufshcd_init_vreg(hba);
9527 	if (err)
9528 		goto out_disable_clks;
9529 
9530 	err = ufshcd_setup_vreg(hba, true);
9531 	if (err)
9532 		goto out_disable_clks;
9533 
9534 	err = ufshcd_variant_hba_init(hba);
9535 	if (err)
9536 		goto out_disable_vreg;
9537 
9538 	ufs_debugfs_hba_init(hba);
9539 	ufs_fault_inject_hba_init(hba);
9540 
9541 	hba->is_powered = true;
9542 	goto out;
9543 
9544 out_disable_vreg:
9545 	ufshcd_setup_vreg(hba, false);
9546 out_disable_clks:
9547 	ufshcd_setup_clocks(hba, false);
9548 out_disable_hba_vreg:
9549 	ufshcd_setup_hba_vreg(hba, false);
9550 out:
9551 	return err;
9552 }
9553 
ufshcd_hba_exit(struct ufs_hba * hba)9554 static void ufshcd_hba_exit(struct ufs_hba *hba)
9555 {
9556 	if (hba->is_powered) {
9557 		ufshcd_pm_qos_exit(hba);
9558 		ufshcd_exit_clk_scaling(hba);
9559 		ufshcd_exit_clk_gating(hba);
9560 		if (hba->eh_wq)
9561 			destroy_workqueue(hba->eh_wq);
9562 		ufs_debugfs_hba_exit(hba);
9563 		ufshcd_variant_hba_exit(hba);
9564 		ufshcd_setup_vreg(hba, false);
9565 		ufshcd_setup_clocks(hba, false);
9566 		ufshcd_setup_hba_vreg(hba, false);
9567 		hba->is_powered = false;
9568 		ufs_put_device_desc(hba);
9569 	}
9570 }
9571 
ufshcd_execute_start_stop(struct scsi_device * sdev,enum ufs_dev_pwr_mode pwr_mode,struct scsi_sense_hdr * sshdr)9572 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9573 				     enum ufs_dev_pwr_mode pwr_mode,
9574 				     struct scsi_sense_hdr *sshdr)
9575 {
9576 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9577 	struct scsi_failure failure_defs[] = {
9578 		{
9579 			.allowed = 2,
9580 			.result = SCMD_FAILURE_RESULT_ANY,
9581 		},
9582 	};
9583 	struct scsi_failures failures = {
9584 		.failure_definitions = failure_defs,
9585 	};
9586 	const struct scsi_exec_args args = {
9587 		.failures = &failures,
9588 		.sshdr = sshdr,
9589 		.req_flags = BLK_MQ_REQ_PM,
9590 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9591 	};
9592 
9593 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9594 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9595 			&args);
9596 }
9597 
9598 /**
9599  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9600  *			     power mode
9601  * @hba: per adapter instance
9602  * @pwr_mode: device power mode to set
9603  *
9604  * Return: 0 if requested power mode is set successfully;
9605  *         < 0 if failed to set the requested power mode.
9606  */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)9607 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9608 				     enum ufs_dev_pwr_mode pwr_mode)
9609 {
9610 	struct scsi_sense_hdr sshdr;
9611 	struct scsi_device *sdp;
9612 	unsigned long flags;
9613 	int ret;
9614 
9615 	spin_lock_irqsave(hba->host->host_lock, flags);
9616 	sdp = hba->ufs_device_wlun;
9617 	if (sdp && scsi_device_online(sdp))
9618 		ret = scsi_device_get(sdp);
9619 	else
9620 		ret = -ENODEV;
9621 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9622 
9623 	if (ret)
9624 		return ret;
9625 
9626 	/*
9627 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9628 	 * handling, which would wait for host to be resumed. Since we know
9629 	 * we are functional while we are here, skip host resume in error
9630 	 * handling context.
9631 	 */
9632 	hba->host->eh_noresume = 1;
9633 
9634 	/*
9635 	 * Current function would be generally called from the power management
9636 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9637 	 * already suspended childs.
9638 	 */
9639 	ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9640 	if (ret) {
9641 		sdev_printk(KERN_WARNING, sdp,
9642 			    "START_STOP failed for power mode: %d, result %x\n",
9643 			    pwr_mode, ret);
9644 		if (ret > 0) {
9645 			if (scsi_sense_valid(&sshdr))
9646 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9647 			ret = -EIO;
9648 		}
9649 	} else {
9650 		hba->curr_dev_pwr_mode = pwr_mode;
9651 	}
9652 
9653 	scsi_device_put(sdp);
9654 	hba->host->eh_noresume = 0;
9655 	return ret;
9656 }
9657 
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,bool check_for_bkops)9658 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9659 					enum uic_link_state req_link_state,
9660 					bool check_for_bkops)
9661 {
9662 	int ret = 0;
9663 
9664 	if (req_link_state == hba->uic_link_state)
9665 		return 0;
9666 
9667 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9668 		ret = ufshcd_uic_hibern8_enter(hba);
9669 		if (!ret) {
9670 			ufshcd_set_link_hibern8(hba);
9671 		} else {
9672 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9673 					__func__, ret);
9674 			goto out;
9675 		}
9676 	}
9677 	/*
9678 	 * If autobkops is enabled, link can't be turned off because
9679 	 * turning off the link would also turn off the device, except in the
9680 	 * case of DeepSleep where the device is expected to remain powered.
9681 	 */
9682 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9683 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9684 		/*
9685 		 * Let's make sure that link is in low power mode, we are doing
9686 		 * this currently by putting the link in Hibern8. Otherway to
9687 		 * put the link in low power mode is to send the DME end point
9688 		 * to device and then send the DME reset command to local
9689 		 * unipro. But putting the link in hibern8 is much faster.
9690 		 *
9691 		 * Note also that putting the link in Hibern8 is a requirement
9692 		 * for entering DeepSleep.
9693 		 */
9694 		ret = ufshcd_uic_hibern8_enter(hba);
9695 		if (ret) {
9696 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9697 					__func__, ret);
9698 			goto out;
9699 		}
9700 		/*
9701 		 * Change controller state to "reset state" which
9702 		 * should also put the link in off/reset state
9703 		 */
9704 		ufshcd_hba_stop(hba);
9705 		/*
9706 		 * TODO: Check if we need any delay to make sure that
9707 		 * controller is reset
9708 		 */
9709 		ufshcd_set_link_off(hba);
9710 	}
9711 
9712 out:
9713 	return ret;
9714 }
9715 
ufshcd_vreg_set_lpm(struct ufs_hba * hba)9716 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9717 {
9718 	bool vcc_off = false;
9719 
9720 	/*
9721 	 * It seems some UFS devices may keep drawing more than sleep current
9722 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9723 	 * To avoid this situation, add 2ms delay before putting these UFS
9724 	 * rails in LPM mode.
9725 	 */
9726 	if (!ufshcd_is_link_active(hba) &&
9727 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9728 		usleep_range(2000, 2100);
9729 
9730 	/*
9731 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9732 	 * power.
9733 	 *
9734 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9735 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9736 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9737 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9738 	 *
9739 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9740 	 * in low power state which would save some power.
9741 	 *
9742 	 * If Write Booster is enabled and the device needs to flush the WB
9743 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9744 	 */
9745 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9746 	    !hba->dev_info.is_lu_power_on_wp) {
9747 		ufshcd_setup_vreg(hba, false);
9748 		vcc_off = true;
9749 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9750 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9751 		vcc_off = true;
9752 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9753 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9754 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9755 		}
9756 	}
9757 
9758 	/*
9759 	 * Some UFS devices require delay after VCC power rail is turned-off.
9760 	 */
9761 	if (vcc_off && hba->vreg_info.vcc &&
9762 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9763 		usleep_range(5000, 5100);
9764 }
9765 
9766 #ifdef CONFIG_PM
ufshcd_vreg_set_hpm(struct ufs_hba * hba)9767 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9768 {
9769 	int ret = 0;
9770 
9771 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9772 	    !hba->dev_info.is_lu_power_on_wp) {
9773 		ret = ufshcd_setup_vreg(hba, true);
9774 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9775 		if (!ufshcd_is_link_active(hba)) {
9776 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9777 			if (ret)
9778 				goto vcc_disable;
9779 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9780 			if (ret)
9781 				goto vccq_lpm;
9782 		}
9783 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9784 	}
9785 	goto out;
9786 
9787 vccq_lpm:
9788 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9789 vcc_disable:
9790 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9791 out:
9792 	return ret;
9793 }
9794 #endif /* CONFIG_PM */
9795 
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)9796 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9797 {
9798 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9799 		ufshcd_setup_hba_vreg(hba, false);
9800 }
9801 
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)9802 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9803 {
9804 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9805 		ufshcd_setup_hba_vreg(hba, true);
9806 }
9807 
__ufshcd_wl_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)9808 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9809 {
9810 	int ret = 0;
9811 	bool check_for_bkops;
9812 	enum ufs_pm_level pm_lvl;
9813 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9814 	enum uic_link_state req_link_state;
9815 
9816 	hba->pm_op_in_progress = true;
9817 	if (pm_op != UFS_SHUTDOWN_PM) {
9818 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9819 			 hba->rpm_lvl : hba->spm_lvl;
9820 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9821 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9822 	} else {
9823 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9824 		req_link_state = UIC_LINK_OFF_STATE;
9825 	}
9826 
9827 	/*
9828 	 * If we can't transition into any of the low power modes
9829 	 * just gate the clocks.
9830 	 */
9831 	ufshcd_hold(hba);
9832 	hba->clk_gating.is_suspended = true;
9833 
9834 	if (ufshcd_is_clkscaling_supported(hba))
9835 		ufshcd_clk_scaling_suspend(hba, true);
9836 
9837 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9838 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9839 		goto vops_suspend;
9840 	}
9841 
9842 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9843 	    (req_link_state == hba->uic_link_state))
9844 		goto enable_scaling;
9845 
9846 	/* UFS device & link must be active before we enter in this function */
9847 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9848 		/*  Wait err handler finish or trigger err recovery */
9849 		if (!ufshcd_eh_in_progress(hba))
9850 			ufshcd_force_error_recovery(hba);
9851 		ret = -EBUSY;
9852 		goto enable_scaling;
9853 	}
9854 
9855 	if (pm_op == UFS_RUNTIME_PM) {
9856 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9857 			/*
9858 			 * The device is idle with no requests in the queue,
9859 			 * allow background operations if bkops status shows
9860 			 * that performance might be impacted.
9861 			 */
9862 			ret = ufshcd_bkops_ctrl(hba);
9863 			if (ret) {
9864 				/*
9865 				 * If return err in suspend flow, IO will hang.
9866 				 * Trigger error handler and break suspend for
9867 				 * error recovery.
9868 				 */
9869 				ufshcd_force_error_recovery(hba);
9870 				ret = -EBUSY;
9871 				goto enable_scaling;
9872 			}
9873 		} else {
9874 			/* make sure that auto bkops is disabled */
9875 			ufshcd_disable_auto_bkops(hba);
9876 		}
9877 		/*
9878 		 * If device needs to do BKOP or WB buffer flush during
9879 		 * Hibern8, keep device power mode as "active power mode"
9880 		 * and VCC supply.
9881 		 */
9882 		hba->dev_info.b_rpm_dev_flush_capable =
9883 			hba->auto_bkops_enabled ||
9884 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9885 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9886 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9887 			ufshcd_wb_need_flush(hba));
9888 	}
9889 
9890 	flush_work(&hba->eeh_work);
9891 
9892 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9893 	if (ret)
9894 		goto enable_scaling;
9895 
9896 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9897 		if (pm_op != UFS_RUNTIME_PM)
9898 			/* ensure that bkops is disabled */
9899 			ufshcd_disable_auto_bkops(hba);
9900 
9901 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9902 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9903 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9904 				/*
9905 				 * If return err in suspend flow, IO will hang.
9906 				 * Trigger error handler and break suspend for
9907 				 * error recovery.
9908 				 */
9909 				ufshcd_force_error_recovery(hba);
9910 				ret = -EBUSY;
9911 			}
9912 			if (ret)
9913 				goto enable_scaling;
9914 		}
9915 	}
9916 
9917 	/*
9918 	 * In the case of DeepSleep, the device is expected to remain powered
9919 	 * with the link off, so do not check for bkops.
9920 	 */
9921 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9922 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9923 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9924 		/*
9925 		 * If return err in suspend flow, IO will hang.
9926 		 * Trigger error handler and break suspend for
9927 		 * error recovery.
9928 		 */
9929 		ufshcd_force_error_recovery(hba);
9930 		ret = -EBUSY;
9931 	}
9932 	if (ret)
9933 		goto set_dev_active;
9934 
9935 vops_suspend:
9936 	/*
9937 	 * Call vendor specific suspend callback. As these callbacks may access
9938 	 * vendor specific host controller register space call them before the
9939 	 * host clocks are ON.
9940 	 */
9941 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9942 	if (ret)
9943 		goto set_link_active;
9944 
9945 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9946 	goto out;
9947 
9948 set_link_active:
9949 	/*
9950 	 * Device hardware reset is required to exit DeepSleep. Also, for
9951 	 * DeepSleep, the link is off so host reset and restore will be done
9952 	 * further below.
9953 	 */
9954 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9955 		ufshcd_device_reset(hba);
9956 		WARN_ON(!ufshcd_is_link_off(hba));
9957 	}
9958 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9959 		ufshcd_set_link_active(hba);
9960 	else if (ufshcd_is_link_off(hba))
9961 		ufshcd_host_reset_and_restore(hba);
9962 set_dev_active:
9963 	/* Can also get here needing to exit DeepSleep */
9964 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9965 		ufshcd_device_reset(hba);
9966 		ufshcd_host_reset_and_restore(hba);
9967 	}
9968 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9969 		ufshcd_disable_auto_bkops(hba);
9970 enable_scaling:
9971 	if (ufshcd_is_clkscaling_supported(hba))
9972 		ufshcd_clk_scaling_suspend(hba, false);
9973 
9974 	hba->dev_info.b_rpm_dev_flush_capable = false;
9975 out:
9976 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9977 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9978 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9979 	}
9980 
9981 	if (ret) {
9982 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9983 		hba->clk_gating.is_suspended = false;
9984 		ufshcd_release(hba);
9985 	}
9986 	hba->pm_op_in_progress = false;
9987 	return ret;
9988 }
9989 
9990 #ifdef CONFIG_PM
__ufshcd_wl_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)9991 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9992 {
9993 	int ret;
9994 	enum uic_link_state old_link_state = hba->uic_link_state;
9995 
9996 	hba->pm_op_in_progress = true;
9997 
9998 	/*
9999 	 * Call vendor specific resume callback. As these callbacks may access
10000 	 * vendor specific host controller register space call them when the
10001 	 * host clocks are ON.
10002 	 */
10003 	ret = ufshcd_vops_resume(hba, pm_op);
10004 	if (ret)
10005 		goto out;
10006 
10007 	/* For DeepSleep, the only supported option is to have the link off */
10008 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
10009 
10010 	if (ufshcd_is_link_hibern8(hba)) {
10011 		ret = ufshcd_uic_hibern8_exit(hba);
10012 		if (!ret) {
10013 			ufshcd_set_link_active(hba);
10014 		} else {
10015 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
10016 					__func__, ret);
10017 			goto vendor_suspend;
10018 		}
10019 	} else if (ufshcd_is_link_off(hba)) {
10020 		/*
10021 		 * A full initialization of the host and the device is
10022 		 * required since the link was put to off during suspend.
10023 		 * Note, in the case of DeepSleep, the device will exit
10024 		 * DeepSleep due to device reset.
10025 		 */
10026 		ret = ufshcd_reset_and_restore(hba);
10027 		/*
10028 		 * ufshcd_reset_and_restore() should have already
10029 		 * set the link state as active
10030 		 */
10031 		if (ret || !ufshcd_is_link_active(hba))
10032 			goto vendor_suspend;
10033 	}
10034 
10035 	if (!ufshcd_is_ufs_dev_active(hba)) {
10036 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
10037 		if (ret)
10038 			goto set_old_link_state;
10039 		ufshcd_set_timestamp_attr(hba);
10040 		schedule_delayed_work(&hba->ufs_rtc_update_work,
10041 				      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
10042 	}
10043 
10044 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
10045 		ufshcd_enable_auto_bkops(hba);
10046 	else
10047 		/*
10048 		 * If BKOPs operations are urgently needed at this moment then
10049 		 * keep auto-bkops enabled or else disable it.
10050 		 */
10051 		ufshcd_bkops_ctrl(hba);
10052 
10053 	if (hba->ee_usr_mask)
10054 		ufshcd_write_ee_control(hba);
10055 
10056 	if (ufshcd_is_clkscaling_supported(hba))
10057 		ufshcd_clk_scaling_suspend(hba, false);
10058 
10059 	if (hba->dev_info.b_rpm_dev_flush_capable) {
10060 		hba->dev_info.b_rpm_dev_flush_capable = false;
10061 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
10062 	}
10063 
10064 	ufshcd_configure_auto_hibern8(hba);
10065 
10066 	goto out;
10067 
10068 set_old_link_state:
10069 	ufshcd_link_state_transition(hba, old_link_state, 0);
10070 vendor_suspend:
10071 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
10072 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
10073 out:
10074 	if (ret)
10075 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
10076 	hba->clk_gating.is_suspended = false;
10077 	ufshcd_release(hba);
10078 	hba->pm_op_in_progress = false;
10079 	return ret;
10080 }
10081 
ufshcd_wl_runtime_suspend(struct device * dev)10082 static int ufshcd_wl_runtime_suspend(struct device *dev)
10083 {
10084 	struct scsi_device *sdev = to_scsi_device(dev);
10085 	struct ufs_hba *hba;
10086 	int ret;
10087 	ktime_t start = ktime_get();
10088 
10089 	hba = shost_priv(sdev->host);
10090 
10091 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
10092 	if (ret)
10093 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10094 
10095 	trace_ufshcd_wl_runtime_suspend(hba, ret,
10096 		ktime_to_us(ktime_sub(ktime_get(), start)),
10097 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10098 
10099 	return ret;
10100 }
10101 
ufshcd_wl_runtime_resume(struct device * dev)10102 static int ufshcd_wl_runtime_resume(struct device *dev)
10103 {
10104 	struct scsi_device *sdev = to_scsi_device(dev);
10105 	struct ufs_hba *hba;
10106 	int ret = 0;
10107 	ktime_t start = ktime_get();
10108 
10109 	hba = shost_priv(sdev->host);
10110 
10111 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
10112 	if (ret)
10113 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10114 
10115 	trace_ufshcd_wl_runtime_resume(hba, ret,
10116 		ktime_to_us(ktime_sub(ktime_get(), start)),
10117 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10118 
10119 	return ret;
10120 }
10121 #endif
10122 
10123 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_suspend(struct device * dev)10124 static int ufshcd_wl_suspend(struct device *dev)
10125 {
10126 	struct scsi_device *sdev = to_scsi_device(dev);
10127 	struct ufs_hba *hba;
10128 	int ret = 0;
10129 	ktime_t start = ktime_get();
10130 
10131 	hba = shost_priv(sdev->host);
10132 	down(&hba->host_sem);
10133 	hba->system_suspending = true;
10134 
10135 	if (pm_runtime_suspended(dev))
10136 		goto out;
10137 
10138 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
10139 	if (ret) {
10140 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
10141 		up(&hba->host_sem);
10142 	}
10143 
10144 out:
10145 	if (!ret)
10146 		hba->is_sys_suspended = true;
10147 	trace_ufshcd_wl_suspend(hba, ret,
10148 		ktime_to_us(ktime_sub(ktime_get(), start)),
10149 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10150 
10151 	return ret;
10152 }
10153 
ufshcd_wl_resume(struct device * dev)10154 static int ufshcd_wl_resume(struct device *dev)
10155 {
10156 	struct scsi_device *sdev = to_scsi_device(dev);
10157 	struct ufs_hba *hba;
10158 	int ret = 0;
10159 	ktime_t start = ktime_get();
10160 
10161 	hba = shost_priv(sdev->host);
10162 
10163 	if (pm_runtime_suspended(dev))
10164 		goto out;
10165 
10166 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
10167 	if (ret)
10168 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10169 out:
10170 	trace_ufshcd_wl_resume(hba, ret,
10171 		ktime_to_us(ktime_sub(ktime_get(), start)),
10172 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10173 	if (!ret)
10174 		hba->is_sys_suspended = false;
10175 	hba->system_suspending = false;
10176 	up(&hba->host_sem);
10177 	return ret;
10178 }
10179 #endif
10180 
10181 /**
10182  * ufshcd_suspend - helper function for suspend operations
10183  * @hba: per adapter instance
10184  *
10185  * This function will put disable irqs, turn off clocks
10186  * and set vreg and hba-vreg in lpm mode.
10187  *
10188  * Return: 0 upon success; < 0 upon failure.
10189  */
ufshcd_suspend(struct ufs_hba * hba)10190 static int ufshcd_suspend(struct ufs_hba *hba)
10191 {
10192 	int ret;
10193 
10194 	if (!hba->is_powered)
10195 		return 0;
10196 	/*
10197 	 * Disable the host irq as host controller as there won't be any
10198 	 * host controller transaction expected till resume.
10199 	 */
10200 	ufshcd_disable_irq(hba);
10201 	ret = ufshcd_setup_clocks(hba, false);
10202 	if (ret) {
10203 		ufshcd_enable_irq(hba);
10204 		return ret;
10205 	}
10206 	if (ufshcd_is_clkgating_allowed(hba)) {
10207 		hba->clk_gating.state = CLKS_OFF;
10208 		trace_ufshcd_clk_gating(hba,
10209 					hba->clk_gating.state);
10210 	}
10211 
10212 	ufshcd_vreg_set_lpm(hba);
10213 	/* Put the host controller in low power mode if possible */
10214 	ufshcd_hba_vreg_set_lpm(hba);
10215 	ufshcd_pm_qos_update(hba, false);
10216 	return ret;
10217 }
10218 
10219 #ifdef CONFIG_PM
10220 /**
10221  * ufshcd_resume - helper function for resume operations
10222  * @hba: per adapter instance
10223  *
10224  * This function basically turns on the regulators, clocks and
10225  * irqs of the hba.
10226  *
10227  * Return: 0 for success and non-zero for failure.
10228  */
ufshcd_resume(struct ufs_hba * hba)10229 static int ufshcd_resume(struct ufs_hba *hba)
10230 {
10231 	int ret;
10232 
10233 	if (!hba->is_powered)
10234 		return 0;
10235 
10236 	ufshcd_hba_vreg_set_hpm(hba);
10237 	ret = ufshcd_vreg_set_hpm(hba);
10238 	if (ret)
10239 		goto out;
10240 
10241 	/* Make sure clocks are enabled before accessing controller */
10242 	ret = ufshcd_setup_clocks(hba, true);
10243 	if (ret)
10244 		goto disable_vreg;
10245 
10246 	/* enable the host irq as host controller would be active soon */
10247 	ufshcd_enable_irq(hba);
10248 
10249 	goto out;
10250 
10251 disable_vreg:
10252 	ufshcd_vreg_set_lpm(hba);
10253 out:
10254 	if (ret)
10255 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10256 	return ret;
10257 }
10258 #endif /* CONFIG_PM */
10259 
10260 #ifdef CONFIG_PM_SLEEP
10261 /**
10262  * ufshcd_system_suspend - system suspend callback
10263  * @dev: Device associated with the UFS controller.
10264  *
10265  * Executed before putting the system into a sleep state in which the contents
10266  * of main memory are preserved.
10267  *
10268  * Return: 0 for success and non-zero for failure.
10269  */
ufshcd_system_suspend(struct device * dev)10270 int ufshcd_system_suspend(struct device *dev)
10271 {
10272 	struct ufs_hba *hba = dev_get_drvdata(dev);
10273 	int ret = 0;
10274 	ktime_t start = ktime_get();
10275 
10276 	if (pm_runtime_suspended(hba->dev))
10277 		goto out;
10278 
10279 	ret = ufshcd_suspend(hba);
10280 out:
10281 	trace_ufshcd_system_suspend(hba, ret,
10282 		ktime_to_us(ktime_sub(ktime_get(), start)),
10283 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10284 	return ret;
10285 }
10286 EXPORT_SYMBOL(ufshcd_system_suspend);
10287 
10288 /**
10289  * ufshcd_system_resume - system resume callback
10290  * @dev: Device associated with the UFS controller.
10291  *
10292  * Executed after waking the system up from a sleep state in which the contents
10293  * of main memory were preserved.
10294  *
10295  * Return: 0 for success and non-zero for failure.
10296  */
ufshcd_system_resume(struct device * dev)10297 int ufshcd_system_resume(struct device *dev)
10298 {
10299 	struct ufs_hba *hba = dev_get_drvdata(dev);
10300 	ktime_t start = ktime_get();
10301 	int ret = 0;
10302 
10303 	if (pm_runtime_suspended(hba->dev))
10304 		goto out;
10305 
10306 	ret = ufshcd_resume(hba);
10307 
10308 out:
10309 	trace_ufshcd_system_resume(hba, ret,
10310 		ktime_to_us(ktime_sub(ktime_get(), start)),
10311 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10312 
10313 	return ret;
10314 }
10315 EXPORT_SYMBOL(ufshcd_system_resume);
10316 #endif /* CONFIG_PM_SLEEP */
10317 
10318 #ifdef CONFIG_PM
10319 /**
10320  * ufshcd_runtime_suspend - runtime suspend callback
10321  * @dev: Device associated with the UFS controller.
10322  *
10323  * Check the description of ufshcd_suspend() function for more details.
10324  *
10325  * Return: 0 for success and non-zero for failure.
10326  */
ufshcd_runtime_suspend(struct device * dev)10327 int ufshcd_runtime_suspend(struct device *dev)
10328 {
10329 	struct ufs_hba *hba = dev_get_drvdata(dev);
10330 	int ret;
10331 	ktime_t start = ktime_get();
10332 
10333 	ret = ufshcd_suspend(hba);
10334 
10335 	trace_ufshcd_runtime_suspend(hba, ret,
10336 		ktime_to_us(ktime_sub(ktime_get(), start)),
10337 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10338 	return ret;
10339 }
10340 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10341 
10342 /**
10343  * ufshcd_runtime_resume - runtime resume routine
10344  * @dev: Device associated with the UFS controller.
10345  *
10346  * This function basically brings controller
10347  * to active state. Following operations are done in this function:
10348  *
10349  * 1. Turn on all the controller related clocks
10350  * 2. Turn ON VCC rail
10351  *
10352  * Return: 0 upon success; < 0 upon failure.
10353  */
ufshcd_runtime_resume(struct device * dev)10354 int ufshcd_runtime_resume(struct device *dev)
10355 {
10356 	struct ufs_hba *hba = dev_get_drvdata(dev);
10357 	int ret;
10358 	ktime_t start = ktime_get();
10359 
10360 	ret = ufshcd_resume(hba);
10361 
10362 	trace_ufshcd_runtime_resume(hba, ret,
10363 		ktime_to_us(ktime_sub(ktime_get(), start)),
10364 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10365 	return ret;
10366 }
10367 EXPORT_SYMBOL(ufshcd_runtime_resume);
10368 #endif /* CONFIG_PM */
10369 
ufshcd_wl_shutdown(struct device * dev)10370 static void ufshcd_wl_shutdown(struct device *dev)
10371 {
10372 	struct scsi_device *sdev = to_scsi_device(dev);
10373 	struct ufs_hba *hba = shost_priv(sdev->host);
10374 
10375 	down(&hba->host_sem);
10376 	hba->shutting_down = true;
10377 	up(&hba->host_sem);
10378 
10379 	/* Turn on everything while shutting down */
10380 	ufshcd_rpm_get_sync(hba);
10381 	scsi_device_quiesce(sdev);
10382 	shost_for_each_device(sdev, hba->host) {
10383 		if (sdev == hba->ufs_device_wlun)
10384 			continue;
10385 		mutex_lock(&sdev->state_mutex);
10386 		scsi_device_set_state(sdev, SDEV_OFFLINE);
10387 		mutex_unlock(&sdev->state_mutex);
10388 	}
10389 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10390 
10391 	/*
10392 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10393 	 * clocks.
10394 	 */
10395 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10396 		ufshcd_suspend(hba);
10397 
10398 	hba->is_powered = false;
10399 }
10400 
10401 /**
10402  * ufshcd_remove - de-allocate SCSI host and host memory space
10403  *		data structure memory
10404  * @hba: per adapter instance
10405  */
ufshcd_remove(struct ufs_hba * hba)10406 void ufshcd_remove(struct ufs_hba *hba)
10407 {
10408 	if (hba->ufs_device_wlun)
10409 		ufshcd_rpm_get_sync(hba);
10410 	ufs_hwmon_remove(hba);
10411 	ufs_bsg_remove(hba);
10412 	ufs_sysfs_remove_nodes(hba->dev);
10413 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10414 	blk_mq_destroy_queue(hba->tmf_queue);
10415 	blk_put_queue(hba->tmf_queue);
10416 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10417 	if (hba->scsi_host_added)
10418 		scsi_remove_host(hba->host);
10419 	/* disable interrupts */
10420 	ufshcd_disable_intr(hba, hba->intr_mask);
10421 	ufshcd_hba_stop(hba);
10422 	ufshcd_hba_exit(hba);
10423 }
10424 EXPORT_SYMBOL_GPL(ufshcd_remove);
10425 
10426 #ifdef CONFIG_PM_SLEEP
ufshcd_system_freeze(struct device * dev)10427 int ufshcd_system_freeze(struct device *dev)
10428 {
10429 
10430 	return ufshcd_system_suspend(dev);
10431 
10432 }
10433 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10434 
ufshcd_system_restore(struct device * dev)10435 int ufshcd_system_restore(struct device *dev)
10436 {
10437 
10438 	struct ufs_hba *hba = dev_get_drvdata(dev);
10439 	int ret;
10440 
10441 	ret = ufshcd_system_resume(dev);
10442 	if (ret)
10443 		return ret;
10444 
10445 	/* Configure UTRL and UTMRL base address registers */
10446 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10447 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10448 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10449 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10450 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10451 			REG_UTP_TASK_REQ_LIST_BASE_L);
10452 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10453 			REG_UTP_TASK_REQ_LIST_BASE_H);
10454 	/*
10455 	 * Make sure that UTRL and UTMRL base address registers
10456 	 * are updated with the latest queue addresses. Only after
10457 	 * updating these addresses, we can queue the new commands.
10458 	 */
10459 	ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10460 
10461 	return 0;
10462 
10463 }
10464 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10465 
ufshcd_system_thaw(struct device * dev)10466 int ufshcd_system_thaw(struct device *dev)
10467 {
10468 	return ufshcd_system_resume(dev);
10469 }
10470 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10471 #endif /* CONFIG_PM_SLEEP  */
10472 
10473 /**
10474  * ufshcd_set_dma_mask - Set dma mask based on the controller
10475  *			 addressing capability
10476  * @hba: per adapter instance
10477  *
10478  * Return: 0 for success, non-zero for failure.
10479  */
ufshcd_set_dma_mask(struct ufs_hba * hba)10480 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10481 {
10482 	if (hba->vops && hba->vops->set_dma_mask)
10483 		return hba->vops->set_dma_mask(hba);
10484 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10485 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10486 			return 0;
10487 	}
10488 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10489 }
10490 
10491 /**
10492  * ufshcd_devres_release - devres cleanup handler, invoked during release of
10493  *			   hba->dev
10494  * @host: pointer to SCSI host
10495  */
ufshcd_devres_release(void * host)10496 static void ufshcd_devres_release(void *host)
10497 {
10498 	scsi_host_put(host);
10499 }
10500 
10501 /**
10502  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10503  * @dev: pointer to device handle
10504  * @hba_handle: driver private handle
10505  *
10506  * Return: 0 on success, non-zero value on failure.
10507  *
10508  * NOTE: There is no corresponding ufshcd_dealloc_host() because this function
10509  * keeps track of its allocations using devres and deallocates everything on
10510  * device removal automatically.
10511  */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)10512 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10513 {
10514 	struct Scsi_Host *host;
10515 	struct ufs_hba *hba;
10516 	int err = 0;
10517 
10518 	if (!dev) {
10519 		dev_err(dev,
10520 		"Invalid memory reference for dev is NULL\n");
10521 		err = -ENODEV;
10522 		goto out_error;
10523 	}
10524 
10525 	host = scsi_host_alloc(&ufshcd_driver_template,
10526 				sizeof(struct ufs_hba));
10527 	if (!host) {
10528 		dev_err(dev, "scsi_host_alloc failed\n");
10529 		err = -ENOMEM;
10530 		goto out_error;
10531 	}
10532 
10533 	err = devm_add_action_or_reset(dev, ufshcd_devres_release,
10534 				       host);
10535 	if (err)
10536 		return err;
10537 
10538 	host->nr_maps = HCTX_TYPE_POLL + 1;
10539 	hba = shost_priv(host);
10540 	hba->host = host;
10541 	hba->dev = dev;
10542 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10543 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10544 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10545 	INIT_LIST_HEAD(&hba->clk_list_head);
10546 	spin_lock_init(&hba->outstanding_lock);
10547 
10548 	*hba_handle = hba;
10549 
10550 out_error:
10551 	return err;
10552 }
10553 EXPORT_SYMBOL(ufshcd_alloc_host);
10554 
10555 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)10556 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10557 				     const struct blk_mq_queue_data *qd)
10558 {
10559 	WARN_ON_ONCE(true);
10560 	return BLK_STS_NOTSUPP;
10561 }
10562 
10563 static const struct blk_mq_ops ufshcd_tmf_ops = {
10564 	.queue_rq = ufshcd_queue_tmf,
10565 };
10566 
ufshcd_add_scsi_host(struct ufs_hba * hba)10567 static int ufshcd_add_scsi_host(struct ufs_hba *hba)
10568 {
10569 	int err;
10570 
10571 	if (is_mcq_supported(hba)) {
10572 		ufshcd_mcq_enable(hba);
10573 		err = ufshcd_alloc_mcq(hba);
10574 		if (!err) {
10575 			ufshcd_config_mcq(hba);
10576 		} else {
10577 			/* Continue with SDB mode */
10578 			ufshcd_mcq_disable(hba);
10579 			use_mcq_mode = false;
10580 			dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
10581 				err);
10582 		}
10583 	}
10584 	if (!is_mcq_supported(hba) && !hba->lsdb_sup) {
10585 		dev_err(hba->dev,
10586 			"%s: failed to initialize (legacy doorbell mode not supported)\n",
10587 			__func__);
10588 		return -EINVAL;
10589 	}
10590 
10591 	err = scsi_add_host(hba->host, hba->dev);
10592 	if (err) {
10593 		dev_err(hba->dev, "scsi_add_host failed\n");
10594 		return err;
10595 	}
10596 	hba->scsi_host_added = true;
10597 
10598 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10599 		.nr_hw_queues	= 1,
10600 		.queue_depth	= hba->nutmrs,
10601 		.ops		= &ufshcd_tmf_ops,
10602 	};
10603 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10604 	if (err < 0)
10605 		goto remove_scsi_host;
10606 	hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10607 	if (IS_ERR(hba->tmf_queue)) {
10608 		err = PTR_ERR(hba->tmf_queue);
10609 		goto free_tmf_tag_set;
10610 	}
10611 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10612 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10613 	if (!hba->tmf_rqs) {
10614 		err = -ENOMEM;
10615 		goto free_tmf_queue;
10616 	}
10617 
10618 	return 0;
10619 
10620 free_tmf_queue:
10621 	blk_mq_destroy_queue(hba->tmf_queue);
10622 	blk_put_queue(hba->tmf_queue);
10623 
10624 free_tmf_tag_set:
10625 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10626 
10627 remove_scsi_host:
10628 	if (hba->scsi_host_added)
10629 		scsi_remove_host(hba->host);
10630 
10631 	return err;
10632 }
10633 
10634 /**
10635  * ufshcd_init - Driver initialization routine
10636  * @hba: per-adapter instance
10637  * @mmio_base: base register address
10638  * @irq: Interrupt line of device
10639  *
10640  * Return: 0 on success, non-zero value on failure.
10641  */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)10642 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10643 {
10644 	int err;
10645 	struct Scsi_Host *host = hba->host;
10646 	struct device *dev = hba->dev;
10647 
10648 	/*
10649 	 * dev_set_drvdata() must be called before any callbacks are registered
10650 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10651 	 * sysfs).
10652 	 */
10653 	dev_set_drvdata(dev, hba);
10654 
10655 	if (!mmio_base) {
10656 		dev_err(hba->dev,
10657 		"Invalid memory reference for mmio_base is NULL\n");
10658 		err = -ENODEV;
10659 		goto out_error;
10660 	}
10661 
10662 	hba->mmio_base = mmio_base;
10663 	hba->irq = irq;
10664 	hba->vps = &ufs_hba_vps;
10665 
10666 	/*
10667 	 * Initialize clk_gating.lock early since it is being used in
10668 	 * ufshcd_setup_clocks()
10669 	 */
10670 	spin_lock_init(&hba->clk_gating.lock);
10671 
10672 	/*
10673 	 * Set the default power management level for runtime and system PM.
10674 	 * Host controller drivers can override them in their
10675 	 * 'ufs_hba_variant_ops::init' callback.
10676 	 *
10677 	 * Default power saving mode is to keep UFS link in Hibern8 state
10678 	 * and UFS device in sleep state.
10679 	 */
10680 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10681 						UFS_SLEEP_PWR_MODE,
10682 						UIC_LINK_HIBERN8_STATE);
10683 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10684 						UFS_SLEEP_PWR_MODE,
10685 						UIC_LINK_HIBERN8_STATE);
10686 
10687 	init_completion(&hba->dev_cmd.complete);
10688 
10689 	err = ufshcd_hba_init(hba);
10690 	if (err)
10691 		goto out_error;
10692 
10693 	/* Read capabilities registers */
10694 	err = ufshcd_hba_capabilities(hba);
10695 	if (err)
10696 		goto out_disable;
10697 
10698 	/* Get UFS version supported by the controller */
10699 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10700 
10701 	/* Get Interrupt bit mask per version */
10702 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10703 
10704 	err = ufshcd_set_dma_mask(hba);
10705 	if (err) {
10706 		dev_err(hba->dev, "set dma mask failed\n");
10707 		goto out_disable;
10708 	}
10709 
10710 	/* Allocate memory for host memory space */
10711 	err = ufshcd_memory_alloc(hba);
10712 	if (err) {
10713 		dev_err(hba->dev, "Memory allocation failed\n");
10714 		goto out_disable;
10715 	}
10716 
10717 	/* Configure LRB */
10718 	ufshcd_host_memory_configure(hba);
10719 
10720 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10721 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10722 	host->max_id = UFSHCD_MAX_ID;
10723 	host->max_lun = UFS_MAX_LUNS;
10724 	host->max_channel = UFSHCD_MAX_CHANNEL;
10725 	host->unique_id = host->host_no;
10726 	host->max_cmd_len = UFS_CDB_SIZE;
10727 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10728 
10729 	/* Use default RPM delay if host not set */
10730 	if (host->rpm_autosuspend_delay == 0)
10731 		host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10732 
10733 	hba->max_pwr_info.is_valid = false;
10734 
10735 	/* Initialize work queues */
10736 	hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM,
10737 					     hba->host->host_no);
10738 	if (!hba->eh_wq) {
10739 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10740 			__func__);
10741 		err = -ENOMEM;
10742 		goto out_disable;
10743 	}
10744 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10745 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10746 
10747 	sema_init(&hba->host_sem, 1);
10748 
10749 	/* Initialize UIC command mutex */
10750 	mutex_init(&hba->uic_cmd_mutex);
10751 
10752 	/* Initialize mutex for device management commands */
10753 	mutex_init(&hba->dev_cmd.lock);
10754 
10755 	/* Initialize mutex for exception event control */
10756 	mutex_init(&hba->ee_ctrl_mutex);
10757 
10758 	mutex_init(&hba->wb_mutex);
10759 	init_rwsem(&hba->clk_scaling_lock);
10760 
10761 	ufshcd_init_clk_gating(hba);
10762 
10763 	ufshcd_init_clk_scaling(hba);
10764 
10765 	/*
10766 	 * In order to avoid any spurious interrupt immediately after
10767 	 * registering UFS controller interrupt handler, clear any pending UFS
10768 	 * interrupt status and disable all the UFS interrupts.
10769 	 */
10770 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10771 		      REG_INTERRUPT_STATUS);
10772 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10773 	/*
10774 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10775 	 * status is cleared before registering UFS interrupt handler.
10776 	 */
10777 	ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10778 
10779 	/* IRQ registration */
10780 	err = devm_request_threaded_irq(dev, irq, ufshcd_intr, ufshcd_threaded_intr,
10781 					IRQF_ONESHOT | IRQF_SHARED, UFSHCD, hba);
10782 	if (err) {
10783 		dev_err(hba->dev, "request irq failed\n");
10784 		goto out_disable;
10785 	} else {
10786 		hba->is_irq_enabled = true;
10787 	}
10788 
10789 	/* Reset the attached device */
10790 	ufshcd_device_reset(hba);
10791 
10792 	ufshcd_init_crypto(hba);
10793 
10794 	/* Host controller enable */
10795 	err = ufshcd_hba_enable(hba);
10796 	if (err) {
10797 		dev_err(hba->dev, "Host controller enable failed\n");
10798 		ufshcd_print_evt_hist(hba);
10799 		ufshcd_print_host_state(hba);
10800 		goto out_disable;
10801 	}
10802 
10803 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10804 	INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10805 
10806 	/* Set the default auto-hiberate idle timer value to 150 ms */
10807 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10808 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10809 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10810 	}
10811 
10812 	/* Hold auto suspend until async scan completes */
10813 	pm_runtime_get_sync(dev);
10814 
10815 	/*
10816 	 * We are assuming that device wasn't put in sleep/power-down
10817 	 * state exclusively during the boot stage before kernel.
10818 	 * This assumption helps avoid doing link startup twice during
10819 	 * ufshcd_probe_hba().
10820 	 */
10821 	ufshcd_set_ufs_dev_active(hba);
10822 
10823 	/* Initialize hba, detect and initialize UFS device */
10824 	ktime_t probe_start = ktime_get();
10825 
10826 	hba->ufshcd_state = UFSHCD_STATE_RESET;
10827 
10828 	err = ufshcd_link_startup(hba);
10829 	if (err)
10830 		goto out_disable;
10831 
10832 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
10833 		goto initialized;
10834 
10835 	/* Debug counters initialization */
10836 	ufshcd_clear_dbg_ufs_stats(hba);
10837 
10838 	/* UniPro link is active now */
10839 	ufshcd_set_link_active(hba);
10840 
10841 	/* Verify device initialization by sending NOP OUT UPIU */
10842 	err = ufshcd_verify_dev_init(hba);
10843 	if (err)
10844 		goto out_disable;
10845 
10846 	/* Initiate UFS initialization, and waiting until completion */
10847 	err = ufshcd_complete_dev_init(hba);
10848 	if (err)
10849 		goto out_disable;
10850 
10851 	err = ufshcd_device_params_init(hba);
10852 	if (err)
10853 		goto out_disable;
10854 
10855 	err = ufshcd_post_device_init(hba);
10856 
10857 initialized:
10858 	ufshcd_process_probe_result(hba, probe_start, err);
10859 	if (err)
10860 		goto out_disable;
10861 
10862 	err = ufshcd_add_scsi_host(hba);
10863 	if (err)
10864 		goto out_disable;
10865 
10866 	async_schedule(ufshcd_async_scan, hba);
10867 	ufs_sysfs_add_nodes(hba->dev);
10868 
10869 	device_enable_async_suspend(dev);
10870 	ufshcd_pm_qos_init(hba);
10871 	return 0;
10872 
10873 out_disable:
10874 	hba->is_irq_enabled = false;
10875 	ufshcd_hba_exit(hba);
10876 out_error:
10877 	return err;
10878 }
10879 EXPORT_SYMBOL_GPL(ufshcd_init);
10880 
ufshcd_resume_complete(struct device * dev)10881 void ufshcd_resume_complete(struct device *dev)
10882 {
10883 	struct ufs_hba *hba = dev_get_drvdata(dev);
10884 
10885 	if (hba->complete_put) {
10886 		ufshcd_rpm_put(hba);
10887 		hba->complete_put = false;
10888 	}
10889 }
10890 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10891 
ufshcd_rpm_ok_for_spm(struct ufs_hba * hba)10892 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10893 {
10894 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10895 	enum ufs_dev_pwr_mode dev_pwr_mode;
10896 	enum uic_link_state link_state;
10897 	unsigned long flags;
10898 	bool res;
10899 
10900 	spin_lock_irqsave(&dev->power.lock, flags);
10901 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10902 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10903 	res = pm_runtime_suspended(dev) &&
10904 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10905 	      hba->uic_link_state == link_state &&
10906 	      !hba->dev_info.b_rpm_dev_flush_capable;
10907 	spin_unlock_irqrestore(&dev->power.lock, flags);
10908 
10909 	return res;
10910 }
10911 
__ufshcd_suspend_prepare(struct device * dev,bool rpm_ok_for_spm)10912 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10913 {
10914 	struct ufs_hba *hba = dev_get_drvdata(dev);
10915 	int ret;
10916 
10917 	/*
10918 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10919 	 * are same. And it doesn't wake up the device for system-suspend
10920 	 * if it's runtime suspended. But ufs doesn't follow that.
10921 	 * Refer ufshcd_resume_complete()
10922 	 */
10923 	if (hba->ufs_device_wlun) {
10924 		/* Prevent runtime suspend */
10925 		ufshcd_rpm_get_noresume(hba);
10926 		/*
10927 		 * Check if already runtime suspended in same state as system
10928 		 * suspend would be.
10929 		 */
10930 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10931 			/* RPM state is not ok for SPM, so runtime resume */
10932 			ret = ufshcd_rpm_resume(hba);
10933 			if (ret < 0 && ret != -EACCES) {
10934 				ufshcd_rpm_put(hba);
10935 				return ret;
10936 			}
10937 		}
10938 		hba->complete_put = true;
10939 	}
10940 	return 0;
10941 }
10942 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10943 
ufshcd_suspend_prepare(struct device * dev)10944 int ufshcd_suspend_prepare(struct device *dev)
10945 {
10946 	return __ufshcd_suspend_prepare(dev, true);
10947 }
10948 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10949 
10950 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_poweroff(struct device * dev)10951 static int ufshcd_wl_poweroff(struct device *dev)
10952 {
10953 	struct scsi_device *sdev = to_scsi_device(dev);
10954 	struct ufs_hba *hba = shost_priv(sdev->host);
10955 
10956 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10957 	return 0;
10958 }
10959 #endif
10960 
ufshcd_wl_probe(struct device * dev)10961 static int ufshcd_wl_probe(struct device *dev)
10962 {
10963 	struct scsi_device *sdev = to_scsi_device(dev);
10964 
10965 	if (!is_device_wlun(sdev))
10966 		return -ENODEV;
10967 
10968 	blk_pm_runtime_init(sdev->request_queue, dev);
10969 	pm_runtime_set_autosuspend_delay(dev, 0);
10970 	pm_runtime_allow(dev);
10971 
10972 	return  0;
10973 }
10974 
ufshcd_wl_remove(struct device * dev)10975 static int ufshcd_wl_remove(struct device *dev)
10976 {
10977 	pm_runtime_forbid(dev);
10978 	return 0;
10979 }
10980 
10981 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10982 #ifdef CONFIG_PM_SLEEP
10983 	.suspend = ufshcd_wl_suspend,
10984 	.resume = ufshcd_wl_resume,
10985 	.freeze = ufshcd_wl_suspend,
10986 	.thaw = ufshcd_wl_resume,
10987 	.poweroff = ufshcd_wl_poweroff,
10988 	.restore = ufshcd_wl_resume,
10989 #endif
10990 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10991 };
10992 
ufshcd_check_header_layout(void)10993 static void ufshcd_check_header_layout(void)
10994 {
10995 	/*
10996 	 * gcc compilers before version 10 cannot do constant-folding for
10997 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10998 	 * before.
10999 	 */
11000 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
11001 		return;
11002 
11003 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11004 				.cci = 3})[0] != 3);
11005 
11006 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11007 				.ehs_length = 2})[1] != 2);
11008 
11009 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11010 				.enable_crypto = 1})[2]
11011 		     != 0x80);
11012 
11013 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
11014 					.command_type = 5,
11015 					.data_direction = 3,
11016 					.interrupt = 1,
11017 				})[3]) != ((5 << 4) | (3 << 1) | 1));
11018 
11019 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
11020 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
11021 		cpu_to_le32(0xdeadbeef));
11022 
11023 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11024 				.ocs = 4})[8] != 4);
11025 
11026 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11027 				.cds = 5})[9] != 5);
11028 
11029 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
11030 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
11031 		cpu_to_le32(0xbadcafe));
11032 
11033 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
11034 			     .iid = 0xf })[4] != 0xf0);
11035 
11036 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
11037 			     .command_set_type = 0xf })[4] != 0xf);
11038 }
11039 
11040 /*
11041  * ufs_dev_wlun_template - describes ufs device wlun
11042  * ufs-device wlun - used to send pm commands
11043  * All luns are consumers of ufs-device wlun.
11044  *
11045  * Currently, no sd driver is present for wluns.
11046  * Hence the no specific pm operations are performed.
11047  * With ufs design, SSU should be sent to ufs-device wlun.
11048  * Hence register a scsi driver for ufs wluns only.
11049  */
11050 static struct scsi_driver ufs_dev_wlun_template = {
11051 	.gendrv = {
11052 		.name = "ufs_device_wlun",
11053 		.probe = ufshcd_wl_probe,
11054 		.remove = ufshcd_wl_remove,
11055 		.pm = &ufshcd_wl_pm_ops,
11056 		.shutdown = ufshcd_wl_shutdown,
11057 	},
11058 };
11059 
ufshcd_core_init(void)11060 static int __init ufshcd_core_init(void)
11061 {
11062 	int ret;
11063 
11064 	ufshcd_check_header_layout();
11065 
11066 	ufs_debugfs_init();
11067 
11068 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
11069 	if (ret)
11070 		ufs_debugfs_exit();
11071 	return ret;
11072 }
11073 
ufshcd_core_exit(void)11074 static void __exit ufshcd_core_exit(void)
11075 {
11076 	ufs_debugfs_exit();
11077 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
11078 }
11079 
11080 module_init(ufshcd_core_init);
11081 module_exit(ufshcd_core_exit);
11082 
11083 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
11084 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
11085 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
11086 MODULE_SOFTDEP("pre: governor_simpleondemand");
11087 MODULE_LICENSE("GPL");
11088