1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Universal Flash Storage Host controller driver Core
4 * Copyright (C) 2011-2013 Samsung India Software Operations
5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6 *
7 * Authors:
8 * Santosh Yaraganavi <santosh.sy@samsung.com>
9 * Vinayak Holikatti <h.vinayak@samsung.com>
10 */
11
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <linux/unaligned.h>
40
41 #define CREATE_TRACE_POINTS
42 #include "ufs_trace.h"
43
44 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\
45 UTP_TASK_REQ_COMPL |\
46 UFSHCD_ERROR_MASK)
47
48 #define UFSHCD_ENABLE_MCQ_INTRS (UTP_TASK_REQ_COMPL |\
49 UFSHCD_ERROR_MASK |\
50 MCQ_CQ_EVENT_STATUS)
51
52
53 /* UIC command timeout, unit: ms */
54 enum {
55 UIC_CMD_TIMEOUT_DEFAULT = 500,
56 UIC_CMD_TIMEOUT_MAX = 5000,
57 };
58 /* NOP OUT retries waiting for NOP IN response */
59 #define NOP_OUT_RETRIES 10
60 /* Timeout after 50 msecs if NOP OUT hangs without response */
61 #define NOP_OUT_TIMEOUT 50 /* msecs */
62
63 /* Query request retries */
64 #define QUERY_REQ_RETRIES 3
65 /* Query request timeout */
66 enum {
67 QUERY_REQ_TIMEOUT_MIN = 1,
68 QUERY_REQ_TIMEOUT_DEFAULT = 1500,
69 QUERY_REQ_TIMEOUT_MAX = 30000
70 };
71
72 /* Advanced RPMB request timeout */
73 #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */
74
75 /* Task management command timeout */
76 #define TM_CMD_TIMEOUT 100 /* msecs */
77
78 /* maximum number of retries for a general UIC command */
79 #define UFS_UIC_COMMAND_RETRIES 3
80
81 /* maximum number of link-startup retries */
82 #define DME_LINKSTARTUP_RETRIES 3
83
84 /* maximum number of reset retries before giving up */
85 #define MAX_HOST_RESET_RETRIES 5
86
87 /* Maximum number of error handler retries before giving up */
88 #define MAX_ERR_HANDLER_RETRIES 5
89
90 /* Expose the flag value from utp_upiu_query.value */
91 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
92
93 /* Interrupt aggregation default timeout, unit: 40us */
94 #define INT_AGGR_DEF_TO 0x02
95
96 /* default delay of autosuspend: 2000 ms */
97 #define RPM_AUTOSUSPEND_DELAY_MS 2000
98
99 /* Default delay of RPM device flush delayed work */
100 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
101
102 /* Default value of wait time before gating device ref clock */
103 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
104
105 /* Polling time to wait for fDeviceInit */
106 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
107
108 /* Default RTC update every 10 seconds */
109 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
110
111 /* bMaxNumOfRTT is equal to two after device manufacturing */
112 #define DEFAULT_MAX_NUM_RTT 2
113
114 /* UFSHC 4.0 compliant HC support this mode. */
115 static bool use_mcq_mode = true;
116
is_mcq_supported(struct ufs_hba * hba)117 static bool is_mcq_supported(struct ufs_hba *hba)
118 {
119 return hba->mcq_sup && use_mcq_mode;
120 }
121
122 module_param(use_mcq_mode, bool, 0644);
123 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
124
125 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT;
126
uic_cmd_timeout_set(const char * val,const struct kernel_param * kp)127 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp)
128 {
129 return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT,
130 UIC_CMD_TIMEOUT_MAX);
131 }
132
133 static const struct kernel_param_ops uic_cmd_timeout_ops = {
134 .set = uic_cmd_timeout_set,
135 .get = param_get_uint,
136 };
137
138 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644);
139 MODULE_PARM_DESC(uic_cmd_timeout,
140 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 5 seconds inclusively");
141
142 static unsigned int dev_cmd_timeout = QUERY_REQ_TIMEOUT_DEFAULT;
143
dev_cmd_timeout_set(const char * val,const struct kernel_param * kp)144 static int dev_cmd_timeout_set(const char *val, const struct kernel_param *kp)
145 {
146 return param_set_uint_minmax(val, kp, QUERY_REQ_TIMEOUT_MIN,
147 QUERY_REQ_TIMEOUT_MAX);
148 }
149
150 static const struct kernel_param_ops dev_cmd_timeout_ops = {
151 .set = dev_cmd_timeout_set,
152 .get = param_get_uint,
153 };
154
155 module_param_cb(dev_cmd_timeout, &dev_cmd_timeout_ops, &dev_cmd_timeout, 0644);
156 MODULE_PARM_DESC(dev_cmd_timeout,
157 "UFS Device command timeout in milliseconds. Defaults to 1.5s. Supported values range from 1ms to 30 seconds inclusively");
158
159 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \
160 ({ \
161 int _ret; \
162 if (_on) \
163 _ret = ufshcd_enable_vreg(_dev, _vreg); \
164 else \
165 _ret = ufshcd_disable_vreg(_dev, _vreg); \
166 _ret; \
167 })
168
169 #define ufshcd_hex_dump(prefix_str, buf, len) do { \
170 size_t __len = (len); \
171 print_hex_dump(KERN_ERR, prefix_str, \
172 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
173 16, 4, buf, __len, false); \
174 } while (0)
175
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)176 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
177 const char *prefix)
178 {
179 u32 *regs;
180 size_t pos;
181
182 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
183 return -EINVAL;
184
185 regs = kzalloc(len, GFP_ATOMIC);
186 if (!regs)
187 return -ENOMEM;
188
189 for (pos = 0; pos < len; pos += 4) {
190 if (offset == 0 &&
191 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
192 pos <= REG_UIC_ERROR_CODE_DME)
193 continue;
194 regs[pos / 4] = ufshcd_readl(hba, offset + pos);
195 }
196
197 ufshcd_hex_dump(prefix, regs, len);
198 kfree(regs);
199
200 return 0;
201 }
202 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
203
204 enum {
205 UFSHCD_MAX_CHANNEL = 0,
206 UFSHCD_MAX_ID = 1,
207 };
208
209 static const char *const ufshcd_state_name[] = {
210 [UFSHCD_STATE_RESET] = "reset",
211 [UFSHCD_STATE_OPERATIONAL] = "operational",
212 [UFSHCD_STATE_ERROR] = "error",
213 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal",
214 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal",
215 };
216
217 /* UFSHCD error handling flags */
218 enum {
219 UFSHCD_EH_IN_PROGRESS = (1 << 0),
220 };
221
222 /* UFSHCD UIC layer error flags */
223 enum {
224 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
225 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
226 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
227 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
228 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
229 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
230 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
231 };
232
233 #define ufshcd_set_eh_in_progress(h) \
234 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
235 #define ufshcd_eh_in_progress(h) \
236 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
237 #define ufshcd_clear_eh_in_progress(h) \
238 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
239
240 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
241 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
242 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
243 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
244 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
245 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
246 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
247 /*
248 * For DeepSleep, the link is first put in hibern8 and then off.
249 * Leaving the link in hibern8 is not supported.
250 */
251 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
252 };
253
254 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)255 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
256 {
257 return ufs_pm_lvl_states[lvl].dev_state;
258 }
259
260 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)261 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
262 {
263 return ufs_pm_lvl_states[lvl].link_state;
264 }
265
266 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)267 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
268 enum uic_link_state link_state)
269 {
270 enum ufs_pm_level lvl;
271
272 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
273 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
274 (ufs_pm_lvl_states[lvl].link_state == link_state))
275 return lvl;
276 }
277
278 /* if no match found, return the level 0 */
279 return UFS_PM_LVL_0;
280 }
281
ufshcd_has_pending_tasks(struct ufs_hba * hba)282 static bool ufshcd_has_pending_tasks(struct ufs_hba *hba)
283 {
284 return hba->outstanding_tasks || hba->active_uic_cmd ||
285 hba->uic_async_done;
286 }
287
ufshcd_is_ufs_dev_busy(struct ufs_hba * hba)288 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
289 {
290 return scsi_host_busy(hba->host) || ufshcd_has_pending_tasks(hba);
291 }
292
293 static const struct ufs_dev_quirk ufs_fixups[] = {
294 /* UFS cards deviations table */
295 { .wmanufacturerid = UFS_VENDOR_MICRON,
296 .model = UFS_ANY_MODEL,
297 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
298 { .wmanufacturerid = UFS_VENDOR_SAMSUNG,
299 .model = UFS_ANY_MODEL,
300 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
301 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
302 UFS_DEVICE_QUIRK_PA_HIBER8TIME |
303 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
304 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
305 .model = UFS_ANY_MODEL,
306 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
307 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
308 .model = "hB8aL1" /*H28U62301AMR*/,
309 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
310 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
311 .model = UFS_ANY_MODEL,
312 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
313 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
314 .model = "THGLF2G9C8KBADG",
315 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
316 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
317 .model = "THGLF2G9D8KBADG",
318 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
319 {}
320 };
321
322 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
323 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
324 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
325 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
326 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
327 static void ufshcd_hba_exit(struct ufs_hba *hba);
328 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params);
329 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
330 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
331 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
332 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
333 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
334 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
335 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
336 bool scale_up);
337 static irqreturn_t ufshcd_intr(int irq, void *__hba);
338 static int ufshcd_change_power_mode(struct ufs_hba *hba,
339 struct ufs_pa_layer_attr *pwr_mode);
340 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
341 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
342 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
343 struct ufs_vreg *vreg);
344 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
345 bool enable);
346 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
347 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
348
ufshcd_enable_irq(struct ufs_hba * hba)349 void ufshcd_enable_irq(struct ufs_hba *hba)
350 {
351 if (!hba->is_irq_enabled) {
352 enable_irq(hba->irq);
353 hba->is_irq_enabled = true;
354 }
355 }
356 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
357
ufshcd_disable_irq(struct ufs_hba * hba)358 void ufshcd_disable_irq(struct ufs_hba *hba)
359 {
360 if (hba->is_irq_enabled) {
361 disable_irq(hba->irq);
362 hba->is_irq_enabled = false;
363 }
364 }
365 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
366
ufshcd_configure_wb(struct ufs_hba * hba)367 static void ufshcd_configure_wb(struct ufs_hba *hba)
368 {
369 if (!ufshcd_is_wb_allowed(hba))
370 return;
371
372 ufshcd_wb_toggle(hba, true);
373
374 ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
375
376 if (ufshcd_is_wb_buf_flush_allowed(hba))
377 ufshcd_wb_toggle_buf_flush(hba, true);
378 }
379
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)380 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
381 enum ufs_trace_str_t str_t)
382 {
383 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
384 struct utp_upiu_header *header;
385
386 if (!trace_ufshcd_upiu_enabled())
387 return;
388
389 if (str_t == UFS_CMD_SEND)
390 header = &rq->header;
391 else
392 header = &hba->lrb[tag].ucd_rsp_ptr->header;
393
394 trace_ufshcd_upiu(hba, str_t, header, &rq->sc.cdb,
395 UFS_TSF_CDB);
396 }
397
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,enum ufs_trace_str_t str_t,struct utp_upiu_req * rq_rsp)398 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
399 enum ufs_trace_str_t str_t,
400 struct utp_upiu_req *rq_rsp)
401 {
402 if (!trace_ufshcd_upiu_enabled())
403 return;
404
405 trace_ufshcd_upiu(hba, str_t, &rq_rsp->header,
406 &rq_rsp->qr, UFS_TSF_OSF);
407 }
408
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)409 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
410 enum ufs_trace_str_t str_t)
411 {
412 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
413
414 if (!trace_ufshcd_upiu_enabled())
415 return;
416
417 if (str_t == UFS_TM_SEND)
418 trace_ufshcd_upiu(hba, str_t,
419 &descp->upiu_req.req_header,
420 &descp->upiu_req.input_param1,
421 UFS_TSF_TM_INPUT);
422 else
423 trace_ufshcd_upiu(hba, str_t,
424 &descp->upiu_rsp.rsp_header,
425 &descp->upiu_rsp.output_param1,
426 UFS_TSF_TM_OUTPUT);
427 }
428
ufshcd_add_uic_command_trace(struct ufs_hba * hba,const struct uic_command * ucmd,enum ufs_trace_str_t str_t)429 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
430 const struct uic_command *ucmd,
431 enum ufs_trace_str_t str_t)
432 {
433 u32 cmd;
434
435 if (!trace_ufshcd_uic_command_enabled())
436 return;
437
438 if (str_t == UFS_CMD_SEND)
439 cmd = ucmd->command;
440 else
441 cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
442
443 trace_ufshcd_uic_command(hba, str_t, cmd,
444 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
445 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
446 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
447 }
448
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)449 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
450 enum ufs_trace_str_t str_t)
451 {
452 u64 lba = 0;
453 u8 opcode = 0, group_id = 0;
454 u32 doorbell = 0;
455 u32 intr;
456 u32 hwq_id = 0;
457 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
458 struct scsi_cmnd *cmd = lrbp->cmd;
459 struct request *rq = scsi_cmd_to_rq(cmd);
460 int transfer_len = -1;
461
462 if (!cmd)
463 return;
464
465 /* trace UPIU also */
466 ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
467 if (!trace_ufshcd_command_enabled())
468 return;
469
470 opcode = cmd->cmnd[0];
471
472 if (opcode == READ_10 || opcode == WRITE_10) {
473 /*
474 * Currently we only fully trace read(10) and write(10) commands
475 */
476 transfer_len =
477 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
478 lba = scsi_get_lba(cmd);
479 if (opcode == WRITE_10)
480 group_id = lrbp->cmd->cmnd[6];
481 } else if (opcode == UNMAP) {
482 /*
483 * The number of Bytes to be unmapped beginning with the lba.
484 */
485 transfer_len = blk_rq_bytes(rq);
486 lba = scsi_get_lba(cmd);
487 }
488
489 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
490
491 if (hba->mcq_enabled) {
492 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
493
494 hwq_id = hwq->id;
495 } else {
496 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
497 }
498 trace_ufshcd_command(cmd->device, hba, str_t, tag, doorbell, hwq_id,
499 transfer_len, intr, lba, opcode, group_id);
500 }
501
ufshcd_print_clk_freqs(struct ufs_hba * hba)502 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
503 {
504 struct ufs_clk_info *clki;
505 struct list_head *head = &hba->clk_list_head;
506
507 if (list_empty(head))
508 return;
509
510 list_for_each_entry(clki, head, list) {
511 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
512 clki->max_freq)
513 dev_err(hba->dev, "clk: %s, rate: %u\n",
514 clki->name, clki->curr_freq);
515 }
516 }
517
ufshcd_print_evt(struct ufs_hba * hba,u32 id,const char * err_name)518 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
519 const char *err_name)
520 {
521 int i;
522 bool found = false;
523 const struct ufs_event_hist *e;
524
525 if (id >= UFS_EVT_CNT)
526 return;
527
528 e = &hba->ufs_stats.event[id];
529
530 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
531 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
532
533 if (e->tstamp[p] == 0)
534 continue;
535 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
536 e->val[p], div_u64(e->tstamp[p], 1000));
537 found = true;
538 }
539
540 if (!found)
541 dev_err(hba->dev, "No record of %s\n", err_name);
542 else
543 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
544 }
545
ufshcd_print_evt_hist(struct ufs_hba * hba)546 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
547 {
548 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
549
550 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
551 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
552 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
553 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
554 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
555 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
556 "auto_hibern8_err");
557 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
558 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
559 "link_startup_fail");
560 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
561 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
562 "suspend_fail");
563 ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
564 ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
565 "wlun suspend_fail");
566 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
567 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
568 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
569
570 ufshcd_vops_dbg_register_dump(hba);
571 }
572
573 static
ufshcd_print_tr(struct ufs_hba * hba,int tag,bool pr_prdt)574 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
575 {
576 const struct ufshcd_lrb *lrbp;
577 int prdt_length;
578
579 lrbp = &hba->lrb[tag];
580
581 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
582 tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
583 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
584 tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
585 dev_err(hba->dev,
586 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
587 tag, (u64)lrbp->utrd_dma_addr);
588
589 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
590 sizeof(struct utp_transfer_req_desc));
591 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
592 (u64)lrbp->ucd_req_dma_addr);
593 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
594 sizeof(struct utp_upiu_req));
595 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
596 (u64)lrbp->ucd_rsp_dma_addr);
597 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
598 sizeof(struct utp_upiu_rsp));
599
600 prdt_length = le16_to_cpu(
601 lrbp->utr_descriptor_ptr->prd_table_length);
602 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
603 prdt_length /= ufshcd_sg_entry_size(hba);
604
605 dev_err(hba->dev,
606 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n",
607 tag, prdt_length,
608 (u64)lrbp->ucd_prdt_dma_addr);
609
610 if (pr_prdt)
611 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
612 ufshcd_sg_entry_size(hba) * prdt_length);
613 }
614
ufshcd_print_tr_iter(struct request * req,void * priv)615 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
616 {
617 struct scsi_device *sdev = req->q->queuedata;
618 struct Scsi_Host *shost = sdev->host;
619 struct ufs_hba *hba = shost_priv(shost);
620
621 ufshcd_print_tr(hba, req->tag, *(bool *)priv);
622
623 return true;
624 }
625
626 /**
627 * ufshcd_print_trs_all - print trs for all started requests.
628 * @hba: per-adapter instance.
629 * @pr_prdt: need to print prdt or not.
630 */
ufshcd_print_trs_all(struct ufs_hba * hba,bool pr_prdt)631 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
632 {
633 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
634 }
635
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)636 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
637 {
638 int tag;
639
640 for_each_set_bit(tag, &bitmap, hba->nutmrs) {
641 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
642
643 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
644 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
645 }
646 }
647
ufshcd_print_host_state(struct ufs_hba * hba)648 static void ufshcd_print_host_state(struct ufs_hba *hba)
649 {
650 const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
651
652 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
653 dev_err(hba->dev, "%d outstanding reqs, tasks=0x%lx\n",
654 scsi_host_busy(hba->host), hba->outstanding_tasks);
655 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
656 hba->saved_err, hba->saved_uic_err);
657 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
658 hba->curr_dev_pwr_mode, hba->uic_link_state);
659 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
660 hba->pm_op_in_progress, hba->is_sys_suspended);
661 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
662 hba->auto_bkops_enabled, hba->host->host_self_blocked);
663 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
664 dev_err(hba->dev,
665 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
666 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
667 hba->ufs_stats.hibern8_exit_cnt);
668 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
669 hba->eh_flags, hba->req_abort_count);
670 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
671 hba->ufs_version, hba->capabilities, hba->caps);
672 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
673 hba->dev_quirks);
674 if (sdev_ufs)
675 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
676 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
677
678 ufshcd_print_clk_freqs(hba);
679 }
680
681 /**
682 * ufshcd_print_pwr_info - print power params as saved in hba
683 * power info
684 * @hba: per-adapter instance
685 */
ufshcd_print_pwr_info(struct ufs_hba * hba)686 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
687 {
688 static const char * const names[] = {
689 "INVALID MODE",
690 "FAST MODE",
691 "SLOW_MODE",
692 "INVALID MODE",
693 "FASTAUTO_MODE",
694 "SLOWAUTO_MODE",
695 "INVALID MODE",
696 };
697
698 /*
699 * Using dev_dbg to avoid messages during runtime PM to avoid
700 * never-ending cycles of messages written back to storage by user space
701 * causing runtime resume, causing more messages and so on.
702 */
703 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
704 __func__,
705 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
706 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
707 names[hba->pwr_info.pwr_rx],
708 names[hba->pwr_info.pwr_tx],
709 hba->pwr_info.hs_rate);
710 }
711
ufshcd_device_reset(struct ufs_hba * hba)712 static void ufshcd_device_reset(struct ufs_hba *hba)
713 {
714 int err;
715
716 err = ufshcd_vops_device_reset(hba);
717
718 if (!err) {
719 ufshcd_set_ufs_dev_active(hba);
720 if (ufshcd_is_wb_allowed(hba)) {
721 hba->dev_info.wb_enabled = false;
722 hba->dev_info.wb_buf_flush_enabled = false;
723 }
724 if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
725 hba->dev_info.rtc_time_baseline = 0;
726 }
727 if (err != -EOPNOTSUPP)
728 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
729 }
730
ufshcd_delay_us(unsigned long us,unsigned long tolerance)731 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
732 {
733 if (!us)
734 return;
735
736 if (us < 10)
737 udelay(us);
738 else
739 usleep_range(us, us + tolerance);
740 }
741 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
742
743 /**
744 * ufshcd_wait_for_register - wait for register value to change
745 * @hba: per-adapter interface
746 * @reg: mmio register offset
747 * @mask: mask to apply to the read register value
748 * @val: value to wait for
749 * @interval_us: polling interval in microseconds
750 * @timeout_ms: timeout in milliseconds
751 *
752 * Return: -ETIMEDOUT on error, zero on success.
753 */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)754 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
755 u32 val, unsigned long interval_us,
756 unsigned long timeout_ms)
757 {
758 u32 v;
759
760 val &= mask; /* ignore bits that we don't intend to wait on */
761
762 return read_poll_timeout(ufshcd_readl, v, (v & mask) == val,
763 interval_us, timeout_ms * 1000, false, hba, reg);
764 }
765
766 /**
767 * ufshcd_get_intr_mask - Get the interrupt bit mask
768 * @hba: Pointer to adapter instance
769 *
770 * Return: interrupt bit mask per version
771 */
ufshcd_get_intr_mask(struct ufs_hba * hba)772 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
773 {
774 if (hba->ufs_version <= ufshci_version(2, 0))
775 return INTERRUPT_MASK_ALL_VER_11;
776
777 return INTERRUPT_MASK_ALL_VER_21;
778 }
779
780 /**
781 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
782 * @hba: Pointer to adapter instance
783 *
784 * Return: UFSHCI version supported by the controller
785 */
ufshcd_get_ufs_version(struct ufs_hba * hba)786 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
787 {
788 u32 ufshci_ver;
789
790 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
791 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
792 else
793 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
794
795 /*
796 * UFSHCI v1.x uses a different version scheme, in order
797 * to allow the use of comparisons with the ufshci_version
798 * function, we convert it to the same scheme as ufs 2.0+.
799 */
800 if (ufshci_ver & 0x00010000)
801 return ufshci_version(1, ufshci_ver & 0x00000100);
802
803 return ufshci_ver;
804 }
805
806 /**
807 * ufshcd_is_device_present - Check if any device connected to
808 * the host controller
809 * @hba: pointer to adapter instance
810 *
811 * Return: true if device present, false if no device detected
812 */
ufshcd_is_device_present(struct ufs_hba * hba)813 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
814 {
815 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
816 }
817
818 /**
819 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
820 * @lrbp: pointer to local command reference block
821 * @cqe: pointer to the completion queue entry
822 *
823 * This function is used to get the OCS field from UTRD
824 *
825 * Return: the OCS field in the UTRD.
826 */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp,struct cq_entry * cqe)827 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
828 struct cq_entry *cqe)
829 {
830 if (cqe)
831 return le32_to_cpu(cqe->status) & MASK_OCS;
832
833 return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
834 }
835
836 /**
837 * ufshcd_utrl_clear() - Clear requests from the controller request list.
838 * @hba: per adapter instance
839 * @mask: mask with one bit set for each request to be cleared
840 */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 mask)841 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
842 {
843 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
844 mask = ~mask;
845 /*
846 * From the UFSHCI specification: "UTP Transfer Request List CLear
847 * Register (UTRLCLR): This field is bit significant. Each bit
848 * corresponds to a slot in the UTP Transfer Request List, where bit 0
849 * corresponds to request slot 0. A bit in this field is set to ‘0’
850 * by host software to indicate to the host controller that a transfer
851 * request slot is cleared. The host controller
852 * shall free up any resources associated to the request slot
853 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
854 * host software indicates no change to request slots by setting the
855 * associated bits in this field to ‘1’. Bits in this field shall only
856 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
857 */
858 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
859 }
860
861 /**
862 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
863 * @hba: per adapter instance
864 * @pos: position of the bit to be cleared
865 */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)866 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
867 {
868 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
869 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
870 else
871 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
872 }
873
874 /**
875 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
876 * @reg: Register value of host controller status
877 *
878 * Return: 0 on success; a positive value if failed.
879 */
ufshcd_get_lists_status(u32 reg)880 static inline int ufshcd_get_lists_status(u32 reg)
881 {
882 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
883 }
884
885 /**
886 * ufshcd_get_uic_cmd_result - Get the UIC command result
887 * @hba: Pointer to adapter instance
888 *
889 * This function gets the result of UIC command completion
890 *
891 * Return: 0 on success; non-zero value on error.
892 */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)893 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
894 {
895 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
896 MASK_UIC_COMMAND_RESULT;
897 }
898
899 /**
900 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
901 * @hba: Pointer to adapter instance
902 *
903 * This function gets UIC command argument3
904 *
905 * Return: 0 on success; non-zero value on error.
906 */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)907 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
908 {
909 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
910 }
911
912 /**
913 * ufshcd_get_req_rsp - returns the TR response transaction type
914 * @ucd_rsp_ptr: pointer to response UPIU
915 *
916 * Return: UPIU type.
917 */
918 static inline enum upiu_response_transaction
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)919 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
920 {
921 return ucd_rsp_ptr->header.transaction_code;
922 }
923
924 /**
925 * ufshcd_is_exception_event - Check if the device raised an exception event
926 * @ucd_rsp_ptr: pointer to response UPIU
927 *
928 * The function checks if the device raised an exception event indicated in
929 * the Device Information field of response UPIU.
930 *
931 * Return: true if exception is raised, false otherwise.
932 */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)933 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
934 {
935 return ucd_rsp_ptr->header.device_information & 1;
936 }
937
938 /**
939 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
940 * @hba: per adapter instance
941 */
942 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)943 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
944 {
945 ufshcd_writel(hba, INT_AGGR_ENABLE |
946 INT_AGGR_COUNTER_AND_TIMER_RESET,
947 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
948 }
949
950 /**
951 * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
952 * @hba: per adapter instance
953 * @cnt: Interrupt aggregation counter threshold
954 * @tmout: Interrupt aggregation timeout value
955 */
956 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)957 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
958 {
959 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
960 INT_AGGR_COUNTER_THLD_VAL(cnt) |
961 INT_AGGR_TIMEOUT_VAL(tmout),
962 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
963 }
964
965 /**
966 * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
967 * @hba: per adapter instance
968 */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)969 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
970 {
971 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
972 }
973
974 /**
975 * ufshcd_enable_run_stop_reg - Enable run-stop registers,
976 * When run-stop registers are set to 1, it indicates the
977 * host controller that it can process the requests
978 * @hba: per adapter instance
979 */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)980 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
981 {
982 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
983 REG_UTP_TASK_REQ_LIST_RUN_STOP);
984 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
985 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
986 }
987
988 /**
989 * ufshcd_hba_start - Start controller initialization sequence
990 * @hba: per adapter instance
991 */
ufshcd_hba_start(struct ufs_hba * hba)992 static inline void ufshcd_hba_start(struct ufs_hba *hba)
993 {
994 u32 val = CONTROLLER_ENABLE;
995
996 if (ufshcd_crypto_enable(hba))
997 val |= CRYPTO_GENERAL_ENABLE;
998
999 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
1000 }
1001
1002 /**
1003 * ufshcd_is_hba_active - Get controller state
1004 * @hba: per adapter instance
1005 *
1006 * Return: true if and only if the controller is active.
1007 */
ufshcd_is_hba_active(struct ufs_hba * hba)1008 bool ufshcd_is_hba_active(struct ufs_hba *hba)
1009 {
1010 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
1011 }
1012 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
1013
1014 /**
1015 * ufshcd_pm_qos_init - initialize PM QoS request
1016 * @hba: per adapter instance
1017 */
ufshcd_pm_qos_init(struct ufs_hba * hba)1018 void ufshcd_pm_qos_init(struct ufs_hba *hba)
1019 {
1020
1021 if (hba->pm_qos_enabled)
1022 return;
1023
1024 cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1025
1026 if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1027 hba->pm_qos_enabled = true;
1028 }
1029
1030 /**
1031 * ufshcd_pm_qos_exit - remove request from PM QoS
1032 * @hba: per adapter instance
1033 */
ufshcd_pm_qos_exit(struct ufs_hba * hba)1034 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1035 {
1036 if (!hba->pm_qos_enabled)
1037 return;
1038
1039 cpu_latency_qos_remove_request(&hba->pm_qos_req);
1040 hba->pm_qos_enabled = false;
1041 }
1042
1043 /**
1044 * ufshcd_pm_qos_update - update PM QoS request
1045 * @hba: per adapter instance
1046 * @on: If True, vote for perf PM QoS mode otherwise power save mode
1047 */
ufshcd_pm_qos_update(struct ufs_hba * hba,bool on)1048 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1049 {
1050 if (!hba->pm_qos_enabled)
1051 return;
1052
1053 cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1054 }
1055
1056 /**
1057 * ufshcd_set_clk_freq - set UFS controller clock frequencies
1058 * @hba: per adapter instance
1059 * @scale_up: If True, set max possible frequency othewise set low frequency
1060 *
1061 * Return: 0 if successful; < 0 upon failure.
1062 */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)1063 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1064 {
1065 int ret = 0;
1066 struct ufs_clk_info *clki;
1067 struct list_head *head = &hba->clk_list_head;
1068
1069 if (list_empty(head))
1070 goto out;
1071
1072 list_for_each_entry(clki, head, list) {
1073 if (!IS_ERR_OR_NULL(clki->clk)) {
1074 if (scale_up && clki->max_freq) {
1075 if (clki->curr_freq == clki->max_freq)
1076 continue;
1077
1078 ret = clk_set_rate(clki->clk, clki->max_freq);
1079 if (ret) {
1080 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1081 __func__, clki->name,
1082 clki->max_freq, ret);
1083 break;
1084 }
1085 trace_ufshcd_clk_scaling(hba,
1086 "scaled up", clki->name,
1087 clki->curr_freq,
1088 clki->max_freq);
1089
1090 clki->curr_freq = clki->max_freq;
1091
1092 } else if (!scale_up && clki->min_freq) {
1093 if (clki->curr_freq == clki->min_freq)
1094 continue;
1095
1096 ret = clk_set_rate(clki->clk, clki->min_freq);
1097 if (ret) {
1098 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1099 __func__, clki->name,
1100 clki->min_freq, ret);
1101 break;
1102 }
1103 trace_ufshcd_clk_scaling(hba,
1104 "scaled down", clki->name,
1105 clki->curr_freq,
1106 clki->min_freq);
1107 clki->curr_freq = clki->min_freq;
1108 }
1109 }
1110 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1111 clki->name, clk_get_rate(clki->clk));
1112 }
1113
1114 out:
1115 return ret;
1116 }
1117
ufshcd_opp_config_clks(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)1118 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1119 struct dev_pm_opp *opp, void *data,
1120 bool scaling_down)
1121 {
1122 struct ufs_hba *hba = dev_get_drvdata(dev);
1123 struct list_head *head = &hba->clk_list_head;
1124 struct ufs_clk_info *clki;
1125 unsigned long freq;
1126 u8 idx = 0;
1127 int ret;
1128
1129 list_for_each_entry(clki, head, list) {
1130 if (!IS_ERR_OR_NULL(clki->clk)) {
1131 freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1132
1133 /* Do not set rate for clocks having frequency as 0 */
1134 if (!freq)
1135 continue;
1136
1137 ret = clk_set_rate(clki->clk, freq);
1138 if (ret) {
1139 dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1140 __func__, clki->name, freq, ret);
1141 return ret;
1142 }
1143
1144 trace_ufshcd_clk_scaling(hba,
1145 (scaling_down ? "scaled down" : "scaled up"),
1146 clki->name, hba->clk_scaling.target_freq, freq);
1147 }
1148 }
1149
1150 return 0;
1151 }
1152 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1153
ufshcd_opp_set_rate(struct ufs_hba * hba,unsigned long freq)1154 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1155 {
1156 struct dev_pm_opp *opp;
1157 int ret;
1158
1159 opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1160 &freq, 0);
1161 if (IS_ERR(opp))
1162 return PTR_ERR(opp);
1163
1164 ret = dev_pm_opp_set_opp(hba->dev, opp);
1165 dev_pm_opp_put(opp);
1166
1167 return ret;
1168 }
1169
1170 /**
1171 * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1172 * @hba: per adapter instance
1173 * @freq: frequency to scale
1174 * @scale_up: True if scaling up and false if scaling down
1175 *
1176 * Return: 0 if successful; < 0 upon failure.
1177 */
ufshcd_scale_clks(struct ufs_hba * hba,unsigned long freq,bool scale_up)1178 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1179 bool scale_up)
1180 {
1181 int ret = 0;
1182 ktime_t start = ktime_get();
1183
1184 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, PRE_CHANGE);
1185 if (ret)
1186 goto out;
1187
1188 if (hba->use_pm_opp)
1189 ret = ufshcd_opp_set_rate(hba, freq);
1190 else
1191 ret = ufshcd_set_clk_freq(hba, scale_up);
1192 if (ret)
1193 goto out;
1194
1195 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, POST_CHANGE);
1196 if (ret) {
1197 if (hba->use_pm_opp)
1198 ufshcd_opp_set_rate(hba,
1199 hba->devfreq->previous_freq);
1200 else
1201 ufshcd_set_clk_freq(hba, !scale_up);
1202 goto out;
1203 }
1204
1205 ufshcd_pm_qos_update(hba, scale_up);
1206
1207 out:
1208 trace_ufshcd_profile_clk_scaling(hba,
1209 (scale_up ? "up" : "down"),
1210 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1211 return ret;
1212 }
1213
1214 /**
1215 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1216 * @hba: per adapter instance
1217 * @freq: frequency to scale
1218 * @scale_up: True if scaling up and false if scaling down
1219 *
1220 * Return: true if scaling is required, false otherwise.
1221 */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,unsigned long freq,bool scale_up)1222 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1223 unsigned long freq, bool scale_up)
1224 {
1225 struct ufs_clk_info *clki;
1226 struct list_head *head = &hba->clk_list_head;
1227
1228 if (list_empty(head))
1229 return false;
1230
1231 if (hba->use_pm_opp)
1232 return freq != hba->clk_scaling.target_freq;
1233
1234 list_for_each_entry(clki, head, list) {
1235 if (!IS_ERR_OR_NULL(clki->clk)) {
1236 if (scale_up && clki->max_freq) {
1237 if (clki->curr_freq == clki->max_freq)
1238 continue;
1239 return true;
1240 } else if (!scale_up && clki->min_freq) {
1241 if (clki->curr_freq == clki->min_freq)
1242 continue;
1243 return true;
1244 }
1245 }
1246 }
1247
1248 return false;
1249 }
1250
1251 /*
1252 * Determine the number of pending commands by counting the bits in the SCSI
1253 * device budget maps. This approach has been selected because a bit is set in
1254 * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1255 * flag. The host_self_blocked flag can be modified by calling
1256 * scsi_block_requests() or scsi_unblock_requests().
1257 */
ufshcd_pending_cmds(struct ufs_hba * hba)1258 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1259 {
1260 const struct scsi_device *sdev;
1261 unsigned long flags;
1262 u32 pending = 0;
1263
1264 spin_lock_irqsave(hba->host->host_lock, flags);
1265 __shost_for_each_device(sdev, hba->host)
1266 pending += sbitmap_weight(&sdev->budget_map);
1267 spin_unlock_irqrestore(hba->host->host_lock, flags);
1268
1269 return pending;
1270 }
1271
1272 /*
1273 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1274 * has expired.
1275 *
1276 * Return: 0 upon success; -EBUSY upon timeout.
1277 */
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1278 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1279 u64 wait_timeout_us)
1280 {
1281 int ret = 0;
1282 u32 tm_doorbell;
1283 u32 tr_pending;
1284 bool timeout = false, do_last_check = false;
1285 ktime_t start;
1286
1287 ufshcd_hold(hba);
1288 /*
1289 * Wait for all the outstanding tasks/transfer requests.
1290 * Verify by checking the doorbell registers are clear.
1291 */
1292 start = ktime_get();
1293 do {
1294 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1295 ret = -EBUSY;
1296 goto out;
1297 }
1298
1299 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1300 tr_pending = ufshcd_pending_cmds(hba);
1301 if (!tm_doorbell && !tr_pending) {
1302 timeout = false;
1303 break;
1304 } else if (do_last_check) {
1305 break;
1306 }
1307
1308 io_schedule_timeout(msecs_to_jiffies(20));
1309 if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1310 wait_timeout_us) {
1311 timeout = true;
1312 /*
1313 * We might have scheduled out for long time so make
1314 * sure to check if doorbells are cleared by this time
1315 * or not.
1316 */
1317 do_last_check = true;
1318 }
1319 } while (tm_doorbell || tr_pending);
1320
1321 if (timeout) {
1322 dev_err(hba->dev,
1323 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1324 __func__, tm_doorbell, tr_pending);
1325 ret = -EBUSY;
1326 }
1327 out:
1328 ufshcd_release(hba);
1329 return ret;
1330 }
1331
1332 /**
1333 * ufshcd_scale_gear - scale up/down UFS gear
1334 * @hba: per adapter instance
1335 * @target_gear: target gear to scale to
1336 * @scale_up: True for scaling up gear and false for scaling down
1337 *
1338 * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1339 * non-zero for any other errors.
1340 */
ufshcd_scale_gear(struct ufs_hba * hba,u32 target_gear,bool scale_up)1341 static int ufshcd_scale_gear(struct ufs_hba *hba, u32 target_gear, bool scale_up)
1342 {
1343 int ret = 0;
1344 struct ufs_pa_layer_attr new_pwr_info;
1345
1346 if (target_gear) {
1347 new_pwr_info = hba->pwr_info;
1348 new_pwr_info.gear_tx = target_gear;
1349 new_pwr_info.gear_rx = target_gear;
1350
1351 goto config_pwr_mode;
1352 }
1353
1354 /* Legacy gear scaling, in case vops_freq_to_gear_speed() is not implemented */
1355 if (scale_up) {
1356 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1357 sizeof(struct ufs_pa_layer_attr));
1358 } else {
1359 memcpy(&new_pwr_info, &hba->pwr_info,
1360 sizeof(struct ufs_pa_layer_attr));
1361
1362 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1363 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1364 /* save the current power mode */
1365 memcpy(&hba->clk_scaling.saved_pwr_info,
1366 &hba->pwr_info,
1367 sizeof(struct ufs_pa_layer_attr));
1368
1369 /* scale down gear */
1370 new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1371 new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1372 }
1373 }
1374
1375 config_pwr_mode:
1376 /* check if the power mode needs to be changed or not? */
1377 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1378 if (ret)
1379 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1380 __func__, ret,
1381 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1382 new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1383
1384 return ret;
1385 }
1386
1387 /*
1388 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1389 * has expired.
1390 *
1391 * Return: 0 upon success; -EBUSY upon timeout.
1392 */
ufshcd_clock_scaling_prepare(struct ufs_hba * hba,u64 timeout_us)1393 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1394 {
1395 int ret = 0;
1396 /*
1397 * make sure that there are no outstanding requests when
1398 * clock scaling is in progress
1399 */
1400 mutex_lock(&hba->host->scan_mutex);
1401 blk_mq_quiesce_tagset(&hba->host->tag_set);
1402 mutex_lock(&hba->wb_mutex);
1403 down_write(&hba->clk_scaling_lock);
1404
1405 if (!hba->clk_scaling.is_allowed ||
1406 ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1407 ret = -EBUSY;
1408 up_write(&hba->clk_scaling_lock);
1409 mutex_unlock(&hba->wb_mutex);
1410 blk_mq_unquiesce_tagset(&hba->host->tag_set);
1411 mutex_unlock(&hba->host->scan_mutex);
1412 goto out;
1413 }
1414
1415 /* let's not get into low power until clock scaling is completed */
1416 ufshcd_hold(hba);
1417
1418 out:
1419 return ret;
1420 }
1421
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,int err)1422 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err)
1423 {
1424 up_write(&hba->clk_scaling_lock);
1425
1426 /* Enable Write Booster if current gear requires it else disable it */
1427 if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1428 ufshcd_wb_toggle(hba, hba->pwr_info.gear_rx >= hba->clk_scaling.wb_gear);
1429
1430 mutex_unlock(&hba->wb_mutex);
1431
1432 blk_mq_unquiesce_tagset(&hba->host->tag_set);
1433 mutex_unlock(&hba->host->scan_mutex);
1434 ufshcd_release(hba);
1435 }
1436
1437 /**
1438 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1439 * @hba: per adapter instance
1440 * @freq: frequency to scale
1441 * @scale_up: True for scaling up and false for scalin down
1442 *
1443 * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1444 * for any other errors.
1445 */
ufshcd_devfreq_scale(struct ufs_hba * hba,unsigned long freq,bool scale_up)1446 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1447 bool scale_up)
1448 {
1449 u32 old_gear = hba->pwr_info.gear_rx;
1450 u32 new_gear = 0;
1451 int ret = 0;
1452
1453 new_gear = ufshcd_vops_freq_to_gear_speed(hba, freq);
1454
1455 ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1456 if (ret)
1457 return ret;
1458
1459 /* scale down the gear before scaling down clocks */
1460 if (!scale_up) {
1461 ret = ufshcd_scale_gear(hba, new_gear, false);
1462 if (ret)
1463 goto out_unprepare;
1464 }
1465
1466 ret = ufshcd_scale_clks(hba, freq, scale_up);
1467 if (ret) {
1468 if (!scale_up)
1469 ufshcd_scale_gear(hba, old_gear, true);
1470 goto out_unprepare;
1471 }
1472
1473 /* scale up the gear after scaling up clocks */
1474 if (scale_up) {
1475 ret = ufshcd_scale_gear(hba, new_gear, true);
1476 if (ret) {
1477 ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1478 false);
1479 goto out_unprepare;
1480 }
1481 }
1482
1483 out_unprepare:
1484 ufshcd_clock_scaling_unprepare(hba, ret);
1485 return ret;
1486 }
1487
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1488 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1489 {
1490 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1491 clk_scaling.suspend_work);
1492
1493 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1494 {
1495 if (hba->clk_scaling.active_reqs ||
1496 hba->clk_scaling.is_suspended)
1497 return;
1498
1499 hba->clk_scaling.is_suspended = true;
1500 hba->clk_scaling.window_start_t = 0;
1501 }
1502
1503 devfreq_suspend_device(hba->devfreq);
1504 }
1505
ufshcd_clk_scaling_resume_work(struct work_struct * work)1506 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1507 {
1508 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1509 clk_scaling.resume_work);
1510
1511 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1512 {
1513 if (!hba->clk_scaling.is_suspended)
1514 return;
1515 hba->clk_scaling.is_suspended = false;
1516 }
1517
1518 devfreq_resume_device(hba->devfreq);
1519 }
1520
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1521 static int ufshcd_devfreq_target(struct device *dev,
1522 unsigned long *freq, u32 flags)
1523 {
1524 int ret = 0;
1525 struct ufs_hba *hba = dev_get_drvdata(dev);
1526 ktime_t start;
1527 bool scale_up = false, sched_clk_scaling_suspend_work = false;
1528 struct list_head *clk_list = &hba->clk_list_head;
1529 struct ufs_clk_info *clki;
1530
1531 if (!ufshcd_is_clkscaling_supported(hba))
1532 return -EINVAL;
1533
1534 if (hba->use_pm_opp) {
1535 struct dev_pm_opp *opp;
1536
1537 /* Get the recommended frequency from OPP framework */
1538 opp = devfreq_recommended_opp(dev, freq, flags);
1539 if (IS_ERR(opp))
1540 return PTR_ERR(opp);
1541
1542 dev_pm_opp_put(opp);
1543 } else {
1544 /* Override with the closest supported frequency */
1545 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1546 list);
1547 *freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1548 }
1549
1550 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1551 {
1552 if (ufshcd_eh_in_progress(hba))
1553 return 0;
1554
1555 /* Skip scaling clock when clock scaling is suspended */
1556 if (hba->clk_scaling.is_suspended) {
1557 dev_warn(hba->dev, "clock scaling is suspended, skip");
1558 return 0;
1559 }
1560
1561 if (!hba->clk_scaling.active_reqs)
1562 sched_clk_scaling_suspend_work = true;
1563
1564 if (list_empty(clk_list))
1565 goto out;
1566
1567 /* Decide based on the target or rounded-off frequency and update */
1568 if (hba->use_pm_opp)
1569 scale_up = *freq > hba->clk_scaling.target_freq;
1570 else
1571 scale_up = *freq == clki->max_freq;
1572
1573 if (!hba->use_pm_opp && !scale_up)
1574 *freq = clki->min_freq;
1575
1576 /* Update the frequency */
1577 if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1578 ret = 0;
1579 goto out; /* no state change required */
1580 }
1581 }
1582
1583 start = ktime_get();
1584 ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1585 if (!ret)
1586 hba->clk_scaling.target_freq = *freq;
1587
1588 trace_ufshcd_profile_clk_scaling(hba,
1589 (scale_up ? "up" : "down"),
1590 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1591
1592 out:
1593 if (sched_clk_scaling_suspend_work &&
1594 (!scale_up || hba->clk_scaling.suspend_on_no_request))
1595 queue_work(hba->clk_scaling.workq,
1596 &hba->clk_scaling.suspend_work);
1597
1598 return ret;
1599 }
1600
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1601 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1602 struct devfreq_dev_status *stat)
1603 {
1604 struct ufs_hba *hba = dev_get_drvdata(dev);
1605 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1606 ktime_t curr_t;
1607
1608 if (!ufshcd_is_clkscaling_supported(hba))
1609 return -EINVAL;
1610
1611 memset(stat, 0, sizeof(*stat));
1612
1613 guard(spinlock_irqsave)(&hba->clk_scaling.lock);
1614
1615 curr_t = ktime_get();
1616 if (!scaling->window_start_t)
1617 goto start_window;
1618
1619 /*
1620 * If current frequency is 0, then the ondemand governor considers
1621 * there's no initial frequency set. And it always requests to set
1622 * to max. frequency.
1623 */
1624 if (hba->use_pm_opp) {
1625 stat->current_frequency = hba->clk_scaling.target_freq;
1626 } else {
1627 struct list_head *clk_list = &hba->clk_list_head;
1628 struct ufs_clk_info *clki;
1629
1630 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1631 stat->current_frequency = clki->curr_freq;
1632 }
1633
1634 if (scaling->is_busy_started)
1635 scaling->tot_busy_t += ktime_us_delta(curr_t,
1636 scaling->busy_start_t);
1637 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1638 stat->busy_time = scaling->tot_busy_t;
1639 start_window:
1640 scaling->window_start_t = curr_t;
1641 scaling->tot_busy_t = 0;
1642
1643 if (scaling->active_reqs) {
1644 scaling->busy_start_t = curr_t;
1645 scaling->is_busy_started = true;
1646 } else {
1647 scaling->busy_start_t = 0;
1648 scaling->is_busy_started = false;
1649 }
1650
1651 return 0;
1652 }
1653
ufshcd_devfreq_init(struct ufs_hba * hba)1654 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1655 {
1656 struct list_head *clk_list = &hba->clk_list_head;
1657 struct ufs_clk_info *clki;
1658 struct devfreq *devfreq;
1659 int ret;
1660
1661 /* Skip devfreq if we don't have any clocks in the list */
1662 if (list_empty(clk_list))
1663 return 0;
1664
1665 if (!hba->use_pm_opp) {
1666 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1667 dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1668 dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1669 }
1670
1671 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1672 &hba->vps->ondemand_data);
1673 devfreq = devfreq_add_device(hba->dev,
1674 &hba->vps->devfreq_profile,
1675 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1676 &hba->vps->ondemand_data);
1677 if (IS_ERR(devfreq)) {
1678 ret = PTR_ERR(devfreq);
1679 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1680
1681 if (!hba->use_pm_opp) {
1682 dev_pm_opp_remove(hba->dev, clki->min_freq);
1683 dev_pm_opp_remove(hba->dev, clki->max_freq);
1684 }
1685 return ret;
1686 }
1687
1688 hba->devfreq = devfreq;
1689
1690 return 0;
1691 }
1692
ufshcd_devfreq_remove(struct ufs_hba * hba)1693 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1694 {
1695 struct list_head *clk_list = &hba->clk_list_head;
1696
1697 if (!hba->devfreq)
1698 return;
1699
1700 devfreq_remove_device(hba->devfreq);
1701 hba->devfreq = NULL;
1702
1703 if (!hba->use_pm_opp) {
1704 struct ufs_clk_info *clki;
1705
1706 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1707 dev_pm_opp_remove(hba->dev, clki->min_freq);
1708 dev_pm_opp_remove(hba->dev, clki->max_freq);
1709 }
1710 }
1711
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1712 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1713 {
1714 bool suspend = false;
1715
1716 cancel_work_sync(&hba->clk_scaling.suspend_work);
1717 cancel_work_sync(&hba->clk_scaling.resume_work);
1718
1719 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1720 {
1721 if (!hba->clk_scaling.is_suspended) {
1722 suspend = true;
1723 hba->clk_scaling.is_suspended = true;
1724 hba->clk_scaling.window_start_t = 0;
1725 }
1726 }
1727
1728 if (suspend)
1729 devfreq_suspend_device(hba->devfreq);
1730 }
1731
ufshcd_resume_clkscaling(struct ufs_hba * hba)1732 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1733 {
1734 bool resume = false;
1735
1736 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1737 {
1738 if (hba->clk_scaling.is_suspended) {
1739 resume = true;
1740 hba->clk_scaling.is_suspended = false;
1741 }
1742 }
1743
1744 if (resume)
1745 devfreq_resume_device(hba->devfreq);
1746 }
1747
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1748 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1749 struct device_attribute *attr, char *buf)
1750 {
1751 struct ufs_hba *hba = dev_get_drvdata(dev);
1752
1753 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1754 }
1755
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1756 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1757 struct device_attribute *attr, const char *buf, size_t count)
1758 {
1759 struct ufs_hba *hba = dev_get_drvdata(dev);
1760 struct ufs_clk_info *clki;
1761 unsigned long freq;
1762 u32 value;
1763 int err = 0;
1764
1765 if (kstrtou32(buf, 0, &value))
1766 return -EINVAL;
1767
1768 down(&hba->host_sem);
1769 if (!ufshcd_is_user_access_allowed(hba)) {
1770 err = -EBUSY;
1771 goto out;
1772 }
1773
1774 value = !!value;
1775 if (value == hba->clk_scaling.is_enabled)
1776 goto out;
1777
1778 ufshcd_rpm_get_sync(hba);
1779 ufshcd_hold(hba);
1780
1781 hba->clk_scaling.is_enabled = value;
1782
1783 if (value) {
1784 ufshcd_resume_clkscaling(hba);
1785 goto out_rel;
1786 }
1787
1788 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1789 freq = clki->max_freq;
1790
1791 ufshcd_suspend_clkscaling(hba);
1792
1793 if (!ufshcd_is_devfreq_scaling_required(hba, freq, true))
1794 goto out_rel;
1795
1796 err = ufshcd_devfreq_scale(hba, freq, true);
1797 if (err)
1798 dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1799 __func__, err);
1800 else
1801 hba->clk_scaling.target_freq = freq;
1802
1803 out_rel:
1804 ufshcd_release(hba);
1805 ufshcd_rpm_put_sync(hba);
1806 out:
1807 up(&hba->host_sem);
1808 return err ? err : count;
1809 }
1810
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1811 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1812 {
1813 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1814 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1815 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1816 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1817 hba->clk_scaling.enable_attr.attr.mode = 0644;
1818 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1819 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1820 }
1821
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1822 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1823 {
1824 if (hba->clk_scaling.enable_attr.attr.name)
1825 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1826 }
1827
ufshcd_init_clk_scaling(struct ufs_hba * hba)1828 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1829 {
1830 if (!ufshcd_is_clkscaling_supported(hba))
1831 return;
1832
1833 if (!hba->clk_scaling.min_gear)
1834 hba->clk_scaling.min_gear = UFS_HS_G1;
1835
1836 if (!hba->clk_scaling.wb_gear)
1837 /* Use intermediate gear speed HS_G3 as the default wb_gear */
1838 hba->clk_scaling.wb_gear = UFS_HS_G3;
1839
1840 INIT_WORK(&hba->clk_scaling.suspend_work,
1841 ufshcd_clk_scaling_suspend_work);
1842 INIT_WORK(&hba->clk_scaling.resume_work,
1843 ufshcd_clk_scaling_resume_work);
1844
1845 spin_lock_init(&hba->clk_scaling.lock);
1846
1847 hba->clk_scaling.workq = alloc_ordered_workqueue(
1848 "ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no);
1849
1850 hba->clk_scaling.is_initialized = true;
1851 }
1852
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1853 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1854 {
1855 if (!hba->clk_scaling.is_initialized)
1856 return;
1857
1858 ufshcd_remove_clk_scaling_sysfs(hba);
1859 destroy_workqueue(hba->clk_scaling.workq);
1860 ufshcd_devfreq_remove(hba);
1861 hba->clk_scaling.is_initialized = false;
1862 }
1863
ufshcd_ungate_work(struct work_struct * work)1864 static void ufshcd_ungate_work(struct work_struct *work)
1865 {
1866 int ret;
1867 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1868 clk_gating.ungate_work);
1869
1870 cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1871
1872 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
1873 if (hba->clk_gating.state == CLKS_ON)
1874 return;
1875 }
1876
1877 ufshcd_hba_vreg_set_hpm(hba);
1878 ufshcd_setup_clocks(hba, true);
1879
1880 ufshcd_enable_irq(hba);
1881
1882 /* Exit from hibern8 */
1883 if (ufshcd_can_hibern8_during_gating(hba)) {
1884 /* Prevent gating in this path */
1885 hba->clk_gating.is_suspended = true;
1886 if (ufshcd_is_link_hibern8(hba)) {
1887 ret = ufshcd_uic_hibern8_exit(hba);
1888 if (ret)
1889 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1890 __func__, ret);
1891 else
1892 ufshcd_set_link_active(hba);
1893 }
1894 hba->clk_gating.is_suspended = false;
1895 }
1896 }
1897
1898 /**
1899 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1900 * Also, exit from hibern8 mode and set the link as active.
1901 * @hba: per adapter instance
1902 */
ufshcd_hold(struct ufs_hba * hba)1903 void ufshcd_hold(struct ufs_hba *hba)
1904 {
1905 bool flush_result;
1906 unsigned long flags;
1907
1908 if (!ufshcd_is_clkgating_allowed(hba) ||
1909 !hba->clk_gating.is_initialized)
1910 return;
1911 spin_lock_irqsave(&hba->clk_gating.lock, flags);
1912 hba->clk_gating.active_reqs++;
1913
1914 start:
1915 switch (hba->clk_gating.state) {
1916 case CLKS_ON:
1917 /*
1918 * Wait for the ungate work to complete if in progress.
1919 * Though the clocks may be in ON state, the link could
1920 * still be in hibner8 state if hibern8 is allowed
1921 * during clock gating.
1922 * Make sure we exit hibern8 state also in addition to
1923 * clocks being ON.
1924 */
1925 if (ufshcd_can_hibern8_during_gating(hba) &&
1926 ufshcd_is_link_hibern8(hba)) {
1927 spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1928 flush_result = flush_work(&hba->clk_gating.ungate_work);
1929 if (hba->clk_gating.is_suspended && !flush_result)
1930 return;
1931 spin_lock_irqsave(&hba->clk_gating.lock, flags);
1932 goto start;
1933 }
1934 break;
1935 case REQ_CLKS_OFF:
1936 if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1937 hba->clk_gating.state = CLKS_ON;
1938 trace_ufshcd_clk_gating(hba,
1939 hba->clk_gating.state);
1940 break;
1941 }
1942 /*
1943 * If we are here, it means gating work is either done or
1944 * currently running. Hence, fall through to cancel gating
1945 * work and to enable clocks.
1946 */
1947 fallthrough;
1948 case CLKS_OFF:
1949 hba->clk_gating.state = REQ_CLKS_ON;
1950 trace_ufshcd_clk_gating(hba,
1951 hba->clk_gating.state);
1952 queue_work(hba->clk_gating.clk_gating_workq,
1953 &hba->clk_gating.ungate_work);
1954 /*
1955 * fall through to check if we should wait for this
1956 * work to be done or not.
1957 */
1958 fallthrough;
1959 case REQ_CLKS_ON:
1960 spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1961 flush_work(&hba->clk_gating.ungate_work);
1962 /* Make sure state is CLKS_ON before returning */
1963 spin_lock_irqsave(&hba->clk_gating.lock, flags);
1964 goto start;
1965 default:
1966 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1967 __func__, hba->clk_gating.state);
1968 break;
1969 }
1970 spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1971 }
1972 EXPORT_SYMBOL_GPL(ufshcd_hold);
1973
ufshcd_gate_work(struct work_struct * work)1974 static void ufshcd_gate_work(struct work_struct *work)
1975 {
1976 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1977 clk_gating.gate_work.work);
1978 int ret;
1979
1980 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
1981 /*
1982 * In case you are here to cancel this work the gating state
1983 * would be marked as REQ_CLKS_ON. In this case save time by
1984 * skipping the gating work and exit after changing the clock
1985 * state to CLKS_ON.
1986 */
1987 if (hba->clk_gating.is_suspended ||
1988 hba->clk_gating.state != REQ_CLKS_OFF) {
1989 hba->clk_gating.state = CLKS_ON;
1990 trace_ufshcd_clk_gating(hba,
1991 hba->clk_gating.state);
1992 return;
1993 }
1994
1995 if (hba->clk_gating.active_reqs)
1996 return;
1997 }
1998
1999 scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2000 if (ufshcd_is_ufs_dev_busy(hba) ||
2001 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2002 return;
2003 }
2004
2005 /* put the link into hibern8 mode before turning off clocks */
2006 if (ufshcd_can_hibern8_during_gating(hba)) {
2007 ret = ufshcd_uic_hibern8_enter(hba);
2008 if (ret) {
2009 hba->clk_gating.state = CLKS_ON;
2010 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
2011 __func__, ret);
2012 trace_ufshcd_clk_gating(hba,
2013 hba->clk_gating.state);
2014 return;
2015 }
2016 ufshcd_set_link_hibern8(hba);
2017 }
2018
2019 ufshcd_disable_irq(hba);
2020
2021 ufshcd_setup_clocks(hba, false);
2022
2023 /* Put the host controller in low power mode if possible */
2024 ufshcd_hba_vreg_set_lpm(hba);
2025 /*
2026 * In case you are here to cancel this work the gating state
2027 * would be marked as REQ_CLKS_ON. In this case keep the state
2028 * as REQ_CLKS_ON which would anyway imply that clocks are off
2029 * and a request to turn them on is pending. By doing this way,
2030 * we keep the state machine in tact and this would ultimately
2031 * prevent from doing cancel work multiple times when there are
2032 * new requests arriving before the current cancel work is done.
2033 */
2034 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2035 if (hba->clk_gating.state == REQ_CLKS_OFF) {
2036 hba->clk_gating.state = CLKS_OFF;
2037 trace_ufshcd_clk_gating(hba,
2038 hba->clk_gating.state);
2039 }
2040 }
2041
__ufshcd_release(struct ufs_hba * hba)2042 static void __ufshcd_release(struct ufs_hba *hba)
2043 {
2044 lockdep_assert_held(&hba->clk_gating.lock);
2045
2046 if (!ufshcd_is_clkgating_allowed(hba))
2047 return;
2048
2049 hba->clk_gating.active_reqs--;
2050
2051 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2052 !hba->clk_gating.is_initialized ||
2053 hba->clk_gating.state == CLKS_OFF)
2054 return;
2055
2056 scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2057 if (ufshcd_has_pending_tasks(hba) ||
2058 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2059 return;
2060 }
2061
2062 hba->clk_gating.state = REQ_CLKS_OFF;
2063 trace_ufshcd_clk_gating(hba, hba->clk_gating.state);
2064 queue_delayed_work(hba->clk_gating.clk_gating_workq,
2065 &hba->clk_gating.gate_work,
2066 msecs_to_jiffies(hba->clk_gating.delay_ms));
2067 }
2068
ufshcd_release(struct ufs_hba * hba)2069 void ufshcd_release(struct ufs_hba *hba)
2070 {
2071 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2072 __ufshcd_release(hba);
2073 }
2074 EXPORT_SYMBOL_GPL(ufshcd_release);
2075
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)2076 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2077 struct device_attribute *attr, char *buf)
2078 {
2079 struct ufs_hba *hba = dev_get_drvdata(dev);
2080
2081 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2082 }
2083
ufshcd_clkgate_delay_set(struct device * dev,unsigned long value)2084 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2085 {
2086 struct ufs_hba *hba = dev_get_drvdata(dev);
2087
2088 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2089 hba->clk_gating.delay_ms = value;
2090 }
2091 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2092
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2093 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2094 struct device_attribute *attr, const char *buf, size_t count)
2095 {
2096 unsigned long value;
2097
2098 if (kstrtoul(buf, 0, &value))
2099 return -EINVAL;
2100
2101 ufshcd_clkgate_delay_set(dev, value);
2102 return count;
2103 }
2104
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)2105 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2106 struct device_attribute *attr, char *buf)
2107 {
2108 struct ufs_hba *hba = dev_get_drvdata(dev);
2109
2110 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2111 }
2112
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2113 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2114 struct device_attribute *attr, const char *buf, size_t count)
2115 {
2116 struct ufs_hba *hba = dev_get_drvdata(dev);
2117 u32 value;
2118
2119 if (kstrtou32(buf, 0, &value))
2120 return -EINVAL;
2121
2122 value = !!value;
2123
2124 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2125
2126 if (value == hba->clk_gating.is_enabled)
2127 return count;
2128
2129 if (value)
2130 __ufshcd_release(hba);
2131 else
2132 hba->clk_gating.active_reqs++;
2133
2134 hba->clk_gating.is_enabled = value;
2135
2136 return count;
2137 }
2138
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)2139 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2140 {
2141 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2142 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2143 sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2144 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2145 hba->clk_gating.delay_attr.attr.mode = 0644;
2146 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2147 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2148
2149 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2150 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2151 sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2152 hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2153 hba->clk_gating.enable_attr.attr.mode = 0644;
2154 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2155 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2156 }
2157
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)2158 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2159 {
2160 if (hba->clk_gating.delay_attr.attr.name)
2161 device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2162 if (hba->clk_gating.enable_attr.attr.name)
2163 device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2164 }
2165
ufshcd_init_clk_gating(struct ufs_hba * hba)2166 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2167 {
2168 if (!ufshcd_is_clkgating_allowed(hba))
2169 return;
2170
2171 hba->clk_gating.state = CLKS_ON;
2172
2173 hba->clk_gating.delay_ms = 150;
2174 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2175 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2176
2177 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(
2178 "ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI,
2179 hba->host->host_no);
2180
2181 ufshcd_init_clk_gating_sysfs(hba);
2182
2183 hba->clk_gating.is_enabled = true;
2184 hba->clk_gating.is_initialized = true;
2185 }
2186
ufshcd_exit_clk_gating(struct ufs_hba * hba)2187 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2188 {
2189 if (!hba->clk_gating.is_initialized)
2190 return;
2191
2192 ufshcd_remove_clk_gating_sysfs(hba);
2193
2194 /* Ungate the clock if necessary. */
2195 ufshcd_hold(hba);
2196 hba->clk_gating.is_initialized = false;
2197 ufshcd_release(hba);
2198
2199 destroy_workqueue(hba->clk_gating.clk_gating_workq);
2200 }
2201
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)2202 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2203 {
2204 bool queue_resume_work = false;
2205 ktime_t curr_t = ktime_get();
2206
2207 if (!ufshcd_is_clkscaling_supported(hba))
2208 return;
2209
2210 guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2211
2212 if (!hba->clk_scaling.active_reqs++)
2213 queue_resume_work = true;
2214
2215 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress)
2216 return;
2217
2218 if (queue_resume_work)
2219 queue_work(hba->clk_scaling.workq,
2220 &hba->clk_scaling.resume_work);
2221
2222 if (!hba->clk_scaling.window_start_t) {
2223 hba->clk_scaling.window_start_t = curr_t;
2224 hba->clk_scaling.tot_busy_t = 0;
2225 hba->clk_scaling.is_busy_started = false;
2226 }
2227
2228 if (!hba->clk_scaling.is_busy_started) {
2229 hba->clk_scaling.busy_start_t = curr_t;
2230 hba->clk_scaling.is_busy_started = true;
2231 }
2232 }
2233
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)2234 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2235 {
2236 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2237
2238 if (!ufshcd_is_clkscaling_supported(hba))
2239 return;
2240
2241 guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2242
2243 hba->clk_scaling.active_reqs--;
2244 if (!scaling->active_reqs && scaling->is_busy_started) {
2245 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2246 scaling->busy_start_t));
2247 scaling->busy_start_t = 0;
2248 scaling->is_busy_started = false;
2249 }
2250 }
2251
ufshcd_monitor_opcode2dir(u8 opcode)2252 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2253 {
2254 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2255 return READ;
2256 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2257 return WRITE;
2258 else
2259 return -EINVAL;
2260 }
2261
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2262 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2263 struct ufshcd_lrb *lrbp)
2264 {
2265 const struct ufs_hba_monitor *m = &hba->monitor;
2266
2267 return (m->enabled && lrbp && lrbp->cmd &&
2268 (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2269 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2270 }
2271
ufshcd_start_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2272 static void ufshcd_start_monitor(struct ufs_hba *hba,
2273 const struct ufshcd_lrb *lrbp)
2274 {
2275 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2276 unsigned long flags;
2277
2278 spin_lock_irqsave(hba->host->host_lock, flags);
2279 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2280 hba->monitor.busy_start_ts[dir] = ktime_get();
2281 spin_unlock_irqrestore(hba->host->host_lock, flags);
2282 }
2283
ufshcd_update_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2284 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2285 {
2286 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2287 unsigned long flags;
2288
2289 spin_lock_irqsave(hba->host->host_lock, flags);
2290 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2291 const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2292 struct ufs_hba_monitor *m = &hba->monitor;
2293 ktime_t now, inc, lat;
2294
2295 now = lrbp->compl_time_stamp;
2296 inc = ktime_sub(now, m->busy_start_ts[dir]);
2297 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2298 m->nr_sec_rw[dir] += blk_rq_sectors(req);
2299
2300 /* Update latencies */
2301 m->nr_req[dir]++;
2302 lat = ktime_sub(now, lrbp->issue_time_stamp);
2303 m->lat_sum[dir] += lat;
2304 if (m->lat_max[dir] < lat || !m->lat_max[dir])
2305 m->lat_max[dir] = lat;
2306 if (m->lat_min[dir] > lat || !m->lat_min[dir])
2307 m->lat_min[dir] = lat;
2308
2309 m->nr_queued[dir]--;
2310 /* Push forward the busy start of monitor */
2311 m->busy_start_ts[dir] = now;
2312 }
2313 spin_unlock_irqrestore(hba->host->host_lock, flags);
2314 }
2315
2316 /**
2317 * ufshcd_send_command - Send SCSI or device management commands
2318 * @hba: per adapter instance
2319 * @task_tag: Task tag of the command
2320 * @hwq: pointer to hardware queue instance
2321 */
2322 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag,struct ufs_hw_queue * hwq)2323 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2324 struct ufs_hw_queue *hwq)
2325 {
2326 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2327 unsigned long flags;
2328
2329 lrbp->issue_time_stamp = ktime_get();
2330 lrbp->issue_time_stamp_local_clock = local_clock();
2331 lrbp->compl_time_stamp = ktime_set(0, 0);
2332 lrbp->compl_time_stamp_local_clock = 0;
2333 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2334 if (lrbp->cmd)
2335 ufshcd_clk_scaling_start_busy(hba);
2336 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2337 ufshcd_start_monitor(hba, lrbp);
2338
2339 if (hba->mcq_enabled) {
2340 int utrd_size = sizeof(struct utp_transfer_req_desc);
2341 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2342 struct utp_transfer_req_desc *dest;
2343
2344 spin_lock(&hwq->sq_lock);
2345 dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2346 memcpy(dest, src, utrd_size);
2347 ufshcd_inc_sq_tail(hwq);
2348 spin_unlock(&hwq->sq_lock);
2349 } else {
2350 spin_lock_irqsave(&hba->outstanding_lock, flags);
2351 if (hba->vops && hba->vops->setup_xfer_req)
2352 hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2353 !!lrbp->cmd);
2354 __set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2355 ufshcd_writel(hba, 1 << lrbp->task_tag,
2356 REG_UTP_TRANSFER_REQ_DOOR_BELL);
2357 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2358 }
2359 }
2360
2361 /**
2362 * ufshcd_copy_sense_data - Copy sense data in case of check condition
2363 * @lrbp: pointer to local reference block
2364 */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)2365 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2366 {
2367 u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2368 u16 resp_len;
2369 int len;
2370
2371 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2372 if (sense_buffer && resp_len) {
2373 int len_to_copy;
2374
2375 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2376 len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2377
2378 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2379 len_to_copy);
2380 }
2381 }
2382
2383 /**
2384 * ufshcd_copy_query_response() - Copy the Query Response and the data
2385 * descriptor
2386 * @hba: per adapter instance
2387 * @lrbp: pointer to local reference block
2388 *
2389 * Return: 0 upon success; < 0 upon failure.
2390 */
2391 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2392 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2393 {
2394 struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2395
2396 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2397
2398 /* Get the descriptor */
2399 if (hba->dev_cmd.query.descriptor &&
2400 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2401 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2402 GENERAL_UPIU_REQUEST_SIZE;
2403 u16 resp_len;
2404 u16 buf_len;
2405
2406 /* data segment length */
2407 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2408 .data_segment_length);
2409 buf_len = be16_to_cpu(
2410 hba->dev_cmd.query.request.upiu_req.length);
2411 if (likely(buf_len >= resp_len)) {
2412 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2413 } else {
2414 dev_warn(hba->dev,
2415 "%s: rsp size %d is bigger than buffer size %d",
2416 __func__, resp_len, buf_len);
2417 return -EINVAL;
2418 }
2419 }
2420
2421 return 0;
2422 }
2423
2424 /**
2425 * ufshcd_hba_capabilities - Read controller capabilities
2426 * @hba: per adapter instance
2427 *
2428 * Return: 0 on success, negative on error.
2429 */
ufshcd_hba_capabilities(struct ufs_hba * hba)2430 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2431 {
2432 int err;
2433
2434 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2435
2436 /* nutrs and nutmrs are 0 based values */
2437 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1;
2438 hba->nutmrs =
2439 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2440 hba->reserved_slot = hba->nutrs - 1;
2441
2442 hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1;
2443
2444 /* Read crypto capabilities */
2445 err = ufshcd_hba_init_crypto_capabilities(hba);
2446 if (err) {
2447 dev_err(hba->dev, "crypto setup failed\n");
2448 return err;
2449 }
2450
2451 /*
2452 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2453 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2454 * means we can simply read values regardless of version.
2455 */
2456 hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2457 /*
2458 * 0h: legacy single doorbell support is available
2459 * 1h: indicate that legacy single doorbell support has been removed
2460 */
2461 if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP))
2462 hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2463 else
2464 hba->lsdb_sup = true;
2465
2466 hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2467
2468 return 0;
2469 }
2470
2471 /**
2472 * ufshcd_ready_for_uic_cmd - Check if controller is ready
2473 * to accept UIC commands
2474 * @hba: per adapter instance
2475 *
2476 * Return: true on success, else false.
2477 */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2478 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2479 {
2480 u32 val;
2481 int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2482 500, uic_cmd_timeout * 1000, false, hba,
2483 REG_CONTROLLER_STATUS);
2484 return ret == 0;
2485 }
2486
2487 /**
2488 * ufshcd_get_upmcrs - Get the power mode change request status
2489 * @hba: Pointer to adapter instance
2490 *
2491 * This function gets the UPMCRS field of HCS register
2492 *
2493 * Return: value of UPMCRS field.
2494 */
ufshcd_get_upmcrs(struct ufs_hba * hba)2495 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2496 {
2497 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2498 }
2499
2500 /**
2501 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2502 * @hba: per adapter instance
2503 * @uic_cmd: UIC command
2504 */
2505 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2506 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2507 {
2508 lockdep_assert_held(&hba->uic_cmd_mutex);
2509
2510 WARN_ON(hba->active_uic_cmd);
2511
2512 hba->active_uic_cmd = uic_cmd;
2513
2514 /* Write Args */
2515 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2516 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2517 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2518
2519 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2520
2521 /* Write UIC Cmd */
2522 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2523 REG_UIC_COMMAND);
2524 }
2525
2526 /**
2527 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2528 * @hba: per adapter instance
2529 * @uic_cmd: UIC command
2530 *
2531 * Return: 0 only if success.
2532 */
2533 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2534 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2535 {
2536 int ret;
2537 unsigned long flags;
2538
2539 lockdep_assert_held(&hba->uic_cmd_mutex);
2540
2541 if (wait_for_completion_timeout(&uic_cmd->done,
2542 msecs_to_jiffies(uic_cmd_timeout))) {
2543 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2544 } else {
2545 ret = -ETIMEDOUT;
2546 dev_err(hba->dev,
2547 "uic cmd 0x%x with arg3 0x%x completion timeout\n",
2548 uic_cmd->command, uic_cmd->argument3);
2549
2550 if (!uic_cmd->cmd_active) {
2551 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2552 __func__);
2553 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2554 }
2555 }
2556
2557 spin_lock_irqsave(hba->host->host_lock, flags);
2558 hba->active_uic_cmd = NULL;
2559 spin_unlock_irqrestore(hba->host->host_lock, flags);
2560
2561 return ret;
2562 }
2563
2564 /**
2565 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2566 * @hba: per adapter instance
2567 * @uic_cmd: UIC command
2568 *
2569 * Return: 0 if successful; < 0 upon failure.
2570 */
2571 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2572 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2573 {
2574 lockdep_assert_held(&hba->uic_cmd_mutex);
2575
2576 if (!ufshcd_ready_for_uic_cmd(hba)) {
2577 dev_err(hba->dev,
2578 "Controller not ready to accept UIC commands\n");
2579 return -EIO;
2580 }
2581
2582 init_completion(&uic_cmd->done);
2583
2584 uic_cmd->cmd_active = 1;
2585 ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2586
2587 return 0;
2588 }
2589
2590 /**
2591 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2592 * @hba: per adapter instance
2593 * @uic_cmd: UIC command
2594 *
2595 * Return: 0 only if success.
2596 */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2597 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2598 {
2599 int ret;
2600
2601 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2602 return 0;
2603
2604 ufshcd_hold(hba);
2605 mutex_lock(&hba->uic_cmd_mutex);
2606 ufshcd_add_delay_before_dme_cmd(hba);
2607
2608 ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2609 if (!ret)
2610 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2611
2612 mutex_unlock(&hba->uic_cmd_mutex);
2613
2614 ufshcd_release(hba);
2615 return ret;
2616 }
2617
2618 /**
2619 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2620 * @hba: per-adapter instance
2621 * @lrbp: pointer to local reference block
2622 * @sg_entries: The number of sg lists actually used
2623 * @sg_list: Pointer to SG list
2624 */
ufshcd_sgl_to_prdt(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int sg_entries,struct scatterlist * sg_list)2625 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2626 struct scatterlist *sg_list)
2627 {
2628 struct ufshcd_sg_entry *prd;
2629 struct scatterlist *sg;
2630 int i;
2631
2632 if (sg_entries) {
2633
2634 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2635 lrbp->utr_descriptor_ptr->prd_table_length =
2636 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2637 else
2638 lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2639
2640 prd = lrbp->ucd_prdt_ptr;
2641
2642 for_each_sg(sg_list, sg, sg_entries, i) {
2643 const unsigned int len = sg_dma_len(sg);
2644
2645 /*
2646 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2647 * based value that indicates the length, in bytes, of
2648 * the data block. A maximum of length of 256KB may
2649 * exist for any entry. Bits 1:0 of this field shall be
2650 * 11b to indicate Dword granularity. A value of '3'
2651 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2652 */
2653 WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2654 prd->size = cpu_to_le32(len - 1);
2655 prd->addr = cpu_to_le64(sg->dma_address);
2656 prd->reserved = 0;
2657 prd = (void *)prd + ufshcd_sg_entry_size(hba);
2658 }
2659 } else {
2660 lrbp->utr_descriptor_ptr->prd_table_length = 0;
2661 }
2662 }
2663
2664 /**
2665 * ufshcd_map_sg - Map scatter-gather list to prdt
2666 * @hba: per adapter instance
2667 * @lrbp: pointer to local reference block
2668 *
2669 * Return: 0 in case of success, non-zero value in case of failure.
2670 */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2671 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2672 {
2673 struct scsi_cmnd *cmd = lrbp->cmd;
2674 int sg_segments = scsi_dma_map(cmd);
2675
2676 if (sg_segments < 0)
2677 return sg_segments;
2678
2679 ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2680
2681 return ufshcd_crypto_fill_prdt(hba, lrbp);
2682 }
2683
2684 /**
2685 * ufshcd_enable_intr - enable interrupts
2686 * @hba: per adapter instance
2687 * @intrs: interrupt bits
2688 */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2689 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2690 {
2691 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2692
2693 set |= intrs;
2694 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2695 }
2696
2697 /**
2698 * ufshcd_disable_intr - disable interrupts
2699 * @hba: per adapter instance
2700 * @intrs: interrupt bits
2701 */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2702 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2703 {
2704 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2705
2706 set &= ~intrs;
2707 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2708 }
2709
2710 /**
2711 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2712 * descriptor according to request
2713 * @hba: per adapter instance
2714 * @lrbp: pointer to local reference block
2715 * @upiu_flags: flags required in the header
2716 * @cmd_dir: requests data direction
2717 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2718 */
2719 static void
ufshcd_prepare_req_desc_hdr(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir,int ehs_length)2720 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2721 u8 *upiu_flags, enum dma_data_direction cmd_dir,
2722 int ehs_length)
2723 {
2724 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2725 struct request_desc_header *h = &req_desc->header;
2726 enum utp_data_direction data_direction;
2727
2728 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2729
2730 *h = (typeof(*h)){ };
2731
2732 if (cmd_dir == DMA_FROM_DEVICE) {
2733 data_direction = UTP_DEVICE_TO_HOST;
2734 *upiu_flags = UPIU_CMD_FLAGS_READ;
2735 } else if (cmd_dir == DMA_TO_DEVICE) {
2736 data_direction = UTP_HOST_TO_DEVICE;
2737 *upiu_flags = UPIU_CMD_FLAGS_WRITE;
2738 } else {
2739 data_direction = UTP_NO_DATA_TRANSFER;
2740 *upiu_flags = UPIU_CMD_FLAGS_NONE;
2741 }
2742
2743 h->command_type = lrbp->command_type;
2744 h->data_direction = data_direction;
2745 h->ehs_length = ehs_length;
2746
2747 if (lrbp->intr_cmd)
2748 h->interrupt = 1;
2749
2750 /* Prepare crypto related dwords */
2751 ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2752
2753 /*
2754 * assigning invalid value for command status. Controller
2755 * updates OCS on command completion, with the command
2756 * status
2757 */
2758 h->ocs = OCS_INVALID_COMMAND_STATUS;
2759
2760 req_desc->prd_table_length = 0;
2761 }
2762
2763 /**
2764 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2765 * for scsi commands
2766 * @lrbp: local reference block pointer
2767 * @upiu_flags: flags
2768 */
2769 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2770 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2771 {
2772 struct scsi_cmnd *cmd = lrbp->cmd;
2773 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2774 unsigned short cdb_len;
2775
2776 ucd_req_ptr->header = (struct utp_upiu_header){
2777 .transaction_code = UPIU_TRANSACTION_COMMAND,
2778 .flags = upiu_flags,
2779 .lun = lrbp->lun,
2780 .task_tag = lrbp->task_tag,
2781 .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2782 };
2783
2784 WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2785
2786 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2787
2788 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2789 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2790
2791 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2792 }
2793
2794 /**
2795 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2796 * @hba: UFS hba
2797 * @lrbp: local reference block pointer
2798 * @upiu_flags: flags
2799 */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2800 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2801 struct ufshcd_lrb *lrbp, u8 upiu_flags)
2802 {
2803 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2804 struct ufs_query *query = &hba->dev_cmd.query;
2805 u16 len = be16_to_cpu(query->request.upiu_req.length);
2806
2807 /* Query request header */
2808 ucd_req_ptr->header = (struct utp_upiu_header){
2809 .transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2810 .flags = upiu_flags,
2811 .lun = lrbp->lun,
2812 .task_tag = lrbp->task_tag,
2813 .query_function = query->request.query_func,
2814 /* Data segment length only need for WRITE_DESC */
2815 .data_segment_length =
2816 query->request.upiu_req.opcode ==
2817 UPIU_QUERY_OPCODE_WRITE_DESC ?
2818 cpu_to_be16(len) :
2819 0,
2820 };
2821
2822 /* Copy the Query Request buffer as is */
2823 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2824 QUERY_OSF_SIZE);
2825
2826 /* Copy the Descriptor */
2827 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2828 memcpy(ucd_req_ptr + 1, query->descriptor, len);
2829 }
2830
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2831 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2832 {
2833 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2834
2835 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2836
2837 ucd_req_ptr->header = (struct utp_upiu_header){
2838 .transaction_code = UPIU_TRANSACTION_NOP_OUT,
2839 .task_tag = lrbp->task_tag,
2840 };
2841 }
2842
2843 /**
2844 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2845 * for Device Management Purposes
2846 * @hba: per adapter instance
2847 * @lrbp: pointer to local reference block
2848 *
2849 * Return: 0 upon success; < 0 upon failure.
2850 */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2851 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2852 struct ufshcd_lrb *lrbp)
2853 {
2854 u8 upiu_flags;
2855 int ret = 0;
2856
2857 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2858
2859 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2860 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2861 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2862 ufshcd_prepare_utp_nop_upiu(lrbp);
2863 else
2864 ret = -EINVAL;
2865
2866 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2867
2868 return ret;
2869 }
2870
2871 /**
2872 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2873 * for SCSI Purposes
2874 * @hba: per adapter instance
2875 * @lrbp: pointer to local reference block
2876 */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2877 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2878 {
2879 struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2880 unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2881 u8 upiu_flags;
2882
2883 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2884 if (ioprio_class == IOPRIO_CLASS_RT)
2885 upiu_flags |= UPIU_CMD_FLAGS_CP;
2886 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2887 }
2888
__ufshcd_setup_cmd(struct ufshcd_lrb * lrbp,struct scsi_cmnd * cmd,u8 lun,int tag)2889 static void __ufshcd_setup_cmd(struct ufshcd_lrb *lrbp, struct scsi_cmnd *cmd, u8 lun, int tag)
2890 {
2891 memset(lrbp->ucd_req_ptr, 0, sizeof(*lrbp->ucd_req_ptr));
2892
2893 lrbp->cmd = cmd;
2894 lrbp->task_tag = tag;
2895 lrbp->lun = lun;
2896 ufshcd_prepare_lrbp_crypto(cmd ? scsi_cmd_to_rq(cmd) : NULL, lrbp);
2897 }
2898
ufshcd_setup_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct scsi_cmnd * cmd,u8 lun,int tag)2899 static void ufshcd_setup_scsi_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2900 struct scsi_cmnd *cmd, u8 lun, int tag)
2901 {
2902 __ufshcd_setup_cmd(lrbp, cmd, lun, tag);
2903 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2904 lrbp->req_abort_skip = false;
2905
2906 ufshcd_comp_scsi_upiu(hba, lrbp);
2907 }
2908
2909 /**
2910 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2911 * @upiu_wlun_id: UPIU W-LUN id
2912 *
2913 * Return: SCSI W-LUN id.
2914 */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2915 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2916 {
2917 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2918 }
2919
is_device_wlun(struct scsi_device * sdev)2920 static inline bool is_device_wlun(struct scsi_device *sdev)
2921 {
2922 return sdev->lun ==
2923 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2924 }
2925
2926 /*
2927 * Associate the UFS controller queue with the default and poll HCTX types.
2928 * Initialize the mq_map[] arrays.
2929 */
ufshcd_map_queues(struct Scsi_Host * shost)2930 static void ufshcd_map_queues(struct Scsi_Host *shost)
2931 {
2932 struct ufs_hba *hba = shost_priv(shost);
2933 int i, queue_offset = 0;
2934
2935 if (!is_mcq_supported(hba)) {
2936 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2937 hba->nr_queues[HCTX_TYPE_READ] = 0;
2938 hba->nr_queues[HCTX_TYPE_POLL] = 1;
2939 hba->nr_hw_queues = 1;
2940 }
2941
2942 for (i = 0; i < shost->nr_maps; i++) {
2943 struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2944
2945 map->nr_queues = hba->nr_queues[i];
2946 if (!map->nr_queues)
2947 continue;
2948 map->queue_offset = queue_offset;
2949 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2950 map->queue_offset = 0;
2951
2952 blk_mq_map_queues(map);
2953 queue_offset += map->nr_queues;
2954 }
2955 }
2956
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2957 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2958 {
2959 struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2960 i * ufshcd_get_ucd_size(hba);
2961 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2962 dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2963 i * ufshcd_get_ucd_size(hba);
2964 u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset);
2965 u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset);
2966
2967 lrb->utr_descriptor_ptr = utrdlp + i;
2968 lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2969 i * sizeof(struct utp_transfer_req_desc);
2970 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2971 lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2972 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2973 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2974 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2975 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2976 }
2977
2978 /**
2979 * ufshcd_queuecommand - main entry point for SCSI requests
2980 * @host: SCSI host pointer
2981 * @cmd: command from SCSI Midlayer
2982 *
2983 * Return: 0 for success, non-zero in case of failure.
2984 */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2985 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2986 {
2987 struct ufs_hba *hba = shost_priv(host);
2988 int tag = scsi_cmd_to_rq(cmd)->tag;
2989 struct ufshcd_lrb *lrbp;
2990 int err = 0;
2991 struct ufs_hw_queue *hwq = NULL;
2992
2993 switch (hba->ufshcd_state) {
2994 case UFSHCD_STATE_OPERATIONAL:
2995 break;
2996 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2997 /*
2998 * SCSI error handler can call ->queuecommand() while UFS error
2999 * handler is in progress. Error interrupts could change the
3000 * state from UFSHCD_STATE_RESET to
3001 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
3002 * being issued in that case.
3003 */
3004 if (ufshcd_eh_in_progress(hba)) {
3005 err = SCSI_MLQUEUE_HOST_BUSY;
3006 goto out;
3007 }
3008 break;
3009 case UFSHCD_STATE_EH_SCHEDULED_FATAL:
3010 /*
3011 * pm_runtime_get_sync() is used at error handling preparation
3012 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
3013 * PM ops, it can never be finished if we let SCSI layer keep
3014 * retrying it, which gets err handler stuck forever. Neither
3015 * can we let the scsi cmd pass through, because UFS is in bad
3016 * state, the scsi cmd may eventually time out, which will get
3017 * err handler blocked for too long. So, just fail the scsi cmd
3018 * sent from PM ops, err handler can recover PM error anyways.
3019 */
3020 if (hba->pm_op_in_progress) {
3021 hba->force_reset = true;
3022 set_host_byte(cmd, DID_BAD_TARGET);
3023 scsi_done(cmd);
3024 goto out;
3025 }
3026 fallthrough;
3027 case UFSHCD_STATE_RESET:
3028 err = SCSI_MLQUEUE_HOST_BUSY;
3029 goto out;
3030 case UFSHCD_STATE_ERROR:
3031 set_host_byte(cmd, DID_ERROR);
3032 scsi_done(cmd);
3033 goto out;
3034 }
3035
3036 hba->req_abort_count = 0;
3037
3038 ufshcd_hold(hba);
3039
3040 lrbp = &hba->lrb[tag];
3041
3042 ufshcd_setup_scsi_cmd(hba, lrbp, cmd, ufshcd_scsi_to_upiu_lun(cmd->device->lun), tag);
3043
3044 err = ufshcd_map_sg(hba, lrbp);
3045 if (err) {
3046 ufshcd_release(hba);
3047 goto out;
3048 }
3049
3050 if (hba->mcq_enabled)
3051 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3052
3053 ufshcd_send_command(hba, tag, hwq);
3054
3055 out:
3056 if (ufs_trigger_eh(hba)) {
3057 unsigned long flags;
3058
3059 spin_lock_irqsave(hba->host->host_lock, flags);
3060 ufshcd_schedule_eh_work(hba);
3061 spin_unlock_irqrestore(hba->host->host_lock, flags);
3062 }
3063
3064 return err;
3065 }
3066
ufshcd_setup_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,u8 lun,int tag)3067 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3068 enum dev_cmd_type cmd_type, u8 lun, int tag)
3069 {
3070 __ufshcd_setup_cmd(lrbp, NULL, lun, tag);
3071 lrbp->intr_cmd = true; /* No interrupt aggregation */
3072 hba->dev_cmd.type = cmd_type;
3073 }
3074
3075 /*
3076 * Return: 0 upon success; < 0 upon failure.
3077 */
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)3078 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3079 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3080 {
3081 ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
3082
3083 return ufshcd_compose_devman_upiu(hba, lrbp);
3084 }
3085
3086 /*
3087 * Check with the block layer if the command is inflight
3088 * @cmd: command to check.
3089 *
3090 * Return: true if command is inflight; false if not.
3091 */
ufshcd_cmd_inflight(struct scsi_cmnd * cmd)3092 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3093 {
3094 return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3095 }
3096
3097 /*
3098 * Clear the pending command in the controller and wait until
3099 * the controller confirms that the command has been cleared.
3100 * @hba: per adapter instance
3101 * @task_tag: The tag number of the command to be cleared.
3102 */
ufshcd_clear_cmd(struct ufs_hba * hba,u32 task_tag)3103 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3104 {
3105 u32 mask;
3106 int err;
3107
3108 if (hba->mcq_enabled) {
3109 /*
3110 * MCQ mode. Clean up the MCQ resources similar to
3111 * what the ufshcd_utrl_clear() does for SDB mode.
3112 */
3113 err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3114 if (err) {
3115 dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3116 __func__, task_tag, err);
3117 return err;
3118 }
3119 return 0;
3120 }
3121
3122 mask = 1U << task_tag;
3123
3124 /* clear outstanding transaction before retry */
3125 ufshcd_utrl_clear(hba, mask);
3126
3127 /*
3128 * wait for h/w to clear corresponding bit in door-bell.
3129 * max. wait is 1 sec.
3130 */
3131 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3132 mask, ~mask, 1000, 1000);
3133 }
3134
3135 /**
3136 * ufshcd_dev_cmd_completion() - handles device management command responses
3137 * @hba: per adapter instance
3138 * @lrbp: pointer to local reference block
3139 *
3140 * Return: 0 upon success; < 0 upon failure.
3141 */
3142 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)3143 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3144 {
3145 enum upiu_response_transaction resp;
3146 int err = 0;
3147
3148 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3149 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3150
3151 switch (resp) {
3152 case UPIU_TRANSACTION_NOP_IN:
3153 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3154 err = -EINVAL;
3155 dev_err(hba->dev, "%s: unexpected response %x\n",
3156 __func__, resp);
3157 }
3158 break;
3159 case UPIU_TRANSACTION_QUERY_RSP: {
3160 u8 response = lrbp->ucd_rsp_ptr->header.response;
3161
3162 if (response == 0) {
3163 err = ufshcd_copy_query_response(hba, lrbp);
3164 } else {
3165 err = -EINVAL;
3166 dev_err(hba->dev, "%s: unexpected response in Query RSP: %x\n",
3167 __func__, response);
3168 }
3169 break;
3170 }
3171 case UPIU_TRANSACTION_REJECT_UPIU:
3172 /* TODO: handle Reject UPIU Response */
3173 err = -EPERM;
3174 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3175 __func__);
3176 break;
3177 case UPIU_TRANSACTION_RESPONSE:
3178 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3179 err = -EINVAL;
3180 dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3181 }
3182 break;
3183 default:
3184 err = -EINVAL;
3185 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3186 __func__, resp);
3187 break;
3188 }
3189
3190 WARN_ONCE(err > 0, "Incorrect return value %d > 0\n", err);
3191 return err;
3192 }
3193
3194 /*
3195 * Return: 0 upon success; < 0 upon failure.
3196 */
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)3197 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3198 struct ufshcd_lrb *lrbp, int max_timeout)
3199 {
3200 unsigned long time_left = msecs_to_jiffies(max_timeout);
3201 unsigned long flags;
3202 bool pending;
3203 int err;
3204
3205 retry:
3206 time_left = wait_for_completion_timeout(&hba->dev_cmd.complete,
3207 time_left);
3208
3209 if (likely(time_left)) {
3210 err = ufshcd_get_tr_ocs(lrbp, NULL);
3211 if (!err)
3212 err = ufshcd_dev_cmd_completion(hba, lrbp);
3213 } else {
3214 err = -ETIMEDOUT;
3215 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3216 __func__, lrbp->task_tag);
3217
3218 /* MCQ mode */
3219 if (hba->mcq_enabled) {
3220 /* successfully cleared the command, retry if needed */
3221 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3222 err = -EAGAIN;
3223 return err;
3224 }
3225
3226 /* SDB mode */
3227 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3228 /* successfully cleared the command, retry if needed */
3229 err = -EAGAIN;
3230 /*
3231 * Since clearing the command succeeded we also need to
3232 * clear the task tag bit from the outstanding_reqs
3233 * variable.
3234 */
3235 spin_lock_irqsave(&hba->outstanding_lock, flags);
3236 pending = test_bit(lrbp->task_tag,
3237 &hba->outstanding_reqs);
3238 if (pending)
3239 __clear_bit(lrbp->task_tag,
3240 &hba->outstanding_reqs);
3241 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3242
3243 if (!pending) {
3244 /*
3245 * The completion handler ran while we tried to
3246 * clear the command.
3247 */
3248 time_left = 1;
3249 goto retry;
3250 }
3251 } else {
3252 dev_err(hba->dev, "%s: failed to clear tag %d\n",
3253 __func__, lrbp->task_tag);
3254
3255 spin_lock_irqsave(&hba->outstanding_lock, flags);
3256 pending = test_bit(lrbp->task_tag,
3257 &hba->outstanding_reqs);
3258 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3259
3260 if (!pending) {
3261 /*
3262 * The completion handler ran while we tried to
3263 * clear the command.
3264 */
3265 time_left = 1;
3266 goto retry;
3267 }
3268 }
3269 }
3270
3271 WARN_ONCE(err > 0, "Incorrect return value %d > 0\n", err);
3272 return err;
3273 }
3274
ufshcd_dev_man_lock(struct ufs_hba * hba)3275 static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3276 {
3277 ufshcd_hold(hba);
3278 mutex_lock(&hba->dev_cmd.lock);
3279 down_read(&hba->clk_scaling_lock);
3280 }
3281
ufshcd_dev_man_unlock(struct ufs_hba * hba)3282 static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3283 {
3284 up_read(&hba->clk_scaling_lock);
3285 mutex_unlock(&hba->dev_cmd.lock);
3286 ufshcd_release(hba);
3287 }
3288
3289 /*
3290 * Return: 0 upon success; < 0 upon failure.
3291 */
ufshcd_issue_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,const u32 tag,int timeout)3292 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3293 const u32 tag, int timeout)
3294 {
3295 int err;
3296
3297 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3298 ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3299 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3300
3301 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3302 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3303
3304 return err;
3305 }
3306
3307 /**
3308 * ufshcd_exec_dev_cmd - API for sending device management requests
3309 * @hba: UFS hba
3310 * @cmd_type: specifies the type (NOP, Query...)
3311 * @timeout: timeout in milliseconds
3312 *
3313 * Return: 0 upon success; < 0 upon failure.
3314 *
3315 * NOTE: Since there is only one available tag for device management commands,
3316 * it is expected you hold the hba->dev_cmd.lock mutex.
3317 */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)3318 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3319 enum dev_cmd_type cmd_type, int timeout)
3320 {
3321 const u32 tag = hba->reserved_slot;
3322 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
3323 int err;
3324
3325 /* Protects use of hba->reserved_slot. */
3326 lockdep_assert_held(&hba->dev_cmd.lock);
3327
3328 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3329 if (unlikely(err))
3330 return err;
3331
3332 return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout);
3333 }
3334
3335 /**
3336 * ufshcd_init_query() - init the query response and request parameters
3337 * @hba: per-adapter instance
3338 * @request: address of the request pointer to be initialized
3339 * @response: address of the response pointer to be initialized
3340 * @opcode: operation to perform
3341 * @idn: flag idn to access
3342 * @index: LU number to access
3343 * @selector: query/flag/descriptor further identification
3344 */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)3345 static inline void ufshcd_init_query(struct ufs_hba *hba,
3346 struct ufs_query_req **request, struct ufs_query_res **response,
3347 enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3348 {
3349 *request = &hba->dev_cmd.query.request;
3350 *response = &hba->dev_cmd.query.response;
3351 memset(*request, 0, sizeof(struct ufs_query_req));
3352 memset(*response, 0, sizeof(struct ufs_query_res));
3353 (*request)->upiu_req.opcode = opcode;
3354 (*request)->upiu_req.idn = idn;
3355 (*request)->upiu_req.index = index;
3356 (*request)->upiu_req.selector = selector;
3357 }
3358
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3359 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3360 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3361 {
3362 int ret;
3363 int retries;
3364
3365 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3366 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3367 if (ret)
3368 dev_dbg(hba->dev,
3369 "%s: failed with error %d, retries %d\n",
3370 __func__, ret, retries);
3371 else
3372 break;
3373 }
3374
3375 if (ret)
3376 dev_err(hba->dev,
3377 "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3378 __func__, opcode, idn, ret, retries);
3379 WARN_ONCE(ret > 0, "Incorrect return value %d > 0\n", ret);
3380 return ret;
3381 }
3382
3383 /**
3384 * ufshcd_query_flag() - API function for sending flag query requests
3385 * @hba: per-adapter instance
3386 * @opcode: flag query to perform
3387 * @idn: flag idn to access
3388 * @index: flag index to access
3389 * @flag_res: the flag value after the query request completes
3390 *
3391 * Return: 0 for success; < 0 upon failure.
3392 */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3393 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3394 enum flag_idn idn, u8 index, bool *flag_res)
3395 {
3396 struct ufs_query_req *request = NULL;
3397 struct ufs_query_res *response = NULL;
3398 int err, selector = 0;
3399 int timeout = dev_cmd_timeout;
3400
3401 BUG_ON(!hba);
3402
3403 ufshcd_dev_man_lock(hba);
3404
3405 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3406 selector);
3407
3408 switch (opcode) {
3409 case UPIU_QUERY_OPCODE_SET_FLAG:
3410 case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3411 case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3412 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3413 break;
3414 case UPIU_QUERY_OPCODE_READ_FLAG:
3415 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3416 if (!flag_res) {
3417 /* No dummy reads */
3418 dev_err(hba->dev, "%s: Invalid argument for read request\n",
3419 __func__);
3420 err = -EINVAL;
3421 goto out_unlock;
3422 }
3423 break;
3424 default:
3425 dev_err(hba->dev,
3426 "%s: Expected query flag opcode but got = %d\n",
3427 __func__, opcode);
3428 err = -EINVAL;
3429 goto out_unlock;
3430 }
3431
3432 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3433
3434 if (err) {
3435 dev_err(hba->dev,
3436 "%s: Sending flag query for idn %d failed, err = %d\n",
3437 __func__, idn, err);
3438 goto out_unlock;
3439 }
3440
3441 if (flag_res)
3442 *flag_res = (be32_to_cpu(response->upiu_res.value) &
3443 MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3444
3445 out_unlock:
3446 ufshcd_dev_man_unlock(hba);
3447 WARN_ONCE(err > 0, "Incorrect return value %d > 0\n", err);
3448 return err;
3449 }
3450
3451 /**
3452 * ufshcd_query_attr - API function for sending attribute requests
3453 * @hba: per-adapter instance
3454 * @opcode: attribute opcode
3455 * @idn: attribute idn to access
3456 * @index: index field
3457 * @selector: selector field
3458 * @attr_val: the attribute value after the query request completes
3459 *
3460 * Return: 0 upon success; < 0 upon failure.
3461 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3462 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3463 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3464 {
3465 struct ufs_query_req *request = NULL;
3466 struct ufs_query_res *response = NULL;
3467 int err;
3468
3469 BUG_ON(!hba);
3470
3471 if (!attr_val) {
3472 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3473 __func__, opcode);
3474 return -EINVAL;
3475 }
3476
3477 ufshcd_dev_man_lock(hba);
3478
3479 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3480 selector);
3481
3482 switch (opcode) {
3483 case UPIU_QUERY_OPCODE_WRITE_ATTR:
3484 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3485 request->upiu_req.value = cpu_to_be32(*attr_val);
3486 break;
3487 case UPIU_QUERY_OPCODE_READ_ATTR:
3488 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3489 break;
3490 default:
3491 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3492 __func__, opcode);
3493 err = -EINVAL;
3494 goto out_unlock;
3495 }
3496
3497 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
3498
3499 if (err) {
3500 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3501 __func__, opcode, idn, index, err);
3502 goto out_unlock;
3503 }
3504
3505 *attr_val = be32_to_cpu(response->upiu_res.value);
3506
3507 out_unlock:
3508 ufshcd_dev_man_unlock(hba);
3509 WARN_ONCE(err > 0, "Incorrect return value %d > 0\n", err);
3510 return err;
3511 }
3512
3513 /**
3514 * ufshcd_query_attr_retry() - API function for sending query
3515 * attribute with retries
3516 * @hba: per-adapter instance
3517 * @opcode: attribute opcode
3518 * @idn: attribute idn to access
3519 * @index: index field
3520 * @selector: selector field
3521 * @attr_val: the attribute value after the query request
3522 * completes
3523 *
3524 * Return: 0 for success; < 0 upon failure.
3525 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3526 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3527 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3528 u32 *attr_val)
3529 {
3530 int ret = 0;
3531 u32 retries;
3532
3533 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3534 ret = ufshcd_query_attr(hba, opcode, idn, index,
3535 selector, attr_val);
3536 if (ret)
3537 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3538 __func__, ret, retries);
3539 else
3540 break;
3541 }
3542
3543 if (ret)
3544 dev_err(hba->dev,
3545 "%s: query attribute, idn %d, failed with error %d after %d retries\n",
3546 __func__, idn, ret, QUERY_REQ_RETRIES);
3547 WARN_ONCE(ret > 0, "Incorrect return value %d > 0\n", ret);
3548 return ret;
3549 }
3550
3551 /*
3552 * Return: 0 if successful; < 0 upon failure.
3553 */
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3554 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3555 enum query_opcode opcode, enum desc_idn idn, u8 index,
3556 u8 selector, u8 *desc_buf, int *buf_len)
3557 {
3558 struct ufs_query_req *request = NULL;
3559 struct ufs_query_res *response = NULL;
3560 int err;
3561
3562 BUG_ON(!hba);
3563
3564 if (!desc_buf) {
3565 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3566 __func__, opcode);
3567 return -EINVAL;
3568 }
3569
3570 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3571 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3572 __func__, *buf_len);
3573 return -EINVAL;
3574 }
3575
3576 ufshcd_dev_man_lock(hba);
3577
3578 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3579 selector);
3580 hba->dev_cmd.query.descriptor = desc_buf;
3581 request->upiu_req.length = cpu_to_be16(*buf_len);
3582
3583 switch (opcode) {
3584 case UPIU_QUERY_OPCODE_WRITE_DESC:
3585 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3586 break;
3587 case UPIU_QUERY_OPCODE_READ_DESC:
3588 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3589 break;
3590 default:
3591 dev_err(hba->dev,
3592 "%s: Expected query descriptor opcode but got = 0x%.2x\n",
3593 __func__, opcode);
3594 err = -EINVAL;
3595 goto out_unlock;
3596 }
3597
3598 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
3599
3600 if (err) {
3601 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3602 __func__, opcode, idn, index, err);
3603 goto out_unlock;
3604 }
3605
3606 *buf_len = be16_to_cpu(response->upiu_res.length);
3607
3608 out_unlock:
3609 hba->dev_cmd.query.descriptor = NULL;
3610 ufshcd_dev_man_unlock(hba);
3611 WARN_ONCE(err > 0, "Incorrect return value %d > 0\n", err);
3612 return err;
3613 }
3614
3615 /**
3616 * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3617 * @hba: per-adapter instance
3618 * @opcode: attribute opcode
3619 * @idn: attribute idn to access
3620 * @index: index field
3621 * @selector: selector field
3622 * @desc_buf: the buffer that contains the descriptor
3623 * @buf_len: length parameter passed to the device
3624 *
3625 * The buf_len parameter will contain, on return, the length parameter
3626 * received on the response.
3627 *
3628 * Return: 0 for success; < 0 upon failure.
3629 */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3630 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3631 enum query_opcode opcode,
3632 enum desc_idn idn, u8 index,
3633 u8 selector,
3634 u8 *desc_buf, int *buf_len)
3635 {
3636 int err;
3637 int retries;
3638
3639 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3640 err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3641 selector, desc_buf, buf_len);
3642 if (!err || err == -EINVAL)
3643 break;
3644 }
3645
3646 WARN_ONCE(err > 0, "Incorrect return value %d > 0\n", err);
3647 return err;
3648 }
3649
3650 /**
3651 * ufshcd_read_desc_param - read the specified descriptor parameter
3652 * @hba: Pointer to adapter instance
3653 * @desc_id: descriptor idn value
3654 * @desc_index: descriptor index
3655 * @param_offset: offset of the parameter to read
3656 * @param_read_buf: pointer to buffer where parameter would be read
3657 * @param_size: sizeof(param_read_buf)
3658 *
3659 * Return: 0 in case of success; < 0 upon failure.
3660 */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3661 int ufshcd_read_desc_param(struct ufs_hba *hba,
3662 enum desc_idn desc_id,
3663 int desc_index,
3664 u8 param_offset,
3665 u8 *param_read_buf,
3666 u8 param_size)
3667 {
3668 int ret;
3669 u8 *desc_buf;
3670 int buff_len = QUERY_DESC_MAX_SIZE;
3671 bool is_kmalloc = true;
3672
3673 /* Safety check */
3674 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3675 return -EINVAL;
3676
3677 /* Check whether we need temp memory */
3678 if (param_offset != 0 || param_size < buff_len) {
3679 desc_buf = kzalloc(buff_len, GFP_KERNEL);
3680 if (!desc_buf)
3681 return -ENOMEM;
3682 } else {
3683 desc_buf = param_read_buf;
3684 is_kmalloc = false;
3685 }
3686
3687 /* Request for full descriptor */
3688 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3689 desc_id, desc_index, 0,
3690 desc_buf, &buff_len);
3691 if (ret) {
3692 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3693 __func__, desc_id, desc_index, param_offset, ret);
3694 goto out;
3695 }
3696
3697 /* Update descriptor length */
3698 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3699
3700 if (param_offset >= buff_len) {
3701 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3702 __func__, param_offset, desc_id, buff_len);
3703 ret = -EINVAL;
3704 goto out;
3705 }
3706
3707 /* Sanity check */
3708 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3709 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3710 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3711 ret = -EINVAL;
3712 goto out;
3713 }
3714
3715 if (is_kmalloc) {
3716 /* Make sure we don't copy more data than available */
3717 if (param_offset >= buff_len)
3718 ret = -EINVAL;
3719 else
3720 memcpy(param_read_buf, &desc_buf[param_offset],
3721 min_t(u32, param_size, buff_len - param_offset));
3722 }
3723 out:
3724 if (is_kmalloc)
3725 kfree(desc_buf);
3726 WARN_ONCE(ret > 0, "Incorrect return value %d > 0\n", ret);
3727 return ret;
3728 }
3729
3730 /**
3731 * struct uc_string_id - unicode string
3732 *
3733 * @len: size of this descriptor inclusive
3734 * @type: descriptor type
3735 * @uc: unicode string character
3736 */
3737 struct uc_string_id {
3738 u8 len;
3739 u8 type;
3740 wchar_t uc[];
3741 } __packed;
3742
3743 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3744 static inline char ufshcd_remove_non_printable(u8 ch)
3745 {
3746 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3747 }
3748
3749 /**
3750 * ufshcd_read_string_desc - read string descriptor
3751 * @hba: pointer to adapter instance
3752 * @desc_index: descriptor index
3753 * @buf: pointer to buffer where descriptor would be read,
3754 * the caller should free the memory.
3755 * @ascii: if true convert from unicode to ascii characters
3756 * null terminated string.
3757 *
3758 * Return:
3759 * * string size on success.
3760 * * -ENOMEM: on allocation failure
3761 * * -EINVAL: on a wrong parameter
3762 */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3763 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3764 u8 **buf, bool ascii)
3765 {
3766 struct uc_string_id *uc_str;
3767 u8 *str;
3768 int ret;
3769
3770 if (!buf)
3771 return -EINVAL;
3772
3773 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3774 if (!uc_str)
3775 return -ENOMEM;
3776
3777 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3778 (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3779 if (ret < 0) {
3780 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3781 QUERY_REQ_RETRIES, ret);
3782 str = NULL;
3783 goto out;
3784 }
3785
3786 if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3787 dev_dbg(hba->dev, "String Desc is of zero length\n");
3788 str = NULL;
3789 ret = 0;
3790 goto out;
3791 }
3792
3793 if (ascii) {
3794 ssize_t ascii_len;
3795 int i;
3796 /* remove header and divide by 2 to move from UTF16 to UTF8 */
3797 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3798 str = kzalloc(ascii_len, GFP_KERNEL);
3799 if (!str) {
3800 ret = -ENOMEM;
3801 goto out;
3802 }
3803
3804 /*
3805 * the descriptor contains string in UTF16 format
3806 * we need to convert to utf-8 so it can be displayed
3807 */
3808 ret = utf16s_to_utf8s(uc_str->uc,
3809 uc_str->len - QUERY_DESC_HDR_SIZE,
3810 UTF16_BIG_ENDIAN, str, ascii_len - 1);
3811
3812 /* replace non-printable or non-ASCII characters with spaces */
3813 for (i = 0; i < ret; i++)
3814 str[i] = ufshcd_remove_non_printable(str[i]);
3815
3816 str[ret++] = '\0';
3817
3818 } else {
3819 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3820 if (!str) {
3821 ret = -ENOMEM;
3822 goto out;
3823 }
3824 ret = uc_str->len;
3825 }
3826 out:
3827 *buf = str;
3828 kfree(uc_str);
3829 return ret;
3830 }
3831
3832 /**
3833 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3834 * @hba: Pointer to adapter instance
3835 * @lun: lun id
3836 * @param_offset: offset of the parameter to read
3837 * @param_read_buf: pointer to buffer where parameter would be read
3838 * @param_size: sizeof(param_read_buf)
3839 *
3840 * Return: 0 in case of success; < 0 upon failure.
3841 */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3842 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3843 int lun,
3844 enum unit_desc_param param_offset,
3845 u8 *param_read_buf,
3846 u32 param_size)
3847 {
3848 /*
3849 * Unit descriptors are only available for general purpose LUs (LUN id
3850 * from 0 to 7) and RPMB Well known LU.
3851 */
3852 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3853 return -EOPNOTSUPP;
3854
3855 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3856 param_offset, param_read_buf, param_size);
3857 }
3858
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3859 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3860 {
3861 int err = 0;
3862 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3863
3864 if (hba->dev_info.wspecversion >= 0x300) {
3865 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3866 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3867 &gating_wait);
3868 if (err)
3869 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3870 err, gating_wait);
3871
3872 if (gating_wait == 0) {
3873 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3874 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3875 gating_wait);
3876 }
3877
3878 hba->dev_info.clk_gating_wait_us = gating_wait;
3879 }
3880
3881 return err;
3882 }
3883
3884 /**
3885 * ufshcd_memory_alloc - allocate memory for host memory space data structures
3886 * @hba: per adapter instance
3887 *
3888 * 1. Allocate DMA memory for Command Descriptor array
3889 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3890 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3891 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3892 * (UTMRDL)
3893 * 4. Allocate memory for local reference block(lrb).
3894 *
3895 * Return: 0 for success, non-zero in case of failure.
3896 */
ufshcd_memory_alloc(struct ufs_hba * hba)3897 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3898 {
3899 size_t utmrdl_size, utrdl_size, ucdl_size;
3900
3901 /* Allocate memory for UTP command descriptors */
3902 ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3903 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3904 ucdl_size,
3905 &hba->ucdl_dma_addr,
3906 GFP_KERNEL);
3907
3908 /*
3909 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3910 */
3911 if (!hba->ucdl_base_addr ||
3912 WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3913 dev_err(hba->dev,
3914 "Command Descriptor Memory allocation failed\n");
3915 goto out;
3916 }
3917
3918 /*
3919 * Allocate memory for UTP Transfer descriptors
3920 * UFSHCI requires 1KB alignment of UTRD
3921 */
3922 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3923 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3924 utrdl_size,
3925 &hba->utrdl_dma_addr,
3926 GFP_KERNEL);
3927 if (!hba->utrdl_base_addr ||
3928 WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3929 dev_err(hba->dev,
3930 "Transfer Descriptor Memory allocation failed\n");
3931 goto out;
3932 }
3933
3934 /*
3935 * Skip utmrdl allocation; it may have been
3936 * allocated during first pass and not released during
3937 * MCQ memory allocation.
3938 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3939 */
3940 if (hba->utmrdl_base_addr)
3941 goto skip_utmrdl;
3942 /*
3943 * Allocate memory for UTP Task Management descriptors
3944 * UFSHCI requires 1KB alignment of UTMRD
3945 */
3946 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3947 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3948 utmrdl_size,
3949 &hba->utmrdl_dma_addr,
3950 GFP_KERNEL);
3951 if (!hba->utmrdl_base_addr ||
3952 WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3953 dev_err(hba->dev,
3954 "Task Management Descriptor Memory allocation failed\n");
3955 goto out;
3956 }
3957
3958 skip_utmrdl:
3959 /* Allocate memory for local reference block */
3960 hba->lrb = devm_kcalloc(hba->dev,
3961 hba->nutrs, sizeof(struct ufshcd_lrb),
3962 GFP_KERNEL);
3963 if (!hba->lrb) {
3964 dev_err(hba->dev, "LRB Memory allocation failed\n");
3965 goto out;
3966 }
3967 return 0;
3968 out:
3969 return -ENOMEM;
3970 }
3971
3972 /**
3973 * ufshcd_host_memory_configure - configure local reference block with
3974 * memory offsets
3975 * @hba: per adapter instance
3976 *
3977 * Configure Host memory space
3978 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3979 * address.
3980 * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3981 * and PRDT offset.
3982 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3983 * into local reference block.
3984 */
ufshcd_host_memory_configure(struct ufs_hba * hba)3985 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3986 {
3987 struct utp_transfer_req_desc *utrdlp;
3988 dma_addr_t cmd_desc_dma_addr;
3989 dma_addr_t cmd_desc_element_addr;
3990 u16 response_offset;
3991 u16 prdt_offset;
3992 int cmd_desc_size;
3993 int i;
3994
3995 utrdlp = hba->utrdl_base_addr;
3996
3997 response_offset =
3998 offsetof(struct utp_transfer_cmd_desc, response_upiu);
3999 prdt_offset =
4000 offsetof(struct utp_transfer_cmd_desc, prd_table);
4001
4002 cmd_desc_size = ufshcd_get_ucd_size(hba);
4003 cmd_desc_dma_addr = hba->ucdl_dma_addr;
4004
4005 for (i = 0; i < hba->nutrs; i++) {
4006 /* Configure UTRD with command descriptor base address */
4007 cmd_desc_element_addr =
4008 (cmd_desc_dma_addr + (cmd_desc_size * i));
4009 utrdlp[i].command_desc_base_addr =
4010 cpu_to_le64(cmd_desc_element_addr);
4011
4012 /* Response upiu and prdt offset should be in double words */
4013 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
4014 utrdlp[i].response_upiu_offset =
4015 cpu_to_le16(response_offset);
4016 utrdlp[i].prd_table_offset =
4017 cpu_to_le16(prdt_offset);
4018 utrdlp[i].response_upiu_length =
4019 cpu_to_le16(ALIGNED_UPIU_SIZE);
4020 } else {
4021 utrdlp[i].response_upiu_offset =
4022 cpu_to_le16(response_offset >> 2);
4023 utrdlp[i].prd_table_offset =
4024 cpu_to_le16(prdt_offset >> 2);
4025 utrdlp[i].response_upiu_length =
4026 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
4027 }
4028
4029 ufshcd_init_lrb(hba, &hba->lrb[i], i);
4030 }
4031 }
4032
4033 /**
4034 * ufshcd_dme_link_startup - Notify Unipro to perform link startup
4035 * @hba: per adapter instance
4036 *
4037 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
4038 * in order to initialize the Unipro link startup procedure.
4039 * Once the Unipro links are up, the device connected to the controller
4040 * is detected.
4041 *
4042 * Return: 0 on success, non-zero value on failure.
4043 */
ufshcd_dme_link_startup(struct ufs_hba * hba)4044 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
4045 {
4046 struct uic_command uic_cmd = {
4047 .command = UIC_CMD_DME_LINK_STARTUP,
4048 };
4049 int ret;
4050
4051 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4052 if (ret)
4053 dev_dbg(hba->dev,
4054 "dme-link-startup: error code %d\n", ret);
4055 return ret;
4056 }
4057 /**
4058 * ufshcd_dme_reset - UIC command for DME_RESET
4059 * @hba: per adapter instance
4060 *
4061 * DME_RESET command is issued in order to reset UniPro stack.
4062 * This function now deals with cold reset.
4063 *
4064 * Return: 0 on success, non-zero value on failure.
4065 */
ufshcd_dme_reset(struct ufs_hba * hba)4066 int ufshcd_dme_reset(struct ufs_hba *hba)
4067 {
4068 struct uic_command uic_cmd = {
4069 .command = UIC_CMD_DME_RESET,
4070 };
4071 int ret;
4072
4073 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4074 if (ret)
4075 dev_err(hba->dev,
4076 "dme-reset: error code %d\n", ret);
4077
4078 return ret;
4079 }
4080 EXPORT_SYMBOL_GPL(ufshcd_dme_reset);
4081
ufshcd_dme_configure_adapt(struct ufs_hba * hba,int agreed_gear,int adapt_val)4082 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4083 int agreed_gear,
4084 int adapt_val)
4085 {
4086 int ret;
4087
4088 if (agreed_gear < UFS_HS_G4)
4089 adapt_val = PA_NO_ADAPT;
4090
4091 ret = ufshcd_dme_set(hba,
4092 UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4093 adapt_val);
4094 return ret;
4095 }
4096 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4097
4098 /**
4099 * ufshcd_dme_enable - UIC command for DME_ENABLE
4100 * @hba: per adapter instance
4101 *
4102 * DME_ENABLE command is issued in order to enable UniPro stack.
4103 *
4104 * Return: 0 on success, non-zero value on failure.
4105 */
ufshcd_dme_enable(struct ufs_hba * hba)4106 int ufshcd_dme_enable(struct ufs_hba *hba)
4107 {
4108 struct uic_command uic_cmd = {
4109 .command = UIC_CMD_DME_ENABLE,
4110 };
4111 int ret;
4112
4113 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4114 if (ret)
4115 dev_err(hba->dev,
4116 "dme-enable: error code %d\n", ret);
4117
4118 return ret;
4119 }
4120 EXPORT_SYMBOL_GPL(ufshcd_dme_enable);
4121
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)4122 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4123 {
4124 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000
4125 unsigned long min_sleep_time_us;
4126
4127 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4128 return;
4129
4130 /*
4131 * last_dme_cmd_tstamp will be 0 only for 1st call to
4132 * this function
4133 */
4134 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4135 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4136 } else {
4137 unsigned long delta =
4138 (unsigned long) ktime_to_us(
4139 ktime_sub(ktime_get(),
4140 hba->last_dme_cmd_tstamp));
4141
4142 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4143 min_sleep_time_us =
4144 MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4145 else
4146 min_sleep_time_us = 0; /* no more delay required */
4147 }
4148
4149 if (min_sleep_time_us > 0) {
4150 /* allow sleep for extra 50us if needed */
4151 usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4152 }
4153
4154 /* update the last_dme_cmd_tstamp */
4155 hba->last_dme_cmd_tstamp = ktime_get();
4156 }
4157
4158 /**
4159 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4160 * @hba: per adapter instance
4161 * @attr_sel: uic command argument1
4162 * @attr_set: attribute set type as uic command argument2
4163 * @mib_val: setting value as uic command argument3
4164 * @peer: indicate whether peer or local
4165 *
4166 * Return: 0 on success, non-zero value on failure.
4167 */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)4168 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4169 u8 attr_set, u32 mib_val, u8 peer)
4170 {
4171 struct uic_command uic_cmd = {
4172 .command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET,
4173 .argument1 = attr_sel,
4174 .argument2 = UIC_ARG_ATTR_TYPE(attr_set),
4175 .argument3 = mib_val,
4176 };
4177 static const char *const action[] = {
4178 "dme-set",
4179 "dme-peer-set"
4180 };
4181 const char *set = action[!!peer];
4182 int ret;
4183 int retries = UFS_UIC_COMMAND_RETRIES;
4184
4185 do {
4186 /* for peer attributes we retry upon failure */
4187 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4188 if (ret)
4189 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4190 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4191 } while (ret && peer && --retries);
4192
4193 if (ret)
4194 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4195 set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4196 UFS_UIC_COMMAND_RETRIES - retries);
4197
4198 return ret;
4199 }
4200 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4201
4202 /**
4203 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4204 * @hba: per adapter instance
4205 * @attr_sel: uic command argument1
4206 * @mib_val: the value of the attribute as returned by the UIC command
4207 * @peer: indicate whether peer or local
4208 *
4209 * Return: 0 on success, non-zero value on failure.
4210 */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)4211 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4212 u32 *mib_val, u8 peer)
4213 {
4214 struct uic_command uic_cmd = {
4215 .command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET,
4216 .argument1 = attr_sel,
4217 };
4218 static const char *const action[] = {
4219 "dme-get",
4220 "dme-peer-get"
4221 };
4222 const char *get = action[!!peer];
4223 int ret;
4224 int retries = UFS_UIC_COMMAND_RETRIES;
4225 struct ufs_pa_layer_attr orig_pwr_info;
4226 struct ufs_pa_layer_attr temp_pwr_info;
4227 bool pwr_mode_change = false;
4228
4229 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4230 orig_pwr_info = hba->pwr_info;
4231 temp_pwr_info = orig_pwr_info;
4232
4233 if (orig_pwr_info.pwr_tx == FAST_MODE ||
4234 orig_pwr_info.pwr_rx == FAST_MODE) {
4235 temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4236 temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4237 pwr_mode_change = true;
4238 } else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4239 orig_pwr_info.pwr_rx == SLOW_MODE) {
4240 temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4241 temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4242 pwr_mode_change = true;
4243 }
4244 if (pwr_mode_change) {
4245 ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4246 if (ret)
4247 goto out;
4248 }
4249 }
4250
4251 do {
4252 /* for peer attributes we retry upon failure */
4253 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4254 if (ret)
4255 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4256 get, UIC_GET_ATTR_ID(attr_sel), ret);
4257 } while (ret && peer && --retries);
4258
4259 if (ret)
4260 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4261 get, UIC_GET_ATTR_ID(attr_sel),
4262 UFS_UIC_COMMAND_RETRIES - retries);
4263
4264 if (mib_val && !ret)
4265 *mib_val = uic_cmd.argument3;
4266
4267 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4268 && pwr_mode_change)
4269 ufshcd_change_power_mode(hba, &orig_pwr_info);
4270 out:
4271 return ret;
4272 }
4273 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4274
4275 /**
4276 * ufshcd_dme_rmw - get modify set a DME attribute
4277 * @hba: per adapter instance
4278 * @mask: indicates which bits to clear from the value that has been read
4279 * @val: actual value to write
4280 * @attr: dme attribute
4281 */
ufshcd_dme_rmw(struct ufs_hba * hba,u32 mask,u32 val,u32 attr)4282 int ufshcd_dme_rmw(struct ufs_hba *hba, u32 mask,
4283 u32 val, u32 attr)
4284 {
4285 u32 cfg = 0;
4286 int err;
4287
4288 err = ufshcd_dme_get(hba, UIC_ARG_MIB(attr), &cfg);
4289 if (err)
4290 return err;
4291
4292 cfg &= ~mask;
4293 cfg |= (val & mask);
4294
4295 return ufshcd_dme_set(hba, UIC_ARG_MIB(attr), cfg);
4296 }
4297 EXPORT_SYMBOL_GPL(ufshcd_dme_rmw);
4298
4299 /**
4300 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4301 * state) and waits for it to take effect.
4302 *
4303 * @hba: per adapter instance
4304 * @cmd: UIC command to execute
4305 *
4306 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4307 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4308 * and device UniPro link and hence it's final completion would be indicated by
4309 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4310 * addition to normal UIC command completion Status (UCCS). This function only
4311 * returns after the relevant status bits indicate the completion.
4312 *
4313 * Return: 0 on success, non-zero value on failure.
4314 */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)4315 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4316 {
4317 DECLARE_COMPLETION_ONSTACK(uic_async_done);
4318 unsigned long flags;
4319 u8 status;
4320 int ret;
4321 bool reenable_intr = false;
4322
4323 mutex_lock(&hba->uic_cmd_mutex);
4324 ufshcd_add_delay_before_dme_cmd(hba);
4325
4326 spin_lock_irqsave(hba->host->host_lock, flags);
4327 if (ufshcd_is_link_broken(hba)) {
4328 ret = -ENOLINK;
4329 goto out_unlock;
4330 }
4331 hba->uic_async_done = &uic_async_done;
4332 if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4333 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4334 /*
4335 * Make sure UIC command completion interrupt is disabled before
4336 * issuing UIC command.
4337 */
4338 ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
4339 reenable_intr = true;
4340 }
4341 spin_unlock_irqrestore(hba->host->host_lock, flags);
4342 ret = __ufshcd_send_uic_cmd(hba, cmd);
4343 if (ret) {
4344 dev_err(hba->dev,
4345 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4346 cmd->command, cmd->argument3, ret);
4347 goto out;
4348 }
4349
4350 if (!wait_for_completion_timeout(hba->uic_async_done,
4351 msecs_to_jiffies(uic_cmd_timeout))) {
4352 dev_err(hba->dev,
4353 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4354 cmd->command, cmd->argument3);
4355
4356 if (!cmd->cmd_active) {
4357 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4358 __func__);
4359 goto check_upmcrs;
4360 }
4361
4362 ret = -ETIMEDOUT;
4363 goto out;
4364 }
4365
4366 check_upmcrs:
4367 status = ufshcd_get_upmcrs(hba);
4368 if (status != PWR_LOCAL) {
4369 dev_err(hba->dev,
4370 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4371 cmd->command, status);
4372 ret = (status != PWR_OK) ? status : -1;
4373 }
4374 out:
4375 if (ret) {
4376 ufshcd_print_host_state(hba);
4377 ufshcd_print_pwr_info(hba);
4378 ufshcd_print_evt_hist(hba);
4379 }
4380
4381 spin_lock_irqsave(hba->host->host_lock, flags);
4382 hba->active_uic_cmd = NULL;
4383 hba->uic_async_done = NULL;
4384 if (reenable_intr)
4385 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4386 if (ret) {
4387 ufshcd_set_link_broken(hba);
4388 ufshcd_schedule_eh_work(hba);
4389 }
4390 out_unlock:
4391 spin_unlock_irqrestore(hba->host->host_lock, flags);
4392 mutex_unlock(&hba->uic_cmd_mutex);
4393
4394 return ret;
4395 }
4396
4397 /**
4398 * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result
4399 * @hba: per adapter instance
4400 * @uic_cmd: UIC command
4401 *
4402 * Return: 0 only if success.
4403 */
ufshcd_send_bsg_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)4404 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
4405 {
4406 int ret;
4407
4408 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
4409 return 0;
4410
4411 ufshcd_hold(hba);
4412
4413 if (uic_cmd->argument1 == UIC_ARG_MIB(PA_PWRMODE) &&
4414 uic_cmd->command == UIC_CMD_DME_SET) {
4415 ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd);
4416 goto out;
4417 }
4418
4419 mutex_lock(&hba->uic_cmd_mutex);
4420 ufshcd_add_delay_before_dme_cmd(hba);
4421
4422 ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
4423 if (!ret)
4424 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
4425
4426 mutex_unlock(&hba->uic_cmd_mutex);
4427
4428 out:
4429 ufshcd_release(hba);
4430 return ret;
4431 }
4432
4433 /**
4434 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4435 * using DME_SET primitives.
4436 * @hba: per adapter instance
4437 * @mode: powr mode value
4438 *
4439 * Return: 0 on success, non-zero value on failure.
4440 */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4441 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4442 {
4443 struct uic_command uic_cmd = {
4444 .command = UIC_CMD_DME_SET,
4445 .argument1 = UIC_ARG_MIB(PA_PWRMODE),
4446 .argument3 = mode,
4447 };
4448 int ret;
4449
4450 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4451 ret = ufshcd_dme_set(hba,
4452 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4453 if (ret) {
4454 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4455 __func__, ret);
4456 goto out;
4457 }
4458 }
4459
4460 ufshcd_hold(hba);
4461 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4462 ufshcd_release(hba);
4463
4464 out:
4465 return ret;
4466 }
4467 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4468
ufshcd_link_recovery(struct ufs_hba * hba)4469 int ufshcd_link_recovery(struct ufs_hba *hba)
4470 {
4471 int ret;
4472 unsigned long flags;
4473
4474 spin_lock_irqsave(hba->host->host_lock, flags);
4475 hba->ufshcd_state = UFSHCD_STATE_RESET;
4476 ufshcd_set_eh_in_progress(hba);
4477 spin_unlock_irqrestore(hba->host->host_lock, flags);
4478
4479 /* Reset the attached device */
4480 ufshcd_device_reset(hba);
4481
4482 ret = ufshcd_host_reset_and_restore(hba);
4483
4484 spin_lock_irqsave(hba->host->host_lock, flags);
4485 if (ret)
4486 hba->ufshcd_state = UFSHCD_STATE_ERROR;
4487 ufshcd_clear_eh_in_progress(hba);
4488 spin_unlock_irqrestore(hba->host->host_lock, flags);
4489
4490 if (ret)
4491 dev_err(hba->dev, "%s: link recovery failed, err %d",
4492 __func__, ret);
4493
4494 return ret;
4495 }
4496 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4497
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4498 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4499 {
4500 struct uic_command uic_cmd = {
4501 .command = UIC_CMD_DME_HIBER_ENTER,
4502 };
4503 ktime_t start = ktime_get();
4504 int ret;
4505
4506 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4507
4508 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4509 trace_ufshcd_profile_hibern8(hba, "enter",
4510 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4511
4512 if (ret)
4513 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4514 __func__, ret);
4515 else
4516 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4517 POST_CHANGE);
4518
4519 return ret;
4520 }
4521 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4522
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4523 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4524 {
4525 struct uic_command uic_cmd = {
4526 .command = UIC_CMD_DME_HIBER_EXIT,
4527 };
4528 int ret;
4529 ktime_t start = ktime_get();
4530
4531 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4532
4533 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4534 trace_ufshcd_profile_hibern8(hba, "exit",
4535 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4536
4537 if (ret) {
4538 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4539 __func__, ret);
4540 } else {
4541 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4542 POST_CHANGE);
4543 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4544 hba->ufs_stats.hibern8_exit_cnt++;
4545 }
4546
4547 return ret;
4548 }
4549 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4550
ufshcd_configure_auto_hibern8(struct ufs_hba * hba)4551 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4552 {
4553 if (!ufshcd_is_auto_hibern8_supported(hba))
4554 return;
4555
4556 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4557 }
4558
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4559 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4560 {
4561 const u32 cur_ahit = READ_ONCE(hba->ahit);
4562
4563 if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4564 return;
4565
4566 WRITE_ONCE(hba->ahit, ahit);
4567 if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4568 ufshcd_rpm_get_sync(hba);
4569 ufshcd_hold(hba);
4570 ufshcd_configure_auto_hibern8(hba);
4571 ufshcd_release(hba);
4572 ufshcd_rpm_put_sync(hba);
4573 }
4574 }
4575 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4576
4577 /**
4578 * ufshcd_init_pwr_info - setting the POR (power on reset)
4579 * values in hba power info
4580 * @hba: per-adapter instance
4581 */
ufshcd_init_pwr_info(struct ufs_hba * hba)4582 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4583 {
4584 hba->pwr_info.gear_rx = UFS_PWM_G1;
4585 hba->pwr_info.gear_tx = UFS_PWM_G1;
4586 hba->pwr_info.lane_rx = UFS_LANE_1;
4587 hba->pwr_info.lane_tx = UFS_LANE_1;
4588 hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4589 hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4590 hba->pwr_info.hs_rate = 0;
4591 }
4592
4593 /**
4594 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4595 * @hba: per-adapter instance
4596 *
4597 * Return: 0 upon success; < 0 upon failure.
4598 */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4599 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4600 {
4601 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4602
4603 if (hba->max_pwr_info.is_valid)
4604 return 0;
4605
4606 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4607 pwr_info->pwr_tx = FASTAUTO_MODE;
4608 pwr_info->pwr_rx = FASTAUTO_MODE;
4609 } else {
4610 pwr_info->pwr_tx = FAST_MODE;
4611 pwr_info->pwr_rx = FAST_MODE;
4612 }
4613 pwr_info->hs_rate = PA_HS_MODE_B;
4614
4615 /* Get the connected lane count */
4616 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4617 &pwr_info->lane_rx);
4618 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4619 &pwr_info->lane_tx);
4620
4621 if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4622 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4623 __func__,
4624 pwr_info->lane_rx,
4625 pwr_info->lane_tx);
4626 return -EINVAL;
4627 }
4628
4629 if (pwr_info->lane_rx != pwr_info->lane_tx) {
4630 dev_err(hba->dev, "%s: asymmetric connected lanes. rx=%d, tx=%d\n",
4631 __func__,
4632 pwr_info->lane_rx,
4633 pwr_info->lane_tx);
4634 return -EINVAL;
4635 }
4636
4637 /*
4638 * First, get the maximum gears of HS speed.
4639 * If a zero value, it means there is no HSGEAR capability.
4640 * Then, get the maximum gears of PWM speed.
4641 */
4642 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4643 if (!pwr_info->gear_rx) {
4644 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4645 &pwr_info->gear_rx);
4646 if (!pwr_info->gear_rx) {
4647 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4648 __func__, pwr_info->gear_rx);
4649 return -EINVAL;
4650 }
4651 pwr_info->pwr_rx = SLOW_MODE;
4652 }
4653
4654 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4655 &pwr_info->gear_tx);
4656 if (!pwr_info->gear_tx) {
4657 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4658 &pwr_info->gear_tx);
4659 if (!pwr_info->gear_tx) {
4660 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4661 __func__, pwr_info->gear_tx);
4662 return -EINVAL;
4663 }
4664 pwr_info->pwr_tx = SLOW_MODE;
4665 }
4666
4667 hba->max_pwr_info.is_valid = true;
4668 return 0;
4669 }
4670
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4671 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4672 struct ufs_pa_layer_attr *pwr_mode)
4673 {
4674 int ret;
4675
4676 /* if already configured to the requested pwr_mode */
4677 if (!hba->force_pmc &&
4678 pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4679 pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4680 pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4681 pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4682 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4683 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4684 pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4685 dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4686 return 0;
4687 }
4688
4689 /*
4690 * Configure attributes for power mode change with below.
4691 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4692 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4693 * - PA_HSSERIES
4694 */
4695 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4696 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4697 pwr_mode->lane_rx);
4698 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4699 pwr_mode->pwr_rx == FAST_MODE)
4700 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4701 else
4702 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4703
4704 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4705 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4706 pwr_mode->lane_tx);
4707 if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4708 pwr_mode->pwr_tx == FAST_MODE)
4709 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4710 else
4711 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4712
4713 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4714 pwr_mode->pwr_tx == FASTAUTO_MODE ||
4715 pwr_mode->pwr_rx == FAST_MODE ||
4716 pwr_mode->pwr_tx == FAST_MODE)
4717 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4718 pwr_mode->hs_rate);
4719
4720 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4721 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4722 DL_FC0ProtectionTimeOutVal_Default);
4723 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4724 DL_TC0ReplayTimeOutVal_Default);
4725 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4726 DL_AFC0ReqTimeOutVal_Default);
4727 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4728 DL_FC1ProtectionTimeOutVal_Default);
4729 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4730 DL_TC1ReplayTimeOutVal_Default);
4731 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4732 DL_AFC1ReqTimeOutVal_Default);
4733
4734 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4735 DL_FC0ProtectionTimeOutVal_Default);
4736 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4737 DL_TC0ReplayTimeOutVal_Default);
4738 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4739 DL_AFC0ReqTimeOutVal_Default);
4740 }
4741
4742 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4743 | pwr_mode->pwr_tx);
4744
4745 if (ret) {
4746 dev_err(hba->dev,
4747 "%s: power mode change failed %d\n", __func__, ret);
4748 } else {
4749 memcpy(&hba->pwr_info, pwr_mode,
4750 sizeof(struct ufs_pa_layer_attr));
4751 }
4752
4753 return ret;
4754 }
4755
4756 /**
4757 * ufshcd_config_pwr_mode - configure a new power mode
4758 * @hba: per-adapter instance
4759 * @desired_pwr_mode: desired power configuration
4760 *
4761 * Return: 0 upon success; < 0 upon failure.
4762 */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4763 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4764 struct ufs_pa_layer_attr *desired_pwr_mode)
4765 {
4766 struct ufs_pa_layer_attr final_params = { 0 };
4767 int ret;
4768
4769 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4770 desired_pwr_mode, &final_params);
4771
4772 if (ret)
4773 memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4774
4775 ret = ufshcd_change_power_mode(hba, &final_params);
4776
4777 if (!ret)
4778 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4779 &final_params);
4780
4781 return ret;
4782 }
4783 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4784
4785 /**
4786 * ufshcd_complete_dev_init() - checks device readiness
4787 * @hba: per-adapter instance
4788 *
4789 * Set fDeviceInit flag and poll until device toggles it.
4790 *
4791 * Return: 0 upon success; < 0 upon failure.
4792 */
ufshcd_complete_dev_init(struct ufs_hba * hba)4793 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4794 {
4795 int err;
4796 bool flag_res = true;
4797 ktime_t timeout;
4798
4799 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4800 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4801 if (err) {
4802 dev_err(hba->dev,
4803 "%s: setting fDeviceInit flag failed with error %d\n",
4804 __func__, err);
4805 goto out;
4806 }
4807
4808 /* Poll fDeviceInit flag to be cleared */
4809 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4810 do {
4811 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4812 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4813 if (!flag_res)
4814 break;
4815 usleep_range(500, 1000);
4816 } while (ktime_before(ktime_get(), timeout));
4817
4818 if (err) {
4819 dev_err(hba->dev,
4820 "%s: reading fDeviceInit flag failed with error %d\n",
4821 __func__, err);
4822 } else if (flag_res) {
4823 dev_err(hba->dev,
4824 "%s: fDeviceInit was not cleared by the device\n",
4825 __func__);
4826 err = -EBUSY;
4827 }
4828 out:
4829 return err;
4830 }
4831
4832 /**
4833 * ufshcd_make_hba_operational - Make UFS controller operational
4834 * @hba: per adapter instance
4835 *
4836 * To bring UFS host controller to operational state,
4837 * 1. Enable required interrupts
4838 * 2. Configure interrupt aggregation
4839 * 3. Program UTRL and UTMRL base address
4840 * 4. Configure run-stop-registers
4841 *
4842 * Return: 0 if successful; < 0 upon failure.
4843 */
ufshcd_make_hba_operational(struct ufs_hba * hba)4844 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4845 {
4846 int err = 0;
4847 u32 reg;
4848
4849 /* Enable required interrupts */
4850 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4851
4852 /* Configure interrupt aggregation */
4853 if (ufshcd_is_intr_aggr_allowed(hba))
4854 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4855 else
4856 ufshcd_disable_intr_aggr(hba);
4857
4858 /* Configure UTRL and UTMRL base address registers */
4859 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4860 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4861 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4862 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4863 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4864 REG_UTP_TASK_REQ_LIST_BASE_L);
4865 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4866 REG_UTP_TASK_REQ_LIST_BASE_H);
4867
4868 /*
4869 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4870 */
4871 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4872 if (!(ufshcd_get_lists_status(reg))) {
4873 ufshcd_enable_run_stop_reg(hba);
4874 } else {
4875 dev_err(hba->dev,
4876 "Host controller not ready to process requests");
4877 err = -EIO;
4878 }
4879
4880 return err;
4881 }
4882 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4883
4884 /**
4885 * ufshcd_hba_stop - Send controller to reset state
4886 * @hba: per adapter instance
4887 */
ufshcd_hba_stop(struct ufs_hba * hba)4888 void ufshcd_hba_stop(struct ufs_hba *hba)
4889 {
4890 int err;
4891
4892 ufshcd_disable_irq(hba);
4893 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE);
4894 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4895 CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4896 10, 1);
4897 ufshcd_enable_irq(hba);
4898 if (err)
4899 dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4900 }
4901 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4902
4903 /**
4904 * ufshcd_hba_execute_hce - initialize the controller
4905 * @hba: per adapter instance
4906 *
4907 * The controller resets itself and controller firmware initialization
4908 * sequence kicks off. When controller is ready it will set
4909 * the Host Controller Enable bit to 1.
4910 *
4911 * Return: 0 on success, non-zero value on failure.
4912 */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4913 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4914 {
4915 int retry;
4916
4917 for (retry = 3; retry > 0; retry--) {
4918 if (ufshcd_is_hba_active(hba))
4919 /* change controller state to "reset state" */
4920 ufshcd_hba_stop(hba);
4921
4922 /* UniPro link is disabled at this point */
4923 ufshcd_set_link_off(hba);
4924
4925 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4926
4927 /* start controller initialization sequence */
4928 ufshcd_hba_start(hba);
4929
4930 /*
4931 * To initialize a UFS host controller HCE bit must be set to 1.
4932 * During initialization the HCE bit value changes from 1->0->1.
4933 * When the host controller completes initialization sequence
4934 * it sets the value of HCE bit to 1. The same HCE bit is read back
4935 * to check if the controller has completed initialization sequence.
4936 * So without this delay the value HCE = 1, set in the previous
4937 * instruction might be read back.
4938 * This delay can be changed based on the controller.
4939 */
4940 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4941
4942 /* wait for the host controller to complete initialization */
4943 if (!ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE,
4944 CONTROLLER_ENABLE, 1000, 50))
4945 break;
4946
4947 dev_err(hba->dev, "Enabling the controller failed\n");
4948 }
4949
4950 if (!retry)
4951 return -EIO;
4952
4953 /* enable UIC related interrupts */
4954 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4955
4956 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4957
4958 return 0;
4959 }
4960
ufshcd_hba_enable(struct ufs_hba * hba)4961 int ufshcd_hba_enable(struct ufs_hba *hba)
4962 {
4963 int ret;
4964
4965 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4966 ufshcd_set_link_off(hba);
4967 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4968
4969 /* enable UIC related interrupts */
4970 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4971 ret = ufshcd_dme_reset(hba);
4972 if (ret) {
4973 dev_err(hba->dev, "DME_RESET failed\n");
4974 return ret;
4975 }
4976
4977 ret = ufshcd_dme_enable(hba);
4978 if (ret) {
4979 dev_err(hba->dev, "Enabling DME failed\n");
4980 return ret;
4981 }
4982
4983 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4984 } else {
4985 ret = ufshcd_hba_execute_hce(hba);
4986 }
4987
4988 return ret;
4989 }
4990 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4991
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4992 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4993 {
4994 int tx_lanes = 0, i, err = 0;
4995
4996 if (!peer)
4997 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4998 &tx_lanes);
4999 else
5000 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
5001 &tx_lanes);
5002 for (i = 0; i < tx_lanes; i++) {
5003 if (!peer)
5004 err = ufshcd_dme_set(hba,
5005 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
5006 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
5007 0);
5008 else
5009 err = ufshcd_dme_peer_set(hba,
5010 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
5011 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
5012 0);
5013 if (err) {
5014 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
5015 __func__, peer, i, err);
5016 break;
5017 }
5018 }
5019
5020 return err;
5021 }
5022
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)5023 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
5024 {
5025 return ufshcd_disable_tx_lcc(hba, true);
5026 }
5027
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)5028 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
5029 {
5030 struct ufs_event_hist *e;
5031
5032 if (id >= UFS_EVT_CNT)
5033 return;
5034
5035 e = &hba->ufs_stats.event[id];
5036 e->val[e->pos] = val;
5037 e->tstamp[e->pos] = local_clock();
5038 e->cnt += 1;
5039 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
5040
5041 ufshcd_vops_event_notify(hba, id, &val);
5042 }
5043 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
5044
5045 /**
5046 * ufshcd_link_startup - Initialize unipro link startup
5047 * @hba: per adapter instance
5048 *
5049 * Return: 0 for success, non-zero in case of failure.
5050 */
ufshcd_link_startup(struct ufs_hba * hba)5051 static int ufshcd_link_startup(struct ufs_hba *hba)
5052 {
5053 int ret;
5054 int retries = DME_LINKSTARTUP_RETRIES;
5055 bool link_startup_again = false;
5056
5057 /*
5058 * If UFS device isn't active then we will have to issue link startup
5059 * 2 times to make sure the device state move to active.
5060 */
5061 if (!ufshcd_is_ufs_dev_active(hba))
5062 link_startup_again = true;
5063
5064 link_startup:
5065 do {
5066 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
5067
5068 ret = ufshcd_dme_link_startup(hba);
5069
5070 /* check if device is detected by inter-connect layer */
5071 if (!ret && !ufshcd_is_device_present(hba)) {
5072 ufshcd_update_evt_hist(hba,
5073 UFS_EVT_LINK_STARTUP_FAIL,
5074 0);
5075 dev_err(hba->dev, "%s: Device not present\n", __func__);
5076 ret = -ENXIO;
5077 goto out;
5078 }
5079
5080 /*
5081 * DME link lost indication is only received when link is up,
5082 * but we can't be sure if the link is up until link startup
5083 * succeeds. So reset the local Uni-Pro and try again.
5084 */
5085 if (ret && retries && ufshcd_hba_enable(hba)) {
5086 ufshcd_update_evt_hist(hba,
5087 UFS_EVT_LINK_STARTUP_FAIL,
5088 (u32)ret);
5089 goto out;
5090 }
5091 } while (ret && retries--);
5092
5093 if (ret) {
5094 /* failed to get the link up... retire */
5095 ufshcd_update_evt_hist(hba,
5096 UFS_EVT_LINK_STARTUP_FAIL,
5097 (u32)ret);
5098 goto out;
5099 }
5100
5101 if (link_startup_again) {
5102 link_startup_again = false;
5103 retries = DME_LINKSTARTUP_RETRIES;
5104 goto link_startup;
5105 }
5106
5107 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5108 ufshcd_init_pwr_info(hba);
5109 ufshcd_print_pwr_info(hba);
5110
5111 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5112 ret = ufshcd_disable_device_tx_lcc(hba);
5113 if (ret)
5114 goto out;
5115 }
5116
5117 /* Include any host controller configuration via UIC commands */
5118 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5119 if (ret)
5120 goto out;
5121
5122 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5123 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5124 ret = ufshcd_make_hba_operational(hba);
5125 out:
5126 if (ret) {
5127 dev_err(hba->dev, "link startup failed %d\n", ret);
5128 ufshcd_print_host_state(hba);
5129 ufshcd_print_pwr_info(hba);
5130 ufshcd_print_evt_hist(hba);
5131 }
5132 return ret;
5133 }
5134
5135 /**
5136 * ufshcd_verify_dev_init() - Verify device initialization
5137 * @hba: per-adapter instance
5138 *
5139 * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5140 * device Transport Protocol (UTP) layer is ready after a reset.
5141 * If the UTP layer at the device side is not initialized, it may
5142 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5143 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5144 *
5145 * Return: 0 upon success; < 0 upon failure.
5146 */
ufshcd_verify_dev_init(struct ufs_hba * hba)5147 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5148 {
5149 int err = 0;
5150 int retries;
5151
5152 ufshcd_dev_man_lock(hba);
5153
5154 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5155 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5156 hba->nop_out_timeout);
5157
5158 if (!err || err == -ETIMEDOUT)
5159 break;
5160
5161 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5162 }
5163
5164 ufshcd_dev_man_unlock(hba);
5165
5166 if (err)
5167 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5168 return err;
5169 }
5170
5171 /**
5172 * ufshcd_setup_links - associate link b/w device wlun and other luns
5173 * @sdev: pointer to SCSI device
5174 * @hba: pointer to ufs hba
5175 */
ufshcd_setup_links(struct ufs_hba * hba,struct scsi_device * sdev)5176 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5177 {
5178 struct device_link *link;
5179
5180 /*
5181 * Device wlun is the supplier & rest of the luns are consumers.
5182 * This ensures that device wlun suspends after all other luns.
5183 */
5184 if (hba->ufs_device_wlun) {
5185 link = device_link_add(&sdev->sdev_gendev,
5186 &hba->ufs_device_wlun->sdev_gendev,
5187 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5188 if (!link) {
5189 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5190 dev_name(&hba->ufs_device_wlun->sdev_gendev));
5191 return;
5192 }
5193 hba->luns_avail--;
5194 /* Ignore REPORT_LUN wlun probing */
5195 if (hba->luns_avail == 1) {
5196 ufshcd_rpm_put(hba);
5197 return;
5198 }
5199 } else {
5200 /*
5201 * Device wlun is probed. The assumption is that WLUNs are
5202 * scanned before other LUNs.
5203 */
5204 hba->luns_avail--;
5205 }
5206 }
5207
5208 /**
5209 * ufshcd_lu_init - Initialize the relevant parameters of the LU
5210 * @hba: per-adapter instance
5211 * @sdev: pointer to SCSI device
5212 */
ufshcd_lu_init(struct ufs_hba * hba,struct scsi_device * sdev)5213 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5214 {
5215 int len = QUERY_DESC_MAX_SIZE;
5216 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5217 u8 lun_qdepth = hba->nutrs;
5218 u8 *desc_buf;
5219 int ret;
5220
5221 desc_buf = kzalloc(len, GFP_KERNEL);
5222 if (!desc_buf)
5223 goto set_qdepth;
5224
5225 ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5226 if (ret < 0) {
5227 if (ret == -EOPNOTSUPP)
5228 /* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5229 lun_qdepth = 1;
5230 kfree(desc_buf);
5231 goto set_qdepth;
5232 }
5233
5234 if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5235 /*
5236 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5237 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5238 */
5239 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5240 }
5241 /*
5242 * According to UFS device specification, the write protection mode is only supported by
5243 * normal LU, not supported by WLUN.
5244 */
5245 if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5246 !hba->dev_info.is_lu_power_on_wp &&
5247 desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5248 hba->dev_info.is_lu_power_on_wp = true;
5249
5250 /* In case of RPMB LU, check if advanced RPMB mode is enabled */
5251 if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5252 desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5253 hba->dev_info.b_advanced_rpmb_en = true;
5254
5255
5256 kfree(desc_buf);
5257 set_qdepth:
5258 /*
5259 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5260 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5261 */
5262 dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5263 scsi_change_queue_depth(sdev, lun_qdepth);
5264 }
5265
5266 /**
5267 * ufshcd_sdev_init - handle initial SCSI device configurations
5268 * @sdev: pointer to SCSI device
5269 *
5270 * Return: success.
5271 */
ufshcd_sdev_init(struct scsi_device * sdev)5272 static int ufshcd_sdev_init(struct scsi_device *sdev)
5273 {
5274 struct ufs_hba *hba;
5275
5276 hba = shost_priv(sdev->host);
5277
5278 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5279 sdev->use_10_for_ms = 1;
5280
5281 /* DBD field should be set to 1 in mode sense(10) */
5282 sdev->set_dbd_for_ms = 1;
5283
5284 /* allow SCSI layer to restart the device in case of errors */
5285 sdev->allow_restart = 1;
5286
5287 /* REPORT SUPPORTED OPERATION CODES is not supported */
5288 sdev->no_report_opcodes = 1;
5289
5290 /* WRITE_SAME command is not supported */
5291 sdev->no_write_same = 1;
5292
5293 ufshcd_lu_init(hba, sdev);
5294
5295 ufshcd_setup_links(hba, sdev);
5296
5297 return 0;
5298 }
5299
5300 /**
5301 * ufshcd_change_queue_depth - change queue depth
5302 * @sdev: pointer to SCSI device
5303 * @depth: required depth to set
5304 *
5305 * Change queue depth and make sure the max. limits are not crossed.
5306 *
5307 * Return: new queue depth.
5308 */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)5309 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5310 {
5311 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5312 }
5313
5314 /**
5315 * ufshcd_sdev_configure - adjust SCSI device configurations
5316 * @sdev: pointer to SCSI device
5317 * @lim: queue limits
5318 *
5319 * Return: 0 (success).
5320 */
ufshcd_sdev_configure(struct scsi_device * sdev,struct queue_limits * lim)5321 static int ufshcd_sdev_configure(struct scsi_device *sdev,
5322 struct queue_limits *lim)
5323 {
5324 struct ufs_hba *hba = shost_priv(sdev->host);
5325 struct request_queue *q = sdev->request_queue;
5326
5327 lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1;
5328
5329 /*
5330 * Block runtime-pm until all consumers are added.
5331 * Refer ufshcd_setup_links().
5332 */
5333 if (is_device_wlun(sdev))
5334 pm_runtime_get_noresume(&sdev->sdev_gendev);
5335 else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5336 sdev->rpm_autosuspend = 1;
5337 /*
5338 * Do not print messages during runtime PM to avoid never-ending cycles
5339 * of messages written back to storage by user space causing runtime
5340 * resume, causing more messages and so on.
5341 */
5342 sdev->silence_suspend = 1;
5343
5344 if (hba->vops && hba->vops->config_scsi_dev)
5345 hba->vops->config_scsi_dev(sdev);
5346
5347 ufshcd_crypto_register(hba, q);
5348
5349 return 0;
5350 }
5351
5352 /**
5353 * ufshcd_sdev_destroy - remove SCSI device configurations
5354 * @sdev: pointer to SCSI device
5355 */
ufshcd_sdev_destroy(struct scsi_device * sdev)5356 static void ufshcd_sdev_destroy(struct scsi_device *sdev)
5357 {
5358 struct ufs_hba *hba;
5359 unsigned long flags;
5360
5361 hba = shost_priv(sdev->host);
5362
5363 /* Drop the reference as it won't be needed anymore */
5364 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5365 spin_lock_irqsave(hba->host->host_lock, flags);
5366 hba->ufs_device_wlun = NULL;
5367 spin_unlock_irqrestore(hba->host->host_lock, flags);
5368 } else if (hba->ufs_device_wlun) {
5369 struct device *supplier = NULL;
5370
5371 /* Ensure UFS Device WLUN exists and does not disappear */
5372 spin_lock_irqsave(hba->host->host_lock, flags);
5373 if (hba->ufs_device_wlun) {
5374 supplier = &hba->ufs_device_wlun->sdev_gendev;
5375 get_device(supplier);
5376 }
5377 spin_unlock_irqrestore(hba->host->host_lock, flags);
5378
5379 if (supplier) {
5380 /*
5381 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5382 * device will not have been registered but can still
5383 * have a device link holding a reference to the device.
5384 */
5385 device_link_remove(&sdev->sdev_gendev, supplier);
5386 put_device(supplier);
5387 }
5388 }
5389 }
5390
5391 /**
5392 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5393 * @lrbp: pointer to local reference block of completed command
5394 * @scsi_status: SCSI command status
5395 *
5396 * Return: value base on SCSI command status.
5397 */
5398 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)5399 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5400 {
5401 int result = 0;
5402
5403 switch (scsi_status) {
5404 case SAM_STAT_CHECK_CONDITION:
5405 ufshcd_copy_sense_data(lrbp);
5406 fallthrough;
5407 case SAM_STAT_GOOD:
5408 result |= DID_OK << 16 | scsi_status;
5409 break;
5410 case SAM_STAT_TASK_SET_FULL:
5411 case SAM_STAT_BUSY:
5412 case SAM_STAT_TASK_ABORTED:
5413 ufshcd_copy_sense_data(lrbp);
5414 result |= scsi_status;
5415 break;
5416 default:
5417 result |= DID_ERROR << 16;
5418 break;
5419 } /* end of switch */
5420
5421 return result;
5422 }
5423
5424 /**
5425 * ufshcd_transfer_rsp_status - Get overall status of the response
5426 * @hba: per adapter instance
5427 * @lrbp: pointer to local reference block of completed command
5428 * @cqe: pointer to the completion queue entry
5429 *
5430 * Return: result of the command to notify SCSI midlayer.
5431 */
5432 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct cq_entry * cqe)5433 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5434 struct cq_entry *cqe)
5435 {
5436 int result = 0;
5437 int scsi_status;
5438 enum utp_ocs ocs;
5439 u8 upiu_flags;
5440 u32 resid;
5441
5442 upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5443 resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5444 /*
5445 * Test !overflow instead of underflow to support UFS devices that do
5446 * not set either flag.
5447 */
5448 if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5449 scsi_set_resid(lrbp->cmd, resid);
5450
5451 /* overall command status of utrd */
5452 ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5453
5454 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5455 if (lrbp->ucd_rsp_ptr->header.response ||
5456 lrbp->ucd_rsp_ptr->header.status)
5457 ocs = OCS_SUCCESS;
5458 }
5459
5460 switch (ocs) {
5461 case OCS_SUCCESS:
5462 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5463 switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5464 case UPIU_TRANSACTION_RESPONSE:
5465 /*
5466 * get the result based on SCSI status response
5467 * to notify the SCSI midlayer of the command status
5468 */
5469 scsi_status = lrbp->ucd_rsp_ptr->header.status;
5470 result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5471
5472 /*
5473 * Currently we are only supporting BKOPs exception
5474 * events hence we can ignore BKOPs exception event
5475 * during power management callbacks. BKOPs exception
5476 * event is not expected to be raised in runtime suspend
5477 * callback as it allows the urgent bkops.
5478 * During system suspend, we are anyway forcefully
5479 * disabling the bkops and if urgent bkops is needed
5480 * it will be enabled on system resume. Long term
5481 * solution could be to abort the system suspend if
5482 * UFS device needs urgent BKOPs.
5483 */
5484 if (!hba->pm_op_in_progress &&
5485 !ufshcd_eh_in_progress(hba) &&
5486 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5487 /* Flushed in suspend */
5488 schedule_work(&hba->eeh_work);
5489 break;
5490 case UPIU_TRANSACTION_REJECT_UPIU:
5491 /* TODO: handle Reject UPIU Response */
5492 result = DID_ERROR << 16;
5493 dev_err(hba->dev,
5494 "Reject UPIU not fully implemented\n");
5495 break;
5496 default:
5497 dev_err(hba->dev,
5498 "Unexpected request response code = %x\n",
5499 result);
5500 result = DID_ERROR << 16;
5501 break;
5502 }
5503 break;
5504 case OCS_ABORTED:
5505 case OCS_INVALID_COMMAND_STATUS:
5506 result |= DID_REQUEUE << 16;
5507 dev_warn(hba->dev,
5508 "OCS %s from controller for tag %d\n",
5509 (ocs == OCS_ABORTED ? "aborted" : "invalid"),
5510 lrbp->task_tag);
5511 break;
5512 case OCS_INVALID_CMD_TABLE_ATTR:
5513 case OCS_INVALID_PRDT_ATTR:
5514 case OCS_MISMATCH_DATA_BUF_SIZE:
5515 case OCS_MISMATCH_RESP_UPIU_SIZE:
5516 case OCS_PEER_COMM_FAILURE:
5517 case OCS_FATAL_ERROR:
5518 case OCS_DEVICE_FATAL_ERROR:
5519 case OCS_INVALID_CRYPTO_CONFIG:
5520 case OCS_GENERAL_CRYPTO_ERROR:
5521 default:
5522 result |= DID_ERROR << 16;
5523 dev_err(hba->dev,
5524 "OCS error from controller = %x for tag %d\n",
5525 ocs, lrbp->task_tag);
5526 ufshcd_print_evt_hist(hba);
5527 ufshcd_print_host_state(hba);
5528 break;
5529 } /* end of switch */
5530
5531 if ((host_byte(result) != DID_OK) &&
5532 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5533 ufshcd_print_tr(hba, lrbp->task_tag, true);
5534 return result;
5535 }
5536
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5537 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5538 u32 intr_mask)
5539 {
5540 if (!ufshcd_is_auto_hibern8_supported(hba) ||
5541 !ufshcd_is_auto_hibern8_enabled(hba))
5542 return false;
5543
5544 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5545 return false;
5546
5547 if (hba->active_uic_cmd &&
5548 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5549 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5550 return false;
5551
5552 return true;
5553 }
5554
5555 /**
5556 * ufshcd_uic_cmd_compl - handle completion of uic command
5557 * @hba: per adapter instance
5558 * @intr_status: interrupt status generated by the controller
5559 *
5560 * Return:
5561 * IRQ_HANDLED - If interrupt is valid
5562 * IRQ_NONE - If invalid interrupt
5563 */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5564 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5565 {
5566 irqreturn_t retval = IRQ_NONE;
5567 struct uic_command *cmd;
5568
5569 spin_lock(hba->host->host_lock);
5570 cmd = hba->active_uic_cmd;
5571 if (WARN_ON_ONCE(!cmd))
5572 goto unlock;
5573
5574 if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5575 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5576
5577 if (intr_status & UIC_COMMAND_COMPL) {
5578 cmd->argument2 |= ufshcd_get_uic_cmd_result(hba);
5579 cmd->argument3 = ufshcd_get_dme_attr_val(hba);
5580 if (!hba->uic_async_done)
5581 cmd->cmd_active = 0;
5582 complete(&cmd->done);
5583 retval = IRQ_HANDLED;
5584 }
5585
5586 if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) {
5587 cmd->cmd_active = 0;
5588 complete(hba->uic_async_done);
5589 retval = IRQ_HANDLED;
5590 }
5591
5592 if (retval == IRQ_HANDLED)
5593 ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP);
5594
5595 unlock:
5596 spin_unlock(hba->host->host_lock);
5597
5598 return retval;
5599 }
5600
5601 /* Release the resources allocated for processing a SCSI command. */
ufshcd_release_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5602 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5603 struct ufshcd_lrb *lrbp)
5604 {
5605 struct scsi_cmnd *cmd = lrbp->cmd;
5606
5607 scsi_dma_unmap(cmd);
5608 ufshcd_crypto_clear_prdt(hba, lrbp);
5609 ufshcd_release(hba);
5610 ufshcd_clk_scaling_update_busy(hba);
5611 }
5612
5613 /**
5614 * ufshcd_compl_one_cqe - handle a completion queue entry
5615 * @hba: per adapter instance
5616 * @task_tag: the task tag of the request to be completed
5617 * @cqe: pointer to the completion queue entry
5618 */
ufshcd_compl_one_cqe(struct ufs_hba * hba,int task_tag,struct cq_entry * cqe)5619 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5620 struct cq_entry *cqe)
5621 {
5622 struct ufshcd_lrb *lrbp;
5623 struct scsi_cmnd *cmd;
5624 enum utp_ocs ocs;
5625
5626 lrbp = &hba->lrb[task_tag];
5627 lrbp->compl_time_stamp = ktime_get();
5628 lrbp->compl_time_stamp_local_clock = local_clock();
5629 cmd = lrbp->cmd;
5630 if (cmd) {
5631 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5632 ufshcd_update_monitor(hba, lrbp);
5633 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5634 cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5635 ufshcd_release_scsi_cmd(hba, lrbp);
5636 /* Do not touch lrbp after scsi done */
5637 scsi_done(cmd);
5638 } else {
5639 if (cqe) {
5640 ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5641 lrbp->utr_descriptor_ptr->header.ocs = ocs;
5642 }
5643 complete(&hba->dev_cmd.complete);
5644 }
5645 }
5646
5647 /**
5648 * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5649 * @hba: per adapter instance
5650 * @completed_reqs: bitmask that indicates which requests to complete
5651 */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)5652 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5653 unsigned long completed_reqs)
5654 {
5655 int tag;
5656
5657 for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5658 ufshcd_compl_one_cqe(hba, tag, NULL);
5659 }
5660
5661 /* Any value that is not an existing queue number is fine for this constant. */
5662 enum {
5663 UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5664 };
5665
ufshcd_clear_polled(struct ufs_hba * hba,unsigned long * completed_reqs)5666 static void ufshcd_clear_polled(struct ufs_hba *hba,
5667 unsigned long *completed_reqs)
5668 {
5669 int tag;
5670
5671 for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5672 struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5673
5674 if (!cmd)
5675 continue;
5676 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5677 __clear_bit(tag, completed_reqs);
5678 }
5679 }
5680
5681 /*
5682 * Return: > 0 if one or more commands have been completed or 0 if no
5683 * requests have been completed.
5684 */
ufshcd_poll(struct Scsi_Host * shost,unsigned int queue_num)5685 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5686 {
5687 struct ufs_hba *hba = shost_priv(shost);
5688 unsigned long completed_reqs, flags;
5689 u32 tr_doorbell;
5690 struct ufs_hw_queue *hwq;
5691
5692 if (hba->mcq_enabled) {
5693 hwq = &hba->uhq[queue_num];
5694
5695 return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5696 }
5697
5698 spin_lock_irqsave(&hba->outstanding_lock, flags);
5699 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5700 completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5701 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5702 "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5703 hba->outstanding_reqs);
5704 if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5705 /* Do not complete polled requests from interrupt context. */
5706 ufshcd_clear_polled(hba, &completed_reqs);
5707 }
5708 hba->outstanding_reqs &= ~completed_reqs;
5709 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5710
5711 if (completed_reqs)
5712 __ufshcd_transfer_req_compl(hba, completed_reqs);
5713
5714 return completed_reqs != 0;
5715 }
5716
5717 /**
5718 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5719 * invoked from the error handler context or ufshcd_host_reset_and_restore()
5720 * to complete the pending transfers and free the resources associated with
5721 * the scsi command.
5722 *
5723 * @hba: per adapter instance
5724 * @force_compl: This flag is set to true when invoked
5725 * from ufshcd_host_reset_and_restore() in which case it requires special
5726 * handling because the host controller has been reset by ufshcd_hba_stop().
5727 */
ufshcd_mcq_compl_pending_transfer(struct ufs_hba * hba,bool force_compl)5728 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5729 bool force_compl)
5730 {
5731 struct ufs_hw_queue *hwq;
5732 struct ufshcd_lrb *lrbp;
5733 struct scsi_cmnd *cmd;
5734 unsigned long flags;
5735 int tag;
5736
5737 for (tag = 0; tag < hba->nutrs; tag++) {
5738 lrbp = &hba->lrb[tag];
5739 cmd = lrbp->cmd;
5740 if (!ufshcd_cmd_inflight(cmd) ||
5741 test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5742 continue;
5743
5744 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
5745 if (!hwq)
5746 continue;
5747
5748 if (force_compl) {
5749 ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5750 /*
5751 * For those cmds of which the cqes are not present
5752 * in the cq, complete them explicitly.
5753 */
5754 spin_lock_irqsave(&hwq->cq_lock, flags);
5755 if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5756 set_host_byte(cmd, DID_REQUEUE);
5757 ufshcd_release_scsi_cmd(hba, lrbp);
5758 scsi_done(cmd);
5759 }
5760 spin_unlock_irqrestore(&hwq->cq_lock, flags);
5761 } else {
5762 ufshcd_mcq_poll_cqe_lock(hba, hwq);
5763 }
5764 }
5765 }
5766
5767 /**
5768 * ufshcd_transfer_req_compl - handle SCSI and query command completion
5769 * @hba: per adapter instance
5770 *
5771 * Return:
5772 * IRQ_HANDLED - If interrupt is valid
5773 * IRQ_NONE - If invalid interrupt
5774 */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5775 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5776 {
5777 /* Resetting interrupt aggregation counters first and reading the
5778 * DOOR_BELL afterward allows us to handle all the completed requests.
5779 * In order to prevent other interrupts starvation the DB is read once
5780 * after reset. The down side of this solution is the possibility of
5781 * false interrupt if device completes another request after resetting
5782 * aggregation and before reading the DB.
5783 */
5784 if (ufshcd_is_intr_aggr_allowed(hba) &&
5785 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5786 ufshcd_reset_intr_aggr(hba);
5787
5788 if (ufs_fail_completion(hba))
5789 return IRQ_HANDLED;
5790
5791 /*
5792 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5793 * do not want polling to trigger spurious interrupt complaints.
5794 */
5795 ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5796
5797 return IRQ_HANDLED;
5798 }
5799
__ufshcd_write_ee_control(struct ufs_hba * hba,u32 ee_ctrl_mask)5800 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5801 {
5802 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5803 QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5804 &ee_ctrl_mask);
5805 }
5806
ufshcd_write_ee_control(struct ufs_hba * hba)5807 int ufshcd_write_ee_control(struct ufs_hba *hba)
5808 {
5809 int err;
5810
5811 mutex_lock(&hba->ee_ctrl_mutex);
5812 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5813 mutex_unlock(&hba->ee_ctrl_mutex);
5814 if (err)
5815 dev_err(hba->dev, "%s: failed to write ee control %d\n",
5816 __func__, err);
5817 return err;
5818 }
5819
ufshcd_update_ee_control(struct ufs_hba * hba,u16 * mask,const u16 * other_mask,u16 set,u16 clr)5820 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5821 const u16 *other_mask, u16 set, u16 clr)
5822 {
5823 u16 new_mask, ee_ctrl_mask;
5824 int err = 0;
5825
5826 mutex_lock(&hba->ee_ctrl_mutex);
5827 new_mask = (*mask & ~clr) | set;
5828 ee_ctrl_mask = new_mask | *other_mask;
5829 if (ee_ctrl_mask != hba->ee_ctrl_mask)
5830 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5831 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5832 if (!err) {
5833 hba->ee_ctrl_mask = ee_ctrl_mask;
5834 *mask = new_mask;
5835 }
5836 mutex_unlock(&hba->ee_ctrl_mutex);
5837 return err;
5838 }
5839
5840 /**
5841 * ufshcd_disable_ee - disable exception event
5842 * @hba: per-adapter instance
5843 * @mask: exception event to disable
5844 *
5845 * Disables exception event in the device so that the EVENT_ALERT
5846 * bit is not set.
5847 *
5848 * Return: zero on success, non-zero error value on failure.
5849 */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5850 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5851 {
5852 return ufshcd_update_ee_drv_mask(hba, 0, mask);
5853 }
5854
5855 /**
5856 * ufshcd_enable_ee - enable exception event
5857 * @hba: per-adapter instance
5858 * @mask: exception event to enable
5859 *
5860 * Enable corresponding exception event in the device to allow
5861 * device to alert host in critical scenarios.
5862 *
5863 * Return: zero on success, non-zero error value on failure.
5864 */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5865 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5866 {
5867 return ufshcd_update_ee_drv_mask(hba, mask, 0);
5868 }
5869
5870 /**
5871 * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5872 * @hba: per-adapter instance
5873 *
5874 * Allow device to manage background operations on its own. Enabling
5875 * this might lead to inconsistent latencies during normal data transfers
5876 * as the device is allowed to manage its own way of handling background
5877 * operations.
5878 *
5879 * Return: zero on success, non-zero on failure.
5880 */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5881 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5882 {
5883 int err = 0;
5884
5885 if (hba->auto_bkops_enabled)
5886 goto out;
5887
5888 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5889 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5890 if (err) {
5891 dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5892 __func__, err);
5893 goto out;
5894 }
5895
5896 hba->auto_bkops_enabled = true;
5897 trace_ufshcd_auto_bkops_state(hba, "Enabled");
5898
5899 /* No need of URGENT_BKOPS exception from the device */
5900 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5901 if (err)
5902 dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5903 __func__, err);
5904 out:
5905 return err;
5906 }
5907
5908 /**
5909 * ufshcd_disable_auto_bkops - block device in doing background operations
5910 * @hba: per-adapter instance
5911 *
5912 * Disabling background operations improves command response latency but
5913 * has drawback of device moving into critical state where the device is
5914 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5915 * host is idle so that BKOPS are managed effectively without any negative
5916 * impacts.
5917 *
5918 * Return: zero on success, non-zero on failure.
5919 */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5920 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5921 {
5922 int err = 0;
5923
5924 if (!hba->auto_bkops_enabled)
5925 goto out;
5926
5927 /*
5928 * If host assisted BKOPs is to be enabled, make sure
5929 * urgent bkops exception is allowed.
5930 */
5931 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5932 if (err) {
5933 dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5934 __func__, err);
5935 goto out;
5936 }
5937
5938 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5939 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5940 if (err) {
5941 dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5942 __func__, err);
5943 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5944 goto out;
5945 }
5946
5947 hba->auto_bkops_enabled = false;
5948 trace_ufshcd_auto_bkops_state(hba, "Disabled");
5949 hba->is_urgent_bkops_lvl_checked = false;
5950 out:
5951 return err;
5952 }
5953
5954 /**
5955 * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5956 * @hba: per adapter instance
5957 *
5958 * After a device reset the device may toggle the BKOPS_EN flag
5959 * to default value. The s/w tracking variables should be updated
5960 * as well. This function would change the auto-bkops state based on
5961 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5962 */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5963 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5964 {
5965 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5966 hba->auto_bkops_enabled = false;
5967 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5968 ufshcd_enable_auto_bkops(hba);
5969 } else {
5970 hba->auto_bkops_enabled = true;
5971 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5972 ufshcd_disable_auto_bkops(hba);
5973 }
5974 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5975 hba->is_urgent_bkops_lvl_checked = false;
5976 }
5977
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5978 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5979 {
5980 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5981 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5982 }
5983
5984 /**
5985 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5986 * @hba: per-adapter instance
5987 *
5988 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5989 * flag in the device to permit background operations if the device
5990 * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl",
5991 * disable otherwise.
5992 *
5993 * Return: 0 for success, non-zero in case of failure.
5994 *
5995 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5996 * to know whether auto bkops is enabled or disabled after this function
5997 * returns control to it.
5998 */
ufshcd_bkops_ctrl(struct ufs_hba * hba)5999 static int ufshcd_bkops_ctrl(struct ufs_hba *hba)
6000 {
6001 enum bkops_status status = hba->urgent_bkops_lvl;
6002 u32 curr_status = 0;
6003 int err;
6004
6005 err = ufshcd_get_bkops_status(hba, &curr_status);
6006 if (err) {
6007 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
6008 __func__, err);
6009 goto out;
6010 } else if (curr_status > BKOPS_STATUS_MAX) {
6011 dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
6012 __func__, curr_status);
6013 err = -EINVAL;
6014 goto out;
6015 }
6016
6017 if (curr_status >= status)
6018 err = ufshcd_enable_auto_bkops(hba);
6019 else
6020 err = ufshcd_disable_auto_bkops(hba);
6021 out:
6022 return err;
6023 }
6024
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)6025 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
6026 {
6027 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6028 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
6029 }
6030
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)6031 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
6032 {
6033 int err;
6034 u32 curr_status = 0;
6035
6036 if (hba->is_urgent_bkops_lvl_checked)
6037 goto enable_auto_bkops;
6038
6039 err = ufshcd_get_bkops_status(hba, &curr_status);
6040 if (err) {
6041 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
6042 __func__, err);
6043 goto out;
6044 }
6045
6046 /*
6047 * We are seeing that some devices are raising the urgent bkops
6048 * exception events even when BKOPS status doesn't indicate performace
6049 * impacted or critical. Handle these device by determining their urgent
6050 * bkops status at runtime.
6051 */
6052 if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
6053 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
6054 __func__, curr_status);
6055 /* update the current status as the urgent bkops level */
6056 hba->urgent_bkops_lvl = curr_status;
6057 hba->is_urgent_bkops_lvl_checked = true;
6058 }
6059
6060 enable_auto_bkops:
6061 err = ufshcd_enable_auto_bkops(hba);
6062 out:
6063 if (err < 0)
6064 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
6065 __func__, err);
6066 }
6067
ufshcd_read_device_lvl_exception_id(struct ufs_hba * hba,u64 * exception_id)6068 int ufshcd_read_device_lvl_exception_id(struct ufs_hba *hba, u64 *exception_id)
6069 {
6070 struct utp_upiu_query_v4_0 *upiu_resp;
6071 struct ufs_query_req *request = NULL;
6072 struct ufs_query_res *response = NULL;
6073 int err;
6074
6075 if (hba->dev_info.wspecversion < 0x410)
6076 return -EOPNOTSUPP;
6077
6078 ufshcd_hold(hba);
6079 mutex_lock(&hba->dev_cmd.lock);
6080
6081 ufshcd_init_query(hba, &request, &response,
6082 UPIU_QUERY_OPCODE_READ_ATTR,
6083 QUERY_ATTR_IDN_DEV_LVL_EXCEPTION_ID, 0, 0);
6084
6085 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
6086
6087 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
6088
6089 if (err) {
6090 dev_err(hba->dev, "%s: failed to read device level exception %d\n",
6091 __func__, err);
6092 goto out;
6093 }
6094
6095 upiu_resp = (struct utp_upiu_query_v4_0 *)response;
6096 *exception_id = get_unaligned_be64(&upiu_resp->osf3);
6097 out:
6098 mutex_unlock(&hba->dev_cmd.lock);
6099 ufshcd_release(hba);
6100
6101 return err;
6102 }
6103
__ufshcd_wb_toggle(struct ufs_hba * hba,bool set,enum flag_idn idn)6104 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
6105 {
6106 u8 index;
6107 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
6108 UPIU_QUERY_OPCODE_CLEAR_FLAG;
6109
6110 index = ufshcd_wb_get_query_index(hba);
6111 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
6112 }
6113
ufshcd_wb_toggle(struct ufs_hba * hba,bool enable)6114 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
6115 {
6116 int ret;
6117
6118 if (!ufshcd_is_wb_allowed(hba) ||
6119 hba->dev_info.wb_enabled == enable)
6120 return 0;
6121
6122 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
6123 if (ret) {
6124 dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
6125 __func__, enable ? "enabling" : "disabling", ret);
6126 return ret;
6127 }
6128
6129 hba->dev_info.wb_enabled = enable;
6130 dev_dbg(hba->dev, "%s: Write Booster %s\n",
6131 __func__, enable ? "enabled" : "disabled");
6132
6133 return ret;
6134 }
6135
ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba * hba,bool enable)6136 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6137 bool enable)
6138 {
6139 int ret;
6140
6141 ret = __ufshcd_wb_toggle(hba, enable,
6142 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6143 if (ret) {
6144 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6145 __func__, enable ? "enabling" : "disabling", ret);
6146 return;
6147 }
6148 dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6149 __func__, enable ? "enabled" : "disabled");
6150 }
6151
ufshcd_wb_toggle_buf_flush(struct ufs_hba * hba,bool enable)6152 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6153 {
6154 int ret;
6155
6156 if (!ufshcd_is_wb_allowed(hba) ||
6157 hba->dev_info.wb_buf_flush_enabled == enable)
6158 return 0;
6159
6160 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6161 if (ret) {
6162 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6163 __func__, enable ? "enabling" : "disabling", ret);
6164 return ret;
6165 }
6166
6167 hba->dev_info.wb_buf_flush_enabled = enable;
6168 dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6169 __func__, enable ? "enabled" : "disabled");
6170
6171 return ret;
6172 }
6173
ufshcd_wb_set_resize_en(struct ufs_hba * hba,enum wb_resize_en en_mode)6174 int ufshcd_wb_set_resize_en(struct ufs_hba *hba, enum wb_resize_en en_mode)
6175 {
6176 int ret;
6177 u8 index;
6178
6179 index = ufshcd_wb_get_query_index(hba);
6180 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
6181 QUERY_ATTR_IDN_WB_BUF_RESIZE_EN, index, 0, &en_mode);
6182 if (ret)
6183 dev_err(hba->dev, "%s: Enable WB buf resize operation failed %d\n",
6184 __func__, ret);
6185
6186 return ret;
6187 }
6188
ufshcd_wb_curr_buff_threshold_check(struct ufs_hba * hba,u32 avail_buf)6189 static bool ufshcd_wb_curr_buff_threshold_check(struct ufs_hba *hba,
6190 u32 avail_buf)
6191 {
6192 u32 cur_buf;
6193 int ret;
6194 u8 index;
6195
6196 index = ufshcd_wb_get_query_index(hba);
6197 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6198 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6199 index, 0, &cur_buf);
6200 if (ret) {
6201 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6202 __func__, ret);
6203 return false;
6204 }
6205
6206 if (!cur_buf) {
6207 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6208 cur_buf);
6209 return false;
6210 }
6211 /* Let it continue to flush when available buffer exceeds threshold */
6212 return avail_buf < hba->vps->wb_flush_threshold;
6213 }
6214
ufshcd_wb_force_disable(struct ufs_hba * hba)6215 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6216 {
6217 if (ufshcd_is_wb_buf_flush_allowed(hba))
6218 ufshcd_wb_toggle_buf_flush(hba, false);
6219
6220 ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6221 ufshcd_wb_toggle(hba, false);
6222 hba->caps &= ~UFSHCD_CAP_WB_EN;
6223
6224 dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6225 }
6226
ufshcd_is_wb_buf_lifetime_available(struct ufs_hba * hba)6227 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6228 {
6229 u32 lifetime;
6230 int ret;
6231 u8 index;
6232
6233 index = ufshcd_wb_get_query_index(hba);
6234 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6235 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6236 index, 0, &lifetime);
6237 if (ret) {
6238 dev_err(hba->dev,
6239 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6240 __func__, ret);
6241 return false;
6242 }
6243
6244 if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6245 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6246 __func__, lifetime);
6247 return false;
6248 }
6249
6250 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6251 __func__, lifetime);
6252
6253 return true;
6254 }
6255
ufshcd_wb_need_flush(struct ufs_hba * hba)6256 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6257 {
6258 int ret;
6259 u32 avail_buf;
6260 u8 index;
6261
6262 if (!ufshcd_is_wb_allowed(hba))
6263 return false;
6264
6265 if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6266 ufshcd_wb_force_disable(hba);
6267 return false;
6268 }
6269
6270 /*
6271 * With user-space reduction enabled, it's enough to enable flush
6272 * by checking only the available buffer. The threshold
6273 * defined here is > 90% full.
6274 * With user-space preserved enabled, the current-buffer
6275 * should be checked too because the wb buffer size can reduce
6276 * when disk tends to be full. This info is provided by current
6277 * buffer (dCurrentWriteBoosterBufferSize).
6278 */
6279 index = ufshcd_wb_get_query_index(hba);
6280 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6281 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6282 index, 0, &avail_buf);
6283 if (ret) {
6284 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6285 __func__, ret);
6286 return false;
6287 }
6288
6289 if (!hba->dev_info.b_presrv_uspc_en)
6290 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6291
6292 return ufshcd_wb_curr_buff_threshold_check(hba, avail_buf);
6293 }
6294
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)6295 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6296 {
6297 struct ufs_hba *hba = container_of(to_delayed_work(work),
6298 struct ufs_hba,
6299 rpm_dev_flush_recheck_work);
6300 /*
6301 * To prevent unnecessary VCC power drain after device finishes
6302 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6303 * after a certain delay to recheck the threshold by next runtime
6304 * suspend.
6305 */
6306 ufshcd_rpm_get_sync(hba);
6307 ufshcd_rpm_put_sync(hba);
6308 }
6309
6310 /**
6311 * ufshcd_exception_event_handler - handle exceptions raised by device
6312 * @work: pointer to work data
6313 *
6314 * Read bExceptionEventStatus attribute from the device and handle the
6315 * exception event accordingly.
6316 */
ufshcd_exception_event_handler(struct work_struct * work)6317 static void ufshcd_exception_event_handler(struct work_struct *work)
6318 {
6319 struct ufs_hba *hba;
6320 int err;
6321 u32 status = 0;
6322 hba = container_of(work, struct ufs_hba, eeh_work);
6323
6324 err = ufshcd_get_ee_status(hba, &status);
6325 if (err) {
6326 dev_err(hba->dev, "%s: failed to get exception status %d\n",
6327 __func__, err);
6328 return;
6329 }
6330
6331 trace_ufshcd_exception_event(hba, status);
6332
6333 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6334 ufshcd_bkops_exception_event_handler(hba);
6335
6336 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6337 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
6338
6339 if (status & hba->ee_drv_mask & MASK_EE_HEALTH_CRITICAL) {
6340 hba->critical_health_count++;
6341 sysfs_notify(&hba->dev->kobj, NULL, "critical_health");
6342 }
6343
6344 if (status & hba->ee_drv_mask & MASK_EE_DEV_LVL_EXCEPTION) {
6345 atomic_inc(&hba->dev_lvl_exception_count);
6346 sysfs_notify(&hba->dev->kobj, NULL, "device_lvl_exception_count");
6347 }
6348
6349 ufs_debugfs_exception_event(hba, status);
6350 }
6351
6352 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba,bool force_compl)6353 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6354 {
6355 if (hba->mcq_enabled)
6356 ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6357 else
6358 ufshcd_transfer_req_compl(hba);
6359
6360 ufshcd_tmc_handler(hba);
6361 }
6362
6363 /**
6364 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6365 * to recover from the DL NAC errors or not.
6366 * @hba: per-adapter instance
6367 *
6368 * Return: true if error handling is required, false otherwise.
6369 */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)6370 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6371 {
6372 unsigned long flags;
6373 bool err_handling = true;
6374
6375 spin_lock_irqsave(hba->host->host_lock, flags);
6376 /*
6377 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6378 * device fatal error and/or DL NAC & REPLAY timeout errors.
6379 */
6380 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6381 goto out;
6382
6383 if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6384 ((hba->saved_err & UIC_ERROR) &&
6385 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6386 goto out;
6387
6388 if ((hba->saved_err & UIC_ERROR) &&
6389 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6390 int err;
6391 /*
6392 * wait for 50ms to see if we can get any other errors or not.
6393 */
6394 spin_unlock_irqrestore(hba->host->host_lock, flags);
6395 msleep(50);
6396 spin_lock_irqsave(hba->host->host_lock, flags);
6397
6398 /*
6399 * now check if we have got any other severe errors other than
6400 * DL NAC error?
6401 */
6402 if ((hba->saved_err & INT_FATAL_ERRORS) ||
6403 ((hba->saved_err & UIC_ERROR) &&
6404 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6405 goto out;
6406
6407 /*
6408 * As DL NAC is the only error received so far, send out NOP
6409 * command to confirm if link is still active or not.
6410 * - If we don't get any response then do error recovery.
6411 * - If we get response then clear the DL NAC error bit.
6412 */
6413
6414 spin_unlock_irqrestore(hba->host->host_lock, flags);
6415 err = ufshcd_verify_dev_init(hba);
6416 spin_lock_irqsave(hba->host->host_lock, flags);
6417
6418 if (err)
6419 goto out;
6420
6421 /* Link seems to be alive hence ignore the DL NAC errors */
6422 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6423 hba->saved_err &= ~UIC_ERROR;
6424 /* clear NAC error */
6425 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6426 if (!hba->saved_uic_err)
6427 err_handling = false;
6428 }
6429 out:
6430 spin_unlock_irqrestore(hba->host->host_lock, flags);
6431 return err_handling;
6432 }
6433
6434 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)6435 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6436 {
6437 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6438 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6439 }
6440
ufshcd_schedule_eh_work(struct ufs_hba * hba)6441 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6442 {
6443 lockdep_assert_held(hba->host->host_lock);
6444
6445 /* handle fatal errors only when link is not in error state */
6446 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6447 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6448 ufshcd_is_saved_err_fatal(hba))
6449 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6450 else
6451 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6452 queue_work(hba->eh_wq, &hba->eh_work);
6453 }
6454 }
6455
ufshcd_force_error_recovery(struct ufs_hba * hba)6456 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6457 {
6458 spin_lock_irq(hba->host->host_lock);
6459 hba->force_reset = true;
6460 ufshcd_schedule_eh_work(hba);
6461 spin_unlock_irq(hba->host->host_lock);
6462 }
6463
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)6464 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6465 {
6466 mutex_lock(&hba->wb_mutex);
6467 down_write(&hba->clk_scaling_lock);
6468 hba->clk_scaling.is_allowed = allow;
6469 up_write(&hba->clk_scaling_lock);
6470 mutex_unlock(&hba->wb_mutex);
6471 }
6472
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)6473 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6474 {
6475 if (suspend) {
6476 if (hba->clk_scaling.is_enabled)
6477 ufshcd_suspend_clkscaling(hba);
6478 ufshcd_clk_scaling_allow(hba, false);
6479 } else {
6480 ufshcd_clk_scaling_allow(hba, true);
6481 if (hba->clk_scaling.is_enabled)
6482 ufshcd_resume_clkscaling(hba);
6483 }
6484 }
6485
ufshcd_err_handling_prepare(struct ufs_hba * hba)6486 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6487 {
6488 ufshcd_rpm_get_sync(hba);
6489 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6490 hba->is_sys_suspended) {
6491 enum ufs_pm_op pm_op;
6492
6493 /*
6494 * Don't assume anything of resume, if
6495 * resume fails, irq and clocks can be OFF, and powers
6496 * can be OFF or in LPM.
6497 */
6498 ufshcd_setup_hba_vreg(hba, true);
6499 ufshcd_enable_irq(hba);
6500 ufshcd_setup_vreg(hba, true);
6501 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6502 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6503 ufshcd_hold(hba);
6504 if (!ufshcd_is_clkgating_allowed(hba))
6505 ufshcd_setup_clocks(hba, true);
6506 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6507 ufshcd_vops_resume(hba, pm_op);
6508 } else {
6509 ufshcd_hold(hba);
6510 if (ufshcd_is_clkscaling_supported(hba) &&
6511 hba->clk_scaling.is_enabled)
6512 ufshcd_suspend_clkscaling(hba);
6513 ufshcd_clk_scaling_allow(hba, false);
6514 }
6515 /* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6516 blk_mq_quiesce_tagset(&hba->host->tag_set);
6517 cancel_work_sync(&hba->eeh_work);
6518 }
6519
ufshcd_err_handling_unprepare(struct ufs_hba * hba)6520 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6521 {
6522 blk_mq_unquiesce_tagset(&hba->host->tag_set);
6523 ufshcd_release(hba);
6524 if (ufshcd_is_clkscaling_supported(hba))
6525 ufshcd_clk_scaling_suspend(hba, false);
6526 ufshcd_rpm_put(hba);
6527 }
6528
ufshcd_err_handling_should_stop(struct ufs_hba * hba)6529 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6530 {
6531 return (!hba->is_powered || hba->shutting_down ||
6532 !hba->ufs_device_wlun ||
6533 hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6534 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6535 ufshcd_is_link_broken(hba))));
6536 }
6537
6538 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)6539 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6540 {
6541 struct Scsi_Host *shost = hba->host;
6542 struct scsi_device *sdev;
6543 struct request_queue *q;
6544 int ret;
6545
6546 hba->is_sys_suspended = false;
6547 /*
6548 * Set RPM status of wlun device to RPM_ACTIVE,
6549 * this also clears its runtime error.
6550 */
6551 ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6552
6553 /* hba device might have a runtime error otherwise */
6554 if (ret)
6555 ret = pm_runtime_set_active(hba->dev);
6556 /*
6557 * If wlun device had runtime error, we also need to resume those
6558 * consumer scsi devices in case any of them has failed to be
6559 * resumed due to supplier runtime resume failure. This is to unblock
6560 * blk_queue_enter in case there are bios waiting inside it.
6561 */
6562 if (!ret) {
6563 shost_for_each_device(sdev, shost) {
6564 q = sdev->request_queue;
6565 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6566 q->rpm_status == RPM_SUSPENDING))
6567 pm_request_resume(q->dev);
6568 }
6569 }
6570 }
6571 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)6572 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6573 {
6574 }
6575 #endif
6576
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)6577 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6578 {
6579 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6580 u32 mode;
6581
6582 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6583
6584 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6585 return true;
6586
6587 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6588 return true;
6589
6590 return false;
6591 }
6592
ufshcd_abort_one(struct request * rq,void * priv)6593 static bool ufshcd_abort_one(struct request *rq, void *priv)
6594 {
6595 int *ret = priv;
6596 u32 tag = rq->tag;
6597 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6598 struct scsi_device *sdev = cmd->device;
6599 struct Scsi_Host *shost = sdev->host;
6600 struct ufs_hba *hba = shost_priv(shost);
6601
6602 *ret = ufshcd_try_to_abort_task(hba, tag);
6603 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6604 hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6605 *ret ? "failed" : "succeeded");
6606
6607 return *ret == 0;
6608 }
6609
6610 /**
6611 * ufshcd_abort_all - Abort all pending commands.
6612 * @hba: Host bus adapter pointer.
6613 *
6614 * Return: true if and only if the host controller needs to be reset.
6615 */
ufshcd_abort_all(struct ufs_hba * hba)6616 static bool ufshcd_abort_all(struct ufs_hba *hba)
6617 {
6618 int tag, ret = 0;
6619
6620 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6621 if (ret)
6622 goto out;
6623
6624 /* Clear pending task management requests */
6625 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6626 ret = ufshcd_clear_tm_cmd(hba, tag);
6627 if (ret)
6628 goto out;
6629 }
6630
6631 out:
6632 /* Complete the requests that are cleared by s/w */
6633 ufshcd_complete_requests(hba, false);
6634
6635 return ret != 0;
6636 }
6637
6638 /**
6639 * ufshcd_err_handler - handle UFS errors that require s/w attention
6640 * @work: pointer to work structure
6641 */
ufshcd_err_handler(struct work_struct * work)6642 static void ufshcd_err_handler(struct work_struct *work)
6643 {
6644 int retries = MAX_ERR_HANDLER_RETRIES;
6645 struct ufs_hba *hba;
6646 unsigned long flags;
6647 bool needs_restore;
6648 bool needs_reset;
6649 int pmc_err;
6650
6651 hba = container_of(work, struct ufs_hba, eh_work);
6652
6653 dev_info(hba->dev,
6654 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = 0x%x; saved_uic_err = 0x%x; force_reset = %d%s\n",
6655 __func__, ufshcd_state_name[hba->ufshcd_state],
6656 hba->is_powered, hba->shutting_down, hba->saved_err,
6657 hba->saved_uic_err, hba->force_reset,
6658 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6659
6660 down(&hba->host_sem);
6661 spin_lock_irqsave(hba->host->host_lock, flags);
6662 if (ufshcd_err_handling_should_stop(hba)) {
6663 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6664 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6665 spin_unlock_irqrestore(hba->host->host_lock, flags);
6666 up(&hba->host_sem);
6667 return;
6668 }
6669 spin_unlock_irqrestore(hba->host->host_lock, flags);
6670
6671 ufshcd_err_handling_prepare(hba);
6672
6673 spin_lock_irqsave(hba->host->host_lock, flags);
6674 ufshcd_set_eh_in_progress(hba);
6675 spin_unlock_irqrestore(hba->host->host_lock, flags);
6676
6677 /* Complete requests that have door-bell cleared by h/w */
6678 ufshcd_complete_requests(hba, false);
6679 spin_lock_irqsave(hba->host->host_lock, flags);
6680 again:
6681 needs_restore = false;
6682 needs_reset = false;
6683
6684 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6685 hba->ufshcd_state = UFSHCD_STATE_RESET;
6686 /*
6687 * A full reset and restore might have happened after preparation
6688 * is finished, double check whether we should stop.
6689 */
6690 if (ufshcd_err_handling_should_stop(hba))
6691 goto skip_err_handling;
6692
6693 if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6694 !hba->force_reset) {
6695 bool ret;
6696
6697 spin_unlock_irqrestore(hba->host->host_lock, flags);
6698 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6699 ret = ufshcd_quirk_dl_nac_errors(hba);
6700 spin_lock_irqsave(hba->host->host_lock, flags);
6701 if (!ret && ufshcd_err_handling_should_stop(hba))
6702 goto skip_err_handling;
6703 }
6704
6705 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6706 (hba->saved_uic_err &&
6707 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6708 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6709
6710 spin_unlock_irqrestore(hba->host->host_lock, flags);
6711 ufshcd_print_host_state(hba);
6712 ufshcd_print_pwr_info(hba);
6713 ufshcd_print_evt_hist(hba);
6714 ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6715 ufshcd_print_trs_all(hba, pr_prdt);
6716 spin_lock_irqsave(hba->host->host_lock, flags);
6717 }
6718
6719 /*
6720 * if host reset is required then skip clearing the pending
6721 * transfers forcefully because they will get cleared during
6722 * host reset and restore
6723 */
6724 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6725 ufshcd_is_saved_err_fatal(hba) ||
6726 ((hba->saved_err & UIC_ERROR) &&
6727 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6728 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6729 needs_reset = true;
6730 goto do_reset;
6731 }
6732
6733 /*
6734 * If LINERESET was caught, UFS might have been put to PWM mode,
6735 * check if power mode restore is needed.
6736 */
6737 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6738 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6739 if (!hba->saved_uic_err)
6740 hba->saved_err &= ~UIC_ERROR;
6741 spin_unlock_irqrestore(hba->host->host_lock, flags);
6742 if (ufshcd_is_pwr_mode_restore_needed(hba))
6743 needs_restore = true;
6744 spin_lock_irqsave(hba->host->host_lock, flags);
6745 if (!hba->saved_err && !needs_restore)
6746 goto skip_err_handling;
6747 }
6748
6749 hba->silence_err_logs = true;
6750 /* release lock as clear command might sleep */
6751 spin_unlock_irqrestore(hba->host->host_lock, flags);
6752
6753 needs_reset = ufshcd_abort_all(hba);
6754
6755 spin_lock_irqsave(hba->host->host_lock, flags);
6756 hba->silence_err_logs = false;
6757 if (needs_reset)
6758 goto do_reset;
6759
6760 /*
6761 * After all reqs and tasks are cleared from doorbell,
6762 * now it is safe to retore power mode.
6763 */
6764 if (needs_restore) {
6765 spin_unlock_irqrestore(hba->host->host_lock, flags);
6766 /*
6767 * Hold the scaling lock just in case dev cmds
6768 * are sent via bsg and/or sysfs.
6769 */
6770 down_write(&hba->clk_scaling_lock);
6771 hba->force_pmc = true;
6772 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6773 if (pmc_err) {
6774 needs_reset = true;
6775 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6776 __func__, pmc_err);
6777 }
6778 hba->force_pmc = false;
6779 ufshcd_print_pwr_info(hba);
6780 up_write(&hba->clk_scaling_lock);
6781 spin_lock_irqsave(hba->host->host_lock, flags);
6782 }
6783
6784 do_reset:
6785 /* Fatal errors need reset */
6786 if (needs_reset) {
6787 int err;
6788
6789 hba->force_reset = false;
6790 spin_unlock_irqrestore(hba->host->host_lock, flags);
6791 err = ufshcd_reset_and_restore(hba);
6792 if (err)
6793 dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6794 __func__, err);
6795 else
6796 ufshcd_recover_pm_error(hba);
6797 spin_lock_irqsave(hba->host->host_lock, flags);
6798 }
6799
6800 skip_err_handling:
6801 if (!needs_reset) {
6802 if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6803 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6804 if (hba->saved_err || hba->saved_uic_err)
6805 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6806 __func__, hba->saved_err, hba->saved_uic_err);
6807 }
6808 /* Exit in an operational state or dead */
6809 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6810 hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6811 if (--retries)
6812 goto again;
6813 hba->ufshcd_state = UFSHCD_STATE_ERROR;
6814 }
6815 ufshcd_clear_eh_in_progress(hba);
6816 spin_unlock_irqrestore(hba->host->host_lock, flags);
6817 ufshcd_err_handling_unprepare(hba);
6818 up(&hba->host_sem);
6819
6820 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6821 ufshcd_state_name[hba->ufshcd_state]);
6822 }
6823
6824 /**
6825 * ufshcd_update_uic_error - check and set fatal UIC error flags.
6826 * @hba: per-adapter instance
6827 *
6828 * Return:
6829 * IRQ_HANDLED - If interrupt is valid
6830 * IRQ_NONE - If invalid interrupt
6831 */
ufshcd_update_uic_error(struct ufs_hba * hba)6832 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6833 {
6834 u32 reg;
6835 irqreturn_t retval = IRQ_NONE;
6836
6837 /* PHY layer error */
6838 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6839 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6840 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6841 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6842 /*
6843 * To know whether this error is fatal or not, DB timeout
6844 * must be checked but this error is handled separately.
6845 */
6846 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6847 dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6848 __func__);
6849
6850 /* Got a LINERESET indication. */
6851 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6852 struct uic_command *cmd = NULL;
6853
6854 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6855 if (hba->uic_async_done && hba->active_uic_cmd)
6856 cmd = hba->active_uic_cmd;
6857 /*
6858 * Ignore the LINERESET during power mode change
6859 * operation via DME_SET command.
6860 */
6861 if (cmd && (cmd->command == UIC_CMD_DME_SET))
6862 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6863 }
6864 retval |= IRQ_HANDLED;
6865 }
6866
6867 /* PA_INIT_ERROR is fatal and needs UIC reset */
6868 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6869 if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6870 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6871 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6872
6873 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6874 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6875 else if (hba->dev_quirks &
6876 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6877 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6878 hba->uic_error |=
6879 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6880 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6881 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6882 }
6883 retval |= IRQ_HANDLED;
6884 }
6885
6886 /* UIC NL/TL/DME errors needs software retry */
6887 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6888 if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6889 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6890 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6891 hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6892 retval |= IRQ_HANDLED;
6893 }
6894
6895 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6896 if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6897 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6898 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6899 hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6900 retval |= IRQ_HANDLED;
6901 }
6902
6903 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6904 if ((reg & UIC_DME_ERROR) &&
6905 (reg & UIC_DME_ERROR_CODE_MASK)) {
6906 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6907 hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6908 retval |= IRQ_HANDLED;
6909 }
6910
6911 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6912 __func__, hba->uic_error);
6913 return retval;
6914 }
6915
6916 /**
6917 * ufshcd_check_errors - Check for errors that need s/w attention
6918 * @hba: per-adapter instance
6919 * @intr_status: interrupt status generated by the controller
6920 *
6921 * Return:
6922 * IRQ_HANDLED - If interrupt is valid
6923 * IRQ_NONE - If invalid interrupt
6924 */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)6925 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6926 {
6927 bool queue_eh_work = false;
6928 irqreturn_t retval = IRQ_NONE;
6929
6930 spin_lock(hba->host->host_lock);
6931 hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6932
6933 if (hba->errors & INT_FATAL_ERRORS) {
6934 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6935 hba->errors);
6936 queue_eh_work = true;
6937 }
6938
6939 if (hba->errors & UIC_ERROR) {
6940 hba->uic_error = 0;
6941 retval = ufshcd_update_uic_error(hba);
6942 if (hba->uic_error)
6943 queue_eh_work = true;
6944 }
6945
6946 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6947 dev_err(hba->dev,
6948 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6949 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6950 "Enter" : "Exit",
6951 hba->errors, ufshcd_get_upmcrs(hba));
6952 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6953 hba->errors);
6954 ufshcd_set_link_broken(hba);
6955 queue_eh_work = true;
6956 }
6957
6958 if (queue_eh_work) {
6959 /*
6960 * update the transfer error masks to sticky bits, let's do this
6961 * irrespective of current ufshcd_state.
6962 */
6963 hba->saved_err |= hba->errors;
6964 hba->saved_uic_err |= hba->uic_error;
6965
6966 /* dump controller state before resetting */
6967 if ((hba->saved_err &
6968 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6969 (hba->saved_uic_err &&
6970 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6971 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6972 __func__, hba->saved_err,
6973 hba->saved_uic_err);
6974 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6975 "host_regs: ");
6976 ufshcd_print_pwr_info(hba);
6977 }
6978 ufshcd_schedule_eh_work(hba);
6979 retval |= IRQ_HANDLED;
6980 }
6981 /*
6982 * if (!queue_eh_work) -
6983 * Other errors are either non-fatal where host recovers
6984 * itself without s/w intervention or errors that will be
6985 * handled by the SCSI core layer.
6986 */
6987 hba->errors = 0;
6988 hba->uic_error = 0;
6989 spin_unlock(hba->host->host_lock);
6990 return retval;
6991 }
6992
6993 /**
6994 * ufshcd_tmc_handler - handle task management function completion
6995 * @hba: per adapter instance
6996 *
6997 * Return:
6998 * IRQ_HANDLED - If interrupt is valid
6999 * IRQ_NONE - If invalid interrupt
7000 */
ufshcd_tmc_handler(struct ufs_hba * hba)7001 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
7002 {
7003 unsigned long flags, pending, issued;
7004 irqreturn_t ret = IRQ_NONE;
7005 int tag;
7006
7007 spin_lock_irqsave(hba->host->host_lock, flags);
7008 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
7009 issued = hba->outstanding_tasks & ~pending;
7010 for_each_set_bit(tag, &issued, hba->nutmrs) {
7011 struct request *req = hba->tmf_rqs[tag];
7012 struct completion *c = req->end_io_data;
7013
7014 complete(c);
7015 ret = IRQ_HANDLED;
7016 }
7017 spin_unlock_irqrestore(hba->host->host_lock, flags);
7018
7019 return ret;
7020 }
7021
7022 /**
7023 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
7024 * @hba: per adapter instance
7025 *
7026 * Return: IRQ_HANDLED if interrupt is handled.
7027 */
ufshcd_handle_mcq_cq_events(struct ufs_hba * hba)7028 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
7029 {
7030 struct ufs_hw_queue *hwq;
7031 unsigned long outstanding_cqs;
7032 unsigned int nr_queues;
7033 int i, ret;
7034 u32 events;
7035
7036 ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
7037 if (ret)
7038 outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
7039
7040 /* Exclude the poll queues */
7041 nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
7042 for_each_set_bit(i, &outstanding_cqs, nr_queues) {
7043 hwq = &hba->uhq[i];
7044
7045 events = ufshcd_mcq_read_cqis(hba, i);
7046 if (events)
7047 ufshcd_mcq_write_cqis(hba, events, i);
7048
7049 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
7050 ufshcd_mcq_poll_cqe_lock(hba, hwq);
7051 }
7052
7053 return IRQ_HANDLED;
7054 }
7055
7056 /**
7057 * ufshcd_sl_intr - Interrupt service routine
7058 * @hba: per adapter instance
7059 * @intr_status: contains interrupts generated by the controller
7060 *
7061 * Return:
7062 * IRQ_HANDLED - If interrupt is valid
7063 * IRQ_NONE - If invalid interrupt
7064 */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)7065 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
7066 {
7067 irqreturn_t retval = IRQ_NONE;
7068
7069 if (intr_status & UFSHCD_UIC_MASK)
7070 retval |= ufshcd_uic_cmd_compl(hba, intr_status);
7071
7072 if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
7073 retval |= ufshcd_check_errors(hba, intr_status);
7074
7075 if (intr_status & UTP_TASK_REQ_COMPL)
7076 retval |= ufshcd_tmc_handler(hba);
7077
7078 if (intr_status & UTP_TRANSFER_REQ_COMPL)
7079 retval |= ufshcd_transfer_req_compl(hba);
7080
7081 if (intr_status & MCQ_CQ_EVENT_STATUS)
7082 retval |= ufshcd_handle_mcq_cq_events(hba);
7083
7084 return retval;
7085 }
7086
7087 /**
7088 * ufshcd_threaded_intr - Threaded interrupt service routine
7089 * @irq: irq number
7090 * @__hba: pointer to adapter instance
7091 *
7092 * Return:
7093 * IRQ_HANDLED - If interrupt is valid
7094 * IRQ_NONE - If invalid interrupt
7095 */
ufshcd_threaded_intr(int irq,void * __hba)7096 static irqreturn_t ufshcd_threaded_intr(int irq, void *__hba)
7097 {
7098 u32 last_intr_status, intr_status, enabled_intr_status = 0;
7099 irqreturn_t retval = IRQ_NONE;
7100 struct ufs_hba *hba = __hba;
7101 int retries = hba->nutrs;
7102
7103 last_intr_status = intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7104
7105 /*
7106 * There could be max of hba->nutrs reqs in flight and in worst case
7107 * if the reqs get finished 1 by 1 after the interrupt status is
7108 * read, make sure we handle them by checking the interrupt status
7109 * again in a loop until we process all of the reqs before returning.
7110 */
7111 while (intr_status && retries--) {
7112 enabled_intr_status =
7113 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7114 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7115 if (enabled_intr_status)
7116 retval |= ufshcd_sl_intr(hba, enabled_intr_status);
7117
7118 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7119 }
7120
7121 if (enabled_intr_status && retval == IRQ_NONE &&
7122 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
7123 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
7124 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
7125 __func__,
7126 intr_status,
7127 last_intr_status,
7128 enabled_intr_status);
7129 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
7130 }
7131
7132 return retval;
7133 }
7134
7135 /**
7136 * ufshcd_intr - Main interrupt service routine
7137 * @irq: irq number
7138 * @__hba: pointer to adapter instance
7139 *
7140 * Return:
7141 * IRQ_HANDLED - If interrupt is valid
7142 * IRQ_WAKE_THREAD - If handling is moved to threaded handled
7143 * IRQ_NONE - If invalid interrupt
7144 */
ufshcd_intr(int irq,void * __hba)7145 static irqreturn_t ufshcd_intr(int irq, void *__hba)
7146 {
7147 struct ufs_hba *hba = __hba;
7148
7149 /* Move interrupt handling to thread when MCQ & ESI are not enabled */
7150 if (!hba->mcq_enabled || !hba->mcq_esi_enabled)
7151 return IRQ_WAKE_THREAD;
7152
7153 /* Directly handle interrupts since MCQ ESI handlers does the hard job */
7154 return ufshcd_sl_intr(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS) &
7155 ufshcd_readl(hba, REG_INTERRUPT_ENABLE));
7156 }
7157
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)7158 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
7159 {
7160 int err = 0;
7161 u32 mask = 1 << tag;
7162
7163 if (!test_bit(tag, &hba->outstanding_tasks))
7164 goto out;
7165
7166 ufshcd_utmrl_clear(hba, tag);
7167
7168 /* poll for max. 1 sec to clear door bell register by h/w */
7169 err = ufshcd_wait_for_register(hba,
7170 REG_UTP_TASK_REQ_DOOR_BELL,
7171 mask, 0, 1000, 1000);
7172
7173 dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7174 tag, err < 0 ? "failed" : "succeeded");
7175
7176 out:
7177 return err;
7178 }
7179
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)7180 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7181 struct utp_task_req_desc *treq, u8 tm_function)
7182 {
7183 struct request_queue *q = hba->tmf_queue;
7184 struct Scsi_Host *host = hba->host;
7185 DECLARE_COMPLETION_ONSTACK(wait);
7186 struct request *req;
7187 unsigned long flags;
7188 int task_tag, err;
7189
7190 /*
7191 * blk_mq_alloc_request() is used here only to get a free tag.
7192 */
7193 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7194 if (IS_ERR(req))
7195 return PTR_ERR(req);
7196
7197 req->end_io_data = &wait;
7198 ufshcd_hold(hba);
7199
7200 spin_lock_irqsave(host->host_lock, flags);
7201
7202 task_tag = req->tag;
7203 hba->tmf_rqs[req->tag] = req;
7204 treq->upiu_req.req_header.task_tag = task_tag;
7205
7206 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7207 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7208
7209 __set_bit(task_tag, &hba->outstanding_tasks);
7210
7211 spin_unlock_irqrestore(host->host_lock, flags);
7212
7213 /* send command to the controller */
7214 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7215
7216 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7217
7218 /* wait until the task management command is completed */
7219 err = wait_for_completion_io_timeout(&wait,
7220 msecs_to_jiffies(TM_CMD_TIMEOUT));
7221 if (!err) {
7222 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7223 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7224 __func__, tm_function);
7225 if (ufshcd_clear_tm_cmd(hba, task_tag))
7226 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7227 __func__, task_tag);
7228 err = -ETIMEDOUT;
7229 } else {
7230 err = 0;
7231 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7232
7233 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7234 }
7235
7236 spin_lock_irqsave(hba->host->host_lock, flags);
7237 hba->tmf_rqs[req->tag] = NULL;
7238 __clear_bit(task_tag, &hba->outstanding_tasks);
7239 spin_unlock_irqrestore(hba->host->host_lock, flags);
7240
7241 ufshcd_release(hba);
7242 blk_mq_free_request(req);
7243
7244 return err;
7245 }
7246
7247 /**
7248 * ufshcd_issue_tm_cmd - issues task management commands to controller
7249 * @hba: per adapter instance
7250 * @lun_id: LUN ID to which TM command is sent
7251 * @task_id: task ID to which the TM command is applicable
7252 * @tm_function: task management function opcode
7253 * @tm_response: task management service response return value
7254 *
7255 * Return: non-zero value on error, zero on success.
7256 */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)7257 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7258 u8 tm_function, u8 *tm_response)
7259 {
7260 struct utp_task_req_desc treq = { };
7261 enum utp_ocs ocs_value;
7262 int err;
7263
7264 /* Configure task request descriptor */
7265 treq.header.interrupt = 1;
7266 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7267
7268 /* Configure task request UPIU */
7269 treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7270 treq.upiu_req.req_header.lun = lun_id;
7271 treq.upiu_req.req_header.tm_function = tm_function;
7272
7273 /*
7274 * The host shall provide the same value for LUN field in the basic
7275 * header and for Input Parameter.
7276 */
7277 treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7278 treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7279
7280 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7281 if (err == -ETIMEDOUT)
7282 return err;
7283
7284 ocs_value = treq.header.ocs & MASK_OCS;
7285 if (ocs_value != OCS_SUCCESS)
7286 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7287 __func__, ocs_value);
7288 else if (tm_response)
7289 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7290 MASK_TM_SERVICE_RESP;
7291 return err;
7292 }
7293
7294 /**
7295 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7296 * @hba: per-adapter instance
7297 * @req_upiu: upiu request
7298 * @rsp_upiu: upiu reply
7299 * @desc_buff: pointer to descriptor buffer, NULL if NA
7300 * @buff_len: descriptor size, 0 if NA
7301 * @cmd_type: specifies the type (NOP, Query...)
7302 * @desc_op: descriptor operation
7303 *
7304 * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7305 * Therefore, it "rides" the device management infrastructure: uses its tag and
7306 * tasks work queues.
7307 *
7308 * Since there is only one available tag for device management commands,
7309 * the caller is expected to hold the hba->dev_cmd.lock mutex.
7310 *
7311 * Return: 0 upon success; < 0 upon failure.
7312 */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)7313 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7314 struct utp_upiu_req *req_upiu,
7315 struct utp_upiu_req *rsp_upiu,
7316 u8 *desc_buff, int *buff_len,
7317 enum dev_cmd_type cmd_type,
7318 enum query_opcode desc_op)
7319 {
7320 const u32 tag = hba->reserved_slot;
7321 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7322 int err = 0;
7323 u8 upiu_flags;
7324
7325 /* Protects use of hba->reserved_slot. */
7326 lockdep_assert_held(&hba->dev_cmd.lock);
7327
7328 ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
7329
7330 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7331
7332 /* update the task tag in the request upiu */
7333 req_upiu->header.task_tag = tag;
7334
7335 /* just copy the upiu request as it is */
7336 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7337 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7338 /* The Data Segment Area is optional depending upon the query
7339 * function value. for WRITE DESCRIPTOR, the data segment
7340 * follows right after the tsf.
7341 */
7342 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7343 *buff_len = 0;
7344 }
7345
7346 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7347
7348 /*
7349 * ignore the returning value here - ufshcd_check_query_response is
7350 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7351 * read the response directly ignoring all errors.
7352 */
7353 ufshcd_issue_dev_cmd(hba, lrbp, tag, dev_cmd_timeout);
7354
7355 /* just copy the upiu response as it is */
7356 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7357 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7358 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7359 u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7360 .data_segment_length);
7361
7362 if (*buff_len >= resp_len) {
7363 memcpy(desc_buff, descp, resp_len);
7364 *buff_len = resp_len;
7365 } else {
7366 dev_warn(hba->dev,
7367 "%s: rsp size %d is bigger than buffer size %d",
7368 __func__, resp_len, *buff_len);
7369 *buff_len = 0;
7370 err = -EINVAL;
7371 }
7372 }
7373
7374 return err;
7375 }
7376
7377 /**
7378 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7379 * @hba: per-adapter instance
7380 * @req_upiu: upiu request
7381 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands
7382 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target
7383 * @desc_buff: pointer to descriptor buffer, NULL if NA
7384 * @buff_len: descriptor size, 0 if NA
7385 * @desc_op: descriptor operation
7386 *
7387 * Supports UTP Transfer requests (nop and query), and UTP Task
7388 * Management requests.
7389 * It is up to the caller to fill the upiu conent properly, as it will
7390 * be copied without any further input validations.
7391 *
7392 * Return: 0 upon success; < 0 upon failure.
7393 */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,enum upiu_request_transaction msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)7394 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7395 struct utp_upiu_req *req_upiu,
7396 struct utp_upiu_req *rsp_upiu,
7397 enum upiu_request_transaction msgcode,
7398 u8 *desc_buff, int *buff_len,
7399 enum query_opcode desc_op)
7400 {
7401 int err;
7402 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7403 struct utp_task_req_desc treq = { };
7404 enum utp_ocs ocs_value;
7405 u8 tm_f = req_upiu->header.tm_function;
7406
7407 switch (msgcode) {
7408 case UPIU_TRANSACTION_NOP_OUT:
7409 cmd_type = DEV_CMD_TYPE_NOP;
7410 fallthrough;
7411 case UPIU_TRANSACTION_QUERY_REQ:
7412 ufshcd_dev_man_lock(hba);
7413 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7414 desc_buff, buff_len,
7415 cmd_type, desc_op);
7416 ufshcd_dev_man_unlock(hba);
7417
7418 break;
7419 case UPIU_TRANSACTION_TASK_REQ:
7420 treq.header.interrupt = 1;
7421 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7422
7423 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7424
7425 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7426 if (err == -ETIMEDOUT)
7427 break;
7428
7429 ocs_value = treq.header.ocs & MASK_OCS;
7430 if (ocs_value != OCS_SUCCESS) {
7431 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7432 ocs_value);
7433 break;
7434 }
7435
7436 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7437
7438 break;
7439 default:
7440 err = -EINVAL;
7441
7442 break;
7443 }
7444
7445 return err;
7446 }
7447
7448 /**
7449 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7450 * @hba: per adapter instance
7451 * @req_upiu: upiu request
7452 * @rsp_upiu: upiu reply
7453 * @req_ehs: EHS field which contains Advanced RPMB Request Message
7454 * @rsp_ehs: EHS field which returns Advanced RPMB Response Message
7455 * @sg_cnt: The number of sg lists actually used
7456 * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7457 * @dir: DMA direction
7458 *
7459 * Return: zero on success, non-zero on failure.
7460 */
ufshcd_advanced_rpmb_req_handler(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,struct ufs_ehs * req_ehs,struct ufs_ehs * rsp_ehs,int sg_cnt,struct scatterlist * sg_list,enum dma_data_direction dir)7461 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7462 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7463 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7464 enum dma_data_direction dir)
7465 {
7466 const u32 tag = hba->reserved_slot;
7467 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7468 int err = 0;
7469 int result;
7470 u8 upiu_flags;
7471 u8 *ehs_data;
7472 u16 ehs_len;
7473 int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7474
7475 /* Protects use of hba->reserved_slot. */
7476 ufshcd_dev_man_lock(hba);
7477
7478 ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag);
7479
7480 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7481
7482 /* update the task tag */
7483 req_upiu->header.task_tag = tag;
7484
7485 /* copy the UPIU(contains CDB) request as it is */
7486 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7487 /* Copy EHS, starting with byte32, immediately after the CDB package */
7488 memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7489
7490 if (dir != DMA_NONE && sg_list)
7491 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7492
7493 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7494
7495 err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7496
7497 if (!err) {
7498 /* Just copy the upiu response as it is */
7499 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7500 /* Get the response UPIU result */
7501 result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7502 lrbp->ucd_rsp_ptr->header.status;
7503
7504 ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7505 /*
7506 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7507 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7508 * Message is 02h
7509 */
7510 if (ehs_len == 2 && rsp_ehs) {
7511 /*
7512 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7513 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7514 */
7515 ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7516 memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7517 }
7518 }
7519
7520 ufshcd_dev_man_unlock(hba);
7521
7522 return err ? : result;
7523 }
7524
7525 /**
7526 * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7527 * @cmd: SCSI command pointer
7528 *
7529 * Return: SUCCESS or FAILED.
7530 */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)7531 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7532 {
7533 unsigned long flags, pending_reqs = 0, not_cleared = 0;
7534 struct Scsi_Host *host;
7535 struct ufs_hba *hba;
7536 struct ufs_hw_queue *hwq;
7537 struct ufshcd_lrb *lrbp;
7538 u32 pos, not_cleared_mask = 0;
7539 int err;
7540 u8 resp = 0xF, lun;
7541
7542 host = cmd->device->host;
7543 hba = shost_priv(host);
7544
7545 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7546 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7547 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7548 if (!err)
7549 err = resp;
7550 goto out;
7551 }
7552
7553 if (hba->mcq_enabled) {
7554 for (pos = 0; pos < hba->nutrs; pos++) {
7555 lrbp = &hba->lrb[pos];
7556 if (ufshcd_cmd_inflight(lrbp->cmd) &&
7557 lrbp->lun == lun) {
7558 ufshcd_clear_cmd(hba, pos);
7559 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7560 ufshcd_mcq_poll_cqe_lock(hba, hwq);
7561 }
7562 }
7563 err = 0;
7564 goto out;
7565 }
7566
7567 /* clear the commands that were pending for corresponding LUN */
7568 spin_lock_irqsave(&hba->outstanding_lock, flags);
7569 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7570 if (hba->lrb[pos].lun == lun)
7571 __set_bit(pos, &pending_reqs);
7572 hba->outstanding_reqs &= ~pending_reqs;
7573 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7574
7575 for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7576 if (ufshcd_clear_cmd(hba, pos) < 0) {
7577 spin_lock_irqsave(&hba->outstanding_lock, flags);
7578 not_cleared = 1U << pos &
7579 ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7580 hba->outstanding_reqs |= not_cleared;
7581 not_cleared_mask |= not_cleared;
7582 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7583
7584 dev_err(hba->dev, "%s: failed to clear request %d\n",
7585 __func__, pos);
7586 }
7587 }
7588 __ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7589
7590 out:
7591 hba->req_abort_count = 0;
7592 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7593 if (!err) {
7594 err = SUCCESS;
7595 } else {
7596 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7597 err = FAILED;
7598 }
7599 return err;
7600 }
7601
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)7602 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7603 {
7604 struct ufshcd_lrb *lrbp;
7605 int tag;
7606
7607 for_each_set_bit(tag, &bitmap, hba->nutrs) {
7608 lrbp = &hba->lrb[tag];
7609 lrbp->req_abort_skip = true;
7610 }
7611 }
7612
7613 /**
7614 * ufshcd_try_to_abort_task - abort a specific task
7615 * @hba: Pointer to adapter instance
7616 * @tag: Task tag/index to be aborted
7617 *
7618 * Abort the pending command in device by sending UFS_ABORT_TASK task management
7619 * command, and in host controller by clearing the door-bell register. There can
7620 * be race between controller sending the command to the device while abort is
7621 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7622 * really issued and then try to abort it.
7623 *
7624 * Return: zero on success, non-zero on failure.
7625 */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)7626 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7627 {
7628 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7629 int err;
7630 int poll_cnt;
7631 u8 resp = 0xF;
7632
7633 for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7634 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7635 UFS_QUERY_TASK, &resp);
7636 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7637 /* cmd pending in the device */
7638 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7639 __func__, tag);
7640 break;
7641 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7642 /*
7643 * cmd not pending in the device, check if it is
7644 * in transition.
7645 */
7646 dev_info(
7647 hba->dev,
7648 "%s: cmd with tag %d not pending in the device.\n",
7649 __func__, tag);
7650 if (!ufshcd_cmd_inflight(lrbp->cmd)) {
7651 dev_info(hba->dev,
7652 "%s: cmd with tag=%d completed.\n",
7653 __func__, tag);
7654 return 0;
7655 }
7656 usleep_range(100, 200);
7657 } else {
7658 dev_err(hba->dev,
7659 "%s: no response from device. tag = %d, err %d\n",
7660 __func__, tag, err);
7661 return err ? : resp;
7662 }
7663 }
7664
7665 if (!poll_cnt)
7666 return -EBUSY;
7667
7668 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7669 UFS_ABORT_TASK, &resp);
7670 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7671 if (!err) {
7672 err = resp; /* service response error */
7673 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7674 __func__, tag, err);
7675 }
7676 return err;
7677 }
7678
7679 err = ufshcd_clear_cmd(hba, tag);
7680 if (err)
7681 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7682 __func__, tag, err);
7683
7684 return err;
7685 }
7686
7687 /**
7688 * ufshcd_abort - scsi host template eh_abort_handler callback
7689 * @cmd: SCSI command pointer
7690 *
7691 * Return: SUCCESS or FAILED.
7692 */
ufshcd_abort(struct scsi_cmnd * cmd)7693 static int ufshcd_abort(struct scsi_cmnd *cmd)
7694 {
7695 struct Scsi_Host *host = cmd->device->host;
7696 struct ufs_hba *hba = shost_priv(host);
7697 int tag = scsi_cmd_to_rq(cmd)->tag;
7698 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7699 unsigned long flags;
7700 int err = FAILED;
7701 bool outstanding;
7702 u32 reg;
7703
7704 ufshcd_hold(hba);
7705
7706 if (!hba->mcq_enabled) {
7707 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7708 if (!test_bit(tag, &hba->outstanding_reqs)) {
7709 /* If command is already aborted/completed, return FAILED. */
7710 dev_err(hba->dev,
7711 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7712 __func__, tag, hba->outstanding_reqs, reg);
7713 goto release;
7714 }
7715 }
7716
7717 /* Print Transfer Request of aborted task */
7718 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7719
7720 /*
7721 * Print detailed info about aborted request.
7722 * As more than one request might get aborted at the same time,
7723 * print full information only for the first aborted request in order
7724 * to reduce repeated printouts. For other aborted requests only print
7725 * basic details.
7726 */
7727 scsi_print_command(cmd);
7728 if (!hba->req_abort_count) {
7729 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7730 ufshcd_print_evt_hist(hba);
7731 ufshcd_print_host_state(hba);
7732 ufshcd_print_pwr_info(hba);
7733 ufshcd_print_tr(hba, tag, true);
7734 } else {
7735 ufshcd_print_tr(hba, tag, false);
7736 }
7737 hba->req_abort_count++;
7738
7739 if (!hba->mcq_enabled && !(reg & (1 << tag))) {
7740 /* only execute this code in single doorbell mode */
7741 dev_err(hba->dev,
7742 "%s: cmd was completed, but without a notifying intr, tag = %d",
7743 __func__, tag);
7744 __ufshcd_transfer_req_compl(hba, 1UL << tag);
7745 goto release;
7746 }
7747
7748 /*
7749 * Task abort to the device W-LUN is illegal. When this command
7750 * will fail, due to spec violation, scsi err handling next step
7751 * will be to send LU reset which, again, is a spec violation.
7752 * To avoid these unnecessary/illegal steps, first we clean up
7753 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7754 * then queue the eh_work and bail.
7755 */
7756 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7757 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7758
7759 spin_lock_irqsave(host->host_lock, flags);
7760 hba->force_reset = true;
7761 ufshcd_schedule_eh_work(hba);
7762 spin_unlock_irqrestore(host->host_lock, flags);
7763 goto release;
7764 }
7765
7766 if (hba->mcq_enabled) {
7767 /* MCQ mode. Branch off to handle abort for mcq mode */
7768 err = ufshcd_mcq_abort(cmd);
7769 goto release;
7770 }
7771
7772 /* Skip task abort in case previous aborts failed and report failure */
7773 if (lrbp->req_abort_skip) {
7774 dev_err(hba->dev, "%s: skipping abort\n", __func__);
7775 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7776 goto release;
7777 }
7778
7779 err = ufshcd_try_to_abort_task(hba, tag);
7780 if (err) {
7781 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7782 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7783 err = FAILED;
7784 goto release;
7785 }
7786
7787 /*
7788 * Clear the corresponding bit from outstanding_reqs since the command
7789 * has been aborted successfully.
7790 */
7791 spin_lock_irqsave(&hba->outstanding_lock, flags);
7792 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7793 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7794
7795 if (outstanding)
7796 ufshcd_release_scsi_cmd(hba, lrbp);
7797
7798 err = SUCCESS;
7799
7800 release:
7801 /* Matches the ufshcd_hold() call at the start of this function. */
7802 ufshcd_release(hba);
7803 return err;
7804 }
7805
7806 /**
7807 * ufshcd_process_probe_result - Process the ufshcd_probe_hba() result.
7808 * @hba: UFS host controller instance.
7809 * @probe_start: time when the ufshcd_probe_hba() call started.
7810 * @ret: ufshcd_probe_hba() return value.
7811 */
ufshcd_process_probe_result(struct ufs_hba * hba,ktime_t probe_start,int ret)7812 static void ufshcd_process_probe_result(struct ufs_hba *hba,
7813 ktime_t probe_start, int ret)
7814 {
7815 unsigned long flags;
7816
7817 spin_lock_irqsave(hba->host->host_lock, flags);
7818 if (ret)
7819 hba->ufshcd_state = UFSHCD_STATE_ERROR;
7820 else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7821 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7822 spin_unlock_irqrestore(hba->host->host_lock, flags);
7823
7824 trace_ufshcd_init(hba, ret,
7825 ktime_to_us(ktime_sub(ktime_get(), probe_start)),
7826 hba->curr_dev_pwr_mode, hba->uic_link_state);
7827 }
7828
7829 /**
7830 * ufshcd_host_reset_and_restore - reset and restore host controller
7831 * @hba: per-adapter instance
7832 *
7833 * Note that host controller reset may issue DME_RESET to
7834 * local and remote (device) Uni-Pro stack and the attributes
7835 * are reset to default state.
7836 *
7837 * Return: zero on success, non-zero on failure.
7838 */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7839 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7840 {
7841 int err;
7842
7843 /*
7844 * Stop the host controller and complete the requests
7845 * cleared by h/w
7846 */
7847 ufshcd_hba_stop(hba);
7848 hba->silence_err_logs = true;
7849 ufshcd_complete_requests(hba, true);
7850 hba->silence_err_logs = false;
7851
7852 /* scale up clocks to max frequency before full reinitialization */
7853 if (ufshcd_is_clkscaling_supported(hba))
7854 ufshcd_scale_clks(hba, ULONG_MAX, true);
7855
7856 err = ufshcd_hba_enable(hba);
7857
7858 /* Establish the link again and restore the device */
7859 if (!err) {
7860 ktime_t probe_start = ktime_get();
7861
7862 err = ufshcd_device_init(hba, /*init_dev_params=*/false);
7863 if (!err)
7864 err = ufshcd_probe_hba(hba, false);
7865 ufshcd_process_probe_result(hba, probe_start, err);
7866 }
7867
7868 if (err)
7869 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7870 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7871 return err;
7872 }
7873
7874 /**
7875 * ufshcd_reset_and_restore - reset and re-initialize host/device
7876 * @hba: per-adapter instance
7877 *
7878 * Reset and recover device, host and re-establish link. This
7879 * is helpful to recover the communication in fatal error conditions.
7880 *
7881 * Return: zero on success, non-zero on failure.
7882 */
ufshcd_reset_and_restore(struct ufs_hba * hba)7883 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7884 {
7885 u32 saved_err = 0;
7886 u32 saved_uic_err = 0;
7887 int err = 0;
7888 unsigned long flags;
7889 int retries = MAX_HOST_RESET_RETRIES;
7890
7891 spin_lock_irqsave(hba->host->host_lock, flags);
7892 do {
7893 /*
7894 * This is a fresh start, cache and clear saved error first,
7895 * in case new error generated during reset and restore.
7896 */
7897 saved_err |= hba->saved_err;
7898 saved_uic_err |= hba->saved_uic_err;
7899 hba->saved_err = 0;
7900 hba->saved_uic_err = 0;
7901 hba->force_reset = false;
7902 hba->ufshcd_state = UFSHCD_STATE_RESET;
7903 spin_unlock_irqrestore(hba->host->host_lock, flags);
7904
7905 /* Reset the attached device */
7906 ufshcd_device_reset(hba);
7907
7908 err = ufshcd_host_reset_and_restore(hba);
7909
7910 spin_lock_irqsave(hba->host->host_lock, flags);
7911 if (err)
7912 continue;
7913 /* Do not exit unless operational or dead */
7914 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7915 hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7916 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7917 err = -EAGAIN;
7918 } while (err && --retries);
7919
7920 /*
7921 * Inform scsi mid-layer that we did reset and allow to handle
7922 * Unit Attention properly.
7923 */
7924 scsi_report_bus_reset(hba->host, 0);
7925 if (err) {
7926 hba->ufshcd_state = UFSHCD_STATE_ERROR;
7927 hba->saved_err |= saved_err;
7928 hba->saved_uic_err |= saved_uic_err;
7929 }
7930 spin_unlock_irqrestore(hba->host->host_lock, flags);
7931
7932 return err;
7933 }
7934
7935 /**
7936 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7937 * @cmd: SCSI command pointer
7938 *
7939 * Return: SUCCESS or FAILED.
7940 */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)7941 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7942 {
7943 int err = SUCCESS;
7944 unsigned long flags;
7945 struct ufs_hba *hba;
7946
7947 hba = shost_priv(cmd->device->host);
7948
7949 /*
7950 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7951 * stuck in this function waiting for flush_work(&hba->eh_work). And
7952 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7953 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7954 */
7955 if (hba->pm_op_in_progress) {
7956 if (ufshcd_link_recovery(hba))
7957 err = FAILED;
7958
7959 return err;
7960 }
7961
7962 spin_lock_irqsave(hba->host->host_lock, flags);
7963 hba->force_reset = true;
7964 ufshcd_schedule_eh_work(hba);
7965 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7966 spin_unlock_irqrestore(hba->host->host_lock, flags);
7967
7968 flush_work(&hba->eh_work);
7969
7970 spin_lock_irqsave(hba->host->host_lock, flags);
7971 if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7972 err = FAILED;
7973 spin_unlock_irqrestore(hba->host->host_lock, flags);
7974
7975 return err;
7976 }
7977
7978 /**
7979 * ufshcd_get_max_icc_level - calculate the ICC level
7980 * @sup_curr_uA: max. current supported by the regulator
7981 * @start_scan: row at the desc table to start scan from
7982 * @buff: power descriptor buffer
7983 *
7984 * Return: calculated max ICC level for specific regulator.
7985 */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,const char * buff)7986 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7987 const char *buff)
7988 {
7989 int i;
7990 int curr_uA;
7991 u16 data;
7992 u16 unit;
7993
7994 for (i = start_scan; i >= 0; i--) {
7995 data = get_unaligned_be16(&buff[2 * i]);
7996 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7997 ATTR_ICC_LVL_UNIT_OFFSET;
7998 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7999 switch (unit) {
8000 case UFSHCD_NANO_AMP:
8001 curr_uA = curr_uA / 1000;
8002 break;
8003 case UFSHCD_MILI_AMP:
8004 curr_uA = curr_uA * 1000;
8005 break;
8006 case UFSHCD_AMP:
8007 curr_uA = curr_uA * 1000 * 1000;
8008 break;
8009 case UFSHCD_MICRO_AMP:
8010 default:
8011 break;
8012 }
8013 if (sup_curr_uA >= curr_uA)
8014 break;
8015 }
8016 if (i < 0) {
8017 i = 0;
8018 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
8019 }
8020
8021 return (u32)i;
8022 }
8023
8024 /**
8025 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
8026 * In case regulators are not initialized we'll return 0
8027 * @hba: per-adapter instance
8028 * @desc_buf: power descriptor buffer to extract ICC levels from.
8029 *
8030 * Return: calculated ICC level.
8031 */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,const u8 * desc_buf)8032 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
8033 const u8 *desc_buf)
8034 {
8035 u32 icc_level = 0;
8036
8037 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
8038 !hba->vreg_info.vccq2) {
8039 /*
8040 * Using dev_dbg to avoid messages during runtime PM to avoid
8041 * never-ending cycles of messages written back to storage by
8042 * user space causing runtime resume, causing more messages and
8043 * so on.
8044 */
8045 dev_dbg(hba->dev,
8046 "%s: Regulator capability was not set, actvIccLevel=%d",
8047 __func__, icc_level);
8048 goto out;
8049 }
8050
8051 if (hba->vreg_info.vcc->max_uA)
8052 icc_level = ufshcd_get_max_icc_level(
8053 hba->vreg_info.vcc->max_uA,
8054 POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
8055 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
8056
8057 if (hba->vreg_info.vccq->max_uA)
8058 icc_level = ufshcd_get_max_icc_level(
8059 hba->vreg_info.vccq->max_uA,
8060 icc_level,
8061 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
8062
8063 if (hba->vreg_info.vccq2->max_uA)
8064 icc_level = ufshcd_get_max_icc_level(
8065 hba->vreg_info.vccq2->max_uA,
8066 icc_level,
8067 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
8068 out:
8069 return icc_level;
8070 }
8071
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)8072 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
8073 {
8074 int ret;
8075 u8 *desc_buf;
8076 u32 icc_level;
8077
8078 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8079 if (!desc_buf)
8080 return;
8081
8082 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
8083 desc_buf, QUERY_DESC_MAX_SIZE);
8084 if (ret) {
8085 dev_err(hba->dev,
8086 "%s: Failed reading power descriptor ret = %d",
8087 __func__, ret);
8088 goto out;
8089 }
8090
8091 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
8092 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
8093
8094 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8095 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
8096
8097 if (ret)
8098 dev_err(hba->dev,
8099 "%s: Failed configuring bActiveICCLevel = %d ret = %d",
8100 __func__, icc_level, ret);
8101
8102 out:
8103 kfree(desc_buf);
8104 }
8105
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)8106 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
8107 {
8108 struct Scsi_Host *shost = sdev->host;
8109
8110 scsi_autopm_get_device(sdev);
8111 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
8112 if (sdev->rpm_autosuspend)
8113 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
8114 shost->rpm_autosuspend_delay);
8115 scsi_autopm_put_device(sdev);
8116 }
8117
8118 /**
8119 * ufshcd_scsi_add_wlus - Adds required W-LUs
8120 * @hba: per-adapter instance
8121 *
8122 * UFS device specification requires the UFS devices to support 4 well known
8123 * logical units:
8124 * "REPORT_LUNS" (address: 01h)
8125 * "UFS Device" (address: 50h)
8126 * "RPMB" (address: 44h)
8127 * "BOOT" (address: 30h)
8128 * UFS device's power management needs to be controlled by "POWER CONDITION"
8129 * field of SSU (START STOP UNIT) command. But this "power condition" field
8130 * will take effect only when its sent to "UFS device" well known logical unit
8131 * hence we require the scsi_device instance to represent this logical unit in
8132 * order for the UFS host driver to send the SSU command for power management.
8133 *
8134 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
8135 * Block) LU so user space process can control this LU. User space may also
8136 * want to have access to BOOT LU.
8137 *
8138 * This function adds scsi device instances for each of all well known LUs
8139 * (except "REPORT LUNS" LU).
8140 *
8141 * Return: zero on success (all required W-LUs are added successfully),
8142 * non-zero error value on failure (if failed to add any of the required W-LU).
8143 */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)8144 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8145 {
8146 int ret = 0;
8147 struct scsi_device *sdev_boot, *sdev_rpmb;
8148
8149 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8150 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8151 if (IS_ERR(hba->ufs_device_wlun)) {
8152 ret = PTR_ERR(hba->ufs_device_wlun);
8153 hba->ufs_device_wlun = NULL;
8154 goto out;
8155 }
8156 scsi_device_put(hba->ufs_device_wlun);
8157
8158 sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8159 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8160 if (IS_ERR(sdev_rpmb)) {
8161 ret = PTR_ERR(sdev_rpmb);
8162 goto remove_ufs_device_wlun;
8163 }
8164 ufshcd_blk_pm_runtime_init(sdev_rpmb);
8165 scsi_device_put(sdev_rpmb);
8166
8167 sdev_boot = __scsi_add_device(hba->host, 0, 0,
8168 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8169 if (IS_ERR(sdev_boot)) {
8170 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8171 } else {
8172 ufshcd_blk_pm_runtime_init(sdev_boot);
8173 scsi_device_put(sdev_boot);
8174 }
8175 goto out;
8176
8177 remove_ufs_device_wlun:
8178 scsi_remove_device(hba->ufs_device_wlun);
8179 out:
8180 return ret;
8181 }
8182
ufshcd_wb_probe(struct ufs_hba * hba,const u8 * desc_buf)8183 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8184 {
8185 struct ufs_dev_info *dev_info = &hba->dev_info;
8186 u8 lun;
8187 u32 d_lu_wb_buf_alloc;
8188 u32 ext_ufs_feature;
8189
8190 if (!ufshcd_is_wb_allowed(hba))
8191 return;
8192
8193 /*
8194 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8195 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8196 * enabled
8197 */
8198 if (!(dev_info->wspecversion >= 0x310 ||
8199 dev_info->wspecversion == 0x220 ||
8200 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8201 goto wb_disabled;
8202
8203 ext_ufs_feature = get_unaligned_be32(desc_buf +
8204 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8205
8206 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8207 goto wb_disabled;
8208
8209 /*
8210 * WB may be supported but not configured while provisioning. The spec
8211 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8212 * buffer configured.
8213 */
8214 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8215
8216 dev_info->ext_wb_sup = get_unaligned_be16(desc_buf +
8217 DEVICE_DESC_PARAM_EXT_WB_SUP);
8218
8219 dev_info->b_presrv_uspc_en =
8220 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8221
8222 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8223 if (!get_unaligned_be32(desc_buf +
8224 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8225 goto wb_disabled;
8226 } else {
8227 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8228 d_lu_wb_buf_alloc = 0;
8229 ufshcd_read_unit_desc_param(hba,
8230 lun,
8231 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8232 (u8 *)&d_lu_wb_buf_alloc,
8233 sizeof(d_lu_wb_buf_alloc));
8234 if (d_lu_wb_buf_alloc) {
8235 dev_info->wb_dedicated_lu = lun;
8236 break;
8237 }
8238 }
8239
8240 if (!d_lu_wb_buf_alloc)
8241 goto wb_disabled;
8242 }
8243
8244 if (!ufshcd_is_wb_buf_lifetime_available(hba))
8245 goto wb_disabled;
8246
8247 return;
8248
8249 wb_disabled:
8250 hba->caps &= ~UFSHCD_CAP_WB_EN;
8251 }
8252
ufshcd_temp_notif_probe(struct ufs_hba * hba,const u8 * desc_buf)8253 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8254 {
8255 struct ufs_dev_info *dev_info = &hba->dev_info;
8256 u32 ext_ufs_feature;
8257 u8 mask = 0;
8258
8259 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8260 return;
8261
8262 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8263
8264 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8265 mask |= MASK_EE_TOO_LOW_TEMP;
8266
8267 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8268 mask |= MASK_EE_TOO_HIGH_TEMP;
8269
8270 if (mask) {
8271 ufshcd_enable_ee(hba, mask);
8272 ufs_hwmon_probe(hba, mask);
8273 }
8274 }
8275
ufshcd_device_lvl_exception_probe(struct ufs_hba * hba,u8 * desc_buf)8276 static void ufshcd_device_lvl_exception_probe(struct ufs_hba *hba, u8 *desc_buf)
8277 {
8278 u32 ext_ufs_feature;
8279
8280 if (hba->dev_info.wspecversion < 0x410)
8281 return;
8282
8283 ext_ufs_feature = get_unaligned_be32(desc_buf +
8284 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8285 if (!(ext_ufs_feature & UFS_DEV_LVL_EXCEPTION_SUP))
8286 return;
8287
8288 atomic_set(&hba->dev_lvl_exception_count, 0);
8289 ufshcd_enable_ee(hba, MASK_EE_DEV_LVL_EXCEPTION);
8290 }
8291
ufshcd_set_rtt(struct ufs_hba * hba)8292 static void ufshcd_set_rtt(struct ufs_hba *hba)
8293 {
8294 struct ufs_dev_info *dev_info = &hba->dev_info;
8295 u32 rtt = 0;
8296 u32 dev_rtt = 0;
8297 int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ?
8298 hba->vops->max_num_rtt : hba->nortt;
8299
8300 /* RTT override makes sense only for UFS-4.0 and above */
8301 if (dev_info->wspecversion < 0x400)
8302 return;
8303
8304 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8305 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) {
8306 dev_err(hba->dev, "failed reading bMaxNumOfRTT\n");
8307 return;
8308 }
8309
8310 /* do not override if it was already written */
8311 if (dev_rtt != DEFAULT_MAX_NUM_RTT)
8312 return;
8313
8314 rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap);
8315
8316 if (rtt == dev_rtt)
8317 return;
8318
8319 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8320 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt))
8321 dev_err(hba->dev, "failed writing bMaxNumOfRTT\n");
8322 }
8323
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,const struct ufs_dev_quirk * fixups)8324 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8325 const struct ufs_dev_quirk *fixups)
8326 {
8327 const struct ufs_dev_quirk *f;
8328 struct ufs_dev_info *dev_info = &hba->dev_info;
8329
8330 if (!fixups)
8331 return;
8332
8333 for (f = fixups; f->quirk; f++) {
8334 if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8335 f->wmanufacturerid == UFS_ANY_VENDOR) &&
8336 ((dev_info->model &&
8337 STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8338 !strcmp(f->model, UFS_ANY_MODEL)))
8339 hba->dev_quirks |= f->quirk;
8340 }
8341 }
8342 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8343
ufs_fixup_device_setup(struct ufs_hba * hba)8344 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8345 {
8346 /* fix by general quirk table */
8347 ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8348
8349 /* allow vendors to fix quirks */
8350 ufshcd_vops_fixup_dev_quirks(hba);
8351 }
8352
ufshcd_update_rtc(struct ufs_hba * hba)8353 static void ufshcd_update_rtc(struct ufs_hba *hba)
8354 {
8355 struct timespec64 ts64;
8356 int err;
8357 u32 val;
8358
8359 ktime_get_real_ts64(&ts64);
8360
8361 if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8362 dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8363 return;
8364 }
8365
8366 /*
8367 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8368 * 2146 is required, it is recommended to choose the relative RTC mode.
8369 */
8370 val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8371
8372 /* Skip update RTC if RPM state is not RPM_ACTIVE */
8373 if (ufshcd_rpm_get_if_active(hba) <= 0)
8374 return;
8375
8376 err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8377 0, 0, &val);
8378 ufshcd_rpm_put(hba);
8379
8380 if (err)
8381 dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8382 else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8383 hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8384 }
8385
ufshcd_rtc_work(struct work_struct * work)8386 static void ufshcd_rtc_work(struct work_struct *work)
8387 {
8388 struct ufs_hba *hba;
8389
8390 hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8391
8392 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8393 if (!ufshcd_is_ufs_dev_busy(hba) &&
8394 hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL &&
8395 !hba->clk_gating.active_reqs)
8396 ufshcd_update_rtc(hba);
8397
8398 if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8399 schedule_delayed_work(&hba->ufs_rtc_update_work,
8400 msecs_to_jiffies(hba->dev_info.rtc_update_period));
8401 }
8402
ufs_init_rtc(struct ufs_hba * hba,u8 * desc_buf)8403 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8404 {
8405 u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8406 struct ufs_dev_info *dev_info = &hba->dev_info;
8407
8408 if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8409 dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8410
8411 /*
8412 * The concept of measuring time in Linux as the number of seconds elapsed since
8413 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8414 * 2010 00:00, here we need to adjust ABS baseline.
8415 */
8416 dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8417 mktime64(1970, 1, 1, 0, 0, 0);
8418 } else {
8419 dev_info->rtc_type = UFS_RTC_RELATIVE;
8420 dev_info->rtc_time_baseline = 0;
8421 }
8422
8423 /*
8424 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8425 * how to calculate the specific update period for each time unit. And we disable periodic
8426 * RTC update work, let user configure by sysfs node according to specific circumstance.
8427 */
8428 dev_info->rtc_update_period = 0;
8429 }
8430
ufs_get_device_desc(struct ufs_hba * hba)8431 static int ufs_get_device_desc(struct ufs_hba *hba)
8432 {
8433 int err;
8434 u8 model_index;
8435 u8 *desc_buf;
8436 struct ufs_dev_info *dev_info = &hba->dev_info;
8437
8438 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8439 if (!desc_buf) {
8440 err = -ENOMEM;
8441 goto out;
8442 }
8443
8444 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8445 QUERY_DESC_MAX_SIZE);
8446 if (err) {
8447 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8448 __func__, err);
8449 goto out;
8450 }
8451
8452 /*
8453 * getting vendor (manufacturerID) and Bank Index in big endian
8454 * format
8455 */
8456 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8457 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8458
8459 /* getting Specification Version in big endian format */
8460 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8461 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8462 dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8463
8464 dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP];
8465
8466 dev_info->hid_sup = get_unaligned_be32(desc_buf +
8467 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP) &
8468 UFS_DEV_HID_SUPPORT;
8469
8470 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8471
8472 err = ufshcd_read_string_desc(hba, model_index,
8473 &dev_info->model, SD_ASCII_STD);
8474 if (err < 0) {
8475 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8476 __func__, err);
8477 goto out;
8478 }
8479
8480 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8481 desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8482
8483 ufs_fixup_device_setup(hba);
8484
8485 ufshcd_wb_probe(hba, desc_buf);
8486
8487 ufshcd_temp_notif_probe(hba, desc_buf);
8488
8489 if (dev_info->wspecversion >= 0x410) {
8490 hba->critical_health_count = 0;
8491 ufshcd_enable_ee(hba, MASK_EE_HEALTH_CRITICAL);
8492 }
8493
8494 ufs_init_rtc(hba, desc_buf);
8495
8496 ufshcd_device_lvl_exception_probe(hba, desc_buf);
8497
8498 /*
8499 * ufshcd_read_string_desc returns size of the string
8500 * reset the error value
8501 */
8502 err = 0;
8503
8504 out:
8505 kfree(desc_buf);
8506 return err;
8507 }
8508
ufs_put_device_desc(struct ufs_hba * hba)8509 static void ufs_put_device_desc(struct ufs_hba *hba)
8510 {
8511 struct ufs_dev_info *dev_info = &hba->dev_info;
8512
8513 kfree(dev_info->model);
8514 dev_info->model = NULL;
8515 }
8516
8517 /**
8518 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8519 * less than device PA_TACTIVATE time.
8520 * @hba: per-adapter instance
8521 *
8522 * Some UFS devices require host PA_TACTIVATE to be lower than device
8523 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8524 * for such devices.
8525 *
8526 * Return: zero on success, non-zero error value on failure.
8527 */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)8528 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8529 {
8530 int ret = 0;
8531 u32 granularity, peer_granularity;
8532 u32 pa_tactivate, peer_pa_tactivate;
8533 u32 pa_tactivate_us, peer_pa_tactivate_us;
8534 static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8535
8536 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8537 &granularity);
8538 if (ret)
8539 goto out;
8540
8541 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8542 &peer_granularity);
8543 if (ret)
8544 goto out;
8545
8546 if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8547 (granularity > PA_GRANULARITY_MAX_VAL)) {
8548 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8549 __func__, granularity);
8550 return -EINVAL;
8551 }
8552
8553 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8554 (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8555 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8556 __func__, peer_granularity);
8557 return -EINVAL;
8558 }
8559
8560 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8561 if (ret)
8562 goto out;
8563
8564 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8565 &peer_pa_tactivate);
8566 if (ret)
8567 goto out;
8568
8569 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8570 peer_pa_tactivate_us = peer_pa_tactivate *
8571 gran_to_us_table[peer_granularity - 1];
8572
8573 if (pa_tactivate_us >= peer_pa_tactivate_us) {
8574 u32 new_peer_pa_tactivate;
8575
8576 new_peer_pa_tactivate = pa_tactivate_us /
8577 gran_to_us_table[peer_granularity - 1];
8578 new_peer_pa_tactivate++;
8579 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8580 new_peer_pa_tactivate);
8581 }
8582
8583 out:
8584 return ret;
8585 }
8586
8587 /**
8588 * ufshcd_quirk_override_pa_h8time - Ensures proper adjustment of PA_HIBERN8TIME.
8589 * @hba: per-adapter instance
8590 *
8591 * Some UFS devices require specific adjustments to the PA_HIBERN8TIME parameter
8592 * to ensure proper hibernation timing. This function retrieves the current
8593 * PA_HIBERN8TIME value and increments it by 100us.
8594 */
ufshcd_quirk_override_pa_h8time(struct ufs_hba * hba)8595 static void ufshcd_quirk_override_pa_h8time(struct ufs_hba *hba)
8596 {
8597 u32 pa_h8time;
8598 int ret;
8599
8600 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_HIBERN8TIME), &pa_h8time);
8601 if (ret) {
8602 dev_err(hba->dev, "Failed to get PA_HIBERN8TIME: %d\n", ret);
8603 return;
8604 }
8605
8606 /* Increment by 1 to increase hibernation time by 100 µs */
8607 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), pa_h8time + 1);
8608 if (ret)
8609 dev_err(hba->dev, "Failed updating PA_HIBERN8TIME: %d\n", ret);
8610 }
8611
ufshcd_tune_unipro_params(struct ufs_hba * hba)8612 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8613 {
8614 ufshcd_vops_apply_dev_quirks(hba);
8615
8616 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8617 /* set 1ms timeout for PA_TACTIVATE */
8618 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8619
8620 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8621 ufshcd_quirk_tune_host_pa_tactivate(hba);
8622
8623 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_HIBER8TIME)
8624 ufshcd_quirk_override_pa_h8time(hba);
8625 }
8626
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)8627 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8628 {
8629 hba->ufs_stats.hibern8_exit_cnt = 0;
8630 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8631 hba->req_abort_count = 0;
8632 }
8633
ufshcd_device_geo_params_init(struct ufs_hba * hba)8634 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8635 {
8636 int err;
8637 u8 *desc_buf;
8638
8639 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8640 if (!desc_buf) {
8641 err = -ENOMEM;
8642 goto out;
8643 }
8644
8645 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8646 desc_buf, QUERY_DESC_MAX_SIZE);
8647 if (err) {
8648 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8649 __func__, err);
8650 goto out;
8651 }
8652
8653 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8654 hba->dev_info.max_lu_supported = 32;
8655 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8656 hba->dev_info.max_lu_supported = 8;
8657
8658 out:
8659 kfree(desc_buf);
8660 return err;
8661 }
8662
8663 struct ufs_ref_clk {
8664 unsigned long freq_hz;
8665 enum ufs_ref_clk_freq val;
8666 };
8667
8668 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8669 {19200000, REF_CLK_FREQ_19_2_MHZ},
8670 {26000000, REF_CLK_FREQ_26_MHZ},
8671 {38400000, REF_CLK_FREQ_38_4_MHZ},
8672 {52000000, REF_CLK_FREQ_52_MHZ},
8673 {0, REF_CLK_FREQ_INVAL},
8674 };
8675
8676 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)8677 ufs_get_bref_clk_from_hz(unsigned long freq)
8678 {
8679 int i;
8680
8681 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8682 if (ufs_ref_clk_freqs[i].freq_hz == freq)
8683 return ufs_ref_clk_freqs[i].val;
8684
8685 return REF_CLK_FREQ_INVAL;
8686 }
8687
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)8688 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8689 {
8690 unsigned long freq;
8691
8692 freq = clk_get_rate(refclk);
8693
8694 hba->dev_ref_clk_freq =
8695 ufs_get_bref_clk_from_hz(freq);
8696
8697 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8698 dev_err(hba->dev,
8699 "invalid ref_clk setting = %ld\n", freq);
8700 }
8701
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)8702 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8703 {
8704 int err;
8705 u32 ref_clk;
8706 u32 freq = hba->dev_ref_clk_freq;
8707
8708 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8709 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8710
8711 if (err) {
8712 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8713 err);
8714 goto out;
8715 }
8716
8717 if (ref_clk == freq)
8718 goto out; /* nothing to update */
8719
8720 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8721 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8722
8723 if (err) {
8724 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8725 ufs_ref_clk_freqs[freq].freq_hz);
8726 goto out;
8727 }
8728
8729 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8730 ufs_ref_clk_freqs[freq].freq_hz);
8731
8732 out:
8733 return err;
8734 }
8735
ufshcd_device_params_init(struct ufs_hba * hba)8736 static int ufshcd_device_params_init(struct ufs_hba *hba)
8737 {
8738 bool flag;
8739 int ret;
8740
8741 /* Init UFS geometry descriptor related parameters */
8742 ret = ufshcd_device_geo_params_init(hba);
8743 if (ret)
8744 goto out;
8745
8746 /* Check and apply UFS device quirks */
8747 ret = ufs_get_device_desc(hba);
8748 if (ret) {
8749 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8750 __func__, ret);
8751 goto out;
8752 }
8753
8754 ufshcd_set_rtt(hba);
8755
8756 ufshcd_get_ref_clk_gating_wait(hba);
8757
8758 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8759 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8760 hba->dev_info.f_power_on_wp_en = flag;
8761
8762 /* Probe maximum power mode co-supported by both UFS host and device */
8763 if (ufshcd_get_max_pwr_mode(hba))
8764 dev_err(hba->dev,
8765 "%s: Failed getting max supported power mode\n",
8766 __func__);
8767 out:
8768 return ret;
8769 }
8770
ufshcd_set_timestamp_attr(struct ufs_hba * hba)8771 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8772 {
8773 int err;
8774 struct ufs_query_req *request = NULL;
8775 struct ufs_query_res *response = NULL;
8776 struct ufs_dev_info *dev_info = &hba->dev_info;
8777 struct utp_upiu_query_v4_0 *upiu_data;
8778
8779 if (dev_info->wspecversion < 0x400)
8780 return;
8781
8782 ufshcd_dev_man_lock(hba);
8783
8784 ufshcd_init_query(hba, &request, &response,
8785 UPIU_QUERY_OPCODE_WRITE_ATTR,
8786 QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8787
8788 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8789
8790 upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8791
8792 put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8793
8794 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
8795
8796 if (err)
8797 dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8798 __func__, err);
8799
8800 ufshcd_dev_man_unlock(hba);
8801 }
8802
8803 /**
8804 * ufshcd_add_lus - probe and add UFS logical units
8805 * @hba: per-adapter instance
8806 *
8807 * Return: 0 upon success; < 0 upon failure.
8808 */
ufshcd_add_lus(struct ufs_hba * hba)8809 static int ufshcd_add_lus(struct ufs_hba *hba)
8810 {
8811 int ret;
8812
8813 /* Add required well known logical units to scsi mid layer */
8814 ret = ufshcd_scsi_add_wlus(hba);
8815 if (ret)
8816 goto out;
8817
8818 /* Initialize devfreq after UFS device is detected */
8819 if (ufshcd_is_clkscaling_supported(hba)) {
8820 memcpy(&hba->clk_scaling.saved_pwr_info,
8821 &hba->pwr_info,
8822 sizeof(struct ufs_pa_layer_attr));
8823 hba->clk_scaling.is_allowed = true;
8824
8825 ret = ufshcd_devfreq_init(hba);
8826 if (ret)
8827 goto out;
8828
8829 hba->clk_scaling.is_enabled = true;
8830 ufshcd_init_clk_scaling_sysfs(hba);
8831 }
8832
8833 /*
8834 * The RTC update code accesses the hba->ufs_device_wlun->sdev_gendev
8835 * pointer and hence must only be started after the WLUN pointer has
8836 * been initialized by ufshcd_scsi_add_wlus().
8837 */
8838 schedule_delayed_work(&hba->ufs_rtc_update_work,
8839 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8840
8841 ufs_bsg_probe(hba);
8842 scsi_scan_host(hba->host);
8843
8844 out:
8845 return ret;
8846 }
8847
8848 /* SDB - Single Doorbell */
ufshcd_release_sdb_queue(struct ufs_hba * hba,int nutrs)8849 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8850 {
8851 size_t ucdl_size, utrdl_size;
8852
8853 ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8854 dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8855 hba->ucdl_dma_addr);
8856
8857 utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8858 dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8859 hba->utrdl_dma_addr);
8860
8861 devm_kfree(hba->dev, hba->lrb);
8862 }
8863
ufshcd_alloc_mcq(struct ufs_hba * hba)8864 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8865 {
8866 int ret;
8867 int old_nutrs = hba->nutrs;
8868
8869 ret = ufshcd_mcq_decide_queue_depth(hba);
8870 if (ret < 0)
8871 return ret;
8872
8873 hba->nutrs = ret;
8874 ret = ufshcd_mcq_init(hba);
8875 if (ret)
8876 goto err;
8877
8878 /*
8879 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8880 * Number of supported tags in MCQ mode may be larger than SDB mode.
8881 */
8882 if (hba->nutrs != old_nutrs) {
8883 ufshcd_release_sdb_queue(hba, old_nutrs);
8884 ret = ufshcd_memory_alloc(hba);
8885 if (ret)
8886 goto err;
8887 ufshcd_host_memory_configure(hba);
8888 }
8889
8890 ret = ufshcd_mcq_memory_alloc(hba);
8891 if (ret)
8892 goto err;
8893
8894 hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8895 hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8896
8897 return 0;
8898 err:
8899 hba->nutrs = old_nutrs;
8900 return ret;
8901 }
8902
ufshcd_config_mcq(struct ufs_hba * hba)8903 static void ufshcd_config_mcq(struct ufs_hba *hba)
8904 {
8905 int ret;
8906 u32 intrs;
8907
8908 ret = ufshcd_mcq_vops_config_esi(hba);
8909 hba->mcq_esi_enabled = !ret;
8910 dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8911
8912 intrs = UFSHCD_ENABLE_MCQ_INTRS;
8913 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8914 intrs &= ~MCQ_CQ_EVENT_STATUS;
8915 ufshcd_enable_intr(hba, intrs);
8916 ufshcd_mcq_make_queues_operational(hba);
8917 ufshcd_mcq_config_mac(hba, hba->nutrs);
8918
8919 dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8920 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8921 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8922 hba->nutrs);
8923 }
8924
ufshcd_post_device_init(struct ufs_hba * hba)8925 static int ufshcd_post_device_init(struct ufs_hba *hba)
8926 {
8927 int ret;
8928
8929 ufshcd_tune_unipro_params(hba);
8930
8931 /* UFS device is also active now */
8932 ufshcd_set_ufs_dev_active(hba);
8933 ufshcd_force_reset_auto_bkops(hba);
8934
8935 ufshcd_set_timestamp_attr(hba);
8936
8937 if (!hba->max_pwr_info.is_valid)
8938 return 0;
8939
8940 /*
8941 * Set the right value to bRefClkFreq before attempting to
8942 * switch to HS gears.
8943 */
8944 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8945 ufshcd_set_dev_ref_clk(hba);
8946 /* Gear up to HS gear. */
8947 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8948 if (ret) {
8949 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8950 __func__, ret);
8951 return ret;
8952 }
8953
8954 return 0;
8955 }
8956
ufshcd_device_init(struct ufs_hba * hba,bool init_dev_params)8957 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8958 {
8959 int ret;
8960
8961 WARN_ON_ONCE(!hba->scsi_host_added);
8962
8963 hba->ufshcd_state = UFSHCD_STATE_RESET;
8964
8965 ret = ufshcd_link_startup(hba);
8966 if (ret)
8967 return ret;
8968
8969 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8970 return ret;
8971
8972 /* Debug counters initialization */
8973 ufshcd_clear_dbg_ufs_stats(hba);
8974
8975 /* UniPro link is active now */
8976 ufshcd_set_link_active(hba);
8977
8978 /* Reconfigure MCQ upon reset */
8979 if (hba->mcq_enabled && !init_dev_params) {
8980 ufshcd_config_mcq(hba);
8981 ufshcd_mcq_enable(hba);
8982 }
8983
8984 /* Verify device initialization by sending NOP OUT UPIU */
8985 ret = ufshcd_verify_dev_init(hba);
8986 if (ret)
8987 return ret;
8988
8989 /* Initiate UFS initialization, and waiting until completion */
8990 ret = ufshcd_complete_dev_init(hba);
8991 if (ret)
8992 return ret;
8993
8994 /*
8995 * Initialize UFS device parameters used by driver, these
8996 * parameters are associated with UFS descriptors.
8997 */
8998 if (init_dev_params) {
8999 ret = ufshcd_device_params_init(hba);
9000 if (ret)
9001 return ret;
9002 if (is_mcq_supported(hba) &&
9003 hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
9004 ufshcd_config_mcq(hba);
9005 ufshcd_mcq_enable(hba);
9006 }
9007 }
9008
9009 return ufshcd_post_device_init(hba);
9010 }
9011
9012 /**
9013 * ufshcd_probe_hba - probe hba to detect device and initialize it
9014 * @hba: per-adapter instance
9015 * @init_dev_params: whether or not to call ufshcd_device_params_init().
9016 *
9017 * Execute link-startup and verify device initialization
9018 *
9019 * Return: 0 upon success; < 0 upon failure.
9020 */
ufshcd_probe_hba(struct ufs_hba * hba,bool init_dev_params)9021 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
9022 {
9023 int ret;
9024
9025 if (!hba->pm_op_in_progress &&
9026 (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
9027 /* Reset the device and controller before doing reinit */
9028 ufshcd_device_reset(hba);
9029 ufs_put_device_desc(hba);
9030 ufshcd_hba_stop(hba);
9031 ret = ufshcd_hba_enable(hba);
9032 if (ret) {
9033 dev_err(hba->dev, "Host controller enable failed\n");
9034 ufshcd_print_evt_hist(hba);
9035 ufshcd_print_host_state(hba);
9036 return ret;
9037 }
9038
9039 /* Reinit the device */
9040 ret = ufshcd_device_init(hba, init_dev_params);
9041 if (ret)
9042 return ret;
9043 }
9044
9045 ufshcd_print_pwr_info(hba);
9046
9047 /*
9048 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
9049 * and for removable UFS card as well, hence always set the parameter.
9050 * Note: Error handler may issue the device reset hence resetting
9051 * bActiveICCLevel as well so it is always safe to set this here.
9052 */
9053 ufshcd_set_active_icc_lvl(hba);
9054
9055 /* Enable UFS Write Booster if supported */
9056 ufshcd_configure_wb(hba);
9057
9058 if (hba->ee_usr_mask)
9059 ufshcd_write_ee_control(hba);
9060 ufshcd_configure_auto_hibern8(hba);
9061
9062 return 0;
9063 }
9064
9065 /**
9066 * ufshcd_async_scan - asynchronous execution for probing hba
9067 * @data: data pointer to pass to this function
9068 * @cookie: cookie data
9069 */
ufshcd_async_scan(void * data,async_cookie_t cookie)9070 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
9071 {
9072 struct ufs_hba *hba = (struct ufs_hba *)data;
9073 ktime_t probe_start;
9074 int ret;
9075
9076 down(&hba->host_sem);
9077 /* Initialize hba, detect and initialize UFS device */
9078 probe_start = ktime_get();
9079 ret = ufshcd_probe_hba(hba, true);
9080 ufshcd_process_probe_result(hba, probe_start, ret);
9081 up(&hba->host_sem);
9082 if (ret)
9083 goto out;
9084
9085 /* Probe and add UFS logical units */
9086 ret = ufshcd_add_lus(hba);
9087
9088 out:
9089 pm_runtime_put_sync(hba->dev);
9090
9091 if (ret)
9092 dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
9093 }
9094
ufshcd_eh_timed_out(struct scsi_cmnd * scmd)9095 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
9096 {
9097 struct ufs_hba *hba = shost_priv(scmd->device->host);
9098
9099 if (!hba->system_suspending) {
9100 /* Activate the error handler in the SCSI core. */
9101 return SCSI_EH_NOT_HANDLED;
9102 }
9103
9104 /*
9105 * If we get here we know that no TMFs are outstanding and also that
9106 * the only pending command is a START STOP UNIT command. Handle the
9107 * timeout of that command directly to prevent a deadlock between
9108 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
9109 */
9110 ufshcd_link_recovery(hba);
9111 dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
9112 __func__, hba->outstanding_tasks);
9113
9114 return scsi_host_busy(hba->host) ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
9115 }
9116
9117 static const struct attribute_group *ufshcd_driver_groups[] = {
9118 &ufs_sysfs_unit_descriptor_group,
9119 &ufs_sysfs_lun_attributes_group,
9120 NULL,
9121 };
9122
9123 static struct ufs_hba_variant_params ufs_hba_vps = {
9124 .hba_enable_delay_us = 1000,
9125 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40),
9126 .devfreq_profile.polling_ms = 100,
9127 .devfreq_profile.target = ufshcd_devfreq_target,
9128 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status,
9129 .ondemand_data.upthreshold = 70,
9130 .ondemand_data.downdifferential = 5,
9131 };
9132
9133 static const struct scsi_host_template ufshcd_driver_template = {
9134 .module = THIS_MODULE,
9135 .name = UFSHCD,
9136 .proc_name = UFSHCD,
9137 .map_queues = ufshcd_map_queues,
9138 .queuecommand = ufshcd_queuecommand,
9139 .mq_poll = ufshcd_poll,
9140 .sdev_init = ufshcd_sdev_init,
9141 .sdev_configure = ufshcd_sdev_configure,
9142 .sdev_destroy = ufshcd_sdev_destroy,
9143 .change_queue_depth = ufshcd_change_queue_depth,
9144 .eh_abort_handler = ufshcd_abort,
9145 .eh_device_reset_handler = ufshcd_eh_device_reset_handler,
9146 .eh_host_reset_handler = ufshcd_eh_host_reset_handler,
9147 .eh_timed_out = ufshcd_eh_timed_out,
9148 .this_id = -1,
9149 .sg_tablesize = SG_ALL,
9150 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX,
9151 .max_sectors = SZ_1M / SECTOR_SIZE,
9152 .max_host_blocked = 1,
9153 .track_queue_depth = 1,
9154 .skip_settle_delay = 1,
9155 .sdev_groups = ufshcd_driver_groups,
9156 };
9157
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)9158 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
9159 int ua)
9160 {
9161 int ret;
9162
9163 if (!vreg)
9164 return 0;
9165
9166 /*
9167 * "set_load" operation shall be required on those regulators
9168 * which specifically configured current limitation. Otherwise
9169 * zero max_uA may cause unexpected behavior when regulator is
9170 * enabled or set as high power mode.
9171 */
9172 if (!vreg->max_uA)
9173 return 0;
9174
9175 ret = regulator_set_load(vreg->reg, ua);
9176 if (ret < 0) {
9177 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9178 __func__, vreg->name, ua, ret);
9179 }
9180
9181 return ret;
9182 }
9183
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9184 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9185 struct ufs_vreg *vreg)
9186 {
9187 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9188 }
9189
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9190 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9191 struct ufs_vreg *vreg)
9192 {
9193 if (!vreg)
9194 return 0;
9195
9196 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9197 }
9198
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)9199 static int ufshcd_config_vreg(struct device *dev,
9200 struct ufs_vreg *vreg, bool on)
9201 {
9202 if (regulator_count_voltages(vreg->reg) <= 0)
9203 return 0;
9204
9205 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9206 }
9207
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)9208 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9209 {
9210 int ret = 0;
9211
9212 if (!vreg || vreg->enabled)
9213 goto out;
9214
9215 ret = ufshcd_config_vreg(dev, vreg, true);
9216 if (!ret)
9217 ret = regulator_enable(vreg->reg);
9218
9219 if (!ret)
9220 vreg->enabled = true;
9221 else
9222 dev_err(dev, "%s: %s enable failed, err=%d\n",
9223 __func__, vreg->name, ret);
9224 out:
9225 return ret;
9226 }
9227
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)9228 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9229 {
9230 int ret = 0;
9231
9232 if (!vreg || !vreg->enabled || vreg->always_on)
9233 goto out;
9234
9235 ret = regulator_disable(vreg->reg);
9236
9237 if (!ret) {
9238 /* ignore errors on applying disable config */
9239 ufshcd_config_vreg(dev, vreg, false);
9240 vreg->enabled = false;
9241 } else {
9242 dev_err(dev, "%s: %s disable failed, err=%d\n",
9243 __func__, vreg->name, ret);
9244 }
9245 out:
9246 return ret;
9247 }
9248
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)9249 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9250 {
9251 int ret = 0;
9252 struct device *dev = hba->dev;
9253 struct ufs_vreg_info *info = &hba->vreg_info;
9254
9255 ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9256 if (ret)
9257 goto out;
9258
9259 ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9260 if (ret)
9261 goto out;
9262
9263 ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9264
9265 out:
9266 if (ret) {
9267 ufshcd_toggle_vreg(dev, info->vccq2, false);
9268 ufshcd_toggle_vreg(dev, info->vccq, false);
9269 ufshcd_toggle_vreg(dev, info->vcc, false);
9270 }
9271 return ret;
9272 }
9273
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)9274 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9275 {
9276 struct ufs_vreg_info *info = &hba->vreg_info;
9277
9278 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9279 }
9280
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)9281 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9282 {
9283 int ret = 0;
9284
9285 if (!vreg)
9286 goto out;
9287
9288 vreg->reg = devm_regulator_get(dev, vreg->name);
9289 if (IS_ERR(vreg->reg)) {
9290 ret = PTR_ERR(vreg->reg);
9291 dev_err(dev, "%s: %s get failed, err=%d\n",
9292 __func__, vreg->name, ret);
9293 }
9294 out:
9295 return ret;
9296 }
9297 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9298
ufshcd_init_vreg(struct ufs_hba * hba)9299 static int ufshcd_init_vreg(struct ufs_hba *hba)
9300 {
9301 int ret = 0;
9302 struct device *dev = hba->dev;
9303 struct ufs_vreg_info *info = &hba->vreg_info;
9304
9305 ret = ufshcd_get_vreg(dev, info->vcc);
9306 if (ret)
9307 goto out;
9308
9309 ret = ufshcd_get_vreg(dev, info->vccq);
9310 if (!ret)
9311 ret = ufshcd_get_vreg(dev, info->vccq2);
9312 out:
9313 return ret;
9314 }
9315
ufshcd_init_hba_vreg(struct ufs_hba * hba)9316 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9317 {
9318 struct ufs_vreg_info *info = &hba->vreg_info;
9319
9320 return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9321 }
9322
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)9323 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9324 {
9325 int ret = 0;
9326 struct ufs_clk_info *clki;
9327 struct list_head *head = &hba->clk_list_head;
9328 ktime_t start = ktime_get();
9329 bool clk_state_changed = false;
9330
9331 if (list_empty(head))
9332 goto out;
9333
9334 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9335 if (ret)
9336 return ret;
9337
9338 list_for_each_entry(clki, head, list) {
9339 if (!IS_ERR_OR_NULL(clki->clk)) {
9340 /*
9341 * Don't disable clocks which are needed
9342 * to keep the link active.
9343 */
9344 if (ufshcd_is_link_active(hba) &&
9345 clki->keep_link_active)
9346 continue;
9347
9348 clk_state_changed = on ^ clki->enabled;
9349 if (on && !clki->enabled) {
9350 ret = clk_prepare_enable(clki->clk);
9351 if (ret) {
9352 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9353 __func__, clki->name, ret);
9354 goto out;
9355 }
9356 } else if (!on && clki->enabled) {
9357 clk_disable_unprepare(clki->clk);
9358 }
9359 clki->enabled = on;
9360 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9361 clki->name, on ? "en" : "dis");
9362 }
9363 }
9364
9365 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9366 if (ret)
9367 return ret;
9368
9369 if (!ufshcd_is_clkscaling_supported(hba))
9370 ufshcd_pm_qos_update(hba, on);
9371 out:
9372 if (ret) {
9373 list_for_each_entry(clki, head, list) {
9374 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9375 clk_disable_unprepare(clki->clk);
9376 }
9377 } else if (!ret && on && hba->clk_gating.is_initialized) {
9378 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock)
9379 hba->clk_gating.state = CLKS_ON;
9380 trace_ufshcd_clk_gating(hba,
9381 hba->clk_gating.state);
9382 }
9383
9384 if (clk_state_changed)
9385 trace_ufshcd_profile_clk_gating(hba,
9386 (on ? "on" : "off"),
9387 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9388 return ret;
9389 }
9390
ufshcd_parse_ref_clk_property(struct ufs_hba * hba)9391 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9392 {
9393 u32 freq;
9394 int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9395
9396 if (ret) {
9397 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9398 return REF_CLK_FREQ_INVAL;
9399 }
9400
9401 return ufs_get_bref_clk_from_hz(freq);
9402 }
9403
ufshcd_init_clocks(struct ufs_hba * hba)9404 static int ufshcd_init_clocks(struct ufs_hba *hba)
9405 {
9406 int ret = 0;
9407 struct ufs_clk_info *clki;
9408 struct device *dev = hba->dev;
9409 struct list_head *head = &hba->clk_list_head;
9410
9411 if (list_empty(head))
9412 goto out;
9413
9414 list_for_each_entry(clki, head, list) {
9415 if (!clki->name)
9416 continue;
9417
9418 clki->clk = devm_clk_get(dev, clki->name);
9419 if (IS_ERR(clki->clk)) {
9420 ret = PTR_ERR(clki->clk);
9421 dev_err(dev, "%s: %s clk get failed, %d\n",
9422 __func__, clki->name, ret);
9423 goto out;
9424 }
9425
9426 /*
9427 * Parse device ref clk freq as per device tree "ref_clk".
9428 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9429 * in ufshcd_alloc_host().
9430 */
9431 if (!strcmp(clki->name, "ref_clk"))
9432 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9433
9434 if (clki->max_freq) {
9435 ret = clk_set_rate(clki->clk, clki->max_freq);
9436 if (ret) {
9437 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9438 __func__, clki->name,
9439 clki->max_freq, ret);
9440 goto out;
9441 }
9442 clki->curr_freq = clki->max_freq;
9443 }
9444 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9445 clki->name, clk_get_rate(clki->clk));
9446 }
9447
9448 /* Set Max. frequency for all clocks */
9449 if (hba->use_pm_opp) {
9450 ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9451 if (ret) {
9452 dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9453 ret);
9454 goto out;
9455 }
9456 }
9457
9458 out:
9459 return ret;
9460 }
9461
ufshcd_variant_hba_init(struct ufs_hba * hba)9462 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9463 {
9464 int err = 0;
9465
9466 if (!hba->vops)
9467 goto out;
9468
9469 err = ufshcd_vops_init(hba);
9470 if (err)
9471 dev_err_probe(hba->dev, err,
9472 "%s: variant %s init failed with err %d\n",
9473 __func__, ufshcd_get_var_name(hba), err);
9474 out:
9475 return err;
9476 }
9477
ufshcd_variant_hba_exit(struct ufs_hba * hba)9478 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9479 {
9480 if (!hba->vops)
9481 return;
9482
9483 ufshcd_vops_exit(hba);
9484 }
9485
ufshcd_hba_init(struct ufs_hba * hba)9486 static int ufshcd_hba_init(struct ufs_hba *hba)
9487 {
9488 int err;
9489
9490 /*
9491 * Handle host controller power separately from the UFS device power
9492 * rails as it will help controlling the UFS host controller power
9493 * collapse easily which is different than UFS device power collapse.
9494 * Also, enable the host controller power before we go ahead with rest
9495 * of the initialization here.
9496 */
9497 err = ufshcd_init_hba_vreg(hba);
9498 if (err)
9499 goto out;
9500
9501 err = ufshcd_setup_hba_vreg(hba, true);
9502 if (err)
9503 goto out;
9504
9505 err = ufshcd_init_clocks(hba);
9506 if (err)
9507 goto out_disable_hba_vreg;
9508
9509 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9510 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9511
9512 err = ufshcd_setup_clocks(hba, true);
9513 if (err)
9514 goto out_disable_hba_vreg;
9515
9516 err = ufshcd_init_vreg(hba);
9517 if (err)
9518 goto out_disable_clks;
9519
9520 err = ufshcd_setup_vreg(hba, true);
9521 if (err)
9522 goto out_disable_clks;
9523
9524 err = ufshcd_variant_hba_init(hba);
9525 if (err)
9526 goto out_disable_vreg;
9527
9528 ufs_debugfs_hba_init(hba);
9529 ufs_fault_inject_hba_init(hba);
9530
9531 hba->is_powered = true;
9532 goto out;
9533
9534 out_disable_vreg:
9535 ufshcd_setup_vreg(hba, false);
9536 out_disable_clks:
9537 ufshcd_setup_clocks(hba, false);
9538 out_disable_hba_vreg:
9539 ufshcd_setup_hba_vreg(hba, false);
9540 out:
9541 return err;
9542 }
9543
ufshcd_hba_exit(struct ufs_hba * hba)9544 static void ufshcd_hba_exit(struct ufs_hba *hba)
9545 {
9546 if (hba->is_powered) {
9547 ufshcd_pm_qos_exit(hba);
9548 ufshcd_exit_clk_scaling(hba);
9549 ufshcd_exit_clk_gating(hba);
9550 if (hba->eh_wq)
9551 destroy_workqueue(hba->eh_wq);
9552 ufs_debugfs_hba_exit(hba);
9553 ufshcd_variant_hba_exit(hba);
9554 ufshcd_setup_vreg(hba, false);
9555 ufshcd_setup_clocks(hba, false);
9556 ufshcd_setup_hba_vreg(hba, false);
9557 hba->is_powered = false;
9558 ufs_put_device_desc(hba);
9559 }
9560 }
9561
ufshcd_execute_start_stop(struct scsi_device * sdev,enum ufs_dev_pwr_mode pwr_mode,struct scsi_sense_hdr * sshdr)9562 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9563 enum ufs_dev_pwr_mode pwr_mode,
9564 struct scsi_sense_hdr *sshdr)
9565 {
9566 const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9567 struct scsi_failure failure_defs[] = {
9568 {
9569 .allowed = 2,
9570 .result = SCMD_FAILURE_RESULT_ANY,
9571 },
9572 };
9573 struct scsi_failures failures = {
9574 .failure_definitions = failure_defs,
9575 };
9576 const struct scsi_exec_args args = {
9577 .failures = &failures,
9578 .sshdr = sshdr,
9579 .req_flags = BLK_MQ_REQ_PM,
9580 .scmd_flags = SCMD_FAIL_IF_RECOVERING,
9581 };
9582
9583 return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9584 /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9585 &args);
9586 }
9587
9588 /**
9589 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9590 * power mode
9591 * @hba: per adapter instance
9592 * @pwr_mode: device power mode to set
9593 *
9594 * Return: 0 if requested power mode is set successfully;
9595 * < 0 if failed to set the requested power mode.
9596 */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)9597 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9598 enum ufs_dev_pwr_mode pwr_mode)
9599 {
9600 struct scsi_sense_hdr sshdr;
9601 struct scsi_device *sdp;
9602 unsigned long flags;
9603 int ret;
9604
9605 spin_lock_irqsave(hba->host->host_lock, flags);
9606 sdp = hba->ufs_device_wlun;
9607 if (sdp && scsi_device_online(sdp))
9608 ret = scsi_device_get(sdp);
9609 else
9610 ret = -ENODEV;
9611 spin_unlock_irqrestore(hba->host->host_lock, flags);
9612
9613 if (ret)
9614 return ret;
9615
9616 /*
9617 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9618 * handling, which would wait for host to be resumed. Since we know
9619 * we are functional while we are here, skip host resume in error
9620 * handling context.
9621 */
9622 hba->host->eh_noresume = 1;
9623
9624 /*
9625 * Current function would be generally called from the power management
9626 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9627 * already suspended childs.
9628 */
9629 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9630 if (ret) {
9631 sdev_printk(KERN_WARNING, sdp,
9632 "START_STOP failed for power mode: %d, result %x\n",
9633 pwr_mode, ret);
9634 if (ret > 0) {
9635 if (scsi_sense_valid(&sshdr))
9636 scsi_print_sense_hdr(sdp, NULL, &sshdr);
9637 ret = -EIO;
9638 }
9639 } else {
9640 hba->curr_dev_pwr_mode = pwr_mode;
9641 }
9642
9643 scsi_device_put(sdp);
9644 hba->host->eh_noresume = 0;
9645 return ret;
9646 }
9647
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,bool check_for_bkops)9648 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9649 enum uic_link_state req_link_state,
9650 bool check_for_bkops)
9651 {
9652 int ret = 0;
9653
9654 if (req_link_state == hba->uic_link_state)
9655 return 0;
9656
9657 if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9658 ret = ufshcd_uic_hibern8_enter(hba);
9659 if (!ret) {
9660 ufshcd_set_link_hibern8(hba);
9661 } else {
9662 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9663 __func__, ret);
9664 goto out;
9665 }
9666 }
9667 /*
9668 * If autobkops is enabled, link can't be turned off because
9669 * turning off the link would also turn off the device, except in the
9670 * case of DeepSleep where the device is expected to remain powered.
9671 */
9672 else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9673 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9674 /*
9675 * Let's make sure that link is in low power mode, we are doing
9676 * this currently by putting the link in Hibern8. Otherway to
9677 * put the link in low power mode is to send the DME end point
9678 * to device and then send the DME reset command to local
9679 * unipro. But putting the link in hibern8 is much faster.
9680 *
9681 * Note also that putting the link in Hibern8 is a requirement
9682 * for entering DeepSleep.
9683 */
9684 ret = ufshcd_uic_hibern8_enter(hba);
9685 if (ret) {
9686 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9687 __func__, ret);
9688 goto out;
9689 }
9690 /*
9691 * Change controller state to "reset state" which
9692 * should also put the link in off/reset state
9693 */
9694 ufshcd_hba_stop(hba);
9695 /*
9696 * TODO: Check if we need any delay to make sure that
9697 * controller is reset
9698 */
9699 ufshcd_set_link_off(hba);
9700 }
9701
9702 out:
9703 return ret;
9704 }
9705
ufshcd_vreg_set_lpm(struct ufs_hba * hba)9706 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9707 {
9708 bool vcc_off = false;
9709
9710 /*
9711 * It seems some UFS devices may keep drawing more than sleep current
9712 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9713 * To avoid this situation, add 2ms delay before putting these UFS
9714 * rails in LPM mode.
9715 */
9716 if (!ufshcd_is_link_active(hba) &&
9717 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9718 usleep_range(2000, 2100);
9719
9720 /*
9721 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9722 * power.
9723 *
9724 * If UFS device and link is in OFF state, all power supplies (VCC,
9725 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9726 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9727 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9728 *
9729 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9730 * in low power state which would save some power.
9731 *
9732 * If Write Booster is enabled and the device needs to flush the WB
9733 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9734 */
9735 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9736 !hba->dev_info.is_lu_power_on_wp) {
9737 ufshcd_setup_vreg(hba, false);
9738 vcc_off = true;
9739 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9740 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9741 vcc_off = true;
9742 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9743 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9744 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9745 }
9746 }
9747
9748 /*
9749 * Some UFS devices require delay after VCC power rail is turned-off.
9750 */
9751 if (vcc_off && hba->vreg_info.vcc &&
9752 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9753 usleep_range(5000, 5100);
9754 }
9755
9756 #ifdef CONFIG_PM
ufshcd_vreg_set_hpm(struct ufs_hba * hba)9757 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9758 {
9759 int ret = 0;
9760
9761 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9762 !hba->dev_info.is_lu_power_on_wp) {
9763 ret = ufshcd_setup_vreg(hba, true);
9764 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9765 if (!ufshcd_is_link_active(hba)) {
9766 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9767 if (ret)
9768 goto vcc_disable;
9769 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9770 if (ret)
9771 goto vccq_lpm;
9772 }
9773 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9774 }
9775 goto out;
9776
9777 vccq_lpm:
9778 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9779 vcc_disable:
9780 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9781 out:
9782 return ret;
9783 }
9784 #endif /* CONFIG_PM */
9785
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)9786 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9787 {
9788 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9789 ufshcd_setup_hba_vreg(hba, false);
9790 }
9791
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)9792 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9793 {
9794 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9795 ufshcd_setup_hba_vreg(hba, true);
9796 }
9797
__ufshcd_wl_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)9798 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9799 {
9800 int ret = 0;
9801 bool check_for_bkops;
9802 enum ufs_pm_level pm_lvl;
9803 enum ufs_dev_pwr_mode req_dev_pwr_mode;
9804 enum uic_link_state req_link_state;
9805
9806 hba->pm_op_in_progress = true;
9807 if (pm_op != UFS_SHUTDOWN_PM) {
9808 pm_lvl = pm_op == UFS_RUNTIME_PM ?
9809 hba->rpm_lvl : hba->spm_lvl;
9810 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9811 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9812 } else {
9813 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9814 req_link_state = UIC_LINK_OFF_STATE;
9815 }
9816
9817 /*
9818 * If we can't transition into any of the low power modes
9819 * just gate the clocks.
9820 */
9821 ufshcd_hold(hba);
9822 hba->clk_gating.is_suspended = true;
9823
9824 if (ufshcd_is_clkscaling_supported(hba))
9825 ufshcd_clk_scaling_suspend(hba, true);
9826
9827 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9828 req_link_state == UIC_LINK_ACTIVE_STATE) {
9829 goto vops_suspend;
9830 }
9831
9832 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9833 (req_link_state == hba->uic_link_state))
9834 goto enable_scaling;
9835
9836 /* UFS device & link must be active before we enter in this function */
9837 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9838 /* Wait err handler finish or trigger err recovery */
9839 if (!ufshcd_eh_in_progress(hba))
9840 ufshcd_force_error_recovery(hba);
9841 ret = -EBUSY;
9842 goto enable_scaling;
9843 }
9844
9845 if (pm_op == UFS_RUNTIME_PM) {
9846 if (ufshcd_can_autobkops_during_suspend(hba)) {
9847 /*
9848 * The device is idle with no requests in the queue,
9849 * allow background operations if bkops status shows
9850 * that performance might be impacted.
9851 */
9852 ret = ufshcd_bkops_ctrl(hba);
9853 if (ret) {
9854 /*
9855 * If return err in suspend flow, IO will hang.
9856 * Trigger error handler and break suspend for
9857 * error recovery.
9858 */
9859 ufshcd_force_error_recovery(hba);
9860 ret = -EBUSY;
9861 goto enable_scaling;
9862 }
9863 } else {
9864 /* make sure that auto bkops is disabled */
9865 ufshcd_disable_auto_bkops(hba);
9866 }
9867 /*
9868 * If device needs to do BKOP or WB buffer flush during
9869 * Hibern8, keep device power mode as "active power mode"
9870 * and VCC supply.
9871 */
9872 hba->dev_info.b_rpm_dev_flush_capable =
9873 hba->auto_bkops_enabled ||
9874 (((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9875 ((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9876 ufshcd_is_auto_hibern8_enabled(hba))) &&
9877 ufshcd_wb_need_flush(hba));
9878 }
9879
9880 flush_work(&hba->eeh_work);
9881
9882 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9883 if (ret)
9884 goto enable_scaling;
9885
9886 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9887 if (pm_op != UFS_RUNTIME_PM)
9888 /* ensure that bkops is disabled */
9889 ufshcd_disable_auto_bkops(hba);
9890
9891 if (!hba->dev_info.b_rpm_dev_flush_capable) {
9892 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9893 if (ret && pm_op != UFS_SHUTDOWN_PM) {
9894 /*
9895 * If return err in suspend flow, IO will hang.
9896 * Trigger error handler and break suspend for
9897 * error recovery.
9898 */
9899 ufshcd_force_error_recovery(hba);
9900 ret = -EBUSY;
9901 }
9902 if (ret)
9903 goto enable_scaling;
9904 }
9905 }
9906
9907 /*
9908 * In the case of DeepSleep, the device is expected to remain powered
9909 * with the link off, so do not check for bkops.
9910 */
9911 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9912 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9913 if (ret && pm_op != UFS_SHUTDOWN_PM) {
9914 /*
9915 * If return err in suspend flow, IO will hang.
9916 * Trigger error handler and break suspend for
9917 * error recovery.
9918 */
9919 ufshcd_force_error_recovery(hba);
9920 ret = -EBUSY;
9921 }
9922 if (ret)
9923 goto set_dev_active;
9924
9925 vops_suspend:
9926 /*
9927 * Call vendor specific suspend callback. As these callbacks may access
9928 * vendor specific host controller register space call them before the
9929 * host clocks are ON.
9930 */
9931 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9932 if (ret)
9933 goto set_link_active;
9934
9935 cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9936 goto out;
9937
9938 set_link_active:
9939 /*
9940 * Device hardware reset is required to exit DeepSleep. Also, for
9941 * DeepSleep, the link is off so host reset and restore will be done
9942 * further below.
9943 */
9944 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9945 ufshcd_device_reset(hba);
9946 WARN_ON(!ufshcd_is_link_off(hba));
9947 }
9948 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9949 ufshcd_set_link_active(hba);
9950 else if (ufshcd_is_link_off(hba))
9951 ufshcd_host_reset_and_restore(hba);
9952 set_dev_active:
9953 /* Can also get here needing to exit DeepSleep */
9954 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9955 ufshcd_device_reset(hba);
9956 ufshcd_host_reset_and_restore(hba);
9957 }
9958 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9959 ufshcd_disable_auto_bkops(hba);
9960 enable_scaling:
9961 if (ufshcd_is_clkscaling_supported(hba))
9962 ufshcd_clk_scaling_suspend(hba, false);
9963
9964 hba->dev_info.b_rpm_dev_flush_capable = false;
9965 out:
9966 if (hba->dev_info.b_rpm_dev_flush_capable) {
9967 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9968 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9969 }
9970
9971 if (ret) {
9972 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9973 hba->clk_gating.is_suspended = false;
9974 ufshcd_release(hba);
9975 }
9976 hba->pm_op_in_progress = false;
9977 return ret;
9978 }
9979
9980 #ifdef CONFIG_PM
__ufshcd_wl_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)9981 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9982 {
9983 int ret;
9984 enum uic_link_state old_link_state = hba->uic_link_state;
9985
9986 hba->pm_op_in_progress = true;
9987
9988 /*
9989 * Call vendor specific resume callback. As these callbacks may access
9990 * vendor specific host controller register space call them when the
9991 * host clocks are ON.
9992 */
9993 ret = ufshcd_vops_resume(hba, pm_op);
9994 if (ret)
9995 goto out;
9996
9997 /* For DeepSleep, the only supported option is to have the link off */
9998 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9999
10000 if (ufshcd_is_link_hibern8(hba)) {
10001 ret = ufshcd_uic_hibern8_exit(hba);
10002 if (!ret) {
10003 ufshcd_set_link_active(hba);
10004 } else {
10005 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
10006 __func__, ret);
10007 goto vendor_suspend;
10008 }
10009 } else if (ufshcd_is_link_off(hba)) {
10010 /*
10011 * A full initialization of the host and the device is
10012 * required since the link was put to off during suspend.
10013 * Note, in the case of DeepSleep, the device will exit
10014 * DeepSleep due to device reset.
10015 */
10016 ret = ufshcd_reset_and_restore(hba);
10017 /*
10018 * ufshcd_reset_and_restore() should have already
10019 * set the link state as active
10020 */
10021 if (ret || !ufshcd_is_link_active(hba))
10022 goto vendor_suspend;
10023 }
10024
10025 if (!ufshcd_is_ufs_dev_active(hba)) {
10026 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
10027 if (ret)
10028 goto set_old_link_state;
10029 ufshcd_set_timestamp_attr(hba);
10030 schedule_delayed_work(&hba->ufs_rtc_update_work,
10031 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
10032 }
10033
10034 if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
10035 ufshcd_enable_auto_bkops(hba);
10036 else
10037 /*
10038 * If BKOPs operations are urgently needed at this moment then
10039 * keep auto-bkops enabled or else disable it.
10040 */
10041 ufshcd_bkops_ctrl(hba);
10042
10043 if (hba->ee_usr_mask)
10044 ufshcd_write_ee_control(hba);
10045
10046 if (ufshcd_is_clkscaling_supported(hba))
10047 ufshcd_clk_scaling_suspend(hba, false);
10048
10049 if (hba->dev_info.b_rpm_dev_flush_capable) {
10050 hba->dev_info.b_rpm_dev_flush_capable = false;
10051 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
10052 }
10053
10054 ufshcd_configure_auto_hibern8(hba);
10055
10056 goto out;
10057
10058 set_old_link_state:
10059 ufshcd_link_state_transition(hba, old_link_state, 0);
10060 vendor_suspend:
10061 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
10062 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
10063 out:
10064 if (ret)
10065 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
10066 hba->clk_gating.is_suspended = false;
10067 ufshcd_release(hba);
10068 hba->pm_op_in_progress = false;
10069 return ret;
10070 }
10071
ufshcd_wl_runtime_suspend(struct device * dev)10072 static int ufshcd_wl_runtime_suspend(struct device *dev)
10073 {
10074 struct scsi_device *sdev = to_scsi_device(dev);
10075 struct ufs_hba *hba;
10076 int ret;
10077 ktime_t start = ktime_get();
10078
10079 hba = shost_priv(sdev->host);
10080
10081 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
10082 if (ret)
10083 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10084
10085 trace_ufshcd_wl_runtime_suspend(hba, ret,
10086 ktime_to_us(ktime_sub(ktime_get(), start)),
10087 hba->curr_dev_pwr_mode, hba->uic_link_state);
10088
10089 return ret;
10090 }
10091
ufshcd_wl_runtime_resume(struct device * dev)10092 static int ufshcd_wl_runtime_resume(struct device *dev)
10093 {
10094 struct scsi_device *sdev = to_scsi_device(dev);
10095 struct ufs_hba *hba;
10096 int ret = 0;
10097 ktime_t start = ktime_get();
10098
10099 hba = shost_priv(sdev->host);
10100
10101 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
10102 if (ret)
10103 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10104
10105 trace_ufshcd_wl_runtime_resume(hba, ret,
10106 ktime_to_us(ktime_sub(ktime_get(), start)),
10107 hba->curr_dev_pwr_mode, hba->uic_link_state);
10108
10109 return ret;
10110 }
10111 #endif
10112
10113 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_suspend(struct device * dev)10114 static int ufshcd_wl_suspend(struct device *dev)
10115 {
10116 struct scsi_device *sdev = to_scsi_device(dev);
10117 struct ufs_hba *hba;
10118 int ret = 0;
10119 ktime_t start = ktime_get();
10120
10121 hba = shost_priv(sdev->host);
10122 down(&hba->host_sem);
10123 hba->system_suspending = true;
10124
10125 if (pm_runtime_suspended(dev))
10126 goto out;
10127
10128 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
10129 if (ret) {
10130 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10131 up(&hba->host_sem);
10132 }
10133
10134 out:
10135 if (!ret)
10136 hba->is_sys_suspended = true;
10137 trace_ufshcd_wl_suspend(hba, ret,
10138 ktime_to_us(ktime_sub(ktime_get(), start)),
10139 hba->curr_dev_pwr_mode, hba->uic_link_state);
10140
10141 return ret;
10142 }
10143
ufshcd_wl_resume(struct device * dev)10144 static int ufshcd_wl_resume(struct device *dev)
10145 {
10146 struct scsi_device *sdev = to_scsi_device(dev);
10147 struct ufs_hba *hba;
10148 int ret = 0;
10149 ktime_t start = ktime_get();
10150
10151 hba = shost_priv(sdev->host);
10152
10153 if (pm_runtime_suspended(dev))
10154 goto out;
10155
10156 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
10157 if (ret)
10158 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10159 out:
10160 trace_ufshcd_wl_resume(hba, ret,
10161 ktime_to_us(ktime_sub(ktime_get(), start)),
10162 hba->curr_dev_pwr_mode, hba->uic_link_state);
10163 if (!ret)
10164 hba->is_sys_suspended = false;
10165 hba->system_suspending = false;
10166 up(&hba->host_sem);
10167 return ret;
10168 }
10169 #endif
10170
10171 /**
10172 * ufshcd_suspend - helper function for suspend operations
10173 * @hba: per adapter instance
10174 *
10175 * This function will put disable irqs, turn off clocks
10176 * and set vreg and hba-vreg in lpm mode.
10177 *
10178 * Return: 0 upon success; < 0 upon failure.
10179 */
ufshcd_suspend(struct ufs_hba * hba)10180 static int ufshcd_suspend(struct ufs_hba *hba)
10181 {
10182 int ret;
10183
10184 if (!hba->is_powered)
10185 return 0;
10186 /*
10187 * Disable the host irq as host controller as there won't be any
10188 * host controller transaction expected till resume.
10189 */
10190 ufshcd_disable_irq(hba);
10191 ret = ufshcd_setup_clocks(hba, false);
10192 if (ret) {
10193 ufshcd_enable_irq(hba);
10194 return ret;
10195 }
10196 if (ufshcd_is_clkgating_allowed(hba)) {
10197 hba->clk_gating.state = CLKS_OFF;
10198 trace_ufshcd_clk_gating(hba,
10199 hba->clk_gating.state);
10200 }
10201
10202 ufshcd_vreg_set_lpm(hba);
10203 /* Put the host controller in low power mode if possible */
10204 ufshcd_hba_vreg_set_lpm(hba);
10205 ufshcd_pm_qos_update(hba, false);
10206 return ret;
10207 }
10208
10209 #ifdef CONFIG_PM
10210 /**
10211 * ufshcd_resume - helper function for resume operations
10212 * @hba: per adapter instance
10213 *
10214 * This function basically turns on the regulators, clocks and
10215 * irqs of the hba.
10216 *
10217 * Return: 0 for success and non-zero for failure.
10218 */
ufshcd_resume(struct ufs_hba * hba)10219 static int ufshcd_resume(struct ufs_hba *hba)
10220 {
10221 int ret;
10222
10223 if (!hba->is_powered)
10224 return 0;
10225
10226 ufshcd_hba_vreg_set_hpm(hba);
10227 ret = ufshcd_vreg_set_hpm(hba);
10228 if (ret)
10229 goto out;
10230
10231 /* Make sure clocks are enabled before accessing controller */
10232 ret = ufshcd_setup_clocks(hba, true);
10233 if (ret)
10234 goto disable_vreg;
10235
10236 /* enable the host irq as host controller would be active soon */
10237 ufshcd_enable_irq(hba);
10238
10239 goto out;
10240
10241 disable_vreg:
10242 ufshcd_vreg_set_lpm(hba);
10243 out:
10244 if (ret)
10245 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10246 return ret;
10247 }
10248 #endif /* CONFIG_PM */
10249
10250 #ifdef CONFIG_PM_SLEEP
10251 /**
10252 * ufshcd_system_suspend - system suspend callback
10253 * @dev: Device associated with the UFS controller.
10254 *
10255 * Executed before putting the system into a sleep state in which the contents
10256 * of main memory are preserved.
10257 *
10258 * Return: 0 for success and non-zero for failure.
10259 */
ufshcd_system_suspend(struct device * dev)10260 int ufshcd_system_suspend(struct device *dev)
10261 {
10262 struct ufs_hba *hba = dev_get_drvdata(dev);
10263 int ret = 0;
10264 ktime_t start = ktime_get();
10265
10266 if (pm_runtime_suspended(hba->dev))
10267 goto out;
10268
10269 ret = ufshcd_suspend(hba);
10270 out:
10271 trace_ufshcd_system_suspend(hba, ret,
10272 ktime_to_us(ktime_sub(ktime_get(), start)),
10273 hba->curr_dev_pwr_mode, hba->uic_link_state);
10274 return ret;
10275 }
10276 EXPORT_SYMBOL(ufshcd_system_suspend);
10277
10278 /**
10279 * ufshcd_system_resume - system resume callback
10280 * @dev: Device associated with the UFS controller.
10281 *
10282 * Executed after waking the system up from a sleep state in which the contents
10283 * of main memory were preserved.
10284 *
10285 * Return: 0 for success and non-zero for failure.
10286 */
ufshcd_system_resume(struct device * dev)10287 int ufshcd_system_resume(struct device *dev)
10288 {
10289 struct ufs_hba *hba = dev_get_drvdata(dev);
10290 ktime_t start = ktime_get();
10291 int ret = 0;
10292
10293 if (pm_runtime_suspended(hba->dev))
10294 goto out;
10295
10296 ret = ufshcd_resume(hba);
10297
10298 out:
10299 trace_ufshcd_system_resume(hba, ret,
10300 ktime_to_us(ktime_sub(ktime_get(), start)),
10301 hba->curr_dev_pwr_mode, hba->uic_link_state);
10302
10303 return ret;
10304 }
10305 EXPORT_SYMBOL(ufshcd_system_resume);
10306 #endif /* CONFIG_PM_SLEEP */
10307
10308 #ifdef CONFIG_PM
10309 /**
10310 * ufshcd_runtime_suspend - runtime suspend callback
10311 * @dev: Device associated with the UFS controller.
10312 *
10313 * Check the description of ufshcd_suspend() function for more details.
10314 *
10315 * Return: 0 for success and non-zero for failure.
10316 */
ufshcd_runtime_suspend(struct device * dev)10317 int ufshcd_runtime_suspend(struct device *dev)
10318 {
10319 struct ufs_hba *hba = dev_get_drvdata(dev);
10320 int ret;
10321 ktime_t start = ktime_get();
10322
10323 ret = ufshcd_suspend(hba);
10324
10325 trace_ufshcd_runtime_suspend(hba, ret,
10326 ktime_to_us(ktime_sub(ktime_get(), start)),
10327 hba->curr_dev_pwr_mode, hba->uic_link_state);
10328 return ret;
10329 }
10330 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10331
10332 /**
10333 * ufshcd_runtime_resume - runtime resume routine
10334 * @dev: Device associated with the UFS controller.
10335 *
10336 * This function basically brings controller
10337 * to active state. Following operations are done in this function:
10338 *
10339 * 1. Turn on all the controller related clocks
10340 * 2. Turn ON VCC rail
10341 *
10342 * Return: 0 upon success; < 0 upon failure.
10343 */
ufshcd_runtime_resume(struct device * dev)10344 int ufshcd_runtime_resume(struct device *dev)
10345 {
10346 struct ufs_hba *hba = dev_get_drvdata(dev);
10347 int ret;
10348 ktime_t start = ktime_get();
10349
10350 ret = ufshcd_resume(hba);
10351
10352 trace_ufshcd_runtime_resume(hba, ret,
10353 ktime_to_us(ktime_sub(ktime_get(), start)),
10354 hba->curr_dev_pwr_mode, hba->uic_link_state);
10355 return ret;
10356 }
10357 EXPORT_SYMBOL(ufshcd_runtime_resume);
10358 #endif /* CONFIG_PM */
10359
ufshcd_wl_shutdown(struct device * dev)10360 static void ufshcd_wl_shutdown(struct device *dev)
10361 {
10362 struct scsi_device *sdev = to_scsi_device(dev);
10363 struct ufs_hba *hba = shost_priv(sdev->host);
10364
10365 down(&hba->host_sem);
10366 hba->shutting_down = true;
10367 up(&hba->host_sem);
10368
10369 /* Turn on everything while shutting down */
10370 ufshcd_rpm_get_sync(hba);
10371 scsi_device_quiesce(sdev);
10372 shost_for_each_device(sdev, hba->host) {
10373 if (sdev == hba->ufs_device_wlun)
10374 continue;
10375 mutex_lock(&sdev->state_mutex);
10376 scsi_device_set_state(sdev, SDEV_OFFLINE);
10377 mutex_unlock(&sdev->state_mutex);
10378 }
10379 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10380
10381 /*
10382 * Next, turn off the UFS controller and the UFS regulators. Disable
10383 * clocks.
10384 */
10385 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10386 ufshcd_suspend(hba);
10387
10388 hba->is_powered = false;
10389 }
10390
10391 /**
10392 * ufshcd_remove - de-allocate SCSI host and host memory space
10393 * data structure memory
10394 * @hba: per adapter instance
10395 */
ufshcd_remove(struct ufs_hba * hba)10396 void ufshcd_remove(struct ufs_hba *hba)
10397 {
10398 if (hba->ufs_device_wlun)
10399 ufshcd_rpm_get_sync(hba);
10400 ufs_hwmon_remove(hba);
10401 ufs_bsg_remove(hba);
10402 ufs_sysfs_remove_nodes(hba->dev);
10403 cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10404 blk_mq_destroy_queue(hba->tmf_queue);
10405 blk_put_queue(hba->tmf_queue);
10406 blk_mq_free_tag_set(&hba->tmf_tag_set);
10407 if (hba->scsi_host_added)
10408 scsi_remove_host(hba->host);
10409 /* disable interrupts */
10410 ufshcd_disable_intr(hba, hba->intr_mask);
10411 ufshcd_hba_stop(hba);
10412 ufshcd_hba_exit(hba);
10413 }
10414 EXPORT_SYMBOL_GPL(ufshcd_remove);
10415
10416 #ifdef CONFIG_PM_SLEEP
ufshcd_system_freeze(struct device * dev)10417 int ufshcd_system_freeze(struct device *dev)
10418 {
10419
10420 return ufshcd_system_suspend(dev);
10421
10422 }
10423 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10424
ufshcd_system_restore(struct device * dev)10425 int ufshcd_system_restore(struct device *dev)
10426 {
10427
10428 struct ufs_hba *hba = dev_get_drvdata(dev);
10429 int ret;
10430
10431 ret = ufshcd_system_resume(dev);
10432 if (ret)
10433 return ret;
10434
10435 /* Configure UTRL and UTMRL base address registers */
10436 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10437 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10438 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10439 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10440 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10441 REG_UTP_TASK_REQ_LIST_BASE_L);
10442 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10443 REG_UTP_TASK_REQ_LIST_BASE_H);
10444 /*
10445 * Make sure that UTRL and UTMRL base address registers
10446 * are updated with the latest queue addresses. Only after
10447 * updating these addresses, we can queue the new commands.
10448 */
10449 ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10450
10451 return 0;
10452
10453 }
10454 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10455
ufshcd_system_thaw(struct device * dev)10456 int ufshcd_system_thaw(struct device *dev)
10457 {
10458 return ufshcd_system_resume(dev);
10459 }
10460 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10461 #endif /* CONFIG_PM_SLEEP */
10462
10463 /**
10464 * ufshcd_set_dma_mask - Set dma mask based on the controller
10465 * addressing capability
10466 * @hba: per adapter instance
10467 *
10468 * Return: 0 for success, non-zero for failure.
10469 */
ufshcd_set_dma_mask(struct ufs_hba * hba)10470 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10471 {
10472 if (hba->vops && hba->vops->set_dma_mask)
10473 return hba->vops->set_dma_mask(hba);
10474 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10475 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10476 return 0;
10477 }
10478 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10479 }
10480
10481 /**
10482 * ufshcd_devres_release - devres cleanup handler, invoked during release of
10483 * hba->dev
10484 * @host: pointer to SCSI host
10485 */
ufshcd_devres_release(void * host)10486 static void ufshcd_devres_release(void *host)
10487 {
10488 scsi_host_put(host);
10489 }
10490
10491 /**
10492 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10493 * @dev: pointer to device handle
10494 * @hba_handle: driver private handle
10495 *
10496 * Return: 0 on success, non-zero value on failure.
10497 *
10498 * NOTE: There is no corresponding ufshcd_dealloc_host() because this function
10499 * keeps track of its allocations using devres and deallocates everything on
10500 * device removal automatically.
10501 */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)10502 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10503 {
10504 struct Scsi_Host *host;
10505 struct ufs_hba *hba;
10506 int err = 0;
10507
10508 if (!dev) {
10509 dev_err(dev,
10510 "Invalid memory reference for dev is NULL\n");
10511 err = -ENODEV;
10512 goto out_error;
10513 }
10514
10515 host = scsi_host_alloc(&ufshcd_driver_template,
10516 sizeof(struct ufs_hba));
10517 if (!host) {
10518 dev_err(dev, "scsi_host_alloc failed\n");
10519 err = -ENOMEM;
10520 goto out_error;
10521 }
10522
10523 err = devm_add_action_or_reset(dev, ufshcd_devres_release,
10524 host);
10525 if (err)
10526 return dev_err_probe(dev, err,
10527 "failed to add ufshcd dealloc action\n");
10528
10529 host->nr_maps = HCTX_TYPE_POLL + 1;
10530 hba = shost_priv(host);
10531 hba->host = host;
10532 hba->dev = dev;
10533 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10534 hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10535 ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10536 INIT_LIST_HEAD(&hba->clk_list_head);
10537 spin_lock_init(&hba->outstanding_lock);
10538
10539 *hba_handle = hba;
10540
10541 out_error:
10542 return err;
10543 }
10544 EXPORT_SYMBOL(ufshcd_alloc_host);
10545
10546 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)10547 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10548 const struct blk_mq_queue_data *qd)
10549 {
10550 WARN_ON_ONCE(true);
10551 return BLK_STS_NOTSUPP;
10552 }
10553
10554 static const struct blk_mq_ops ufshcd_tmf_ops = {
10555 .queue_rq = ufshcd_queue_tmf,
10556 };
10557
ufshcd_add_scsi_host(struct ufs_hba * hba)10558 static int ufshcd_add_scsi_host(struct ufs_hba *hba)
10559 {
10560 int err;
10561
10562 if (is_mcq_supported(hba)) {
10563 ufshcd_mcq_enable(hba);
10564 err = ufshcd_alloc_mcq(hba);
10565 if (!err) {
10566 ufshcd_config_mcq(hba);
10567 } else {
10568 /* Continue with SDB mode */
10569 ufshcd_mcq_disable(hba);
10570 use_mcq_mode = false;
10571 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
10572 err);
10573 }
10574 }
10575 if (!is_mcq_supported(hba) && !hba->lsdb_sup) {
10576 dev_err(hba->dev,
10577 "%s: failed to initialize (legacy doorbell mode not supported)\n",
10578 __func__);
10579 return -EINVAL;
10580 }
10581
10582 err = scsi_add_host(hba->host, hba->dev);
10583 if (err) {
10584 dev_err(hba->dev, "scsi_add_host failed\n");
10585 return err;
10586 }
10587 hba->scsi_host_added = true;
10588
10589 hba->tmf_tag_set = (struct blk_mq_tag_set) {
10590 .nr_hw_queues = 1,
10591 .queue_depth = hba->nutmrs,
10592 .ops = &ufshcd_tmf_ops,
10593 };
10594 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10595 if (err < 0)
10596 goto remove_scsi_host;
10597 hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10598 if (IS_ERR(hba->tmf_queue)) {
10599 err = PTR_ERR(hba->tmf_queue);
10600 goto free_tmf_tag_set;
10601 }
10602 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10603 sizeof(*hba->tmf_rqs), GFP_KERNEL);
10604 if (!hba->tmf_rqs) {
10605 err = -ENOMEM;
10606 goto free_tmf_queue;
10607 }
10608
10609 return 0;
10610
10611 free_tmf_queue:
10612 blk_mq_destroy_queue(hba->tmf_queue);
10613 blk_put_queue(hba->tmf_queue);
10614
10615 free_tmf_tag_set:
10616 blk_mq_free_tag_set(&hba->tmf_tag_set);
10617
10618 remove_scsi_host:
10619 if (hba->scsi_host_added)
10620 scsi_remove_host(hba->host);
10621
10622 return err;
10623 }
10624
10625 /**
10626 * ufshcd_init - Driver initialization routine
10627 * @hba: per-adapter instance
10628 * @mmio_base: base register address
10629 * @irq: Interrupt line of device
10630 *
10631 * Return: 0 on success, non-zero value on failure.
10632 */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)10633 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10634 {
10635 int err;
10636 struct Scsi_Host *host = hba->host;
10637 struct device *dev = hba->dev;
10638
10639 /*
10640 * dev_set_drvdata() must be called before any callbacks are registered
10641 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10642 * sysfs).
10643 */
10644 dev_set_drvdata(dev, hba);
10645
10646 if (!mmio_base) {
10647 dev_err(hba->dev,
10648 "Invalid memory reference for mmio_base is NULL\n");
10649 err = -ENODEV;
10650 goto out_error;
10651 }
10652
10653 hba->mmio_base = mmio_base;
10654 hba->irq = irq;
10655 hba->vps = &ufs_hba_vps;
10656
10657 /*
10658 * Initialize clk_gating.lock early since it is being used in
10659 * ufshcd_setup_clocks()
10660 */
10661 spin_lock_init(&hba->clk_gating.lock);
10662
10663 /*
10664 * Set the default power management level for runtime and system PM.
10665 * Host controller drivers can override them in their
10666 * 'ufs_hba_variant_ops::init' callback.
10667 *
10668 * Default power saving mode is to keep UFS link in Hibern8 state
10669 * and UFS device in sleep state.
10670 */
10671 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10672 UFS_SLEEP_PWR_MODE,
10673 UIC_LINK_HIBERN8_STATE);
10674 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10675 UFS_SLEEP_PWR_MODE,
10676 UIC_LINK_HIBERN8_STATE);
10677
10678 init_completion(&hba->dev_cmd.complete);
10679
10680 err = ufshcd_hba_init(hba);
10681 if (err)
10682 goto out_error;
10683
10684 /* Read capabilities registers */
10685 err = ufshcd_hba_capabilities(hba);
10686 if (err)
10687 goto out_disable;
10688
10689 /* Get UFS version supported by the controller */
10690 hba->ufs_version = ufshcd_get_ufs_version(hba);
10691
10692 /* Get Interrupt bit mask per version */
10693 hba->intr_mask = ufshcd_get_intr_mask(hba);
10694
10695 err = ufshcd_set_dma_mask(hba);
10696 if (err) {
10697 dev_err(hba->dev, "set dma mask failed\n");
10698 goto out_disable;
10699 }
10700
10701 /* Allocate memory for host memory space */
10702 err = ufshcd_memory_alloc(hba);
10703 if (err) {
10704 dev_err(hba->dev, "Memory allocation failed\n");
10705 goto out_disable;
10706 }
10707
10708 /* Configure LRB */
10709 ufshcd_host_memory_configure(hba);
10710
10711 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10712 host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10713 host->max_id = UFSHCD_MAX_ID;
10714 host->max_lun = UFS_MAX_LUNS;
10715 host->max_channel = UFSHCD_MAX_CHANNEL;
10716 host->unique_id = host->host_no;
10717 host->max_cmd_len = UFS_CDB_SIZE;
10718 host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10719
10720 /* Use default RPM delay if host not set */
10721 if (host->rpm_autosuspend_delay == 0)
10722 host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10723
10724 hba->max_pwr_info.is_valid = false;
10725
10726 /* Initialize work queues */
10727 hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM,
10728 hba->host->host_no);
10729 if (!hba->eh_wq) {
10730 dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10731 __func__);
10732 err = -ENOMEM;
10733 goto out_disable;
10734 }
10735 INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10736 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10737
10738 sema_init(&hba->host_sem, 1);
10739
10740 /* Initialize UIC command mutex */
10741 mutex_init(&hba->uic_cmd_mutex);
10742
10743 /* Initialize mutex for device management commands */
10744 mutex_init(&hba->dev_cmd.lock);
10745
10746 /* Initialize mutex for exception event control */
10747 mutex_init(&hba->ee_ctrl_mutex);
10748
10749 mutex_init(&hba->wb_mutex);
10750 init_rwsem(&hba->clk_scaling_lock);
10751
10752 ufshcd_init_clk_gating(hba);
10753
10754 ufshcd_init_clk_scaling(hba);
10755
10756 /*
10757 * In order to avoid any spurious interrupt immediately after
10758 * registering UFS controller interrupt handler, clear any pending UFS
10759 * interrupt status and disable all the UFS interrupts.
10760 */
10761 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10762 REG_INTERRUPT_STATUS);
10763 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10764 /*
10765 * Make sure that UFS interrupts are disabled and any pending interrupt
10766 * status is cleared before registering UFS interrupt handler.
10767 */
10768 ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10769
10770 /* IRQ registration */
10771 err = devm_request_threaded_irq(dev, irq, ufshcd_intr, ufshcd_threaded_intr,
10772 IRQF_ONESHOT | IRQF_SHARED, UFSHCD, hba);
10773 if (err) {
10774 dev_err(hba->dev, "request irq failed\n");
10775 goto out_disable;
10776 } else {
10777 hba->is_irq_enabled = true;
10778 }
10779
10780 /* Reset the attached device */
10781 ufshcd_device_reset(hba);
10782
10783 ufshcd_init_crypto(hba);
10784
10785 /* Host controller enable */
10786 err = ufshcd_hba_enable(hba);
10787 if (err) {
10788 dev_err(hba->dev, "Host controller enable failed\n");
10789 ufshcd_print_evt_hist(hba);
10790 ufshcd_print_host_state(hba);
10791 goto out_disable;
10792 }
10793
10794 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10795 INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10796
10797 /* Set the default auto-hiberate idle timer value to 150 ms */
10798 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10799 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10800 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10801 }
10802
10803 /* Hold auto suspend until async scan completes */
10804 pm_runtime_get_sync(dev);
10805
10806 /*
10807 * We are assuming that device wasn't put in sleep/power-down
10808 * state exclusively during the boot stage before kernel.
10809 * This assumption helps avoid doing link startup twice during
10810 * ufshcd_probe_hba().
10811 */
10812 ufshcd_set_ufs_dev_active(hba);
10813
10814 /* Initialize hba, detect and initialize UFS device */
10815 ktime_t probe_start = ktime_get();
10816
10817 hba->ufshcd_state = UFSHCD_STATE_RESET;
10818
10819 err = ufshcd_link_startup(hba);
10820 if (err)
10821 goto out_disable;
10822
10823 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
10824 goto initialized;
10825
10826 /* Debug counters initialization */
10827 ufshcd_clear_dbg_ufs_stats(hba);
10828
10829 /* UniPro link is active now */
10830 ufshcd_set_link_active(hba);
10831
10832 /* Verify device initialization by sending NOP OUT UPIU */
10833 err = ufshcd_verify_dev_init(hba);
10834 if (err)
10835 goto out_disable;
10836
10837 /* Initiate UFS initialization, and waiting until completion */
10838 err = ufshcd_complete_dev_init(hba);
10839 if (err)
10840 goto out_disable;
10841
10842 err = ufshcd_device_params_init(hba);
10843 if (err)
10844 goto out_disable;
10845
10846 err = ufshcd_post_device_init(hba);
10847
10848 initialized:
10849 ufshcd_process_probe_result(hba, probe_start, err);
10850 if (err)
10851 goto out_disable;
10852
10853 err = ufshcd_add_scsi_host(hba);
10854 if (err)
10855 goto out_disable;
10856
10857 async_schedule(ufshcd_async_scan, hba);
10858 ufs_sysfs_add_nodes(hba->dev);
10859
10860 device_enable_async_suspend(dev);
10861 ufshcd_pm_qos_init(hba);
10862 return 0;
10863
10864 out_disable:
10865 hba->is_irq_enabled = false;
10866 ufshcd_hba_exit(hba);
10867 out_error:
10868 return err;
10869 }
10870 EXPORT_SYMBOL_GPL(ufshcd_init);
10871
ufshcd_resume_complete(struct device * dev)10872 void ufshcd_resume_complete(struct device *dev)
10873 {
10874 struct ufs_hba *hba = dev_get_drvdata(dev);
10875
10876 if (hba->complete_put) {
10877 ufshcd_rpm_put(hba);
10878 hba->complete_put = false;
10879 }
10880 }
10881 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10882
ufshcd_rpm_ok_for_spm(struct ufs_hba * hba)10883 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10884 {
10885 struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10886 enum ufs_dev_pwr_mode dev_pwr_mode;
10887 enum uic_link_state link_state;
10888 unsigned long flags;
10889 bool res;
10890
10891 spin_lock_irqsave(&dev->power.lock, flags);
10892 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10893 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10894 res = pm_runtime_suspended(dev) &&
10895 hba->curr_dev_pwr_mode == dev_pwr_mode &&
10896 hba->uic_link_state == link_state &&
10897 !hba->dev_info.b_rpm_dev_flush_capable;
10898 spin_unlock_irqrestore(&dev->power.lock, flags);
10899
10900 return res;
10901 }
10902
__ufshcd_suspend_prepare(struct device * dev,bool rpm_ok_for_spm)10903 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10904 {
10905 struct ufs_hba *hba = dev_get_drvdata(dev);
10906 int ret;
10907
10908 /*
10909 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10910 * are same. And it doesn't wake up the device for system-suspend
10911 * if it's runtime suspended. But ufs doesn't follow that.
10912 * Refer ufshcd_resume_complete()
10913 */
10914 if (hba->ufs_device_wlun) {
10915 /* Prevent runtime suspend */
10916 ufshcd_rpm_get_noresume(hba);
10917 /*
10918 * Check if already runtime suspended in same state as system
10919 * suspend would be.
10920 */
10921 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10922 /* RPM state is not ok for SPM, so runtime resume */
10923 ret = ufshcd_rpm_resume(hba);
10924 if (ret < 0 && ret != -EACCES) {
10925 ufshcd_rpm_put(hba);
10926 return ret;
10927 }
10928 }
10929 hba->complete_put = true;
10930 }
10931 return 0;
10932 }
10933 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10934
ufshcd_suspend_prepare(struct device * dev)10935 int ufshcd_suspend_prepare(struct device *dev)
10936 {
10937 return __ufshcd_suspend_prepare(dev, true);
10938 }
10939 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10940
10941 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_poweroff(struct device * dev)10942 static int ufshcd_wl_poweroff(struct device *dev)
10943 {
10944 struct scsi_device *sdev = to_scsi_device(dev);
10945 struct ufs_hba *hba = shost_priv(sdev->host);
10946
10947 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10948 return 0;
10949 }
10950 #endif
10951
ufshcd_wl_probe(struct device * dev)10952 static int ufshcd_wl_probe(struct device *dev)
10953 {
10954 struct scsi_device *sdev = to_scsi_device(dev);
10955
10956 if (!is_device_wlun(sdev))
10957 return -ENODEV;
10958
10959 blk_pm_runtime_init(sdev->request_queue, dev);
10960 pm_runtime_set_autosuspend_delay(dev, 0);
10961 pm_runtime_allow(dev);
10962
10963 return 0;
10964 }
10965
ufshcd_wl_remove(struct device * dev)10966 static int ufshcd_wl_remove(struct device *dev)
10967 {
10968 pm_runtime_forbid(dev);
10969 return 0;
10970 }
10971
10972 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10973 #ifdef CONFIG_PM_SLEEP
10974 .suspend = ufshcd_wl_suspend,
10975 .resume = ufshcd_wl_resume,
10976 .freeze = ufshcd_wl_suspend,
10977 .thaw = ufshcd_wl_resume,
10978 .poweroff = ufshcd_wl_poweroff,
10979 .restore = ufshcd_wl_resume,
10980 #endif
10981 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10982 };
10983
ufshcd_check_header_layout(void)10984 static void ufshcd_check_header_layout(void)
10985 {
10986 /*
10987 * gcc compilers before version 10 cannot do constant-folding for
10988 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10989 * before.
10990 */
10991 if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10992 return;
10993
10994 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10995 .cci = 3})[0] != 3);
10996
10997 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10998 .ehs_length = 2})[1] != 2);
10999
11000 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11001 .enable_crypto = 1})[2]
11002 != 0x80);
11003
11004 BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
11005 .command_type = 5,
11006 .data_direction = 3,
11007 .interrupt = 1,
11008 })[3]) != ((5 << 4) | (3 << 1) | 1));
11009
11010 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
11011 .dunl = cpu_to_le32(0xdeadbeef)})[1] !=
11012 cpu_to_le32(0xdeadbeef));
11013
11014 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11015 .ocs = 4})[8] != 4);
11016
11017 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11018 .cds = 5})[9] != 5);
11019
11020 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
11021 .dunu = cpu_to_le32(0xbadcafe)})[3] !=
11022 cpu_to_le32(0xbadcafe));
11023
11024 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
11025 .iid = 0xf })[4] != 0xf0);
11026
11027 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
11028 .command_set_type = 0xf })[4] != 0xf);
11029 }
11030
11031 /*
11032 * ufs_dev_wlun_template - describes ufs device wlun
11033 * ufs-device wlun - used to send pm commands
11034 * All luns are consumers of ufs-device wlun.
11035 *
11036 * Currently, no sd driver is present for wluns.
11037 * Hence the no specific pm operations are performed.
11038 * With ufs design, SSU should be sent to ufs-device wlun.
11039 * Hence register a scsi driver for ufs wluns only.
11040 */
11041 static struct scsi_driver ufs_dev_wlun_template = {
11042 .gendrv = {
11043 .name = "ufs_device_wlun",
11044 .probe = ufshcd_wl_probe,
11045 .remove = ufshcd_wl_remove,
11046 .pm = &ufshcd_wl_pm_ops,
11047 .shutdown = ufshcd_wl_shutdown,
11048 },
11049 };
11050
ufshcd_core_init(void)11051 static int __init ufshcd_core_init(void)
11052 {
11053 int ret;
11054
11055 ufshcd_check_header_layout();
11056
11057 ufs_debugfs_init();
11058
11059 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
11060 if (ret)
11061 ufs_debugfs_exit();
11062 return ret;
11063 }
11064
ufshcd_core_exit(void)11065 static void __exit ufshcd_core_exit(void)
11066 {
11067 ufs_debugfs_exit();
11068 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
11069 }
11070
11071 module_init(ufshcd_core_init);
11072 module_exit(ufshcd_core_exit);
11073
11074 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
11075 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
11076 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
11077 MODULE_SOFTDEP("pre: governor_simpleondemand");
11078 MODULE_LICENSE("GPL");
11079