1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Universal Flash Storage Host controller driver Core
4 * Copyright (C) 2011-2013 Samsung India Software Operations
5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6 *
7 * Authors:
8 * Santosh Yaraganavi <santosh.sy@samsung.com>
9 * Vinayak Holikatti <h.vinayak@samsung.com>
10 */
11
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <linux/unaligned.h>
40
41 #define CREATE_TRACE_POINTS
42 #include "ufs_trace.h"
43
44 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\
45 UTP_TASK_REQ_COMPL |\
46 UFSHCD_ERROR_MASK)
47
48 #define UFSHCD_ENABLE_MCQ_INTRS (UTP_TASK_REQ_COMPL |\
49 UFSHCD_ERROR_MASK |\
50 MCQ_CQ_EVENT_STATUS)
51
52
53 /* UIC command timeout, unit: ms */
54 enum {
55 UIC_CMD_TIMEOUT_DEFAULT = 500,
56 UIC_CMD_TIMEOUT_MAX = 2000,
57 };
58 /* NOP OUT retries waiting for NOP IN response */
59 #define NOP_OUT_RETRIES 10
60 /* Timeout after 50 msecs if NOP OUT hangs without response */
61 #define NOP_OUT_TIMEOUT 50 /* msecs */
62
63 /* Query request retries */
64 #define QUERY_REQ_RETRIES 3
65 /* Query request timeout */
66 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
67
68 /* Advanced RPMB request timeout */
69 #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */
70
71 /* Task management command timeout */
72 #define TM_CMD_TIMEOUT 100 /* msecs */
73
74 /* maximum number of retries for a general UIC command */
75 #define UFS_UIC_COMMAND_RETRIES 3
76
77 /* maximum number of link-startup retries */
78 #define DME_LINKSTARTUP_RETRIES 3
79
80 /* maximum number of reset retries before giving up */
81 #define MAX_HOST_RESET_RETRIES 5
82
83 /* Maximum number of error handler retries before giving up */
84 #define MAX_ERR_HANDLER_RETRIES 5
85
86 /* Expose the flag value from utp_upiu_query.value */
87 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
88
89 /* Interrupt aggregation default timeout, unit: 40us */
90 #define INT_AGGR_DEF_TO 0x02
91
92 /* default delay of autosuspend: 2000 ms */
93 #define RPM_AUTOSUSPEND_DELAY_MS 2000
94
95 /* Default delay of RPM device flush delayed work */
96 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
97
98 /* Default value of wait time before gating device ref clock */
99 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
100
101 /* Polling time to wait for fDeviceInit */
102 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
103
104 /* Default RTC update every 10 seconds */
105 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
106
107 /* bMaxNumOfRTT is equal to two after device manufacturing */
108 #define DEFAULT_MAX_NUM_RTT 2
109
110 /* UFSHC 4.0 compliant HC support this mode. */
111 static bool use_mcq_mode = true;
112
is_mcq_supported(struct ufs_hba * hba)113 static bool is_mcq_supported(struct ufs_hba *hba)
114 {
115 return hba->mcq_sup && use_mcq_mode;
116 }
117
118 module_param(use_mcq_mode, bool, 0644);
119 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
120
121 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT;
122
uic_cmd_timeout_set(const char * val,const struct kernel_param * kp)123 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp)
124 {
125 return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT,
126 UIC_CMD_TIMEOUT_MAX);
127 }
128
129 static const struct kernel_param_ops uic_cmd_timeout_ops = {
130 .set = uic_cmd_timeout_set,
131 .get = param_get_uint,
132 };
133
134 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644);
135 MODULE_PARM_DESC(uic_cmd_timeout,
136 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 2 seconds inclusively");
137
138 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \
139 ({ \
140 int _ret; \
141 if (_on) \
142 _ret = ufshcd_enable_vreg(_dev, _vreg); \
143 else \
144 _ret = ufshcd_disable_vreg(_dev, _vreg); \
145 _ret; \
146 })
147
148 #define ufshcd_hex_dump(prefix_str, buf, len) do { \
149 size_t __len = (len); \
150 print_hex_dump(KERN_ERR, prefix_str, \
151 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
152 16, 4, buf, __len, false); \
153 } while (0)
154
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)155 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
156 const char *prefix)
157 {
158 u32 *regs;
159 size_t pos;
160
161 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
162 return -EINVAL;
163
164 regs = kzalloc(len, GFP_ATOMIC);
165 if (!regs)
166 return -ENOMEM;
167
168 for (pos = 0; pos < len; pos += 4) {
169 if (offset == 0 &&
170 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
171 pos <= REG_UIC_ERROR_CODE_DME)
172 continue;
173 regs[pos / 4] = ufshcd_readl(hba, offset + pos);
174 }
175
176 ufshcd_hex_dump(prefix, regs, len);
177 kfree(regs);
178
179 return 0;
180 }
181 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
182
183 enum {
184 UFSHCD_MAX_CHANNEL = 0,
185 UFSHCD_MAX_ID = 1,
186 };
187
188 static const char *const ufshcd_state_name[] = {
189 [UFSHCD_STATE_RESET] = "reset",
190 [UFSHCD_STATE_OPERATIONAL] = "operational",
191 [UFSHCD_STATE_ERROR] = "error",
192 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal",
193 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal",
194 };
195
196 /* UFSHCD error handling flags */
197 enum {
198 UFSHCD_EH_IN_PROGRESS = (1 << 0),
199 };
200
201 /* UFSHCD UIC layer error flags */
202 enum {
203 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
204 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
205 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
206 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
207 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
208 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
209 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
210 };
211
212 #define ufshcd_set_eh_in_progress(h) \
213 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
214 #define ufshcd_eh_in_progress(h) \
215 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
216 #define ufshcd_clear_eh_in_progress(h) \
217 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
218
219 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
220 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
221 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
222 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
223 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
224 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
225 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
226 /*
227 * For DeepSleep, the link is first put in hibern8 and then off.
228 * Leaving the link in hibern8 is not supported.
229 */
230 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
231 };
232
233 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)234 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
235 {
236 return ufs_pm_lvl_states[lvl].dev_state;
237 }
238
239 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)240 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
241 {
242 return ufs_pm_lvl_states[lvl].link_state;
243 }
244
245 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)246 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
247 enum uic_link_state link_state)
248 {
249 enum ufs_pm_level lvl;
250
251 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
252 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
253 (ufs_pm_lvl_states[lvl].link_state == link_state))
254 return lvl;
255 }
256
257 /* if no match found, return the level 0 */
258 return UFS_PM_LVL_0;
259 }
260
ufshcd_has_pending_tasks(struct ufs_hba * hba)261 static bool ufshcd_has_pending_tasks(struct ufs_hba *hba)
262 {
263 return hba->outstanding_tasks || hba->active_uic_cmd ||
264 hba->uic_async_done;
265 }
266
ufshcd_is_ufs_dev_busy(struct ufs_hba * hba)267 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
268 {
269 return scsi_host_busy(hba->host) || ufshcd_has_pending_tasks(hba);
270 }
271
272 static const struct ufs_dev_quirk ufs_fixups[] = {
273 /* UFS cards deviations table */
274 { .wmanufacturerid = UFS_VENDOR_MICRON,
275 .model = UFS_ANY_MODEL,
276 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
277 { .wmanufacturerid = UFS_VENDOR_SAMSUNG,
278 .model = UFS_ANY_MODEL,
279 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
280 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
281 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
282 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
283 .model = UFS_ANY_MODEL,
284 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
285 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
286 .model = "hB8aL1" /*H28U62301AMR*/,
287 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
288 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
289 .model = UFS_ANY_MODEL,
290 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
291 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
292 .model = "THGLF2G9C8KBADG",
293 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
294 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
295 .model = "THGLF2G9D8KBADG",
296 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
297 {}
298 };
299
300 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
301 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
302 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
303 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
304 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
305 static void ufshcd_hba_exit(struct ufs_hba *hba);
306 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params);
307 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
308 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
309 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
310 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
311 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
312 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
313 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
314 bool scale_up);
315 static irqreturn_t ufshcd_intr(int irq, void *__hba);
316 static int ufshcd_change_power_mode(struct ufs_hba *hba,
317 struct ufs_pa_layer_attr *pwr_mode);
318 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
319 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
320 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
321 struct ufs_vreg *vreg);
322 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
323 bool enable);
324 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
325 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
326
ufshcd_enable_irq(struct ufs_hba * hba)327 void ufshcd_enable_irq(struct ufs_hba *hba)
328 {
329 if (!hba->is_irq_enabled) {
330 enable_irq(hba->irq);
331 hba->is_irq_enabled = true;
332 }
333 }
334 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
335
ufshcd_disable_irq(struct ufs_hba * hba)336 void ufshcd_disable_irq(struct ufs_hba *hba)
337 {
338 if (hba->is_irq_enabled) {
339 disable_irq(hba->irq);
340 hba->is_irq_enabled = false;
341 }
342 }
343 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
344
ufshcd_configure_wb(struct ufs_hba * hba)345 static void ufshcd_configure_wb(struct ufs_hba *hba)
346 {
347 if (!ufshcd_is_wb_allowed(hba))
348 return;
349
350 ufshcd_wb_toggle(hba, true);
351
352 ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
353
354 if (ufshcd_is_wb_buf_flush_allowed(hba))
355 ufshcd_wb_toggle_buf_flush(hba, true);
356 }
357
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)358 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
359 enum ufs_trace_str_t str_t)
360 {
361 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
362 struct utp_upiu_header *header;
363
364 if (!trace_ufshcd_upiu_enabled())
365 return;
366
367 if (str_t == UFS_CMD_SEND)
368 header = &rq->header;
369 else
370 header = &hba->lrb[tag].ucd_rsp_ptr->header;
371
372 trace_ufshcd_upiu(hba, str_t, header, &rq->sc.cdb,
373 UFS_TSF_CDB);
374 }
375
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,enum ufs_trace_str_t str_t,struct utp_upiu_req * rq_rsp)376 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
377 enum ufs_trace_str_t str_t,
378 struct utp_upiu_req *rq_rsp)
379 {
380 if (!trace_ufshcd_upiu_enabled())
381 return;
382
383 trace_ufshcd_upiu(hba, str_t, &rq_rsp->header,
384 &rq_rsp->qr, UFS_TSF_OSF);
385 }
386
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)387 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
388 enum ufs_trace_str_t str_t)
389 {
390 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
391
392 if (!trace_ufshcd_upiu_enabled())
393 return;
394
395 if (str_t == UFS_TM_SEND)
396 trace_ufshcd_upiu(hba, str_t,
397 &descp->upiu_req.req_header,
398 &descp->upiu_req.input_param1,
399 UFS_TSF_TM_INPUT);
400 else
401 trace_ufshcd_upiu(hba, str_t,
402 &descp->upiu_rsp.rsp_header,
403 &descp->upiu_rsp.output_param1,
404 UFS_TSF_TM_OUTPUT);
405 }
406
ufshcd_add_uic_command_trace(struct ufs_hba * hba,const struct uic_command * ucmd,enum ufs_trace_str_t str_t)407 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
408 const struct uic_command *ucmd,
409 enum ufs_trace_str_t str_t)
410 {
411 u32 cmd;
412
413 if (!trace_ufshcd_uic_command_enabled())
414 return;
415
416 if (str_t == UFS_CMD_SEND)
417 cmd = ucmd->command;
418 else
419 cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
420
421 trace_ufshcd_uic_command(hba, str_t, cmd,
422 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
423 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
424 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
425 }
426
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)427 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
428 enum ufs_trace_str_t str_t)
429 {
430 u64 lba = 0;
431 u8 opcode = 0, group_id = 0;
432 u32 doorbell = 0;
433 u32 intr;
434 int hwq_id = -1;
435 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
436 struct scsi_cmnd *cmd = lrbp->cmd;
437 struct request *rq = scsi_cmd_to_rq(cmd);
438 int transfer_len = -1;
439
440 if (!cmd)
441 return;
442
443 /* trace UPIU also */
444 ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
445 if (!trace_ufshcd_command_enabled())
446 return;
447
448 opcode = cmd->cmnd[0];
449
450 if (opcode == READ_10 || opcode == WRITE_10) {
451 /*
452 * Currently we only fully trace read(10) and write(10) commands
453 */
454 transfer_len =
455 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
456 lba = scsi_get_lba(cmd);
457 if (opcode == WRITE_10)
458 group_id = lrbp->cmd->cmnd[6];
459 } else if (opcode == UNMAP) {
460 /*
461 * The number of Bytes to be unmapped beginning with the lba.
462 */
463 transfer_len = blk_rq_bytes(rq);
464 lba = scsi_get_lba(cmd);
465 }
466
467 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
468
469 if (hba->mcq_enabled) {
470 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
471
472 hwq_id = hwq->id;
473 } else {
474 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
475 }
476 trace_ufshcd_command(cmd->device, hba, str_t, tag, doorbell, hwq_id,
477 transfer_len, intr, lba, opcode, group_id);
478 }
479
ufshcd_print_clk_freqs(struct ufs_hba * hba)480 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
481 {
482 struct ufs_clk_info *clki;
483 struct list_head *head = &hba->clk_list_head;
484
485 if (list_empty(head))
486 return;
487
488 list_for_each_entry(clki, head, list) {
489 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
490 clki->max_freq)
491 dev_err(hba->dev, "clk: %s, rate: %u\n",
492 clki->name, clki->curr_freq);
493 }
494 }
495
ufshcd_print_evt(struct ufs_hba * hba,u32 id,const char * err_name)496 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
497 const char *err_name)
498 {
499 int i;
500 bool found = false;
501 const struct ufs_event_hist *e;
502
503 if (id >= UFS_EVT_CNT)
504 return;
505
506 e = &hba->ufs_stats.event[id];
507
508 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
509 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
510
511 if (e->tstamp[p] == 0)
512 continue;
513 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
514 e->val[p], div_u64(e->tstamp[p], 1000));
515 found = true;
516 }
517
518 if (!found)
519 dev_err(hba->dev, "No record of %s\n", err_name);
520 else
521 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
522 }
523
ufshcd_print_evt_hist(struct ufs_hba * hba)524 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
525 {
526 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
527
528 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
529 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
530 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
531 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
532 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
533 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
534 "auto_hibern8_err");
535 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
536 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
537 "link_startup_fail");
538 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
539 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
540 "suspend_fail");
541 ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
542 ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
543 "wlun suspend_fail");
544 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
545 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
546 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
547
548 ufshcd_vops_dbg_register_dump(hba);
549 }
550
551 static
ufshcd_print_tr(struct ufs_hba * hba,int tag,bool pr_prdt)552 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
553 {
554 const struct ufshcd_lrb *lrbp;
555 int prdt_length;
556
557 lrbp = &hba->lrb[tag];
558
559 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
560 tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
561 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
562 tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
563 dev_err(hba->dev,
564 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
565 tag, (u64)lrbp->utrd_dma_addr);
566
567 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
568 sizeof(struct utp_transfer_req_desc));
569 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
570 (u64)lrbp->ucd_req_dma_addr);
571 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
572 sizeof(struct utp_upiu_req));
573 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
574 (u64)lrbp->ucd_rsp_dma_addr);
575 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
576 sizeof(struct utp_upiu_rsp));
577
578 prdt_length = le16_to_cpu(
579 lrbp->utr_descriptor_ptr->prd_table_length);
580 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
581 prdt_length /= ufshcd_sg_entry_size(hba);
582
583 dev_err(hba->dev,
584 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n",
585 tag, prdt_length,
586 (u64)lrbp->ucd_prdt_dma_addr);
587
588 if (pr_prdt)
589 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
590 ufshcd_sg_entry_size(hba) * prdt_length);
591 }
592
ufshcd_print_tr_iter(struct request * req,void * priv)593 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
594 {
595 struct scsi_device *sdev = req->q->queuedata;
596 struct Scsi_Host *shost = sdev->host;
597 struct ufs_hba *hba = shost_priv(shost);
598
599 ufshcd_print_tr(hba, req->tag, *(bool *)priv);
600
601 return true;
602 }
603
604 /**
605 * ufshcd_print_trs_all - print trs for all started requests.
606 * @hba: per-adapter instance.
607 * @pr_prdt: need to print prdt or not.
608 */
ufshcd_print_trs_all(struct ufs_hba * hba,bool pr_prdt)609 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
610 {
611 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
612 }
613
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)614 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
615 {
616 int tag;
617
618 for_each_set_bit(tag, &bitmap, hba->nutmrs) {
619 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
620
621 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
622 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
623 }
624 }
625
ufshcd_print_host_state(struct ufs_hba * hba)626 static void ufshcd_print_host_state(struct ufs_hba *hba)
627 {
628 const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
629
630 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
631 dev_err(hba->dev, "%d outstanding reqs, tasks=0x%lx\n",
632 scsi_host_busy(hba->host), hba->outstanding_tasks);
633 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
634 hba->saved_err, hba->saved_uic_err);
635 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
636 hba->curr_dev_pwr_mode, hba->uic_link_state);
637 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
638 hba->pm_op_in_progress, hba->is_sys_suspended);
639 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
640 hba->auto_bkops_enabled, hba->host->host_self_blocked);
641 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
642 dev_err(hba->dev,
643 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
644 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
645 hba->ufs_stats.hibern8_exit_cnt);
646 dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
647 div_u64(hba->ufs_stats.last_intr_ts, 1000),
648 hba->ufs_stats.last_intr_status);
649 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
650 hba->eh_flags, hba->req_abort_count);
651 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
652 hba->ufs_version, hba->capabilities, hba->caps);
653 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
654 hba->dev_quirks);
655 if (sdev_ufs)
656 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
657 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
658
659 ufshcd_print_clk_freqs(hba);
660 }
661
662 /**
663 * ufshcd_print_pwr_info - print power params as saved in hba
664 * power info
665 * @hba: per-adapter instance
666 */
ufshcd_print_pwr_info(struct ufs_hba * hba)667 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
668 {
669 static const char * const names[] = {
670 "INVALID MODE",
671 "FAST MODE",
672 "SLOW_MODE",
673 "INVALID MODE",
674 "FASTAUTO_MODE",
675 "SLOWAUTO_MODE",
676 "INVALID MODE",
677 };
678
679 /*
680 * Using dev_dbg to avoid messages during runtime PM to avoid
681 * never-ending cycles of messages written back to storage by user space
682 * causing runtime resume, causing more messages and so on.
683 */
684 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
685 __func__,
686 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
687 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
688 names[hba->pwr_info.pwr_rx],
689 names[hba->pwr_info.pwr_tx],
690 hba->pwr_info.hs_rate);
691 }
692
ufshcd_device_reset(struct ufs_hba * hba)693 static void ufshcd_device_reset(struct ufs_hba *hba)
694 {
695 int err;
696
697 err = ufshcd_vops_device_reset(hba);
698
699 if (!err) {
700 ufshcd_set_ufs_dev_active(hba);
701 if (ufshcd_is_wb_allowed(hba)) {
702 hba->dev_info.wb_enabled = false;
703 hba->dev_info.wb_buf_flush_enabled = false;
704 }
705 if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
706 hba->dev_info.rtc_time_baseline = 0;
707 }
708 if (err != -EOPNOTSUPP)
709 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
710 }
711
ufshcd_delay_us(unsigned long us,unsigned long tolerance)712 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
713 {
714 if (!us)
715 return;
716
717 if (us < 10)
718 udelay(us);
719 else
720 usleep_range(us, us + tolerance);
721 }
722 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
723
724 /**
725 * ufshcd_wait_for_register - wait for register value to change
726 * @hba: per-adapter interface
727 * @reg: mmio register offset
728 * @mask: mask to apply to the read register value
729 * @val: value to wait for
730 * @interval_us: polling interval in microseconds
731 * @timeout_ms: timeout in milliseconds
732 *
733 * Return: -ETIMEDOUT on error, zero on success.
734 */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)735 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
736 u32 val, unsigned long interval_us,
737 unsigned long timeout_ms)
738 {
739 u32 v;
740
741 val &= mask; /* ignore bits that we don't intend to wait on */
742
743 return read_poll_timeout(ufshcd_readl, v, (v & mask) == val,
744 interval_us, timeout_ms * 1000, false, hba, reg);
745 }
746
747 /**
748 * ufshcd_get_intr_mask - Get the interrupt bit mask
749 * @hba: Pointer to adapter instance
750 *
751 * Return: interrupt bit mask per version
752 */
ufshcd_get_intr_mask(struct ufs_hba * hba)753 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
754 {
755 if (hba->ufs_version <= ufshci_version(2, 0))
756 return INTERRUPT_MASK_ALL_VER_11;
757
758 return INTERRUPT_MASK_ALL_VER_21;
759 }
760
761 /**
762 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
763 * @hba: Pointer to adapter instance
764 *
765 * Return: UFSHCI version supported by the controller
766 */
ufshcd_get_ufs_version(struct ufs_hba * hba)767 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
768 {
769 u32 ufshci_ver;
770
771 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
772 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
773 else
774 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
775
776 /*
777 * UFSHCI v1.x uses a different version scheme, in order
778 * to allow the use of comparisons with the ufshci_version
779 * function, we convert it to the same scheme as ufs 2.0+.
780 */
781 if (ufshci_ver & 0x00010000)
782 return ufshci_version(1, ufshci_ver & 0x00000100);
783
784 return ufshci_ver;
785 }
786
787 /**
788 * ufshcd_is_device_present - Check if any device connected to
789 * the host controller
790 * @hba: pointer to adapter instance
791 *
792 * Return: true if device present, false if no device detected
793 */
ufshcd_is_device_present(struct ufs_hba * hba)794 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
795 {
796 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
797 }
798
799 /**
800 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
801 * @lrbp: pointer to local command reference block
802 * @cqe: pointer to the completion queue entry
803 *
804 * This function is used to get the OCS field from UTRD
805 *
806 * Return: the OCS field in the UTRD.
807 */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp,struct cq_entry * cqe)808 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
809 struct cq_entry *cqe)
810 {
811 if (cqe)
812 return le32_to_cpu(cqe->status) & MASK_OCS;
813
814 return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
815 }
816
817 /**
818 * ufshcd_utrl_clear() - Clear requests from the controller request list.
819 * @hba: per adapter instance
820 * @mask: mask with one bit set for each request to be cleared
821 */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 mask)822 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
823 {
824 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
825 mask = ~mask;
826 /*
827 * From the UFSHCI specification: "UTP Transfer Request List CLear
828 * Register (UTRLCLR): This field is bit significant. Each bit
829 * corresponds to a slot in the UTP Transfer Request List, where bit 0
830 * corresponds to request slot 0. A bit in this field is set to ‘0’
831 * by host software to indicate to the host controller that a transfer
832 * request slot is cleared. The host controller
833 * shall free up any resources associated to the request slot
834 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
835 * host software indicates no change to request slots by setting the
836 * associated bits in this field to ‘1’. Bits in this field shall only
837 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
838 */
839 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
840 }
841
842 /**
843 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
844 * @hba: per adapter instance
845 * @pos: position of the bit to be cleared
846 */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)847 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
848 {
849 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
850 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
851 else
852 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
853 }
854
855 /**
856 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
857 * @reg: Register value of host controller status
858 *
859 * Return: 0 on success; a positive value if failed.
860 */
ufshcd_get_lists_status(u32 reg)861 static inline int ufshcd_get_lists_status(u32 reg)
862 {
863 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
864 }
865
866 /**
867 * ufshcd_get_uic_cmd_result - Get the UIC command result
868 * @hba: Pointer to adapter instance
869 *
870 * This function gets the result of UIC command completion
871 *
872 * Return: 0 on success; non-zero value on error.
873 */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)874 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
875 {
876 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
877 MASK_UIC_COMMAND_RESULT;
878 }
879
880 /**
881 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
882 * @hba: Pointer to adapter instance
883 *
884 * This function gets UIC command argument3
885 *
886 * Return: 0 on success; non-zero value on error.
887 */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)888 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
889 {
890 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
891 }
892
893 /**
894 * ufshcd_get_req_rsp - returns the TR response transaction type
895 * @ucd_rsp_ptr: pointer to response UPIU
896 *
897 * Return: UPIU type.
898 */
899 static inline enum upiu_response_transaction
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)900 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
901 {
902 return ucd_rsp_ptr->header.transaction_code;
903 }
904
905 /**
906 * ufshcd_is_exception_event - Check if the device raised an exception event
907 * @ucd_rsp_ptr: pointer to response UPIU
908 *
909 * The function checks if the device raised an exception event indicated in
910 * the Device Information field of response UPIU.
911 *
912 * Return: true if exception is raised, false otherwise.
913 */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)914 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
915 {
916 return ucd_rsp_ptr->header.device_information & 1;
917 }
918
919 /**
920 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
921 * @hba: per adapter instance
922 */
923 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)924 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
925 {
926 ufshcd_writel(hba, INT_AGGR_ENABLE |
927 INT_AGGR_COUNTER_AND_TIMER_RESET,
928 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
929 }
930
931 /**
932 * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
933 * @hba: per adapter instance
934 * @cnt: Interrupt aggregation counter threshold
935 * @tmout: Interrupt aggregation timeout value
936 */
937 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)938 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
939 {
940 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
941 INT_AGGR_COUNTER_THLD_VAL(cnt) |
942 INT_AGGR_TIMEOUT_VAL(tmout),
943 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
944 }
945
946 /**
947 * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
948 * @hba: per adapter instance
949 */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)950 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
951 {
952 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
953 }
954
955 /**
956 * ufshcd_enable_run_stop_reg - Enable run-stop registers,
957 * When run-stop registers are set to 1, it indicates the
958 * host controller that it can process the requests
959 * @hba: per adapter instance
960 */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)961 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
962 {
963 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
964 REG_UTP_TASK_REQ_LIST_RUN_STOP);
965 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
966 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
967 }
968
969 /**
970 * ufshcd_hba_start - Start controller initialization sequence
971 * @hba: per adapter instance
972 */
ufshcd_hba_start(struct ufs_hba * hba)973 static inline void ufshcd_hba_start(struct ufs_hba *hba)
974 {
975 u32 val = CONTROLLER_ENABLE;
976
977 if (ufshcd_crypto_enable(hba))
978 val |= CRYPTO_GENERAL_ENABLE;
979
980 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
981 }
982
983 /**
984 * ufshcd_is_hba_active - Get controller state
985 * @hba: per adapter instance
986 *
987 * Return: true if and only if the controller is active.
988 */
ufshcd_is_hba_active(struct ufs_hba * hba)989 bool ufshcd_is_hba_active(struct ufs_hba *hba)
990 {
991 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
992 }
993 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
994
995 /**
996 * ufshcd_pm_qos_init - initialize PM QoS request
997 * @hba: per adapter instance
998 */
ufshcd_pm_qos_init(struct ufs_hba * hba)999 void ufshcd_pm_qos_init(struct ufs_hba *hba)
1000 {
1001
1002 if (hba->pm_qos_enabled)
1003 return;
1004
1005 cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1006
1007 if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1008 hba->pm_qos_enabled = true;
1009 }
1010
1011 /**
1012 * ufshcd_pm_qos_exit - remove request from PM QoS
1013 * @hba: per adapter instance
1014 */
ufshcd_pm_qos_exit(struct ufs_hba * hba)1015 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1016 {
1017 if (!hba->pm_qos_enabled)
1018 return;
1019
1020 cpu_latency_qos_remove_request(&hba->pm_qos_req);
1021 hba->pm_qos_enabled = false;
1022 }
1023
1024 /**
1025 * ufshcd_pm_qos_update - update PM QoS request
1026 * @hba: per adapter instance
1027 * @on: If True, vote for perf PM QoS mode otherwise power save mode
1028 */
ufshcd_pm_qos_update(struct ufs_hba * hba,bool on)1029 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1030 {
1031 if (!hba->pm_qos_enabled)
1032 return;
1033
1034 cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1035 }
1036
1037 /**
1038 * ufshcd_set_clk_freq - set UFS controller clock frequencies
1039 * @hba: per adapter instance
1040 * @scale_up: If True, set max possible frequency othewise set low frequency
1041 *
1042 * Return: 0 if successful; < 0 upon failure.
1043 */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)1044 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1045 {
1046 int ret = 0;
1047 struct ufs_clk_info *clki;
1048 struct list_head *head = &hba->clk_list_head;
1049
1050 if (list_empty(head))
1051 goto out;
1052
1053 list_for_each_entry(clki, head, list) {
1054 if (!IS_ERR_OR_NULL(clki->clk)) {
1055 if (scale_up && clki->max_freq) {
1056 if (clki->curr_freq == clki->max_freq)
1057 continue;
1058
1059 ret = clk_set_rate(clki->clk, clki->max_freq);
1060 if (ret) {
1061 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1062 __func__, clki->name,
1063 clki->max_freq, ret);
1064 break;
1065 }
1066 trace_ufshcd_clk_scaling(hba,
1067 "scaled up", clki->name,
1068 clki->curr_freq,
1069 clki->max_freq);
1070
1071 clki->curr_freq = clki->max_freq;
1072
1073 } else if (!scale_up && clki->min_freq) {
1074 if (clki->curr_freq == clki->min_freq)
1075 continue;
1076
1077 ret = clk_set_rate(clki->clk, clki->min_freq);
1078 if (ret) {
1079 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1080 __func__, clki->name,
1081 clki->min_freq, ret);
1082 break;
1083 }
1084 trace_ufshcd_clk_scaling(hba,
1085 "scaled down", clki->name,
1086 clki->curr_freq,
1087 clki->min_freq);
1088 clki->curr_freq = clki->min_freq;
1089 }
1090 }
1091 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1092 clki->name, clk_get_rate(clki->clk));
1093 }
1094
1095 out:
1096 return ret;
1097 }
1098
ufshcd_opp_config_clks(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)1099 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1100 struct dev_pm_opp *opp, void *data,
1101 bool scaling_down)
1102 {
1103 struct ufs_hba *hba = dev_get_drvdata(dev);
1104 struct list_head *head = &hba->clk_list_head;
1105 struct ufs_clk_info *clki;
1106 unsigned long freq;
1107 u8 idx = 0;
1108 int ret;
1109
1110 list_for_each_entry(clki, head, list) {
1111 if (!IS_ERR_OR_NULL(clki->clk)) {
1112 freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1113
1114 /* Do not set rate for clocks having frequency as 0 */
1115 if (!freq)
1116 continue;
1117
1118 ret = clk_set_rate(clki->clk, freq);
1119 if (ret) {
1120 dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1121 __func__, clki->name, freq, ret);
1122 return ret;
1123 }
1124
1125 trace_ufshcd_clk_scaling(hba,
1126 (scaling_down ? "scaled down" : "scaled up"),
1127 clki->name, hba->clk_scaling.target_freq, freq);
1128 }
1129 }
1130
1131 return 0;
1132 }
1133 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1134
ufshcd_opp_set_rate(struct ufs_hba * hba,unsigned long freq)1135 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1136 {
1137 struct dev_pm_opp *opp;
1138 int ret;
1139
1140 opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1141 &freq, 0);
1142 if (IS_ERR(opp))
1143 return PTR_ERR(opp);
1144
1145 ret = dev_pm_opp_set_opp(hba->dev, opp);
1146 dev_pm_opp_put(opp);
1147
1148 return ret;
1149 }
1150
1151 /**
1152 * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1153 * @hba: per adapter instance
1154 * @freq: frequency to scale
1155 * @scale_up: True if scaling up and false if scaling down
1156 *
1157 * Return: 0 if successful; < 0 upon failure.
1158 */
ufshcd_scale_clks(struct ufs_hba * hba,unsigned long freq,bool scale_up)1159 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1160 bool scale_up)
1161 {
1162 int ret = 0;
1163 ktime_t start = ktime_get();
1164
1165 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, PRE_CHANGE);
1166 if (ret)
1167 goto out;
1168
1169 if (hba->use_pm_opp)
1170 ret = ufshcd_opp_set_rate(hba, freq);
1171 else
1172 ret = ufshcd_set_clk_freq(hba, scale_up);
1173 if (ret)
1174 goto out;
1175
1176 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, POST_CHANGE);
1177 if (ret) {
1178 if (hba->use_pm_opp)
1179 ufshcd_opp_set_rate(hba,
1180 hba->devfreq->previous_freq);
1181 else
1182 ufshcd_set_clk_freq(hba, !scale_up);
1183 goto out;
1184 }
1185
1186 ufshcd_pm_qos_update(hba, scale_up);
1187
1188 out:
1189 trace_ufshcd_profile_clk_scaling(hba,
1190 (scale_up ? "up" : "down"),
1191 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1192 return ret;
1193 }
1194
1195 /**
1196 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1197 * @hba: per adapter instance
1198 * @freq: frequency to scale
1199 * @scale_up: True if scaling up and false if scaling down
1200 *
1201 * Return: true if scaling is required, false otherwise.
1202 */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,unsigned long freq,bool scale_up)1203 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1204 unsigned long freq, bool scale_up)
1205 {
1206 struct ufs_clk_info *clki;
1207 struct list_head *head = &hba->clk_list_head;
1208
1209 if (list_empty(head))
1210 return false;
1211
1212 if (hba->use_pm_opp)
1213 return freq != hba->clk_scaling.target_freq;
1214
1215 list_for_each_entry(clki, head, list) {
1216 if (!IS_ERR_OR_NULL(clki->clk)) {
1217 if (scale_up && clki->max_freq) {
1218 if (clki->curr_freq == clki->max_freq)
1219 continue;
1220 return true;
1221 } else if (!scale_up && clki->min_freq) {
1222 if (clki->curr_freq == clki->min_freq)
1223 continue;
1224 return true;
1225 }
1226 }
1227 }
1228
1229 return false;
1230 }
1231
1232 /*
1233 * Determine the number of pending commands by counting the bits in the SCSI
1234 * device budget maps. This approach has been selected because a bit is set in
1235 * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1236 * flag. The host_self_blocked flag can be modified by calling
1237 * scsi_block_requests() or scsi_unblock_requests().
1238 */
ufshcd_pending_cmds(struct ufs_hba * hba)1239 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1240 {
1241 const struct scsi_device *sdev;
1242 unsigned long flags;
1243 u32 pending = 0;
1244
1245 spin_lock_irqsave(hba->host->host_lock, flags);
1246 __shost_for_each_device(sdev, hba->host)
1247 pending += sbitmap_weight(&sdev->budget_map);
1248 spin_unlock_irqrestore(hba->host->host_lock, flags);
1249
1250 return pending;
1251 }
1252
1253 /*
1254 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1255 * has expired.
1256 *
1257 * Return: 0 upon success; -EBUSY upon timeout.
1258 */
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1259 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1260 u64 wait_timeout_us)
1261 {
1262 int ret = 0;
1263 u32 tm_doorbell;
1264 u32 tr_pending;
1265 bool timeout = false, do_last_check = false;
1266 ktime_t start;
1267
1268 ufshcd_hold(hba);
1269 /*
1270 * Wait for all the outstanding tasks/transfer requests.
1271 * Verify by checking the doorbell registers are clear.
1272 */
1273 start = ktime_get();
1274 do {
1275 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1276 ret = -EBUSY;
1277 goto out;
1278 }
1279
1280 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1281 tr_pending = ufshcd_pending_cmds(hba);
1282 if (!tm_doorbell && !tr_pending) {
1283 timeout = false;
1284 break;
1285 } else if (do_last_check) {
1286 break;
1287 }
1288
1289 io_schedule_timeout(msecs_to_jiffies(20));
1290 if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1291 wait_timeout_us) {
1292 timeout = true;
1293 /*
1294 * We might have scheduled out for long time so make
1295 * sure to check if doorbells are cleared by this time
1296 * or not.
1297 */
1298 do_last_check = true;
1299 }
1300 } while (tm_doorbell || tr_pending);
1301
1302 if (timeout) {
1303 dev_err(hba->dev,
1304 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1305 __func__, tm_doorbell, tr_pending);
1306 ret = -EBUSY;
1307 }
1308 out:
1309 ufshcd_release(hba);
1310 return ret;
1311 }
1312
1313 /**
1314 * ufshcd_scale_gear - scale up/down UFS gear
1315 * @hba: per adapter instance
1316 * @target_gear: target gear to scale to
1317 * @scale_up: True for scaling up gear and false for scaling down
1318 *
1319 * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1320 * non-zero for any other errors.
1321 */
ufshcd_scale_gear(struct ufs_hba * hba,u32 target_gear,bool scale_up)1322 static int ufshcd_scale_gear(struct ufs_hba *hba, u32 target_gear, bool scale_up)
1323 {
1324 int ret = 0;
1325 struct ufs_pa_layer_attr new_pwr_info;
1326
1327 if (target_gear) {
1328 new_pwr_info = hba->pwr_info;
1329 new_pwr_info.gear_tx = target_gear;
1330 new_pwr_info.gear_rx = target_gear;
1331
1332 goto config_pwr_mode;
1333 }
1334
1335 /* Legacy gear scaling, in case vops_freq_to_gear_speed() is not implemented */
1336 if (scale_up) {
1337 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1338 sizeof(struct ufs_pa_layer_attr));
1339 } else {
1340 memcpy(&new_pwr_info, &hba->pwr_info,
1341 sizeof(struct ufs_pa_layer_attr));
1342
1343 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1344 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1345 /* save the current power mode */
1346 memcpy(&hba->clk_scaling.saved_pwr_info,
1347 &hba->pwr_info,
1348 sizeof(struct ufs_pa_layer_attr));
1349
1350 /* scale down gear */
1351 new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1352 new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1353 }
1354 }
1355
1356 config_pwr_mode:
1357 /* check if the power mode needs to be changed or not? */
1358 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1359 if (ret)
1360 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1361 __func__, ret,
1362 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1363 new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1364
1365 return ret;
1366 }
1367
1368 /*
1369 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1370 * has expired.
1371 *
1372 * Return: 0 upon success; -EBUSY upon timeout.
1373 */
ufshcd_clock_scaling_prepare(struct ufs_hba * hba,u64 timeout_us)1374 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1375 {
1376 int ret = 0;
1377 /*
1378 * make sure that there are no outstanding requests when
1379 * clock scaling is in progress
1380 */
1381 blk_mq_quiesce_tagset(&hba->host->tag_set);
1382 mutex_lock(&hba->wb_mutex);
1383 down_write(&hba->clk_scaling_lock);
1384
1385 if (!hba->clk_scaling.is_allowed ||
1386 ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1387 ret = -EBUSY;
1388 up_write(&hba->clk_scaling_lock);
1389 mutex_unlock(&hba->wb_mutex);
1390 blk_mq_unquiesce_tagset(&hba->host->tag_set);
1391 goto out;
1392 }
1393
1394 /* let's not get into low power until clock scaling is completed */
1395 ufshcd_hold(hba);
1396
1397 out:
1398 return ret;
1399 }
1400
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,int err)1401 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err)
1402 {
1403 up_write(&hba->clk_scaling_lock);
1404
1405 /* Enable Write Booster if current gear requires it else disable it */
1406 if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1407 ufshcd_wb_toggle(hba, hba->pwr_info.gear_rx >= hba->clk_scaling.wb_gear);
1408
1409 mutex_unlock(&hba->wb_mutex);
1410
1411 blk_mq_unquiesce_tagset(&hba->host->tag_set);
1412 ufshcd_release(hba);
1413 }
1414
1415 /**
1416 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1417 * @hba: per adapter instance
1418 * @freq: frequency to scale
1419 * @scale_up: True for scaling up and false for scalin down
1420 *
1421 * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1422 * for any other errors.
1423 */
ufshcd_devfreq_scale(struct ufs_hba * hba,unsigned long freq,bool scale_up)1424 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1425 bool scale_up)
1426 {
1427 u32 old_gear = hba->pwr_info.gear_rx;
1428 u32 new_gear = 0;
1429 int ret = 0;
1430
1431 new_gear = ufshcd_vops_freq_to_gear_speed(hba, freq);
1432
1433 ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1434 if (ret)
1435 return ret;
1436
1437 /* scale down the gear before scaling down clocks */
1438 if (!scale_up) {
1439 ret = ufshcd_scale_gear(hba, new_gear, false);
1440 if (ret)
1441 goto out_unprepare;
1442 }
1443
1444 ret = ufshcd_scale_clks(hba, freq, scale_up);
1445 if (ret) {
1446 if (!scale_up)
1447 ufshcd_scale_gear(hba, old_gear, true);
1448 goto out_unprepare;
1449 }
1450
1451 /* scale up the gear after scaling up clocks */
1452 if (scale_up) {
1453 ret = ufshcd_scale_gear(hba, new_gear, true);
1454 if (ret) {
1455 ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1456 false);
1457 goto out_unprepare;
1458 }
1459 }
1460
1461 out_unprepare:
1462 ufshcd_clock_scaling_unprepare(hba, ret);
1463 return ret;
1464 }
1465
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1466 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1467 {
1468 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1469 clk_scaling.suspend_work);
1470
1471 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1472 {
1473 if (hba->clk_scaling.active_reqs ||
1474 hba->clk_scaling.is_suspended)
1475 return;
1476
1477 hba->clk_scaling.is_suspended = true;
1478 hba->clk_scaling.window_start_t = 0;
1479 }
1480
1481 devfreq_suspend_device(hba->devfreq);
1482 }
1483
ufshcd_clk_scaling_resume_work(struct work_struct * work)1484 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1485 {
1486 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1487 clk_scaling.resume_work);
1488
1489 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1490 {
1491 if (!hba->clk_scaling.is_suspended)
1492 return;
1493 hba->clk_scaling.is_suspended = false;
1494 }
1495
1496 devfreq_resume_device(hba->devfreq);
1497 }
1498
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1499 static int ufshcd_devfreq_target(struct device *dev,
1500 unsigned long *freq, u32 flags)
1501 {
1502 int ret = 0;
1503 struct ufs_hba *hba = dev_get_drvdata(dev);
1504 ktime_t start;
1505 bool scale_up = false, sched_clk_scaling_suspend_work = false;
1506 struct list_head *clk_list = &hba->clk_list_head;
1507 struct ufs_clk_info *clki;
1508
1509 if (!ufshcd_is_clkscaling_supported(hba))
1510 return -EINVAL;
1511
1512 if (hba->use_pm_opp) {
1513 struct dev_pm_opp *opp;
1514
1515 /* Get the recommended frequency from OPP framework */
1516 opp = devfreq_recommended_opp(dev, freq, flags);
1517 if (IS_ERR(opp))
1518 return PTR_ERR(opp);
1519
1520 dev_pm_opp_put(opp);
1521 } else {
1522 /* Override with the closest supported frequency */
1523 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1524 list);
1525 *freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1526 }
1527
1528 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1529 {
1530 if (ufshcd_eh_in_progress(hba))
1531 return 0;
1532
1533 /* Skip scaling clock when clock scaling is suspended */
1534 if (hba->clk_scaling.is_suspended) {
1535 dev_warn(hba->dev, "clock scaling is suspended, skip");
1536 return 0;
1537 }
1538
1539 if (!hba->clk_scaling.active_reqs)
1540 sched_clk_scaling_suspend_work = true;
1541
1542 if (list_empty(clk_list))
1543 goto out;
1544
1545 /* Decide based on the target or rounded-off frequency and update */
1546 if (hba->use_pm_opp)
1547 scale_up = *freq > hba->clk_scaling.target_freq;
1548 else
1549 scale_up = *freq == clki->max_freq;
1550
1551 if (!hba->use_pm_opp && !scale_up)
1552 *freq = clki->min_freq;
1553
1554 /* Update the frequency */
1555 if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1556 ret = 0;
1557 goto out; /* no state change required */
1558 }
1559 }
1560
1561 start = ktime_get();
1562 ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1563 if (!ret)
1564 hba->clk_scaling.target_freq = *freq;
1565
1566 trace_ufshcd_profile_clk_scaling(hba,
1567 (scale_up ? "up" : "down"),
1568 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1569
1570 out:
1571 if (sched_clk_scaling_suspend_work &&
1572 (!scale_up || hba->clk_scaling.suspend_on_no_request))
1573 queue_work(hba->clk_scaling.workq,
1574 &hba->clk_scaling.suspend_work);
1575
1576 return ret;
1577 }
1578
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1579 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1580 struct devfreq_dev_status *stat)
1581 {
1582 struct ufs_hba *hba = dev_get_drvdata(dev);
1583 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1584 ktime_t curr_t;
1585
1586 if (!ufshcd_is_clkscaling_supported(hba))
1587 return -EINVAL;
1588
1589 memset(stat, 0, sizeof(*stat));
1590
1591 guard(spinlock_irqsave)(&hba->clk_scaling.lock);
1592
1593 curr_t = ktime_get();
1594 if (!scaling->window_start_t)
1595 goto start_window;
1596
1597 /*
1598 * If current frequency is 0, then the ondemand governor considers
1599 * there's no initial frequency set. And it always requests to set
1600 * to max. frequency.
1601 */
1602 if (hba->use_pm_opp) {
1603 stat->current_frequency = hba->clk_scaling.target_freq;
1604 } else {
1605 struct list_head *clk_list = &hba->clk_list_head;
1606 struct ufs_clk_info *clki;
1607
1608 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1609 stat->current_frequency = clki->curr_freq;
1610 }
1611
1612 if (scaling->is_busy_started)
1613 scaling->tot_busy_t += ktime_us_delta(curr_t,
1614 scaling->busy_start_t);
1615 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1616 stat->busy_time = scaling->tot_busy_t;
1617 start_window:
1618 scaling->window_start_t = curr_t;
1619 scaling->tot_busy_t = 0;
1620
1621 if (scaling->active_reqs) {
1622 scaling->busy_start_t = curr_t;
1623 scaling->is_busy_started = true;
1624 } else {
1625 scaling->busy_start_t = 0;
1626 scaling->is_busy_started = false;
1627 }
1628
1629 return 0;
1630 }
1631
ufshcd_devfreq_init(struct ufs_hba * hba)1632 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1633 {
1634 struct list_head *clk_list = &hba->clk_list_head;
1635 struct ufs_clk_info *clki;
1636 struct devfreq *devfreq;
1637 int ret;
1638
1639 /* Skip devfreq if we don't have any clocks in the list */
1640 if (list_empty(clk_list))
1641 return 0;
1642
1643 if (!hba->use_pm_opp) {
1644 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1645 dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1646 dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1647 }
1648
1649 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1650 &hba->vps->ondemand_data);
1651 devfreq = devfreq_add_device(hba->dev,
1652 &hba->vps->devfreq_profile,
1653 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1654 &hba->vps->ondemand_data);
1655 if (IS_ERR(devfreq)) {
1656 ret = PTR_ERR(devfreq);
1657 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1658
1659 if (!hba->use_pm_opp) {
1660 dev_pm_opp_remove(hba->dev, clki->min_freq);
1661 dev_pm_opp_remove(hba->dev, clki->max_freq);
1662 }
1663 return ret;
1664 }
1665
1666 hba->devfreq = devfreq;
1667
1668 return 0;
1669 }
1670
ufshcd_devfreq_remove(struct ufs_hba * hba)1671 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1672 {
1673 struct list_head *clk_list = &hba->clk_list_head;
1674
1675 if (!hba->devfreq)
1676 return;
1677
1678 devfreq_remove_device(hba->devfreq);
1679 hba->devfreq = NULL;
1680
1681 if (!hba->use_pm_opp) {
1682 struct ufs_clk_info *clki;
1683
1684 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1685 dev_pm_opp_remove(hba->dev, clki->min_freq);
1686 dev_pm_opp_remove(hba->dev, clki->max_freq);
1687 }
1688 }
1689
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1690 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1691 {
1692 bool suspend = false;
1693
1694 cancel_work_sync(&hba->clk_scaling.suspend_work);
1695 cancel_work_sync(&hba->clk_scaling.resume_work);
1696
1697 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1698 {
1699 if (!hba->clk_scaling.is_suspended) {
1700 suspend = true;
1701 hba->clk_scaling.is_suspended = true;
1702 hba->clk_scaling.window_start_t = 0;
1703 }
1704 }
1705
1706 if (suspend)
1707 devfreq_suspend_device(hba->devfreq);
1708 }
1709
ufshcd_resume_clkscaling(struct ufs_hba * hba)1710 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1711 {
1712 bool resume = false;
1713
1714 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1715 {
1716 if (hba->clk_scaling.is_suspended) {
1717 resume = true;
1718 hba->clk_scaling.is_suspended = false;
1719 }
1720 }
1721
1722 if (resume)
1723 devfreq_resume_device(hba->devfreq);
1724 }
1725
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1726 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1727 struct device_attribute *attr, char *buf)
1728 {
1729 struct ufs_hba *hba = dev_get_drvdata(dev);
1730
1731 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1732 }
1733
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1734 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1735 struct device_attribute *attr, const char *buf, size_t count)
1736 {
1737 struct ufs_hba *hba = dev_get_drvdata(dev);
1738 struct ufs_clk_info *clki;
1739 unsigned long freq;
1740 u32 value;
1741 int err = 0;
1742
1743 if (kstrtou32(buf, 0, &value))
1744 return -EINVAL;
1745
1746 down(&hba->host_sem);
1747 if (!ufshcd_is_user_access_allowed(hba)) {
1748 err = -EBUSY;
1749 goto out;
1750 }
1751
1752 value = !!value;
1753 if (value == hba->clk_scaling.is_enabled)
1754 goto out;
1755
1756 ufshcd_rpm_get_sync(hba);
1757 ufshcd_hold(hba);
1758
1759 hba->clk_scaling.is_enabled = value;
1760
1761 if (value) {
1762 ufshcd_resume_clkscaling(hba);
1763 goto out_rel;
1764 }
1765
1766 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1767 freq = clki->max_freq;
1768
1769 ufshcd_suspend_clkscaling(hba);
1770
1771 if (!ufshcd_is_devfreq_scaling_required(hba, freq, true))
1772 goto out_rel;
1773
1774 err = ufshcd_devfreq_scale(hba, freq, true);
1775 if (err)
1776 dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1777 __func__, err);
1778 else
1779 hba->clk_scaling.target_freq = freq;
1780
1781 out_rel:
1782 ufshcd_release(hba);
1783 ufshcd_rpm_put_sync(hba);
1784 out:
1785 up(&hba->host_sem);
1786 return err ? err : count;
1787 }
1788
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1789 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1790 {
1791 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1792 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1793 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1794 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1795 hba->clk_scaling.enable_attr.attr.mode = 0644;
1796 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1797 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1798 }
1799
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1800 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1801 {
1802 if (hba->clk_scaling.enable_attr.attr.name)
1803 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1804 }
1805
ufshcd_init_clk_scaling(struct ufs_hba * hba)1806 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1807 {
1808 if (!ufshcd_is_clkscaling_supported(hba))
1809 return;
1810
1811 if (!hba->clk_scaling.min_gear)
1812 hba->clk_scaling.min_gear = UFS_HS_G1;
1813
1814 if (!hba->clk_scaling.wb_gear)
1815 /* Use intermediate gear speed HS_G3 as the default wb_gear */
1816 hba->clk_scaling.wb_gear = UFS_HS_G3;
1817
1818 INIT_WORK(&hba->clk_scaling.suspend_work,
1819 ufshcd_clk_scaling_suspend_work);
1820 INIT_WORK(&hba->clk_scaling.resume_work,
1821 ufshcd_clk_scaling_resume_work);
1822
1823 spin_lock_init(&hba->clk_scaling.lock);
1824
1825 hba->clk_scaling.workq = alloc_ordered_workqueue(
1826 "ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no);
1827
1828 hba->clk_scaling.is_initialized = true;
1829 }
1830
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1831 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1832 {
1833 if (!hba->clk_scaling.is_initialized)
1834 return;
1835
1836 ufshcd_remove_clk_scaling_sysfs(hba);
1837 destroy_workqueue(hba->clk_scaling.workq);
1838 ufshcd_devfreq_remove(hba);
1839 hba->clk_scaling.is_initialized = false;
1840 }
1841
ufshcd_ungate_work(struct work_struct * work)1842 static void ufshcd_ungate_work(struct work_struct *work)
1843 {
1844 int ret;
1845 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1846 clk_gating.ungate_work);
1847
1848 cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1849
1850 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
1851 if (hba->clk_gating.state == CLKS_ON)
1852 return;
1853 }
1854
1855 ufshcd_hba_vreg_set_hpm(hba);
1856 ufshcd_setup_clocks(hba, true);
1857
1858 ufshcd_enable_irq(hba);
1859
1860 /* Exit from hibern8 */
1861 if (ufshcd_can_hibern8_during_gating(hba)) {
1862 /* Prevent gating in this path */
1863 hba->clk_gating.is_suspended = true;
1864 if (ufshcd_is_link_hibern8(hba)) {
1865 ret = ufshcd_uic_hibern8_exit(hba);
1866 if (ret)
1867 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1868 __func__, ret);
1869 else
1870 ufshcd_set_link_active(hba);
1871 }
1872 hba->clk_gating.is_suspended = false;
1873 }
1874 }
1875
1876 /**
1877 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1878 * Also, exit from hibern8 mode and set the link as active.
1879 * @hba: per adapter instance
1880 */
ufshcd_hold(struct ufs_hba * hba)1881 void ufshcd_hold(struct ufs_hba *hba)
1882 {
1883 bool flush_result;
1884 unsigned long flags;
1885
1886 if (!ufshcd_is_clkgating_allowed(hba) ||
1887 !hba->clk_gating.is_initialized)
1888 return;
1889 spin_lock_irqsave(&hba->clk_gating.lock, flags);
1890 hba->clk_gating.active_reqs++;
1891
1892 start:
1893 switch (hba->clk_gating.state) {
1894 case CLKS_ON:
1895 /*
1896 * Wait for the ungate work to complete if in progress.
1897 * Though the clocks may be in ON state, the link could
1898 * still be in hibner8 state if hibern8 is allowed
1899 * during clock gating.
1900 * Make sure we exit hibern8 state also in addition to
1901 * clocks being ON.
1902 */
1903 if (ufshcd_can_hibern8_during_gating(hba) &&
1904 ufshcd_is_link_hibern8(hba)) {
1905 spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1906 flush_result = flush_work(&hba->clk_gating.ungate_work);
1907 if (hba->clk_gating.is_suspended && !flush_result)
1908 return;
1909 spin_lock_irqsave(&hba->clk_gating.lock, flags);
1910 goto start;
1911 }
1912 break;
1913 case REQ_CLKS_OFF:
1914 if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1915 hba->clk_gating.state = CLKS_ON;
1916 trace_ufshcd_clk_gating(hba,
1917 hba->clk_gating.state);
1918 break;
1919 }
1920 /*
1921 * If we are here, it means gating work is either done or
1922 * currently running. Hence, fall through to cancel gating
1923 * work and to enable clocks.
1924 */
1925 fallthrough;
1926 case CLKS_OFF:
1927 hba->clk_gating.state = REQ_CLKS_ON;
1928 trace_ufshcd_clk_gating(hba,
1929 hba->clk_gating.state);
1930 queue_work(hba->clk_gating.clk_gating_workq,
1931 &hba->clk_gating.ungate_work);
1932 /*
1933 * fall through to check if we should wait for this
1934 * work to be done or not.
1935 */
1936 fallthrough;
1937 case REQ_CLKS_ON:
1938 spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1939 flush_work(&hba->clk_gating.ungate_work);
1940 /* Make sure state is CLKS_ON before returning */
1941 spin_lock_irqsave(&hba->clk_gating.lock, flags);
1942 goto start;
1943 default:
1944 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1945 __func__, hba->clk_gating.state);
1946 break;
1947 }
1948 spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1949 }
1950 EXPORT_SYMBOL_GPL(ufshcd_hold);
1951
ufshcd_gate_work(struct work_struct * work)1952 static void ufshcd_gate_work(struct work_struct *work)
1953 {
1954 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1955 clk_gating.gate_work.work);
1956 int ret;
1957
1958 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
1959 /*
1960 * In case you are here to cancel this work the gating state
1961 * would be marked as REQ_CLKS_ON. In this case save time by
1962 * skipping the gating work and exit after changing the clock
1963 * state to CLKS_ON.
1964 */
1965 if (hba->clk_gating.is_suspended ||
1966 hba->clk_gating.state != REQ_CLKS_OFF) {
1967 hba->clk_gating.state = CLKS_ON;
1968 trace_ufshcd_clk_gating(hba,
1969 hba->clk_gating.state);
1970 return;
1971 }
1972
1973 if (hba->clk_gating.active_reqs)
1974 return;
1975 }
1976
1977 scoped_guard(spinlock_irqsave, hba->host->host_lock) {
1978 if (ufshcd_is_ufs_dev_busy(hba) ||
1979 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
1980 return;
1981 }
1982
1983 /* put the link into hibern8 mode before turning off clocks */
1984 if (ufshcd_can_hibern8_during_gating(hba)) {
1985 ret = ufshcd_uic_hibern8_enter(hba);
1986 if (ret) {
1987 hba->clk_gating.state = CLKS_ON;
1988 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1989 __func__, ret);
1990 trace_ufshcd_clk_gating(hba,
1991 hba->clk_gating.state);
1992 return;
1993 }
1994 ufshcd_set_link_hibern8(hba);
1995 }
1996
1997 ufshcd_disable_irq(hba);
1998
1999 ufshcd_setup_clocks(hba, false);
2000
2001 /* Put the host controller in low power mode if possible */
2002 ufshcd_hba_vreg_set_lpm(hba);
2003 /*
2004 * In case you are here to cancel this work the gating state
2005 * would be marked as REQ_CLKS_ON. In this case keep the state
2006 * as REQ_CLKS_ON which would anyway imply that clocks are off
2007 * and a request to turn them on is pending. By doing this way,
2008 * we keep the state machine in tact and this would ultimately
2009 * prevent from doing cancel work multiple times when there are
2010 * new requests arriving before the current cancel work is done.
2011 */
2012 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2013 if (hba->clk_gating.state == REQ_CLKS_OFF) {
2014 hba->clk_gating.state = CLKS_OFF;
2015 trace_ufshcd_clk_gating(hba,
2016 hba->clk_gating.state);
2017 }
2018 }
2019
__ufshcd_release(struct ufs_hba * hba)2020 static void __ufshcd_release(struct ufs_hba *hba)
2021 {
2022 lockdep_assert_held(&hba->clk_gating.lock);
2023
2024 if (!ufshcd_is_clkgating_allowed(hba))
2025 return;
2026
2027 hba->clk_gating.active_reqs--;
2028
2029 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2030 !hba->clk_gating.is_initialized ||
2031 hba->clk_gating.state == CLKS_OFF)
2032 return;
2033
2034 scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2035 if (ufshcd_has_pending_tasks(hba) ||
2036 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2037 return;
2038 }
2039
2040 hba->clk_gating.state = REQ_CLKS_OFF;
2041 trace_ufshcd_clk_gating(hba, hba->clk_gating.state);
2042 queue_delayed_work(hba->clk_gating.clk_gating_workq,
2043 &hba->clk_gating.gate_work,
2044 msecs_to_jiffies(hba->clk_gating.delay_ms));
2045 }
2046
ufshcd_release(struct ufs_hba * hba)2047 void ufshcd_release(struct ufs_hba *hba)
2048 {
2049 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2050 __ufshcd_release(hba);
2051 }
2052 EXPORT_SYMBOL_GPL(ufshcd_release);
2053
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)2054 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2055 struct device_attribute *attr, char *buf)
2056 {
2057 struct ufs_hba *hba = dev_get_drvdata(dev);
2058
2059 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2060 }
2061
ufshcd_clkgate_delay_set(struct device * dev,unsigned long value)2062 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2063 {
2064 struct ufs_hba *hba = dev_get_drvdata(dev);
2065
2066 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2067 hba->clk_gating.delay_ms = value;
2068 }
2069 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2070
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2071 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2072 struct device_attribute *attr, const char *buf, size_t count)
2073 {
2074 unsigned long value;
2075
2076 if (kstrtoul(buf, 0, &value))
2077 return -EINVAL;
2078
2079 ufshcd_clkgate_delay_set(dev, value);
2080 return count;
2081 }
2082
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)2083 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2084 struct device_attribute *attr, char *buf)
2085 {
2086 struct ufs_hba *hba = dev_get_drvdata(dev);
2087
2088 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2089 }
2090
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2091 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2092 struct device_attribute *attr, const char *buf, size_t count)
2093 {
2094 struct ufs_hba *hba = dev_get_drvdata(dev);
2095 u32 value;
2096
2097 if (kstrtou32(buf, 0, &value))
2098 return -EINVAL;
2099
2100 value = !!value;
2101
2102 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2103
2104 if (value == hba->clk_gating.is_enabled)
2105 return count;
2106
2107 if (value)
2108 __ufshcd_release(hba);
2109 else
2110 hba->clk_gating.active_reqs++;
2111
2112 hba->clk_gating.is_enabled = value;
2113
2114 return count;
2115 }
2116
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)2117 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2118 {
2119 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2120 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2121 sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2122 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2123 hba->clk_gating.delay_attr.attr.mode = 0644;
2124 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2125 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2126
2127 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2128 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2129 sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2130 hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2131 hba->clk_gating.enable_attr.attr.mode = 0644;
2132 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2133 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2134 }
2135
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)2136 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2137 {
2138 if (hba->clk_gating.delay_attr.attr.name)
2139 device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2140 if (hba->clk_gating.enable_attr.attr.name)
2141 device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2142 }
2143
ufshcd_init_clk_gating(struct ufs_hba * hba)2144 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2145 {
2146 if (!ufshcd_is_clkgating_allowed(hba))
2147 return;
2148
2149 hba->clk_gating.state = CLKS_ON;
2150
2151 hba->clk_gating.delay_ms = 150;
2152 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2153 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2154
2155 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(
2156 "ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI,
2157 hba->host->host_no);
2158
2159 ufshcd_init_clk_gating_sysfs(hba);
2160
2161 hba->clk_gating.is_enabled = true;
2162 hba->clk_gating.is_initialized = true;
2163 }
2164
ufshcd_exit_clk_gating(struct ufs_hba * hba)2165 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2166 {
2167 if (!hba->clk_gating.is_initialized)
2168 return;
2169
2170 ufshcd_remove_clk_gating_sysfs(hba);
2171
2172 /* Ungate the clock if necessary. */
2173 ufshcd_hold(hba);
2174 hba->clk_gating.is_initialized = false;
2175 ufshcd_release(hba);
2176
2177 destroy_workqueue(hba->clk_gating.clk_gating_workq);
2178 }
2179
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)2180 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2181 {
2182 bool queue_resume_work = false;
2183 ktime_t curr_t = ktime_get();
2184
2185 if (!ufshcd_is_clkscaling_supported(hba))
2186 return;
2187
2188 guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2189
2190 if (!hba->clk_scaling.active_reqs++)
2191 queue_resume_work = true;
2192
2193 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress)
2194 return;
2195
2196 if (queue_resume_work)
2197 queue_work(hba->clk_scaling.workq,
2198 &hba->clk_scaling.resume_work);
2199
2200 if (!hba->clk_scaling.window_start_t) {
2201 hba->clk_scaling.window_start_t = curr_t;
2202 hba->clk_scaling.tot_busy_t = 0;
2203 hba->clk_scaling.is_busy_started = false;
2204 }
2205
2206 if (!hba->clk_scaling.is_busy_started) {
2207 hba->clk_scaling.busy_start_t = curr_t;
2208 hba->clk_scaling.is_busy_started = true;
2209 }
2210 }
2211
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)2212 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2213 {
2214 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2215
2216 if (!ufshcd_is_clkscaling_supported(hba))
2217 return;
2218
2219 guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2220
2221 hba->clk_scaling.active_reqs--;
2222 if (!scaling->active_reqs && scaling->is_busy_started) {
2223 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2224 scaling->busy_start_t));
2225 scaling->busy_start_t = 0;
2226 scaling->is_busy_started = false;
2227 }
2228 }
2229
ufshcd_monitor_opcode2dir(u8 opcode)2230 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2231 {
2232 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2233 return READ;
2234 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2235 return WRITE;
2236 else
2237 return -EINVAL;
2238 }
2239
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2240 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2241 struct ufshcd_lrb *lrbp)
2242 {
2243 const struct ufs_hba_monitor *m = &hba->monitor;
2244
2245 return (m->enabled && lrbp && lrbp->cmd &&
2246 (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2247 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2248 }
2249
ufshcd_start_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2250 static void ufshcd_start_monitor(struct ufs_hba *hba,
2251 const struct ufshcd_lrb *lrbp)
2252 {
2253 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2254 unsigned long flags;
2255
2256 spin_lock_irqsave(hba->host->host_lock, flags);
2257 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2258 hba->monitor.busy_start_ts[dir] = ktime_get();
2259 spin_unlock_irqrestore(hba->host->host_lock, flags);
2260 }
2261
ufshcd_update_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2262 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2263 {
2264 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2265 unsigned long flags;
2266
2267 spin_lock_irqsave(hba->host->host_lock, flags);
2268 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2269 const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2270 struct ufs_hba_monitor *m = &hba->monitor;
2271 ktime_t now, inc, lat;
2272
2273 now = lrbp->compl_time_stamp;
2274 inc = ktime_sub(now, m->busy_start_ts[dir]);
2275 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2276 m->nr_sec_rw[dir] += blk_rq_sectors(req);
2277
2278 /* Update latencies */
2279 m->nr_req[dir]++;
2280 lat = ktime_sub(now, lrbp->issue_time_stamp);
2281 m->lat_sum[dir] += lat;
2282 if (m->lat_max[dir] < lat || !m->lat_max[dir])
2283 m->lat_max[dir] = lat;
2284 if (m->lat_min[dir] > lat || !m->lat_min[dir])
2285 m->lat_min[dir] = lat;
2286
2287 m->nr_queued[dir]--;
2288 /* Push forward the busy start of monitor */
2289 m->busy_start_ts[dir] = now;
2290 }
2291 spin_unlock_irqrestore(hba->host->host_lock, flags);
2292 }
2293
2294 /**
2295 * ufshcd_send_command - Send SCSI or device management commands
2296 * @hba: per adapter instance
2297 * @task_tag: Task tag of the command
2298 * @hwq: pointer to hardware queue instance
2299 */
2300 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag,struct ufs_hw_queue * hwq)2301 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2302 struct ufs_hw_queue *hwq)
2303 {
2304 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2305 unsigned long flags;
2306
2307 lrbp->issue_time_stamp = ktime_get();
2308 lrbp->issue_time_stamp_local_clock = local_clock();
2309 lrbp->compl_time_stamp = ktime_set(0, 0);
2310 lrbp->compl_time_stamp_local_clock = 0;
2311 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2312 if (lrbp->cmd)
2313 ufshcd_clk_scaling_start_busy(hba);
2314 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2315 ufshcd_start_monitor(hba, lrbp);
2316
2317 if (hba->mcq_enabled) {
2318 int utrd_size = sizeof(struct utp_transfer_req_desc);
2319 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2320 struct utp_transfer_req_desc *dest;
2321
2322 spin_lock(&hwq->sq_lock);
2323 dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2324 memcpy(dest, src, utrd_size);
2325 ufshcd_inc_sq_tail(hwq);
2326 spin_unlock(&hwq->sq_lock);
2327 } else {
2328 spin_lock_irqsave(&hba->outstanding_lock, flags);
2329 if (hba->vops && hba->vops->setup_xfer_req)
2330 hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2331 !!lrbp->cmd);
2332 __set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2333 ufshcd_writel(hba, 1 << lrbp->task_tag,
2334 REG_UTP_TRANSFER_REQ_DOOR_BELL);
2335 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2336 }
2337 }
2338
2339 /**
2340 * ufshcd_copy_sense_data - Copy sense data in case of check condition
2341 * @lrbp: pointer to local reference block
2342 */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)2343 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2344 {
2345 u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2346 u16 resp_len;
2347 int len;
2348
2349 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2350 if (sense_buffer && resp_len) {
2351 int len_to_copy;
2352
2353 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2354 len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2355
2356 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2357 len_to_copy);
2358 }
2359 }
2360
2361 /**
2362 * ufshcd_copy_query_response() - Copy the Query Response and the data
2363 * descriptor
2364 * @hba: per adapter instance
2365 * @lrbp: pointer to local reference block
2366 *
2367 * Return: 0 upon success; < 0 upon failure.
2368 */
2369 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2370 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2371 {
2372 struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2373
2374 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2375
2376 /* Get the descriptor */
2377 if (hba->dev_cmd.query.descriptor &&
2378 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2379 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2380 GENERAL_UPIU_REQUEST_SIZE;
2381 u16 resp_len;
2382 u16 buf_len;
2383
2384 /* data segment length */
2385 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2386 .data_segment_length);
2387 buf_len = be16_to_cpu(
2388 hba->dev_cmd.query.request.upiu_req.length);
2389 if (likely(buf_len >= resp_len)) {
2390 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2391 } else {
2392 dev_warn(hba->dev,
2393 "%s: rsp size %d is bigger than buffer size %d",
2394 __func__, resp_len, buf_len);
2395 return -EINVAL;
2396 }
2397 }
2398
2399 return 0;
2400 }
2401
2402 /**
2403 * ufshcd_hba_capabilities - Read controller capabilities
2404 * @hba: per adapter instance
2405 *
2406 * Return: 0 on success, negative on error.
2407 */
ufshcd_hba_capabilities(struct ufs_hba * hba)2408 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2409 {
2410 int err;
2411
2412 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2413
2414 /* nutrs and nutmrs are 0 based values */
2415 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1;
2416 hba->nutmrs =
2417 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2418 hba->reserved_slot = hba->nutrs - 1;
2419
2420 hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1;
2421
2422 /* Read crypto capabilities */
2423 err = ufshcd_hba_init_crypto_capabilities(hba);
2424 if (err) {
2425 dev_err(hba->dev, "crypto setup failed\n");
2426 return err;
2427 }
2428
2429 /*
2430 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2431 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2432 * means we can simply read values regardless of version.
2433 */
2434 hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2435 /*
2436 * 0h: legacy single doorbell support is available
2437 * 1h: indicate that legacy single doorbell support has been removed
2438 */
2439 if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP))
2440 hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2441 else
2442 hba->lsdb_sup = true;
2443
2444 hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2445
2446 return 0;
2447 }
2448
2449 /**
2450 * ufshcd_ready_for_uic_cmd - Check if controller is ready
2451 * to accept UIC commands
2452 * @hba: per adapter instance
2453 *
2454 * Return: true on success, else false.
2455 */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2456 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2457 {
2458 u32 val;
2459 int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2460 500, uic_cmd_timeout * 1000, false, hba,
2461 REG_CONTROLLER_STATUS);
2462 return ret == 0;
2463 }
2464
2465 /**
2466 * ufshcd_get_upmcrs - Get the power mode change request status
2467 * @hba: Pointer to adapter instance
2468 *
2469 * This function gets the UPMCRS field of HCS register
2470 *
2471 * Return: value of UPMCRS field.
2472 */
ufshcd_get_upmcrs(struct ufs_hba * hba)2473 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2474 {
2475 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2476 }
2477
2478 /**
2479 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2480 * @hba: per adapter instance
2481 * @uic_cmd: UIC command
2482 */
2483 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2484 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2485 {
2486 lockdep_assert_held(&hba->uic_cmd_mutex);
2487
2488 WARN_ON(hba->active_uic_cmd);
2489
2490 hba->active_uic_cmd = uic_cmd;
2491
2492 /* Write Args */
2493 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2494 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2495 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2496
2497 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2498
2499 /* Write UIC Cmd */
2500 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2501 REG_UIC_COMMAND);
2502 }
2503
2504 /**
2505 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2506 * @hba: per adapter instance
2507 * @uic_cmd: UIC command
2508 *
2509 * Return: 0 only if success.
2510 */
2511 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2512 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2513 {
2514 int ret;
2515 unsigned long flags;
2516
2517 lockdep_assert_held(&hba->uic_cmd_mutex);
2518
2519 if (wait_for_completion_timeout(&uic_cmd->done,
2520 msecs_to_jiffies(uic_cmd_timeout))) {
2521 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2522 } else {
2523 ret = -ETIMEDOUT;
2524 dev_err(hba->dev,
2525 "uic cmd 0x%x with arg3 0x%x completion timeout\n",
2526 uic_cmd->command, uic_cmd->argument3);
2527
2528 if (!uic_cmd->cmd_active) {
2529 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2530 __func__);
2531 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2532 }
2533 }
2534
2535 spin_lock_irqsave(hba->host->host_lock, flags);
2536 hba->active_uic_cmd = NULL;
2537 spin_unlock_irqrestore(hba->host->host_lock, flags);
2538
2539 return ret;
2540 }
2541
2542 /**
2543 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2544 * @hba: per adapter instance
2545 * @uic_cmd: UIC command
2546 *
2547 * Return: 0 only if success.
2548 */
2549 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2550 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2551 {
2552 lockdep_assert_held(&hba->uic_cmd_mutex);
2553
2554 if (!ufshcd_ready_for_uic_cmd(hba)) {
2555 dev_err(hba->dev,
2556 "Controller not ready to accept UIC commands\n");
2557 return -EIO;
2558 }
2559
2560 init_completion(&uic_cmd->done);
2561
2562 uic_cmd->cmd_active = 1;
2563 ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2564
2565 return 0;
2566 }
2567
2568 /**
2569 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2570 * @hba: per adapter instance
2571 * @uic_cmd: UIC command
2572 *
2573 * Return: 0 only if success.
2574 */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2575 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2576 {
2577 int ret;
2578
2579 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2580 return 0;
2581
2582 ufshcd_hold(hba);
2583 mutex_lock(&hba->uic_cmd_mutex);
2584 ufshcd_add_delay_before_dme_cmd(hba);
2585
2586 ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2587 if (!ret)
2588 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2589
2590 mutex_unlock(&hba->uic_cmd_mutex);
2591
2592 ufshcd_release(hba);
2593 return ret;
2594 }
2595
2596 /**
2597 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2598 * @hba: per-adapter instance
2599 * @lrbp: pointer to local reference block
2600 * @sg_entries: The number of sg lists actually used
2601 * @sg_list: Pointer to SG list
2602 */
ufshcd_sgl_to_prdt(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int sg_entries,struct scatterlist * sg_list)2603 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2604 struct scatterlist *sg_list)
2605 {
2606 struct ufshcd_sg_entry *prd;
2607 struct scatterlist *sg;
2608 int i;
2609
2610 if (sg_entries) {
2611
2612 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2613 lrbp->utr_descriptor_ptr->prd_table_length =
2614 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2615 else
2616 lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2617
2618 prd = lrbp->ucd_prdt_ptr;
2619
2620 for_each_sg(sg_list, sg, sg_entries, i) {
2621 const unsigned int len = sg_dma_len(sg);
2622
2623 /*
2624 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2625 * based value that indicates the length, in bytes, of
2626 * the data block. A maximum of length of 256KB may
2627 * exist for any entry. Bits 1:0 of this field shall be
2628 * 11b to indicate Dword granularity. A value of '3'
2629 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2630 */
2631 WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2632 prd->size = cpu_to_le32(len - 1);
2633 prd->addr = cpu_to_le64(sg->dma_address);
2634 prd->reserved = 0;
2635 prd = (void *)prd + ufshcd_sg_entry_size(hba);
2636 }
2637 } else {
2638 lrbp->utr_descriptor_ptr->prd_table_length = 0;
2639 }
2640 }
2641
2642 /**
2643 * ufshcd_map_sg - Map scatter-gather list to prdt
2644 * @hba: per adapter instance
2645 * @lrbp: pointer to local reference block
2646 *
2647 * Return: 0 in case of success, non-zero value in case of failure.
2648 */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2649 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2650 {
2651 struct scsi_cmnd *cmd = lrbp->cmd;
2652 int sg_segments = scsi_dma_map(cmd);
2653
2654 if (sg_segments < 0)
2655 return sg_segments;
2656
2657 ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2658
2659 return ufshcd_crypto_fill_prdt(hba, lrbp);
2660 }
2661
2662 /**
2663 * ufshcd_enable_intr - enable interrupts
2664 * @hba: per adapter instance
2665 * @intrs: interrupt bits
2666 */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2667 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2668 {
2669 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2670
2671 set |= intrs;
2672 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2673 }
2674
2675 /**
2676 * ufshcd_disable_intr - disable interrupts
2677 * @hba: per adapter instance
2678 * @intrs: interrupt bits
2679 */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2680 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2681 {
2682 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2683
2684 set &= ~intrs;
2685 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2686 }
2687
2688 /**
2689 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2690 * descriptor according to request
2691 * @hba: per adapter instance
2692 * @lrbp: pointer to local reference block
2693 * @upiu_flags: flags required in the header
2694 * @cmd_dir: requests data direction
2695 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2696 */
2697 static void
ufshcd_prepare_req_desc_hdr(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir,int ehs_length)2698 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2699 u8 *upiu_flags, enum dma_data_direction cmd_dir,
2700 int ehs_length)
2701 {
2702 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2703 struct request_desc_header *h = &req_desc->header;
2704 enum utp_data_direction data_direction;
2705
2706 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2707
2708 *h = (typeof(*h)){ };
2709
2710 if (cmd_dir == DMA_FROM_DEVICE) {
2711 data_direction = UTP_DEVICE_TO_HOST;
2712 *upiu_flags = UPIU_CMD_FLAGS_READ;
2713 } else if (cmd_dir == DMA_TO_DEVICE) {
2714 data_direction = UTP_HOST_TO_DEVICE;
2715 *upiu_flags = UPIU_CMD_FLAGS_WRITE;
2716 } else {
2717 data_direction = UTP_NO_DATA_TRANSFER;
2718 *upiu_flags = UPIU_CMD_FLAGS_NONE;
2719 }
2720
2721 h->command_type = lrbp->command_type;
2722 h->data_direction = data_direction;
2723 h->ehs_length = ehs_length;
2724
2725 if (lrbp->intr_cmd)
2726 h->interrupt = 1;
2727
2728 /* Prepare crypto related dwords */
2729 ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2730
2731 /*
2732 * assigning invalid value for command status. Controller
2733 * updates OCS on command completion, with the command
2734 * status
2735 */
2736 h->ocs = OCS_INVALID_COMMAND_STATUS;
2737
2738 req_desc->prd_table_length = 0;
2739 }
2740
2741 /**
2742 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2743 * for scsi commands
2744 * @lrbp: local reference block pointer
2745 * @upiu_flags: flags
2746 */
2747 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2748 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2749 {
2750 struct scsi_cmnd *cmd = lrbp->cmd;
2751 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2752 unsigned short cdb_len;
2753
2754 ucd_req_ptr->header = (struct utp_upiu_header){
2755 .transaction_code = UPIU_TRANSACTION_COMMAND,
2756 .flags = upiu_flags,
2757 .lun = lrbp->lun,
2758 .task_tag = lrbp->task_tag,
2759 .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2760 };
2761
2762 WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2763
2764 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2765
2766 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2767 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2768
2769 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2770 }
2771
2772 /**
2773 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2774 * @hba: UFS hba
2775 * @lrbp: local reference block pointer
2776 * @upiu_flags: flags
2777 */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2778 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2779 struct ufshcd_lrb *lrbp, u8 upiu_flags)
2780 {
2781 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2782 struct ufs_query *query = &hba->dev_cmd.query;
2783 u16 len = be16_to_cpu(query->request.upiu_req.length);
2784
2785 /* Query request header */
2786 ucd_req_ptr->header = (struct utp_upiu_header){
2787 .transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2788 .flags = upiu_flags,
2789 .lun = lrbp->lun,
2790 .task_tag = lrbp->task_tag,
2791 .query_function = query->request.query_func,
2792 /* Data segment length only need for WRITE_DESC */
2793 .data_segment_length =
2794 query->request.upiu_req.opcode ==
2795 UPIU_QUERY_OPCODE_WRITE_DESC ?
2796 cpu_to_be16(len) :
2797 0,
2798 };
2799
2800 /* Copy the Query Request buffer as is */
2801 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2802 QUERY_OSF_SIZE);
2803
2804 /* Copy the Descriptor */
2805 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2806 memcpy(ucd_req_ptr + 1, query->descriptor, len);
2807
2808 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2809 }
2810
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2811 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2812 {
2813 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2814
2815 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2816
2817 ucd_req_ptr->header = (struct utp_upiu_header){
2818 .transaction_code = UPIU_TRANSACTION_NOP_OUT,
2819 .task_tag = lrbp->task_tag,
2820 };
2821
2822 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2823 }
2824
2825 /**
2826 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2827 * for Device Management Purposes
2828 * @hba: per adapter instance
2829 * @lrbp: pointer to local reference block
2830 *
2831 * Return: 0 upon success; < 0 upon failure.
2832 */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2833 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2834 struct ufshcd_lrb *lrbp)
2835 {
2836 u8 upiu_flags;
2837 int ret = 0;
2838
2839 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2840
2841 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2842 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2843 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2844 ufshcd_prepare_utp_nop_upiu(lrbp);
2845 else
2846 ret = -EINVAL;
2847
2848 return ret;
2849 }
2850
2851 /**
2852 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2853 * for SCSI Purposes
2854 * @hba: per adapter instance
2855 * @lrbp: pointer to local reference block
2856 */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2857 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2858 {
2859 struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2860 unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2861 u8 upiu_flags;
2862
2863 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2864 if (ioprio_class == IOPRIO_CLASS_RT)
2865 upiu_flags |= UPIU_CMD_FLAGS_CP;
2866 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2867 }
2868
__ufshcd_setup_cmd(struct ufshcd_lrb * lrbp,struct scsi_cmnd * cmd,u8 lun,int tag)2869 static void __ufshcd_setup_cmd(struct ufshcd_lrb *lrbp, struct scsi_cmnd *cmd, u8 lun, int tag)
2870 {
2871 memset(lrbp->ucd_req_ptr, 0, sizeof(*lrbp->ucd_req_ptr));
2872
2873 lrbp->cmd = cmd;
2874 lrbp->task_tag = tag;
2875 lrbp->lun = lun;
2876 ufshcd_prepare_lrbp_crypto(cmd ? scsi_cmd_to_rq(cmd) : NULL, lrbp);
2877 }
2878
ufshcd_setup_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct scsi_cmnd * cmd,u8 lun,int tag)2879 static void ufshcd_setup_scsi_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2880 struct scsi_cmnd *cmd, u8 lun, int tag)
2881 {
2882 __ufshcd_setup_cmd(lrbp, cmd, lun, tag);
2883 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2884 lrbp->req_abort_skip = false;
2885
2886 ufshcd_comp_scsi_upiu(hba, lrbp);
2887 }
2888
2889 /**
2890 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2891 * @upiu_wlun_id: UPIU W-LUN id
2892 *
2893 * Return: SCSI W-LUN id.
2894 */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2895 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2896 {
2897 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2898 }
2899
is_device_wlun(struct scsi_device * sdev)2900 static inline bool is_device_wlun(struct scsi_device *sdev)
2901 {
2902 return sdev->lun ==
2903 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2904 }
2905
2906 /*
2907 * Associate the UFS controller queue with the default and poll HCTX types.
2908 * Initialize the mq_map[] arrays.
2909 */
ufshcd_map_queues(struct Scsi_Host * shost)2910 static void ufshcd_map_queues(struct Scsi_Host *shost)
2911 {
2912 struct ufs_hba *hba = shost_priv(shost);
2913 int i, queue_offset = 0;
2914
2915 if (!is_mcq_supported(hba)) {
2916 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2917 hba->nr_queues[HCTX_TYPE_READ] = 0;
2918 hba->nr_queues[HCTX_TYPE_POLL] = 1;
2919 hba->nr_hw_queues = 1;
2920 }
2921
2922 for (i = 0; i < shost->nr_maps; i++) {
2923 struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2924
2925 map->nr_queues = hba->nr_queues[i];
2926 if (!map->nr_queues)
2927 continue;
2928 map->queue_offset = queue_offset;
2929 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2930 map->queue_offset = 0;
2931
2932 blk_mq_map_queues(map);
2933 queue_offset += map->nr_queues;
2934 }
2935 }
2936
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2937 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2938 {
2939 struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2940 i * ufshcd_get_ucd_size(hba);
2941 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2942 dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2943 i * ufshcd_get_ucd_size(hba);
2944 u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset);
2945 u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset);
2946
2947 lrb->utr_descriptor_ptr = utrdlp + i;
2948 lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2949 i * sizeof(struct utp_transfer_req_desc);
2950 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2951 lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2952 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2953 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2954 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2955 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2956 }
2957
2958 /**
2959 * ufshcd_queuecommand - main entry point for SCSI requests
2960 * @host: SCSI host pointer
2961 * @cmd: command from SCSI Midlayer
2962 *
2963 * Return: 0 for success, non-zero in case of failure.
2964 */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2965 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2966 {
2967 struct ufs_hba *hba = shost_priv(host);
2968 int tag = scsi_cmd_to_rq(cmd)->tag;
2969 struct ufshcd_lrb *lrbp;
2970 int err = 0;
2971 struct ufs_hw_queue *hwq = NULL;
2972
2973 switch (hba->ufshcd_state) {
2974 case UFSHCD_STATE_OPERATIONAL:
2975 break;
2976 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2977 /*
2978 * SCSI error handler can call ->queuecommand() while UFS error
2979 * handler is in progress. Error interrupts could change the
2980 * state from UFSHCD_STATE_RESET to
2981 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2982 * being issued in that case.
2983 */
2984 if (ufshcd_eh_in_progress(hba)) {
2985 err = SCSI_MLQUEUE_HOST_BUSY;
2986 goto out;
2987 }
2988 break;
2989 case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2990 /*
2991 * pm_runtime_get_sync() is used at error handling preparation
2992 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2993 * PM ops, it can never be finished if we let SCSI layer keep
2994 * retrying it, which gets err handler stuck forever. Neither
2995 * can we let the scsi cmd pass through, because UFS is in bad
2996 * state, the scsi cmd may eventually time out, which will get
2997 * err handler blocked for too long. So, just fail the scsi cmd
2998 * sent from PM ops, err handler can recover PM error anyways.
2999 */
3000 if (hba->pm_op_in_progress) {
3001 hba->force_reset = true;
3002 set_host_byte(cmd, DID_BAD_TARGET);
3003 scsi_done(cmd);
3004 goto out;
3005 }
3006 fallthrough;
3007 case UFSHCD_STATE_RESET:
3008 err = SCSI_MLQUEUE_HOST_BUSY;
3009 goto out;
3010 case UFSHCD_STATE_ERROR:
3011 set_host_byte(cmd, DID_ERROR);
3012 scsi_done(cmd);
3013 goto out;
3014 }
3015
3016 hba->req_abort_count = 0;
3017
3018 ufshcd_hold(hba);
3019
3020 lrbp = &hba->lrb[tag];
3021
3022 ufshcd_setup_scsi_cmd(hba, lrbp, cmd, ufshcd_scsi_to_upiu_lun(cmd->device->lun), tag);
3023
3024 err = ufshcd_map_sg(hba, lrbp);
3025 if (err) {
3026 ufshcd_release(hba);
3027 goto out;
3028 }
3029
3030 if (hba->mcq_enabled)
3031 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3032
3033 ufshcd_send_command(hba, tag, hwq);
3034
3035 out:
3036 if (ufs_trigger_eh(hba)) {
3037 unsigned long flags;
3038
3039 spin_lock_irqsave(hba->host->host_lock, flags);
3040 ufshcd_schedule_eh_work(hba);
3041 spin_unlock_irqrestore(hba->host->host_lock, flags);
3042 }
3043
3044 return err;
3045 }
3046
ufshcd_setup_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,u8 lun,int tag)3047 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3048 enum dev_cmd_type cmd_type, u8 lun, int tag)
3049 {
3050 __ufshcd_setup_cmd(lrbp, NULL, lun, tag);
3051 lrbp->intr_cmd = true; /* No interrupt aggregation */
3052 hba->dev_cmd.type = cmd_type;
3053 }
3054
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)3055 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3056 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3057 {
3058 ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
3059
3060 return ufshcd_compose_devman_upiu(hba, lrbp);
3061 }
3062
3063 /*
3064 * Check with the block layer if the command is inflight
3065 * @cmd: command to check.
3066 *
3067 * Return: true if command is inflight; false if not.
3068 */
ufshcd_cmd_inflight(struct scsi_cmnd * cmd)3069 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3070 {
3071 return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3072 }
3073
3074 /*
3075 * Clear the pending command in the controller and wait until
3076 * the controller confirms that the command has been cleared.
3077 * @hba: per adapter instance
3078 * @task_tag: The tag number of the command to be cleared.
3079 */
ufshcd_clear_cmd(struct ufs_hba * hba,u32 task_tag)3080 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3081 {
3082 u32 mask;
3083 int err;
3084
3085 if (hba->mcq_enabled) {
3086 /*
3087 * MCQ mode. Clean up the MCQ resources similar to
3088 * what the ufshcd_utrl_clear() does for SDB mode.
3089 */
3090 err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3091 if (err) {
3092 dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3093 __func__, task_tag, err);
3094 return err;
3095 }
3096 return 0;
3097 }
3098
3099 mask = 1U << task_tag;
3100
3101 /* clear outstanding transaction before retry */
3102 ufshcd_utrl_clear(hba, mask);
3103
3104 /*
3105 * wait for h/w to clear corresponding bit in door-bell.
3106 * max. wait is 1 sec.
3107 */
3108 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3109 mask, ~mask, 1000, 1000);
3110 }
3111
3112 /**
3113 * ufshcd_dev_cmd_completion() - handles device management command responses
3114 * @hba: per adapter instance
3115 * @lrbp: pointer to local reference block
3116 *
3117 * Return: 0 upon success; < 0 upon failure.
3118 */
3119 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)3120 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3121 {
3122 enum upiu_response_transaction resp;
3123 int err = 0;
3124
3125 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3126 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3127
3128 switch (resp) {
3129 case UPIU_TRANSACTION_NOP_IN:
3130 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3131 err = -EINVAL;
3132 dev_err(hba->dev, "%s: unexpected response %x\n",
3133 __func__, resp);
3134 }
3135 break;
3136 case UPIU_TRANSACTION_QUERY_RSP: {
3137 u8 response = lrbp->ucd_rsp_ptr->header.response;
3138
3139 if (response == 0) {
3140 err = ufshcd_copy_query_response(hba, lrbp);
3141 } else {
3142 err = -EINVAL;
3143 dev_err(hba->dev, "%s: unexpected response in Query RSP: %x\n",
3144 __func__, response);
3145 }
3146 break;
3147 }
3148 case UPIU_TRANSACTION_REJECT_UPIU:
3149 /* TODO: handle Reject UPIU Response */
3150 err = -EPERM;
3151 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3152 __func__);
3153 break;
3154 case UPIU_TRANSACTION_RESPONSE:
3155 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3156 err = -EINVAL;
3157 dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3158 }
3159 break;
3160 default:
3161 err = -EINVAL;
3162 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3163 __func__, resp);
3164 break;
3165 }
3166
3167 return err;
3168 }
3169
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)3170 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3171 struct ufshcd_lrb *lrbp, int max_timeout)
3172 {
3173 unsigned long time_left = msecs_to_jiffies(max_timeout);
3174 unsigned long flags;
3175 bool pending;
3176 int err;
3177
3178 retry:
3179 time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3180 time_left);
3181
3182 if (likely(time_left)) {
3183 /*
3184 * The completion handler called complete() and the caller of
3185 * this function still owns the @lrbp tag so the code below does
3186 * not trigger any race conditions.
3187 */
3188 hba->dev_cmd.complete = NULL;
3189 err = ufshcd_get_tr_ocs(lrbp, NULL);
3190 if (!err)
3191 err = ufshcd_dev_cmd_completion(hba, lrbp);
3192 } else {
3193 err = -ETIMEDOUT;
3194 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3195 __func__, lrbp->task_tag);
3196
3197 /* MCQ mode */
3198 if (hba->mcq_enabled) {
3199 /* successfully cleared the command, retry if needed */
3200 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3201 err = -EAGAIN;
3202 hba->dev_cmd.complete = NULL;
3203 return err;
3204 }
3205
3206 /* SDB mode */
3207 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3208 /* successfully cleared the command, retry if needed */
3209 err = -EAGAIN;
3210 /*
3211 * Since clearing the command succeeded we also need to
3212 * clear the task tag bit from the outstanding_reqs
3213 * variable.
3214 */
3215 spin_lock_irqsave(&hba->outstanding_lock, flags);
3216 pending = test_bit(lrbp->task_tag,
3217 &hba->outstanding_reqs);
3218 if (pending) {
3219 hba->dev_cmd.complete = NULL;
3220 __clear_bit(lrbp->task_tag,
3221 &hba->outstanding_reqs);
3222 }
3223 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3224
3225 if (!pending) {
3226 /*
3227 * The completion handler ran while we tried to
3228 * clear the command.
3229 */
3230 time_left = 1;
3231 goto retry;
3232 }
3233 } else {
3234 dev_err(hba->dev, "%s: failed to clear tag %d\n",
3235 __func__, lrbp->task_tag);
3236
3237 spin_lock_irqsave(&hba->outstanding_lock, flags);
3238 pending = test_bit(lrbp->task_tag,
3239 &hba->outstanding_reqs);
3240 if (pending)
3241 hba->dev_cmd.complete = NULL;
3242 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3243
3244 if (!pending) {
3245 /*
3246 * The completion handler ran while we tried to
3247 * clear the command.
3248 */
3249 time_left = 1;
3250 goto retry;
3251 }
3252 }
3253 }
3254
3255 return err;
3256 }
3257
ufshcd_dev_man_lock(struct ufs_hba * hba)3258 static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3259 {
3260 ufshcd_hold(hba);
3261 mutex_lock(&hba->dev_cmd.lock);
3262 down_read(&hba->clk_scaling_lock);
3263 }
3264
ufshcd_dev_man_unlock(struct ufs_hba * hba)3265 static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3266 {
3267 up_read(&hba->clk_scaling_lock);
3268 mutex_unlock(&hba->dev_cmd.lock);
3269 ufshcd_release(hba);
3270 }
3271
ufshcd_issue_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,const u32 tag,int timeout)3272 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3273 const u32 tag, int timeout)
3274 {
3275 DECLARE_COMPLETION_ONSTACK(wait);
3276 int err;
3277
3278 hba->dev_cmd.complete = &wait;
3279
3280 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3281
3282 ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3283 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3284
3285 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3286 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3287
3288 return err;
3289 }
3290
3291 /**
3292 * ufshcd_exec_dev_cmd - API for sending device management requests
3293 * @hba: UFS hba
3294 * @cmd_type: specifies the type (NOP, Query...)
3295 * @timeout: timeout in milliseconds
3296 *
3297 * Return: 0 upon success; < 0 upon failure.
3298 *
3299 * NOTE: Since there is only one available tag for device management commands,
3300 * it is expected you hold the hba->dev_cmd.lock mutex.
3301 */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)3302 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3303 enum dev_cmd_type cmd_type, int timeout)
3304 {
3305 const u32 tag = hba->reserved_slot;
3306 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
3307 int err;
3308
3309 /* Protects use of hba->reserved_slot. */
3310 lockdep_assert_held(&hba->dev_cmd.lock);
3311
3312 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3313 if (unlikely(err))
3314 return err;
3315
3316 return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout);
3317 }
3318
3319 /**
3320 * ufshcd_init_query() - init the query response and request parameters
3321 * @hba: per-adapter instance
3322 * @request: address of the request pointer to be initialized
3323 * @response: address of the response pointer to be initialized
3324 * @opcode: operation to perform
3325 * @idn: flag idn to access
3326 * @index: LU number to access
3327 * @selector: query/flag/descriptor further identification
3328 */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)3329 static inline void ufshcd_init_query(struct ufs_hba *hba,
3330 struct ufs_query_req **request, struct ufs_query_res **response,
3331 enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3332 {
3333 *request = &hba->dev_cmd.query.request;
3334 *response = &hba->dev_cmd.query.response;
3335 memset(*request, 0, sizeof(struct ufs_query_req));
3336 memset(*response, 0, sizeof(struct ufs_query_res));
3337 (*request)->upiu_req.opcode = opcode;
3338 (*request)->upiu_req.idn = idn;
3339 (*request)->upiu_req.index = index;
3340 (*request)->upiu_req.selector = selector;
3341 }
3342
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3343 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3344 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3345 {
3346 int ret;
3347 int retries;
3348
3349 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3350 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3351 if (ret)
3352 dev_dbg(hba->dev,
3353 "%s: failed with error %d, retries %d\n",
3354 __func__, ret, retries);
3355 else
3356 break;
3357 }
3358
3359 if (ret)
3360 dev_err(hba->dev,
3361 "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3362 __func__, opcode, idn, ret, retries);
3363 return ret;
3364 }
3365
3366 /**
3367 * ufshcd_query_flag() - API function for sending flag query requests
3368 * @hba: per-adapter instance
3369 * @opcode: flag query to perform
3370 * @idn: flag idn to access
3371 * @index: flag index to access
3372 * @flag_res: the flag value after the query request completes
3373 *
3374 * Return: 0 for success, non-zero in case of failure.
3375 */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3376 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3377 enum flag_idn idn, u8 index, bool *flag_res)
3378 {
3379 struct ufs_query_req *request = NULL;
3380 struct ufs_query_res *response = NULL;
3381 int err, selector = 0;
3382 int timeout = QUERY_REQ_TIMEOUT;
3383
3384 BUG_ON(!hba);
3385
3386 ufshcd_dev_man_lock(hba);
3387
3388 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3389 selector);
3390
3391 switch (opcode) {
3392 case UPIU_QUERY_OPCODE_SET_FLAG:
3393 case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3394 case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3395 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3396 break;
3397 case UPIU_QUERY_OPCODE_READ_FLAG:
3398 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3399 if (!flag_res) {
3400 /* No dummy reads */
3401 dev_err(hba->dev, "%s: Invalid argument for read request\n",
3402 __func__);
3403 err = -EINVAL;
3404 goto out_unlock;
3405 }
3406 break;
3407 default:
3408 dev_err(hba->dev,
3409 "%s: Expected query flag opcode but got = %d\n",
3410 __func__, opcode);
3411 err = -EINVAL;
3412 goto out_unlock;
3413 }
3414
3415 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3416
3417 if (err) {
3418 dev_err(hba->dev,
3419 "%s: Sending flag query for idn %d failed, err = %d\n",
3420 __func__, idn, err);
3421 goto out_unlock;
3422 }
3423
3424 if (flag_res)
3425 *flag_res = (be32_to_cpu(response->upiu_res.value) &
3426 MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3427
3428 out_unlock:
3429 ufshcd_dev_man_unlock(hba);
3430 return err;
3431 }
3432
3433 /**
3434 * ufshcd_query_attr - API function for sending attribute requests
3435 * @hba: per-adapter instance
3436 * @opcode: attribute opcode
3437 * @idn: attribute idn to access
3438 * @index: index field
3439 * @selector: selector field
3440 * @attr_val: the attribute value after the query request completes
3441 *
3442 * Return: 0 for success, non-zero in case of failure.
3443 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3444 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3445 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3446 {
3447 struct ufs_query_req *request = NULL;
3448 struct ufs_query_res *response = NULL;
3449 int err;
3450
3451 BUG_ON(!hba);
3452
3453 if (!attr_val) {
3454 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3455 __func__, opcode);
3456 return -EINVAL;
3457 }
3458
3459 ufshcd_dev_man_lock(hba);
3460
3461 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3462 selector);
3463
3464 switch (opcode) {
3465 case UPIU_QUERY_OPCODE_WRITE_ATTR:
3466 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3467 request->upiu_req.value = cpu_to_be32(*attr_val);
3468 break;
3469 case UPIU_QUERY_OPCODE_READ_ATTR:
3470 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3471 break;
3472 default:
3473 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3474 __func__, opcode);
3475 err = -EINVAL;
3476 goto out_unlock;
3477 }
3478
3479 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3480
3481 if (err) {
3482 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3483 __func__, opcode, idn, index, err);
3484 goto out_unlock;
3485 }
3486
3487 *attr_val = be32_to_cpu(response->upiu_res.value);
3488
3489 out_unlock:
3490 ufshcd_dev_man_unlock(hba);
3491 return err;
3492 }
3493
3494 /**
3495 * ufshcd_query_attr_retry() - API function for sending query
3496 * attribute with retries
3497 * @hba: per-adapter instance
3498 * @opcode: attribute opcode
3499 * @idn: attribute idn to access
3500 * @index: index field
3501 * @selector: selector field
3502 * @attr_val: the attribute value after the query request
3503 * completes
3504 *
3505 * Return: 0 for success, non-zero in case of failure.
3506 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3507 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3508 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3509 u32 *attr_val)
3510 {
3511 int ret = 0;
3512 u32 retries;
3513
3514 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3515 ret = ufshcd_query_attr(hba, opcode, idn, index,
3516 selector, attr_val);
3517 if (ret)
3518 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3519 __func__, ret, retries);
3520 else
3521 break;
3522 }
3523
3524 if (ret)
3525 dev_err(hba->dev,
3526 "%s: query attribute, idn %d, failed with error %d after %d retries\n",
3527 __func__, idn, ret, QUERY_REQ_RETRIES);
3528 return ret;
3529 }
3530
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3531 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3532 enum query_opcode opcode, enum desc_idn idn, u8 index,
3533 u8 selector, u8 *desc_buf, int *buf_len)
3534 {
3535 struct ufs_query_req *request = NULL;
3536 struct ufs_query_res *response = NULL;
3537 int err;
3538
3539 BUG_ON(!hba);
3540
3541 if (!desc_buf) {
3542 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3543 __func__, opcode);
3544 return -EINVAL;
3545 }
3546
3547 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3548 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3549 __func__, *buf_len);
3550 return -EINVAL;
3551 }
3552
3553 ufshcd_dev_man_lock(hba);
3554
3555 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3556 selector);
3557 hba->dev_cmd.query.descriptor = desc_buf;
3558 request->upiu_req.length = cpu_to_be16(*buf_len);
3559
3560 switch (opcode) {
3561 case UPIU_QUERY_OPCODE_WRITE_DESC:
3562 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3563 break;
3564 case UPIU_QUERY_OPCODE_READ_DESC:
3565 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3566 break;
3567 default:
3568 dev_err(hba->dev,
3569 "%s: Expected query descriptor opcode but got = 0x%.2x\n",
3570 __func__, opcode);
3571 err = -EINVAL;
3572 goto out_unlock;
3573 }
3574
3575 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3576
3577 if (err) {
3578 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3579 __func__, opcode, idn, index, err);
3580 goto out_unlock;
3581 }
3582
3583 *buf_len = be16_to_cpu(response->upiu_res.length);
3584
3585 out_unlock:
3586 hba->dev_cmd.query.descriptor = NULL;
3587 ufshcd_dev_man_unlock(hba);
3588 return err;
3589 }
3590
3591 /**
3592 * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3593 * @hba: per-adapter instance
3594 * @opcode: attribute opcode
3595 * @idn: attribute idn to access
3596 * @index: index field
3597 * @selector: selector field
3598 * @desc_buf: the buffer that contains the descriptor
3599 * @buf_len: length parameter passed to the device
3600 *
3601 * The buf_len parameter will contain, on return, the length parameter
3602 * received on the response.
3603 *
3604 * Return: 0 for success, non-zero in case of failure.
3605 */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3606 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3607 enum query_opcode opcode,
3608 enum desc_idn idn, u8 index,
3609 u8 selector,
3610 u8 *desc_buf, int *buf_len)
3611 {
3612 int err;
3613 int retries;
3614
3615 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3616 err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3617 selector, desc_buf, buf_len);
3618 if (!err || err == -EINVAL)
3619 break;
3620 }
3621
3622 return err;
3623 }
3624
3625 /**
3626 * ufshcd_read_desc_param - read the specified descriptor parameter
3627 * @hba: Pointer to adapter instance
3628 * @desc_id: descriptor idn value
3629 * @desc_index: descriptor index
3630 * @param_offset: offset of the parameter to read
3631 * @param_read_buf: pointer to buffer where parameter would be read
3632 * @param_size: sizeof(param_read_buf)
3633 *
3634 * Return: 0 in case of success, non-zero otherwise.
3635 */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3636 int ufshcd_read_desc_param(struct ufs_hba *hba,
3637 enum desc_idn desc_id,
3638 int desc_index,
3639 u8 param_offset,
3640 u8 *param_read_buf,
3641 u8 param_size)
3642 {
3643 int ret;
3644 u8 *desc_buf;
3645 int buff_len = QUERY_DESC_MAX_SIZE;
3646 bool is_kmalloc = true;
3647
3648 /* Safety check */
3649 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3650 return -EINVAL;
3651
3652 /* Check whether we need temp memory */
3653 if (param_offset != 0 || param_size < buff_len) {
3654 desc_buf = kzalloc(buff_len, GFP_KERNEL);
3655 if (!desc_buf)
3656 return -ENOMEM;
3657 } else {
3658 desc_buf = param_read_buf;
3659 is_kmalloc = false;
3660 }
3661
3662 /* Request for full descriptor */
3663 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3664 desc_id, desc_index, 0,
3665 desc_buf, &buff_len);
3666 if (ret) {
3667 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3668 __func__, desc_id, desc_index, param_offset, ret);
3669 goto out;
3670 }
3671
3672 /* Update descriptor length */
3673 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3674
3675 if (param_offset >= buff_len) {
3676 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3677 __func__, param_offset, desc_id, buff_len);
3678 ret = -EINVAL;
3679 goto out;
3680 }
3681
3682 /* Sanity check */
3683 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3684 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3685 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3686 ret = -EINVAL;
3687 goto out;
3688 }
3689
3690 if (is_kmalloc) {
3691 /* Make sure we don't copy more data than available */
3692 if (param_offset >= buff_len)
3693 ret = -EINVAL;
3694 else
3695 memcpy(param_read_buf, &desc_buf[param_offset],
3696 min_t(u32, param_size, buff_len - param_offset));
3697 }
3698 out:
3699 if (is_kmalloc)
3700 kfree(desc_buf);
3701 return ret;
3702 }
3703
3704 /**
3705 * struct uc_string_id - unicode string
3706 *
3707 * @len: size of this descriptor inclusive
3708 * @type: descriptor type
3709 * @uc: unicode string character
3710 */
3711 struct uc_string_id {
3712 u8 len;
3713 u8 type;
3714 wchar_t uc[];
3715 } __packed;
3716
3717 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3718 static inline char ufshcd_remove_non_printable(u8 ch)
3719 {
3720 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3721 }
3722
3723 /**
3724 * ufshcd_read_string_desc - read string descriptor
3725 * @hba: pointer to adapter instance
3726 * @desc_index: descriptor index
3727 * @buf: pointer to buffer where descriptor would be read,
3728 * the caller should free the memory.
3729 * @ascii: if true convert from unicode to ascii characters
3730 * null terminated string.
3731 *
3732 * Return:
3733 * * string size on success.
3734 * * -ENOMEM: on allocation failure
3735 * * -EINVAL: on a wrong parameter
3736 */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3737 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3738 u8 **buf, bool ascii)
3739 {
3740 struct uc_string_id *uc_str;
3741 u8 *str;
3742 int ret;
3743
3744 if (!buf)
3745 return -EINVAL;
3746
3747 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3748 if (!uc_str)
3749 return -ENOMEM;
3750
3751 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3752 (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3753 if (ret < 0) {
3754 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3755 QUERY_REQ_RETRIES, ret);
3756 str = NULL;
3757 goto out;
3758 }
3759
3760 if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3761 dev_dbg(hba->dev, "String Desc is of zero length\n");
3762 str = NULL;
3763 ret = 0;
3764 goto out;
3765 }
3766
3767 if (ascii) {
3768 ssize_t ascii_len;
3769 int i;
3770 /* remove header and divide by 2 to move from UTF16 to UTF8 */
3771 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3772 str = kzalloc(ascii_len, GFP_KERNEL);
3773 if (!str) {
3774 ret = -ENOMEM;
3775 goto out;
3776 }
3777
3778 /*
3779 * the descriptor contains string in UTF16 format
3780 * we need to convert to utf-8 so it can be displayed
3781 */
3782 ret = utf16s_to_utf8s(uc_str->uc,
3783 uc_str->len - QUERY_DESC_HDR_SIZE,
3784 UTF16_BIG_ENDIAN, str, ascii_len - 1);
3785
3786 /* replace non-printable or non-ASCII characters with spaces */
3787 for (i = 0; i < ret; i++)
3788 str[i] = ufshcd_remove_non_printable(str[i]);
3789
3790 str[ret++] = '\0';
3791
3792 } else {
3793 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3794 if (!str) {
3795 ret = -ENOMEM;
3796 goto out;
3797 }
3798 ret = uc_str->len;
3799 }
3800 out:
3801 *buf = str;
3802 kfree(uc_str);
3803 return ret;
3804 }
3805
3806 /**
3807 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3808 * @hba: Pointer to adapter instance
3809 * @lun: lun id
3810 * @param_offset: offset of the parameter to read
3811 * @param_read_buf: pointer to buffer where parameter would be read
3812 * @param_size: sizeof(param_read_buf)
3813 *
3814 * Return: 0 in case of success, non-zero otherwise.
3815 */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3816 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3817 int lun,
3818 enum unit_desc_param param_offset,
3819 u8 *param_read_buf,
3820 u32 param_size)
3821 {
3822 /*
3823 * Unit descriptors are only available for general purpose LUs (LUN id
3824 * from 0 to 7) and RPMB Well known LU.
3825 */
3826 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3827 return -EOPNOTSUPP;
3828
3829 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3830 param_offset, param_read_buf, param_size);
3831 }
3832
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3833 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3834 {
3835 int err = 0;
3836 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3837
3838 if (hba->dev_info.wspecversion >= 0x300) {
3839 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3840 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3841 &gating_wait);
3842 if (err)
3843 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3844 err, gating_wait);
3845
3846 if (gating_wait == 0) {
3847 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3848 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3849 gating_wait);
3850 }
3851
3852 hba->dev_info.clk_gating_wait_us = gating_wait;
3853 }
3854
3855 return err;
3856 }
3857
3858 /**
3859 * ufshcd_memory_alloc - allocate memory for host memory space data structures
3860 * @hba: per adapter instance
3861 *
3862 * 1. Allocate DMA memory for Command Descriptor array
3863 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3864 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3865 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3866 * (UTMRDL)
3867 * 4. Allocate memory for local reference block(lrb).
3868 *
3869 * Return: 0 for success, non-zero in case of failure.
3870 */
ufshcd_memory_alloc(struct ufs_hba * hba)3871 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3872 {
3873 size_t utmrdl_size, utrdl_size, ucdl_size;
3874
3875 /* Allocate memory for UTP command descriptors */
3876 ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3877 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3878 ucdl_size,
3879 &hba->ucdl_dma_addr,
3880 GFP_KERNEL);
3881
3882 /*
3883 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3884 */
3885 if (!hba->ucdl_base_addr ||
3886 WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3887 dev_err(hba->dev,
3888 "Command Descriptor Memory allocation failed\n");
3889 goto out;
3890 }
3891
3892 /*
3893 * Allocate memory for UTP Transfer descriptors
3894 * UFSHCI requires 1KB alignment of UTRD
3895 */
3896 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3897 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3898 utrdl_size,
3899 &hba->utrdl_dma_addr,
3900 GFP_KERNEL);
3901 if (!hba->utrdl_base_addr ||
3902 WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3903 dev_err(hba->dev,
3904 "Transfer Descriptor Memory allocation failed\n");
3905 goto out;
3906 }
3907
3908 /*
3909 * Skip utmrdl allocation; it may have been
3910 * allocated during first pass and not released during
3911 * MCQ memory allocation.
3912 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3913 */
3914 if (hba->utmrdl_base_addr)
3915 goto skip_utmrdl;
3916 /*
3917 * Allocate memory for UTP Task Management descriptors
3918 * UFSHCI requires 1KB alignment of UTMRD
3919 */
3920 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3921 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3922 utmrdl_size,
3923 &hba->utmrdl_dma_addr,
3924 GFP_KERNEL);
3925 if (!hba->utmrdl_base_addr ||
3926 WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3927 dev_err(hba->dev,
3928 "Task Management Descriptor Memory allocation failed\n");
3929 goto out;
3930 }
3931
3932 skip_utmrdl:
3933 /* Allocate memory for local reference block */
3934 hba->lrb = devm_kcalloc(hba->dev,
3935 hba->nutrs, sizeof(struct ufshcd_lrb),
3936 GFP_KERNEL);
3937 if (!hba->lrb) {
3938 dev_err(hba->dev, "LRB Memory allocation failed\n");
3939 goto out;
3940 }
3941 return 0;
3942 out:
3943 return -ENOMEM;
3944 }
3945
3946 /**
3947 * ufshcd_host_memory_configure - configure local reference block with
3948 * memory offsets
3949 * @hba: per adapter instance
3950 *
3951 * Configure Host memory space
3952 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3953 * address.
3954 * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3955 * and PRDT offset.
3956 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3957 * into local reference block.
3958 */
ufshcd_host_memory_configure(struct ufs_hba * hba)3959 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3960 {
3961 struct utp_transfer_req_desc *utrdlp;
3962 dma_addr_t cmd_desc_dma_addr;
3963 dma_addr_t cmd_desc_element_addr;
3964 u16 response_offset;
3965 u16 prdt_offset;
3966 int cmd_desc_size;
3967 int i;
3968
3969 utrdlp = hba->utrdl_base_addr;
3970
3971 response_offset =
3972 offsetof(struct utp_transfer_cmd_desc, response_upiu);
3973 prdt_offset =
3974 offsetof(struct utp_transfer_cmd_desc, prd_table);
3975
3976 cmd_desc_size = ufshcd_get_ucd_size(hba);
3977 cmd_desc_dma_addr = hba->ucdl_dma_addr;
3978
3979 for (i = 0; i < hba->nutrs; i++) {
3980 /* Configure UTRD with command descriptor base address */
3981 cmd_desc_element_addr =
3982 (cmd_desc_dma_addr + (cmd_desc_size * i));
3983 utrdlp[i].command_desc_base_addr =
3984 cpu_to_le64(cmd_desc_element_addr);
3985
3986 /* Response upiu and prdt offset should be in double words */
3987 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3988 utrdlp[i].response_upiu_offset =
3989 cpu_to_le16(response_offset);
3990 utrdlp[i].prd_table_offset =
3991 cpu_to_le16(prdt_offset);
3992 utrdlp[i].response_upiu_length =
3993 cpu_to_le16(ALIGNED_UPIU_SIZE);
3994 } else {
3995 utrdlp[i].response_upiu_offset =
3996 cpu_to_le16(response_offset >> 2);
3997 utrdlp[i].prd_table_offset =
3998 cpu_to_le16(prdt_offset >> 2);
3999 utrdlp[i].response_upiu_length =
4000 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
4001 }
4002
4003 ufshcd_init_lrb(hba, &hba->lrb[i], i);
4004 }
4005 }
4006
4007 /**
4008 * ufshcd_dme_link_startup - Notify Unipro to perform link startup
4009 * @hba: per adapter instance
4010 *
4011 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
4012 * in order to initialize the Unipro link startup procedure.
4013 * Once the Unipro links are up, the device connected to the controller
4014 * is detected.
4015 *
4016 * Return: 0 on success, non-zero value on failure.
4017 */
ufshcd_dme_link_startup(struct ufs_hba * hba)4018 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
4019 {
4020 struct uic_command uic_cmd = {
4021 .command = UIC_CMD_DME_LINK_STARTUP,
4022 };
4023 int ret;
4024
4025 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4026 if (ret)
4027 dev_dbg(hba->dev,
4028 "dme-link-startup: error code %d\n", ret);
4029 return ret;
4030 }
4031 /**
4032 * ufshcd_dme_reset - UIC command for DME_RESET
4033 * @hba: per adapter instance
4034 *
4035 * DME_RESET command is issued in order to reset UniPro stack.
4036 * This function now deals with cold reset.
4037 *
4038 * Return: 0 on success, non-zero value on failure.
4039 */
ufshcd_dme_reset(struct ufs_hba * hba)4040 int ufshcd_dme_reset(struct ufs_hba *hba)
4041 {
4042 struct uic_command uic_cmd = {
4043 .command = UIC_CMD_DME_RESET,
4044 };
4045 int ret;
4046
4047 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4048 if (ret)
4049 dev_err(hba->dev,
4050 "dme-reset: error code %d\n", ret);
4051
4052 return ret;
4053 }
4054 EXPORT_SYMBOL_GPL(ufshcd_dme_reset);
4055
ufshcd_dme_configure_adapt(struct ufs_hba * hba,int agreed_gear,int adapt_val)4056 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4057 int agreed_gear,
4058 int adapt_val)
4059 {
4060 int ret;
4061
4062 if (agreed_gear < UFS_HS_G4)
4063 adapt_val = PA_NO_ADAPT;
4064
4065 ret = ufshcd_dme_set(hba,
4066 UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4067 adapt_val);
4068 return ret;
4069 }
4070 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4071
4072 /**
4073 * ufshcd_dme_enable - UIC command for DME_ENABLE
4074 * @hba: per adapter instance
4075 *
4076 * DME_ENABLE command is issued in order to enable UniPro stack.
4077 *
4078 * Return: 0 on success, non-zero value on failure.
4079 */
ufshcd_dme_enable(struct ufs_hba * hba)4080 int ufshcd_dme_enable(struct ufs_hba *hba)
4081 {
4082 struct uic_command uic_cmd = {
4083 .command = UIC_CMD_DME_ENABLE,
4084 };
4085 int ret;
4086
4087 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4088 if (ret)
4089 dev_err(hba->dev,
4090 "dme-enable: error code %d\n", ret);
4091
4092 return ret;
4093 }
4094 EXPORT_SYMBOL_GPL(ufshcd_dme_enable);
4095
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)4096 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4097 {
4098 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000
4099 unsigned long min_sleep_time_us;
4100
4101 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4102 return;
4103
4104 /*
4105 * last_dme_cmd_tstamp will be 0 only for 1st call to
4106 * this function
4107 */
4108 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4109 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4110 } else {
4111 unsigned long delta =
4112 (unsigned long) ktime_to_us(
4113 ktime_sub(ktime_get(),
4114 hba->last_dme_cmd_tstamp));
4115
4116 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4117 min_sleep_time_us =
4118 MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4119 else
4120 min_sleep_time_us = 0; /* no more delay required */
4121 }
4122
4123 if (min_sleep_time_us > 0) {
4124 /* allow sleep for extra 50us if needed */
4125 usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4126 }
4127
4128 /* update the last_dme_cmd_tstamp */
4129 hba->last_dme_cmd_tstamp = ktime_get();
4130 }
4131
4132 /**
4133 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4134 * @hba: per adapter instance
4135 * @attr_sel: uic command argument1
4136 * @attr_set: attribute set type as uic command argument2
4137 * @mib_val: setting value as uic command argument3
4138 * @peer: indicate whether peer or local
4139 *
4140 * Return: 0 on success, non-zero value on failure.
4141 */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)4142 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4143 u8 attr_set, u32 mib_val, u8 peer)
4144 {
4145 struct uic_command uic_cmd = {
4146 .command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET,
4147 .argument1 = attr_sel,
4148 .argument2 = UIC_ARG_ATTR_TYPE(attr_set),
4149 .argument3 = mib_val,
4150 };
4151 static const char *const action[] = {
4152 "dme-set",
4153 "dme-peer-set"
4154 };
4155 const char *set = action[!!peer];
4156 int ret;
4157 int retries = UFS_UIC_COMMAND_RETRIES;
4158
4159 do {
4160 /* for peer attributes we retry upon failure */
4161 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4162 if (ret)
4163 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4164 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4165 } while (ret && peer && --retries);
4166
4167 if (ret)
4168 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4169 set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4170 UFS_UIC_COMMAND_RETRIES - retries);
4171
4172 return ret;
4173 }
4174 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4175
4176 /**
4177 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4178 * @hba: per adapter instance
4179 * @attr_sel: uic command argument1
4180 * @mib_val: the value of the attribute as returned by the UIC command
4181 * @peer: indicate whether peer or local
4182 *
4183 * Return: 0 on success, non-zero value on failure.
4184 */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)4185 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4186 u32 *mib_val, u8 peer)
4187 {
4188 struct uic_command uic_cmd = {
4189 .command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET,
4190 .argument1 = attr_sel,
4191 };
4192 static const char *const action[] = {
4193 "dme-get",
4194 "dme-peer-get"
4195 };
4196 const char *get = action[!!peer];
4197 int ret;
4198 int retries = UFS_UIC_COMMAND_RETRIES;
4199 struct ufs_pa_layer_attr orig_pwr_info;
4200 struct ufs_pa_layer_attr temp_pwr_info;
4201 bool pwr_mode_change = false;
4202
4203 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4204 orig_pwr_info = hba->pwr_info;
4205 temp_pwr_info = orig_pwr_info;
4206
4207 if (orig_pwr_info.pwr_tx == FAST_MODE ||
4208 orig_pwr_info.pwr_rx == FAST_MODE) {
4209 temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4210 temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4211 pwr_mode_change = true;
4212 } else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4213 orig_pwr_info.pwr_rx == SLOW_MODE) {
4214 temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4215 temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4216 pwr_mode_change = true;
4217 }
4218 if (pwr_mode_change) {
4219 ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4220 if (ret)
4221 goto out;
4222 }
4223 }
4224
4225 do {
4226 /* for peer attributes we retry upon failure */
4227 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4228 if (ret)
4229 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4230 get, UIC_GET_ATTR_ID(attr_sel), ret);
4231 } while (ret && peer && --retries);
4232
4233 if (ret)
4234 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4235 get, UIC_GET_ATTR_ID(attr_sel),
4236 UFS_UIC_COMMAND_RETRIES - retries);
4237
4238 if (mib_val && !ret)
4239 *mib_val = uic_cmd.argument3;
4240
4241 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4242 && pwr_mode_change)
4243 ufshcd_change_power_mode(hba, &orig_pwr_info);
4244 out:
4245 return ret;
4246 }
4247 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4248
4249 /**
4250 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4251 * state) and waits for it to take effect.
4252 *
4253 * @hba: per adapter instance
4254 * @cmd: UIC command to execute
4255 *
4256 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4257 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4258 * and device UniPro link and hence it's final completion would be indicated by
4259 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4260 * addition to normal UIC command completion Status (UCCS). This function only
4261 * returns after the relevant status bits indicate the completion.
4262 *
4263 * Return: 0 on success, non-zero value on failure.
4264 */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)4265 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4266 {
4267 DECLARE_COMPLETION_ONSTACK(uic_async_done);
4268 unsigned long flags;
4269 u8 status;
4270 int ret;
4271 bool reenable_intr = false;
4272
4273 mutex_lock(&hba->uic_cmd_mutex);
4274 ufshcd_add_delay_before_dme_cmd(hba);
4275
4276 spin_lock_irqsave(hba->host->host_lock, flags);
4277 if (ufshcd_is_link_broken(hba)) {
4278 ret = -ENOLINK;
4279 goto out_unlock;
4280 }
4281 hba->uic_async_done = &uic_async_done;
4282 if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4283 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4284 /*
4285 * Make sure UIC command completion interrupt is disabled before
4286 * issuing UIC command.
4287 */
4288 ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
4289 reenable_intr = true;
4290 }
4291 spin_unlock_irqrestore(hba->host->host_lock, flags);
4292 ret = __ufshcd_send_uic_cmd(hba, cmd);
4293 if (ret) {
4294 dev_err(hba->dev,
4295 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4296 cmd->command, cmd->argument3, ret);
4297 goto out;
4298 }
4299
4300 if (!wait_for_completion_timeout(hba->uic_async_done,
4301 msecs_to_jiffies(uic_cmd_timeout))) {
4302 dev_err(hba->dev,
4303 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4304 cmd->command, cmd->argument3);
4305
4306 if (!cmd->cmd_active) {
4307 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4308 __func__);
4309 goto check_upmcrs;
4310 }
4311
4312 ret = -ETIMEDOUT;
4313 goto out;
4314 }
4315
4316 check_upmcrs:
4317 status = ufshcd_get_upmcrs(hba);
4318 if (status != PWR_LOCAL) {
4319 dev_err(hba->dev,
4320 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4321 cmd->command, status);
4322 ret = (status != PWR_OK) ? status : -1;
4323 }
4324 out:
4325 if (ret) {
4326 ufshcd_print_host_state(hba);
4327 ufshcd_print_pwr_info(hba);
4328 ufshcd_print_evt_hist(hba);
4329 }
4330
4331 spin_lock_irqsave(hba->host->host_lock, flags);
4332 hba->active_uic_cmd = NULL;
4333 hba->uic_async_done = NULL;
4334 if (reenable_intr)
4335 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4336 if (ret) {
4337 ufshcd_set_link_broken(hba);
4338 ufshcd_schedule_eh_work(hba);
4339 }
4340 out_unlock:
4341 spin_unlock_irqrestore(hba->host->host_lock, flags);
4342 mutex_unlock(&hba->uic_cmd_mutex);
4343
4344 return ret;
4345 }
4346
4347 /**
4348 * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result
4349 * @hba: per adapter instance
4350 * @uic_cmd: UIC command
4351 *
4352 * Return: 0 only if success.
4353 */
ufshcd_send_bsg_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)4354 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
4355 {
4356 int ret;
4357
4358 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
4359 return 0;
4360
4361 ufshcd_hold(hba);
4362
4363 if (uic_cmd->argument1 == UIC_ARG_MIB(PA_PWRMODE) &&
4364 uic_cmd->command == UIC_CMD_DME_SET) {
4365 ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd);
4366 goto out;
4367 }
4368
4369 mutex_lock(&hba->uic_cmd_mutex);
4370 ufshcd_add_delay_before_dme_cmd(hba);
4371
4372 ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
4373 if (!ret)
4374 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
4375
4376 mutex_unlock(&hba->uic_cmd_mutex);
4377
4378 out:
4379 ufshcd_release(hba);
4380 return ret;
4381 }
4382
4383 /**
4384 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4385 * using DME_SET primitives.
4386 * @hba: per adapter instance
4387 * @mode: powr mode value
4388 *
4389 * Return: 0 on success, non-zero value on failure.
4390 */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4391 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4392 {
4393 struct uic_command uic_cmd = {
4394 .command = UIC_CMD_DME_SET,
4395 .argument1 = UIC_ARG_MIB(PA_PWRMODE),
4396 .argument3 = mode,
4397 };
4398 int ret;
4399
4400 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4401 ret = ufshcd_dme_set(hba,
4402 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4403 if (ret) {
4404 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4405 __func__, ret);
4406 goto out;
4407 }
4408 }
4409
4410 ufshcd_hold(hba);
4411 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4412 ufshcd_release(hba);
4413
4414 out:
4415 return ret;
4416 }
4417 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4418
ufshcd_link_recovery(struct ufs_hba * hba)4419 int ufshcd_link_recovery(struct ufs_hba *hba)
4420 {
4421 int ret;
4422 unsigned long flags;
4423
4424 spin_lock_irqsave(hba->host->host_lock, flags);
4425 hba->ufshcd_state = UFSHCD_STATE_RESET;
4426 ufshcd_set_eh_in_progress(hba);
4427 spin_unlock_irqrestore(hba->host->host_lock, flags);
4428
4429 /* Reset the attached device */
4430 ufshcd_device_reset(hba);
4431
4432 ret = ufshcd_host_reset_and_restore(hba);
4433
4434 spin_lock_irqsave(hba->host->host_lock, flags);
4435 if (ret)
4436 hba->ufshcd_state = UFSHCD_STATE_ERROR;
4437 ufshcd_clear_eh_in_progress(hba);
4438 spin_unlock_irqrestore(hba->host->host_lock, flags);
4439
4440 if (ret)
4441 dev_err(hba->dev, "%s: link recovery failed, err %d",
4442 __func__, ret);
4443
4444 return ret;
4445 }
4446 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4447
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4448 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4449 {
4450 struct uic_command uic_cmd = {
4451 .command = UIC_CMD_DME_HIBER_ENTER,
4452 };
4453 ktime_t start = ktime_get();
4454 int ret;
4455
4456 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4457
4458 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4459 trace_ufshcd_profile_hibern8(hba, "enter",
4460 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4461
4462 if (ret)
4463 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4464 __func__, ret);
4465 else
4466 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4467 POST_CHANGE);
4468
4469 return ret;
4470 }
4471 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4472
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4473 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4474 {
4475 struct uic_command uic_cmd = {
4476 .command = UIC_CMD_DME_HIBER_EXIT,
4477 };
4478 int ret;
4479 ktime_t start = ktime_get();
4480
4481 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4482
4483 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4484 trace_ufshcd_profile_hibern8(hba, "exit",
4485 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4486
4487 if (ret) {
4488 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4489 __func__, ret);
4490 } else {
4491 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4492 POST_CHANGE);
4493 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4494 hba->ufs_stats.hibern8_exit_cnt++;
4495 }
4496
4497 return ret;
4498 }
4499 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4500
ufshcd_configure_auto_hibern8(struct ufs_hba * hba)4501 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4502 {
4503 if (!ufshcd_is_auto_hibern8_supported(hba))
4504 return;
4505
4506 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4507 }
4508
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4509 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4510 {
4511 const u32 cur_ahit = READ_ONCE(hba->ahit);
4512
4513 if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4514 return;
4515
4516 WRITE_ONCE(hba->ahit, ahit);
4517 if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4518 ufshcd_rpm_get_sync(hba);
4519 ufshcd_hold(hba);
4520 ufshcd_configure_auto_hibern8(hba);
4521 ufshcd_release(hba);
4522 ufshcd_rpm_put_sync(hba);
4523 }
4524 }
4525 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4526
4527 /**
4528 * ufshcd_init_pwr_info - setting the POR (power on reset)
4529 * values in hba power info
4530 * @hba: per-adapter instance
4531 */
ufshcd_init_pwr_info(struct ufs_hba * hba)4532 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4533 {
4534 hba->pwr_info.gear_rx = UFS_PWM_G1;
4535 hba->pwr_info.gear_tx = UFS_PWM_G1;
4536 hba->pwr_info.lane_rx = UFS_LANE_1;
4537 hba->pwr_info.lane_tx = UFS_LANE_1;
4538 hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4539 hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4540 hba->pwr_info.hs_rate = 0;
4541 }
4542
4543 /**
4544 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4545 * @hba: per-adapter instance
4546 *
4547 * Return: 0 upon success; < 0 upon failure.
4548 */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4549 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4550 {
4551 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4552
4553 if (hba->max_pwr_info.is_valid)
4554 return 0;
4555
4556 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4557 pwr_info->pwr_tx = FASTAUTO_MODE;
4558 pwr_info->pwr_rx = FASTAUTO_MODE;
4559 } else {
4560 pwr_info->pwr_tx = FAST_MODE;
4561 pwr_info->pwr_rx = FAST_MODE;
4562 }
4563 pwr_info->hs_rate = PA_HS_MODE_B;
4564
4565 /* Get the connected lane count */
4566 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4567 &pwr_info->lane_rx);
4568 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4569 &pwr_info->lane_tx);
4570
4571 if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4572 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4573 __func__,
4574 pwr_info->lane_rx,
4575 pwr_info->lane_tx);
4576 return -EINVAL;
4577 }
4578
4579 if (pwr_info->lane_rx != pwr_info->lane_tx) {
4580 dev_err(hba->dev, "%s: asymmetric connected lanes. rx=%d, tx=%d\n",
4581 __func__,
4582 pwr_info->lane_rx,
4583 pwr_info->lane_tx);
4584 return -EINVAL;
4585 }
4586
4587 /*
4588 * First, get the maximum gears of HS speed.
4589 * If a zero value, it means there is no HSGEAR capability.
4590 * Then, get the maximum gears of PWM speed.
4591 */
4592 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4593 if (!pwr_info->gear_rx) {
4594 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4595 &pwr_info->gear_rx);
4596 if (!pwr_info->gear_rx) {
4597 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4598 __func__, pwr_info->gear_rx);
4599 return -EINVAL;
4600 }
4601 pwr_info->pwr_rx = SLOW_MODE;
4602 }
4603
4604 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4605 &pwr_info->gear_tx);
4606 if (!pwr_info->gear_tx) {
4607 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4608 &pwr_info->gear_tx);
4609 if (!pwr_info->gear_tx) {
4610 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4611 __func__, pwr_info->gear_tx);
4612 return -EINVAL;
4613 }
4614 pwr_info->pwr_tx = SLOW_MODE;
4615 }
4616
4617 hba->max_pwr_info.is_valid = true;
4618 return 0;
4619 }
4620
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4621 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4622 struct ufs_pa_layer_attr *pwr_mode)
4623 {
4624 int ret;
4625
4626 /* if already configured to the requested pwr_mode */
4627 if (!hba->force_pmc &&
4628 pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4629 pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4630 pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4631 pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4632 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4633 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4634 pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4635 dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4636 return 0;
4637 }
4638
4639 /*
4640 * Configure attributes for power mode change with below.
4641 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4642 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4643 * - PA_HSSERIES
4644 */
4645 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4646 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4647 pwr_mode->lane_rx);
4648 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4649 pwr_mode->pwr_rx == FAST_MODE)
4650 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4651 else
4652 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4653
4654 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4655 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4656 pwr_mode->lane_tx);
4657 if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4658 pwr_mode->pwr_tx == FAST_MODE)
4659 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4660 else
4661 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4662
4663 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4664 pwr_mode->pwr_tx == FASTAUTO_MODE ||
4665 pwr_mode->pwr_rx == FAST_MODE ||
4666 pwr_mode->pwr_tx == FAST_MODE)
4667 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4668 pwr_mode->hs_rate);
4669
4670 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4671 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4672 DL_FC0ProtectionTimeOutVal_Default);
4673 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4674 DL_TC0ReplayTimeOutVal_Default);
4675 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4676 DL_AFC0ReqTimeOutVal_Default);
4677 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4678 DL_FC1ProtectionTimeOutVal_Default);
4679 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4680 DL_TC1ReplayTimeOutVal_Default);
4681 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4682 DL_AFC1ReqTimeOutVal_Default);
4683
4684 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4685 DL_FC0ProtectionTimeOutVal_Default);
4686 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4687 DL_TC0ReplayTimeOutVal_Default);
4688 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4689 DL_AFC0ReqTimeOutVal_Default);
4690 }
4691
4692 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4693 | pwr_mode->pwr_tx);
4694
4695 if (ret) {
4696 dev_err(hba->dev,
4697 "%s: power mode change failed %d\n", __func__, ret);
4698 } else {
4699 memcpy(&hba->pwr_info, pwr_mode,
4700 sizeof(struct ufs_pa_layer_attr));
4701 }
4702
4703 return ret;
4704 }
4705
4706 /**
4707 * ufshcd_config_pwr_mode - configure a new power mode
4708 * @hba: per-adapter instance
4709 * @desired_pwr_mode: desired power configuration
4710 *
4711 * Return: 0 upon success; < 0 upon failure.
4712 */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4713 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4714 struct ufs_pa_layer_attr *desired_pwr_mode)
4715 {
4716 struct ufs_pa_layer_attr final_params = { 0 };
4717 int ret;
4718
4719 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4720 desired_pwr_mode, &final_params);
4721
4722 if (ret)
4723 memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4724
4725 ret = ufshcd_change_power_mode(hba, &final_params);
4726
4727 if (!ret)
4728 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4729 &final_params);
4730
4731 return ret;
4732 }
4733 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4734
4735 /**
4736 * ufshcd_complete_dev_init() - checks device readiness
4737 * @hba: per-adapter instance
4738 *
4739 * Set fDeviceInit flag and poll until device toggles it.
4740 *
4741 * Return: 0 upon success; < 0 upon failure.
4742 */
ufshcd_complete_dev_init(struct ufs_hba * hba)4743 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4744 {
4745 int err;
4746 bool flag_res = true;
4747 ktime_t timeout;
4748
4749 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4750 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4751 if (err) {
4752 dev_err(hba->dev,
4753 "%s: setting fDeviceInit flag failed with error %d\n",
4754 __func__, err);
4755 goto out;
4756 }
4757
4758 /* Poll fDeviceInit flag to be cleared */
4759 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4760 do {
4761 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4762 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4763 if (!flag_res)
4764 break;
4765 usleep_range(500, 1000);
4766 } while (ktime_before(ktime_get(), timeout));
4767
4768 if (err) {
4769 dev_err(hba->dev,
4770 "%s: reading fDeviceInit flag failed with error %d\n",
4771 __func__, err);
4772 } else if (flag_res) {
4773 dev_err(hba->dev,
4774 "%s: fDeviceInit was not cleared by the device\n",
4775 __func__);
4776 err = -EBUSY;
4777 }
4778 out:
4779 return err;
4780 }
4781
4782 /**
4783 * ufshcd_make_hba_operational - Make UFS controller operational
4784 * @hba: per adapter instance
4785 *
4786 * To bring UFS host controller to operational state,
4787 * 1. Enable required interrupts
4788 * 2. Configure interrupt aggregation
4789 * 3. Program UTRL and UTMRL base address
4790 * 4. Configure run-stop-registers
4791 *
4792 * Return: 0 on success, non-zero value on failure.
4793 */
ufshcd_make_hba_operational(struct ufs_hba * hba)4794 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4795 {
4796 int err = 0;
4797 u32 reg;
4798
4799 /* Enable required interrupts */
4800 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4801
4802 /* Configure interrupt aggregation */
4803 if (ufshcd_is_intr_aggr_allowed(hba))
4804 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4805 else
4806 ufshcd_disable_intr_aggr(hba);
4807
4808 /* Configure UTRL and UTMRL base address registers */
4809 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4810 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4811 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4812 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4813 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4814 REG_UTP_TASK_REQ_LIST_BASE_L);
4815 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4816 REG_UTP_TASK_REQ_LIST_BASE_H);
4817
4818 /*
4819 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4820 */
4821 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4822 if (!(ufshcd_get_lists_status(reg))) {
4823 ufshcd_enable_run_stop_reg(hba);
4824 } else {
4825 dev_err(hba->dev,
4826 "Host controller not ready to process requests");
4827 err = -EIO;
4828 }
4829
4830 return err;
4831 }
4832 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4833
4834 /**
4835 * ufshcd_hba_stop - Send controller to reset state
4836 * @hba: per adapter instance
4837 */
ufshcd_hba_stop(struct ufs_hba * hba)4838 void ufshcd_hba_stop(struct ufs_hba *hba)
4839 {
4840 int err;
4841
4842 ufshcd_disable_irq(hba);
4843 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE);
4844 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4845 CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4846 10, 1);
4847 ufshcd_enable_irq(hba);
4848 if (err)
4849 dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4850 }
4851 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4852
4853 /**
4854 * ufshcd_hba_execute_hce - initialize the controller
4855 * @hba: per adapter instance
4856 *
4857 * The controller resets itself and controller firmware initialization
4858 * sequence kicks off. When controller is ready it will set
4859 * the Host Controller Enable bit to 1.
4860 *
4861 * Return: 0 on success, non-zero value on failure.
4862 */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4863 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4864 {
4865 int retry;
4866
4867 for (retry = 3; retry > 0; retry--) {
4868 if (ufshcd_is_hba_active(hba))
4869 /* change controller state to "reset state" */
4870 ufshcd_hba_stop(hba);
4871
4872 /* UniPro link is disabled at this point */
4873 ufshcd_set_link_off(hba);
4874
4875 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4876
4877 /* start controller initialization sequence */
4878 ufshcd_hba_start(hba);
4879
4880 /*
4881 * To initialize a UFS host controller HCE bit must be set to 1.
4882 * During initialization the HCE bit value changes from 1->0->1.
4883 * When the host controller completes initialization sequence
4884 * it sets the value of HCE bit to 1. The same HCE bit is read back
4885 * to check if the controller has completed initialization sequence.
4886 * So without this delay the value HCE = 1, set in the previous
4887 * instruction might be read back.
4888 * This delay can be changed based on the controller.
4889 */
4890 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4891
4892 /* wait for the host controller to complete initialization */
4893 if (!ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE,
4894 CONTROLLER_ENABLE, 1000, 50))
4895 break;
4896
4897 dev_err(hba->dev, "Enabling the controller failed\n");
4898 }
4899
4900 if (!retry)
4901 return -EIO;
4902
4903 /* enable UIC related interrupts */
4904 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4905
4906 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4907
4908 return 0;
4909 }
4910
ufshcd_hba_enable(struct ufs_hba * hba)4911 int ufshcd_hba_enable(struct ufs_hba *hba)
4912 {
4913 int ret;
4914
4915 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4916 ufshcd_set_link_off(hba);
4917 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4918
4919 /* enable UIC related interrupts */
4920 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4921 ret = ufshcd_dme_reset(hba);
4922 if (ret) {
4923 dev_err(hba->dev, "DME_RESET failed\n");
4924 return ret;
4925 }
4926
4927 ret = ufshcd_dme_enable(hba);
4928 if (ret) {
4929 dev_err(hba->dev, "Enabling DME failed\n");
4930 return ret;
4931 }
4932
4933 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4934 } else {
4935 ret = ufshcd_hba_execute_hce(hba);
4936 }
4937
4938 return ret;
4939 }
4940 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4941
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4942 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4943 {
4944 int tx_lanes = 0, i, err = 0;
4945
4946 if (!peer)
4947 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4948 &tx_lanes);
4949 else
4950 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4951 &tx_lanes);
4952 for (i = 0; i < tx_lanes; i++) {
4953 if (!peer)
4954 err = ufshcd_dme_set(hba,
4955 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4956 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4957 0);
4958 else
4959 err = ufshcd_dme_peer_set(hba,
4960 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4961 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4962 0);
4963 if (err) {
4964 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4965 __func__, peer, i, err);
4966 break;
4967 }
4968 }
4969
4970 return err;
4971 }
4972
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4973 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4974 {
4975 return ufshcd_disable_tx_lcc(hba, true);
4976 }
4977
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)4978 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4979 {
4980 struct ufs_event_hist *e;
4981
4982 if (id >= UFS_EVT_CNT)
4983 return;
4984
4985 e = &hba->ufs_stats.event[id];
4986 e->val[e->pos] = val;
4987 e->tstamp[e->pos] = local_clock();
4988 e->cnt += 1;
4989 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4990
4991 ufshcd_vops_event_notify(hba, id, &val);
4992 }
4993 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4994
4995 /**
4996 * ufshcd_link_startup - Initialize unipro link startup
4997 * @hba: per adapter instance
4998 *
4999 * Return: 0 for success, non-zero in case of failure.
5000 */
ufshcd_link_startup(struct ufs_hba * hba)5001 static int ufshcd_link_startup(struct ufs_hba *hba)
5002 {
5003 int ret;
5004 int retries = DME_LINKSTARTUP_RETRIES;
5005 bool link_startup_again = false;
5006
5007 /*
5008 * If UFS device isn't active then we will have to issue link startup
5009 * 2 times to make sure the device state move to active.
5010 */
5011 if (!ufshcd_is_ufs_dev_active(hba))
5012 link_startup_again = true;
5013
5014 link_startup:
5015 do {
5016 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
5017
5018 ret = ufshcd_dme_link_startup(hba);
5019
5020 /* check if device is detected by inter-connect layer */
5021 if (!ret && !ufshcd_is_device_present(hba)) {
5022 ufshcd_update_evt_hist(hba,
5023 UFS_EVT_LINK_STARTUP_FAIL,
5024 0);
5025 dev_err(hba->dev, "%s: Device not present\n", __func__);
5026 ret = -ENXIO;
5027 goto out;
5028 }
5029
5030 /*
5031 * DME link lost indication is only received when link is up,
5032 * but we can't be sure if the link is up until link startup
5033 * succeeds. So reset the local Uni-Pro and try again.
5034 */
5035 if (ret && retries && ufshcd_hba_enable(hba)) {
5036 ufshcd_update_evt_hist(hba,
5037 UFS_EVT_LINK_STARTUP_FAIL,
5038 (u32)ret);
5039 goto out;
5040 }
5041 } while (ret && retries--);
5042
5043 if (ret) {
5044 /* failed to get the link up... retire */
5045 ufshcd_update_evt_hist(hba,
5046 UFS_EVT_LINK_STARTUP_FAIL,
5047 (u32)ret);
5048 goto out;
5049 }
5050
5051 if (link_startup_again) {
5052 link_startup_again = false;
5053 retries = DME_LINKSTARTUP_RETRIES;
5054 goto link_startup;
5055 }
5056
5057 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5058 ufshcd_init_pwr_info(hba);
5059 ufshcd_print_pwr_info(hba);
5060
5061 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5062 ret = ufshcd_disable_device_tx_lcc(hba);
5063 if (ret)
5064 goto out;
5065 }
5066
5067 /* Include any host controller configuration via UIC commands */
5068 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5069 if (ret)
5070 goto out;
5071
5072 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5073 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5074 ret = ufshcd_make_hba_operational(hba);
5075 out:
5076 if (ret) {
5077 dev_err(hba->dev, "link startup failed %d\n", ret);
5078 ufshcd_print_host_state(hba);
5079 ufshcd_print_pwr_info(hba);
5080 ufshcd_print_evt_hist(hba);
5081 }
5082 return ret;
5083 }
5084
5085 /**
5086 * ufshcd_verify_dev_init() - Verify device initialization
5087 * @hba: per-adapter instance
5088 *
5089 * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5090 * device Transport Protocol (UTP) layer is ready after a reset.
5091 * If the UTP layer at the device side is not initialized, it may
5092 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5093 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5094 *
5095 * Return: 0 upon success; < 0 upon failure.
5096 */
ufshcd_verify_dev_init(struct ufs_hba * hba)5097 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5098 {
5099 int err = 0;
5100 int retries;
5101
5102 ufshcd_dev_man_lock(hba);
5103
5104 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5105 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5106 hba->nop_out_timeout);
5107
5108 if (!err || err == -ETIMEDOUT)
5109 break;
5110
5111 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5112 }
5113
5114 ufshcd_dev_man_unlock(hba);
5115
5116 if (err)
5117 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5118 return err;
5119 }
5120
5121 /**
5122 * ufshcd_setup_links - associate link b/w device wlun and other luns
5123 * @sdev: pointer to SCSI device
5124 * @hba: pointer to ufs hba
5125 */
ufshcd_setup_links(struct ufs_hba * hba,struct scsi_device * sdev)5126 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5127 {
5128 struct device_link *link;
5129
5130 /*
5131 * Device wlun is the supplier & rest of the luns are consumers.
5132 * This ensures that device wlun suspends after all other luns.
5133 */
5134 if (hba->ufs_device_wlun) {
5135 link = device_link_add(&sdev->sdev_gendev,
5136 &hba->ufs_device_wlun->sdev_gendev,
5137 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5138 if (!link) {
5139 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5140 dev_name(&hba->ufs_device_wlun->sdev_gendev));
5141 return;
5142 }
5143 hba->luns_avail--;
5144 /* Ignore REPORT_LUN wlun probing */
5145 if (hba->luns_avail == 1) {
5146 ufshcd_rpm_put(hba);
5147 return;
5148 }
5149 } else {
5150 /*
5151 * Device wlun is probed. The assumption is that WLUNs are
5152 * scanned before other LUNs.
5153 */
5154 hba->luns_avail--;
5155 }
5156 }
5157
5158 /**
5159 * ufshcd_lu_init - Initialize the relevant parameters of the LU
5160 * @hba: per-adapter instance
5161 * @sdev: pointer to SCSI device
5162 */
ufshcd_lu_init(struct ufs_hba * hba,struct scsi_device * sdev)5163 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5164 {
5165 int len = QUERY_DESC_MAX_SIZE;
5166 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5167 u8 lun_qdepth = hba->nutrs;
5168 u8 *desc_buf;
5169 int ret;
5170
5171 desc_buf = kzalloc(len, GFP_KERNEL);
5172 if (!desc_buf)
5173 goto set_qdepth;
5174
5175 ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5176 if (ret < 0) {
5177 if (ret == -EOPNOTSUPP)
5178 /* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5179 lun_qdepth = 1;
5180 kfree(desc_buf);
5181 goto set_qdepth;
5182 }
5183
5184 if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5185 /*
5186 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5187 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5188 */
5189 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5190 }
5191 /*
5192 * According to UFS device specification, the write protection mode is only supported by
5193 * normal LU, not supported by WLUN.
5194 */
5195 if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5196 !hba->dev_info.is_lu_power_on_wp &&
5197 desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5198 hba->dev_info.is_lu_power_on_wp = true;
5199
5200 /* In case of RPMB LU, check if advanced RPMB mode is enabled */
5201 if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5202 desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5203 hba->dev_info.b_advanced_rpmb_en = true;
5204
5205
5206 kfree(desc_buf);
5207 set_qdepth:
5208 /*
5209 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5210 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5211 */
5212 dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5213 scsi_change_queue_depth(sdev, lun_qdepth);
5214 }
5215
5216 /**
5217 * ufshcd_sdev_init - handle initial SCSI device configurations
5218 * @sdev: pointer to SCSI device
5219 *
5220 * Return: success.
5221 */
ufshcd_sdev_init(struct scsi_device * sdev)5222 static int ufshcd_sdev_init(struct scsi_device *sdev)
5223 {
5224 struct ufs_hba *hba;
5225
5226 hba = shost_priv(sdev->host);
5227
5228 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5229 sdev->use_10_for_ms = 1;
5230
5231 /* DBD field should be set to 1 in mode sense(10) */
5232 sdev->set_dbd_for_ms = 1;
5233
5234 /* allow SCSI layer to restart the device in case of errors */
5235 sdev->allow_restart = 1;
5236
5237 /* REPORT SUPPORTED OPERATION CODES is not supported */
5238 sdev->no_report_opcodes = 1;
5239
5240 /* WRITE_SAME command is not supported */
5241 sdev->no_write_same = 1;
5242
5243 ufshcd_lu_init(hba, sdev);
5244
5245 ufshcd_setup_links(hba, sdev);
5246
5247 return 0;
5248 }
5249
5250 /**
5251 * ufshcd_change_queue_depth - change queue depth
5252 * @sdev: pointer to SCSI device
5253 * @depth: required depth to set
5254 *
5255 * Change queue depth and make sure the max. limits are not crossed.
5256 *
5257 * Return: new queue depth.
5258 */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)5259 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5260 {
5261 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5262 }
5263
5264 /**
5265 * ufshcd_sdev_configure - adjust SCSI device configurations
5266 * @sdev: pointer to SCSI device
5267 * @lim: queue limits
5268 *
5269 * Return: 0 (success).
5270 */
ufshcd_sdev_configure(struct scsi_device * sdev,struct queue_limits * lim)5271 static int ufshcd_sdev_configure(struct scsi_device *sdev,
5272 struct queue_limits *lim)
5273 {
5274 struct ufs_hba *hba = shost_priv(sdev->host);
5275 struct request_queue *q = sdev->request_queue;
5276
5277 lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1;
5278
5279 /*
5280 * Block runtime-pm until all consumers are added.
5281 * Refer ufshcd_setup_links().
5282 */
5283 if (is_device_wlun(sdev))
5284 pm_runtime_get_noresume(&sdev->sdev_gendev);
5285 else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5286 sdev->rpm_autosuspend = 1;
5287 /*
5288 * Do not print messages during runtime PM to avoid never-ending cycles
5289 * of messages written back to storage by user space causing runtime
5290 * resume, causing more messages and so on.
5291 */
5292 sdev->silence_suspend = 1;
5293
5294 if (hba->vops && hba->vops->config_scsi_dev)
5295 hba->vops->config_scsi_dev(sdev);
5296
5297 ufshcd_crypto_register(hba, q);
5298
5299 return 0;
5300 }
5301
5302 /**
5303 * ufshcd_sdev_destroy - remove SCSI device configurations
5304 * @sdev: pointer to SCSI device
5305 */
ufshcd_sdev_destroy(struct scsi_device * sdev)5306 static void ufshcd_sdev_destroy(struct scsi_device *sdev)
5307 {
5308 struct ufs_hba *hba;
5309 unsigned long flags;
5310
5311 hba = shost_priv(sdev->host);
5312
5313 /* Drop the reference as it won't be needed anymore */
5314 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5315 spin_lock_irqsave(hba->host->host_lock, flags);
5316 hba->ufs_device_wlun = NULL;
5317 spin_unlock_irqrestore(hba->host->host_lock, flags);
5318 } else if (hba->ufs_device_wlun) {
5319 struct device *supplier = NULL;
5320
5321 /* Ensure UFS Device WLUN exists and does not disappear */
5322 spin_lock_irqsave(hba->host->host_lock, flags);
5323 if (hba->ufs_device_wlun) {
5324 supplier = &hba->ufs_device_wlun->sdev_gendev;
5325 get_device(supplier);
5326 }
5327 spin_unlock_irqrestore(hba->host->host_lock, flags);
5328
5329 if (supplier) {
5330 /*
5331 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5332 * device will not have been registered but can still
5333 * have a device link holding a reference to the device.
5334 */
5335 device_link_remove(&sdev->sdev_gendev, supplier);
5336 put_device(supplier);
5337 }
5338 }
5339 }
5340
5341 /**
5342 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5343 * @lrbp: pointer to local reference block of completed command
5344 * @scsi_status: SCSI command status
5345 *
5346 * Return: value base on SCSI command status.
5347 */
5348 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)5349 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5350 {
5351 int result = 0;
5352
5353 switch (scsi_status) {
5354 case SAM_STAT_CHECK_CONDITION:
5355 ufshcd_copy_sense_data(lrbp);
5356 fallthrough;
5357 case SAM_STAT_GOOD:
5358 result |= DID_OK << 16 | scsi_status;
5359 break;
5360 case SAM_STAT_TASK_SET_FULL:
5361 case SAM_STAT_BUSY:
5362 case SAM_STAT_TASK_ABORTED:
5363 ufshcd_copy_sense_data(lrbp);
5364 result |= scsi_status;
5365 break;
5366 default:
5367 result |= DID_ERROR << 16;
5368 break;
5369 } /* end of switch */
5370
5371 return result;
5372 }
5373
5374 /**
5375 * ufshcd_transfer_rsp_status - Get overall status of the response
5376 * @hba: per adapter instance
5377 * @lrbp: pointer to local reference block of completed command
5378 * @cqe: pointer to the completion queue entry
5379 *
5380 * Return: result of the command to notify SCSI midlayer.
5381 */
5382 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct cq_entry * cqe)5383 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5384 struct cq_entry *cqe)
5385 {
5386 int result = 0;
5387 int scsi_status;
5388 enum utp_ocs ocs;
5389 u8 upiu_flags;
5390 u32 resid;
5391
5392 upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5393 resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5394 /*
5395 * Test !overflow instead of underflow to support UFS devices that do
5396 * not set either flag.
5397 */
5398 if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5399 scsi_set_resid(lrbp->cmd, resid);
5400
5401 /* overall command status of utrd */
5402 ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5403
5404 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5405 if (lrbp->ucd_rsp_ptr->header.response ||
5406 lrbp->ucd_rsp_ptr->header.status)
5407 ocs = OCS_SUCCESS;
5408 }
5409
5410 switch (ocs) {
5411 case OCS_SUCCESS:
5412 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5413 switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5414 case UPIU_TRANSACTION_RESPONSE:
5415 /*
5416 * get the result based on SCSI status response
5417 * to notify the SCSI midlayer of the command status
5418 */
5419 scsi_status = lrbp->ucd_rsp_ptr->header.status;
5420 result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5421
5422 /*
5423 * Currently we are only supporting BKOPs exception
5424 * events hence we can ignore BKOPs exception event
5425 * during power management callbacks. BKOPs exception
5426 * event is not expected to be raised in runtime suspend
5427 * callback as it allows the urgent bkops.
5428 * During system suspend, we are anyway forcefully
5429 * disabling the bkops and if urgent bkops is needed
5430 * it will be enabled on system resume. Long term
5431 * solution could be to abort the system suspend if
5432 * UFS device needs urgent BKOPs.
5433 */
5434 if (!hba->pm_op_in_progress &&
5435 !ufshcd_eh_in_progress(hba) &&
5436 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5437 /* Flushed in suspend */
5438 schedule_work(&hba->eeh_work);
5439 break;
5440 case UPIU_TRANSACTION_REJECT_UPIU:
5441 /* TODO: handle Reject UPIU Response */
5442 result = DID_ERROR << 16;
5443 dev_err(hba->dev,
5444 "Reject UPIU not fully implemented\n");
5445 break;
5446 default:
5447 dev_err(hba->dev,
5448 "Unexpected request response code = %x\n",
5449 result);
5450 result = DID_ERROR << 16;
5451 break;
5452 }
5453 break;
5454 case OCS_ABORTED:
5455 case OCS_INVALID_COMMAND_STATUS:
5456 result |= DID_REQUEUE << 16;
5457 dev_warn(hba->dev,
5458 "OCS %s from controller for tag %d\n",
5459 (ocs == OCS_ABORTED ? "aborted" : "invalid"),
5460 lrbp->task_tag);
5461 break;
5462 case OCS_INVALID_CMD_TABLE_ATTR:
5463 case OCS_INVALID_PRDT_ATTR:
5464 case OCS_MISMATCH_DATA_BUF_SIZE:
5465 case OCS_MISMATCH_RESP_UPIU_SIZE:
5466 case OCS_PEER_COMM_FAILURE:
5467 case OCS_FATAL_ERROR:
5468 case OCS_DEVICE_FATAL_ERROR:
5469 case OCS_INVALID_CRYPTO_CONFIG:
5470 case OCS_GENERAL_CRYPTO_ERROR:
5471 default:
5472 result |= DID_ERROR << 16;
5473 dev_err(hba->dev,
5474 "OCS error from controller = %x for tag %d\n",
5475 ocs, lrbp->task_tag);
5476 ufshcd_print_evt_hist(hba);
5477 ufshcd_print_host_state(hba);
5478 break;
5479 } /* end of switch */
5480
5481 if ((host_byte(result) != DID_OK) &&
5482 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5483 ufshcd_print_tr(hba, lrbp->task_tag, true);
5484 return result;
5485 }
5486
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5487 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5488 u32 intr_mask)
5489 {
5490 if (!ufshcd_is_auto_hibern8_supported(hba) ||
5491 !ufshcd_is_auto_hibern8_enabled(hba))
5492 return false;
5493
5494 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5495 return false;
5496
5497 if (hba->active_uic_cmd &&
5498 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5499 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5500 return false;
5501
5502 return true;
5503 }
5504
5505 /**
5506 * ufshcd_uic_cmd_compl - handle completion of uic command
5507 * @hba: per adapter instance
5508 * @intr_status: interrupt status generated by the controller
5509 *
5510 * Return:
5511 * IRQ_HANDLED - If interrupt is valid
5512 * IRQ_NONE - If invalid interrupt
5513 */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5514 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5515 {
5516 irqreturn_t retval = IRQ_NONE;
5517 struct uic_command *cmd;
5518
5519 spin_lock(hba->host->host_lock);
5520 cmd = hba->active_uic_cmd;
5521 if (WARN_ON_ONCE(!cmd))
5522 goto unlock;
5523
5524 if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5525 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5526
5527 if (intr_status & UIC_COMMAND_COMPL) {
5528 cmd->argument2 |= ufshcd_get_uic_cmd_result(hba);
5529 cmd->argument3 = ufshcd_get_dme_attr_val(hba);
5530 if (!hba->uic_async_done)
5531 cmd->cmd_active = 0;
5532 complete(&cmd->done);
5533 retval = IRQ_HANDLED;
5534 }
5535
5536 if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) {
5537 cmd->cmd_active = 0;
5538 complete(hba->uic_async_done);
5539 retval = IRQ_HANDLED;
5540 }
5541
5542 if (retval == IRQ_HANDLED)
5543 ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP);
5544
5545 unlock:
5546 spin_unlock(hba->host->host_lock);
5547
5548 return retval;
5549 }
5550
5551 /* Release the resources allocated for processing a SCSI command. */
ufshcd_release_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5552 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5553 struct ufshcd_lrb *lrbp)
5554 {
5555 struct scsi_cmnd *cmd = lrbp->cmd;
5556
5557 scsi_dma_unmap(cmd);
5558 ufshcd_crypto_clear_prdt(hba, lrbp);
5559 ufshcd_release(hba);
5560 ufshcd_clk_scaling_update_busy(hba);
5561 }
5562
5563 /**
5564 * ufshcd_compl_one_cqe - handle a completion queue entry
5565 * @hba: per adapter instance
5566 * @task_tag: the task tag of the request to be completed
5567 * @cqe: pointer to the completion queue entry
5568 */
ufshcd_compl_one_cqe(struct ufs_hba * hba,int task_tag,struct cq_entry * cqe)5569 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5570 struct cq_entry *cqe)
5571 {
5572 struct ufshcd_lrb *lrbp;
5573 struct scsi_cmnd *cmd;
5574 enum utp_ocs ocs;
5575
5576 lrbp = &hba->lrb[task_tag];
5577 lrbp->compl_time_stamp = ktime_get();
5578 lrbp->compl_time_stamp_local_clock = local_clock();
5579 cmd = lrbp->cmd;
5580 if (cmd) {
5581 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5582 ufshcd_update_monitor(hba, lrbp);
5583 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5584 cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5585 ufshcd_release_scsi_cmd(hba, lrbp);
5586 /* Do not touch lrbp after scsi done */
5587 scsi_done(cmd);
5588 } else if (hba->dev_cmd.complete) {
5589 if (cqe) {
5590 ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5591 lrbp->utr_descriptor_ptr->header.ocs = ocs;
5592 }
5593 complete(hba->dev_cmd.complete);
5594 }
5595 }
5596
5597 /**
5598 * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5599 * @hba: per adapter instance
5600 * @completed_reqs: bitmask that indicates which requests to complete
5601 */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)5602 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5603 unsigned long completed_reqs)
5604 {
5605 int tag;
5606
5607 for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5608 ufshcd_compl_one_cqe(hba, tag, NULL);
5609 }
5610
5611 /* Any value that is not an existing queue number is fine for this constant. */
5612 enum {
5613 UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5614 };
5615
ufshcd_clear_polled(struct ufs_hba * hba,unsigned long * completed_reqs)5616 static void ufshcd_clear_polled(struct ufs_hba *hba,
5617 unsigned long *completed_reqs)
5618 {
5619 int tag;
5620
5621 for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5622 struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5623
5624 if (!cmd)
5625 continue;
5626 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5627 __clear_bit(tag, completed_reqs);
5628 }
5629 }
5630
5631 /*
5632 * Return: > 0 if one or more commands have been completed or 0 if no
5633 * requests have been completed.
5634 */
ufshcd_poll(struct Scsi_Host * shost,unsigned int queue_num)5635 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5636 {
5637 struct ufs_hba *hba = shost_priv(shost);
5638 unsigned long completed_reqs, flags;
5639 u32 tr_doorbell;
5640 struct ufs_hw_queue *hwq;
5641
5642 if (hba->mcq_enabled) {
5643 hwq = &hba->uhq[queue_num];
5644
5645 return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5646 }
5647
5648 spin_lock_irqsave(&hba->outstanding_lock, flags);
5649 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5650 completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5651 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5652 "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5653 hba->outstanding_reqs);
5654 if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5655 /* Do not complete polled requests from interrupt context. */
5656 ufshcd_clear_polled(hba, &completed_reqs);
5657 }
5658 hba->outstanding_reqs &= ~completed_reqs;
5659 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5660
5661 if (completed_reqs)
5662 __ufshcd_transfer_req_compl(hba, completed_reqs);
5663
5664 return completed_reqs != 0;
5665 }
5666
5667 /**
5668 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5669 * invoked from the error handler context or ufshcd_host_reset_and_restore()
5670 * to complete the pending transfers and free the resources associated with
5671 * the scsi command.
5672 *
5673 * @hba: per adapter instance
5674 * @force_compl: This flag is set to true when invoked
5675 * from ufshcd_host_reset_and_restore() in which case it requires special
5676 * handling because the host controller has been reset by ufshcd_hba_stop().
5677 */
ufshcd_mcq_compl_pending_transfer(struct ufs_hba * hba,bool force_compl)5678 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5679 bool force_compl)
5680 {
5681 struct ufs_hw_queue *hwq;
5682 struct ufshcd_lrb *lrbp;
5683 struct scsi_cmnd *cmd;
5684 unsigned long flags;
5685 int tag;
5686
5687 for (tag = 0; tag < hba->nutrs; tag++) {
5688 lrbp = &hba->lrb[tag];
5689 cmd = lrbp->cmd;
5690 if (!ufshcd_cmd_inflight(cmd) ||
5691 test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5692 continue;
5693
5694 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
5695
5696 if (force_compl) {
5697 ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5698 /*
5699 * For those cmds of which the cqes are not present
5700 * in the cq, complete them explicitly.
5701 */
5702 spin_lock_irqsave(&hwq->cq_lock, flags);
5703 if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5704 set_host_byte(cmd, DID_REQUEUE);
5705 ufshcd_release_scsi_cmd(hba, lrbp);
5706 scsi_done(cmd);
5707 }
5708 spin_unlock_irqrestore(&hwq->cq_lock, flags);
5709 } else {
5710 ufshcd_mcq_poll_cqe_lock(hba, hwq);
5711 }
5712 }
5713 }
5714
5715 /**
5716 * ufshcd_transfer_req_compl - handle SCSI and query command completion
5717 * @hba: per adapter instance
5718 *
5719 * Return:
5720 * IRQ_HANDLED - If interrupt is valid
5721 * IRQ_NONE - If invalid interrupt
5722 */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5723 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5724 {
5725 /* Resetting interrupt aggregation counters first and reading the
5726 * DOOR_BELL afterward allows us to handle all the completed requests.
5727 * In order to prevent other interrupts starvation the DB is read once
5728 * after reset. The down side of this solution is the possibility of
5729 * false interrupt if device completes another request after resetting
5730 * aggregation and before reading the DB.
5731 */
5732 if (ufshcd_is_intr_aggr_allowed(hba) &&
5733 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5734 ufshcd_reset_intr_aggr(hba);
5735
5736 if (ufs_fail_completion(hba))
5737 return IRQ_HANDLED;
5738
5739 /*
5740 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5741 * do not want polling to trigger spurious interrupt complaints.
5742 */
5743 ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5744
5745 return IRQ_HANDLED;
5746 }
5747
__ufshcd_write_ee_control(struct ufs_hba * hba,u32 ee_ctrl_mask)5748 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5749 {
5750 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5751 QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5752 &ee_ctrl_mask);
5753 }
5754
ufshcd_write_ee_control(struct ufs_hba * hba)5755 int ufshcd_write_ee_control(struct ufs_hba *hba)
5756 {
5757 int err;
5758
5759 mutex_lock(&hba->ee_ctrl_mutex);
5760 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5761 mutex_unlock(&hba->ee_ctrl_mutex);
5762 if (err)
5763 dev_err(hba->dev, "%s: failed to write ee control %d\n",
5764 __func__, err);
5765 return err;
5766 }
5767
ufshcd_update_ee_control(struct ufs_hba * hba,u16 * mask,const u16 * other_mask,u16 set,u16 clr)5768 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5769 const u16 *other_mask, u16 set, u16 clr)
5770 {
5771 u16 new_mask, ee_ctrl_mask;
5772 int err = 0;
5773
5774 mutex_lock(&hba->ee_ctrl_mutex);
5775 new_mask = (*mask & ~clr) | set;
5776 ee_ctrl_mask = new_mask | *other_mask;
5777 if (ee_ctrl_mask != hba->ee_ctrl_mask)
5778 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5779 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5780 if (!err) {
5781 hba->ee_ctrl_mask = ee_ctrl_mask;
5782 *mask = new_mask;
5783 }
5784 mutex_unlock(&hba->ee_ctrl_mutex);
5785 return err;
5786 }
5787
5788 /**
5789 * ufshcd_disable_ee - disable exception event
5790 * @hba: per-adapter instance
5791 * @mask: exception event to disable
5792 *
5793 * Disables exception event in the device so that the EVENT_ALERT
5794 * bit is not set.
5795 *
5796 * Return: zero on success, non-zero error value on failure.
5797 */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5798 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5799 {
5800 return ufshcd_update_ee_drv_mask(hba, 0, mask);
5801 }
5802
5803 /**
5804 * ufshcd_enable_ee - enable exception event
5805 * @hba: per-adapter instance
5806 * @mask: exception event to enable
5807 *
5808 * Enable corresponding exception event in the device to allow
5809 * device to alert host in critical scenarios.
5810 *
5811 * Return: zero on success, non-zero error value on failure.
5812 */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5813 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5814 {
5815 return ufshcd_update_ee_drv_mask(hba, mask, 0);
5816 }
5817
5818 /**
5819 * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5820 * @hba: per-adapter instance
5821 *
5822 * Allow device to manage background operations on its own. Enabling
5823 * this might lead to inconsistent latencies during normal data transfers
5824 * as the device is allowed to manage its own way of handling background
5825 * operations.
5826 *
5827 * Return: zero on success, non-zero on failure.
5828 */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5829 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5830 {
5831 int err = 0;
5832
5833 if (hba->auto_bkops_enabled)
5834 goto out;
5835
5836 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5837 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5838 if (err) {
5839 dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5840 __func__, err);
5841 goto out;
5842 }
5843
5844 hba->auto_bkops_enabled = true;
5845 trace_ufshcd_auto_bkops_state(hba, "Enabled");
5846
5847 /* No need of URGENT_BKOPS exception from the device */
5848 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5849 if (err)
5850 dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5851 __func__, err);
5852 out:
5853 return err;
5854 }
5855
5856 /**
5857 * ufshcd_disable_auto_bkops - block device in doing background operations
5858 * @hba: per-adapter instance
5859 *
5860 * Disabling background operations improves command response latency but
5861 * has drawback of device moving into critical state where the device is
5862 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5863 * host is idle so that BKOPS are managed effectively without any negative
5864 * impacts.
5865 *
5866 * Return: zero on success, non-zero on failure.
5867 */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5868 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5869 {
5870 int err = 0;
5871
5872 if (!hba->auto_bkops_enabled)
5873 goto out;
5874
5875 /*
5876 * If host assisted BKOPs is to be enabled, make sure
5877 * urgent bkops exception is allowed.
5878 */
5879 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5880 if (err) {
5881 dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5882 __func__, err);
5883 goto out;
5884 }
5885
5886 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5887 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5888 if (err) {
5889 dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5890 __func__, err);
5891 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5892 goto out;
5893 }
5894
5895 hba->auto_bkops_enabled = false;
5896 trace_ufshcd_auto_bkops_state(hba, "Disabled");
5897 hba->is_urgent_bkops_lvl_checked = false;
5898 out:
5899 return err;
5900 }
5901
5902 /**
5903 * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5904 * @hba: per adapter instance
5905 *
5906 * After a device reset the device may toggle the BKOPS_EN flag
5907 * to default value. The s/w tracking variables should be updated
5908 * as well. This function would change the auto-bkops state based on
5909 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5910 */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5911 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5912 {
5913 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5914 hba->auto_bkops_enabled = false;
5915 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5916 ufshcd_enable_auto_bkops(hba);
5917 } else {
5918 hba->auto_bkops_enabled = true;
5919 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5920 ufshcd_disable_auto_bkops(hba);
5921 }
5922 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5923 hba->is_urgent_bkops_lvl_checked = false;
5924 }
5925
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5926 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5927 {
5928 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5929 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5930 }
5931
5932 /**
5933 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5934 * @hba: per-adapter instance
5935 *
5936 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5937 * flag in the device to permit background operations if the device
5938 * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl",
5939 * disable otherwise.
5940 *
5941 * Return: 0 for success, non-zero in case of failure.
5942 *
5943 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5944 * to know whether auto bkops is enabled or disabled after this function
5945 * returns control to it.
5946 */
ufshcd_bkops_ctrl(struct ufs_hba * hba)5947 static int ufshcd_bkops_ctrl(struct ufs_hba *hba)
5948 {
5949 enum bkops_status status = hba->urgent_bkops_lvl;
5950 u32 curr_status = 0;
5951 int err;
5952
5953 err = ufshcd_get_bkops_status(hba, &curr_status);
5954 if (err) {
5955 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5956 __func__, err);
5957 goto out;
5958 } else if (curr_status > BKOPS_STATUS_MAX) {
5959 dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5960 __func__, curr_status);
5961 err = -EINVAL;
5962 goto out;
5963 }
5964
5965 if (curr_status >= status)
5966 err = ufshcd_enable_auto_bkops(hba);
5967 else
5968 err = ufshcd_disable_auto_bkops(hba);
5969 out:
5970 return err;
5971 }
5972
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5973 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5974 {
5975 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5976 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5977 }
5978
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5979 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5980 {
5981 int err;
5982 u32 curr_status = 0;
5983
5984 if (hba->is_urgent_bkops_lvl_checked)
5985 goto enable_auto_bkops;
5986
5987 err = ufshcd_get_bkops_status(hba, &curr_status);
5988 if (err) {
5989 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5990 __func__, err);
5991 goto out;
5992 }
5993
5994 /*
5995 * We are seeing that some devices are raising the urgent bkops
5996 * exception events even when BKOPS status doesn't indicate performace
5997 * impacted or critical. Handle these device by determining their urgent
5998 * bkops status at runtime.
5999 */
6000 if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
6001 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
6002 __func__, curr_status);
6003 /* update the current status as the urgent bkops level */
6004 hba->urgent_bkops_lvl = curr_status;
6005 hba->is_urgent_bkops_lvl_checked = true;
6006 }
6007
6008 enable_auto_bkops:
6009 err = ufshcd_enable_auto_bkops(hba);
6010 out:
6011 if (err < 0)
6012 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
6013 __func__, err);
6014 }
6015
__ufshcd_wb_toggle(struct ufs_hba * hba,bool set,enum flag_idn idn)6016 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
6017 {
6018 u8 index;
6019 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
6020 UPIU_QUERY_OPCODE_CLEAR_FLAG;
6021
6022 index = ufshcd_wb_get_query_index(hba);
6023 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
6024 }
6025
ufshcd_wb_toggle(struct ufs_hba * hba,bool enable)6026 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
6027 {
6028 int ret;
6029
6030 if (!ufshcd_is_wb_allowed(hba) ||
6031 hba->dev_info.wb_enabled == enable)
6032 return 0;
6033
6034 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
6035 if (ret) {
6036 dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
6037 __func__, enable ? "enabling" : "disabling", ret);
6038 return ret;
6039 }
6040
6041 hba->dev_info.wb_enabled = enable;
6042 dev_dbg(hba->dev, "%s: Write Booster %s\n",
6043 __func__, enable ? "enabled" : "disabled");
6044
6045 return ret;
6046 }
6047
ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba * hba,bool enable)6048 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6049 bool enable)
6050 {
6051 int ret;
6052
6053 ret = __ufshcd_wb_toggle(hba, enable,
6054 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6055 if (ret) {
6056 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6057 __func__, enable ? "enabling" : "disabling", ret);
6058 return;
6059 }
6060 dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6061 __func__, enable ? "enabled" : "disabled");
6062 }
6063
ufshcd_wb_toggle_buf_flush(struct ufs_hba * hba,bool enable)6064 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6065 {
6066 int ret;
6067
6068 if (!ufshcd_is_wb_allowed(hba) ||
6069 hba->dev_info.wb_buf_flush_enabled == enable)
6070 return 0;
6071
6072 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6073 if (ret) {
6074 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6075 __func__, enable ? "enabling" : "disabling", ret);
6076 return ret;
6077 }
6078
6079 hba->dev_info.wb_buf_flush_enabled = enable;
6080 dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6081 __func__, enable ? "enabled" : "disabled");
6082
6083 return ret;
6084 }
6085
ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba * hba,u32 avail_buf)6086 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
6087 u32 avail_buf)
6088 {
6089 u32 cur_buf;
6090 int ret;
6091 u8 index;
6092
6093 index = ufshcd_wb_get_query_index(hba);
6094 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6095 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6096 index, 0, &cur_buf);
6097 if (ret) {
6098 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6099 __func__, ret);
6100 return false;
6101 }
6102
6103 if (!cur_buf) {
6104 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6105 cur_buf);
6106 return false;
6107 }
6108 /* Let it continue to flush when available buffer exceeds threshold */
6109 return avail_buf < hba->vps->wb_flush_threshold;
6110 }
6111
ufshcd_wb_force_disable(struct ufs_hba * hba)6112 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6113 {
6114 if (ufshcd_is_wb_buf_flush_allowed(hba))
6115 ufshcd_wb_toggle_buf_flush(hba, false);
6116
6117 ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6118 ufshcd_wb_toggle(hba, false);
6119 hba->caps &= ~UFSHCD_CAP_WB_EN;
6120
6121 dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6122 }
6123
ufshcd_is_wb_buf_lifetime_available(struct ufs_hba * hba)6124 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6125 {
6126 u32 lifetime;
6127 int ret;
6128 u8 index;
6129
6130 index = ufshcd_wb_get_query_index(hba);
6131 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6132 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6133 index, 0, &lifetime);
6134 if (ret) {
6135 dev_err(hba->dev,
6136 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6137 __func__, ret);
6138 return false;
6139 }
6140
6141 if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6142 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6143 __func__, lifetime);
6144 return false;
6145 }
6146
6147 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6148 __func__, lifetime);
6149
6150 return true;
6151 }
6152
ufshcd_wb_need_flush(struct ufs_hba * hba)6153 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6154 {
6155 int ret;
6156 u32 avail_buf;
6157 u8 index;
6158
6159 if (!ufshcd_is_wb_allowed(hba))
6160 return false;
6161
6162 if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6163 ufshcd_wb_force_disable(hba);
6164 return false;
6165 }
6166
6167 /*
6168 * The ufs device needs the vcc to be ON to flush.
6169 * With user-space reduction enabled, it's enough to enable flush
6170 * by checking only the available buffer. The threshold
6171 * defined here is > 90% full.
6172 * With user-space preserved enabled, the current-buffer
6173 * should be checked too because the wb buffer size can reduce
6174 * when disk tends to be full. This info is provided by current
6175 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6176 * keeping vcc on when current buffer is empty.
6177 */
6178 index = ufshcd_wb_get_query_index(hba);
6179 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6180 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6181 index, 0, &avail_buf);
6182 if (ret) {
6183 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6184 __func__, ret);
6185 return false;
6186 }
6187
6188 if (!hba->dev_info.b_presrv_uspc_en)
6189 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6190
6191 return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6192 }
6193
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)6194 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6195 {
6196 struct ufs_hba *hba = container_of(to_delayed_work(work),
6197 struct ufs_hba,
6198 rpm_dev_flush_recheck_work);
6199 /*
6200 * To prevent unnecessary VCC power drain after device finishes
6201 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6202 * after a certain delay to recheck the threshold by next runtime
6203 * suspend.
6204 */
6205 ufshcd_rpm_get_sync(hba);
6206 ufshcd_rpm_put_sync(hba);
6207 }
6208
6209 /**
6210 * ufshcd_exception_event_handler - handle exceptions raised by device
6211 * @work: pointer to work data
6212 *
6213 * Read bExceptionEventStatus attribute from the device and handle the
6214 * exception event accordingly.
6215 */
ufshcd_exception_event_handler(struct work_struct * work)6216 static void ufshcd_exception_event_handler(struct work_struct *work)
6217 {
6218 struct ufs_hba *hba;
6219 int err;
6220 u32 status = 0;
6221 hba = container_of(work, struct ufs_hba, eeh_work);
6222
6223 err = ufshcd_get_ee_status(hba, &status);
6224 if (err) {
6225 dev_err(hba->dev, "%s: failed to get exception status %d\n",
6226 __func__, err);
6227 return;
6228 }
6229
6230 trace_ufshcd_exception_event(hba, status);
6231
6232 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6233 ufshcd_bkops_exception_event_handler(hba);
6234
6235 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6236 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
6237
6238 if (status & hba->ee_drv_mask & MASK_EE_HEALTH_CRITICAL) {
6239 hba->critical_health_count++;
6240 sysfs_notify(&hba->dev->kobj, NULL, "critical_health");
6241 }
6242
6243 ufs_debugfs_exception_event(hba, status);
6244 }
6245
6246 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba,bool force_compl)6247 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6248 {
6249 if (hba->mcq_enabled)
6250 ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6251 else
6252 ufshcd_transfer_req_compl(hba);
6253
6254 ufshcd_tmc_handler(hba);
6255 }
6256
6257 /**
6258 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6259 * to recover from the DL NAC errors or not.
6260 * @hba: per-adapter instance
6261 *
6262 * Return: true if error handling is required, false otherwise.
6263 */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)6264 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6265 {
6266 unsigned long flags;
6267 bool err_handling = true;
6268
6269 spin_lock_irqsave(hba->host->host_lock, flags);
6270 /*
6271 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6272 * device fatal error and/or DL NAC & REPLAY timeout errors.
6273 */
6274 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6275 goto out;
6276
6277 if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6278 ((hba->saved_err & UIC_ERROR) &&
6279 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6280 goto out;
6281
6282 if ((hba->saved_err & UIC_ERROR) &&
6283 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6284 int err;
6285 /*
6286 * wait for 50ms to see if we can get any other errors or not.
6287 */
6288 spin_unlock_irqrestore(hba->host->host_lock, flags);
6289 msleep(50);
6290 spin_lock_irqsave(hba->host->host_lock, flags);
6291
6292 /*
6293 * now check if we have got any other severe errors other than
6294 * DL NAC error?
6295 */
6296 if ((hba->saved_err & INT_FATAL_ERRORS) ||
6297 ((hba->saved_err & UIC_ERROR) &&
6298 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6299 goto out;
6300
6301 /*
6302 * As DL NAC is the only error received so far, send out NOP
6303 * command to confirm if link is still active or not.
6304 * - If we don't get any response then do error recovery.
6305 * - If we get response then clear the DL NAC error bit.
6306 */
6307
6308 spin_unlock_irqrestore(hba->host->host_lock, flags);
6309 err = ufshcd_verify_dev_init(hba);
6310 spin_lock_irqsave(hba->host->host_lock, flags);
6311
6312 if (err)
6313 goto out;
6314
6315 /* Link seems to be alive hence ignore the DL NAC errors */
6316 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6317 hba->saved_err &= ~UIC_ERROR;
6318 /* clear NAC error */
6319 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6320 if (!hba->saved_uic_err)
6321 err_handling = false;
6322 }
6323 out:
6324 spin_unlock_irqrestore(hba->host->host_lock, flags);
6325 return err_handling;
6326 }
6327
6328 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)6329 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6330 {
6331 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6332 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6333 }
6334
ufshcd_schedule_eh_work(struct ufs_hba * hba)6335 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6336 {
6337 lockdep_assert_held(hba->host->host_lock);
6338
6339 /* handle fatal errors only when link is not in error state */
6340 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6341 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6342 ufshcd_is_saved_err_fatal(hba))
6343 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6344 else
6345 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6346 queue_work(hba->eh_wq, &hba->eh_work);
6347 }
6348 }
6349
ufshcd_force_error_recovery(struct ufs_hba * hba)6350 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6351 {
6352 spin_lock_irq(hba->host->host_lock);
6353 hba->force_reset = true;
6354 ufshcd_schedule_eh_work(hba);
6355 spin_unlock_irq(hba->host->host_lock);
6356 }
6357
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)6358 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6359 {
6360 mutex_lock(&hba->wb_mutex);
6361 down_write(&hba->clk_scaling_lock);
6362 hba->clk_scaling.is_allowed = allow;
6363 up_write(&hba->clk_scaling_lock);
6364 mutex_unlock(&hba->wb_mutex);
6365 }
6366
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)6367 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6368 {
6369 if (suspend) {
6370 if (hba->clk_scaling.is_enabled)
6371 ufshcd_suspend_clkscaling(hba);
6372 ufshcd_clk_scaling_allow(hba, false);
6373 } else {
6374 ufshcd_clk_scaling_allow(hba, true);
6375 if (hba->clk_scaling.is_enabled)
6376 ufshcd_resume_clkscaling(hba);
6377 }
6378 }
6379
ufshcd_err_handling_prepare(struct ufs_hba * hba)6380 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6381 {
6382 ufshcd_rpm_get_sync(hba);
6383 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6384 hba->is_sys_suspended) {
6385 enum ufs_pm_op pm_op;
6386
6387 /*
6388 * Don't assume anything of resume, if
6389 * resume fails, irq and clocks can be OFF, and powers
6390 * can be OFF or in LPM.
6391 */
6392 ufshcd_setup_hba_vreg(hba, true);
6393 ufshcd_enable_irq(hba);
6394 ufshcd_setup_vreg(hba, true);
6395 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6396 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6397 ufshcd_hold(hba);
6398 if (!ufshcd_is_clkgating_allowed(hba))
6399 ufshcd_setup_clocks(hba, true);
6400 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6401 ufshcd_vops_resume(hba, pm_op);
6402 } else {
6403 ufshcd_hold(hba);
6404 if (ufshcd_is_clkscaling_supported(hba) &&
6405 hba->clk_scaling.is_enabled)
6406 ufshcd_suspend_clkscaling(hba);
6407 ufshcd_clk_scaling_allow(hba, false);
6408 }
6409 /* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6410 blk_mq_quiesce_tagset(&hba->host->tag_set);
6411 cancel_work_sync(&hba->eeh_work);
6412 }
6413
ufshcd_err_handling_unprepare(struct ufs_hba * hba)6414 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6415 {
6416 blk_mq_unquiesce_tagset(&hba->host->tag_set);
6417 ufshcd_release(hba);
6418 if (ufshcd_is_clkscaling_supported(hba))
6419 ufshcd_clk_scaling_suspend(hba, false);
6420 ufshcd_rpm_put(hba);
6421 }
6422
ufshcd_err_handling_should_stop(struct ufs_hba * hba)6423 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6424 {
6425 return (!hba->is_powered || hba->shutting_down ||
6426 !hba->ufs_device_wlun ||
6427 hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6428 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6429 ufshcd_is_link_broken(hba))));
6430 }
6431
6432 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)6433 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6434 {
6435 struct Scsi_Host *shost = hba->host;
6436 struct scsi_device *sdev;
6437 struct request_queue *q;
6438 int ret;
6439
6440 hba->is_sys_suspended = false;
6441 /*
6442 * Set RPM status of wlun device to RPM_ACTIVE,
6443 * this also clears its runtime error.
6444 */
6445 ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6446
6447 /* hba device might have a runtime error otherwise */
6448 if (ret)
6449 ret = pm_runtime_set_active(hba->dev);
6450 /*
6451 * If wlun device had runtime error, we also need to resume those
6452 * consumer scsi devices in case any of them has failed to be
6453 * resumed due to supplier runtime resume failure. This is to unblock
6454 * blk_queue_enter in case there are bios waiting inside it.
6455 */
6456 if (!ret) {
6457 shost_for_each_device(sdev, shost) {
6458 q = sdev->request_queue;
6459 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6460 q->rpm_status == RPM_SUSPENDING))
6461 pm_request_resume(q->dev);
6462 }
6463 }
6464 }
6465 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)6466 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6467 {
6468 }
6469 #endif
6470
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)6471 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6472 {
6473 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6474 u32 mode;
6475
6476 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6477
6478 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6479 return true;
6480
6481 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6482 return true;
6483
6484 return false;
6485 }
6486
ufshcd_abort_one(struct request * rq,void * priv)6487 static bool ufshcd_abort_one(struct request *rq, void *priv)
6488 {
6489 int *ret = priv;
6490 u32 tag = rq->tag;
6491 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6492 struct scsi_device *sdev = cmd->device;
6493 struct Scsi_Host *shost = sdev->host;
6494 struct ufs_hba *hba = shost_priv(shost);
6495
6496 *ret = ufshcd_try_to_abort_task(hba, tag);
6497 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6498 hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6499 *ret ? "failed" : "succeeded");
6500
6501 return *ret == 0;
6502 }
6503
6504 /**
6505 * ufshcd_abort_all - Abort all pending commands.
6506 * @hba: Host bus adapter pointer.
6507 *
6508 * Return: true if and only if the host controller needs to be reset.
6509 */
ufshcd_abort_all(struct ufs_hba * hba)6510 static bool ufshcd_abort_all(struct ufs_hba *hba)
6511 {
6512 int tag, ret = 0;
6513
6514 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6515 if (ret)
6516 goto out;
6517
6518 /* Clear pending task management requests */
6519 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6520 ret = ufshcd_clear_tm_cmd(hba, tag);
6521 if (ret)
6522 goto out;
6523 }
6524
6525 out:
6526 /* Complete the requests that are cleared by s/w */
6527 ufshcd_complete_requests(hba, false);
6528
6529 return ret != 0;
6530 }
6531
6532 /**
6533 * ufshcd_err_handler - handle UFS errors that require s/w attention
6534 * @work: pointer to work structure
6535 */
ufshcd_err_handler(struct work_struct * work)6536 static void ufshcd_err_handler(struct work_struct *work)
6537 {
6538 int retries = MAX_ERR_HANDLER_RETRIES;
6539 struct ufs_hba *hba;
6540 unsigned long flags;
6541 bool needs_restore;
6542 bool needs_reset;
6543 int pmc_err;
6544
6545 hba = container_of(work, struct ufs_hba, eh_work);
6546
6547 dev_info(hba->dev,
6548 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6549 __func__, ufshcd_state_name[hba->ufshcd_state],
6550 hba->is_powered, hba->shutting_down, hba->saved_err,
6551 hba->saved_uic_err, hba->force_reset,
6552 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6553
6554 down(&hba->host_sem);
6555 spin_lock_irqsave(hba->host->host_lock, flags);
6556 if (ufshcd_err_handling_should_stop(hba)) {
6557 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6558 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6559 spin_unlock_irqrestore(hba->host->host_lock, flags);
6560 up(&hba->host_sem);
6561 return;
6562 }
6563 ufshcd_set_eh_in_progress(hba);
6564 spin_unlock_irqrestore(hba->host->host_lock, flags);
6565 ufshcd_err_handling_prepare(hba);
6566 /* Complete requests that have door-bell cleared by h/w */
6567 ufshcd_complete_requests(hba, false);
6568 spin_lock_irqsave(hba->host->host_lock, flags);
6569 again:
6570 needs_restore = false;
6571 needs_reset = false;
6572
6573 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6574 hba->ufshcd_state = UFSHCD_STATE_RESET;
6575 /*
6576 * A full reset and restore might have happened after preparation
6577 * is finished, double check whether we should stop.
6578 */
6579 if (ufshcd_err_handling_should_stop(hba))
6580 goto skip_err_handling;
6581
6582 if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6583 !hba->force_reset) {
6584 bool ret;
6585
6586 spin_unlock_irqrestore(hba->host->host_lock, flags);
6587 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6588 ret = ufshcd_quirk_dl_nac_errors(hba);
6589 spin_lock_irqsave(hba->host->host_lock, flags);
6590 if (!ret && ufshcd_err_handling_should_stop(hba))
6591 goto skip_err_handling;
6592 }
6593
6594 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6595 (hba->saved_uic_err &&
6596 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6597 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6598
6599 spin_unlock_irqrestore(hba->host->host_lock, flags);
6600 ufshcd_print_host_state(hba);
6601 ufshcd_print_pwr_info(hba);
6602 ufshcd_print_evt_hist(hba);
6603 ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6604 ufshcd_print_trs_all(hba, pr_prdt);
6605 spin_lock_irqsave(hba->host->host_lock, flags);
6606 }
6607
6608 /*
6609 * if host reset is required then skip clearing the pending
6610 * transfers forcefully because they will get cleared during
6611 * host reset and restore
6612 */
6613 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6614 ufshcd_is_saved_err_fatal(hba) ||
6615 ((hba->saved_err & UIC_ERROR) &&
6616 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6617 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6618 needs_reset = true;
6619 goto do_reset;
6620 }
6621
6622 /*
6623 * If LINERESET was caught, UFS might have been put to PWM mode,
6624 * check if power mode restore is needed.
6625 */
6626 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6627 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6628 if (!hba->saved_uic_err)
6629 hba->saved_err &= ~UIC_ERROR;
6630 spin_unlock_irqrestore(hba->host->host_lock, flags);
6631 if (ufshcd_is_pwr_mode_restore_needed(hba))
6632 needs_restore = true;
6633 spin_lock_irqsave(hba->host->host_lock, flags);
6634 if (!hba->saved_err && !needs_restore)
6635 goto skip_err_handling;
6636 }
6637
6638 hba->silence_err_logs = true;
6639 /* release lock as clear command might sleep */
6640 spin_unlock_irqrestore(hba->host->host_lock, flags);
6641
6642 needs_reset = ufshcd_abort_all(hba);
6643
6644 spin_lock_irqsave(hba->host->host_lock, flags);
6645 hba->silence_err_logs = false;
6646 if (needs_reset)
6647 goto do_reset;
6648
6649 /*
6650 * After all reqs and tasks are cleared from doorbell,
6651 * now it is safe to retore power mode.
6652 */
6653 if (needs_restore) {
6654 spin_unlock_irqrestore(hba->host->host_lock, flags);
6655 /*
6656 * Hold the scaling lock just in case dev cmds
6657 * are sent via bsg and/or sysfs.
6658 */
6659 down_write(&hba->clk_scaling_lock);
6660 hba->force_pmc = true;
6661 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6662 if (pmc_err) {
6663 needs_reset = true;
6664 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6665 __func__, pmc_err);
6666 }
6667 hba->force_pmc = false;
6668 ufshcd_print_pwr_info(hba);
6669 up_write(&hba->clk_scaling_lock);
6670 spin_lock_irqsave(hba->host->host_lock, flags);
6671 }
6672
6673 do_reset:
6674 /* Fatal errors need reset */
6675 if (needs_reset) {
6676 int err;
6677
6678 hba->force_reset = false;
6679 spin_unlock_irqrestore(hba->host->host_lock, flags);
6680 err = ufshcd_reset_and_restore(hba);
6681 if (err)
6682 dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6683 __func__, err);
6684 else
6685 ufshcd_recover_pm_error(hba);
6686 spin_lock_irqsave(hba->host->host_lock, flags);
6687 }
6688
6689 skip_err_handling:
6690 if (!needs_reset) {
6691 if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6692 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6693 if (hba->saved_err || hba->saved_uic_err)
6694 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6695 __func__, hba->saved_err, hba->saved_uic_err);
6696 }
6697 /* Exit in an operational state or dead */
6698 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6699 hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6700 if (--retries)
6701 goto again;
6702 hba->ufshcd_state = UFSHCD_STATE_ERROR;
6703 }
6704 ufshcd_clear_eh_in_progress(hba);
6705 spin_unlock_irqrestore(hba->host->host_lock, flags);
6706 ufshcd_err_handling_unprepare(hba);
6707 up(&hba->host_sem);
6708
6709 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6710 ufshcd_state_name[hba->ufshcd_state]);
6711 }
6712
6713 /**
6714 * ufshcd_update_uic_error - check and set fatal UIC error flags.
6715 * @hba: per-adapter instance
6716 *
6717 * Return:
6718 * IRQ_HANDLED - If interrupt is valid
6719 * IRQ_NONE - If invalid interrupt
6720 */
ufshcd_update_uic_error(struct ufs_hba * hba)6721 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6722 {
6723 u32 reg;
6724 irqreturn_t retval = IRQ_NONE;
6725
6726 /* PHY layer error */
6727 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6728 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6729 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6730 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6731 /*
6732 * To know whether this error is fatal or not, DB timeout
6733 * must be checked but this error is handled separately.
6734 */
6735 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6736 dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6737 __func__);
6738
6739 /* Got a LINERESET indication. */
6740 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6741 struct uic_command *cmd = NULL;
6742
6743 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6744 if (hba->uic_async_done && hba->active_uic_cmd)
6745 cmd = hba->active_uic_cmd;
6746 /*
6747 * Ignore the LINERESET during power mode change
6748 * operation via DME_SET command.
6749 */
6750 if (cmd && (cmd->command == UIC_CMD_DME_SET))
6751 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6752 }
6753 retval |= IRQ_HANDLED;
6754 }
6755
6756 /* PA_INIT_ERROR is fatal and needs UIC reset */
6757 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6758 if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6759 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6760 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6761
6762 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6763 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6764 else if (hba->dev_quirks &
6765 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6766 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6767 hba->uic_error |=
6768 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6769 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6770 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6771 }
6772 retval |= IRQ_HANDLED;
6773 }
6774
6775 /* UIC NL/TL/DME errors needs software retry */
6776 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6777 if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6778 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6779 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6780 hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6781 retval |= IRQ_HANDLED;
6782 }
6783
6784 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6785 if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6786 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6787 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6788 hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6789 retval |= IRQ_HANDLED;
6790 }
6791
6792 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6793 if ((reg & UIC_DME_ERROR) &&
6794 (reg & UIC_DME_ERROR_CODE_MASK)) {
6795 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6796 hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6797 retval |= IRQ_HANDLED;
6798 }
6799
6800 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6801 __func__, hba->uic_error);
6802 return retval;
6803 }
6804
6805 /**
6806 * ufshcd_check_errors - Check for errors that need s/w attention
6807 * @hba: per-adapter instance
6808 * @intr_status: interrupt status generated by the controller
6809 *
6810 * Return:
6811 * IRQ_HANDLED - If interrupt is valid
6812 * IRQ_NONE - If invalid interrupt
6813 */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)6814 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6815 {
6816 bool queue_eh_work = false;
6817 irqreturn_t retval = IRQ_NONE;
6818
6819 spin_lock(hba->host->host_lock);
6820 hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6821
6822 if (hba->errors & INT_FATAL_ERRORS) {
6823 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6824 hba->errors);
6825 queue_eh_work = true;
6826 }
6827
6828 if (hba->errors & UIC_ERROR) {
6829 hba->uic_error = 0;
6830 retval = ufshcd_update_uic_error(hba);
6831 if (hba->uic_error)
6832 queue_eh_work = true;
6833 }
6834
6835 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6836 dev_err(hba->dev,
6837 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6838 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6839 "Enter" : "Exit",
6840 hba->errors, ufshcd_get_upmcrs(hba));
6841 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6842 hba->errors);
6843 ufshcd_set_link_broken(hba);
6844 queue_eh_work = true;
6845 }
6846
6847 if (queue_eh_work) {
6848 /*
6849 * update the transfer error masks to sticky bits, let's do this
6850 * irrespective of current ufshcd_state.
6851 */
6852 hba->saved_err |= hba->errors;
6853 hba->saved_uic_err |= hba->uic_error;
6854
6855 /* dump controller state before resetting */
6856 if ((hba->saved_err &
6857 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6858 (hba->saved_uic_err &&
6859 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6860 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6861 __func__, hba->saved_err,
6862 hba->saved_uic_err);
6863 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6864 "host_regs: ");
6865 ufshcd_print_pwr_info(hba);
6866 }
6867 ufshcd_schedule_eh_work(hba);
6868 retval |= IRQ_HANDLED;
6869 }
6870 /*
6871 * if (!queue_eh_work) -
6872 * Other errors are either non-fatal where host recovers
6873 * itself without s/w intervention or errors that will be
6874 * handled by the SCSI core layer.
6875 */
6876 hba->errors = 0;
6877 hba->uic_error = 0;
6878 spin_unlock(hba->host->host_lock);
6879 return retval;
6880 }
6881
6882 /**
6883 * ufshcd_tmc_handler - handle task management function completion
6884 * @hba: per adapter instance
6885 *
6886 * Return:
6887 * IRQ_HANDLED - If interrupt is valid
6888 * IRQ_NONE - If invalid interrupt
6889 */
ufshcd_tmc_handler(struct ufs_hba * hba)6890 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6891 {
6892 unsigned long flags, pending, issued;
6893 irqreturn_t ret = IRQ_NONE;
6894 int tag;
6895
6896 spin_lock_irqsave(hba->host->host_lock, flags);
6897 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6898 issued = hba->outstanding_tasks & ~pending;
6899 for_each_set_bit(tag, &issued, hba->nutmrs) {
6900 struct request *req = hba->tmf_rqs[tag];
6901 struct completion *c = req->end_io_data;
6902
6903 complete(c);
6904 ret = IRQ_HANDLED;
6905 }
6906 spin_unlock_irqrestore(hba->host->host_lock, flags);
6907
6908 return ret;
6909 }
6910
6911 /**
6912 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6913 * @hba: per adapter instance
6914 *
6915 * Return: IRQ_HANDLED if interrupt is handled.
6916 */
ufshcd_handle_mcq_cq_events(struct ufs_hba * hba)6917 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6918 {
6919 struct ufs_hw_queue *hwq;
6920 unsigned long outstanding_cqs;
6921 unsigned int nr_queues;
6922 int i, ret;
6923 u32 events;
6924
6925 ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6926 if (ret)
6927 outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6928
6929 /* Exclude the poll queues */
6930 nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6931 for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6932 hwq = &hba->uhq[i];
6933
6934 events = ufshcd_mcq_read_cqis(hba, i);
6935 if (events)
6936 ufshcd_mcq_write_cqis(hba, events, i);
6937
6938 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6939 ufshcd_mcq_poll_cqe_lock(hba, hwq);
6940 }
6941
6942 return IRQ_HANDLED;
6943 }
6944
6945 /**
6946 * ufshcd_sl_intr - Interrupt service routine
6947 * @hba: per adapter instance
6948 * @intr_status: contains interrupts generated by the controller
6949 *
6950 * Return:
6951 * IRQ_HANDLED - If interrupt is valid
6952 * IRQ_NONE - If invalid interrupt
6953 */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)6954 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6955 {
6956 irqreturn_t retval = IRQ_NONE;
6957
6958 if (intr_status & UFSHCD_UIC_MASK)
6959 retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6960
6961 if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6962 retval |= ufshcd_check_errors(hba, intr_status);
6963
6964 if (intr_status & UTP_TASK_REQ_COMPL)
6965 retval |= ufshcd_tmc_handler(hba);
6966
6967 if (intr_status & UTP_TRANSFER_REQ_COMPL)
6968 retval |= ufshcd_transfer_req_compl(hba);
6969
6970 if (intr_status & MCQ_CQ_EVENT_STATUS)
6971 retval |= ufshcd_handle_mcq_cq_events(hba);
6972
6973 return retval;
6974 }
6975
6976 /**
6977 * ufshcd_intr - Main interrupt service routine
6978 * @irq: irq number
6979 * @__hba: pointer to adapter instance
6980 *
6981 * Return:
6982 * IRQ_HANDLED - If interrupt is valid
6983 * IRQ_NONE - If invalid interrupt
6984 */
ufshcd_intr(int irq,void * __hba)6985 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6986 {
6987 u32 intr_status, enabled_intr_status = 0;
6988 irqreturn_t retval = IRQ_NONE;
6989 struct ufs_hba *hba = __hba;
6990 int retries = hba->nutrs;
6991
6992 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6993 hba->ufs_stats.last_intr_status = intr_status;
6994 hba->ufs_stats.last_intr_ts = local_clock();
6995
6996 /*
6997 * There could be max of hba->nutrs reqs in flight and in worst case
6998 * if the reqs get finished 1 by 1 after the interrupt status is
6999 * read, make sure we handle them by checking the interrupt status
7000 * again in a loop until we process all of the reqs before returning.
7001 */
7002 while (intr_status && retries--) {
7003 enabled_intr_status =
7004 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7005 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7006 if (enabled_intr_status)
7007 retval |= ufshcd_sl_intr(hba, enabled_intr_status);
7008
7009 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7010 }
7011
7012 if (enabled_intr_status && retval == IRQ_NONE &&
7013 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
7014 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
7015 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
7016 __func__,
7017 intr_status,
7018 hba->ufs_stats.last_intr_status,
7019 enabled_intr_status);
7020 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
7021 }
7022
7023 return retval;
7024 }
7025
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)7026 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
7027 {
7028 int err = 0;
7029 u32 mask = 1 << tag;
7030
7031 if (!test_bit(tag, &hba->outstanding_tasks))
7032 goto out;
7033
7034 ufshcd_utmrl_clear(hba, tag);
7035
7036 /* poll for max. 1 sec to clear door bell register by h/w */
7037 err = ufshcd_wait_for_register(hba,
7038 REG_UTP_TASK_REQ_DOOR_BELL,
7039 mask, 0, 1000, 1000);
7040
7041 dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7042 tag, err < 0 ? "failed" : "succeeded");
7043
7044 out:
7045 return err;
7046 }
7047
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)7048 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7049 struct utp_task_req_desc *treq, u8 tm_function)
7050 {
7051 struct request_queue *q = hba->tmf_queue;
7052 struct Scsi_Host *host = hba->host;
7053 DECLARE_COMPLETION_ONSTACK(wait);
7054 struct request *req;
7055 unsigned long flags;
7056 int task_tag, err;
7057
7058 /*
7059 * blk_mq_alloc_request() is used here only to get a free tag.
7060 */
7061 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7062 if (IS_ERR(req))
7063 return PTR_ERR(req);
7064
7065 req->end_io_data = &wait;
7066 ufshcd_hold(hba);
7067
7068 spin_lock_irqsave(host->host_lock, flags);
7069
7070 task_tag = req->tag;
7071 hba->tmf_rqs[req->tag] = req;
7072 treq->upiu_req.req_header.task_tag = task_tag;
7073
7074 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7075 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7076
7077 __set_bit(task_tag, &hba->outstanding_tasks);
7078
7079 spin_unlock_irqrestore(host->host_lock, flags);
7080
7081 /* send command to the controller */
7082 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7083
7084 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7085
7086 /* wait until the task management command is completed */
7087 err = wait_for_completion_io_timeout(&wait,
7088 msecs_to_jiffies(TM_CMD_TIMEOUT));
7089 if (!err) {
7090 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7091 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7092 __func__, tm_function);
7093 if (ufshcd_clear_tm_cmd(hba, task_tag))
7094 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7095 __func__, task_tag);
7096 err = -ETIMEDOUT;
7097 } else {
7098 err = 0;
7099 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7100
7101 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7102 }
7103
7104 spin_lock_irqsave(hba->host->host_lock, flags);
7105 hba->tmf_rqs[req->tag] = NULL;
7106 __clear_bit(task_tag, &hba->outstanding_tasks);
7107 spin_unlock_irqrestore(hba->host->host_lock, flags);
7108
7109 ufshcd_release(hba);
7110 blk_mq_free_request(req);
7111
7112 return err;
7113 }
7114
7115 /**
7116 * ufshcd_issue_tm_cmd - issues task management commands to controller
7117 * @hba: per adapter instance
7118 * @lun_id: LUN ID to which TM command is sent
7119 * @task_id: task ID to which the TM command is applicable
7120 * @tm_function: task management function opcode
7121 * @tm_response: task management service response return value
7122 *
7123 * Return: non-zero value on error, zero on success.
7124 */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)7125 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7126 u8 tm_function, u8 *tm_response)
7127 {
7128 struct utp_task_req_desc treq = { };
7129 enum utp_ocs ocs_value;
7130 int err;
7131
7132 /* Configure task request descriptor */
7133 treq.header.interrupt = 1;
7134 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7135
7136 /* Configure task request UPIU */
7137 treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7138 treq.upiu_req.req_header.lun = lun_id;
7139 treq.upiu_req.req_header.tm_function = tm_function;
7140
7141 /*
7142 * The host shall provide the same value for LUN field in the basic
7143 * header and for Input Parameter.
7144 */
7145 treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7146 treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7147
7148 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7149 if (err == -ETIMEDOUT)
7150 return err;
7151
7152 ocs_value = treq.header.ocs & MASK_OCS;
7153 if (ocs_value != OCS_SUCCESS)
7154 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7155 __func__, ocs_value);
7156 else if (tm_response)
7157 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7158 MASK_TM_SERVICE_RESP;
7159 return err;
7160 }
7161
7162 /**
7163 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7164 * @hba: per-adapter instance
7165 * @req_upiu: upiu request
7166 * @rsp_upiu: upiu reply
7167 * @desc_buff: pointer to descriptor buffer, NULL if NA
7168 * @buff_len: descriptor size, 0 if NA
7169 * @cmd_type: specifies the type (NOP, Query...)
7170 * @desc_op: descriptor operation
7171 *
7172 * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7173 * Therefore, it "rides" the device management infrastructure: uses its tag and
7174 * tasks work queues.
7175 *
7176 * Since there is only one available tag for device management commands,
7177 * the caller is expected to hold the hba->dev_cmd.lock mutex.
7178 *
7179 * Return: 0 upon success; < 0 upon failure.
7180 */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)7181 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7182 struct utp_upiu_req *req_upiu,
7183 struct utp_upiu_req *rsp_upiu,
7184 u8 *desc_buff, int *buff_len,
7185 enum dev_cmd_type cmd_type,
7186 enum query_opcode desc_op)
7187 {
7188 const u32 tag = hba->reserved_slot;
7189 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7190 int err = 0;
7191 u8 upiu_flags;
7192
7193 /* Protects use of hba->reserved_slot. */
7194 lockdep_assert_held(&hba->dev_cmd.lock);
7195
7196 ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
7197
7198 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7199
7200 /* update the task tag in the request upiu */
7201 req_upiu->header.task_tag = tag;
7202
7203 /* just copy the upiu request as it is */
7204 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7205 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7206 /* The Data Segment Area is optional depending upon the query
7207 * function value. for WRITE DESCRIPTOR, the data segment
7208 * follows right after the tsf.
7209 */
7210 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7211 *buff_len = 0;
7212 }
7213
7214 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7215
7216 /*
7217 * ignore the returning value here - ufshcd_check_query_response is
7218 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7219 * read the response directly ignoring all errors.
7220 */
7221 ufshcd_issue_dev_cmd(hba, lrbp, tag, QUERY_REQ_TIMEOUT);
7222
7223 /* just copy the upiu response as it is */
7224 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7225 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7226 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7227 u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7228 .data_segment_length);
7229
7230 if (*buff_len >= resp_len) {
7231 memcpy(desc_buff, descp, resp_len);
7232 *buff_len = resp_len;
7233 } else {
7234 dev_warn(hba->dev,
7235 "%s: rsp size %d is bigger than buffer size %d",
7236 __func__, resp_len, *buff_len);
7237 *buff_len = 0;
7238 err = -EINVAL;
7239 }
7240 }
7241 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7242 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7243
7244 return err;
7245 }
7246
7247 /**
7248 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7249 * @hba: per-adapter instance
7250 * @req_upiu: upiu request
7251 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands
7252 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target
7253 * @desc_buff: pointer to descriptor buffer, NULL if NA
7254 * @buff_len: descriptor size, 0 if NA
7255 * @desc_op: descriptor operation
7256 *
7257 * Supports UTP Transfer requests (nop and query), and UTP Task
7258 * Management requests.
7259 * It is up to the caller to fill the upiu conent properly, as it will
7260 * be copied without any further input validations.
7261 *
7262 * Return: 0 upon success; < 0 upon failure.
7263 */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,enum upiu_request_transaction msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)7264 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7265 struct utp_upiu_req *req_upiu,
7266 struct utp_upiu_req *rsp_upiu,
7267 enum upiu_request_transaction msgcode,
7268 u8 *desc_buff, int *buff_len,
7269 enum query_opcode desc_op)
7270 {
7271 int err;
7272 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7273 struct utp_task_req_desc treq = { };
7274 enum utp_ocs ocs_value;
7275 u8 tm_f = req_upiu->header.tm_function;
7276
7277 switch (msgcode) {
7278 case UPIU_TRANSACTION_NOP_OUT:
7279 cmd_type = DEV_CMD_TYPE_NOP;
7280 fallthrough;
7281 case UPIU_TRANSACTION_QUERY_REQ:
7282 ufshcd_dev_man_lock(hba);
7283 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7284 desc_buff, buff_len,
7285 cmd_type, desc_op);
7286 ufshcd_dev_man_unlock(hba);
7287
7288 break;
7289 case UPIU_TRANSACTION_TASK_REQ:
7290 treq.header.interrupt = 1;
7291 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7292
7293 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7294
7295 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7296 if (err == -ETIMEDOUT)
7297 break;
7298
7299 ocs_value = treq.header.ocs & MASK_OCS;
7300 if (ocs_value != OCS_SUCCESS) {
7301 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7302 ocs_value);
7303 break;
7304 }
7305
7306 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7307
7308 break;
7309 default:
7310 err = -EINVAL;
7311
7312 break;
7313 }
7314
7315 return err;
7316 }
7317
7318 /**
7319 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7320 * @hba: per adapter instance
7321 * @req_upiu: upiu request
7322 * @rsp_upiu: upiu reply
7323 * @req_ehs: EHS field which contains Advanced RPMB Request Message
7324 * @rsp_ehs: EHS field which returns Advanced RPMB Response Message
7325 * @sg_cnt: The number of sg lists actually used
7326 * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7327 * @dir: DMA direction
7328 *
7329 * Return: zero on success, non-zero on failure.
7330 */
ufshcd_advanced_rpmb_req_handler(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,struct ufs_ehs * req_ehs,struct ufs_ehs * rsp_ehs,int sg_cnt,struct scatterlist * sg_list,enum dma_data_direction dir)7331 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7332 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7333 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7334 enum dma_data_direction dir)
7335 {
7336 const u32 tag = hba->reserved_slot;
7337 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7338 int err = 0;
7339 int result;
7340 u8 upiu_flags;
7341 u8 *ehs_data;
7342 u16 ehs_len;
7343 int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7344
7345 /* Protects use of hba->reserved_slot. */
7346 ufshcd_dev_man_lock(hba);
7347
7348 ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag);
7349
7350 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7351
7352 /* update the task tag */
7353 req_upiu->header.task_tag = tag;
7354
7355 /* copy the UPIU(contains CDB) request as it is */
7356 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7357 /* Copy EHS, starting with byte32, immediately after the CDB package */
7358 memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7359
7360 if (dir != DMA_NONE && sg_list)
7361 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7362
7363 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7364
7365 err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7366
7367 if (!err) {
7368 /* Just copy the upiu response as it is */
7369 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7370 /* Get the response UPIU result */
7371 result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7372 lrbp->ucd_rsp_ptr->header.status;
7373
7374 ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7375 /*
7376 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7377 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7378 * Message is 02h
7379 */
7380 if (ehs_len == 2 && rsp_ehs) {
7381 /*
7382 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7383 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7384 */
7385 ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7386 memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7387 }
7388 }
7389
7390 ufshcd_dev_man_unlock(hba);
7391
7392 return err ? : result;
7393 }
7394
7395 /**
7396 * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7397 * @cmd: SCSI command pointer
7398 *
7399 * Return: SUCCESS or FAILED.
7400 */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)7401 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7402 {
7403 unsigned long flags, pending_reqs = 0, not_cleared = 0;
7404 struct Scsi_Host *host;
7405 struct ufs_hba *hba;
7406 struct ufs_hw_queue *hwq;
7407 struct ufshcd_lrb *lrbp;
7408 u32 pos, not_cleared_mask = 0;
7409 int err;
7410 u8 resp = 0xF, lun;
7411
7412 host = cmd->device->host;
7413 hba = shost_priv(host);
7414
7415 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7416 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7417 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7418 if (!err)
7419 err = resp;
7420 goto out;
7421 }
7422
7423 if (hba->mcq_enabled) {
7424 for (pos = 0; pos < hba->nutrs; pos++) {
7425 lrbp = &hba->lrb[pos];
7426 if (ufshcd_cmd_inflight(lrbp->cmd) &&
7427 lrbp->lun == lun) {
7428 ufshcd_clear_cmd(hba, pos);
7429 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7430 ufshcd_mcq_poll_cqe_lock(hba, hwq);
7431 }
7432 }
7433 err = 0;
7434 goto out;
7435 }
7436
7437 /* clear the commands that were pending for corresponding LUN */
7438 spin_lock_irqsave(&hba->outstanding_lock, flags);
7439 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7440 if (hba->lrb[pos].lun == lun)
7441 __set_bit(pos, &pending_reqs);
7442 hba->outstanding_reqs &= ~pending_reqs;
7443 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7444
7445 for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7446 if (ufshcd_clear_cmd(hba, pos) < 0) {
7447 spin_lock_irqsave(&hba->outstanding_lock, flags);
7448 not_cleared = 1U << pos &
7449 ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7450 hba->outstanding_reqs |= not_cleared;
7451 not_cleared_mask |= not_cleared;
7452 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7453
7454 dev_err(hba->dev, "%s: failed to clear request %d\n",
7455 __func__, pos);
7456 }
7457 }
7458 __ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7459
7460 out:
7461 hba->req_abort_count = 0;
7462 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7463 if (!err) {
7464 err = SUCCESS;
7465 } else {
7466 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7467 err = FAILED;
7468 }
7469 return err;
7470 }
7471
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)7472 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7473 {
7474 struct ufshcd_lrb *lrbp;
7475 int tag;
7476
7477 for_each_set_bit(tag, &bitmap, hba->nutrs) {
7478 lrbp = &hba->lrb[tag];
7479 lrbp->req_abort_skip = true;
7480 }
7481 }
7482
7483 /**
7484 * ufshcd_try_to_abort_task - abort a specific task
7485 * @hba: Pointer to adapter instance
7486 * @tag: Task tag/index to be aborted
7487 *
7488 * Abort the pending command in device by sending UFS_ABORT_TASK task management
7489 * command, and in host controller by clearing the door-bell register. There can
7490 * be race between controller sending the command to the device while abort is
7491 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7492 * really issued and then try to abort it.
7493 *
7494 * Return: zero on success, non-zero on failure.
7495 */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)7496 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7497 {
7498 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7499 int err;
7500 int poll_cnt;
7501 u8 resp = 0xF;
7502
7503 for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7504 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7505 UFS_QUERY_TASK, &resp);
7506 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7507 /* cmd pending in the device */
7508 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7509 __func__, tag);
7510 break;
7511 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7512 /*
7513 * cmd not pending in the device, check if it is
7514 * in transition.
7515 */
7516 dev_info(
7517 hba->dev,
7518 "%s: cmd with tag %d not pending in the device.\n",
7519 __func__, tag);
7520 if (!ufshcd_cmd_inflight(lrbp->cmd)) {
7521 dev_info(hba->dev,
7522 "%s: cmd with tag=%d completed.\n",
7523 __func__, tag);
7524 return 0;
7525 }
7526 usleep_range(100, 200);
7527 } else {
7528 dev_err(hba->dev,
7529 "%s: no response from device. tag = %d, err %d\n",
7530 __func__, tag, err);
7531 return err ? : resp;
7532 }
7533 }
7534
7535 if (!poll_cnt)
7536 return -EBUSY;
7537
7538 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7539 UFS_ABORT_TASK, &resp);
7540 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7541 if (!err) {
7542 err = resp; /* service response error */
7543 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7544 __func__, tag, err);
7545 }
7546 return err;
7547 }
7548
7549 err = ufshcd_clear_cmd(hba, tag);
7550 if (err)
7551 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7552 __func__, tag, err);
7553
7554 return err;
7555 }
7556
7557 /**
7558 * ufshcd_abort - scsi host template eh_abort_handler callback
7559 * @cmd: SCSI command pointer
7560 *
7561 * Return: SUCCESS or FAILED.
7562 */
ufshcd_abort(struct scsi_cmnd * cmd)7563 static int ufshcd_abort(struct scsi_cmnd *cmd)
7564 {
7565 struct Scsi_Host *host = cmd->device->host;
7566 struct ufs_hba *hba = shost_priv(host);
7567 int tag = scsi_cmd_to_rq(cmd)->tag;
7568 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7569 unsigned long flags;
7570 int err = FAILED;
7571 bool outstanding;
7572 u32 reg;
7573
7574 ufshcd_hold(hba);
7575
7576 if (!hba->mcq_enabled) {
7577 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7578 if (!test_bit(tag, &hba->outstanding_reqs)) {
7579 /* If command is already aborted/completed, return FAILED. */
7580 dev_err(hba->dev,
7581 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7582 __func__, tag, hba->outstanding_reqs, reg);
7583 goto release;
7584 }
7585 }
7586
7587 /* Print Transfer Request of aborted task */
7588 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7589
7590 /*
7591 * Print detailed info about aborted request.
7592 * As more than one request might get aborted at the same time,
7593 * print full information only for the first aborted request in order
7594 * to reduce repeated printouts. For other aborted requests only print
7595 * basic details.
7596 */
7597 scsi_print_command(cmd);
7598 if (!hba->req_abort_count) {
7599 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7600 ufshcd_print_evt_hist(hba);
7601 ufshcd_print_host_state(hba);
7602 ufshcd_print_pwr_info(hba);
7603 ufshcd_print_tr(hba, tag, true);
7604 } else {
7605 ufshcd_print_tr(hba, tag, false);
7606 }
7607 hba->req_abort_count++;
7608
7609 if (!hba->mcq_enabled && !(reg & (1 << tag))) {
7610 /* only execute this code in single doorbell mode */
7611 dev_err(hba->dev,
7612 "%s: cmd was completed, but without a notifying intr, tag = %d",
7613 __func__, tag);
7614 __ufshcd_transfer_req_compl(hba, 1UL << tag);
7615 goto release;
7616 }
7617
7618 /*
7619 * Task abort to the device W-LUN is illegal. When this command
7620 * will fail, due to spec violation, scsi err handling next step
7621 * will be to send LU reset which, again, is a spec violation.
7622 * To avoid these unnecessary/illegal steps, first we clean up
7623 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7624 * then queue the eh_work and bail.
7625 */
7626 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7627 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7628
7629 spin_lock_irqsave(host->host_lock, flags);
7630 hba->force_reset = true;
7631 ufshcd_schedule_eh_work(hba);
7632 spin_unlock_irqrestore(host->host_lock, flags);
7633 goto release;
7634 }
7635
7636 if (hba->mcq_enabled) {
7637 /* MCQ mode. Branch off to handle abort for mcq mode */
7638 err = ufshcd_mcq_abort(cmd);
7639 goto release;
7640 }
7641
7642 /* Skip task abort in case previous aborts failed and report failure */
7643 if (lrbp->req_abort_skip) {
7644 dev_err(hba->dev, "%s: skipping abort\n", __func__);
7645 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7646 goto release;
7647 }
7648
7649 err = ufshcd_try_to_abort_task(hba, tag);
7650 if (err) {
7651 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7652 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7653 err = FAILED;
7654 goto release;
7655 }
7656
7657 /*
7658 * Clear the corresponding bit from outstanding_reqs since the command
7659 * has been aborted successfully.
7660 */
7661 spin_lock_irqsave(&hba->outstanding_lock, flags);
7662 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7663 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7664
7665 if (outstanding)
7666 ufshcd_release_scsi_cmd(hba, lrbp);
7667
7668 err = SUCCESS;
7669
7670 release:
7671 /* Matches the ufshcd_hold() call at the start of this function. */
7672 ufshcd_release(hba);
7673 return err;
7674 }
7675
7676 /**
7677 * ufshcd_process_probe_result - Process the ufshcd_probe_hba() result.
7678 * @hba: UFS host controller instance.
7679 * @probe_start: time when the ufshcd_probe_hba() call started.
7680 * @ret: ufshcd_probe_hba() return value.
7681 */
ufshcd_process_probe_result(struct ufs_hba * hba,ktime_t probe_start,int ret)7682 static void ufshcd_process_probe_result(struct ufs_hba *hba,
7683 ktime_t probe_start, int ret)
7684 {
7685 unsigned long flags;
7686
7687 spin_lock_irqsave(hba->host->host_lock, flags);
7688 if (ret)
7689 hba->ufshcd_state = UFSHCD_STATE_ERROR;
7690 else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7691 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7692 spin_unlock_irqrestore(hba->host->host_lock, flags);
7693
7694 trace_ufshcd_init(hba, ret,
7695 ktime_to_us(ktime_sub(ktime_get(), probe_start)),
7696 hba->curr_dev_pwr_mode, hba->uic_link_state);
7697 }
7698
7699 /**
7700 * ufshcd_host_reset_and_restore - reset and restore host controller
7701 * @hba: per-adapter instance
7702 *
7703 * Note that host controller reset may issue DME_RESET to
7704 * local and remote (device) Uni-Pro stack and the attributes
7705 * are reset to default state.
7706 *
7707 * Return: zero on success, non-zero on failure.
7708 */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7709 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7710 {
7711 int err;
7712
7713 /*
7714 * Stop the host controller and complete the requests
7715 * cleared by h/w
7716 */
7717 ufshcd_hba_stop(hba);
7718 hba->silence_err_logs = true;
7719 ufshcd_complete_requests(hba, true);
7720 hba->silence_err_logs = false;
7721
7722 /* scale up clocks to max frequency before full reinitialization */
7723 ufshcd_scale_clks(hba, ULONG_MAX, true);
7724
7725 err = ufshcd_hba_enable(hba);
7726
7727 /* Establish the link again and restore the device */
7728 if (!err) {
7729 ktime_t probe_start = ktime_get();
7730
7731 err = ufshcd_device_init(hba, /*init_dev_params=*/false);
7732 if (!err)
7733 err = ufshcd_probe_hba(hba, false);
7734 ufshcd_process_probe_result(hba, probe_start, err);
7735 }
7736
7737 if (err)
7738 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7739 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7740 return err;
7741 }
7742
7743 /**
7744 * ufshcd_reset_and_restore - reset and re-initialize host/device
7745 * @hba: per-adapter instance
7746 *
7747 * Reset and recover device, host and re-establish link. This
7748 * is helpful to recover the communication in fatal error conditions.
7749 *
7750 * Return: zero on success, non-zero on failure.
7751 */
ufshcd_reset_and_restore(struct ufs_hba * hba)7752 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7753 {
7754 u32 saved_err = 0;
7755 u32 saved_uic_err = 0;
7756 int err = 0;
7757 unsigned long flags;
7758 int retries = MAX_HOST_RESET_RETRIES;
7759
7760 spin_lock_irqsave(hba->host->host_lock, flags);
7761 do {
7762 /*
7763 * This is a fresh start, cache and clear saved error first,
7764 * in case new error generated during reset and restore.
7765 */
7766 saved_err |= hba->saved_err;
7767 saved_uic_err |= hba->saved_uic_err;
7768 hba->saved_err = 0;
7769 hba->saved_uic_err = 0;
7770 hba->force_reset = false;
7771 hba->ufshcd_state = UFSHCD_STATE_RESET;
7772 spin_unlock_irqrestore(hba->host->host_lock, flags);
7773
7774 /* Reset the attached device */
7775 ufshcd_device_reset(hba);
7776
7777 err = ufshcd_host_reset_and_restore(hba);
7778
7779 spin_lock_irqsave(hba->host->host_lock, flags);
7780 if (err)
7781 continue;
7782 /* Do not exit unless operational or dead */
7783 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7784 hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7785 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7786 err = -EAGAIN;
7787 } while (err && --retries);
7788
7789 /*
7790 * Inform scsi mid-layer that we did reset and allow to handle
7791 * Unit Attention properly.
7792 */
7793 scsi_report_bus_reset(hba->host, 0);
7794 if (err) {
7795 hba->ufshcd_state = UFSHCD_STATE_ERROR;
7796 hba->saved_err |= saved_err;
7797 hba->saved_uic_err |= saved_uic_err;
7798 }
7799 spin_unlock_irqrestore(hba->host->host_lock, flags);
7800
7801 return err;
7802 }
7803
7804 /**
7805 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7806 * @cmd: SCSI command pointer
7807 *
7808 * Return: SUCCESS or FAILED.
7809 */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)7810 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7811 {
7812 int err = SUCCESS;
7813 unsigned long flags;
7814 struct ufs_hba *hba;
7815
7816 hba = shost_priv(cmd->device->host);
7817
7818 /*
7819 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7820 * stuck in this function waiting for flush_work(&hba->eh_work). And
7821 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7822 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7823 */
7824 if (hba->pm_op_in_progress) {
7825 if (ufshcd_link_recovery(hba))
7826 err = FAILED;
7827
7828 return err;
7829 }
7830
7831 spin_lock_irqsave(hba->host->host_lock, flags);
7832 hba->force_reset = true;
7833 ufshcd_schedule_eh_work(hba);
7834 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7835 spin_unlock_irqrestore(hba->host->host_lock, flags);
7836
7837 flush_work(&hba->eh_work);
7838
7839 spin_lock_irqsave(hba->host->host_lock, flags);
7840 if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7841 err = FAILED;
7842 spin_unlock_irqrestore(hba->host->host_lock, flags);
7843
7844 return err;
7845 }
7846
7847 /**
7848 * ufshcd_get_max_icc_level - calculate the ICC level
7849 * @sup_curr_uA: max. current supported by the regulator
7850 * @start_scan: row at the desc table to start scan from
7851 * @buff: power descriptor buffer
7852 *
7853 * Return: calculated max ICC level for specific regulator.
7854 */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,const char * buff)7855 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7856 const char *buff)
7857 {
7858 int i;
7859 int curr_uA;
7860 u16 data;
7861 u16 unit;
7862
7863 for (i = start_scan; i >= 0; i--) {
7864 data = get_unaligned_be16(&buff[2 * i]);
7865 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7866 ATTR_ICC_LVL_UNIT_OFFSET;
7867 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7868 switch (unit) {
7869 case UFSHCD_NANO_AMP:
7870 curr_uA = curr_uA / 1000;
7871 break;
7872 case UFSHCD_MILI_AMP:
7873 curr_uA = curr_uA * 1000;
7874 break;
7875 case UFSHCD_AMP:
7876 curr_uA = curr_uA * 1000 * 1000;
7877 break;
7878 case UFSHCD_MICRO_AMP:
7879 default:
7880 break;
7881 }
7882 if (sup_curr_uA >= curr_uA)
7883 break;
7884 }
7885 if (i < 0) {
7886 i = 0;
7887 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7888 }
7889
7890 return (u32)i;
7891 }
7892
7893 /**
7894 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7895 * In case regulators are not initialized we'll return 0
7896 * @hba: per-adapter instance
7897 * @desc_buf: power descriptor buffer to extract ICC levels from.
7898 *
7899 * Return: calculated ICC level.
7900 */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,const u8 * desc_buf)7901 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7902 const u8 *desc_buf)
7903 {
7904 u32 icc_level = 0;
7905
7906 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7907 !hba->vreg_info.vccq2) {
7908 /*
7909 * Using dev_dbg to avoid messages during runtime PM to avoid
7910 * never-ending cycles of messages written back to storage by
7911 * user space causing runtime resume, causing more messages and
7912 * so on.
7913 */
7914 dev_dbg(hba->dev,
7915 "%s: Regulator capability was not set, actvIccLevel=%d",
7916 __func__, icc_level);
7917 goto out;
7918 }
7919
7920 if (hba->vreg_info.vcc->max_uA)
7921 icc_level = ufshcd_get_max_icc_level(
7922 hba->vreg_info.vcc->max_uA,
7923 POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7924 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7925
7926 if (hba->vreg_info.vccq->max_uA)
7927 icc_level = ufshcd_get_max_icc_level(
7928 hba->vreg_info.vccq->max_uA,
7929 icc_level,
7930 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7931
7932 if (hba->vreg_info.vccq2->max_uA)
7933 icc_level = ufshcd_get_max_icc_level(
7934 hba->vreg_info.vccq2->max_uA,
7935 icc_level,
7936 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7937 out:
7938 return icc_level;
7939 }
7940
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)7941 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7942 {
7943 int ret;
7944 u8 *desc_buf;
7945 u32 icc_level;
7946
7947 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7948 if (!desc_buf)
7949 return;
7950
7951 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7952 desc_buf, QUERY_DESC_MAX_SIZE);
7953 if (ret) {
7954 dev_err(hba->dev,
7955 "%s: Failed reading power descriptor ret = %d",
7956 __func__, ret);
7957 goto out;
7958 }
7959
7960 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7961 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7962
7963 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7964 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7965
7966 if (ret)
7967 dev_err(hba->dev,
7968 "%s: Failed configuring bActiveICCLevel = %d ret = %d",
7969 __func__, icc_level, ret);
7970
7971 out:
7972 kfree(desc_buf);
7973 }
7974
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)7975 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7976 {
7977 struct Scsi_Host *shost = sdev->host;
7978
7979 scsi_autopm_get_device(sdev);
7980 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7981 if (sdev->rpm_autosuspend)
7982 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7983 shost->rpm_autosuspend_delay);
7984 scsi_autopm_put_device(sdev);
7985 }
7986
7987 /**
7988 * ufshcd_scsi_add_wlus - Adds required W-LUs
7989 * @hba: per-adapter instance
7990 *
7991 * UFS device specification requires the UFS devices to support 4 well known
7992 * logical units:
7993 * "REPORT_LUNS" (address: 01h)
7994 * "UFS Device" (address: 50h)
7995 * "RPMB" (address: 44h)
7996 * "BOOT" (address: 30h)
7997 * UFS device's power management needs to be controlled by "POWER CONDITION"
7998 * field of SSU (START STOP UNIT) command. But this "power condition" field
7999 * will take effect only when its sent to "UFS device" well known logical unit
8000 * hence we require the scsi_device instance to represent this logical unit in
8001 * order for the UFS host driver to send the SSU command for power management.
8002 *
8003 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
8004 * Block) LU so user space process can control this LU. User space may also
8005 * want to have access to BOOT LU.
8006 *
8007 * This function adds scsi device instances for each of all well known LUs
8008 * (except "REPORT LUNS" LU).
8009 *
8010 * Return: zero on success (all required W-LUs are added successfully),
8011 * non-zero error value on failure (if failed to add any of the required W-LU).
8012 */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)8013 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8014 {
8015 int ret = 0;
8016 struct scsi_device *sdev_boot, *sdev_rpmb;
8017
8018 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8019 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8020 if (IS_ERR(hba->ufs_device_wlun)) {
8021 ret = PTR_ERR(hba->ufs_device_wlun);
8022 hba->ufs_device_wlun = NULL;
8023 goto out;
8024 }
8025 scsi_device_put(hba->ufs_device_wlun);
8026
8027 sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8028 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8029 if (IS_ERR(sdev_rpmb)) {
8030 ret = PTR_ERR(sdev_rpmb);
8031 goto remove_ufs_device_wlun;
8032 }
8033 ufshcd_blk_pm_runtime_init(sdev_rpmb);
8034 scsi_device_put(sdev_rpmb);
8035
8036 sdev_boot = __scsi_add_device(hba->host, 0, 0,
8037 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8038 if (IS_ERR(sdev_boot)) {
8039 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8040 } else {
8041 ufshcd_blk_pm_runtime_init(sdev_boot);
8042 scsi_device_put(sdev_boot);
8043 }
8044 goto out;
8045
8046 remove_ufs_device_wlun:
8047 scsi_remove_device(hba->ufs_device_wlun);
8048 out:
8049 return ret;
8050 }
8051
ufshcd_wb_probe(struct ufs_hba * hba,const u8 * desc_buf)8052 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8053 {
8054 struct ufs_dev_info *dev_info = &hba->dev_info;
8055 u8 lun;
8056 u32 d_lu_wb_buf_alloc;
8057 u32 ext_ufs_feature;
8058
8059 if (!ufshcd_is_wb_allowed(hba))
8060 return;
8061
8062 /*
8063 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8064 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8065 * enabled
8066 */
8067 if (!(dev_info->wspecversion >= 0x310 ||
8068 dev_info->wspecversion == 0x220 ||
8069 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8070 goto wb_disabled;
8071
8072 ext_ufs_feature = get_unaligned_be32(desc_buf +
8073 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8074
8075 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8076 goto wb_disabled;
8077
8078 /*
8079 * WB may be supported but not configured while provisioning. The spec
8080 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8081 * buffer configured.
8082 */
8083 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8084
8085 dev_info->b_presrv_uspc_en =
8086 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8087
8088 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8089 if (!get_unaligned_be32(desc_buf +
8090 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8091 goto wb_disabled;
8092 } else {
8093 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8094 d_lu_wb_buf_alloc = 0;
8095 ufshcd_read_unit_desc_param(hba,
8096 lun,
8097 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8098 (u8 *)&d_lu_wb_buf_alloc,
8099 sizeof(d_lu_wb_buf_alloc));
8100 if (d_lu_wb_buf_alloc) {
8101 dev_info->wb_dedicated_lu = lun;
8102 break;
8103 }
8104 }
8105
8106 if (!d_lu_wb_buf_alloc)
8107 goto wb_disabled;
8108 }
8109
8110 if (!ufshcd_is_wb_buf_lifetime_available(hba))
8111 goto wb_disabled;
8112
8113 return;
8114
8115 wb_disabled:
8116 hba->caps &= ~UFSHCD_CAP_WB_EN;
8117 }
8118
ufshcd_temp_notif_probe(struct ufs_hba * hba,const u8 * desc_buf)8119 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8120 {
8121 struct ufs_dev_info *dev_info = &hba->dev_info;
8122 u32 ext_ufs_feature;
8123 u8 mask = 0;
8124
8125 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8126 return;
8127
8128 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8129
8130 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8131 mask |= MASK_EE_TOO_LOW_TEMP;
8132
8133 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8134 mask |= MASK_EE_TOO_HIGH_TEMP;
8135
8136 if (mask) {
8137 ufshcd_enable_ee(hba, mask);
8138 ufs_hwmon_probe(hba, mask);
8139 }
8140 }
8141
ufshcd_set_rtt(struct ufs_hba * hba)8142 static void ufshcd_set_rtt(struct ufs_hba *hba)
8143 {
8144 struct ufs_dev_info *dev_info = &hba->dev_info;
8145 u32 rtt = 0;
8146 u32 dev_rtt = 0;
8147 int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ?
8148 hba->vops->max_num_rtt : hba->nortt;
8149
8150 /* RTT override makes sense only for UFS-4.0 and above */
8151 if (dev_info->wspecversion < 0x400)
8152 return;
8153
8154 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8155 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) {
8156 dev_err(hba->dev, "failed reading bMaxNumOfRTT\n");
8157 return;
8158 }
8159
8160 /* do not override if it was already written */
8161 if (dev_rtt != DEFAULT_MAX_NUM_RTT)
8162 return;
8163
8164 rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap);
8165
8166 if (rtt == dev_rtt)
8167 return;
8168
8169 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8170 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt))
8171 dev_err(hba->dev, "failed writing bMaxNumOfRTT\n");
8172 }
8173
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,const struct ufs_dev_quirk * fixups)8174 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8175 const struct ufs_dev_quirk *fixups)
8176 {
8177 const struct ufs_dev_quirk *f;
8178 struct ufs_dev_info *dev_info = &hba->dev_info;
8179
8180 if (!fixups)
8181 return;
8182
8183 for (f = fixups; f->quirk; f++) {
8184 if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8185 f->wmanufacturerid == UFS_ANY_VENDOR) &&
8186 ((dev_info->model &&
8187 STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8188 !strcmp(f->model, UFS_ANY_MODEL)))
8189 hba->dev_quirks |= f->quirk;
8190 }
8191 }
8192 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8193
ufs_fixup_device_setup(struct ufs_hba * hba)8194 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8195 {
8196 /* fix by general quirk table */
8197 ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8198
8199 /* allow vendors to fix quirks */
8200 ufshcd_vops_fixup_dev_quirks(hba);
8201 }
8202
ufshcd_update_rtc(struct ufs_hba * hba)8203 static void ufshcd_update_rtc(struct ufs_hba *hba)
8204 {
8205 struct timespec64 ts64;
8206 int err;
8207 u32 val;
8208
8209 ktime_get_real_ts64(&ts64);
8210
8211 if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8212 dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8213 return;
8214 }
8215
8216 /*
8217 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8218 * 2146 is required, it is recommended to choose the relative RTC mode.
8219 */
8220 val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8221
8222 /* Skip update RTC if RPM state is not RPM_ACTIVE */
8223 if (ufshcd_rpm_get_if_active(hba) <= 0)
8224 return;
8225
8226 err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8227 0, 0, &val);
8228 ufshcd_rpm_put(hba);
8229
8230 if (err)
8231 dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8232 else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8233 hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8234 }
8235
ufshcd_rtc_work(struct work_struct * work)8236 static void ufshcd_rtc_work(struct work_struct *work)
8237 {
8238 struct ufs_hba *hba;
8239
8240 hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8241
8242 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8243 if (!ufshcd_is_ufs_dev_busy(hba) &&
8244 hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL &&
8245 !hba->clk_gating.active_reqs)
8246 ufshcd_update_rtc(hba);
8247
8248 if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8249 schedule_delayed_work(&hba->ufs_rtc_update_work,
8250 msecs_to_jiffies(hba->dev_info.rtc_update_period));
8251 }
8252
ufs_init_rtc(struct ufs_hba * hba,u8 * desc_buf)8253 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8254 {
8255 u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8256 struct ufs_dev_info *dev_info = &hba->dev_info;
8257
8258 if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8259 dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8260
8261 /*
8262 * The concept of measuring time in Linux as the number of seconds elapsed since
8263 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8264 * 2010 00:00, here we need to adjust ABS baseline.
8265 */
8266 dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8267 mktime64(1970, 1, 1, 0, 0, 0);
8268 } else {
8269 dev_info->rtc_type = UFS_RTC_RELATIVE;
8270 dev_info->rtc_time_baseline = 0;
8271 }
8272
8273 /*
8274 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8275 * how to calculate the specific update period for each time unit. And we disable periodic
8276 * RTC update work, let user configure by sysfs node according to specific circumstance.
8277 */
8278 dev_info->rtc_update_period = 0;
8279 }
8280
ufs_get_device_desc(struct ufs_hba * hba)8281 static int ufs_get_device_desc(struct ufs_hba *hba)
8282 {
8283 int err;
8284 u8 model_index;
8285 u8 *desc_buf;
8286 struct ufs_dev_info *dev_info = &hba->dev_info;
8287
8288 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8289 if (!desc_buf) {
8290 err = -ENOMEM;
8291 goto out;
8292 }
8293
8294 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8295 QUERY_DESC_MAX_SIZE);
8296 if (err) {
8297 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8298 __func__, err);
8299 goto out;
8300 }
8301
8302 /*
8303 * getting vendor (manufacturerID) and Bank Index in big endian
8304 * format
8305 */
8306 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8307 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8308
8309 /* getting Specification Version in big endian format */
8310 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8311 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8312 dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8313
8314 dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP];
8315
8316 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8317
8318 err = ufshcd_read_string_desc(hba, model_index,
8319 &dev_info->model, SD_ASCII_STD);
8320 if (err < 0) {
8321 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8322 __func__, err);
8323 goto out;
8324 }
8325
8326 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8327 desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8328
8329 ufs_fixup_device_setup(hba);
8330
8331 ufshcd_wb_probe(hba, desc_buf);
8332
8333 ufshcd_temp_notif_probe(hba, desc_buf);
8334
8335 if (dev_info->wspecversion >= 0x410) {
8336 hba->critical_health_count = 0;
8337 ufshcd_enable_ee(hba, MASK_EE_HEALTH_CRITICAL);
8338 }
8339
8340 ufs_init_rtc(hba, desc_buf);
8341
8342 /*
8343 * ufshcd_read_string_desc returns size of the string
8344 * reset the error value
8345 */
8346 err = 0;
8347
8348 out:
8349 kfree(desc_buf);
8350 return err;
8351 }
8352
ufs_put_device_desc(struct ufs_hba * hba)8353 static void ufs_put_device_desc(struct ufs_hba *hba)
8354 {
8355 struct ufs_dev_info *dev_info = &hba->dev_info;
8356
8357 kfree(dev_info->model);
8358 dev_info->model = NULL;
8359 }
8360
8361 /**
8362 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8363 * less than device PA_TACTIVATE time.
8364 * @hba: per-adapter instance
8365 *
8366 * Some UFS devices require host PA_TACTIVATE to be lower than device
8367 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8368 * for such devices.
8369 *
8370 * Return: zero on success, non-zero error value on failure.
8371 */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)8372 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8373 {
8374 int ret = 0;
8375 u32 granularity, peer_granularity;
8376 u32 pa_tactivate, peer_pa_tactivate;
8377 u32 pa_tactivate_us, peer_pa_tactivate_us;
8378 static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8379
8380 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8381 &granularity);
8382 if (ret)
8383 goto out;
8384
8385 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8386 &peer_granularity);
8387 if (ret)
8388 goto out;
8389
8390 if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8391 (granularity > PA_GRANULARITY_MAX_VAL)) {
8392 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8393 __func__, granularity);
8394 return -EINVAL;
8395 }
8396
8397 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8398 (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8399 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8400 __func__, peer_granularity);
8401 return -EINVAL;
8402 }
8403
8404 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8405 if (ret)
8406 goto out;
8407
8408 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8409 &peer_pa_tactivate);
8410 if (ret)
8411 goto out;
8412
8413 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8414 peer_pa_tactivate_us = peer_pa_tactivate *
8415 gran_to_us_table[peer_granularity - 1];
8416
8417 if (pa_tactivate_us >= peer_pa_tactivate_us) {
8418 u32 new_peer_pa_tactivate;
8419
8420 new_peer_pa_tactivate = pa_tactivate_us /
8421 gran_to_us_table[peer_granularity - 1];
8422 new_peer_pa_tactivate++;
8423 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8424 new_peer_pa_tactivate);
8425 }
8426
8427 out:
8428 return ret;
8429 }
8430
ufshcd_tune_unipro_params(struct ufs_hba * hba)8431 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8432 {
8433 ufshcd_vops_apply_dev_quirks(hba);
8434
8435 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8436 /* set 1ms timeout for PA_TACTIVATE */
8437 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8438
8439 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8440 ufshcd_quirk_tune_host_pa_tactivate(hba);
8441 }
8442
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)8443 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8444 {
8445 hba->ufs_stats.hibern8_exit_cnt = 0;
8446 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8447 hba->req_abort_count = 0;
8448 }
8449
ufshcd_device_geo_params_init(struct ufs_hba * hba)8450 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8451 {
8452 int err;
8453 u8 *desc_buf;
8454
8455 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8456 if (!desc_buf) {
8457 err = -ENOMEM;
8458 goto out;
8459 }
8460
8461 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8462 desc_buf, QUERY_DESC_MAX_SIZE);
8463 if (err) {
8464 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8465 __func__, err);
8466 goto out;
8467 }
8468
8469 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8470 hba->dev_info.max_lu_supported = 32;
8471 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8472 hba->dev_info.max_lu_supported = 8;
8473
8474 out:
8475 kfree(desc_buf);
8476 return err;
8477 }
8478
8479 struct ufs_ref_clk {
8480 unsigned long freq_hz;
8481 enum ufs_ref_clk_freq val;
8482 };
8483
8484 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8485 {19200000, REF_CLK_FREQ_19_2_MHZ},
8486 {26000000, REF_CLK_FREQ_26_MHZ},
8487 {38400000, REF_CLK_FREQ_38_4_MHZ},
8488 {52000000, REF_CLK_FREQ_52_MHZ},
8489 {0, REF_CLK_FREQ_INVAL},
8490 };
8491
8492 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)8493 ufs_get_bref_clk_from_hz(unsigned long freq)
8494 {
8495 int i;
8496
8497 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8498 if (ufs_ref_clk_freqs[i].freq_hz == freq)
8499 return ufs_ref_clk_freqs[i].val;
8500
8501 return REF_CLK_FREQ_INVAL;
8502 }
8503
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)8504 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8505 {
8506 unsigned long freq;
8507
8508 freq = clk_get_rate(refclk);
8509
8510 hba->dev_ref_clk_freq =
8511 ufs_get_bref_clk_from_hz(freq);
8512
8513 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8514 dev_err(hba->dev,
8515 "invalid ref_clk setting = %ld\n", freq);
8516 }
8517
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)8518 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8519 {
8520 int err;
8521 u32 ref_clk;
8522 u32 freq = hba->dev_ref_clk_freq;
8523
8524 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8525 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8526
8527 if (err) {
8528 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8529 err);
8530 goto out;
8531 }
8532
8533 if (ref_clk == freq)
8534 goto out; /* nothing to update */
8535
8536 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8537 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8538
8539 if (err) {
8540 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8541 ufs_ref_clk_freqs[freq].freq_hz);
8542 goto out;
8543 }
8544
8545 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8546 ufs_ref_clk_freqs[freq].freq_hz);
8547
8548 out:
8549 return err;
8550 }
8551
ufshcd_device_params_init(struct ufs_hba * hba)8552 static int ufshcd_device_params_init(struct ufs_hba *hba)
8553 {
8554 bool flag;
8555 int ret;
8556
8557 /* Init UFS geometry descriptor related parameters */
8558 ret = ufshcd_device_geo_params_init(hba);
8559 if (ret)
8560 goto out;
8561
8562 /* Check and apply UFS device quirks */
8563 ret = ufs_get_device_desc(hba);
8564 if (ret) {
8565 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8566 __func__, ret);
8567 goto out;
8568 }
8569
8570 ufshcd_set_rtt(hba);
8571
8572 ufshcd_get_ref_clk_gating_wait(hba);
8573
8574 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8575 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8576 hba->dev_info.f_power_on_wp_en = flag;
8577
8578 /* Probe maximum power mode co-supported by both UFS host and device */
8579 if (ufshcd_get_max_pwr_mode(hba))
8580 dev_err(hba->dev,
8581 "%s: Failed getting max supported power mode\n",
8582 __func__);
8583 out:
8584 return ret;
8585 }
8586
ufshcd_set_timestamp_attr(struct ufs_hba * hba)8587 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8588 {
8589 int err;
8590 struct ufs_query_req *request = NULL;
8591 struct ufs_query_res *response = NULL;
8592 struct ufs_dev_info *dev_info = &hba->dev_info;
8593 struct utp_upiu_query_v4_0 *upiu_data;
8594
8595 if (dev_info->wspecversion < 0x400)
8596 return;
8597
8598 ufshcd_dev_man_lock(hba);
8599
8600 ufshcd_init_query(hba, &request, &response,
8601 UPIU_QUERY_OPCODE_WRITE_ATTR,
8602 QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8603
8604 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8605
8606 upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8607
8608 put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8609
8610 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8611
8612 if (err)
8613 dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8614 __func__, err);
8615
8616 ufshcd_dev_man_unlock(hba);
8617 }
8618
8619 /**
8620 * ufshcd_add_lus - probe and add UFS logical units
8621 * @hba: per-adapter instance
8622 *
8623 * Return: 0 upon success; < 0 upon failure.
8624 */
ufshcd_add_lus(struct ufs_hba * hba)8625 static int ufshcd_add_lus(struct ufs_hba *hba)
8626 {
8627 int ret;
8628
8629 /* Add required well known logical units to scsi mid layer */
8630 ret = ufshcd_scsi_add_wlus(hba);
8631 if (ret)
8632 goto out;
8633
8634 /* Initialize devfreq after UFS device is detected */
8635 if (ufshcd_is_clkscaling_supported(hba)) {
8636 memcpy(&hba->clk_scaling.saved_pwr_info,
8637 &hba->pwr_info,
8638 sizeof(struct ufs_pa_layer_attr));
8639 hba->clk_scaling.is_allowed = true;
8640
8641 ret = ufshcd_devfreq_init(hba);
8642 if (ret)
8643 goto out;
8644
8645 hba->clk_scaling.is_enabled = true;
8646 ufshcd_init_clk_scaling_sysfs(hba);
8647 }
8648
8649 /*
8650 * The RTC update code accesses the hba->ufs_device_wlun->sdev_gendev
8651 * pointer and hence must only be started after the WLUN pointer has
8652 * been initialized by ufshcd_scsi_add_wlus().
8653 */
8654 schedule_delayed_work(&hba->ufs_rtc_update_work,
8655 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8656
8657 ufs_bsg_probe(hba);
8658 scsi_scan_host(hba->host);
8659
8660 out:
8661 return ret;
8662 }
8663
8664 /* SDB - Single Doorbell */
ufshcd_release_sdb_queue(struct ufs_hba * hba,int nutrs)8665 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8666 {
8667 size_t ucdl_size, utrdl_size;
8668
8669 ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8670 dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8671 hba->ucdl_dma_addr);
8672
8673 utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8674 dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8675 hba->utrdl_dma_addr);
8676
8677 devm_kfree(hba->dev, hba->lrb);
8678 }
8679
ufshcd_alloc_mcq(struct ufs_hba * hba)8680 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8681 {
8682 int ret;
8683 int old_nutrs = hba->nutrs;
8684
8685 ret = ufshcd_mcq_decide_queue_depth(hba);
8686 if (ret < 0)
8687 return ret;
8688
8689 hba->nutrs = ret;
8690 ret = ufshcd_mcq_init(hba);
8691 if (ret)
8692 goto err;
8693
8694 /*
8695 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8696 * Number of supported tags in MCQ mode may be larger than SDB mode.
8697 */
8698 if (hba->nutrs != old_nutrs) {
8699 ufshcd_release_sdb_queue(hba, old_nutrs);
8700 ret = ufshcd_memory_alloc(hba);
8701 if (ret)
8702 goto err;
8703 ufshcd_host_memory_configure(hba);
8704 }
8705
8706 ret = ufshcd_mcq_memory_alloc(hba);
8707 if (ret)
8708 goto err;
8709
8710 hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8711 hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8712
8713 return 0;
8714 err:
8715 hba->nutrs = old_nutrs;
8716 return ret;
8717 }
8718
ufshcd_config_mcq(struct ufs_hba * hba)8719 static void ufshcd_config_mcq(struct ufs_hba *hba)
8720 {
8721 int ret;
8722 u32 intrs;
8723
8724 ret = ufshcd_mcq_vops_config_esi(hba);
8725 dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8726
8727 intrs = UFSHCD_ENABLE_MCQ_INTRS;
8728 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8729 intrs &= ~MCQ_CQ_EVENT_STATUS;
8730 ufshcd_enable_intr(hba, intrs);
8731 ufshcd_mcq_make_queues_operational(hba);
8732 ufshcd_mcq_config_mac(hba, hba->nutrs);
8733
8734 dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8735 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8736 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8737 hba->nutrs);
8738 }
8739
ufshcd_post_device_init(struct ufs_hba * hba)8740 static int ufshcd_post_device_init(struct ufs_hba *hba)
8741 {
8742 int ret;
8743
8744 ufshcd_tune_unipro_params(hba);
8745
8746 /* UFS device is also active now */
8747 ufshcd_set_ufs_dev_active(hba);
8748 ufshcd_force_reset_auto_bkops(hba);
8749
8750 ufshcd_set_timestamp_attr(hba);
8751
8752 if (!hba->max_pwr_info.is_valid)
8753 return 0;
8754
8755 /*
8756 * Set the right value to bRefClkFreq before attempting to
8757 * switch to HS gears.
8758 */
8759 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8760 ufshcd_set_dev_ref_clk(hba);
8761 /* Gear up to HS gear. */
8762 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8763 if (ret) {
8764 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8765 __func__, ret);
8766 return ret;
8767 }
8768
8769 return 0;
8770 }
8771
ufshcd_device_init(struct ufs_hba * hba,bool init_dev_params)8772 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8773 {
8774 int ret;
8775
8776 WARN_ON_ONCE(!hba->scsi_host_added);
8777
8778 hba->ufshcd_state = UFSHCD_STATE_RESET;
8779
8780 ret = ufshcd_link_startup(hba);
8781 if (ret)
8782 return ret;
8783
8784 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8785 return ret;
8786
8787 /* Debug counters initialization */
8788 ufshcd_clear_dbg_ufs_stats(hba);
8789
8790 /* UniPro link is active now */
8791 ufshcd_set_link_active(hba);
8792
8793 /* Reconfigure MCQ upon reset */
8794 if (hba->mcq_enabled && !init_dev_params) {
8795 ufshcd_config_mcq(hba);
8796 ufshcd_mcq_enable(hba);
8797 }
8798
8799 /* Verify device initialization by sending NOP OUT UPIU */
8800 ret = ufshcd_verify_dev_init(hba);
8801 if (ret)
8802 return ret;
8803
8804 /* Initiate UFS initialization, and waiting until completion */
8805 ret = ufshcd_complete_dev_init(hba);
8806 if (ret)
8807 return ret;
8808
8809 /*
8810 * Initialize UFS device parameters used by driver, these
8811 * parameters are associated with UFS descriptors.
8812 */
8813 if (init_dev_params) {
8814 ret = ufshcd_device_params_init(hba);
8815 if (ret)
8816 return ret;
8817 if (is_mcq_supported(hba) &&
8818 hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
8819 ufshcd_config_mcq(hba);
8820 ufshcd_mcq_enable(hba);
8821 }
8822 }
8823
8824 return ufshcd_post_device_init(hba);
8825 }
8826
8827 /**
8828 * ufshcd_probe_hba - probe hba to detect device and initialize it
8829 * @hba: per-adapter instance
8830 * @init_dev_params: whether or not to call ufshcd_device_params_init().
8831 *
8832 * Execute link-startup and verify device initialization
8833 *
8834 * Return: 0 upon success; < 0 upon failure.
8835 */
ufshcd_probe_hba(struct ufs_hba * hba,bool init_dev_params)8836 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8837 {
8838 int ret;
8839
8840 if (!hba->pm_op_in_progress &&
8841 (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8842 /* Reset the device and controller before doing reinit */
8843 ufshcd_device_reset(hba);
8844 ufs_put_device_desc(hba);
8845 ufshcd_hba_stop(hba);
8846 ret = ufshcd_hba_enable(hba);
8847 if (ret) {
8848 dev_err(hba->dev, "Host controller enable failed\n");
8849 ufshcd_print_evt_hist(hba);
8850 ufshcd_print_host_state(hba);
8851 return ret;
8852 }
8853
8854 /* Reinit the device */
8855 ret = ufshcd_device_init(hba, init_dev_params);
8856 if (ret)
8857 return ret;
8858 }
8859
8860 ufshcd_print_pwr_info(hba);
8861
8862 /*
8863 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8864 * and for removable UFS card as well, hence always set the parameter.
8865 * Note: Error handler may issue the device reset hence resetting
8866 * bActiveICCLevel as well so it is always safe to set this here.
8867 */
8868 ufshcd_set_active_icc_lvl(hba);
8869
8870 /* Enable UFS Write Booster if supported */
8871 ufshcd_configure_wb(hba);
8872
8873 if (hba->ee_usr_mask)
8874 ufshcd_write_ee_control(hba);
8875 ufshcd_configure_auto_hibern8(hba);
8876
8877 return 0;
8878 }
8879
8880 /**
8881 * ufshcd_async_scan - asynchronous execution for probing hba
8882 * @data: data pointer to pass to this function
8883 * @cookie: cookie data
8884 */
ufshcd_async_scan(void * data,async_cookie_t cookie)8885 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8886 {
8887 struct ufs_hba *hba = (struct ufs_hba *)data;
8888 ktime_t probe_start;
8889 int ret;
8890
8891 down(&hba->host_sem);
8892 /* Initialize hba, detect and initialize UFS device */
8893 probe_start = ktime_get();
8894 ret = ufshcd_probe_hba(hba, true);
8895 ufshcd_process_probe_result(hba, probe_start, ret);
8896 up(&hba->host_sem);
8897 if (ret)
8898 goto out;
8899
8900 /* Probe and add UFS logical units */
8901 ret = ufshcd_add_lus(hba);
8902
8903 out:
8904 pm_runtime_put_sync(hba->dev);
8905
8906 if (ret)
8907 dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8908 }
8909
ufshcd_eh_timed_out(struct scsi_cmnd * scmd)8910 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8911 {
8912 struct ufs_hba *hba = shost_priv(scmd->device->host);
8913
8914 if (!hba->system_suspending) {
8915 /* Activate the error handler in the SCSI core. */
8916 return SCSI_EH_NOT_HANDLED;
8917 }
8918
8919 /*
8920 * If we get here we know that no TMFs are outstanding and also that
8921 * the only pending command is a START STOP UNIT command. Handle the
8922 * timeout of that command directly to prevent a deadlock between
8923 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8924 */
8925 ufshcd_link_recovery(hba);
8926 dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8927 __func__, hba->outstanding_tasks);
8928
8929 return scsi_host_busy(hba->host) ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8930 }
8931
8932 static const struct attribute_group *ufshcd_driver_groups[] = {
8933 &ufs_sysfs_unit_descriptor_group,
8934 &ufs_sysfs_lun_attributes_group,
8935 NULL,
8936 };
8937
8938 static struct ufs_hba_variant_params ufs_hba_vps = {
8939 .hba_enable_delay_us = 1000,
8940 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40),
8941 .devfreq_profile.polling_ms = 100,
8942 .devfreq_profile.target = ufshcd_devfreq_target,
8943 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status,
8944 .ondemand_data.upthreshold = 70,
8945 .ondemand_data.downdifferential = 5,
8946 };
8947
8948 static const struct scsi_host_template ufshcd_driver_template = {
8949 .module = THIS_MODULE,
8950 .name = UFSHCD,
8951 .proc_name = UFSHCD,
8952 .map_queues = ufshcd_map_queues,
8953 .queuecommand = ufshcd_queuecommand,
8954 .mq_poll = ufshcd_poll,
8955 .sdev_init = ufshcd_sdev_init,
8956 .sdev_configure = ufshcd_sdev_configure,
8957 .sdev_destroy = ufshcd_sdev_destroy,
8958 .change_queue_depth = ufshcd_change_queue_depth,
8959 .eh_abort_handler = ufshcd_abort,
8960 .eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8961 .eh_host_reset_handler = ufshcd_eh_host_reset_handler,
8962 .eh_timed_out = ufshcd_eh_timed_out,
8963 .this_id = -1,
8964 .sg_tablesize = SG_ALL,
8965 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX,
8966 .max_sectors = SZ_1M / SECTOR_SIZE,
8967 .max_host_blocked = 1,
8968 .track_queue_depth = 1,
8969 .skip_settle_delay = 1,
8970 .sdev_groups = ufshcd_driver_groups,
8971 };
8972
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)8973 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8974 int ua)
8975 {
8976 int ret;
8977
8978 if (!vreg)
8979 return 0;
8980
8981 /*
8982 * "set_load" operation shall be required on those regulators
8983 * which specifically configured current limitation. Otherwise
8984 * zero max_uA may cause unexpected behavior when regulator is
8985 * enabled or set as high power mode.
8986 */
8987 if (!vreg->max_uA)
8988 return 0;
8989
8990 ret = regulator_set_load(vreg->reg, ua);
8991 if (ret < 0) {
8992 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8993 __func__, vreg->name, ua, ret);
8994 }
8995
8996 return ret;
8997 }
8998
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)8999 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9000 struct ufs_vreg *vreg)
9001 {
9002 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9003 }
9004
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9005 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9006 struct ufs_vreg *vreg)
9007 {
9008 if (!vreg)
9009 return 0;
9010
9011 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9012 }
9013
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)9014 static int ufshcd_config_vreg(struct device *dev,
9015 struct ufs_vreg *vreg, bool on)
9016 {
9017 if (regulator_count_voltages(vreg->reg) <= 0)
9018 return 0;
9019
9020 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9021 }
9022
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)9023 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9024 {
9025 int ret = 0;
9026
9027 if (!vreg || vreg->enabled)
9028 goto out;
9029
9030 ret = ufshcd_config_vreg(dev, vreg, true);
9031 if (!ret)
9032 ret = regulator_enable(vreg->reg);
9033
9034 if (!ret)
9035 vreg->enabled = true;
9036 else
9037 dev_err(dev, "%s: %s enable failed, err=%d\n",
9038 __func__, vreg->name, ret);
9039 out:
9040 return ret;
9041 }
9042
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)9043 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9044 {
9045 int ret = 0;
9046
9047 if (!vreg || !vreg->enabled || vreg->always_on)
9048 goto out;
9049
9050 ret = regulator_disable(vreg->reg);
9051
9052 if (!ret) {
9053 /* ignore errors on applying disable config */
9054 ufshcd_config_vreg(dev, vreg, false);
9055 vreg->enabled = false;
9056 } else {
9057 dev_err(dev, "%s: %s disable failed, err=%d\n",
9058 __func__, vreg->name, ret);
9059 }
9060 out:
9061 return ret;
9062 }
9063
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)9064 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9065 {
9066 int ret = 0;
9067 struct device *dev = hba->dev;
9068 struct ufs_vreg_info *info = &hba->vreg_info;
9069
9070 ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9071 if (ret)
9072 goto out;
9073
9074 ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9075 if (ret)
9076 goto out;
9077
9078 ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9079
9080 out:
9081 if (ret) {
9082 ufshcd_toggle_vreg(dev, info->vccq2, false);
9083 ufshcd_toggle_vreg(dev, info->vccq, false);
9084 ufshcd_toggle_vreg(dev, info->vcc, false);
9085 }
9086 return ret;
9087 }
9088
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)9089 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9090 {
9091 struct ufs_vreg_info *info = &hba->vreg_info;
9092
9093 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9094 }
9095
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)9096 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9097 {
9098 int ret = 0;
9099
9100 if (!vreg)
9101 goto out;
9102
9103 vreg->reg = devm_regulator_get(dev, vreg->name);
9104 if (IS_ERR(vreg->reg)) {
9105 ret = PTR_ERR(vreg->reg);
9106 dev_err(dev, "%s: %s get failed, err=%d\n",
9107 __func__, vreg->name, ret);
9108 }
9109 out:
9110 return ret;
9111 }
9112 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9113
ufshcd_init_vreg(struct ufs_hba * hba)9114 static int ufshcd_init_vreg(struct ufs_hba *hba)
9115 {
9116 int ret = 0;
9117 struct device *dev = hba->dev;
9118 struct ufs_vreg_info *info = &hba->vreg_info;
9119
9120 ret = ufshcd_get_vreg(dev, info->vcc);
9121 if (ret)
9122 goto out;
9123
9124 ret = ufshcd_get_vreg(dev, info->vccq);
9125 if (!ret)
9126 ret = ufshcd_get_vreg(dev, info->vccq2);
9127 out:
9128 return ret;
9129 }
9130
ufshcd_init_hba_vreg(struct ufs_hba * hba)9131 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9132 {
9133 struct ufs_vreg_info *info = &hba->vreg_info;
9134
9135 return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9136 }
9137
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)9138 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9139 {
9140 int ret = 0;
9141 struct ufs_clk_info *clki;
9142 struct list_head *head = &hba->clk_list_head;
9143 ktime_t start = ktime_get();
9144 bool clk_state_changed = false;
9145
9146 if (list_empty(head))
9147 goto out;
9148
9149 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9150 if (ret)
9151 return ret;
9152
9153 list_for_each_entry(clki, head, list) {
9154 if (!IS_ERR_OR_NULL(clki->clk)) {
9155 /*
9156 * Don't disable clocks which are needed
9157 * to keep the link active.
9158 */
9159 if (ufshcd_is_link_active(hba) &&
9160 clki->keep_link_active)
9161 continue;
9162
9163 clk_state_changed = on ^ clki->enabled;
9164 if (on && !clki->enabled) {
9165 ret = clk_prepare_enable(clki->clk);
9166 if (ret) {
9167 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9168 __func__, clki->name, ret);
9169 goto out;
9170 }
9171 } else if (!on && clki->enabled) {
9172 clk_disable_unprepare(clki->clk);
9173 }
9174 clki->enabled = on;
9175 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9176 clki->name, on ? "en" : "dis");
9177 }
9178 }
9179
9180 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9181 if (ret)
9182 return ret;
9183
9184 if (!ufshcd_is_clkscaling_supported(hba))
9185 ufshcd_pm_qos_update(hba, on);
9186 out:
9187 if (ret) {
9188 list_for_each_entry(clki, head, list) {
9189 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9190 clk_disable_unprepare(clki->clk);
9191 }
9192 } else if (!ret && on && hba->clk_gating.is_initialized) {
9193 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock)
9194 hba->clk_gating.state = CLKS_ON;
9195 trace_ufshcd_clk_gating(hba,
9196 hba->clk_gating.state);
9197 }
9198
9199 if (clk_state_changed)
9200 trace_ufshcd_profile_clk_gating(hba,
9201 (on ? "on" : "off"),
9202 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9203 return ret;
9204 }
9205
ufshcd_parse_ref_clk_property(struct ufs_hba * hba)9206 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9207 {
9208 u32 freq;
9209 int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9210
9211 if (ret) {
9212 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9213 return REF_CLK_FREQ_INVAL;
9214 }
9215
9216 return ufs_get_bref_clk_from_hz(freq);
9217 }
9218
ufshcd_init_clocks(struct ufs_hba * hba)9219 static int ufshcd_init_clocks(struct ufs_hba *hba)
9220 {
9221 int ret = 0;
9222 struct ufs_clk_info *clki;
9223 struct device *dev = hba->dev;
9224 struct list_head *head = &hba->clk_list_head;
9225
9226 if (list_empty(head))
9227 goto out;
9228
9229 list_for_each_entry(clki, head, list) {
9230 if (!clki->name)
9231 continue;
9232
9233 clki->clk = devm_clk_get(dev, clki->name);
9234 if (IS_ERR(clki->clk)) {
9235 ret = PTR_ERR(clki->clk);
9236 dev_err(dev, "%s: %s clk get failed, %d\n",
9237 __func__, clki->name, ret);
9238 goto out;
9239 }
9240
9241 /*
9242 * Parse device ref clk freq as per device tree "ref_clk".
9243 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9244 * in ufshcd_alloc_host().
9245 */
9246 if (!strcmp(clki->name, "ref_clk"))
9247 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9248
9249 if (clki->max_freq) {
9250 ret = clk_set_rate(clki->clk, clki->max_freq);
9251 if (ret) {
9252 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9253 __func__, clki->name,
9254 clki->max_freq, ret);
9255 goto out;
9256 }
9257 clki->curr_freq = clki->max_freq;
9258 }
9259 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9260 clki->name, clk_get_rate(clki->clk));
9261 }
9262
9263 /* Set Max. frequency for all clocks */
9264 if (hba->use_pm_opp) {
9265 ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9266 if (ret) {
9267 dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9268 ret);
9269 goto out;
9270 }
9271 }
9272
9273 out:
9274 return ret;
9275 }
9276
ufshcd_variant_hba_init(struct ufs_hba * hba)9277 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9278 {
9279 int err = 0;
9280
9281 if (!hba->vops)
9282 goto out;
9283
9284 err = ufshcd_vops_init(hba);
9285 if (err)
9286 dev_err_probe(hba->dev, err,
9287 "%s: variant %s init failed with err %d\n",
9288 __func__, ufshcd_get_var_name(hba), err);
9289 out:
9290 return err;
9291 }
9292
ufshcd_variant_hba_exit(struct ufs_hba * hba)9293 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9294 {
9295 if (!hba->vops)
9296 return;
9297
9298 ufshcd_vops_exit(hba);
9299 }
9300
ufshcd_hba_init(struct ufs_hba * hba)9301 static int ufshcd_hba_init(struct ufs_hba *hba)
9302 {
9303 int err;
9304
9305 /*
9306 * Handle host controller power separately from the UFS device power
9307 * rails as it will help controlling the UFS host controller power
9308 * collapse easily which is different than UFS device power collapse.
9309 * Also, enable the host controller power before we go ahead with rest
9310 * of the initialization here.
9311 */
9312 err = ufshcd_init_hba_vreg(hba);
9313 if (err)
9314 goto out;
9315
9316 err = ufshcd_setup_hba_vreg(hba, true);
9317 if (err)
9318 goto out;
9319
9320 err = ufshcd_init_clocks(hba);
9321 if (err)
9322 goto out_disable_hba_vreg;
9323
9324 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9325 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9326
9327 err = ufshcd_setup_clocks(hba, true);
9328 if (err)
9329 goto out_disable_hba_vreg;
9330
9331 err = ufshcd_init_vreg(hba);
9332 if (err)
9333 goto out_disable_clks;
9334
9335 err = ufshcd_setup_vreg(hba, true);
9336 if (err)
9337 goto out_disable_clks;
9338
9339 err = ufshcd_variant_hba_init(hba);
9340 if (err)
9341 goto out_disable_vreg;
9342
9343 ufs_debugfs_hba_init(hba);
9344 ufs_fault_inject_hba_init(hba);
9345
9346 hba->is_powered = true;
9347 goto out;
9348
9349 out_disable_vreg:
9350 ufshcd_setup_vreg(hba, false);
9351 out_disable_clks:
9352 ufshcd_setup_clocks(hba, false);
9353 out_disable_hba_vreg:
9354 ufshcd_setup_hba_vreg(hba, false);
9355 out:
9356 return err;
9357 }
9358
ufshcd_hba_exit(struct ufs_hba * hba)9359 static void ufshcd_hba_exit(struct ufs_hba *hba)
9360 {
9361 if (hba->is_powered) {
9362 ufshcd_pm_qos_exit(hba);
9363 ufshcd_exit_clk_scaling(hba);
9364 ufshcd_exit_clk_gating(hba);
9365 if (hba->eh_wq)
9366 destroy_workqueue(hba->eh_wq);
9367 ufs_debugfs_hba_exit(hba);
9368 ufshcd_variant_hba_exit(hba);
9369 ufshcd_setup_vreg(hba, false);
9370 ufshcd_setup_clocks(hba, false);
9371 ufshcd_setup_hba_vreg(hba, false);
9372 hba->is_powered = false;
9373 ufs_put_device_desc(hba);
9374 }
9375 }
9376
ufshcd_execute_start_stop(struct scsi_device * sdev,enum ufs_dev_pwr_mode pwr_mode,struct scsi_sense_hdr * sshdr)9377 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9378 enum ufs_dev_pwr_mode pwr_mode,
9379 struct scsi_sense_hdr *sshdr)
9380 {
9381 const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9382 struct scsi_failure failure_defs[] = {
9383 {
9384 .allowed = 2,
9385 .result = SCMD_FAILURE_RESULT_ANY,
9386 },
9387 };
9388 struct scsi_failures failures = {
9389 .failure_definitions = failure_defs,
9390 };
9391 const struct scsi_exec_args args = {
9392 .failures = &failures,
9393 .sshdr = sshdr,
9394 .req_flags = BLK_MQ_REQ_PM,
9395 .scmd_flags = SCMD_FAIL_IF_RECOVERING,
9396 };
9397
9398 return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9399 /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9400 &args);
9401 }
9402
9403 /**
9404 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9405 * power mode
9406 * @hba: per adapter instance
9407 * @pwr_mode: device power mode to set
9408 *
9409 * Return: 0 if requested power mode is set successfully;
9410 * < 0 if failed to set the requested power mode.
9411 */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)9412 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9413 enum ufs_dev_pwr_mode pwr_mode)
9414 {
9415 struct scsi_sense_hdr sshdr;
9416 struct scsi_device *sdp;
9417 unsigned long flags;
9418 int ret;
9419
9420 spin_lock_irqsave(hba->host->host_lock, flags);
9421 sdp = hba->ufs_device_wlun;
9422 if (sdp && scsi_device_online(sdp))
9423 ret = scsi_device_get(sdp);
9424 else
9425 ret = -ENODEV;
9426 spin_unlock_irqrestore(hba->host->host_lock, flags);
9427
9428 if (ret)
9429 return ret;
9430
9431 /*
9432 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9433 * handling, which would wait for host to be resumed. Since we know
9434 * we are functional while we are here, skip host resume in error
9435 * handling context.
9436 */
9437 hba->host->eh_noresume = 1;
9438
9439 /*
9440 * Current function would be generally called from the power management
9441 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9442 * already suspended childs.
9443 */
9444 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9445 if (ret) {
9446 sdev_printk(KERN_WARNING, sdp,
9447 "START_STOP failed for power mode: %d, result %x\n",
9448 pwr_mode, ret);
9449 if (ret > 0) {
9450 if (scsi_sense_valid(&sshdr))
9451 scsi_print_sense_hdr(sdp, NULL, &sshdr);
9452 ret = -EIO;
9453 }
9454 } else {
9455 hba->curr_dev_pwr_mode = pwr_mode;
9456 }
9457
9458 scsi_device_put(sdp);
9459 hba->host->eh_noresume = 0;
9460 return ret;
9461 }
9462
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,bool check_for_bkops)9463 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9464 enum uic_link_state req_link_state,
9465 bool check_for_bkops)
9466 {
9467 int ret = 0;
9468
9469 if (req_link_state == hba->uic_link_state)
9470 return 0;
9471
9472 if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9473 ret = ufshcd_uic_hibern8_enter(hba);
9474 if (!ret) {
9475 ufshcd_set_link_hibern8(hba);
9476 } else {
9477 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9478 __func__, ret);
9479 goto out;
9480 }
9481 }
9482 /*
9483 * If autobkops is enabled, link can't be turned off because
9484 * turning off the link would also turn off the device, except in the
9485 * case of DeepSleep where the device is expected to remain powered.
9486 */
9487 else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9488 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9489 /*
9490 * Let's make sure that link is in low power mode, we are doing
9491 * this currently by putting the link in Hibern8. Otherway to
9492 * put the link in low power mode is to send the DME end point
9493 * to device and then send the DME reset command to local
9494 * unipro. But putting the link in hibern8 is much faster.
9495 *
9496 * Note also that putting the link in Hibern8 is a requirement
9497 * for entering DeepSleep.
9498 */
9499 ret = ufshcd_uic_hibern8_enter(hba);
9500 if (ret) {
9501 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9502 __func__, ret);
9503 goto out;
9504 }
9505 /*
9506 * Change controller state to "reset state" which
9507 * should also put the link in off/reset state
9508 */
9509 ufshcd_hba_stop(hba);
9510 /*
9511 * TODO: Check if we need any delay to make sure that
9512 * controller is reset
9513 */
9514 ufshcd_set_link_off(hba);
9515 }
9516
9517 out:
9518 return ret;
9519 }
9520
ufshcd_vreg_set_lpm(struct ufs_hba * hba)9521 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9522 {
9523 bool vcc_off = false;
9524
9525 /*
9526 * It seems some UFS devices may keep drawing more than sleep current
9527 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9528 * To avoid this situation, add 2ms delay before putting these UFS
9529 * rails in LPM mode.
9530 */
9531 if (!ufshcd_is_link_active(hba) &&
9532 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9533 usleep_range(2000, 2100);
9534
9535 /*
9536 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9537 * power.
9538 *
9539 * If UFS device and link is in OFF state, all power supplies (VCC,
9540 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9541 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9542 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9543 *
9544 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9545 * in low power state which would save some power.
9546 *
9547 * If Write Booster is enabled and the device needs to flush the WB
9548 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9549 */
9550 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9551 !hba->dev_info.is_lu_power_on_wp) {
9552 ufshcd_setup_vreg(hba, false);
9553 vcc_off = true;
9554 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9555 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9556 vcc_off = true;
9557 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9558 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9559 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9560 }
9561 }
9562
9563 /*
9564 * Some UFS devices require delay after VCC power rail is turned-off.
9565 */
9566 if (vcc_off && hba->vreg_info.vcc &&
9567 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9568 usleep_range(5000, 5100);
9569 }
9570
9571 #ifdef CONFIG_PM
ufshcd_vreg_set_hpm(struct ufs_hba * hba)9572 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9573 {
9574 int ret = 0;
9575
9576 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9577 !hba->dev_info.is_lu_power_on_wp) {
9578 ret = ufshcd_setup_vreg(hba, true);
9579 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9580 if (!ufshcd_is_link_active(hba)) {
9581 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9582 if (ret)
9583 goto vcc_disable;
9584 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9585 if (ret)
9586 goto vccq_lpm;
9587 }
9588 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9589 }
9590 goto out;
9591
9592 vccq_lpm:
9593 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9594 vcc_disable:
9595 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9596 out:
9597 return ret;
9598 }
9599 #endif /* CONFIG_PM */
9600
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)9601 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9602 {
9603 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9604 ufshcd_setup_hba_vreg(hba, false);
9605 }
9606
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)9607 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9608 {
9609 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9610 ufshcd_setup_hba_vreg(hba, true);
9611 }
9612
__ufshcd_wl_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)9613 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9614 {
9615 int ret = 0;
9616 bool check_for_bkops;
9617 enum ufs_pm_level pm_lvl;
9618 enum ufs_dev_pwr_mode req_dev_pwr_mode;
9619 enum uic_link_state req_link_state;
9620
9621 hba->pm_op_in_progress = true;
9622 if (pm_op != UFS_SHUTDOWN_PM) {
9623 pm_lvl = pm_op == UFS_RUNTIME_PM ?
9624 hba->rpm_lvl : hba->spm_lvl;
9625 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9626 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9627 } else {
9628 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9629 req_link_state = UIC_LINK_OFF_STATE;
9630 }
9631
9632 /*
9633 * If we can't transition into any of the low power modes
9634 * just gate the clocks.
9635 */
9636 ufshcd_hold(hba);
9637 hba->clk_gating.is_suspended = true;
9638
9639 if (ufshcd_is_clkscaling_supported(hba))
9640 ufshcd_clk_scaling_suspend(hba, true);
9641
9642 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9643 req_link_state == UIC_LINK_ACTIVE_STATE) {
9644 goto vops_suspend;
9645 }
9646
9647 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9648 (req_link_state == hba->uic_link_state))
9649 goto enable_scaling;
9650
9651 /* UFS device & link must be active before we enter in this function */
9652 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9653 /* Wait err handler finish or trigger err recovery */
9654 if (!ufshcd_eh_in_progress(hba))
9655 ufshcd_force_error_recovery(hba);
9656 ret = -EBUSY;
9657 goto enable_scaling;
9658 }
9659
9660 if (pm_op == UFS_RUNTIME_PM) {
9661 if (ufshcd_can_autobkops_during_suspend(hba)) {
9662 /*
9663 * The device is idle with no requests in the queue,
9664 * allow background operations if bkops status shows
9665 * that performance might be impacted.
9666 */
9667 ret = ufshcd_bkops_ctrl(hba);
9668 if (ret) {
9669 /*
9670 * If return err in suspend flow, IO will hang.
9671 * Trigger error handler and break suspend for
9672 * error recovery.
9673 */
9674 ufshcd_force_error_recovery(hba);
9675 ret = -EBUSY;
9676 goto enable_scaling;
9677 }
9678 } else {
9679 /* make sure that auto bkops is disabled */
9680 ufshcd_disable_auto_bkops(hba);
9681 }
9682 /*
9683 * If device needs to do BKOP or WB buffer flush during
9684 * Hibern8, keep device power mode as "active power mode"
9685 * and VCC supply.
9686 */
9687 hba->dev_info.b_rpm_dev_flush_capable =
9688 hba->auto_bkops_enabled ||
9689 (((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9690 ((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9691 ufshcd_is_auto_hibern8_enabled(hba))) &&
9692 ufshcd_wb_need_flush(hba));
9693 }
9694
9695 flush_work(&hba->eeh_work);
9696
9697 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9698 if (ret)
9699 goto enable_scaling;
9700
9701 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9702 if (pm_op != UFS_RUNTIME_PM)
9703 /* ensure that bkops is disabled */
9704 ufshcd_disable_auto_bkops(hba);
9705
9706 if (!hba->dev_info.b_rpm_dev_flush_capable) {
9707 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9708 if (ret && pm_op != UFS_SHUTDOWN_PM) {
9709 /*
9710 * If return err in suspend flow, IO will hang.
9711 * Trigger error handler and break suspend for
9712 * error recovery.
9713 */
9714 ufshcd_force_error_recovery(hba);
9715 ret = -EBUSY;
9716 }
9717 if (ret)
9718 goto enable_scaling;
9719 }
9720 }
9721
9722 /*
9723 * In the case of DeepSleep, the device is expected to remain powered
9724 * with the link off, so do not check for bkops.
9725 */
9726 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9727 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9728 if (ret && pm_op != UFS_SHUTDOWN_PM) {
9729 /*
9730 * If return err in suspend flow, IO will hang.
9731 * Trigger error handler and break suspend for
9732 * error recovery.
9733 */
9734 ufshcd_force_error_recovery(hba);
9735 ret = -EBUSY;
9736 }
9737 if (ret)
9738 goto set_dev_active;
9739
9740 vops_suspend:
9741 /*
9742 * Call vendor specific suspend callback. As these callbacks may access
9743 * vendor specific host controller register space call them before the
9744 * host clocks are ON.
9745 */
9746 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9747 if (ret)
9748 goto set_link_active;
9749
9750 cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9751 goto out;
9752
9753 set_link_active:
9754 /*
9755 * Device hardware reset is required to exit DeepSleep. Also, for
9756 * DeepSleep, the link is off so host reset and restore will be done
9757 * further below.
9758 */
9759 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9760 ufshcd_device_reset(hba);
9761 WARN_ON(!ufshcd_is_link_off(hba));
9762 }
9763 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9764 ufshcd_set_link_active(hba);
9765 else if (ufshcd_is_link_off(hba))
9766 ufshcd_host_reset_and_restore(hba);
9767 set_dev_active:
9768 /* Can also get here needing to exit DeepSleep */
9769 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9770 ufshcd_device_reset(hba);
9771 ufshcd_host_reset_and_restore(hba);
9772 }
9773 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9774 ufshcd_disable_auto_bkops(hba);
9775 enable_scaling:
9776 if (ufshcd_is_clkscaling_supported(hba))
9777 ufshcd_clk_scaling_suspend(hba, false);
9778
9779 hba->dev_info.b_rpm_dev_flush_capable = false;
9780 out:
9781 if (hba->dev_info.b_rpm_dev_flush_capable) {
9782 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9783 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9784 }
9785
9786 if (ret) {
9787 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9788 hba->clk_gating.is_suspended = false;
9789 ufshcd_release(hba);
9790 }
9791 hba->pm_op_in_progress = false;
9792 return ret;
9793 }
9794
9795 #ifdef CONFIG_PM
__ufshcd_wl_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)9796 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9797 {
9798 int ret;
9799 enum uic_link_state old_link_state = hba->uic_link_state;
9800
9801 hba->pm_op_in_progress = true;
9802
9803 /*
9804 * Call vendor specific resume callback. As these callbacks may access
9805 * vendor specific host controller register space call them when the
9806 * host clocks are ON.
9807 */
9808 ret = ufshcd_vops_resume(hba, pm_op);
9809 if (ret)
9810 goto out;
9811
9812 /* For DeepSleep, the only supported option is to have the link off */
9813 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9814
9815 if (ufshcd_is_link_hibern8(hba)) {
9816 ret = ufshcd_uic_hibern8_exit(hba);
9817 if (!ret) {
9818 ufshcd_set_link_active(hba);
9819 } else {
9820 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9821 __func__, ret);
9822 goto vendor_suspend;
9823 }
9824 } else if (ufshcd_is_link_off(hba)) {
9825 /*
9826 * A full initialization of the host and the device is
9827 * required since the link was put to off during suspend.
9828 * Note, in the case of DeepSleep, the device will exit
9829 * DeepSleep due to device reset.
9830 */
9831 ret = ufshcd_reset_and_restore(hba);
9832 /*
9833 * ufshcd_reset_and_restore() should have already
9834 * set the link state as active
9835 */
9836 if (ret || !ufshcd_is_link_active(hba))
9837 goto vendor_suspend;
9838 }
9839
9840 if (!ufshcd_is_ufs_dev_active(hba)) {
9841 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9842 if (ret)
9843 goto set_old_link_state;
9844 ufshcd_set_timestamp_attr(hba);
9845 schedule_delayed_work(&hba->ufs_rtc_update_work,
9846 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
9847 }
9848
9849 if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9850 ufshcd_enable_auto_bkops(hba);
9851 else
9852 /*
9853 * If BKOPs operations are urgently needed at this moment then
9854 * keep auto-bkops enabled or else disable it.
9855 */
9856 ufshcd_bkops_ctrl(hba);
9857
9858 if (hba->ee_usr_mask)
9859 ufshcd_write_ee_control(hba);
9860
9861 if (ufshcd_is_clkscaling_supported(hba))
9862 ufshcd_clk_scaling_suspend(hba, false);
9863
9864 if (hba->dev_info.b_rpm_dev_flush_capable) {
9865 hba->dev_info.b_rpm_dev_flush_capable = false;
9866 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9867 }
9868
9869 ufshcd_configure_auto_hibern8(hba);
9870
9871 goto out;
9872
9873 set_old_link_state:
9874 ufshcd_link_state_transition(hba, old_link_state, 0);
9875 vendor_suspend:
9876 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9877 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9878 out:
9879 if (ret)
9880 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9881 hba->clk_gating.is_suspended = false;
9882 ufshcd_release(hba);
9883 hba->pm_op_in_progress = false;
9884 return ret;
9885 }
9886
ufshcd_wl_runtime_suspend(struct device * dev)9887 static int ufshcd_wl_runtime_suspend(struct device *dev)
9888 {
9889 struct scsi_device *sdev = to_scsi_device(dev);
9890 struct ufs_hba *hba;
9891 int ret;
9892 ktime_t start = ktime_get();
9893
9894 hba = shost_priv(sdev->host);
9895
9896 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9897 if (ret)
9898 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9899
9900 trace_ufshcd_wl_runtime_suspend(hba, ret,
9901 ktime_to_us(ktime_sub(ktime_get(), start)),
9902 hba->curr_dev_pwr_mode, hba->uic_link_state);
9903
9904 return ret;
9905 }
9906
ufshcd_wl_runtime_resume(struct device * dev)9907 static int ufshcd_wl_runtime_resume(struct device *dev)
9908 {
9909 struct scsi_device *sdev = to_scsi_device(dev);
9910 struct ufs_hba *hba;
9911 int ret = 0;
9912 ktime_t start = ktime_get();
9913
9914 hba = shost_priv(sdev->host);
9915
9916 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9917 if (ret)
9918 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9919
9920 trace_ufshcd_wl_runtime_resume(hba, ret,
9921 ktime_to_us(ktime_sub(ktime_get(), start)),
9922 hba->curr_dev_pwr_mode, hba->uic_link_state);
9923
9924 return ret;
9925 }
9926 #endif
9927
9928 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_suspend(struct device * dev)9929 static int ufshcd_wl_suspend(struct device *dev)
9930 {
9931 struct scsi_device *sdev = to_scsi_device(dev);
9932 struct ufs_hba *hba;
9933 int ret = 0;
9934 ktime_t start = ktime_get();
9935
9936 hba = shost_priv(sdev->host);
9937 down(&hba->host_sem);
9938 hba->system_suspending = true;
9939
9940 if (pm_runtime_suspended(dev))
9941 goto out;
9942
9943 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9944 if (ret) {
9945 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9946 up(&hba->host_sem);
9947 }
9948
9949 out:
9950 if (!ret)
9951 hba->is_sys_suspended = true;
9952 trace_ufshcd_wl_suspend(hba, ret,
9953 ktime_to_us(ktime_sub(ktime_get(), start)),
9954 hba->curr_dev_pwr_mode, hba->uic_link_state);
9955
9956 return ret;
9957 }
9958
ufshcd_wl_resume(struct device * dev)9959 static int ufshcd_wl_resume(struct device *dev)
9960 {
9961 struct scsi_device *sdev = to_scsi_device(dev);
9962 struct ufs_hba *hba;
9963 int ret = 0;
9964 ktime_t start = ktime_get();
9965
9966 hba = shost_priv(sdev->host);
9967
9968 if (pm_runtime_suspended(dev))
9969 goto out;
9970
9971 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9972 if (ret)
9973 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9974 out:
9975 trace_ufshcd_wl_resume(hba, ret,
9976 ktime_to_us(ktime_sub(ktime_get(), start)),
9977 hba->curr_dev_pwr_mode, hba->uic_link_state);
9978 if (!ret)
9979 hba->is_sys_suspended = false;
9980 hba->system_suspending = false;
9981 up(&hba->host_sem);
9982 return ret;
9983 }
9984 #endif
9985
9986 /**
9987 * ufshcd_suspend - helper function for suspend operations
9988 * @hba: per adapter instance
9989 *
9990 * This function will put disable irqs, turn off clocks
9991 * and set vreg and hba-vreg in lpm mode.
9992 *
9993 * Return: 0 upon success; < 0 upon failure.
9994 */
ufshcd_suspend(struct ufs_hba * hba)9995 static int ufshcd_suspend(struct ufs_hba *hba)
9996 {
9997 int ret;
9998
9999 if (!hba->is_powered)
10000 return 0;
10001 /*
10002 * Disable the host irq as host controller as there won't be any
10003 * host controller transaction expected till resume.
10004 */
10005 ufshcd_disable_irq(hba);
10006 ret = ufshcd_setup_clocks(hba, false);
10007 if (ret) {
10008 ufshcd_enable_irq(hba);
10009 return ret;
10010 }
10011 if (ufshcd_is_clkgating_allowed(hba)) {
10012 hba->clk_gating.state = CLKS_OFF;
10013 trace_ufshcd_clk_gating(hba,
10014 hba->clk_gating.state);
10015 }
10016
10017 ufshcd_vreg_set_lpm(hba);
10018 /* Put the host controller in low power mode if possible */
10019 ufshcd_hba_vreg_set_lpm(hba);
10020 ufshcd_pm_qos_update(hba, false);
10021 return ret;
10022 }
10023
10024 #ifdef CONFIG_PM
10025 /**
10026 * ufshcd_resume - helper function for resume operations
10027 * @hba: per adapter instance
10028 *
10029 * This function basically turns on the regulators, clocks and
10030 * irqs of the hba.
10031 *
10032 * Return: 0 for success and non-zero for failure.
10033 */
ufshcd_resume(struct ufs_hba * hba)10034 static int ufshcd_resume(struct ufs_hba *hba)
10035 {
10036 int ret;
10037
10038 if (!hba->is_powered)
10039 return 0;
10040
10041 ufshcd_hba_vreg_set_hpm(hba);
10042 ret = ufshcd_vreg_set_hpm(hba);
10043 if (ret)
10044 goto out;
10045
10046 /* Make sure clocks are enabled before accessing controller */
10047 ret = ufshcd_setup_clocks(hba, true);
10048 if (ret)
10049 goto disable_vreg;
10050
10051 /* enable the host irq as host controller would be active soon */
10052 ufshcd_enable_irq(hba);
10053
10054 goto out;
10055
10056 disable_vreg:
10057 ufshcd_vreg_set_lpm(hba);
10058 out:
10059 if (ret)
10060 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10061 return ret;
10062 }
10063 #endif /* CONFIG_PM */
10064
10065 #ifdef CONFIG_PM_SLEEP
10066 /**
10067 * ufshcd_system_suspend - system suspend callback
10068 * @dev: Device associated with the UFS controller.
10069 *
10070 * Executed before putting the system into a sleep state in which the contents
10071 * of main memory are preserved.
10072 *
10073 * Return: 0 for success and non-zero for failure.
10074 */
ufshcd_system_suspend(struct device * dev)10075 int ufshcd_system_suspend(struct device *dev)
10076 {
10077 struct ufs_hba *hba = dev_get_drvdata(dev);
10078 int ret = 0;
10079 ktime_t start = ktime_get();
10080
10081 if (pm_runtime_suspended(hba->dev))
10082 goto out;
10083
10084 ret = ufshcd_suspend(hba);
10085 out:
10086 trace_ufshcd_system_suspend(hba, ret,
10087 ktime_to_us(ktime_sub(ktime_get(), start)),
10088 hba->curr_dev_pwr_mode, hba->uic_link_state);
10089 return ret;
10090 }
10091 EXPORT_SYMBOL(ufshcd_system_suspend);
10092
10093 /**
10094 * ufshcd_system_resume - system resume callback
10095 * @dev: Device associated with the UFS controller.
10096 *
10097 * Executed after waking the system up from a sleep state in which the contents
10098 * of main memory were preserved.
10099 *
10100 * Return: 0 for success and non-zero for failure.
10101 */
ufshcd_system_resume(struct device * dev)10102 int ufshcd_system_resume(struct device *dev)
10103 {
10104 struct ufs_hba *hba = dev_get_drvdata(dev);
10105 ktime_t start = ktime_get();
10106 int ret = 0;
10107
10108 if (pm_runtime_suspended(hba->dev))
10109 goto out;
10110
10111 ret = ufshcd_resume(hba);
10112
10113 out:
10114 trace_ufshcd_system_resume(hba, ret,
10115 ktime_to_us(ktime_sub(ktime_get(), start)),
10116 hba->curr_dev_pwr_mode, hba->uic_link_state);
10117
10118 return ret;
10119 }
10120 EXPORT_SYMBOL(ufshcd_system_resume);
10121 #endif /* CONFIG_PM_SLEEP */
10122
10123 #ifdef CONFIG_PM
10124 /**
10125 * ufshcd_runtime_suspend - runtime suspend callback
10126 * @dev: Device associated with the UFS controller.
10127 *
10128 * Check the description of ufshcd_suspend() function for more details.
10129 *
10130 * Return: 0 for success and non-zero for failure.
10131 */
ufshcd_runtime_suspend(struct device * dev)10132 int ufshcd_runtime_suspend(struct device *dev)
10133 {
10134 struct ufs_hba *hba = dev_get_drvdata(dev);
10135 int ret;
10136 ktime_t start = ktime_get();
10137
10138 ret = ufshcd_suspend(hba);
10139
10140 trace_ufshcd_runtime_suspend(hba, ret,
10141 ktime_to_us(ktime_sub(ktime_get(), start)),
10142 hba->curr_dev_pwr_mode, hba->uic_link_state);
10143 return ret;
10144 }
10145 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10146
10147 /**
10148 * ufshcd_runtime_resume - runtime resume routine
10149 * @dev: Device associated with the UFS controller.
10150 *
10151 * This function basically brings controller
10152 * to active state. Following operations are done in this function:
10153 *
10154 * 1. Turn on all the controller related clocks
10155 * 2. Turn ON VCC rail
10156 *
10157 * Return: 0 upon success; < 0 upon failure.
10158 */
ufshcd_runtime_resume(struct device * dev)10159 int ufshcd_runtime_resume(struct device *dev)
10160 {
10161 struct ufs_hba *hba = dev_get_drvdata(dev);
10162 int ret;
10163 ktime_t start = ktime_get();
10164
10165 ret = ufshcd_resume(hba);
10166
10167 trace_ufshcd_runtime_resume(hba, ret,
10168 ktime_to_us(ktime_sub(ktime_get(), start)),
10169 hba->curr_dev_pwr_mode, hba->uic_link_state);
10170 return ret;
10171 }
10172 EXPORT_SYMBOL(ufshcd_runtime_resume);
10173 #endif /* CONFIG_PM */
10174
ufshcd_wl_shutdown(struct device * dev)10175 static void ufshcd_wl_shutdown(struct device *dev)
10176 {
10177 struct scsi_device *sdev = to_scsi_device(dev);
10178 struct ufs_hba *hba = shost_priv(sdev->host);
10179
10180 down(&hba->host_sem);
10181 hba->shutting_down = true;
10182 up(&hba->host_sem);
10183
10184 /* Turn on everything while shutting down */
10185 ufshcd_rpm_get_sync(hba);
10186 scsi_device_quiesce(sdev);
10187 shost_for_each_device(sdev, hba->host) {
10188 if (sdev == hba->ufs_device_wlun)
10189 continue;
10190 mutex_lock(&sdev->state_mutex);
10191 scsi_device_set_state(sdev, SDEV_OFFLINE);
10192 mutex_unlock(&sdev->state_mutex);
10193 }
10194 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10195
10196 /*
10197 * Next, turn off the UFS controller and the UFS regulators. Disable
10198 * clocks.
10199 */
10200 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10201 ufshcd_suspend(hba);
10202
10203 hba->is_powered = false;
10204 }
10205
10206 /**
10207 * ufshcd_remove - de-allocate SCSI host and host memory space
10208 * data structure memory
10209 * @hba: per adapter instance
10210 */
ufshcd_remove(struct ufs_hba * hba)10211 void ufshcd_remove(struct ufs_hba *hba)
10212 {
10213 if (hba->ufs_device_wlun)
10214 ufshcd_rpm_get_sync(hba);
10215 ufs_hwmon_remove(hba);
10216 ufs_bsg_remove(hba);
10217 ufs_sysfs_remove_nodes(hba->dev);
10218 cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10219 blk_mq_destroy_queue(hba->tmf_queue);
10220 blk_put_queue(hba->tmf_queue);
10221 blk_mq_free_tag_set(&hba->tmf_tag_set);
10222 if (hba->scsi_host_added)
10223 scsi_remove_host(hba->host);
10224 /* disable interrupts */
10225 ufshcd_disable_intr(hba, hba->intr_mask);
10226 ufshcd_hba_stop(hba);
10227 ufshcd_hba_exit(hba);
10228 }
10229 EXPORT_SYMBOL_GPL(ufshcd_remove);
10230
10231 #ifdef CONFIG_PM_SLEEP
ufshcd_system_freeze(struct device * dev)10232 int ufshcd_system_freeze(struct device *dev)
10233 {
10234
10235 return ufshcd_system_suspend(dev);
10236
10237 }
10238 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10239
ufshcd_system_restore(struct device * dev)10240 int ufshcd_system_restore(struct device *dev)
10241 {
10242
10243 struct ufs_hba *hba = dev_get_drvdata(dev);
10244 int ret;
10245
10246 ret = ufshcd_system_resume(dev);
10247 if (ret)
10248 return ret;
10249
10250 /* Configure UTRL and UTMRL base address registers */
10251 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10252 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10253 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10254 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10255 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10256 REG_UTP_TASK_REQ_LIST_BASE_L);
10257 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10258 REG_UTP_TASK_REQ_LIST_BASE_H);
10259 /*
10260 * Make sure that UTRL and UTMRL base address registers
10261 * are updated with the latest queue addresses. Only after
10262 * updating these addresses, we can queue the new commands.
10263 */
10264 ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10265
10266 return 0;
10267
10268 }
10269 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10270
ufshcd_system_thaw(struct device * dev)10271 int ufshcd_system_thaw(struct device *dev)
10272 {
10273 return ufshcd_system_resume(dev);
10274 }
10275 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10276 #endif /* CONFIG_PM_SLEEP */
10277
10278 /**
10279 * ufshcd_set_dma_mask - Set dma mask based on the controller
10280 * addressing capability
10281 * @hba: per adapter instance
10282 *
10283 * Return: 0 for success, non-zero for failure.
10284 */
ufshcd_set_dma_mask(struct ufs_hba * hba)10285 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10286 {
10287 if (hba->vops && hba->vops->set_dma_mask)
10288 return hba->vops->set_dma_mask(hba);
10289 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10290 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10291 return 0;
10292 }
10293 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10294 }
10295
10296 /**
10297 * ufshcd_devres_release - devres cleanup handler, invoked during release of
10298 * hba->dev
10299 * @host: pointer to SCSI host
10300 */
ufshcd_devres_release(void * host)10301 static void ufshcd_devres_release(void *host)
10302 {
10303 scsi_host_put(host);
10304 }
10305
10306 /**
10307 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10308 * @dev: pointer to device handle
10309 * @hba_handle: driver private handle
10310 *
10311 * Return: 0 on success, non-zero value on failure.
10312 *
10313 * NOTE: There is no corresponding ufshcd_dealloc_host() because this function
10314 * keeps track of its allocations using devres and deallocates everything on
10315 * device removal automatically.
10316 */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)10317 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10318 {
10319 struct Scsi_Host *host;
10320 struct ufs_hba *hba;
10321 int err = 0;
10322
10323 if (!dev) {
10324 dev_err(dev,
10325 "Invalid memory reference for dev is NULL\n");
10326 err = -ENODEV;
10327 goto out_error;
10328 }
10329
10330 host = scsi_host_alloc(&ufshcd_driver_template,
10331 sizeof(struct ufs_hba));
10332 if (!host) {
10333 dev_err(dev, "scsi_host_alloc failed\n");
10334 err = -ENOMEM;
10335 goto out_error;
10336 }
10337
10338 err = devm_add_action_or_reset(dev, ufshcd_devres_release,
10339 host);
10340 if (err)
10341 return dev_err_probe(dev, err,
10342 "failed to add ufshcd dealloc action\n");
10343
10344 host->nr_maps = HCTX_TYPE_POLL + 1;
10345 hba = shost_priv(host);
10346 hba->host = host;
10347 hba->dev = dev;
10348 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10349 hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10350 ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10351 INIT_LIST_HEAD(&hba->clk_list_head);
10352 spin_lock_init(&hba->outstanding_lock);
10353
10354 *hba_handle = hba;
10355
10356 out_error:
10357 return err;
10358 }
10359 EXPORT_SYMBOL(ufshcd_alloc_host);
10360
10361 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)10362 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10363 const struct blk_mq_queue_data *qd)
10364 {
10365 WARN_ON_ONCE(true);
10366 return BLK_STS_NOTSUPP;
10367 }
10368
10369 static const struct blk_mq_ops ufshcd_tmf_ops = {
10370 .queue_rq = ufshcd_queue_tmf,
10371 };
10372
ufshcd_add_scsi_host(struct ufs_hba * hba)10373 static int ufshcd_add_scsi_host(struct ufs_hba *hba)
10374 {
10375 int err;
10376
10377 if (is_mcq_supported(hba)) {
10378 ufshcd_mcq_enable(hba);
10379 err = ufshcd_alloc_mcq(hba);
10380 if (!err) {
10381 ufshcd_config_mcq(hba);
10382 } else {
10383 /* Continue with SDB mode */
10384 ufshcd_mcq_disable(hba);
10385 use_mcq_mode = false;
10386 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
10387 err);
10388 }
10389 }
10390 if (!is_mcq_supported(hba) && !hba->lsdb_sup) {
10391 dev_err(hba->dev,
10392 "%s: failed to initialize (legacy doorbell mode not supported)\n",
10393 __func__);
10394 return -EINVAL;
10395 }
10396
10397 err = scsi_add_host(hba->host, hba->dev);
10398 if (err) {
10399 dev_err(hba->dev, "scsi_add_host failed\n");
10400 return err;
10401 }
10402 hba->scsi_host_added = true;
10403
10404 hba->tmf_tag_set = (struct blk_mq_tag_set) {
10405 .nr_hw_queues = 1,
10406 .queue_depth = hba->nutmrs,
10407 .ops = &ufshcd_tmf_ops,
10408 };
10409 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10410 if (err < 0)
10411 goto remove_scsi_host;
10412 hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10413 if (IS_ERR(hba->tmf_queue)) {
10414 err = PTR_ERR(hba->tmf_queue);
10415 goto free_tmf_tag_set;
10416 }
10417 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10418 sizeof(*hba->tmf_rqs), GFP_KERNEL);
10419 if (!hba->tmf_rqs) {
10420 err = -ENOMEM;
10421 goto free_tmf_queue;
10422 }
10423
10424 return 0;
10425
10426 free_tmf_queue:
10427 blk_mq_destroy_queue(hba->tmf_queue);
10428 blk_put_queue(hba->tmf_queue);
10429
10430 free_tmf_tag_set:
10431 blk_mq_free_tag_set(&hba->tmf_tag_set);
10432
10433 remove_scsi_host:
10434 if (hba->scsi_host_added)
10435 scsi_remove_host(hba->host);
10436
10437 return err;
10438 }
10439
10440 /**
10441 * ufshcd_init - Driver initialization routine
10442 * @hba: per-adapter instance
10443 * @mmio_base: base register address
10444 * @irq: Interrupt line of device
10445 *
10446 * Return: 0 on success, non-zero value on failure.
10447 */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)10448 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10449 {
10450 int err;
10451 struct Scsi_Host *host = hba->host;
10452 struct device *dev = hba->dev;
10453
10454 /*
10455 * dev_set_drvdata() must be called before any callbacks are registered
10456 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10457 * sysfs).
10458 */
10459 dev_set_drvdata(dev, hba);
10460
10461 if (!mmio_base) {
10462 dev_err(hba->dev,
10463 "Invalid memory reference for mmio_base is NULL\n");
10464 err = -ENODEV;
10465 goto out_error;
10466 }
10467
10468 hba->mmio_base = mmio_base;
10469 hba->irq = irq;
10470 hba->vps = &ufs_hba_vps;
10471
10472 /*
10473 * Initialize clk_gating.lock early since it is being used in
10474 * ufshcd_setup_clocks()
10475 */
10476 spin_lock_init(&hba->clk_gating.lock);
10477
10478 /*
10479 * Set the default power management level for runtime and system PM.
10480 * Host controller drivers can override them in their
10481 * 'ufs_hba_variant_ops::init' callback.
10482 *
10483 * Default power saving mode is to keep UFS link in Hibern8 state
10484 * and UFS device in sleep state.
10485 */
10486 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10487 UFS_SLEEP_PWR_MODE,
10488 UIC_LINK_HIBERN8_STATE);
10489 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10490 UFS_SLEEP_PWR_MODE,
10491 UIC_LINK_HIBERN8_STATE);
10492
10493 err = ufshcd_hba_init(hba);
10494 if (err)
10495 goto out_error;
10496
10497 /* Read capabilities registers */
10498 err = ufshcd_hba_capabilities(hba);
10499 if (err)
10500 goto out_disable;
10501
10502 /* Get UFS version supported by the controller */
10503 hba->ufs_version = ufshcd_get_ufs_version(hba);
10504
10505 /* Get Interrupt bit mask per version */
10506 hba->intr_mask = ufshcd_get_intr_mask(hba);
10507
10508 err = ufshcd_set_dma_mask(hba);
10509 if (err) {
10510 dev_err(hba->dev, "set dma mask failed\n");
10511 goto out_disable;
10512 }
10513
10514 /* Allocate memory for host memory space */
10515 err = ufshcd_memory_alloc(hba);
10516 if (err) {
10517 dev_err(hba->dev, "Memory allocation failed\n");
10518 goto out_disable;
10519 }
10520
10521 /* Configure LRB */
10522 ufshcd_host_memory_configure(hba);
10523
10524 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10525 host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10526 host->max_id = UFSHCD_MAX_ID;
10527 host->max_lun = UFS_MAX_LUNS;
10528 host->max_channel = UFSHCD_MAX_CHANNEL;
10529 host->unique_id = host->host_no;
10530 host->max_cmd_len = UFS_CDB_SIZE;
10531 host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10532
10533 /* Use default RPM delay if host not set */
10534 if (host->rpm_autosuspend_delay == 0)
10535 host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10536
10537 hba->max_pwr_info.is_valid = false;
10538
10539 /* Initialize work queues */
10540 hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM,
10541 hba->host->host_no);
10542 if (!hba->eh_wq) {
10543 dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10544 __func__);
10545 err = -ENOMEM;
10546 goto out_disable;
10547 }
10548 INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10549 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10550
10551 sema_init(&hba->host_sem, 1);
10552
10553 /* Initialize UIC command mutex */
10554 mutex_init(&hba->uic_cmd_mutex);
10555
10556 /* Initialize mutex for device management commands */
10557 mutex_init(&hba->dev_cmd.lock);
10558
10559 /* Initialize mutex for exception event control */
10560 mutex_init(&hba->ee_ctrl_mutex);
10561
10562 mutex_init(&hba->wb_mutex);
10563 init_rwsem(&hba->clk_scaling_lock);
10564
10565 ufshcd_init_clk_gating(hba);
10566
10567 ufshcd_init_clk_scaling(hba);
10568
10569 /*
10570 * In order to avoid any spurious interrupt immediately after
10571 * registering UFS controller interrupt handler, clear any pending UFS
10572 * interrupt status and disable all the UFS interrupts.
10573 */
10574 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10575 REG_INTERRUPT_STATUS);
10576 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10577 /*
10578 * Make sure that UFS interrupts are disabled and any pending interrupt
10579 * status is cleared before registering UFS interrupt handler.
10580 */
10581 ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10582
10583 /* IRQ registration */
10584 err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10585 if (err) {
10586 dev_err(hba->dev, "request irq failed\n");
10587 goto out_disable;
10588 } else {
10589 hba->is_irq_enabled = true;
10590 }
10591
10592 /* Reset the attached device */
10593 ufshcd_device_reset(hba);
10594
10595 ufshcd_init_crypto(hba);
10596
10597 /* Host controller enable */
10598 err = ufshcd_hba_enable(hba);
10599 if (err) {
10600 dev_err(hba->dev, "Host controller enable failed\n");
10601 ufshcd_print_evt_hist(hba);
10602 ufshcd_print_host_state(hba);
10603 goto out_disable;
10604 }
10605
10606 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10607 INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10608
10609 /* Set the default auto-hiberate idle timer value to 150 ms */
10610 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10611 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10612 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10613 }
10614
10615 /* Hold auto suspend until async scan completes */
10616 pm_runtime_get_sync(dev);
10617
10618 /*
10619 * We are assuming that device wasn't put in sleep/power-down
10620 * state exclusively during the boot stage before kernel.
10621 * This assumption helps avoid doing link startup twice during
10622 * ufshcd_probe_hba().
10623 */
10624 ufshcd_set_ufs_dev_active(hba);
10625
10626 /* Initialize hba, detect and initialize UFS device */
10627 ktime_t probe_start = ktime_get();
10628
10629 hba->ufshcd_state = UFSHCD_STATE_RESET;
10630
10631 err = ufshcd_link_startup(hba);
10632 if (err)
10633 goto out_disable;
10634
10635 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
10636 goto initialized;
10637
10638 /* Debug counters initialization */
10639 ufshcd_clear_dbg_ufs_stats(hba);
10640
10641 /* UniPro link is active now */
10642 ufshcd_set_link_active(hba);
10643
10644 /* Verify device initialization by sending NOP OUT UPIU */
10645 err = ufshcd_verify_dev_init(hba);
10646 if (err)
10647 goto out_disable;
10648
10649 /* Initiate UFS initialization, and waiting until completion */
10650 err = ufshcd_complete_dev_init(hba);
10651 if (err)
10652 goto out_disable;
10653
10654 err = ufshcd_device_params_init(hba);
10655 if (err)
10656 goto out_disable;
10657
10658 err = ufshcd_post_device_init(hba);
10659
10660 initialized:
10661 ufshcd_process_probe_result(hba, probe_start, err);
10662 if (err)
10663 goto out_disable;
10664
10665 err = ufshcd_add_scsi_host(hba);
10666 if (err)
10667 goto out_disable;
10668
10669 async_schedule(ufshcd_async_scan, hba);
10670 ufs_sysfs_add_nodes(hba->dev);
10671
10672 device_enable_async_suspend(dev);
10673 ufshcd_pm_qos_init(hba);
10674 return 0;
10675
10676 out_disable:
10677 hba->is_irq_enabled = false;
10678 ufshcd_hba_exit(hba);
10679 out_error:
10680 return err;
10681 }
10682 EXPORT_SYMBOL_GPL(ufshcd_init);
10683
ufshcd_resume_complete(struct device * dev)10684 void ufshcd_resume_complete(struct device *dev)
10685 {
10686 struct ufs_hba *hba = dev_get_drvdata(dev);
10687
10688 if (hba->complete_put) {
10689 ufshcd_rpm_put(hba);
10690 hba->complete_put = false;
10691 }
10692 }
10693 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10694
ufshcd_rpm_ok_for_spm(struct ufs_hba * hba)10695 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10696 {
10697 struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10698 enum ufs_dev_pwr_mode dev_pwr_mode;
10699 enum uic_link_state link_state;
10700 unsigned long flags;
10701 bool res;
10702
10703 spin_lock_irqsave(&dev->power.lock, flags);
10704 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10705 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10706 res = pm_runtime_suspended(dev) &&
10707 hba->curr_dev_pwr_mode == dev_pwr_mode &&
10708 hba->uic_link_state == link_state &&
10709 !hba->dev_info.b_rpm_dev_flush_capable;
10710 spin_unlock_irqrestore(&dev->power.lock, flags);
10711
10712 return res;
10713 }
10714
__ufshcd_suspend_prepare(struct device * dev,bool rpm_ok_for_spm)10715 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10716 {
10717 struct ufs_hba *hba = dev_get_drvdata(dev);
10718 int ret;
10719
10720 /*
10721 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10722 * are same. And it doesn't wake up the device for system-suspend
10723 * if it's runtime suspended. But ufs doesn't follow that.
10724 * Refer ufshcd_resume_complete()
10725 */
10726 if (hba->ufs_device_wlun) {
10727 /* Prevent runtime suspend */
10728 ufshcd_rpm_get_noresume(hba);
10729 /*
10730 * Check if already runtime suspended in same state as system
10731 * suspend would be.
10732 */
10733 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10734 /* RPM state is not ok for SPM, so runtime resume */
10735 ret = ufshcd_rpm_resume(hba);
10736 if (ret < 0 && ret != -EACCES) {
10737 ufshcd_rpm_put(hba);
10738 return ret;
10739 }
10740 }
10741 hba->complete_put = true;
10742 }
10743 return 0;
10744 }
10745 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10746
ufshcd_suspend_prepare(struct device * dev)10747 int ufshcd_suspend_prepare(struct device *dev)
10748 {
10749 return __ufshcd_suspend_prepare(dev, true);
10750 }
10751 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10752
10753 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_poweroff(struct device * dev)10754 static int ufshcd_wl_poweroff(struct device *dev)
10755 {
10756 struct scsi_device *sdev = to_scsi_device(dev);
10757 struct ufs_hba *hba = shost_priv(sdev->host);
10758
10759 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10760 return 0;
10761 }
10762 #endif
10763
ufshcd_wl_probe(struct device * dev)10764 static int ufshcd_wl_probe(struct device *dev)
10765 {
10766 struct scsi_device *sdev = to_scsi_device(dev);
10767
10768 if (!is_device_wlun(sdev))
10769 return -ENODEV;
10770
10771 blk_pm_runtime_init(sdev->request_queue, dev);
10772 pm_runtime_set_autosuspend_delay(dev, 0);
10773 pm_runtime_allow(dev);
10774
10775 return 0;
10776 }
10777
ufshcd_wl_remove(struct device * dev)10778 static int ufshcd_wl_remove(struct device *dev)
10779 {
10780 pm_runtime_forbid(dev);
10781 return 0;
10782 }
10783
10784 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10785 #ifdef CONFIG_PM_SLEEP
10786 .suspend = ufshcd_wl_suspend,
10787 .resume = ufshcd_wl_resume,
10788 .freeze = ufshcd_wl_suspend,
10789 .thaw = ufshcd_wl_resume,
10790 .poweroff = ufshcd_wl_poweroff,
10791 .restore = ufshcd_wl_resume,
10792 #endif
10793 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10794 };
10795
ufshcd_check_header_layout(void)10796 static void ufshcd_check_header_layout(void)
10797 {
10798 /*
10799 * gcc compilers before version 10 cannot do constant-folding for
10800 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10801 * before.
10802 */
10803 if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10804 return;
10805
10806 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10807 .cci = 3})[0] != 3);
10808
10809 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10810 .ehs_length = 2})[1] != 2);
10811
10812 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10813 .enable_crypto = 1})[2]
10814 != 0x80);
10815
10816 BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10817 .command_type = 5,
10818 .data_direction = 3,
10819 .interrupt = 1,
10820 })[3]) != ((5 << 4) | (3 << 1) | 1));
10821
10822 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10823 .dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10824 cpu_to_le32(0xdeadbeef));
10825
10826 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10827 .ocs = 4})[8] != 4);
10828
10829 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10830 .cds = 5})[9] != 5);
10831
10832 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10833 .dunu = cpu_to_le32(0xbadcafe)})[3] !=
10834 cpu_to_le32(0xbadcafe));
10835
10836 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10837 .iid = 0xf })[4] != 0xf0);
10838
10839 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10840 .command_set_type = 0xf })[4] != 0xf);
10841 }
10842
10843 /*
10844 * ufs_dev_wlun_template - describes ufs device wlun
10845 * ufs-device wlun - used to send pm commands
10846 * All luns are consumers of ufs-device wlun.
10847 *
10848 * Currently, no sd driver is present for wluns.
10849 * Hence the no specific pm operations are performed.
10850 * With ufs design, SSU should be sent to ufs-device wlun.
10851 * Hence register a scsi driver for ufs wluns only.
10852 */
10853 static struct scsi_driver ufs_dev_wlun_template = {
10854 .gendrv = {
10855 .name = "ufs_device_wlun",
10856 .probe = ufshcd_wl_probe,
10857 .remove = ufshcd_wl_remove,
10858 .pm = &ufshcd_wl_pm_ops,
10859 .shutdown = ufshcd_wl_shutdown,
10860 },
10861 };
10862
ufshcd_core_init(void)10863 static int __init ufshcd_core_init(void)
10864 {
10865 int ret;
10866
10867 ufshcd_check_header_layout();
10868
10869 ufs_debugfs_init();
10870
10871 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10872 if (ret)
10873 ufs_debugfs_exit();
10874 return ret;
10875 }
10876
ufshcd_core_exit(void)10877 static void __exit ufshcd_core_exit(void)
10878 {
10879 ufs_debugfs_exit();
10880 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10881 }
10882
10883 module_init(ufshcd_core_init);
10884 module_exit(ufshcd_core_exit);
10885
10886 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10887 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10888 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10889 MODULE_SOFTDEP("pre: governor_simpleondemand");
10890 MODULE_LICENSE("GPL");
10891