xref: /linux/drivers/ufs/core/ufshcd.c (revision 2e3fcbcc3b0eb9b96d2912cdac920f0ae8d1c8f2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <linux/unaligned.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include "ufs_trace.h"
43 
44 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
45 				 UTP_TASK_REQ_COMPL |\
46 				 UFSHCD_ERROR_MASK)
47 
48 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
49 				 UFSHCD_ERROR_MASK |\
50 				 MCQ_CQ_EVENT_STATUS)
51 
52 
53 /* UIC command timeout, unit: ms */
54 enum {
55 	UIC_CMD_TIMEOUT_DEFAULT	= 500,
56 	UIC_CMD_TIMEOUT_MAX	= 2000,
57 };
58 /* NOP OUT retries waiting for NOP IN response */
59 #define NOP_OUT_RETRIES    10
60 /* Timeout after 50 msecs if NOP OUT hangs without response */
61 #define NOP_OUT_TIMEOUT    50 /* msecs */
62 
63 /* Query request retries */
64 #define QUERY_REQ_RETRIES 3
65 /* Query request timeout */
66 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
67 
68 /* Advanced RPMB request timeout */
69 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
70 
71 /* Task management command timeout */
72 #define TM_CMD_TIMEOUT	100 /* msecs */
73 
74 /* maximum number of retries for a general UIC command  */
75 #define UFS_UIC_COMMAND_RETRIES 3
76 
77 /* maximum number of link-startup retries */
78 #define DME_LINKSTARTUP_RETRIES 3
79 
80 /* maximum number of reset retries before giving up */
81 #define MAX_HOST_RESET_RETRIES 5
82 
83 /* Maximum number of error handler retries before giving up */
84 #define MAX_ERR_HANDLER_RETRIES 5
85 
86 /* Expose the flag value from utp_upiu_query.value */
87 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
88 
89 /* Interrupt aggregation default timeout, unit: 40us */
90 #define INT_AGGR_DEF_TO	0x02
91 
92 /* default delay of autosuspend: 2000 ms */
93 #define RPM_AUTOSUSPEND_DELAY_MS 2000
94 
95 /* Default delay of RPM device flush delayed work */
96 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
97 
98 /* Default value of wait time before gating device ref clock */
99 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
100 
101 /* Polling time to wait for fDeviceInit */
102 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
103 
104 /* Default RTC update every 10 seconds */
105 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
106 
107 /* bMaxNumOfRTT is equal to two after device manufacturing */
108 #define DEFAULT_MAX_NUM_RTT 2
109 
110 /* UFSHC 4.0 compliant HC support this mode. */
111 static bool use_mcq_mode = true;
112 
is_mcq_supported(struct ufs_hba * hba)113 static bool is_mcq_supported(struct ufs_hba *hba)
114 {
115 	return hba->mcq_sup && use_mcq_mode;
116 }
117 
118 module_param(use_mcq_mode, bool, 0644);
119 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
120 
121 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT;
122 
uic_cmd_timeout_set(const char * val,const struct kernel_param * kp)123 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp)
124 {
125 	return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT,
126 				     UIC_CMD_TIMEOUT_MAX);
127 }
128 
129 static const struct kernel_param_ops uic_cmd_timeout_ops = {
130 	.set = uic_cmd_timeout_set,
131 	.get = param_get_uint,
132 };
133 
134 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644);
135 MODULE_PARM_DESC(uic_cmd_timeout,
136 		 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 2 seconds inclusively");
137 
138 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
139 	({                                                              \
140 		int _ret;                                               \
141 		if (_on)                                                \
142 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
143 		else                                                    \
144 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
145 		_ret;                                                   \
146 	})
147 
148 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
149 	size_t __len = (len);                                            \
150 	print_hex_dump(KERN_ERR, prefix_str,                             \
151 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
152 		       16, 4, buf, __len, false);                        \
153 } while (0)
154 
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)155 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
156 		     const char *prefix)
157 {
158 	u32 *regs;
159 	size_t pos;
160 
161 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
162 		return -EINVAL;
163 
164 	regs = kzalloc(len, GFP_ATOMIC);
165 	if (!regs)
166 		return -ENOMEM;
167 
168 	for (pos = 0; pos < len; pos += 4) {
169 		if (offset == 0 &&
170 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
171 		    pos <= REG_UIC_ERROR_CODE_DME)
172 			continue;
173 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
174 	}
175 
176 	ufshcd_hex_dump(prefix, regs, len);
177 	kfree(regs);
178 
179 	return 0;
180 }
181 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
182 
183 enum {
184 	UFSHCD_MAX_CHANNEL	= 0,
185 	UFSHCD_MAX_ID		= 1,
186 };
187 
188 static const char *const ufshcd_state_name[] = {
189 	[UFSHCD_STATE_RESET]			= "reset",
190 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
191 	[UFSHCD_STATE_ERROR]			= "error",
192 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
193 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
194 };
195 
196 /* UFSHCD error handling flags */
197 enum {
198 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
199 };
200 
201 /* UFSHCD UIC layer error flags */
202 enum {
203 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
204 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
205 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
206 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
207 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
208 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
209 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
210 };
211 
212 #define ufshcd_set_eh_in_progress(h) \
213 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
214 #define ufshcd_eh_in_progress(h) \
215 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
216 #define ufshcd_clear_eh_in_progress(h) \
217 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
218 
219 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
220 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
221 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
222 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
223 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
224 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
225 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
226 	/*
227 	 * For DeepSleep, the link is first put in hibern8 and then off.
228 	 * Leaving the link in hibern8 is not supported.
229 	 */
230 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
231 };
232 
233 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)234 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
235 {
236 	return ufs_pm_lvl_states[lvl].dev_state;
237 }
238 
239 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)240 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
241 {
242 	return ufs_pm_lvl_states[lvl].link_state;
243 }
244 
245 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)246 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
247 					enum uic_link_state link_state)
248 {
249 	enum ufs_pm_level lvl;
250 
251 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
252 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
253 			(ufs_pm_lvl_states[lvl].link_state == link_state))
254 			return lvl;
255 	}
256 
257 	/* if no match found, return the level 0 */
258 	return UFS_PM_LVL_0;
259 }
260 
ufshcd_has_pending_tasks(struct ufs_hba * hba)261 static bool ufshcd_has_pending_tasks(struct ufs_hba *hba)
262 {
263 	return hba->outstanding_tasks || hba->active_uic_cmd ||
264 	       hba->uic_async_done;
265 }
266 
ufshcd_is_ufs_dev_busy(struct ufs_hba * hba)267 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
268 {
269 	return scsi_host_busy(hba->host) || ufshcd_has_pending_tasks(hba);
270 }
271 
272 static const struct ufs_dev_quirk ufs_fixups[] = {
273 	/* UFS cards deviations table */
274 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
275 	  .model = UFS_ANY_MODEL,
276 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
277 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
278 	  .model = UFS_ANY_MODEL,
279 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
280 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
281 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
282 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
283 	  .model = UFS_ANY_MODEL,
284 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
285 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
286 	  .model = "hB8aL1" /*H28U62301AMR*/,
287 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
288 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
289 	  .model = UFS_ANY_MODEL,
290 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
291 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
292 	  .model = "THGLF2G9C8KBADG",
293 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
294 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
295 	  .model = "THGLF2G9D8KBADG",
296 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
297 	{}
298 };
299 
300 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
301 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
302 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
303 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
304 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
305 static void ufshcd_hba_exit(struct ufs_hba *hba);
306 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params);
307 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
308 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
309 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
310 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
311 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
312 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
313 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
314 			     bool scale_up);
315 static irqreturn_t ufshcd_intr(int irq, void *__hba);
316 static int ufshcd_change_power_mode(struct ufs_hba *hba,
317 			     struct ufs_pa_layer_attr *pwr_mode);
318 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
319 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
320 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
321 					 struct ufs_vreg *vreg);
322 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
323 						 bool enable);
324 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
325 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
326 
ufshcd_enable_irq(struct ufs_hba * hba)327 void ufshcd_enable_irq(struct ufs_hba *hba)
328 {
329 	if (!hba->is_irq_enabled) {
330 		enable_irq(hba->irq);
331 		hba->is_irq_enabled = true;
332 	}
333 }
334 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
335 
ufshcd_disable_irq(struct ufs_hba * hba)336 void ufshcd_disable_irq(struct ufs_hba *hba)
337 {
338 	if (hba->is_irq_enabled) {
339 		disable_irq(hba->irq);
340 		hba->is_irq_enabled = false;
341 	}
342 }
343 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
344 
ufshcd_configure_wb(struct ufs_hba * hba)345 static void ufshcd_configure_wb(struct ufs_hba *hba)
346 {
347 	if (!ufshcd_is_wb_allowed(hba))
348 		return;
349 
350 	ufshcd_wb_toggle(hba, true);
351 
352 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
353 
354 	if (ufshcd_is_wb_buf_flush_allowed(hba))
355 		ufshcd_wb_toggle_buf_flush(hba, true);
356 }
357 
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)358 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
359 				      enum ufs_trace_str_t str_t)
360 {
361 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
362 	struct utp_upiu_header *header;
363 
364 	if (!trace_ufshcd_upiu_enabled())
365 		return;
366 
367 	if (str_t == UFS_CMD_SEND)
368 		header = &rq->header;
369 	else
370 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
371 
372 	trace_ufshcd_upiu(hba, str_t, header, &rq->sc.cdb,
373 			  UFS_TSF_CDB);
374 }
375 
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,enum ufs_trace_str_t str_t,struct utp_upiu_req * rq_rsp)376 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
377 					enum ufs_trace_str_t str_t,
378 					struct utp_upiu_req *rq_rsp)
379 {
380 	if (!trace_ufshcd_upiu_enabled())
381 		return;
382 
383 	trace_ufshcd_upiu(hba, str_t, &rq_rsp->header,
384 			  &rq_rsp->qr, UFS_TSF_OSF);
385 }
386 
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)387 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
388 				     enum ufs_trace_str_t str_t)
389 {
390 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
391 
392 	if (!trace_ufshcd_upiu_enabled())
393 		return;
394 
395 	if (str_t == UFS_TM_SEND)
396 		trace_ufshcd_upiu(hba, str_t,
397 				  &descp->upiu_req.req_header,
398 				  &descp->upiu_req.input_param1,
399 				  UFS_TSF_TM_INPUT);
400 	else
401 		trace_ufshcd_upiu(hba, str_t,
402 				  &descp->upiu_rsp.rsp_header,
403 				  &descp->upiu_rsp.output_param1,
404 				  UFS_TSF_TM_OUTPUT);
405 }
406 
ufshcd_add_uic_command_trace(struct ufs_hba * hba,const struct uic_command * ucmd,enum ufs_trace_str_t str_t)407 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
408 					 const struct uic_command *ucmd,
409 					 enum ufs_trace_str_t str_t)
410 {
411 	u32 cmd;
412 
413 	if (!trace_ufshcd_uic_command_enabled())
414 		return;
415 
416 	if (str_t == UFS_CMD_SEND)
417 		cmd = ucmd->command;
418 	else
419 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
420 
421 	trace_ufshcd_uic_command(hba, str_t, cmd,
422 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
423 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
424 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
425 }
426 
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)427 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
428 				     enum ufs_trace_str_t str_t)
429 {
430 	u64 lba = 0;
431 	u8 opcode = 0, group_id = 0;
432 	u32 doorbell = 0;
433 	u32 intr;
434 	int hwq_id = -1;
435 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
436 	struct scsi_cmnd *cmd = lrbp->cmd;
437 	struct request *rq = scsi_cmd_to_rq(cmd);
438 	int transfer_len = -1;
439 
440 	if (!cmd)
441 		return;
442 
443 	/* trace UPIU also */
444 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
445 	if (!trace_ufshcd_command_enabled())
446 		return;
447 
448 	opcode = cmd->cmnd[0];
449 
450 	if (opcode == READ_10 || opcode == WRITE_10) {
451 		/*
452 		 * Currently we only fully trace read(10) and write(10) commands
453 		 */
454 		transfer_len =
455 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
456 		lba = scsi_get_lba(cmd);
457 		if (opcode == WRITE_10)
458 			group_id = lrbp->cmd->cmnd[6];
459 	} else if (opcode == UNMAP) {
460 		/*
461 		 * The number of Bytes to be unmapped beginning with the lba.
462 		 */
463 		transfer_len = blk_rq_bytes(rq);
464 		lba = scsi_get_lba(cmd);
465 	}
466 
467 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
468 
469 	if (hba->mcq_enabled) {
470 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
471 
472 		hwq_id = hwq->id;
473 	} else {
474 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
475 	}
476 	trace_ufshcd_command(cmd->device, hba, str_t, tag, doorbell, hwq_id,
477 			     transfer_len, intr, lba, opcode, group_id);
478 }
479 
ufshcd_print_clk_freqs(struct ufs_hba * hba)480 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
481 {
482 	struct ufs_clk_info *clki;
483 	struct list_head *head = &hba->clk_list_head;
484 
485 	if (list_empty(head))
486 		return;
487 
488 	list_for_each_entry(clki, head, list) {
489 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
490 				clki->max_freq)
491 			dev_err(hba->dev, "clk: %s, rate: %u\n",
492 					clki->name, clki->curr_freq);
493 	}
494 }
495 
ufshcd_print_evt(struct ufs_hba * hba,u32 id,const char * err_name)496 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
497 			     const char *err_name)
498 {
499 	int i;
500 	bool found = false;
501 	const struct ufs_event_hist *e;
502 
503 	if (id >= UFS_EVT_CNT)
504 		return;
505 
506 	e = &hba->ufs_stats.event[id];
507 
508 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
509 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
510 
511 		if (e->tstamp[p] == 0)
512 			continue;
513 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
514 			e->val[p], div_u64(e->tstamp[p], 1000));
515 		found = true;
516 	}
517 
518 	if (!found)
519 		dev_err(hba->dev, "No record of %s\n", err_name);
520 	else
521 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
522 }
523 
ufshcd_print_evt_hist(struct ufs_hba * hba)524 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
525 {
526 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
527 
528 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
529 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
530 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
531 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
532 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
533 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
534 			 "auto_hibern8_err");
535 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
536 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
537 			 "link_startup_fail");
538 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
539 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
540 			 "suspend_fail");
541 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
542 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
543 			 "wlun suspend_fail");
544 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
545 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
546 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
547 
548 	ufshcd_vops_dbg_register_dump(hba);
549 }
550 
551 static
ufshcd_print_tr(struct ufs_hba * hba,int tag,bool pr_prdt)552 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
553 {
554 	const struct ufshcd_lrb *lrbp;
555 	int prdt_length;
556 
557 	lrbp = &hba->lrb[tag];
558 
559 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
560 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
561 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
562 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
563 	dev_err(hba->dev,
564 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
565 		tag, (u64)lrbp->utrd_dma_addr);
566 
567 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
568 			sizeof(struct utp_transfer_req_desc));
569 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
570 		(u64)lrbp->ucd_req_dma_addr);
571 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
572 			sizeof(struct utp_upiu_req));
573 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
574 		(u64)lrbp->ucd_rsp_dma_addr);
575 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
576 			sizeof(struct utp_upiu_rsp));
577 
578 	prdt_length = le16_to_cpu(
579 		lrbp->utr_descriptor_ptr->prd_table_length);
580 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
581 		prdt_length /= ufshcd_sg_entry_size(hba);
582 
583 	dev_err(hba->dev,
584 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
585 		tag, prdt_length,
586 		(u64)lrbp->ucd_prdt_dma_addr);
587 
588 	if (pr_prdt)
589 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
590 			ufshcd_sg_entry_size(hba) * prdt_length);
591 }
592 
ufshcd_print_tr_iter(struct request * req,void * priv)593 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
594 {
595 	struct scsi_device *sdev = req->q->queuedata;
596 	struct Scsi_Host *shost = sdev->host;
597 	struct ufs_hba *hba = shost_priv(shost);
598 
599 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
600 
601 	return true;
602 }
603 
604 /**
605  * ufshcd_print_trs_all - print trs for all started requests.
606  * @hba: per-adapter instance.
607  * @pr_prdt: need to print prdt or not.
608  */
ufshcd_print_trs_all(struct ufs_hba * hba,bool pr_prdt)609 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
610 {
611 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
612 }
613 
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)614 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
615 {
616 	int tag;
617 
618 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
619 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
620 
621 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
622 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
623 	}
624 }
625 
ufshcd_print_host_state(struct ufs_hba * hba)626 static void ufshcd_print_host_state(struct ufs_hba *hba)
627 {
628 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
629 
630 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
631 	dev_err(hba->dev, "%d outstanding reqs, tasks=0x%lx\n",
632 		scsi_host_busy(hba->host), hba->outstanding_tasks);
633 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
634 		hba->saved_err, hba->saved_uic_err);
635 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
636 		hba->curr_dev_pwr_mode, hba->uic_link_state);
637 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
638 		hba->pm_op_in_progress, hba->is_sys_suspended);
639 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
640 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
641 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
642 	dev_err(hba->dev,
643 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
644 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
645 		hba->ufs_stats.hibern8_exit_cnt);
646 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
647 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
648 		hba->ufs_stats.last_intr_status);
649 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
650 		hba->eh_flags, hba->req_abort_count);
651 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
652 		hba->ufs_version, hba->capabilities, hba->caps);
653 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
654 		hba->dev_quirks);
655 	if (sdev_ufs)
656 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
657 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
658 
659 	ufshcd_print_clk_freqs(hba);
660 }
661 
662 /**
663  * ufshcd_print_pwr_info - print power params as saved in hba
664  * power info
665  * @hba: per-adapter instance
666  */
ufshcd_print_pwr_info(struct ufs_hba * hba)667 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
668 {
669 	static const char * const names[] = {
670 		"INVALID MODE",
671 		"FAST MODE",
672 		"SLOW_MODE",
673 		"INVALID MODE",
674 		"FASTAUTO_MODE",
675 		"SLOWAUTO_MODE",
676 		"INVALID MODE",
677 	};
678 
679 	/*
680 	 * Using dev_dbg to avoid messages during runtime PM to avoid
681 	 * never-ending cycles of messages written back to storage by user space
682 	 * causing runtime resume, causing more messages and so on.
683 	 */
684 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
685 		 __func__,
686 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
687 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
688 		 names[hba->pwr_info.pwr_rx],
689 		 names[hba->pwr_info.pwr_tx],
690 		 hba->pwr_info.hs_rate);
691 }
692 
ufshcd_device_reset(struct ufs_hba * hba)693 static void ufshcd_device_reset(struct ufs_hba *hba)
694 {
695 	int err;
696 
697 	err = ufshcd_vops_device_reset(hba);
698 
699 	if (!err) {
700 		ufshcd_set_ufs_dev_active(hba);
701 		if (ufshcd_is_wb_allowed(hba)) {
702 			hba->dev_info.wb_enabled = false;
703 			hba->dev_info.wb_buf_flush_enabled = false;
704 		}
705 		if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
706 			hba->dev_info.rtc_time_baseline = 0;
707 	}
708 	if (err != -EOPNOTSUPP)
709 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
710 }
711 
ufshcd_delay_us(unsigned long us,unsigned long tolerance)712 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
713 {
714 	if (!us)
715 		return;
716 
717 	if (us < 10)
718 		udelay(us);
719 	else
720 		usleep_range(us, us + tolerance);
721 }
722 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
723 
724 /**
725  * ufshcd_wait_for_register - wait for register value to change
726  * @hba: per-adapter interface
727  * @reg: mmio register offset
728  * @mask: mask to apply to the read register value
729  * @val: value to wait for
730  * @interval_us: polling interval in microseconds
731  * @timeout_ms: timeout in milliseconds
732  *
733  * Return: -ETIMEDOUT on error, zero on success.
734  */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)735 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
736 				    u32 val, unsigned long interval_us,
737 				    unsigned long timeout_ms)
738 {
739 	u32 v;
740 
741 	val &= mask; /* ignore bits that we don't intend to wait on */
742 
743 	return read_poll_timeout(ufshcd_readl, v, (v & mask) == val,
744 				 interval_us, timeout_ms * 1000, false, hba, reg);
745 }
746 
747 /**
748  * ufshcd_get_intr_mask - Get the interrupt bit mask
749  * @hba: Pointer to adapter instance
750  *
751  * Return: interrupt bit mask per version
752  */
ufshcd_get_intr_mask(struct ufs_hba * hba)753 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
754 {
755 	if (hba->ufs_version <= ufshci_version(2, 0))
756 		return INTERRUPT_MASK_ALL_VER_11;
757 
758 	return INTERRUPT_MASK_ALL_VER_21;
759 }
760 
761 /**
762  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
763  * @hba: Pointer to adapter instance
764  *
765  * Return: UFSHCI version supported by the controller
766  */
ufshcd_get_ufs_version(struct ufs_hba * hba)767 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
768 {
769 	u32 ufshci_ver;
770 
771 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
772 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
773 	else
774 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
775 
776 	/*
777 	 * UFSHCI v1.x uses a different version scheme, in order
778 	 * to allow the use of comparisons with the ufshci_version
779 	 * function, we convert it to the same scheme as ufs 2.0+.
780 	 */
781 	if (ufshci_ver & 0x00010000)
782 		return ufshci_version(1, ufshci_ver & 0x00000100);
783 
784 	return ufshci_ver;
785 }
786 
787 /**
788  * ufshcd_is_device_present - Check if any device connected to
789  *			      the host controller
790  * @hba: pointer to adapter instance
791  *
792  * Return: true if device present, false if no device detected
793  */
ufshcd_is_device_present(struct ufs_hba * hba)794 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
795 {
796 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
797 }
798 
799 /**
800  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
801  * @lrbp: pointer to local command reference block
802  * @cqe: pointer to the completion queue entry
803  *
804  * This function is used to get the OCS field from UTRD
805  *
806  * Return: the OCS field in the UTRD.
807  */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp,struct cq_entry * cqe)808 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
809 				      struct cq_entry *cqe)
810 {
811 	if (cqe)
812 		return le32_to_cpu(cqe->status) & MASK_OCS;
813 
814 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
815 }
816 
817 /**
818  * ufshcd_utrl_clear() - Clear requests from the controller request list.
819  * @hba: per adapter instance
820  * @mask: mask with one bit set for each request to be cleared
821  */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 mask)822 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
823 {
824 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
825 		mask = ~mask;
826 	/*
827 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
828 	 * Register (UTRLCLR): This field is bit significant. Each bit
829 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
830 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
831 	 * by host software to indicate to the host controller that a transfer
832 	 * request slot is cleared. The host controller
833 	 * shall free up any resources associated to the request slot
834 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
835 	 * host software indicates no change to request slots by setting the
836 	 * associated bits in this field to ‘1’. Bits in this field shall only
837 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
838 	 */
839 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
840 }
841 
842 /**
843  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
844  * @hba: per adapter instance
845  * @pos: position of the bit to be cleared
846  */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)847 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
848 {
849 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
850 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
851 	else
852 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
853 }
854 
855 /**
856  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
857  * @reg: Register value of host controller status
858  *
859  * Return: 0 on success; a positive value if failed.
860  */
ufshcd_get_lists_status(u32 reg)861 static inline int ufshcd_get_lists_status(u32 reg)
862 {
863 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
864 }
865 
866 /**
867  * ufshcd_get_uic_cmd_result - Get the UIC command result
868  * @hba: Pointer to adapter instance
869  *
870  * This function gets the result of UIC command completion
871  *
872  * Return: 0 on success; non-zero value on error.
873  */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)874 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
875 {
876 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
877 	       MASK_UIC_COMMAND_RESULT;
878 }
879 
880 /**
881  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
882  * @hba: Pointer to adapter instance
883  *
884  * This function gets UIC command argument3
885  *
886  * Return: 0 on success; non-zero value on error.
887  */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)888 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
889 {
890 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
891 }
892 
893 /**
894  * ufshcd_get_req_rsp - returns the TR response transaction type
895  * @ucd_rsp_ptr: pointer to response UPIU
896  *
897  * Return: UPIU type.
898  */
899 static inline enum upiu_response_transaction
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)900 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
901 {
902 	return ucd_rsp_ptr->header.transaction_code;
903 }
904 
905 /**
906  * ufshcd_is_exception_event - Check if the device raised an exception event
907  * @ucd_rsp_ptr: pointer to response UPIU
908  *
909  * The function checks if the device raised an exception event indicated in
910  * the Device Information field of response UPIU.
911  *
912  * Return: true if exception is raised, false otherwise.
913  */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)914 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
915 {
916 	return ucd_rsp_ptr->header.device_information & 1;
917 }
918 
919 /**
920  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
921  * @hba: per adapter instance
922  */
923 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)924 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
925 {
926 	ufshcd_writel(hba, INT_AGGR_ENABLE |
927 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
928 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
929 }
930 
931 /**
932  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
933  * @hba: per adapter instance
934  * @cnt: Interrupt aggregation counter threshold
935  * @tmout: Interrupt aggregation timeout value
936  */
937 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)938 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
939 {
940 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
941 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
942 		      INT_AGGR_TIMEOUT_VAL(tmout),
943 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
944 }
945 
946 /**
947  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
948  * @hba: per adapter instance
949  */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)950 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
951 {
952 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
953 }
954 
955 /**
956  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
957  *			When run-stop registers are set to 1, it indicates the
958  *			host controller that it can process the requests
959  * @hba: per adapter instance
960  */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)961 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
962 {
963 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
964 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
965 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
966 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
967 }
968 
969 /**
970  * ufshcd_hba_start - Start controller initialization sequence
971  * @hba: per adapter instance
972  */
ufshcd_hba_start(struct ufs_hba * hba)973 static inline void ufshcd_hba_start(struct ufs_hba *hba)
974 {
975 	u32 val = CONTROLLER_ENABLE;
976 
977 	if (ufshcd_crypto_enable(hba))
978 		val |= CRYPTO_GENERAL_ENABLE;
979 
980 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
981 }
982 
983 /**
984  * ufshcd_is_hba_active - Get controller state
985  * @hba: per adapter instance
986  *
987  * Return: true if and only if the controller is active.
988  */
ufshcd_is_hba_active(struct ufs_hba * hba)989 bool ufshcd_is_hba_active(struct ufs_hba *hba)
990 {
991 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
992 }
993 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
994 
995 /**
996  * ufshcd_pm_qos_init - initialize PM QoS request
997  * @hba: per adapter instance
998  */
ufshcd_pm_qos_init(struct ufs_hba * hba)999 void ufshcd_pm_qos_init(struct ufs_hba *hba)
1000 {
1001 
1002 	if (hba->pm_qos_enabled)
1003 		return;
1004 
1005 	cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1006 
1007 	if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1008 		hba->pm_qos_enabled = true;
1009 }
1010 
1011 /**
1012  * ufshcd_pm_qos_exit - remove request from PM QoS
1013  * @hba: per adapter instance
1014  */
ufshcd_pm_qos_exit(struct ufs_hba * hba)1015 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1016 {
1017 	if (!hba->pm_qos_enabled)
1018 		return;
1019 
1020 	cpu_latency_qos_remove_request(&hba->pm_qos_req);
1021 	hba->pm_qos_enabled = false;
1022 }
1023 
1024 /**
1025  * ufshcd_pm_qos_update - update PM QoS request
1026  * @hba: per adapter instance
1027  * @on: If True, vote for perf PM QoS mode otherwise power save mode
1028  */
ufshcd_pm_qos_update(struct ufs_hba * hba,bool on)1029 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1030 {
1031 	if (!hba->pm_qos_enabled)
1032 		return;
1033 
1034 	cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1035 }
1036 
1037 /**
1038  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1039  * @hba: per adapter instance
1040  * @scale_up: If True, set max possible frequency othewise set low frequency
1041  *
1042  * Return: 0 if successful; < 0 upon failure.
1043  */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)1044 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1045 {
1046 	int ret = 0;
1047 	struct ufs_clk_info *clki;
1048 	struct list_head *head = &hba->clk_list_head;
1049 
1050 	if (list_empty(head))
1051 		goto out;
1052 
1053 	list_for_each_entry(clki, head, list) {
1054 		if (!IS_ERR_OR_NULL(clki->clk)) {
1055 			if (scale_up && clki->max_freq) {
1056 				if (clki->curr_freq == clki->max_freq)
1057 					continue;
1058 
1059 				ret = clk_set_rate(clki->clk, clki->max_freq);
1060 				if (ret) {
1061 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1062 						__func__, clki->name,
1063 						clki->max_freq, ret);
1064 					break;
1065 				}
1066 				trace_ufshcd_clk_scaling(hba,
1067 						"scaled up", clki->name,
1068 						clki->curr_freq,
1069 						clki->max_freq);
1070 
1071 				clki->curr_freq = clki->max_freq;
1072 
1073 			} else if (!scale_up && clki->min_freq) {
1074 				if (clki->curr_freq == clki->min_freq)
1075 					continue;
1076 
1077 				ret = clk_set_rate(clki->clk, clki->min_freq);
1078 				if (ret) {
1079 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1080 						__func__, clki->name,
1081 						clki->min_freq, ret);
1082 					break;
1083 				}
1084 				trace_ufshcd_clk_scaling(hba,
1085 						"scaled down", clki->name,
1086 						clki->curr_freq,
1087 						clki->min_freq);
1088 				clki->curr_freq = clki->min_freq;
1089 			}
1090 		}
1091 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1092 				clki->name, clk_get_rate(clki->clk));
1093 	}
1094 
1095 out:
1096 	return ret;
1097 }
1098 
ufshcd_opp_config_clks(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)1099 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1100 			   struct dev_pm_opp *opp, void *data,
1101 			   bool scaling_down)
1102 {
1103 	struct ufs_hba *hba = dev_get_drvdata(dev);
1104 	struct list_head *head = &hba->clk_list_head;
1105 	struct ufs_clk_info *clki;
1106 	unsigned long freq;
1107 	u8 idx = 0;
1108 	int ret;
1109 
1110 	list_for_each_entry(clki, head, list) {
1111 		if (!IS_ERR_OR_NULL(clki->clk)) {
1112 			freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1113 
1114 			/* Do not set rate for clocks having frequency as 0 */
1115 			if (!freq)
1116 				continue;
1117 
1118 			ret = clk_set_rate(clki->clk, freq);
1119 			if (ret) {
1120 				dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1121 					__func__, clki->name, freq, ret);
1122 				return ret;
1123 			}
1124 
1125 			trace_ufshcd_clk_scaling(hba,
1126 				(scaling_down ? "scaled down" : "scaled up"),
1127 				clki->name, hba->clk_scaling.target_freq, freq);
1128 		}
1129 	}
1130 
1131 	return 0;
1132 }
1133 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1134 
ufshcd_opp_set_rate(struct ufs_hba * hba,unsigned long freq)1135 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1136 {
1137 	struct dev_pm_opp *opp;
1138 	int ret;
1139 
1140 	opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1141 						 &freq, 0);
1142 	if (IS_ERR(opp))
1143 		return PTR_ERR(opp);
1144 
1145 	ret = dev_pm_opp_set_opp(hba->dev, opp);
1146 	dev_pm_opp_put(opp);
1147 
1148 	return ret;
1149 }
1150 
1151 /**
1152  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1153  * @hba: per adapter instance
1154  * @freq: frequency to scale
1155  * @scale_up: True if scaling up and false if scaling down
1156  *
1157  * Return: 0 if successful; < 0 upon failure.
1158  */
ufshcd_scale_clks(struct ufs_hba * hba,unsigned long freq,bool scale_up)1159 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1160 			     bool scale_up)
1161 {
1162 	int ret = 0;
1163 	ktime_t start = ktime_get();
1164 
1165 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, PRE_CHANGE);
1166 	if (ret)
1167 		goto out;
1168 
1169 	if (hba->use_pm_opp)
1170 		ret = ufshcd_opp_set_rate(hba, freq);
1171 	else
1172 		ret = ufshcd_set_clk_freq(hba, scale_up);
1173 	if (ret)
1174 		goto out;
1175 
1176 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, POST_CHANGE);
1177 	if (ret) {
1178 		if (hba->use_pm_opp)
1179 			ufshcd_opp_set_rate(hba,
1180 					    hba->devfreq->previous_freq);
1181 		else
1182 			ufshcd_set_clk_freq(hba, !scale_up);
1183 		goto out;
1184 	}
1185 
1186 	ufshcd_pm_qos_update(hba, scale_up);
1187 
1188 out:
1189 	trace_ufshcd_profile_clk_scaling(hba,
1190 			(scale_up ? "up" : "down"),
1191 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1192 	return ret;
1193 }
1194 
1195 /**
1196  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1197  * @hba: per adapter instance
1198  * @freq: frequency to scale
1199  * @scale_up: True if scaling up and false if scaling down
1200  *
1201  * Return: true if scaling is required, false otherwise.
1202  */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,unsigned long freq,bool scale_up)1203 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1204 					       unsigned long freq, bool scale_up)
1205 {
1206 	struct ufs_clk_info *clki;
1207 	struct list_head *head = &hba->clk_list_head;
1208 
1209 	if (list_empty(head))
1210 		return false;
1211 
1212 	if (hba->use_pm_opp)
1213 		return freq != hba->clk_scaling.target_freq;
1214 
1215 	list_for_each_entry(clki, head, list) {
1216 		if (!IS_ERR_OR_NULL(clki->clk)) {
1217 			if (scale_up && clki->max_freq) {
1218 				if (clki->curr_freq == clki->max_freq)
1219 					continue;
1220 				return true;
1221 			} else if (!scale_up && clki->min_freq) {
1222 				if (clki->curr_freq == clki->min_freq)
1223 					continue;
1224 				return true;
1225 			}
1226 		}
1227 	}
1228 
1229 	return false;
1230 }
1231 
1232 /*
1233  * Determine the number of pending commands by counting the bits in the SCSI
1234  * device budget maps. This approach has been selected because a bit is set in
1235  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1236  * flag. The host_self_blocked flag can be modified by calling
1237  * scsi_block_requests() or scsi_unblock_requests().
1238  */
ufshcd_pending_cmds(struct ufs_hba * hba)1239 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1240 {
1241 	const struct scsi_device *sdev;
1242 	unsigned long flags;
1243 	u32 pending = 0;
1244 
1245 	spin_lock_irqsave(hba->host->host_lock, flags);
1246 	__shost_for_each_device(sdev, hba->host)
1247 		pending += sbitmap_weight(&sdev->budget_map);
1248 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1249 
1250 	return pending;
1251 }
1252 
1253 /*
1254  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1255  * has expired.
1256  *
1257  * Return: 0 upon success; -EBUSY upon timeout.
1258  */
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1259 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1260 					u64 wait_timeout_us)
1261 {
1262 	int ret = 0;
1263 	u32 tm_doorbell;
1264 	u32 tr_pending;
1265 	bool timeout = false, do_last_check = false;
1266 	ktime_t start;
1267 
1268 	ufshcd_hold(hba);
1269 	/*
1270 	 * Wait for all the outstanding tasks/transfer requests.
1271 	 * Verify by checking the doorbell registers are clear.
1272 	 */
1273 	start = ktime_get();
1274 	do {
1275 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1276 			ret = -EBUSY;
1277 			goto out;
1278 		}
1279 
1280 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1281 		tr_pending = ufshcd_pending_cmds(hba);
1282 		if (!tm_doorbell && !tr_pending) {
1283 			timeout = false;
1284 			break;
1285 		} else if (do_last_check) {
1286 			break;
1287 		}
1288 
1289 		io_schedule_timeout(msecs_to_jiffies(20));
1290 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1291 		    wait_timeout_us) {
1292 			timeout = true;
1293 			/*
1294 			 * We might have scheduled out for long time so make
1295 			 * sure to check if doorbells are cleared by this time
1296 			 * or not.
1297 			 */
1298 			do_last_check = true;
1299 		}
1300 	} while (tm_doorbell || tr_pending);
1301 
1302 	if (timeout) {
1303 		dev_err(hba->dev,
1304 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1305 			__func__, tm_doorbell, tr_pending);
1306 		ret = -EBUSY;
1307 	}
1308 out:
1309 	ufshcd_release(hba);
1310 	return ret;
1311 }
1312 
1313 /**
1314  * ufshcd_scale_gear - scale up/down UFS gear
1315  * @hba: per adapter instance
1316  * @target_gear: target gear to scale to
1317  * @scale_up: True for scaling up gear and false for scaling down
1318  *
1319  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1320  * non-zero for any other errors.
1321  */
ufshcd_scale_gear(struct ufs_hba * hba,u32 target_gear,bool scale_up)1322 static int ufshcd_scale_gear(struct ufs_hba *hba, u32 target_gear, bool scale_up)
1323 {
1324 	int ret = 0;
1325 	struct ufs_pa_layer_attr new_pwr_info;
1326 
1327 	if (target_gear) {
1328 		new_pwr_info = hba->pwr_info;
1329 		new_pwr_info.gear_tx = target_gear;
1330 		new_pwr_info.gear_rx = target_gear;
1331 
1332 		goto config_pwr_mode;
1333 	}
1334 
1335 	/* Legacy gear scaling, in case vops_freq_to_gear_speed() is not implemented */
1336 	if (scale_up) {
1337 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1338 		       sizeof(struct ufs_pa_layer_attr));
1339 	} else {
1340 		memcpy(&new_pwr_info, &hba->pwr_info,
1341 		       sizeof(struct ufs_pa_layer_attr));
1342 
1343 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1344 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1345 			/* save the current power mode */
1346 			memcpy(&hba->clk_scaling.saved_pwr_info,
1347 				&hba->pwr_info,
1348 				sizeof(struct ufs_pa_layer_attr));
1349 
1350 			/* scale down gear */
1351 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1352 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1353 		}
1354 	}
1355 
1356 config_pwr_mode:
1357 	/* check if the power mode needs to be changed or not? */
1358 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1359 	if (ret)
1360 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1361 			__func__, ret,
1362 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1363 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1364 
1365 	return ret;
1366 }
1367 
1368 /*
1369  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1370  * has expired.
1371  *
1372  * Return: 0 upon success; -EBUSY upon timeout.
1373  */
ufshcd_clock_scaling_prepare(struct ufs_hba * hba,u64 timeout_us)1374 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1375 {
1376 	int ret = 0;
1377 	/*
1378 	 * make sure that there are no outstanding requests when
1379 	 * clock scaling is in progress
1380 	 */
1381 	blk_mq_quiesce_tagset(&hba->host->tag_set);
1382 	mutex_lock(&hba->wb_mutex);
1383 	down_write(&hba->clk_scaling_lock);
1384 
1385 	if (!hba->clk_scaling.is_allowed ||
1386 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1387 		ret = -EBUSY;
1388 		up_write(&hba->clk_scaling_lock);
1389 		mutex_unlock(&hba->wb_mutex);
1390 		blk_mq_unquiesce_tagset(&hba->host->tag_set);
1391 		goto out;
1392 	}
1393 
1394 	/* let's not get into low power until clock scaling is completed */
1395 	ufshcd_hold(hba);
1396 
1397 out:
1398 	return ret;
1399 }
1400 
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,int err)1401 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err)
1402 {
1403 	up_write(&hba->clk_scaling_lock);
1404 
1405 	/* Enable Write Booster if current gear requires it else disable it */
1406 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1407 		ufshcd_wb_toggle(hba, hba->pwr_info.gear_rx >= hba->clk_scaling.wb_gear);
1408 
1409 	mutex_unlock(&hba->wb_mutex);
1410 
1411 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
1412 	ufshcd_release(hba);
1413 }
1414 
1415 /**
1416  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1417  * @hba: per adapter instance
1418  * @freq: frequency to scale
1419  * @scale_up: True for scaling up and false for scalin down
1420  *
1421  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1422  * for any other errors.
1423  */
ufshcd_devfreq_scale(struct ufs_hba * hba,unsigned long freq,bool scale_up)1424 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1425 				bool scale_up)
1426 {
1427 	u32 old_gear = hba->pwr_info.gear_rx;
1428 	u32 new_gear = 0;
1429 	int ret = 0;
1430 
1431 	new_gear = ufshcd_vops_freq_to_gear_speed(hba, freq);
1432 
1433 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1434 	if (ret)
1435 		return ret;
1436 
1437 	/* scale down the gear before scaling down clocks */
1438 	if (!scale_up) {
1439 		ret = ufshcd_scale_gear(hba, new_gear, false);
1440 		if (ret)
1441 			goto out_unprepare;
1442 	}
1443 
1444 	ret = ufshcd_scale_clks(hba, freq, scale_up);
1445 	if (ret) {
1446 		if (!scale_up)
1447 			ufshcd_scale_gear(hba, old_gear, true);
1448 		goto out_unprepare;
1449 	}
1450 
1451 	/* scale up the gear after scaling up clocks */
1452 	if (scale_up) {
1453 		ret = ufshcd_scale_gear(hba, new_gear, true);
1454 		if (ret) {
1455 			ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1456 					  false);
1457 			goto out_unprepare;
1458 		}
1459 	}
1460 
1461 out_unprepare:
1462 	ufshcd_clock_scaling_unprepare(hba, ret);
1463 	return ret;
1464 }
1465 
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1466 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1467 {
1468 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1469 					   clk_scaling.suspend_work);
1470 
1471 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1472 	{
1473 		if (hba->clk_scaling.active_reqs ||
1474 		    hba->clk_scaling.is_suspended)
1475 			return;
1476 
1477 		hba->clk_scaling.is_suspended = true;
1478 		hba->clk_scaling.window_start_t = 0;
1479 	}
1480 
1481 	devfreq_suspend_device(hba->devfreq);
1482 }
1483 
ufshcd_clk_scaling_resume_work(struct work_struct * work)1484 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1485 {
1486 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1487 					   clk_scaling.resume_work);
1488 
1489 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1490 	{
1491 		if (!hba->clk_scaling.is_suspended)
1492 			return;
1493 		hba->clk_scaling.is_suspended = false;
1494 	}
1495 
1496 	devfreq_resume_device(hba->devfreq);
1497 }
1498 
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1499 static int ufshcd_devfreq_target(struct device *dev,
1500 				unsigned long *freq, u32 flags)
1501 {
1502 	int ret = 0;
1503 	struct ufs_hba *hba = dev_get_drvdata(dev);
1504 	ktime_t start;
1505 	bool scale_up = false, sched_clk_scaling_suspend_work = false;
1506 	struct list_head *clk_list = &hba->clk_list_head;
1507 	struct ufs_clk_info *clki;
1508 
1509 	if (!ufshcd_is_clkscaling_supported(hba))
1510 		return -EINVAL;
1511 
1512 	if (hba->use_pm_opp) {
1513 		struct dev_pm_opp *opp;
1514 
1515 		/* Get the recommended frequency from OPP framework */
1516 		opp = devfreq_recommended_opp(dev, freq, flags);
1517 		if (IS_ERR(opp))
1518 			return PTR_ERR(opp);
1519 
1520 		dev_pm_opp_put(opp);
1521 	} else {
1522 		/* Override with the closest supported frequency */
1523 		clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1524 					list);
1525 		*freq =	(unsigned long) clk_round_rate(clki->clk, *freq);
1526 	}
1527 
1528 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1529 	{
1530 		if (ufshcd_eh_in_progress(hba))
1531 			return 0;
1532 
1533 		/* Skip scaling clock when clock scaling is suspended */
1534 		if (hba->clk_scaling.is_suspended) {
1535 			dev_warn(hba->dev, "clock scaling is suspended, skip");
1536 			return 0;
1537 		}
1538 
1539 		if (!hba->clk_scaling.active_reqs)
1540 			sched_clk_scaling_suspend_work = true;
1541 
1542 		if (list_empty(clk_list))
1543 			goto out;
1544 
1545 		/* Decide based on the target or rounded-off frequency and update */
1546 		if (hba->use_pm_opp)
1547 			scale_up = *freq > hba->clk_scaling.target_freq;
1548 		else
1549 			scale_up = *freq == clki->max_freq;
1550 
1551 		if (!hba->use_pm_opp && !scale_up)
1552 			*freq = clki->min_freq;
1553 
1554 		/* Update the frequency */
1555 		if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1556 			ret = 0;
1557 			goto out; /* no state change required */
1558 		}
1559 	}
1560 
1561 	start = ktime_get();
1562 	ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1563 	if (!ret)
1564 		hba->clk_scaling.target_freq = *freq;
1565 
1566 	trace_ufshcd_profile_clk_scaling(hba,
1567 		(scale_up ? "up" : "down"),
1568 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1569 
1570 out:
1571 	if (sched_clk_scaling_suspend_work &&
1572 			(!scale_up || hba->clk_scaling.suspend_on_no_request))
1573 		queue_work(hba->clk_scaling.workq,
1574 			   &hba->clk_scaling.suspend_work);
1575 
1576 	return ret;
1577 }
1578 
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1579 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1580 		struct devfreq_dev_status *stat)
1581 {
1582 	struct ufs_hba *hba = dev_get_drvdata(dev);
1583 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1584 	ktime_t curr_t;
1585 
1586 	if (!ufshcd_is_clkscaling_supported(hba))
1587 		return -EINVAL;
1588 
1589 	memset(stat, 0, sizeof(*stat));
1590 
1591 	guard(spinlock_irqsave)(&hba->clk_scaling.lock);
1592 
1593 	curr_t = ktime_get();
1594 	if (!scaling->window_start_t)
1595 		goto start_window;
1596 
1597 	/*
1598 	 * If current frequency is 0, then the ondemand governor considers
1599 	 * there's no initial frequency set. And it always requests to set
1600 	 * to max. frequency.
1601 	 */
1602 	if (hba->use_pm_opp) {
1603 		stat->current_frequency = hba->clk_scaling.target_freq;
1604 	} else {
1605 		struct list_head *clk_list = &hba->clk_list_head;
1606 		struct ufs_clk_info *clki;
1607 
1608 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1609 		stat->current_frequency = clki->curr_freq;
1610 	}
1611 
1612 	if (scaling->is_busy_started)
1613 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1614 				scaling->busy_start_t);
1615 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1616 	stat->busy_time = scaling->tot_busy_t;
1617 start_window:
1618 	scaling->window_start_t = curr_t;
1619 	scaling->tot_busy_t = 0;
1620 
1621 	if (scaling->active_reqs) {
1622 		scaling->busy_start_t = curr_t;
1623 		scaling->is_busy_started = true;
1624 	} else {
1625 		scaling->busy_start_t = 0;
1626 		scaling->is_busy_started = false;
1627 	}
1628 
1629 	return 0;
1630 }
1631 
ufshcd_devfreq_init(struct ufs_hba * hba)1632 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1633 {
1634 	struct list_head *clk_list = &hba->clk_list_head;
1635 	struct ufs_clk_info *clki;
1636 	struct devfreq *devfreq;
1637 	int ret;
1638 
1639 	/* Skip devfreq if we don't have any clocks in the list */
1640 	if (list_empty(clk_list))
1641 		return 0;
1642 
1643 	if (!hba->use_pm_opp) {
1644 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1645 		dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1646 		dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1647 	}
1648 
1649 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1650 					 &hba->vps->ondemand_data);
1651 	devfreq = devfreq_add_device(hba->dev,
1652 			&hba->vps->devfreq_profile,
1653 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1654 			&hba->vps->ondemand_data);
1655 	if (IS_ERR(devfreq)) {
1656 		ret = PTR_ERR(devfreq);
1657 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1658 
1659 		if (!hba->use_pm_opp) {
1660 			dev_pm_opp_remove(hba->dev, clki->min_freq);
1661 			dev_pm_opp_remove(hba->dev, clki->max_freq);
1662 		}
1663 		return ret;
1664 	}
1665 
1666 	hba->devfreq = devfreq;
1667 
1668 	return 0;
1669 }
1670 
ufshcd_devfreq_remove(struct ufs_hba * hba)1671 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1672 {
1673 	struct list_head *clk_list = &hba->clk_list_head;
1674 
1675 	if (!hba->devfreq)
1676 		return;
1677 
1678 	devfreq_remove_device(hba->devfreq);
1679 	hba->devfreq = NULL;
1680 
1681 	if (!hba->use_pm_opp) {
1682 		struct ufs_clk_info *clki;
1683 
1684 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1685 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1686 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1687 	}
1688 }
1689 
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1690 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1691 {
1692 	bool suspend = false;
1693 
1694 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1695 	cancel_work_sync(&hba->clk_scaling.resume_work);
1696 
1697 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1698 	{
1699 		if (!hba->clk_scaling.is_suspended) {
1700 			suspend = true;
1701 			hba->clk_scaling.is_suspended = true;
1702 			hba->clk_scaling.window_start_t = 0;
1703 		}
1704 	}
1705 
1706 	if (suspend)
1707 		devfreq_suspend_device(hba->devfreq);
1708 }
1709 
ufshcd_resume_clkscaling(struct ufs_hba * hba)1710 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1711 {
1712 	bool resume = false;
1713 
1714 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1715 	{
1716 		if (hba->clk_scaling.is_suspended) {
1717 			resume = true;
1718 			hba->clk_scaling.is_suspended = false;
1719 		}
1720 	}
1721 
1722 	if (resume)
1723 		devfreq_resume_device(hba->devfreq);
1724 }
1725 
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1726 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1727 		struct device_attribute *attr, char *buf)
1728 {
1729 	struct ufs_hba *hba = dev_get_drvdata(dev);
1730 
1731 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1732 }
1733 
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1734 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1735 		struct device_attribute *attr, const char *buf, size_t count)
1736 {
1737 	struct ufs_hba *hba = dev_get_drvdata(dev);
1738 	struct ufs_clk_info *clki;
1739 	unsigned long freq;
1740 	u32 value;
1741 	int err = 0;
1742 
1743 	if (kstrtou32(buf, 0, &value))
1744 		return -EINVAL;
1745 
1746 	down(&hba->host_sem);
1747 	if (!ufshcd_is_user_access_allowed(hba)) {
1748 		err = -EBUSY;
1749 		goto out;
1750 	}
1751 
1752 	value = !!value;
1753 	if (value == hba->clk_scaling.is_enabled)
1754 		goto out;
1755 
1756 	ufshcd_rpm_get_sync(hba);
1757 	ufshcd_hold(hba);
1758 
1759 	hba->clk_scaling.is_enabled = value;
1760 
1761 	if (value) {
1762 		ufshcd_resume_clkscaling(hba);
1763 		goto out_rel;
1764 	}
1765 
1766 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1767 	freq = clki->max_freq;
1768 
1769 	ufshcd_suspend_clkscaling(hba);
1770 
1771 	if (!ufshcd_is_devfreq_scaling_required(hba, freq, true))
1772 		goto out_rel;
1773 
1774 	err = ufshcd_devfreq_scale(hba, freq, true);
1775 	if (err)
1776 		dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1777 				__func__, err);
1778 	else
1779 		hba->clk_scaling.target_freq = freq;
1780 
1781 out_rel:
1782 	ufshcd_release(hba);
1783 	ufshcd_rpm_put_sync(hba);
1784 out:
1785 	up(&hba->host_sem);
1786 	return err ? err : count;
1787 }
1788 
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1789 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1790 {
1791 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1792 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1793 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1794 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1795 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1796 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1797 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1798 }
1799 
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1800 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1801 {
1802 	if (hba->clk_scaling.enable_attr.attr.name)
1803 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1804 }
1805 
ufshcd_init_clk_scaling(struct ufs_hba * hba)1806 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1807 {
1808 	if (!ufshcd_is_clkscaling_supported(hba))
1809 		return;
1810 
1811 	if (!hba->clk_scaling.min_gear)
1812 		hba->clk_scaling.min_gear = UFS_HS_G1;
1813 
1814 	if (!hba->clk_scaling.wb_gear)
1815 		/* Use intermediate gear speed HS_G3 as the default wb_gear */
1816 		hba->clk_scaling.wb_gear = UFS_HS_G3;
1817 
1818 	INIT_WORK(&hba->clk_scaling.suspend_work,
1819 		  ufshcd_clk_scaling_suspend_work);
1820 	INIT_WORK(&hba->clk_scaling.resume_work,
1821 		  ufshcd_clk_scaling_resume_work);
1822 
1823 	spin_lock_init(&hba->clk_scaling.lock);
1824 
1825 	hba->clk_scaling.workq = alloc_ordered_workqueue(
1826 		"ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no);
1827 
1828 	hba->clk_scaling.is_initialized = true;
1829 }
1830 
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1831 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1832 {
1833 	if (!hba->clk_scaling.is_initialized)
1834 		return;
1835 
1836 	ufshcd_remove_clk_scaling_sysfs(hba);
1837 	destroy_workqueue(hba->clk_scaling.workq);
1838 	ufshcd_devfreq_remove(hba);
1839 	hba->clk_scaling.is_initialized = false;
1840 }
1841 
ufshcd_ungate_work(struct work_struct * work)1842 static void ufshcd_ungate_work(struct work_struct *work)
1843 {
1844 	int ret;
1845 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1846 			clk_gating.ungate_work);
1847 
1848 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1849 
1850 	scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
1851 		if (hba->clk_gating.state == CLKS_ON)
1852 			return;
1853 	}
1854 
1855 	ufshcd_hba_vreg_set_hpm(hba);
1856 	ufshcd_setup_clocks(hba, true);
1857 
1858 	ufshcd_enable_irq(hba);
1859 
1860 	/* Exit from hibern8 */
1861 	if (ufshcd_can_hibern8_during_gating(hba)) {
1862 		/* Prevent gating in this path */
1863 		hba->clk_gating.is_suspended = true;
1864 		if (ufshcd_is_link_hibern8(hba)) {
1865 			ret = ufshcd_uic_hibern8_exit(hba);
1866 			if (ret)
1867 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1868 					__func__, ret);
1869 			else
1870 				ufshcd_set_link_active(hba);
1871 		}
1872 		hba->clk_gating.is_suspended = false;
1873 	}
1874 }
1875 
1876 /**
1877  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1878  * Also, exit from hibern8 mode and set the link as active.
1879  * @hba: per adapter instance
1880  */
ufshcd_hold(struct ufs_hba * hba)1881 void ufshcd_hold(struct ufs_hba *hba)
1882 {
1883 	bool flush_result;
1884 	unsigned long flags;
1885 
1886 	if (!ufshcd_is_clkgating_allowed(hba) ||
1887 	    !hba->clk_gating.is_initialized)
1888 		return;
1889 	spin_lock_irqsave(&hba->clk_gating.lock, flags);
1890 	hba->clk_gating.active_reqs++;
1891 
1892 start:
1893 	switch (hba->clk_gating.state) {
1894 	case CLKS_ON:
1895 		/*
1896 		 * Wait for the ungate work to complete if in progress.
1897 		 * Though the clocks may be in ON state, the link could
1898 		 * still be in hibner8 state if hibern8 is allowed
1899 		 * during clock gating.
1900 		 * Make sure we exit hibern8 state also in addition to
1901 		 * clocks being ON.
1902 		 */
1903 		if (ufshcd_can_hibern8_during_gating(hba) &&
1904 		    ufshcd_is_link_hibern8(hba)) {
1905 			spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1906 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1907 			if (hba->clk_gating.is_suspended && !flush_result)
1908 				return;
1909 			spin_lock_irqsave(&hba->clk_gating.lock, flags);
1910 			goto start;
1911 		}
1912 		break;
1913 	case REQ_CLKS_OFF:
1914 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1915 			hba->clk_gating.state = CLKS_ON;
1916 			trace_ufshcd_clk_gating(hba,
1917 						hba->clk_gating.state);
1918 			break;
1919 		}
1920 		/*
1921 		 * If we are here, it means gating work is either done or
1922 		 * currently running. Hence, fall through to cancel gating
1923 		 * work and to enable clocks.
1924 		 */
1925 		fallthrough;
1926 	case CLKS_OFF:
1927 		hba->clk_gating.state = REQ_CLKS_ON;
1928 		trace_ufshcd_clk_gating(hba,
1929 					hba->clk_gating.state);
1930 		queue_work(hba->clk_gating.clk_gating_workq,
1931 			   &hba->clk_gating.ungate_work);
1932 		/*
1933 		 * fall through to check if we should wait for this
1934 		 * work to be done or not.
1935 		 */
1936 		fallthrough;
1937 	case REQ_CLKS_ON:
1938 		spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1939 		flush_work(&hba->clk_gating.ungate_work);
1940 		/* Make sure state is CLKS_ON before returning */
1941 		spin_lock_irqsave(&hba->clk_gating.lock, flags);
1942 		goto start;
1943 	default:
1944 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1945 				__func__, hba->clk_gating.state);
1946 		break;
1947 	}
1948 	spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1949 }
1950 EXPORT_SYMBOL_GPL(ufshcd_hold);
1951 
ufshcd_gate_work(struct work_struct * work)1952 static void ufshcd_gate_work(struct work_struct *work)
1953 {
1954 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1955 			clk_gating.gate_work.work);
1956 	int ret;
1957 
1958 	scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
1959 		/*
1960 		 * In case you are here to cancel this work the gating state
1961 		 * would be marked as REQ_CLKS_ON. In this case save time by
1962 		 * skipping the gating work and exit after changing the clock
1963 		 * state to CLKS_ON.
1964 		 */
1965 		if (hba->clk_gating.is_suspended ||
1966 		    hba->clk_gating.state != REQ_CLKS_OFF) {
1967 			hba->clk_gating.state = CLKS_ON;
1968 			trace_ufshcd_clk_gating(hba,
1969 						hba->clk_gating.state);
1970 			return;
1971 		}
1972 
1973 		if (hba->clk_gating.active_reqs)
1974 			return;
1975 	}
1976 
1977 	scoped_guard(spinlock_irqsave, hba->host->host_lock) {
1978 		if (ufshcd_is_ufs_dev_busy(hba) ||
1979 		    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
1980 			return;
1981 	}
1982 
1983 	/* put the link into hibern8 mode before turning off clocks */
1984 	if (ufshcd_can_hibern8_during_gating(hba)) {
1985 		ret = ufshcd_uic_hibern8_enter(hba);
1986 		if (ret) {
1987 			hba->clk_gating.state = CLKS_ON;
1988 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1989 					__func__, ret);
1990 			trace_ufshcd_clk_gating(hba,
1991 						hba->clk_gating.state);
1992 			return;
1993 		}
1994 		ufshcd_set_link_hibern8(hba);
1995 	}
1996 
1997 	ufshcd_disable_irq(hba);
1998 
1999 	ufshcd_setup_clocks(hba, false);
2000 
2001 	/* Put the host controller in low power mode if possible */
2002 	ufshcd_hba_vreg_set_lpm(hba);
2003 	/*
2004 	 * In case you are here to cancel this work the gating state
2005 	 * would be marked as REQ_CLKS_ON. In this case keep the state
2006 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
2007 	 * and a request to turn them on is pending. By doing this way,
2008 	 * we keep the state machine in tact and this would ultimately
2009 	 * prevent from doing cancel work multiple times when there are
2010 	 * new requests arriving before the current cancel work is done.
2011 	 */
2012 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2013 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
2014 		hba->clk_gating.state = CLKS_OFF;
2015 		trace_ufshcd_clk_gating(hba,
2016 					hba->clk_gating.state);
2017 	}
2018 }
2019 
__ufshcd_release(struct ufs_hba * hba)2020 static void __ufshcd_release(struct ufs_hba *hba)
2021 {
2022 	lockdep_assert_held(&hba->clk_gating.lock);
2023 
2024 	if (!ufshcd_is_clkgating_allowed(hba))
2025 		return;
2026 
2027 	hba->clk_gating.active_reqs--;
2028 
2029 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2030 	    !hba->clk_gating.is_initialized ||
2031 	    hba->clk_gating.state == CLKS_OFF)
2032 		return;
2033 
2034 	scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2035 		if (ufshcd_has_pending_tasks(hba) ||
2036 		    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2037 			return;
2038 	}
2039 
2040 	hba->clk_gating.state = REQ_CLKS_OFF;
2041 	trace_ufshcd_clk_gating(hba, hba->clk_gating.state);
2042 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
2043 			   &hba->clk_gating.gate_work,
2044 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
2045 }
2046 
ufshcd_release(struct ufs_hba * hba)2047 void ufshcd_release(struct ufs_hba *hba)
2048 {
2049 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2050 	__ufshcd_release(hba);
2051 }
2052 EXPORT_SYMBOL_GPL(ufshcd_release);
2053 
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)2054 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2055 		struct device_attribute *attr, char *buf)
2056 {
2057 	struct ufs_hba *hba = dev_get_drvdata(dev);
2058 
2059 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2060 }
2061 
ufshcd_clkgate_delay_set(struct device * dev,unsigned long value)2062 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2063 {
2064 	struct ufs_hba *hba = dev_get_drvdata(dev);
2065 
2066 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2067 	hba->clk_gating.delay_ms = value;
2068 }
2069 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2070 
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2071 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2072 		struct device_attribute *attr, const char *buf, size_t count)
2073 {
2074 	unsigned long value;
2075 
2076 	if (kstrtoul(buf, 0, &value))
2077 		return -EINVAL;
2078 
2079 	ufshcd_clkgate_delay_set(dev, value);
2080 	return count;
2081 }
2082 
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)2083 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2084 		struct device_attribute *attr, char *buf)
2085 {
2086 	struct ufs_hba *hba = dev_get_drvdata(dev);
2087 
2088 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2089 }
2090 
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2091 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2092 		struct device_attribute *attr, const char *buf, size_t count)
2093 {
2094 	struct ufs_hba *hba = dev_get_drvdata(dev);
2095 	u32 value;
2096 
2097 	if (kstrtou32(buf, 0, &value))
2098 		return -EINVAL;
2099 
2100 	value = !!value;
2101 
2102 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2103 
2104 	if (value == hba->clk_gating.is_enabled)
2105 		return count;
2106 
2107 	if (value)
2108 		__ufshcd_release(hba);
2109 	else
2110 		hba->clk_gating.active_reqs++;
2111 
2112 	hba->clk_gating.is_enabled = value;
2113 
2114 	return count;
2115 }
2116 
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)2117 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2118 {
2119 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2120 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2121 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2122 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2123 	hba->clk_gating.delay_attr.attr.mode = 0644;
2124 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2125 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2126 
2127 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2128 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2129 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2130 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2131 	hba->clk_gating.enable_attr.attr.mode = 0644;
2132 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2133 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2134 }
2135 
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)2136 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2137 {
2138 	if (hba->clk_gating.delay_attr.attr.name)
2139 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2140 	if (hba->clk_gating.enable_attr.attr.name)
2141 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2142 }
2143 
ufshcd_init_clk_gating(struct ufs_hba * hba)2144 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2145 {
2146 	if (!ufshcd_is_clkgating_allowed(hba))
2147 		return;
2148 
2149 	hba->clk_gating.state = CLKS_ON;
2150 
2151 	hba->clk_gating.delay_ms = 150;
2152 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2153 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2154 
2155 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(
2156 		"ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI,
2157 		hba->host->host_no);
2158 
2159 	ufshcd_init_clk_gating_sysfs(hba);
2160 
2161 	hba->clk_gating.is_enabled = true;
2162 	hba->clk_gating.is_initialized = true;
2163 }
2164 
ufshcd_exit_clk_gating(struct ufs_hba * hba)2165 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2166 {
2167 	if (!hba->clk_gating.is_initialized)
2168 		return;
2169 
2170 	ufshcd_remove_clk_gating_sysfs(hba);
2171 
2172 	/* Ungate the clock if necessary. */
2173 	ufshcd_hold(hba);
2174 	hba->clk_gating.is_initialized = false;
2175 	ufshcd_release(hba);
2176 
2177 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2178 }
2179 
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)2180 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2181 {
2182 	bool queue_resume_work = false;
2183 	ktime_t curr_t = ktime_get();
2184 
2185 	if (!ufshcd_is_clkscaling_supported(hba))
2186 		return;
2187 
2188 	guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2189 
2190 	if (!hba->clk_scaling.active_reqs++)
2191 		queue_resume_work = true;
2192 
2193 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress)
2194 		return;
2195 
2196 	if (queue_resume_work)
2197 		queue_work(hba->clk_scaling.workq,
2198 			   &hba->clk_scaling.resume_work);
2199 
2200 	if (!hba->clk_scaling.window_start_t) {
2201 		hba->clk_scaling.window_start_t = curr_t;
2202 		hba->clk_scaling.tot_busy_t = 0;
2203 		hba->clk_scaling.is_busy_started = false;
2204 	}
2205 
2206 	if (!hba->clk_scaling.is_busy_started) {
2207 		hba->clk_scaling.busy_start_t = curr_t;
2208 		hba->clk_scaling.is_busy_started = true;
2209 	}
2210 }
2211 
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)2212 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2213 {
2214 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2215 
2216 	if (!ufshcd_is_clkscaling_supported(hba))
2217 		return;
2218 
2219 	guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2220 
2221 	hba->clk_scaling.active_reqs--;
2222 	if (!scaling->active_reqs && scaling->is_busy_started) {
2223 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2224 					scaling->busy_start_t));
2225 		scaling->busy_start_t = 0;
2226 		scaling->is_busy_started = false;
2227 	}
2228 }
2229 
ufshcd_monitor_opcode2dir(u8 opcode)2230 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2231 {
2232 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2233 		return READ;
2234 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2235 		return WRITE;
2236 	else
2237 		return -EINVAL;
2238 }
2239 
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2240 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2241 						struct ufshcd_lrb *lrbp)
2242 {
2243 	const struct ufs_hba_monitor *m = &hba->monitor;
2244 
2245 	return (m->enabled && lrbp && lrbp->cmd &&
2246 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2247 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2248 }
2249 
ufshcd_start_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2250 static void ufshcd_start_monitor(struct ufs_hba *hba,
2251 				 const struct ufshcd_lrb *lrbp)
2252 {
2253 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2254 	unsigned long flags;
2255 
2256 	spin_lock_irqsave(hba->host->host_lock, flags);
2257 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2258 		hba->monitor.busy_start_ts[dir] = ktime_get();
2259 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2260 }
2261 
ufshcd_update_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2262 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2263 {
2264 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2265 	unsigned long flags;
2266 
2267 	spin_lock_irqsave(hba->host->host_lock, flags);
2268 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2269 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2270 		struct ufs_hba_monitor *m = &hba->monitor;
2271 		ktime_t now, inc, lat;
2272 
2273 		now = lrbp->compl_time_stamp;
2274 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2275 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2276 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2277 
2278 		/* Update latencies */
2279 		m->nr_req[dir]++;
2280 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2281 		m->lat_sum[dir] += lat;
2282 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2283 			m->lat_max[dir] = lat;
2284 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2285 			m->lat_min[dir] = lat;
2286 
2287 		m->nr_queued[dir]--;
2288 		/* Push forward the busy start of monitor */
2289 		m->busy_start_ts[dir] = now;
2290 	}
2291 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2292 }
2293 
2294 /**
2295  * ufshcd_send_command - Send SCSI or device management commands
2296  * @hba: per adapter instance
2297  * @task_tag: Task tag of the command
2298  * @hwq: pointer to hardware queue instance
2299  */
2300 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag,struct ufs_hw_queue * hwq)2301 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2302 			 struct ufs_hw_queue *hwq)
2303 {
2304 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2305 	unsigned long flags;
2306 
2307 	lrbp->issue_time_stamp = ktime_get();
2308 	lrbp->issue_time_stamp_local_clock = local_clock();
2309 	lrbp->compl_time_stamp = ktime_set(0, 0);
2310 	lrbp->compl_time_stamp_local_clock = 0;
2311 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2312 	if (lrbp->cmd)
2313 		ufshcd_clk_scaling_start_busy(hba);
2314 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2315 		ufshcd_start_monitor(hba, lrbp);
2316 
2317 	if (hba->mcq_enabled) {
2318 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2319 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2320 		struct utp_transfer_req_desc *dest;
2321 
2322 		spin_lock(&hwq->sq_lock);
2323 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2324 		memcpy(dest, src, utrd_size);
2325 		ufshcd_inc_sq_tail(hwq);
2326 		spin_unlock(&hwq->sq_lock);
2327 	} else {
2328 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2329 		if (hba->vops && hba->vops->setup_xfer_req)
2330 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2331 						  !!lrbp->cmd);
2332 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2333 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2334 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2335 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2336 	}
2337 }
2338 
2339 /**
2340  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2341  * @lrbp: pointer to local reference block
2342  */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)2343 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2344 {
2345 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2346 	u16 resp_len;
2347 	int len;
2348 
2349 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2350 	if (sense_buffer && resp_len) {
2351 		int len_to_copy;
2352 
2353 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2354 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2355 
2356 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2357 		       len_to_copy);
2358 	}
2359 }
2360 
2361 /**
2362  * ufshcd_copy_query_response() - Copy the Query Response and the data
2363  * descriptor
2364  * @hba: per adapter instance
2365  * @lrbp: pointer to local reference block
2366  *
2367  * Return: 0 upon success; < 0 upon failure.
2368  */
2369 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2370 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2371 {
2372 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2373 
2374 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2375 
2376 	/* Get the descriptor */
2377 	if (hba->dev_cmd.query.descriptor &&
2378 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2379 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2380 				GENERAL_UPIU_REQUEST_SIZE;
2381 		u16 resp_len;
2382 		u16 buf_len;
2383 
2384 		/* data segment length */
2385 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2386 				       .data_segment_length);
2387 		buf_len = be16_to_cpu(
2388 				hba->dev_cmd.query.request.upiu_req.length);
2389 		if (likely(buf_len >= resp_len)) {
2390 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2391 		} else {
2392 			dev_warn(hba->dev,
2393 				 "%s: rsp size %d is bigger than buffer size %d",
2394 				 __func__, resp_len, buf_len);
2395 			return -EINVAL;
2396 		}
2397 	}
2398 
2399 	return 0;
2400 }
2401 
2402 /**
2403  * ufshcd_hba_capabilities - Read controller capabilities
2404  * @hba: per adapter instance
2405  *
2406  * Return: 0 on success, negative on error.
2407  */
ufshcd_hba_capabilities(struct ufs_hba * hba)2408 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2409 {
2410 	int err;
2411 
2412 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2413 
2414 	/* nutrs and nutmrs are 0 based values */
2415 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1;
2416 	hba->nutmrs =
2417 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2418 	hba->reserved_slot = hba->nutrs - 1;
2419 
2420 	hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1;
2421 
2422 	/* Read crypto capabilities */
2423 	err = ufshcd_hba_init_crypto_capabilities(hba);
2424 	if (err) {
2425 		dev_err(hba->dev, "crypto setup failed\n");
2426 		return err;
2427 	}
2428 
2429 	/*
2430 	 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2431 	 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2432 	 * means we can simply read values regardless of version.
2433 	 */
2434 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2435 	/*
2436 	 * 0h: legacy single doorbell support is available
2437 	 * 1h: indicate that legacy single doorbell support has been removed
2438 	 */
2439 	if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP))
2440 		hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2441 	else
2442 		hba->lsdb_sup = true;
2443 
2444 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2445 
2446 	return 0;
2447 }
2448 
2449 /**
2450  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2451  *                            to accept UIC commands
2452  * @hba: per adapter instance
2453  *
2454  * Return: true on success, else false.
2455  */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2456 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2457 {
2458 	u32 val;
2459 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2460 				    500, uic_cmd_timeout * 1000, false, hba,
2461 				    REG_CONTROLLER_STATUS);
2462 	return ret == 0;
2463 }
2464 
2465 /**
2466  * ufshcd_get_upmcrs - Get the power mode change request status
2467  * @hba: Pointer to adapter instance
2468  *
2469  * This function gets the UPMCRS field of HCS register
2470  *
2471  * Return: value of UPMCRS field.
2472  */
ufshcd_get_upmcrs(struct ufs_hba * hba)2473 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2474 {
2475 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2476 }
2477 
2478 /**
2479  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2480  * @hba: per adapter instance
2481  * @uic_cmd: UIC command
2482  */
2483 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2484 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2485 {
2486 	lockdep_assert_held(&hba->uic_cmd_mutex);
2487 
2488 	WARN_ON(hba->active_uic_cmd);
2489 
2490 	hba->active_uic_cmd = uic_cmd;
2491 
2492 	/* Write Args */
2493 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2494 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2495 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2496 
2497 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2498 
2499 	/* Write UIC Cmd */
2500 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2501 		      REG_UIC_COMMAND);
2502 }
2503 
2504 /**
2505  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2506  * @hba: per adapter instance
2507  * @uic_cmd: UIC command
2508  *
2509  * Return: 0 only if success.
2510  */
2511 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2512 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2513 {
2514 	int ret;
2515 	unsigned long flags;
2516 
2517 	lockdep_assert_held(&hba->uic_cmd_mutex);
2518 
2519 	if (wait_for_completion_timeout(&uic_cmd->done,
2520 					msecs_to_jiffies(uic_cmd_timeout))) {
2521 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2522 	} else {
2523 		ret = -ETIMEDOUT;
2524 		dev_err(hba->dev,
2525 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2526 			uic_cmd->command, uic_cmd->argument3);
2527 
2528 		if (!uic_cmd->cmd_active) {
2529 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2530 				__func__);
2531 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2532 		}
2533 	}
2534 
2535 	spin_lock_irqsave(hba->host->host_lock, flags);
2536 	hba->active_uic_cmd = NULL;
2537 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2538 
2539 	return ret;
2540 }
2541 
2542 /**
2543  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2544  * @hba: per adapter instance
2545  * @uic_cmd: UIC command
2546  *
2547  * Return: 0 only if success.
2548  */
2549 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2550 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2551 {
2552 	lockdep_assert_held(&hba->uic_cmd_mutex);
2553 
2554 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2555 		dev_err(hba->dev,
2556 			"Controller not ready to accept UIC commands\n");
2557 		return -EIO;
2558 	}
2559 
2560 	init_completion(&uic_cmd->done);
2561 
2562 	uic_cmd->cmd_active = 1;
2563 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2564 
2565 	return 0;
2566 }
2567 
2568 /**
2569  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2570  * @hba: per adapter instance
2571  * @uic_cmd: UIC command
2572  *
2573  * Return: 0 only if success.
2574  */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2575 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2576 {
2577 	int ret;
2578 
2579 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2580 		return 0;
2581 
2582 	ufshcd_hold(hba);
2583 	mutex_lock(&hba->uic_cmd_mutex);
2584 	ufshcd_add_delay_before_dme_cmd(hba);
2585 
2586 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2587 	if (!ret)
2588 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2589 
2590 	mutex_unlock(&hba->uic_cmd_mutex);
2591 
2592 	ufshcd_release(hba);
2593 	return ret;
2594 }
2595 
2596 /**
2597  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2598  * @hba:	per-adapter instance
2599  * @lrbp:	pointer to local reference block
2600  * @sg_entries:	The number of sg lists actually used
2601  * @sg_list:	Pointer to SG list
2602  */
ufshcd_sgl_to_prdt(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int sg_entries,struct scatterlist * sg_list)2603 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2604 			       struct scatterlist *sg_list)
2605 {
2606 	struct ufshcd_sg_entry *prd;
2607 	struct scatterlist *sg;
2608 	int i;
2609 
2610 	if (sg_entries) {
2611 
2612 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2613 			lrbp->utr_descriptor_ptr->prd_table_length =
2614 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2615 		else
2616 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2617 
2618 		prd = lrbp->ucd_prdt_ptr;
2619 
2620 		for_each_sg(sg_list, sg, sg_entries, i) {
2621 			const unsigned int len = sg_dma_len(sg);
2622 
2623 			/*
2624 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2625 			 * based value that indicates the length, in bytes, of
2626 			 * the data block. A maximum of length of 256KB may
2627 			 * exist for any entry. Bits 1:0 of this field shall be
2628 			 * 11b to indicate Dword granularity. A value of '3'
2629 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2630 			 */
2631 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2632 			prd->size = cpu_to_le32(len - 1);
2633 			prd->addr = cpu_to_le64(sg->dma_address);
2634 			prd->reserved = 0;
2635 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2636 		}
2637 	} else {
2638 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2639 	}
2640 }
2641 
2642 /**
2643  * ufshcd_map_sg - Map scatter-gather list to prdt
2644  * @hba: per adapter instance
2645  * @lrbp: pointer to local reference block
2646  *
2647  * Return: 0 in case of success, non-zero value in case of failure.
2648  */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2649 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2650 {
2651 	struct scsi_cmnd *cmd = lrbp->cmd;
2652 	int sg_segments = scsi_dma_map(cmd);
2653 
2654 	if (sg_segments < 0)
2655 		return sg_segments;
2656 
2657 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2658 
2659 	return ufshcd_crypto_fill_prdt(hba, lrbp);
2660 }
2661 
2662 /**
2663  * ufshcd_enable_intr - enable interrupts
2664  * @hba: per adapter instance
2665  * @intrs: interrupt bits
2666  */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2667 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2668 {
2669 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2670 
2671 	set |= intrs;
2672 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2673 }
2674 
2675 /**
2676  * ufshcd_disable_intr - disable interrupts
2677  * @hba: per adapter instance
2678  * @intrs: interrupt bits
2679  */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2680 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2681 {
2682 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2683 
2684 	set &= ~intrs;
2685 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2686 }
2687 
2688 /**
2689  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2690  * descriptor according to request
2691  * @hba: per adapter instance
2692  * @lrbp: pointer to local reference block
2693  * @upiu_flags: flags required in the header
2694  * @cmd_dir: requests data direction
2695  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2696  */
2697 static void
ufshcd_prepare_req_desc_hdr(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir,int ehs_length)2698 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2699 			    u8 *upiu_flags, enum dma_data_direction cmd_dir,
2700 			    int ehs_length)
2701 {
2702 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2703 	struct request_desc_header *h = &req_desc->header;
2704 	enum utp_data_direction data_direction;
2705 
2706 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2707 
2708 	*h = (typeof(*h)){ };
2709 
2710 	if (cmd_dir == DMA_FROM_DEVICE) {
2711 		data_direction = UTP_DEVICE_TO_HOST;
2712 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2713 	} else if (cmd_dir == DMA_TO_DEVICE) {
2714 		data_direction = UTP_HOST_TO_DEVICE;
2715 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2716 	} else {
2717 		data_direction = UTP_NO_DATA_TRANSFER;
2718 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2719 	}
2720 
2721 	h->command_type = lrbp->command_type;
2722 	h->data_direction = data_direction;
2723 	h->ehs_length = ehs_length;
2724 
2725 	if (lrbp->intr_cmd)
2726 		h->interrupt = 1;
2727 
2728 	/* Prepare crypto related dwords */
2729 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2730 
2731 	/*
2732 	 * assigning invalid value for command status. Controller
2733 	 * updates OCS on command completion, with the command
2734 	 * status
2735 	 */
2736 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2737 
2738 	req_desc->prd_table_length = 0;
2739 }
2740 
2741 /**
2742  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2743  * for scsi commands
2744  * @lrbp: local reference block pointer
2745  * @upiu_flags: flags
2746  */
2747 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2748 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2749 {
2750 	struct scsi_cmnd *cmd = lrbp->cmd;
2751 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2752 	unsigned short cdb_len;
2753 
2754 	ucd_req_ptr->header = (struct utp_upiu_header){
2755 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2756 		.flags = upiu_flags,
2757 		.lun = lrbp->lun,
2758 		.task_tag = lrbp->task_tag,
2759 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2760 	};
2761 
2762 	WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2763 
2764 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2765 
2766 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2767 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2768 
2769 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2770 }
2771 
2772 /**
2773  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2774  * @hba: UFS hba
2775  * @lrbp: local reference block pointer
2776  * @upiu_flags: flags
2777  */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2778 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2779 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2780 {
2781 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2782 	struct ufs_query *query = &hba->dev_cmd.query;
2783 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2784 
2785 	/* Query request header */
2786 	ucd_req_ptr->header = (struct utp_upiu_header){
2787 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2788 		.flags = upiu_flags,
2789 		.lun = lrbp->lun,
2790 		.task_tag = lrbp->task_tag,
2791 		.query_function = query->request.query_func,
2792 		/* Data segment length only need for WRITE_DESC */
2793 		.data_segment_length =
2794 			query->request.upiu_req.opcode ==
2795 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2796 				cpu_to_be16(len) :
2797 				0,
2798 	};
2799 
2800 	/* Copy the Query Request buffer as is */
2801 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2802 			QUERY_OSF_SIZE);
2803 
2804 	/* Copy the Descriptor */
2805 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2806 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2807 
2808 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2809 }
2810 
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2811 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2812 {
2813 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2814 
2815 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2816 
2817 	ucd_req_ptr->header = (struct utp_upiu_header){
2818 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2819 		.task_tag = lrbp->task_tag,
2820 	};
2821 
2822 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2823 }
2824 
2825 /**
2826  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2827  *			     for Device Management Purposes
2828  * @hba: per adapter instance
2829  * @lrbp: pointer to local reference block
2830  *
2831  * Return: 0 upon success; < 0 upon failure.
2832  */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2833 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2834 				      struct ufshcd_lrb *lrbp)
2835 {
2836 	u8 upiu_flags;
2837 	int ret = 0;
2838 
2839 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2840 
2841 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2842 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2843 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2844 		ufshcd_prepare_utp_nop_upiu(lrbp);
2845 	else
2846 		ret = -EINVAL;
2847 
2848 	return ret;
2849 }
2850 
2851 /**
2852  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2853  *			   for SCSI Purposes
2854  * @hba: per adapter instance
2855  * @lrbp: pointer to local reference block
2856  */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2857 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2858 {
2859 	struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2860 	unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2861 	u8 upiu_flags;
2862 
2863 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2864 	if (ioprio_class == IOPRIO_CLASS_RT)
2865 		upiu_flags |= UPIU_CMD_FLAGS_CP;
2866 	ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2867 }
2868 
__ufshcd_setup_cmd(struct ufshcd_lrb * lrbp,struct scsi_cmnd * cmd,u8 lun,int tag)2869 static void __ufshcd_setup_cmd(struct ufshcd_lrb *lrbp, struct scsi_cmnd *cmd, u8 lun, int tag)
2870 {
2871 	memset(lrbp->ucd_req_ptr, 0, sizeof(*lrbp->ucd_req_ptr));
2872 
2873 	lrbp->cmd = cmd;
2874 	lrbp->task_tag = tag;
2875 	lrbp->lun = lun;
2876 	ufshcd_prepare_lrbp_crypto(cmd ? scsi_cmd_to_rq(cmd) : NULL, lrbp);
2877 }
2878 
ufshcd_setup_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct scsi_cmnd * cmd,u8 lun,int tag)2879 static void ufshcd_setup_scsi_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2880 				  struct scsi_cmnd *cmd, u8 lun, int tag)
2881 {
2882 	__ufshcd_setup_cmd(lrbp, cmd, lun, tag);
2883 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2884 	lrbp->req_abort_skip = false;
2885 
2886 	ufshcd_comp_scsi_upiu(hba, lrbp);
2887 }
2888 
2889 /**
2890  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2891  * @upiu_wlun_id: UPIU W-LUN id
2892  *
2893  * Return: SCSI W-LUN id.
2894  */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2895 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2896 {
2897 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2898 }
2899 
is_device_wlun(struct scsi_device * sdev)2900 static inline bool is_device_wlun(struct scsi_device *sdev)
2901 {
2902 	return sdev->lun ==
2903 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2904 }
2905 
2906 /*
2907  * Associate the UFS controller queue with the default and poll HCTX types.
2908  * Initialize the mq_map[] arrays.
2909  */
ufshcd_map_queues(struct Scsi_Host * shost)2910 static void ufshcd_map_queues(struct Scsi_Host *shost)
2911 {
2912 	struct ufs_hba *hba = shost_priv(shost);
2913 	int i, queue_offset = 0;
2914 
2915 	if (!is_mcq_supported(hba)) {
2916 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2917 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2918 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2919 		hba->nr_hw_queues = 1;
2920 	}
2921 
2922 	for (i = 0; i < shost->nr_maps; i++) {
2923 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2924 
2925 		map->nr_queues = hba->nr_queues[i];
2926 		if (!map->nr_queues)
2927 			continue;
2928 		map->queue_offset = queue_offset;
2929 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2930 			map->queue_offset = 0;
2931 
2932 		blk_mq_map_queues(map);
2933 		queue_offset += map->nr_queues;
2934 	}
2935 }
2936 
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2937 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2938 {
2939 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2940 		i * ufshcd_get_ucd_size(hba);
2941 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2942 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2943 		i * ufshcd_get_ucd_size(hba);
2944 	u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset);
2945 	u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset);
2946 
2947 	lrb->utr_descriptor_ptr = utrdlp + i;
2948 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2949 		i * sizeof(struct utp_transfer_req_desc);
2950 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2951 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2952 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2953 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2954 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2955 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2956 }
2957 
2958 /**
2959  * ufshcd_queuecommand - main entry point for SCSI requests
2960  * @host: SCSI host pointer
2961  * @cmd: command from SCSI Midlayer
2962  *
2963  * Return: 0 for success, non-zero in case of failure.
2964  */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2965 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2966 {
2967 	struct ufs_hba *hba = shost_priv(host);
2968 	int tag = scsi_cmd_to_rq(cmd)->tag;
2969 	struct ufshcd_lrb *lrbp;
2970 	int err = 0;
2971 	struct ufs_hw_queue *hwq = NULL;
2972 
2973 	switch (hba->ufshcd_state) {
2974 	case UFSHCD_STATE_OPERATIONAL:
2975 		break;
2976 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2977 		/*
2978 		 * SCSI error handler can call ->queuecommand() while UFS error
2979 		 * handler is in progress. Error interrupts could change the
2980 		 * state from UFSHCD_STATE_RESET to
2981 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2982 		 * being issued in that case.
2983 		 */
2984 		if (ufshcd_eh_in_progress(hba)) {
2985 			err = SCSI_MLQUEUE_HOST_BUSY;
2986 			goto out;
2987 		}
2988 		break;
2989 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2990 		/*
2991 		 * pm_runtime_get_sync() is used at error handling preparation
2992 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2993 		 * PM ops, it can never be finished if we let SCSI layer keep
2994 		 * retrying it, which gets err handler stuck forever. Neither
2995 		 * can we let the scsi cmd pass through, because UFS is in bad
2996 		 * state, the scsi cmd may eventually time out, which will get
2997 		 * err handler blocked for too long. So, just fail the scsi cmd
2998 		 * sent from PM ops, err handler can recover PM error anyways.
2999 		 */
3000 		if (hba->pm_op_in_progress) {
3001 			hba->force_reset = true;
3002 			set_host_byte(cmd, DID_BAD_TARGET);
3003 			scsi_done(cmd);
3004 			goto out;
3005 		}
3006 		fallthrough;
3007 	case UFSHCD_STATE_RESET:
3008 		err = SCSI_MLQUEUE_HOST_BUSY;
3009 		goto out;
3010 	case UFSHCD_STATE_ERROR:
3011 		set_host_byte(cmd, DID_ERROR);
3012 		scsi_done(cmd);
3013 		goto out;
3014 	}
3015 
3016 	hba->req_abort_count = 0;
3017 
3018 	ufshcd_hold(hba);
3019 
3020 	lrbp = &hba->lrb[tag];
3021 
3022 	ufshcd_setup_scsi_cmd(hba, lrbp, cmd, ufshcd_scsi_to_upiu_lun(cmd->device->lun), tag);
3023 
3024 	err = ufshcd_map_sg(hba, lrbp);
3025 	if (err) {
3026 		ufshcd_release(hba);
3027 		goto out;
3028 	}
3029 
3030 	if (hba->mcq_enabled)
3031 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3032 
3033 	ufshcd_send_command(hba, tag, hwq);
3034 
3035 out:
3036 	if (ufs_trigger_eh(hba)) {
3037 		unsigned long flags;
3038 
3039 		spin_lock_irqsave(hba->host->host_lock, flags);
3040 		ufshcd_schedule_eh_work(hba);
3041 		spin_unlock_irqrestore(hba->host->host_lock, flags);
3042 	}
3043 
3044 	return err;
3045 }
3046 
ufshcd_setup_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,u8 lun,int tag)3047 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3048 			     enum dev_cmd_type cmd_type, u8 lun, int tag)
3049 {
3050 	__ufshcd_setup_cmd(lrbp, NULL, lun, tag);
3051 	lrbp->intr_cmd = true; /* No interrupt aggregation */
3052 	hba->dev_cmd.type = cmd_type;
3053 }
3054 
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)3055 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3056 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3057 {
3058 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
3059 
3060 	return ufshcd_compose_devman_upiu(hba, lrbp);
3061 }
3062 
3063 /*
3064  * Check with the block layer if the command is inflight
3065  * @cmd: command to check.
3066  *
3067  * Return: true if command is inflight; false if not.
3068  */
ufshcd_cmd_inflight(struct scsi_cmnd * cmd)3069 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3070 {
3071 	return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3072 }
3073 
3074 /*
3075  * Clear the pending command in the controller and wait until
3076  * the controller confirms that the command has been cleared.
3077  * @hba: per adapter instance
3078  * @task_tag: The tag number of the command to be cleared.
3079  */
ufshcd_clear_cmd(struct ufs_hba * hba,u32 task_tag)3080 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3081 {
3082 	u32 mask;
3083 	int err;
3084 
3085 	if (hba->mcq_enabled) {
3086 		/*
3087 		 * MCQ mode. Clean up the MCQ resources similar to
3088 		 * what the ufshcd_utrl_clear() does for SDB mode.
3089 		 */
3090 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3091 		if (err) {
3092 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3093 				__func__, task_tag, err);
3094 			return err;
3095 		}
3096 		return 0;
3097 	}
3098 
3099 	mask = 1U << task_tag;
3100 
3101 	/* clear outstanding transaction before retry */
3102 	ufshcd_utrl_clear(hba, mask);
3103 
3104 	/*
3105 	 * wait for h/w to clear corresponding bit in door-bell.
3106 	 * max. wait is 1 sec.
3107 	 */
3108 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3109 					mask, ~mask, 1000, 1000);
3110 }
3111 
3112 /**
3113  * ufshcd_dev_cmd_completion() - handles device management command responses
3114  * @hba: per adapter instance
3115  * @lrbp: pointer to local reference block
3116  *
3117  * Return: 0 upon success; < 0 upon failure.
3118  */
3119 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)3120 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3121 {
3122 	enum upiu_response_transaction resp;
3123 	int err = 0;
3124 
3125 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3126 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3127 
3128 	switch (resp) {
3129 	case UPIU_TRANSACTION_NOP_IN:
3130 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3131 			err = -EINVAL;
3132 			dev_err(hba->dev, "%s: unexpected response %x\n",
3133 					__func__, resp);
3134 		}
3135 		break;
3136 	case UPIU_TRANSACTION_QUERY_RSP: {
3137 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3138 
3139 		if (response == 0) {
3140 			err = ufshcd_copy_query_response(hba, lrbp);
3141 		} else {
3142 			err = -EINVAL;
3143 			dev_err(hba->dev, "%s: unexpected response in Query RSP: %x\n",
3144 					__func__, response);
3145 		}
3146 		break;
3147 	}
3148 	case UPIU_TRANSACTION_REJECT_UPIU:
3149 		/* TODO: handle Reject UPIU Response */
3150 		err = -EPERM;
3151 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3152 				__func__);
3153 		break;
3154 	case UPIU_TRANSACTION_RESPONSE:
3155 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3156 			err = -EINVAL;
3157 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3158 		}
3159 		break;
3160 	default:
3161 		err = -EINVAL;
3162 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3163 				__func__, resp);
3164 		break;
3165 	}
3166 
3167 	return err;
3168 }
3169 
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)3170 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3171 		struct ufshcd_lrb *lrbp, int max_timeout)
3172 {
3173 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3174 	unsigned long flags;
3175 	bool pending;
3176 	int err;
3177 
3178 retry:
3179 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3180 						time_left);
3181 
3182 	if (likely(time_left)) {
3183 		/*
3184 		 * The completion handler called complete() and the caller of
3185 		 * this function still owns the @lrbp tag so the code below does
3186 		 * not trigger any race conditions.
3187 		 */
3188 		hba->dev_cmd.complete = NULL;
3189 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3190 		if (!err)
3191 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3192 	} else {
3193 		err = -ETIMEDOUT;
3194 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3195 			__func__, lrbp->task_tag);
3196 
3197 		/* MCQ mode */
3198 		if (hba->mcq_enabled) {
3199 			/* successfully cleared the command, retry if needed */
3200 			if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3201 				err = -EAGAIN;
3202 			hba->dev_cmd.complete = NULL;
3203 			return err;
3204 		}
3205 
3206 		/* SDB mode */
3207 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3208 			/* successfully cleared the command, retry if needed */
3209 			err = -EAGAIN;
3210 			/*
3211 			 * Since clearing the command succeeded we also need to
3212 			 * clear the task tag bit from the outstanding_reqs
3213 			 * variable.
3214 			 */
3215 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3216 			pending = test_bit(lrbp->task_tag,
3217 					   &hba->outstanding_reqs);
3218 			if (pending) {
3219 				hba->dev_cmd.complete = NULL;
3220 				__clear_bit(lrbp->task_tag,
3221 					    &hba->outstanding_reqs);
3222 			}
3223 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3224 
3225 			if (!pending) {
3226 				/*
3227 				 * The completion handler ran while we tried to
3228 				 * clear the command.
3229 				 */
3230 				time_left = 1;
3231 				goto retry;
3232 			}
3233 		} else {
3234 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3235 				__func__, lrbp->task_tag);
3236 
3237 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3238 			pending = test_bit(lrbp->task_tag,
3239 					   &hba->outstanding_reqs);
3240 			if (pending)
3241 				hba->dev_cmd.complete = NULL;
3242 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3243 
3244 			if (!pending) {
3245 				/*
3246 				 * The completion handler ran while we tried to
3247 				 * clear the command.
3248 				 */
3249 				time_left = 1;
3250 				goto retry;
3251 			}
3252 		}
3253 	}
3254 
3255 	return err;
3256 }
3257 
ufshcd_dev_man_lock(struct ufs_hba * hba)3258 static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3259 {
3260 	ufshcd_hold(hba);
3261 	mutex_lock(&hba->dev_cmd.lock);
3262 	down_read(&hba->clk_scaling_lock);
3263 }
3264 
ufshcd_dev_man_unlock(struct ufs_hba * hba)3265 static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3266 {
3267 	up_read(&hba->clk_scaling_lock);
3268 	mutex_unlock(&hba->dev_cmd.lock);
3269 	ufshcd_release(hba);
3270 }
3271 
ufshcd_issue_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,const u32 tag,int timeout)3272 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3273 			  const u32 tag, int timeout)
3274 {
3275 	DECLARE_COMPLETION_ONSTACK(wait);
3276 	int err;
3277 
3278 	hba->dev_cmd.complete = &wait;
3279 
3280 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3281 
3282 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3283 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3284 
3285 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3286 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3287 
3288 	return err;
3289 }
3290 
3291 /**
3292  * ufshcd_exec_dev_cmd - API for sending device management requests
3293  * @hba: UFS hba
3294  * @cmd_type: specifies the type (NOP, Query...)
3295  * @timeout: timeout in milliseconds
3296  *
3297  * Return: 0 upon success; < 0 upon failure.
3298  *
3299  * NOTE: Since there is only one available tag for device management commands,
3300  * it is expected you hold the hba->dev_cmd.lock mutex.
3301  */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)3302 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3303 		enum dev_cmd_type cmd_type, int timeout)
3304 {
3305 	const u32 tag = hba->reserved_slot;
3306 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
3307 	int err;
3308 
3309 	/* Protects use of hba->reserved_slot. */
3310 	lockdep_assert_held(&hba->dev_cmd.lock);
3311 
3312 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3313 	if (unlikely(err))
3314 		return err;
3315 
3316 	return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout);
3317 }
3318 
3319 /**
3320  * ufshcd_init_query() - init the query response and request parameters
3321  * @hba: per-adapter instance
3322  * @request: address of the request pointer to be initialized
3323  * @response: address of the response pointer to be initialized
3324  * @opcode: operation to perform
3325  * @idn: flag idn to access
3326  * @index: LU number to access
3327  * @selector: query/flag/descriptor further identification
3328  */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)3329 static inline void ufshcd_init_query(struct ufs_hba *hba,
3330 		struct ufs_query_req **request, struct ufs_query_res **response,
3331 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3332 {
3333 	*request = &hba->dev_cmd.query.request;
3334 	*response = &hba->dev_cmd.query.response;
3335 	memset(*request, 0, sizeof(struct ufs_query_req));
3336 	memset(*response, 0, sizeof(struct ufs_query_res));
3337 	(*request)->upiu_req.opcode = opcode;
3338 	(*request)->upiu_req.idn = idn;
3339 	(*request)->upiu_req.index = index;
3340 	(*request)->upiu_req.selector = selector;
3341 }
3342 
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3343 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3344 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3345 {
3346 	int ret;
3347 	int retries;
3348 
3349 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3350 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3351 		if (ret)
3352 			dev_dbg(hba->dev,
3353 				"%s: failed with error %d, retries %d\n",
3354 				__func__, ret, retries);
3355 		else
3356 			break;
3357 	}
3358 
3359 	if (ret)
3360 		dev_err(hba->dev,
3361 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3362 			__func__, opcode, idn, ret, retries);
3363 	return ret;
3364 }
3365 
3366 /**
3367  * ufshcd_query_flag() - API function for sending flag query requests
3368  * @hba: per-adapter instance
3369  * @opcode: flag query to perform
3370  * @idn: flag idn to access
3371  * @index: flag index to access
3372  * @flag_res: the flag value after the query request completes
3373  *
3374  * Return: 0 for success, non-zero in case of failure.
3375  */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3376 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3377 			enum flag_idn idn, u8 index, bool *flag_res)
3378 {
3379 	struct ufs_query_req *request = NULL;
3380 	struct ufs_query_res *response = NULL;
3381 	int err, selector = 0;
3382 	int timeout = QUERY_REQ_TIMEOUT;
3383 
3384 	BUG_ON(!hba);
3385 
3386 	ufshcd_dev_man_lock(hba);
3387 
3388 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3389 			selector);
3390 
3391 	switch (opcode) {
3392 	case UPIU_QUERY_OPCODE_SET_FLAG:
3393 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3394 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3395 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3396 		break;
3397 	case UPIU_QUERY_OPCODE_READ_FLAG:
3398 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3399 		if (!flag_res) {
3400 			/* No dummy reads */
3401 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3402 					__func__);
3403 			err = -EINVAL;
3404 			goto out_unlock;
3405 		}
3406 		break;
3407 	default:
3408 		dev_err(hba->dev,
3409 			"%s: Expected query flag opcode but got = %d\n",
3410 			__func__, opcode);
3411 		err = -EINVAL;
3412 		goto out_unlock;
3413 	}
3414 
3415 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3416 
3417 	if (err) {
3418 		dev_err(hba->dev,
3419 			"%s: Sending flag query for idn %d failed, err = %d\n",
3420 			__func__, idn, err);
3421 		goto out_unlock;
3422 	}
3423 
3424 	if (flag_res)
3425 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3426 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3427 
3428 out_unlock:
3429 	ufshcd_dev_man_unlock(hba);
3430 	return err;
3431 }
3432 
3433 /**
3434  * ufshcd_query_attr - API function for sending attribute requests
3435  * @hba: per-adapter instance
3436  * @opcode: attribute opcode
3437  * @idn: attribute idn to access
3438  * @index: index field
3439  * @selector: selector field
3440  * @attr_val: the attribute value after the query request completes
3441  *
3442  * Return: 0 for success, non-zero in case of failure.
3443 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3444 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3445 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3446 {
3447 	struct ufs_query_req *request = NULL;
3448 	struct ufs_query_res *response = NULL;
3449 	int err;
3450 
3451 	BUG_ON(!hba);
3452 
3453 	if (!attr_val) {
3454 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3455 				__func__, opcode);
3456 		return -EINVAL;
3457 	}
3458 
3459 	ufshcd_dev_man_lock(hba);
3460 
3461 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3462 			selector);
3463 
3464 	switch (opcode) {
3465 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3466 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3467 		request->upiu_req.value = cpu_to_be32(*attr_val);
3468 		break;
3469 	case UPIU_QUERY_OPCODE_READ_ATTR:
3470 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3471 		break;
3472 	default:
3473 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3474 				__func__, opcode);
3475 		err = -EINVAL;
3476 		goto out_unlock;
3477 	}
3478 
3479 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3480 
3481 	if (err) {
3482 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3483 				__func__, opcode, idn, index, err);
3484 		goto out_unlock;
3485 	}
3486 
3487 	*attr_val = be32_to_cpu(response->upiu_res.value);
3488 
3489 out_unlock:
3490 	ufshcd_dev_man_unlock(hba);
3491 	return err;
3492 }
3493 
3494 /**
3495  * ufshcd_query_attr_retry() - API function for sending query
3496  * attribute with retries
3497  * @hba: per-adapter instance
3498  * @opcode: attribute opcode
3499  * @idn: attribute idn to access
3500  * @index: index field
3501  * @selector: selector field
3502  * @attr_val: the attribute value after the query request
3503  * completes
3504  *
3505  * Return: 0 for success, non-zero in case of failure.
3506 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3507 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3508 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3509 	u32 *attr_val)
3510 {
3511 	int ret = 0;
3512 	u32 retries;
3513 
3514 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3515 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3516 						selector, attr_val);
3517 		if (ret)
3518 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3519 				__func__, ret, retries);
3520 		else
3521 			break;
3522 	}
3523 
3524 	if (ret)
3525 		dev_err(hba->dev,
3526 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3527 			__func__, idn, ret, QUERY_REQ_RETRIES);
3528 	return ret;
3529 }
3530 
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3531 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3532 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3533 			u8 selector, u8 *desc_buf, int *buf_len)
3534 {
3535 	struct ufs_query_req *request = NULL;
3536 	struct ufs_query_res *response = NULL;
3537 	int err;
3538 
3539 	BUG_ON(!hba);
3540 
3541 	if (!desc_buf) {
3542 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3543 				__func__, opcode);
3544 		return -EINVAL;
3545 	}
3546 
3547 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3548 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3549 				__func__, *buf_len);
3550 		return -EINVAL;
3551 	}
3552 
3553 	ufshcd_dev_man_lock(hba);
3554 
3555 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3556 			selector);
3557 	hba->dev_cmd.query.descriptor = desc_buf;
3558 	request->upiu_req.length = cpu_to_be16(*buf_len);
3559 
3560 	switch (opcode) {
3561 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3562 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3563 		break;
3564 	case UPIU_QUERY_OPCODE_READ_DESC:
3565 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3566 		break;
3567 	default:
3568 		dev_err(hba->dev,
3569 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3570 				__func__, opcode);
3571 		err = -EINVAL;
3572 		goto out_unlock;
3573 	}
3574 
3575 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3576 
3577 	if (err) {
3578 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3579 				__func__, opcode, idn, index, err);
3580 		goto out_unlock;
3581 	}
3582 
3583 	*buf_len = be16_to_cpu(response->upiu_res.length);
3584 
3585 out_unlock:
3586 	hba->dev_cmd.query.descriptor = NULL;
3587 	ufshcd_dev_man_unlock(hba);
3588 	return err;
3589 }
3590 
3591 /**
3592  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3593  * @hba: per-adapter instance
3594  * @opcode: attribute opcode
3595  * @idn: attribute idn to access
3596  * @index: index field
3597  * @selector: selector field
3598  * @desc_buf: the buffer that contains the descriptor
3599  * @buf_len: length parameter passed to the device
3600  *
3601  * The buf_len parameter will contain, on return, the length parameter
3602  * received on the response.
3603  *
3604  * Return: 0 for success, non-zero in case of failure.
3605  */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3606 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3607 				  enum query_opcode opcode,
3608 				  enum desc_idn idn, u8 index,
3609 				  u8 selector,
3610 				  u8 *desc_buf, int *buf_len)
3611 {
3612 	int err;
3613 	int retries;
3614 
3615 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3616 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3617 						selector, desc_buf, buf_len);
3618 		if (!err || err == -EINVAL)
3619 			break;
3620 	}
3621 
3622 	return err;
3623 }
3624 
3625 /**
3626  * ufshcd_read_desc_param - read the specified descriptor parameter
3627  * @hba: Pointer to adapter instance
3628  * @desc_id: descriptor idn value
3629  * @desc_index: descriptor index
3630  * @param_offset: offset of the parameter to read
3631  * @param_read_buf: pointer to buffer where parameter would be read
3632  * @param_size: sizeof(param_read_buf)
3633  *
3634  * Return: 0 in case of success, non-zero otherwise.
3635  */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3636 int ufshcd_read_desc_param(struct ufs_hba *hba,
3637 			   enum desc_idn desc_id,
3638 			   int desc_index,
3639 			   u8 param_offset,
3640 			   u8 *param_read_buf,
3641 			   u8 param_size)
3642 {
3643 	int ret;
3644 	u8 *desc_buf;
3645 	int buff_len = QUERY_DESC_MAX_SIZE;
3646 	bool is_kmalloc = true;
3647 
3648 	/* Safety check */
3649 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3650 		return -EINVAL;
3651 
3652 	/* Check whether we need temp memory */
3653 	if (param_offset != 0 || param_size < buff_len) {
3654 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3655 		if (!desc_buf)
3656 			return -ENOMEM;
3657 	} else {
3658 		desc_buf = param_read_buf;
3659 		is_kmalloc = false;
3660 	}
3661 
3662 	/* Request for full descriptor */
3663 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3664 					    desc_id, desc_index, 0,
3665 					    desc_buf, &buff_len);
3666 	if (ret) {
3667 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3668 			__func__, desc_id, desc_index, param_offset, ret);
3669 		goto out;
3670 	}
3671 
3672 	/* Update descriptor length */
3673 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3674 
3675 	if (param_offset >= buff_len) {
3676 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3677 			__func__, param_offset, desc_id, buff_len);
3678 		ret = -EINVAL;
3679 		goto out;
3680 	}
3681 
3682 	/* Sanity check */
3683 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3684 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3685 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3686 		ret = -EINVAL;
3687 		goto out;
3688 	}
3689 
3690 	if (is_kmalloc) {
3691 		/* Make sure we don't copy more data than available */
3692 		if (param_offset >= buff_len)
3693 			ret = -EINVAL;
3694 		else
3695 			memcpy(param_read_buf, &desc_buf[param_offset],
3696 			       min_t(u32, param_size, buff_len - param_offset));
3697 	}
3698 out:
3699 	if (is_kmalloc)
3700 		kfree(desc_buf);
3701 	return ret;
3702 }
3703 
3704 /**
3705  * struct uc_string_id - unicode string
3706  *
3707  * @len: size of this descriptor inclusive
3708  * @type: descriptor type
3709  * @uc: unicode string character
3710  */
3711 struct uc_string_id {
3712 	u8 len;
3713 	u8 type;
3714 	wchar_t uc[];
3715 } __packed;
3716 
3717 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3718 static inline char ufshcd_remove_non_printable(u8 ch)
3719 {
3720 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3721 }
3722 
3723 /**
3724  * ufshcd_read_string_desc - read string descriptor
3725  * @hba: pointer to adapter instance
3726  * @desc_index: descriptor index
3727  * @buf: pointer to buffer where descriptor would be read,
3728  *       the caller should free the memory.
3729  * @ascii: if true convert from unicode to ascii characters
3730  *         null terminated string.
3731  *
3732  * Return:
3733  * *      string size on success.
3734  * *      -ENOMEM: on allocation failure
3735  * *      -EINVAL: on a wrong parameter
3736  */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3737 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3738 			    u8 **buf, bool ascii)
3739 {
3740 	struct uc_string_id *uc_str;
3741 	u8 *str;
3742 	int ret;
3743 
3744 	if (!buf)
3745 		return -EINVAL;
3746 
3747 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3748 	if (!uc_str)
3749 		return -ENOMEM;
3750 
3751 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3752 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3753 	if (ret < 0) {
3754 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3755 			QUERY_REQ_RETRIES, ret);
3756 		str = NULL;
3757 		goto out;
3758 	}
3759 
3760 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3761 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3762 		str = NULL;
3763 		ret = 0;
3764 		goto out;
3765 	}
3766 
3767 	if (ascii) {
3768 		ssize_t ascii_len;
3769 		int i;
3770 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3771 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3772 		str = kzalloc(ascii_len, GFP_KERNEL);
3773 		if (!str) {
3774 			ret = -ENOMEM;
3775 			goto out;
3776 		}
3777 
3778 		/*
3779 		 * the descriptor contains string in UTF16 format
3780 		 * we need to convert to utf-8 so it can be displayed
3781 		 */
3782 		ret = utf16s_to_utf8s(uc_str->uc,
3783 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3784 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3785 
3786 		/* replace non-printable or non-ASCII characters with spaces */
3787 		for (i = 0; i < ret; i++)
3788 			str[i] = ufshcd_remove_non_printable(str[i]);
3789 
3790 		str[ret++] = '\0';
3791 
3792 	} else {
3793 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3794 		if (!str) {
3795 			ret = -ENOMEM;
3796 			goto out;
3797 		}
3798 		ret = uc_str->len;
3799 	}
3800 out:
3801 	*buf = str;
3802 	kfree(uc_str);
3803 	return ret;
3804 }
3805 
3806 /**
3807  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3808  * @hba: Pointer to adapter instance
3809  * @lun: lun id
3810  * @param_offset: offset of the parameter to read
3811  * @param_read_buf: pointer to buffer where parameter would be read
3812  * @param_size: sizeof(param_read_buf)
3813  *
3814  * Return: 0 in case of success, non-zero otherwise.
3815  */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3816 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3817 					      int lun,
3818 					      enum unit_desc_param param_offset,
3819 					      u8 *param_read_buf,
3820 					      u32 param_size)
3821 {
3822 	/*
3823 	 * Unit descriptors are only available for general purpose LUs (LUN id
3824 	 * from 0 to 7) and RPMB Well known LU.
3825 	 */
3826 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3827 		return -EOPNOTSUPP;
3828 
3829 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3830 				      param_offset, param_read_buf, param_size);
3831 }
3832 
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3833 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3834 {
3835 	int err = 0;
3836 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3837 
3838 	if (hba->dev_info.wspecversion >= 0x300) {
3839 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3840 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3841 				&gating_wait);
3842 		if (err)
3843 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3844 					 err, gating_wait);
3845 
3846 		if (gating_wait == 0) {
3847 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3848 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3849 					 gating_wait);
3850 		}
3851 
3852 		hba->dev_info.clk_gating_wait_us = gating_wait;
3853 	}
3854 
3855 	return err;
3856 }
3857 
3858 /**
3859  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3860  * @hba: per adapter instance
3861  *
3862  * 1. Allocate DMA memory for Command Descriptor array
3863  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3864  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3865  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3866  *	(UTMRDL)
3867  * 4. Allocate memory for local reference block(lrb).
3868  *
3869  * Return: 0 for success, non-zero in case of failure.
3870  */
ufshcd_memory_alloc(struct ufs_hba * hba)3871 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3872 {
3873 	size_t utmrdl_size, utrdl_size, ucdl_size;
3874 
3875 	/* Allocate memory for UTP command descriptors */
3876 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3877 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3878 						  ucdl_size,
3879 						  &hba->ucdl_dma_addr,
3880 						  GFP_KERNEL);
3881 
3882 	/*
3883 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3884 	 */
3885 	if (!hba->ucdl_base_addr ||
3886 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3887 		dev_err(hba->dev,
3888 			"Command Descriptor Memory allocation failed\n");
3889 		goto out;
3890 	}
3891 
3892 	/*
3893 	 * Allocate memory for UTP Transfer descriptors
3894 	 * UFSHCI requires 1KB alignment of UTRD
3895 	 */
3896 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3897 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3898 						   utrdl_size,
3899 						   &hba->utrdl_dma_addr,
3900 						   GFP_KERNEL);
3901 	if (!hba->utrdl_base_addr ||
3902 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3903 		dev_err(hba->dev,
3904 			"Transfer Descriptor Memory allocation failed\n");
3905 		goto out;
3906 	}
3907 
3908 	/*
3909 	 * Skip utmrdl allocation; it may have been
3910 	 * allocated during first pass and not released during
3911 	 * MCQ memory allocation.
3912 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3913 	 */
3914 	if (hba->utmrdl_base_addr)
3915 		goto skip_utmrdl;
3916 	/*
3917 	 * Allocate memory for UTP Task Management descriptors
3918 	 * UFSHCI requires 1KB alignment of UTMRD
3919 	 */
3920 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3921 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3922 						    utmrdl_size,
3923 						    &hba->utmrdl_dma_addr,
3924 						    GFP_KERNEL);
3925 	if (!hba->utmrdl_base_addr ||
3926 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3927 		dev_err(hba->dev,
3928 		"Task Management Descriptor Memory allocation failed\n");
3929 		goto out;
3930 	}
3931 
3932 skip_utmrdl:
3933 	/* Allocate memory for local reference block */
3934 	hba->lrb = devm_kcalloc(hba->dev,
3935 				hba->nutrs, sizeof(struct ufshcd_lrb),
3936 				GFP_KERNEL);
3937 	if (!hba->lrb) {
3938 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3939 		goto out;
3940 	}
3941 	return 0;
3942 out:
3943 	return -ENOMEM;
3944 }
3945 
3946 /**
3947  * ufshcd_host_memory_configure - configure local reference block with
3948  *				memory offsets
3949  * @hba: per adapter instance
3950  *
3951  * Configure Host memory space
3952  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3953  * address.
3954  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3955  * and PRDT offset.
3956  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3957  * into local reference block.
3958  */
ufshcd_host_memory_configure(struct ufs_hba * hba)3959 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3960 {
3961 	struct utp_transfer_req_desc *utrdlp;
3962 	dma_addr_t cmd_desc_dma_addr;
3963 	dma_addr_t cmd_desc_element_addr;
3964 	u16 response_offset;
3965 	u16 prdt_offset;
3966 	int cmd_desc_size;
3967 	int i;
3968 
3969 	utrdlp = hba->utrdl_base_addr;
3970 
3971 	response_offset =
3972 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3973 	prdt_offset =
3974 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3975 
3976 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3977 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3978 
3979 	for (i = 0; i < hba->nutrs; i++) {
3980 		/* Configure UTRD with command descriptor base address */
3981 		cmd_desc_element_addr =
3982 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3983 		utrdlp[i].command_desc_base_addr =
3984 				cpu_to_le64(cmd_desc_element_addr);
3985 
3986 		/* Response upiu and prdt offset should be in double words */
3987 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3988 			utrdlp[i].response_upiu_offset =
3989 				cpu_to_le16(response_offset);
3990 			utrdlp[i].prd_table_offset =
3991 				cpu_to_le16(prdt_offset);
3992 			utrdlp[i].response_upiu_length =
3993 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3994 		} else {
3995 			utrdlp[i].response_upiu_offset =
3996 				cpu_to_le16(response_offset >> 2);
3997 			utrdlp[i].prd_table_offset =
3998 				cpu_to_le16(prdt_offset >> 2);
3999 			utrdlp[i].response_upiu_length =
4000 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
4001 		}
4002 
4003 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
4004 	}
4005 }
4006 
4007 /**
4008  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
4009  * @hba: per adapter instance
4010  *
4011  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
4012  * in order to initialize the Unipro link startup procedure.
4013  * Once the Unipro links are up, the device connected to the controller
4014  * is detected.
4015  *
4016  * Return: 0 on success, non-zero value on failure.
4017  */
ufshcd_dme_link_startup(struct ufs_hba * hba)4018 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
4019 {
4020 	struct uic_command uic_cmd = {
4021 		.command = UIC_CMD_DME_LINK_STARTUP,
4022 	};
4023 	int ret;
4024 
4025 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4026 	if (ret)
4027 		dev_dbg(hba->dev,
4028 			"dme-link-startup: error code %d\n", ret);
4029 	return ret;
4030 }
4031 /**
4032  * ufshcd_dme_reset - UIC command for DME_RESET
4033  * @hba: per adapter instance
4034  *
4035  * DME_RESET command is issued in order to reset UniPro stack.
4036  * This function now deals with cold reset.
4037  *
4038  * Return: 0 on success, non-zero value on failure.
4039  */
ufshcd_dme_reset(struct ufs_hba * hba)4040 int ufshcd_dme_reset(struct ufs_hba *hba)
4041 {
4042 	struct uic_command uic_cmd = {
4043 		.command = UIC_CMD_DME_RESET,
4044 	};
4045 	int ret;
4046 
4047 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4048 	if (ret)
4049 		dev_err(hba->dev,
4050 			"dme-reset: error code %d\n", ret);
4051 
4052 	return ret;
4053 }
4054 EXPORT_SYMBOL_GPL(ufshcd_dme_reset);
4055 
ufshcd_dme_configure_adapt(struct ufs_hba * hba,int agreed_gear,int adapt_val)4056 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4057 			       int agreed_gear,
4058 			       int adapt_val)
4059 {
4060 	int ret;
4061 
4062 	if (agreed_gear < UFS_HS_G4)
4063 		adapt_val = PA_NO_ADAPT;
4064 
4065 	ret = ufshcd_dme_set(hba,
4066 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4067 			     adapt_val);
4068 	return ret;
4069 }
4070 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4071 
4072 /**
4073  * ufshcd_dme_enable - UIC command for DME_ENABLE
4074  * @hba: per adapter instance
4075  *
4076  * DME_ENABLE command is issued in order to enable UniPro stack.
4077  *
4078  * Return: 0 on success, non-zero value on failure.
4079  */
ufshcd_dme_enable(struct ufs_hba * hba)4080 int ufshcd_dme_enable(struct ufs_hba *hba)
4081 {
4082 	struct uic_command uic_cmd = {
4083 		.command = UIC_CMD_DME_ENABLE,
4084 	};
4085 	int ret;
4086 
4087 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4088 	if (ret)
4089 		dev_err(hba->dev,
4090 			"dme-enable: error code %d\n", ret);
4091 
4092 	return ret;
4093 }
4094 EXPORT_SYMBOL_GPL(ufshcd_dme_enable);
4095 
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)4096 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4097 {
4098 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
4099 	unsigned long min_sleep_time_us;
4100 
4101 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4102 		return;
4103 
4104 	/*
4105 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4106 	 * this function
4107 	 */
4108 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4109 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4110 	} else {
4111 		unsigned long delta =
4112 			(unsigned long) ktime_to_us(
4113 				ktime_sub(ktime_get(),
4114 				hba->last_dme_cmd_tstamp));
4115 
4116 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4117 			min_sleep_time_us =
4118 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4119 		else
4120 			min_sleep_time_us = 0; /* no more delay required */
4121 	}
4122 
4123 	if (min_sleep_time_us > 0) {
4124 		/* allow sleep for extra 50us if needed */
4125 		usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4126 	}
4127 
4128 	/* update the last_dme_cmd_tstamp */
4129 	hba->last_dme_cmd_tstamp = ktime_get();
4130 }
4131 
4132 /**
4133  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4134  * @hba: per adapter instance
4135  * @attr_sel: uic command argument1
4136  * @attr_set: attribute set type as uic command argument2
4137  * @mib_val: setting value as uic command argument3
4138  * @peer: indicate whether peer or local
4139  *
4140  * Return: 0 on success, non-zero value on failure.
4141  */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)4142 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4143 			u8 attr_set, u32 mib_val, u8 peer)
4144 {
4145 	struct uic_command uic_cmd = {
4146 		.command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET,
4147 		.argument1 = attr_sel,
4148 		.argument2 = UIC_ARG_ATTR_TYPE(attr_set),
4149 		.argument3 = mib_val,
4150 	};
4151 	static const char *const action[] = {
4152 		"dme-set",
4153 		"dme-peer-set"
4154 	};
4155 	const char *set = action[!!peer];
4156 	int ret;
4157 	int retries = UFS_UIC_COMMAND_RETRIES;
4158 
4159 	do {
4160 		/* for peer attributes we retry upon failure */
4161 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4162 		if (ret)
4163 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4164 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4165 	} while (ret && peer && --retries);
4166 
4167 	if (ret)
4168 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4169 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4170 			UFS_UIC_COMMAND_RETRIES - retries);
4171 
4172 	return ret;
4173 }
4174 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4175 
4176 /**
4177  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4178  * @hba: per adapter instance
4179  * @attr_sel: uic command argument1
4180  * @mib_val: the value of the attribute as returned by the UIC command
4181  * @peer: indicate whether peer or local
4182  *
4183  * Return: 0 on success, non-zero value on failure.
4184  */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)4185 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4186 			u32 *mib_val, u8 peer)
4187 {
4188 	struct uic_command uic_cmd = {
4189 		.command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET,
4190 		.argument1 = attr_sel,
4191 	};
4192 	static const char *const action[] = {
4193 		"dme-get",
4194 		"dme-peer-get"
4195 	};
4196 	const char *get = action[!!peer];
4197 	int ret;
4198 	int retries = UFS_UIC_COMMAND_RETRIES;
4199 	struct ufs_pa_layer_attr orig_pwr_info;
4200 	struct ufs_pa_layer_attr temp_pwr_info;
4201 	bool pwr_mode_change = false;
4202 
4203 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4204 		orig_pwr_info = hba->pwr_info;
4205 		temp_pwr_info = orig_pwr_info;
4206 
4207 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4208 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4209 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4210 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4211 			pwr_mode_change = true;
4212 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4213 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4214 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4215 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4216 			pwr_mode_change = true;
4217 		}
4218 		if (pwr_mode_change) {
4219 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4220 			if (ret)
4221 				goto out;
4222 		}
4223 	}
4224 
4225 	do {
4226 		/* for peer attributes we retry upon failure */
4227 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4228 		if (ret)
4229 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4230 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4231 	} while (ret && peer && --retries);
4232 
4233 	if (ret)
4234 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4235 			get, UIC_GET_ATTR_ID(attr_sel),
4236 			UFS_UIC_COMMAND_RETRIES - retries);
4237 
4238 	if (mib_val && !ret)
4239 		*mib_val = uic_cmd.argument3;
4240 
4241 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4242 	    && pwr_mode_change)
4243 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4244 out:
4245 	return ret;
4246 }
4247 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4248 
4249 /**
4250  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4251  * state) and waits for it to take effect.
4252  *
4253  * @hba: per adapter instance
4254  * @cmd: UIC command to execute
4255  *
4256  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4257  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4258  * and device UniPro link and hence it's final completion would be indicated by
4259  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4260  * addition to normal UIC command completion Status (UCCS). This function only
4261  * returns after the relevant status bits indicate the completion.
4262  *
4263  * Return: 0 on success, non-zero value on failure.
4264  */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)4265 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4266 {
4267 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4268 	unsigned long flags;
4269 	u8 status;
4270 	int ret;
4271 	bool reenable_intr = false;
4272 
4273 	mutex_lock(&hba->uic_cmd_mutex);
4274 	ufshcd_add_delay_before_dme_cmd(hba);
4275 
4276 	spin_lock_irqsave(hba->host->host_lock, flags);
4277 	if (ufshcd_is_link_broken(hba)) {
4278 		ret = -ENOLINK;
4279 		goto out_unlock;
4280 	}
4281 	hba->uic_async_done = &uic_async_done;
4282 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4283 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4284 		/*
4285 		 * Make sure UIC command completion interrupt is disabled before
4286 		 * issuing UIC command.
4287 		 */
4288 		ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
4289 		reenable_intr = true;
4290 	}
4291 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4292 	ret = __ufshcd_send_uic_cmd(hba, cmd);
4293 	if (ret) {
4294 		dev_err(hba->dev,
4295 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4296 			cmd->command, cmd->argument3, ret);
4297 		goto out;
4298 	}
4299 
4300 	if (!wait_for_completion_timeout(hba->uic_async_done,
4301 					 msecs_to_jiffies(uic_cmd_timeout))) {
4302 		dev_err(hba->dev,
4303 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4304 			cmd->command, cmd->argument3);
4305 
4306 		if (!cmd->cmd_active) {
4307 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4308 				__func__);
4309 			goto check_upmcrs;
4310 		}
4311 
4312 		ret = -ETIMEDOUT;
4313 		goto out;
4314 	}
4315 
4316 check_upmcrs:
4317 	status = ufshcd_get_upmcrs(hba);
4318 	if (status != PWR_LOCAL) {
4319 		dev_err(hba->dev,
4320 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4321 			cmd->command, status);
4322 		ret = (status != PWR_OK) ? status : -1;
4323 	}
4324 out:
4325 	if (ret) {
4326 		ufshcd_print_host_state(hba);
4327 		ufshcd_print_pwr_info(hba);
4328 		ufshcd_print_evt_hist(hba);
4329 	}
4330 
4331 	spin_lock_irqsave(hba->host->host_lock, flags);
4332 	hba->active_uic_cmd = NULL;
4333 	hba->uic_async_done = NULL;
4334 	if (reenable_intr)
4335 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4336 	if (ret) {
4337 		ufshcd_set_link_broken(hba);
4338 		ufshcd_schedule_eh_work(hba);
4339 	}
4340 out_unlock:
4341 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4342 	mutex_unlock(&hba->uic_cmd_mutex);
4343 
4344 	return ret;
4345 }
4346 
4347 /**
4348  * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result
4349  * @hba: per adapter instance
4350  * @uic_cmd: UIC command
4351  *
4352  * Return: 0 only if success.
4353  */
ufshcd_send_bsg_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)4354 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
4355 {
4356 	int ret;
4357 
4358 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
4359 		return 0;
4360 
4361 	ufshcd_hold(hba);
4362 
4363 	if (uic_cmd->argument1 == UIC_ARG_MIB(PA_PWRMODE) &&
4364 	    uic_cmd->command == UIC_CMD_DME_SET) {
4365 		ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd);
4366 		goto out;
4367 	}
4368 
4369 	mutex_lock(&hba->uic_cmd_mutex);
4370 	ufshcd_add_delay_before_dme_cmd(hba);
4371 
4372 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
4373 	if (!ret)
4374 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
4375 
4376 	mutex_unlock(&hba->uic_cmd_mutex);
4377 
4378 out:
4379 	ufshcd_release(hba);
4380 	return ret;
4381 }
4382 
4383 /**
4384  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4385  *				using DME_SET primitives.
4386  * @hba: per adapter instance
4387  * @mode: powr mode value
4388  *
4389  * Return: 0 on success, non-zero value on failure.
4390  */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4391 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4392 {
4393 	struct uic_command uic_cmd = {
4394 		.command = UIC_CMD_DME_SET,
4395 		.argument1 = UIC_ARG_MIB(PA_PWRMODE),
4396 		.argument3 = mode,
4397 	};
4398 	int ret;
4399 
4400 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4401 		ret = ufshcd_dme_set(hba,
4402 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4403 		if (ret) {
4404 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4405 						__func__, ret);
4406 			goto out;
4407 		}
4408 	}
4409 
4410 	ufshcd_hold(hba);
4411 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4412 	ufshcd_release(hba);
4413 
4414 out:
4415 	return ret;
4416 }
4417 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4418 
ufshcd_link_recovery(struct ufs_hba * hba)4419 int ufshcd_link_recovery(struct ufs_hba *hba)
4420 {
4421 	int ret;
4422 	unsigned long flags;
4423 
4424 	spin_lock_irqsave(hba->host->host_lock, flags);
4425 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4426 	ufshcd_set_eh_in_progress(hba);
4427 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4428 
4429 	/* Reset the attached device */
4430 	ufshcd_device_reset(hba);
4431 
4432 	ret = ufshcd_host_reset_and_restore(hba);
4433 
4434 	spin_lock_irqsave(hba->host->host_lock, flags);
4435 	if (ret)
4436 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4437 	ufshcd_clear_eh_in_progress(hba);
4438 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4439 
4440 	if (ret)
4441 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4442 			__func__, ret);
4443 
4444 	return ret;
4445 }
4446 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4447 
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4448 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4449 {
4450 	struct uic_command uic_cmd = {
4451 		.command = UIC_CMD_DME_HIBER_ENTER,
4452 	};
4453 	ktime_t start = ktime_get();
4454 	int ret;
4455 
4456 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4457 
4458 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4459 	trace_ufshcd_profile_hibern8(hba, "enter",
4460 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4461 
4462 	if (ret)
4463 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4464 			__func__, ret);
4465 	else
4466 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4467 								POST_CHANGE);
4468 
4469 	return ret;
4470 }
4471 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4472 
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4473 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4474 {
4475 	struct uic_command uic_cmd = {
4476 		.command = UIC_CMD_DME_HIBER_EXIT,
4477 	};
4478 	int ret;
4479 	ktime_t start = ktime_get();
4480 
4481 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4482 
4483 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4484 	trace_ufshcd_profile_hibern8(hba, "exit",
4485 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4486 
4487 	if (ret) {
4488 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4489 			__func__, ret);
4490 	} else {
4491 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4492 								POST_CHANGE);
4493 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4494 		hba->ufs_stats.hibern8_exit_cnt++;
4495 	}
4496 
4497 	return ret;
4498 }
4499 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4500 
ufshcd_configure_auto_hibern8(struct ufs_hba * hba)4501 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4502 {
4503 	if (!ufshcd_is_auto_hibern8_supported(hba))
4504 		return;
4505 
4506 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4507 }
4508 
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4509 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4510 {
4511 	const u32 cur_ahit = READ_ONCE(hba->ahit);
4512 
4513 	if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4514 		return;
4515 
4516 	WRITE_ONCE(hba->ahit, ahit);
4517 	if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4518 		ufshcd_rpm_get_sync(hba);
4519 		ufshcd_hold(hba);
4520 		ufshcd_configure_auto_hibern8(hba);
4521 		ufshcd_release(hba);
4522 		ufshcd_rpm_put_sync(hba);
4523 	}
4524 }
4525 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4526 
4527  /**
4528  * ufshcd_init_pwr_info - setting the POR (power on reset)
4529  * values in hba power info
4530  * @hba: per-adapter instance
4531  */
ufshcd_init_pwr_info(struct ufs_hba * hba)4532 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4533 {
4534 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4535 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4536 	hba->pwr_info.lane_rx = UFS_LANE_1;
4537 	hba->pwr_info.lane_tx = UFS_LANE_1;
4538 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4539 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4540 	hba->pwr_info.hs_rate = 0;
4541 }
4542 
4543 /**
4544  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4545  * @hba: per-adapter instance
4546  *
4547  * Return: 0 upon success; < 0 upon failure.
4548  */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4549 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4550 {
4551 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4552 
4553 	if (hba->max_pwr_info.is_valid)
4554 		return 0;
4555 
4556 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4557 		pwr_info->pwr_tx = FASTAUTO_MODE;
4558 		pwr_info->pwr_rx = FASTAUTO_MODE;
4559 	} else {
4560 		pwr_info->pwr_tx = FAST_MODE;
4561 		pwr_info->pwr_rx = FAST_MODE;
4562 	}
4563 	pwr_info->hs_rate = PA_HS_MODE_B;
4564 
4565 	/* Get the connected lane count */
4566 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4567 			&pwr_info->lane_rx);
4568 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4569 			&pwr_info->lane_tx);
4570 
4571 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4572 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4573 				__func__,
4574 				pwr_info->lane_rx,
4575 				pwr_info->lane_tx);
4576 		return -EINVAL;
4577 	}
4578 
4579 	if (pwr_info->lane_rx != pwr_info->lane_tx) {
4580 		dev_err(hba->dev, "%s: asymmetric connected lanes. rx=%d, tx=%d\n",
4581 			__func__,
4582 				pwr_info->lane_rx,
4583 				pwr_info->lane_tx);
4584 		return -EINVAL;
4585 	}
4586 
4587 	/*
4588 	 * First, get the maximum gears of HS speed.
4589 	 * If a zero value, it means there is no HSGEAR capability.
4590 	 * Then, get the maximum gears of PWM speed.
4591 	 */
4592 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4593 	if (!pwr_info->gear_rx) {
4594 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4595 				&pwr_info->gear_rx);
4596 		if (!pwr_info->gear_rx) {
4597 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4598 				__func__, pwr_info->gear_rx);
4599 			return -EINVAL;
4600 		}
4601 		pwr_info->pwr_rx = SLOW_MODE;
4602 	}
4603 
4604 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4605 			&pwr_info->gear_tx);
4606 	if (!pwr_info->gear_tx) {
4607 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4608 				&pwr_info->gear_tx);
4609 		if (!pwr_info->gear_tx) {
4610 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4611 				__func__, pwr_info->gear_tx);
4612 			return -EINVAL;
4613 		}
4614 		pwr_info->pwr_tx = SLOW_MODE;
4615 	}
4616 
4617 	hba->max_pwr_info.is_valid = true;
4618 	return 0;
4619 }
4620 
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4621 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4622 			     struct ufs_pa_layer_attr *pwr_mode)
4623 {
4624 	int ret;
4625 
4626 	/* if already configured to the requested pwr_mode */
4627 	if (!hba->force_pmc &&
4628 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4629 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4630 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4631 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4632 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4633 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4634 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4635 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4636 		return 0;
4637 	}
4638 
4639 	/*
4640 	 * Configure attributes for power mode change with below.
4641 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4642 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4643 	 * - PA_HSSERIES
4644 	 */
4645 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4646 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4647 			pwr_mode->lane_rx);
4648 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4649 			pwr_mode->pwr_rx == FAST_MODE)
4650 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4651 	else
4652 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4653 
4654 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4655 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4656 			pwr_mode->lane_tx);
4657 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4658 			pwr_mode->pwr_tx == FAST_MODE)
4659 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4660 	else
4661 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4662 
4663 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4664 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4665 	    pwr_mode->pwr_rx == FAST_MODE ||
4666 	    pwr_mode->pwr_tx == FAST_MODE)
4667 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4668 						pwr_mode->hs_rate);
4669 
4670 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4671 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4672 				DL_FC0ProtectionTimeOutVal_Default);
4673 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4674 				DL_TC0ReplayTimeOutVal_Default);
4675 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4676 				DL_AFC0ReqTimeOutVal_Default);
4677 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4678 				DL_FC1ProtectionTimeOutVal_Default);
4679 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4680 				DL_TC1ReplayTimeOutVal_Default);
4681 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4682 				DL_AFC1ReqTimeOutVal_Default);
4683 
4684 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4685 				DL_FC0ProtectionTimeOutVal_Default);
4686 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4687 				DL_TC0ReplayTimeOutVal_Default);
4688 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4689 				DL_AFC0ReqTimeOutVal_Default);
4690 	}
4691 
4692 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4693 			| pwr_mode->pwr_tx);
4694 
4695 	if (ret) {
4696 		dev_err(hba->dev,
4697 			"%s: power mode change failed %d\n", __func__, ret);
4698 	} else {
4699 		memcpy(&hba->pwr_info, pwr_mode,
4700 			sizeof(struct ufs_pa_layer_attr));
4701 	}
4702 
4703 	return ret;
4704 }
4705 
4706 /**
4707  * ufshcd_config_pwr_mode - configure a new power mode
4708  * @hba: per-adapter instance
4709  * @desired_pwr_mode: desired power configuration
4710  *
4711  * Return: 0 upon success; < 0 upon failure.
4712  */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4713 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4714 		struct ufs_pa_layer_attr *desired_pwr_mode)
4715 {
4716 	struct ufs_pa_layer_attr final_params = { 0 };
4717 	int ret;
4718 
4719 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4720 					desired_pwr_mode, &final_params);
4721 
4722 	if (ret)
4723 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4724 
4725 	ret = ufshcd_change_power_mode(hba, &final_params);
4726 
4727 	if (!ret)
4728 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4729 					&final_params);
4730 
4731 	return ret;
4732 }
4733 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4734 
4735 /**
4736  * ufshcd_complete_dev_init() - checks device readiness
4737  * @hba: per-adapter instance
4738  *
4739  * Set fDeviceInit flag and poll until device toggles it.
4740  *
4741  * Return: 0 upon success; < 0 upon failure.
4742  */
ufshcd_complete_dev_init(struct ufs_hba * hba)4743 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4744 {
4745 	int err;
4746 	bool flag_res = true;
4747 	ktime_t timeout;
4748 
4749 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4750 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4751 	if (err) {
4752 		dev_err(hba->dev,
4753 			"%s: setting fDeviceInit flag failed with error %d\n",
4754 			__func__, err);
4755 		goto out;
4756 	}
4757 
4758 	/* Poll fDeviceInit flag to be cleared */
4759 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4760 	do {
4761 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4762 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4763 		if (!flag_res)
4764 			break;
4765 		usleep_range(500, 1000);
4766 	} while (ktime_before(ktime_get(), timeout));
4767 
4768 	if (err) {
4769 		dev_err(hba->dev,
4770 				"%s: reading fDeviceInit flag failed with error %d\n",
4771 				__func__, err);
4772 	} else if (flag_res) {
4773 		dev_err(hba->dev,
4774 				"%s: fDeviceInit was not cleared by the device\n",
4775 				__func__);
4776 		err = -EBUSY;
4777 	}
4778 out:
4779 	return err;
4780 }
4781 
4782 /**
4783  * ufshcd_make_hba_operational - Make UFS controller operational
4784  * @hba: per adapter instance
4785  *
4786  * To bring UFS host controller to operational state,
4787  * 1. Enable required interrupts
4788  * 2. Configure interrupt aggregation
4789  * 3. Program UTRL and UTMRL base address
4790  * 4. Configure run-stop-registers
4791  *
4792  * Return: 0 on success, non-zero value on failure.
4793  */
ufshcd_make_hba_operational(struct ufs_hba * hba)4794 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4795 {
4796 	int err = 0;
4797 	u32 reg;
4798 
4799 	/* Enable required interrupts */
4800 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4801 
4802 	/* Configure interrupt aggregation */
4803 	if (ufshcd_is_intr_aggr_allowed(hba))
4804 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4805 	else
4806 		ufshcd_disable_intr_aggr(hba);
4807 
4808 	/* Configure UTRL and UTMRL base address registers */
4809 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4810 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4811 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4812 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4813 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4814 			REG_UTP_TASK_REQ_LIST_BASE_L);
4815 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4816 			REG_UTP_TASK_REQ_LIST_BASE_H);
4817 
4818 	/*
4819 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4820 	 */
4821 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4822 	if (!(ufshcd_get_lists_status(reg))) {
4823 		ufshcd_enable_run_stop_reg(hba);
4824 	} else {
4825 		dev_err(hba->dev,
4826 			"Host controller not ready to process requests");
4827 		err = -EIO;
4828 	}
4829 
4830 	return err;
4831 }
4832 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4833 
4834 /**
4835  * ufshcd_hba_stop - Send controller to reset state
4836  * @hba: per adapter instance
4837  */
ufshcd_hba_stop(struct ufs_hba * hba)4838 void ufshcd_hba_stop(struct ufs_hba *hba)
4839 {
4840 	int err;
4841 
4842 	ufshcd_disable_irq(hba);
4843 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4844 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4845 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4846 					10, 1);
4847 	ufshcd_enable_irq(hba);
4848 	if (err)
4849 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4850 }
4851 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4852 
4853 /**
4854  * ufshcd_hba_execute_hce - initialize the controller
4855  * @hba: per adapter instance
4856  *
4857  * The controller resets itself and controller firmware initialization
4858  * sequence kicks off. When controller is ready it will set
4859  * the Host Controller Enable bit to 1.
4860  *
4861  * Return: 0 on success, non-zero value on failure.
4862  */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4863 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4864 {
4865 	int retry;
4866 
4867 	for (retry = 3; retry > 0; retry--) {
4868 		if (ufshcd_is_hba_active(hba))
4869 			/* change controller state to "reset state" */
4870 			ufshcd_hba_stop(hba);
4871 
4872 		/* UniPro link is disabled at this point */
4873 		ufshcd_set_link_off(hba);
4874 
4875 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4876 
4877 		/* start controller initialization sequence */
4878 		ufshcd_hba_start(hba);
4879 
4880 		/*
4881 		 * To initialize a UFS host controller HCE bit must be set to 1.
4882 		 * During initialization the HCE bit value changes from 1->0->1.
4883 		 * When the host controller completes initialization sequence
4884 		 * it sets the value of HCE bit to 1. The same HCE bit is read back
4885 		 * to check if the controller has completed initialization sequence.
4886 		 * So without this delay the value HCE = 1, set in the previous
4887 		 * instruction might be read back.
4888 		 * This delay can be changed based on the controller.
4889 		 */
4890 		ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4891 
4892 		/* wait for the host controller to complete initialization */
4893 		if (!ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE,
4894 					      CONTROLLER_ENABLE, 1000, 50))
4895 			break;
4896 
4897 		dev_err(hba->dev, "Enabling the controller failed\n");
4898 	}
4899 
4900 	if (!retry)
4901 		return -EIO;
4902 
4903 	/* enable UIC related interrupts */
4904 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4905 
4906 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4907 
4908 	return 0;
4909 }
4910 
ufshcd_hba_enable(struct ufs_hba * hba)4911 int ufshcd_hba_enable(struct ufs_hba *hba)
4912 {
4913 	int ret;
4914 
4915 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4916 		ufshcd_set_link_off(hba);
4917 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4918 
4919 		/* enable UIC related interrupts */
4920 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4921 		ret = ufshcd_dme_reset(hba);
4922 		if (ret) {
4923 			dev_err(hba->dev, "DME_RESET failed\n");
4924 			return ret;
4925 		}
4926 
4927 		ret = ufshcd_dme_enable(hba);
4928 		if (ret) {
4929 			dev_err(hba->dev, "Enabling DME failed\n");
4930 			return ret;
4931 		}
4932 
4933 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4934 	} else {
4935 		ret = ufshcd_hba_execute_hce(hba);
4936 	}
4937 
4938 	return ret;
4939 }
4940 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4941 
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4942 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4943 {
4944 	int tx_lanes = 0, i, err = 0;
4945 
4946 	if (!peer)
4947 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4948 			       &tx_lanes);
4949 	else
4950 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4951 				    &tx_lanes);
4952 	for (i = 0; i < tx_lanes; i++) {
4953 		if (!peer)
4954 			err = ufshcd_dme_set(hba,
4955 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4956 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4957 					0);
4958 		else
4959 			err = ufshcd_dme_peer_set(hba,
4960 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4961 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4962 					0);
4963 		if (err) {
4964 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4965 				__func__, peer, i, err);
4966 			break;
4967 		}
4968 	}
4969 
4970 	return err;
4971 }
4972 
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4973 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4974 {
4975 	return ufshcd_disable_tx_lcc(hba, true);
4976 }
4977 
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)4978 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4979 {
4980 	struct ufs_event_hist *e;
4981 
4982 	if (id >= UFS_EVT_CNT)
4983 		return;
4984 
4985 	e = &hba->ufs_stats.event[id];
4986 	e->val[e->pos] = val;
4987 	e->tstamp[e->pos] = local_clock();
4988 	e->cnt += 1;
4989 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4990 
4991 	ufshcd_vops_event_notify(hba, id, &val);
4992 }
4993 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4994 
4995 /**
4996  * ufshcd_link_startup - Initialize unipro link startup
4997  * @hba: per adapter instance
4998  *
4999  * Return: 0 for success, non-zero in case of failure.
5000  */
ufshcd_link_startup(struct ufs_hba * hba)5001 static int ufshcd_link_startup(struct ufs_hba *hba)
5002 {
5003 	int ret;
5004 	int retries = DME_LINKSTARTUP_RETRIES;
5005 	bool link_startup_again = false;
5006 
5007 	/*
5008 	 * If UFS device isn't active then we will have to issue link startup
5009 	 * 2 times to make sure the device state move to active.
5010 	 */
5011 	if (!ufshcd_is_ufs_dev_active(hba))
5012 		link_startup_again = true;
5013 
5014 link_startup:
5015 	do {
5016 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
5017 
5018 		ret = ufshcd_dme_link_startup(hba);
5019 
5020 		/* check if device is detected by inter-connect layer */
5021 		if (!ret && !ufshcd_is_device_present(hba)) {
5022 			ufshcd_update_evt_hist(hba,
5023 					       UFS_EVT_LINK_STARTUP_FAIL,
5024 					       0);
5025 			dev_err(hba->dev, "%s: Device not present\n", __func__);
5026 			ret = -ENXIO;
5027 			goto out;
5028 		}
5029 
5030 		/*
5031 		 * DME link lost indication is only received when link is up,
5032 		 * but we can't be sure if the link is up until link startup
5033 		 * succeeds. So reset the local Uni-Pro and try again.
5034 		 */
5035 		if (ret && retries && ufshcd_hba_enable(hba)) {
5036 			ufshcd_update_evt_hist(hba,
5037 					       UFS_EVT_LINK_STARTUP_FAIL,
5038 					       (u32)ret);
5039 			goto out;
5040 		}
5041 	} while (ret && retries--);
5042 
5043 	if (ret) {
5044 		/* failed to get the link up... retire */
5045 		ufshcd_update_evt_hist(hba,
5046 				       UFS_EVT_LINK_STARTUP_FAIL,
5047 				       (u32)ret);
5048 		goto out;
5049 	}
5050 
5051 	if (link_startup_again) {
5052 		link_startup_again = false;
5053 		retries = DME_LINKSTARTUP_RETRIES;
5054 		goto link_startup;
5055 	}
5056 
5057 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5058 	ufshcd_init_pwr_info(hba);
5059 	ufshcd_print_pwr_info(hba);
5060 
5061 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5062 		ret = ufshcd_disable_device_tx_lcc(hba);
5063 		if (ret)
5064 			goto out;
5065 	}
5066 
5067 	/* Include any host controller configuration via UIC commands */
5068 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5069 	if (ret)
5070 		goto out;
5071 
5072 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5073 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5074 	ret = ufshcd_make_hba_operational(hba);
5075 out:
5076 	if (ret) {
5077 		dev_err(hba->dev, "link startup failed %d\n", ret);
5078 		ufshcd_print_host_state(hba);
5079 		ufshcd_print_pwr_info(hba);
5080 		ufshcd_print_evt_hist(hba);
5081 	}
5082 	return ret;
5083 }
5084 
5085 /**
5086  * ufshcd_verify_dev_init() - Verify device initialization
5087  * @hba: per-adapter instance
5088  *
5089  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5090  * device Transport Protocol (UTP) layer is ready after a reset.
5091  * If the UTP layer at the device side is not initialized, it may
5092  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5093  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5094  *
5095  * Return: 0 upon success; < 0 upon failure.
5096  */
ufshcd_verify_dev_init(struct ufs_hba * hba)5097 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5098 {
5099 	int err = 0;
5100 	int retries;
5101 
5102 	ufshcd_dev_man_lock(hba);
5103 
5104 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5105 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5106 					  hba->nop_out_timeout);
5107 
5108 		if (!err || err == -ETIMEDOUT)
5109 			break;
5110 
5111 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5112 	}
5113 
5114 	ufshcd_dev_man_unlock(hba);
5115 
5116 	if (err)
5117 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5118 	return err;
5119 }
5120 
5121 /**
5122  * ufshcd_setup_links - associate link b/w device wlun and other luns
5123  * @sdev: pointer to SCSI device
5124  * @hba: pointer to ufs hba
5125  */
ufshcd_setup_links(struct ufs_hba * hba,struct scsi_device * sdev)5126 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5127 {
5128 	struct device_link *link;
5129 
5130 	/*
5131 	 * Device wlun is the supplier & rest of the luns are consumers.
5132 	 * This ensures that device wlun suspends after all other luns.
5133 	 */
5134 	if (hba->ufs_device_wlun) {
5135 		link = device_link_add(&sdev->sdev_gendev,
5136 				       &hba->ufs_device_wlun->sdev_gendev,
5137 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5138 		if (!link) {
5139 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5140 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5141 			return;
5142 		}
5143 		hba->luns_avail--;
5144 		/* Ignore REPORT_LUN wlun probing */
5145 		if (hba->luns_avail == 1) {
5146 			ufshcd_rpm_put(hba);
5147 			return;
5148 		}
5149 	} else {
5150 		/*
5151 		 * Device wlun is probed. The assumption is that WLUNs are
5152 		 * scanned before other LUNs.
5153 		 */
5154 		hba->luns_avail--;
5155 	}
5156 }
5157 
5158 /**
5159  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5160  * @hba: per-adapter instance
5161  * @sdev: pointer to SCSI device
5162  */
ufshcd_lu_init(struct ufs_hba * hba,struct scsi_device * sdev)5163 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5164 {
5165 	int len = QUERY_DESC_MAX_SIZE;
5166 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5167 	u8 lun_qdepth = hba->nutrs;
5168 	u8 *desc_buf;
5169 	int ret;
5170 
5171 	desc_buf = kzalloc(len, GFP_KERNEL);
5172 	if (!desc_buf)
5173 		goto set_qdepth;
5174 
5175 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5176 	if (ret < 0) {
5177 		if (ret == -EOPNOTSUPP)
5178 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5179 			lun_qdepth = 1;
5180 		kfree(desc_buf);
5181 		goto set_qdepth;
5182 	}
5183 
5184 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5185 		/*
5186 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5187 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5188 		 */
5189 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5190 	}
5191 	/*
5192 	 * According to UFS device specification, the write protection mode is only supported by
5193 	 * normal LU, not supported by WLUN.
5194 	 */
5195 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5196 	    !hba->dev_info.is_lu_power_on_wp &&
5197 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5198 		hba->dev_info.is_lu_power_on_wp = true;
5199 
5200 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5201 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5202 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5203 		hba->dev_info.b_advanced_rpmb_en = true;
5204 
5205 
5206 	kfree(desc_buf);
5207 set_qdepth:
5208 	/*
5209 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5210 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5211 	 */
5212 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5213 	scsi_change_queue_depth(sdev, lun_qdepth);
5214 }
5215 
5216 /**
5217  * ufshcd_sdev_init - handle initial SCSI device configurations
5218  * @sdev: pointer to SCSI device
5219  *
5220  * Return: success.
5221  */
ufshcd_sdev_init(struct scsi_device * sdev)5222 static int ufshcd_sdev_init(struct scsi_device *sdev)
5223 {
5224 	struct ufs_hba *hba;
5225 
5226 	hba = shost_priv(sdev->host);
5227 
5228 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5229 	sdev->use_10_for_ms = 1;
5230 
5231 	/* DBD field should be set to 1 in mode sense(10) */
5232 	sdev->set_dbd_for_ms = 1;
5233 
5234 	/* allow SCSI layer to restart the device in case of errors */
5235 	sdev->allow_restart = 1;
5236 
5237 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5238 	sdev->no_report_opcodes = 1;
5239 
5240 	/* WRITE_SAME command is not supported */
5241 	sdev->no_write_same = 1;
5242 
5243 	ufshcd_lu_init(hba, sdev);
5244 
5245 	ufshcd_setup_links(hba, sdev);
5246 
5247 	return 0;
5248 }
5249 
5250 /**
5251  * ufshcd_change_queue_depth - change queue depth
5252  * @sdev: pointer to SCSI device
5253  * @depth: required depth to set
5254  *
5255  * Change queue depth and make sure the max. limits are not crossed.
5256  *
5257  * Return: new queue depth.
5258  */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)5259 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5260 {
5261 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5262 }
5263 
5264 /**
5265  * ufshcd_sdev_configure - adjust SCSI device configurations
5266  * @sdev: pointer to SCSI device
5267  * @lim: queue limits
5268  *
5269  * Return: 0 (success).
5270  */
ufshcd_sdev_configure(struct scsi_device * sdev,struct queue_limits * lim)5271 static int ufshcd_sdev_configure(struct scsi_device *sdev,
5272 				 struct queue_limits *lim)
5273 {
5274 	struct ufs_hba *hba = shost_priv(sdev->host);
5275 	struct request_queue *q = sdev->request_queue;
5276 
5277 	lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1;
5278 
5279 	/*
5280 	 * Block runtime-pm until all consumers are added.
5281 	 * Refer ufshcd_setup_links().
5282 	 */
5283 	if (is_device_wlun(sdev))
5284 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5285 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5286 		sdev->rpm_autosuspend = 1;
5287 	/*
5288 	 * Do not print messages during runtime PM to avoid never-ending cycles
5289 	 * of messages written back to storage by user space causing runtime
5290 	 * resume, causing more messages and so on.
5291 	 */
5292 	sdev->silence_suspend = 1;
5293 
5294 	if (hba->vops && hba->vops->config_scsi_dev)
5295 		hba->vops->config_scsi_dev(sdev);
5296 
5297 	ufshcd_crypto_register(hba, q);
5298 
5299 	return 0;
5300 }
5301 
5302 /**
5303  * ufshcd_sdev_destroy - remove SCSI device configurations
5304  * @sdev: pointer to SCSI device
5305  */
ufshcd_sdev_destroy(struct scsi_device * sdev)5306 static void ufshcd_sdev_destroy(struct scsi_device *sdev)
5307 {
5308 	struct ufs_hba *hba;
5309 	unsigned long flags;
5310 
5311 	hba = shost_priv(sdev->host);
5312 
5313 	/* Drop the reference as it won't be needed anymore */
5314 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5315 		spin_lock_irqsave(hba->host->host_lock, flags);
5316 		hba->ufs_device_wlun = NULL;
5317 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5318 	} else if (hba->ufs_device_wlun) {
5319 		struct device *supplier = NULL;
5320 
5321 		/* Ensure UFS Device WLUN exists and does not disappear */
5322 		spin_lock_irqsave(hba->host->host_lock, flags);
5323 		if (hba->ufs_device_wlun) {
5324 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5325 			get_device(supplier);
5326 		}
5327 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5328 
5329 		if (supplier) {
5330 			/*
5331 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5332 			 * device will not have been registered but can still
5333 			 * have a device link holding a reference to the device.
5334 			 */
5335 			device_link_remove(&sdev->sdev_gendev, supplier);
5336 			put_device(supplier);
5337 		}
5338 	}
5339 }
5340 
5341 /**
5342  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5343  * @lrbp: pointer to local reference block of completed command
5344  * @scsi_status: SCSI command status
5345  *
5346  * Return: value base on SCSI command status.
5347  */
5348 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)5349 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5350 {
5351 	int result = 0;
5352 
5353 	switch (scsi_status) {
5354 	case SAM_STAT_CHECK_CONDITION:
5355 		ufshcd_copy_sense_data(lrbp);
5356 		fallthrough;
5357 	case SAM_STAT_GOOD:
5358 		result |= DID_OK << 16 | scsi_status;
5359 		break;
5360 	case SAM_STAT_TASK_SET_FULL:
5361 	case SAM_STAT_BUSY:
5362 	case SAM_STAT_TASK_ABORTED:
5363 		ufshcd_copy_sense_data(lrbp);
5364 		result |= scsi_status;
5365 		break;
5366 	default:
5367 		result |= DID_ERROR << 16;
5368 		break;
5369 	} /* end of switch */
5370 
5371 	return result;
5372 }
5373 
5374 /**
5375  * ufshcd_transfer_rsp_status - Get overall status of the response
5376  * @hba: per adapter instance
5377  * @lrbp: pointer to local reference block of completed command
5378  * @cqe: pointer to the completion queue entry
5379  *
5380  * Return: result of the command to notify SCSI midlayer.
5381  */
5382 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct cq_entry * cqe)5383 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5384 			   struct cq_entry *cqe)
5385 {
5386 	int result = 0;
5387 	int scsi_status;
5388 	enum utp_ocs ocs;
5389 	u8 upiu_flags;
5390 	u32 resid;
5391 
5392 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5393 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5394 	/*
5395 	 * Test !overflow instead of underflow to support UFS devices that do
5396 	 * not set either flag.
5397 	 */
5398 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5399 		scsi_set_resid(lrbp->cmd, resid);
5400 
5401 	/* overall command status of utrd */
5402 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5403 
5404 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5405 		if (lrbp->ucd_rsp_ptr->header.response ||
5406 		    lrbp->ucd_rsp_ptr->header.status)
5407 			ocs = OCS_SUCCESS;
5408 	}
5409 
5410 	switch (ocs) {
5411 	case OCS_SUCCESS:
5412 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5413 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5414 		case UPIU_TRANSACTION_RESPONSE:
5415 			/*
5416 			 * get the result based on SCSI status response
5417 			 * to notify the SCSI midlayer of the command status
5418 			 */
5419 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5420 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5421 
5422 			/*
5423 			 * Currently we are only supporting BKOPs exception
5424 			 * events hence we can ignore BKOPs exception event
5425 			 * during power management callbacks. BKOPs exception
5426 			 * event is not expected to be raised in runtime suspend
5427 			 * callback as it allows the urgent bkops.
5428 			 * During system suspend, we are anyway forcefully
5429 			 * disabling the bkops and if urgent bkops is needed
5430 			 * it will be enabled on system resume. Long term
5431 			 * solution could be to abort the system suspend if
5432 			 * UFS device needs urgent BKOPs.
5433 			 */
5434 			if (!hba->pm_op_in_progress &&
5435 			    !ufshcd_eh_in_progress(hba) &&
5436 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5437 				/* Flushed in suspend */
5438 				schedule_work(&hba->eeh_work);
5439 			break;
5440 		case UPIU_TRANSACTION_REJECT_UPIU:
5441 			/* TODO: handle Reject UPIU Response */
5442 			result = DID_ERROR << 16;
5443 			dev_err(hba->dev,
5444 				"Reject UPIU not fully implemented\n");
5445 			break;
5446 		default:
5447 			dev_err(hba->dev,
5448 				"Unexpected request response code = %x\n",
5449 				result);
5450 			result = DID_ERROR << 16;
5451 			break;
5452 		}
5453 		break;
5454 	case OCS_ABORTED:
5455 	case OCS_INVALID_COMMAND_STATUS:
5456 		result |= DID_REQUEUE << 16;
5457 		dev_warn(hba->dev,
5458 				"OCS %s from controller for tag %d\n",
5459 				(ocs == OCS_ABORTED ? "aborted" : "invalid"),
5460 				lrbp->task_tag);
5461 		break;
5462 	case OCS_INVALID_CMD_TABLE_ATTR:
5463 	case OCS_INVALID_PRDT_ATTR:
5464 	case OCS_MISMATCH_DATA_BUF_SIZE:
5465 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5466 	case OCS_PEER_COMM_FAILURE:
5467 	case OCS_FATAL_ERROR:
5468 	case OCS_DEVICE_FATAL_ERROR:
5469 	case OCS_INVALID_CRYPTO_CONFIG:
5470 	case OCS_GENERAL_CRYPTO_ERROR:
5471 	default:
5472 		result |= DID_ERROR << 16;
5473 		dev_err(hba->dev,
5474 				"OCS error from controller = %x for tag %d\n",
5475 				ocs, lrbp->task_tag);
5476 		ufshcd_print_evt_hist(hba);
5477 		ufshcd_print_host_state(hba);
5478 		break;
5479 	} /* end of switch */
5480 
5481 	if ((host_byte(result) != DID_OK) &&
5482 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5483 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5484 	return result;
5485 }
5486 
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5487 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5488 					 u32 intr_mask)
5489 {
5490 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5491 	    !ufshcd_is_auto_hibern8_enabled(hba))
5492 		return false;
5493 
5494 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5495 		return false;
5496 
5497 	if (hba->active_uic_cmd &&
5498 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5499 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5500 		return false;
5501 
5502 	return true;
5503 }
5504 
5505 /**
5506  * ufshcd_uic_cmd_compl - handle completion of uic command
5507  * @hba: per adapter instance
5508  * @intr_status: interrupt status generated by the controller
5509  *
5510  * Return:
5511  *  IRQ_HANDLED - If interrupt is valid
5512  *  IRQ_NONE    - If invalid interrupt
5513  */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5514 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5515 {
5516 	irqreturn_t retval = IRQ_NONE;
5517 	struct uic_command *cmd;
5518 
5519 	spin_lock(hba->host->host_lock);
5520 	cmd = hba->active_uic_cmd;
5521 	if (WARN_ON_ONCE(!cmd))
5522 		goto unlock;
5523 
5524 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5525 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5526 
5527 	if (intr_status & UIC_COMMAND_COMPL) {
5528 		cmd->argument2 |= ufshcd_get_uic_cmd_result(hba);
5529 		cmd->argument3 = ufshcd_get_dme_attr_val(hba);
5530 		if (!hba->uic_async_done)
5531 			cmd->cmd_active = 0;
5532 		complete(&cmd->done);
5533 		retval = IRQ_HANDLED;
5534 	}
5535 
5536 	if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) {
5537 		cmd->cmd_active = 0;
5538 		complete(hba->uic_async_done);
5539 		retval = IRQ_HANDLED;
5540 	}
5541 
5542 	if (retval == IRQ_HANDLED)
5543 		ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP);
5544 
5545 unlock:
5546 	spin_unlock(hba->host->host_lock);
5547 
5548 	return retval;
5549 }
5550 
5551 /* Release the resources allocated for processing a SCSI command. */
ufshcd_release_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5552 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5553 			     struct ufshcd_lrb *lrbp)
5554 {
5555 	struct scsi_cmnd *cmd = lrbp->cmd;
5556 
5557 	scsi_dma_unmap(cmd);
5558 	ufshcd_crypto_clear_prdt(hba, lrbp);
5559 	ufshcd_release(hba);
5560 	ufshcd_clk_scaling_update_busy(hba);
5561 }
5562 
5563 /**
5564  * ufshcd_compl_one_cqe - handle a completion queue entry
5565  * @hba: per adapter instance
5566  * @task_tag: the task tag of the request to be completed
5567  * @cqe: pointer to the completion queue entry
5568  */
ufshcd_compl_one_cqe(struct ufs_hba * hba,int task_tag,struct cq_entry * cqe)5569 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5570 			  struct cq_entry *cqe)
5571 {
5572 	struct ufshcd_lrb *lrbp;
5573 	struct scsi_cmnd *cmd;
5574 	enum utp_ocs ocs;
5575 
5576 	lrbp = &hba->lrb[task_tag];
5577 	lrbp->compl_time_stamp = ktime_get();
5578 	lrbp->compl_time_stamp_local_clock = local_clock();
5579 	cmd = lrbp->cmd;
5580 	if (cmd) {
5581 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5582 			ufshcd_update_monitor(hba, lrbp);
5583 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5584 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5585 		ufshcd_release_scsi_cmd(hba, lrbp);
5586 		/* Do not touch lrbp after scsi done */
5587 		scsi_done(cmd);
5588 	} else if (hba->dev_cmd.complete) {
5589 		if (cqe) {
5590 			ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5591 			lrbp->utr_descriptor_ptr->header.ocs = ocs;
5592 		}
5593 		complete(hba->dev_cmd.complete);
5594 	}
5595 }
5596 
5597 /**
5598  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5599  * @hba: per adapter instance
5600  * @completed_reqs: bitmask that indicates which requests to complete
5601  */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)5602 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5603 					unsigned long completed_reqs)
5604 {
5605 	int tag;
5606 
5607 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5608 		ufshcd_compl_one_cqe(hba, tag, NULL);
5609 }
5610 
5611 /* Any value that is not an existing queue number is fine for this constant. */
5612 enum {
5613 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5614 };
5615 
ufshcd_clear_polled(struct ufs_hba * hba,unsigned long * completed_reqs)5616 static void ufshcd_clear_polled(struct ufs_hba *hba,
5617 				unsigned long *completed_reqs)
5618 {
5619 	int tag;
5620 
5621 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5622 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5623 
5624 		if (!cmd)
5625 			continue;
5626 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5627 			__clear_bit(tag, completed_reqs);
5628 	}
5629 }
5630 
5631 /*
5632  * Return: > 0 if one or more commands have been completed or 0 if no
5633  * requests have been completed.
5634  */
ufshcd_poll(struct Scsi_Host * shost,unsigned int queue_num)5635 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5636 {
5637 	struct ufs_hba *hba = shost_priv(shost);
5638 	unsigned long completed_reqs, flags;
5639 	u32 tr_doorbell;
5640 	struct ufs_hw_queue *hwq;
5641 
5642 	if (hba->mcq_enabled) {
5643 		hwq = &hba->uhq[queue_num];
5644 
5645 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5646 	}
5647 
5648 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5649 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5650 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5651 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5652 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5653 		  hba->outstanding_reqs);
5654 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5655 		/* Do not complete polled requests from interrupt context. */
5656 		ufshcd_clear_polled(hba, &completed_reqs);
5657 	}
5658 	hba->outstanding_reqs &= ~completed_reqs;
5659 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5660 
5661 	if (completed_reqs)
5662 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5663 
5664 	return completed_reqs != 0;
5665 }
5666 
5667 /**
5668  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5669  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5670  * to complete the pending transfers and free the resources associated with
5671  * the scsi command.
5672  *
5673  * @hba: per adapter instance
5674  * @force_compl: This flag is set to true when invoked
5675  * from ufshcd_host_reset_and_restore() in which case it requires special
5676  * handling because the host controller has been reset by ufshcd_hba_stop().
5677  */
ufshcd_mcq_compl_pending_transfer(struct ufs_hba * hba,bool force_compl)5678 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5679 					      bool force_compl)
5680 {
5681 	struct ufs_hw_queue *hwq;
5682 	struct ufshcd_lrb *lrbp;
5683 	struct scsi_cmnd *cmd;
5684 	unsigned long flags;
5685 	int tag;
5686 
5687 	for (tag = 0; tag < hba->nutrs; tag++) {
5688 		lrbp = &hba->lrb[tag];
5689 		cmd = lrbp->cmd;
5690 		if (!ufshcd_cmd_inflight(cmd) ||
5691 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5692 			continue;
5693 
5694 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
5695 
5696 		if (force_compl) {
5697 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5698 			/*
5699 			 * For those cmds of which the cqes are not present
5700 			 * in the cq, complete them explicitly.
5701 			 */
5702 			spin_lock_irqsave(&hwq->cq_lock, flags);
5703 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5704 				set_host_byte(cmd, DID_REQUEUE);
5705 				ufshcd_release_scsi_cmd(hba, lrbp);
5706 				scsi_done(cmd);
5707 			}
5708 			spin_unlock_irqrestore(&hwq->cq_lock, flags);
5709 		} else {
5710 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5711 		}
5712 	}
5713 }
5714 
5715 /**
5716  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5717  * @hba: per adapter instance
5718  *
5719  * Return:
5720  *  IRQ_HANDLED - If interrupt is valid
5721  *  IRQ_NONE    - If invalid interrupt
5722  */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5723 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5724 {
5725 	/* Resetting interrupt aggregation counters first and reading the
5726 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5727 	 * In order to prevent other interrupts starvation the DB is read once
5728 	 * after reset. The down side of this solution is the possibility of
5729 	 * false interrupt if device completes another request after resetting
5730 	 * aggregation and before reading the DB.
5731 	 */
5732 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5733 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5734 		ufshcd_reset_intr_aggr(hba);
5735 
5736 	if (ufs_fail_completion(hba))
5737 		return IRQ_HANDLED;
5738 
5739 	/*
5740 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5741 	 * do not want polling to trigger spurious interrupt complaints.
5742 	 */
5743 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5744 
5745 	return IRQ_HANDLED;
5746 }
5747 
__ufshcd_write_ee_control(struct ufs_hba * hba,u32 ee_ctrl_mask)5748 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5749 {
5750 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5751 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5752 				       &ee_ctrl_mask);
5753 }
5754 
ufshcd_write_ee_control(struct ufs_hba * hba)5755 int ufshcd_write_ee_control(struct ufs_hba *hba)
5756 {
5757 	int err;
5758 
5759 	mutex_lock(&hba->ee_ctrl_mutex);
5760 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5761 	mutex_unlock(&hba->ee_ctrl_mutex);
5762 	if (err)
5763 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5764 			__func__, err);
5765 	return err;
5766 }
5767 
ufshcd_update_ee_control(struct ufs_hba * hba,u16 * mask,const u16 * other_mask,u16 set,u16 clr)5768 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5769 			     const u16 *other_mask, u16 set, u16 clr)
5770 {
5771 	u16 new_mask, ee_ctrl_mask;
5772 	int err = 0;
5773 
5774 	mutex_lock(&hba->ee_ctrl_mutex);
5775 	new_mask = (*mask & ~clr) | set;
5776 	ee_ctrl_mask = new_mask | *other_mask;
5777 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5778 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5779 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5780 	if (!err) {
5781 		hba->ee_ctrl_mask = ee_ctrl_mask;
5782 		*mask = new_mask;
5783 	}
5784 	mutex_unlock(&hba->ee_ctrl_mutex);
5785 	return err;
5786 }
5787 
5788 /**
5789  * ufshcd_disable_ee - disable exception event
5790  * @hba: per-adapter instance
5791  * @mask: exception event to disable
5792  *
5793  * Disables exception event in the device so that the EVENT_ALERT
5794  * bit is not set.
5795  *
5796  * Return: zero on success, non-zero error value on failure.
5797  */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5798 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5799 {
5800 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5801 }
5802 
5803 /**
5804  * ufshcd_enable_ee - enable exception event
5805  * @hba: per-adapter instance
5806  * @mask: exception event to enable
5807  *
5808  * Enable corresponding exception event in the device to allow
5809  * device to alert host in critical scenarios.
5810  *
5811  * Return: zero on success, non-zero error value on failure.
5812  */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5813 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5814 {
5815 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5816 }
5817 
5818 /**
5819  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5820  * @hba: per-adapter instance
5821  *
5822  * Allow device to manage background operations on its own. Enabling
5823  * this might lead to inconsistent latencies during normal data transfers
5824  * as the device is allowed to manage its own way of handling background
5825  * operations.
5826  *
5827  * Return: zero on success, non-zero on failure.
5828  */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5829 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5830 {
5831 	int err = 0;
5832 
5833 	if (hba->auto_bkops_enabled)
5834 		goto out;
5835 
5836 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5837 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5838 	if (err) {
5839 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5840 				__func__, err);
5841 		goto out;
5842 	}
5843 
5844 	hba->auto_bkops_enabled = true;
5845 	trace_ufshcd_auto_bkops_state(hba, "Enabled");
5846 
5847 	/* No need of URGENT_BKOPS exception from the device */
5848 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5849 	if (err)
5850 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5851 				__func__, err);
5852 out:
5853 	return err;
5854 }
5855 
5856 /**
5857  * ufshcd_disable_auto_bkops - block device in doing background operations
5858  * @hba: per-adapter instance
5859  *
5860  * Disabling background operations improves command response latency but
5861  * has drawback of device moving into critical state where the device is
5862  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5863  * host is idle so that BKOPS are managed effectively without any negative
5864  * impacts.
5865  *
5866  * Return: zero on success, non-zero on failure.
5867  */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5868 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5869 {
5870 	int err = 0;
5871 
5872 	if (!hba->auto_bkops_enabled)
5873 		goto out;
5874 
5875 	/*
5876 	 * If host assisted BKOPs is to be enabled, make sure
5877 	 * urgent bkops exception is allowed.
5878 	 */
5879 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5880 	if (err) {
5881 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5882 				__func__, err);
5883 		goto out;
5884 	}
5885 
5886 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5887 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5888 	if (err) {
5889 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5890 				__func__, err);
5891 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5892 		goto out;
5893 	}
5894 
5895 	hba->auto_bkops_enabled = false;
5896 	trace_ufshcd_auto_bkops_state(hba, "Disabled");
5897 	hba->is_urgent_bkops_lvl_checked = false;
5898 out:
5899 	return err;
5900 }
5901 
5902 /**
5903  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5904  * @hba: per adapter instance
5905  *
5906  * After a device reset the device may toggle the BKOPS_EN flag
5907  * to default value. The s/w tracking variables should be updated
5908  * as well. This function would change the auto-bkops state based on
5909  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5910  */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5911 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5912 {
5913 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5914 		hba->auto_bkops_enabled = false;
5915 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5916 		ufshcd_enable_auto_bkops(hba);
5917 	} else {
5918 		hba->auto_bkops_enabled = true;
5919 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5920 		ufshcd_disable_auto_bkops(hba);
5921 	}
5922 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5923 	hba->is_urgent_bkops_lvl_checked = false;
5924 }
5925 
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5926 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5927 {
5928 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5929 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5930 }
5931 
5932 /**
5933  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5934  * @hba: per-adapter instance
5935  *
5936  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5937  * flag in the device to permit background operations if the device
5938  * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl",
5939  * disable otherwise.
5940  *
5941  * Return: 0 for success, non-zero in case of failure.
5942  *
5943  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5944  * to know whether auto bkops is enabled or disabled after this function
5945  * returns control to it.
5946  */
ufshcd_bkops_ctrl(struct ufs_hba * hba)5947 static int ufshcd_bkops_ctrl(struct ufs_hba *hba)
5948 {
5949 	enum bkops_status status = hba->urgent_bkops_lvl;
5950 	u32 curr_status = 0;
5951 	int err;
5952 
5953 	err = ufshcd_get_bkops_status(hba, &curr_status);
5954 	if (err) {
5955 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5956 				__func__, err);
5957 		goto out;
5958 	} else if (curr_status > BKOPS_STATUS_MAX) {
5959 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5960 				__func__, curr_status);
5961 		err = -EINVAL;
5962 		goto out;
5963 	}
5964 
5965 	if (curr_status >= status)
5966 		err = ufshcd_enable_auto_bkops(hba);
5967 	else
5968 		err = ufshcd_disable_auto_bkops(hba);
5969 out:
5970 	return err;
5971 }
5972 
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5973 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5974 {
5975 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5976 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5977 }
5978 
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5979 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5980 {
5981 	int err;
5982 	u32 curr_status = 0;
5983 
5984 	if (hba->is_urgent_bkops_lvl_checked)
5985 		goto enable_auto_bkops;
5986 
5987 	err = ufshcd_get_bkops_status(hba, &curr_status);
5988 	if (err) {
5989 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5990 				__func__, err);
5991 		goto out;
5992 	}
5993 
5994 	/*
5995 	 * We are seeing that some devices are raising the urgent bkops
5996 	 * exception events even when BKOPS status doesn't indicate performace
5997 	 * impacted or critical. Handle these device by determining their urgent
5998 	 * bkops status at runtime.
5999 	 */
6000 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
6001 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
6002 				__func__, curr_status);
6003 		/* update the current status as the urgent bkops level */
6004 		hba->urgent_bkops_lvl = curr_status;
6005 		hba->is_urgent_bkops_lvl_checked = true;
6006 	}
6007 
6008 enable_auto_bkops:
6009 	err = ufshcd_enable_auto_bkops(hba);
6010 out:
6011 	if (err < 0)
6012 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
6013 				__func__, err);
6014 }
6015 
__ufshcd_wb_toggle(struct ufs_hba * hba,bool set,enum flag_idn idn)6016 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
6017 {
6018 	u8 index;
6019 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
6020 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
6021 
6022 	index = ufshcd_wb_get_query_index(hba);
6023 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
6024 }
6025 
ufshcd_wb_toggle(struct ufs_hba * hba,bool enable)6026 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
6027 {
6028 	int ret;
6029 
6030 	if (!ufshcd_is_wb_allowed(hba) ||
6031 	    hba->dev_info.wb_enabled == enable)
6032 		return 0;
6033 
6034 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
6035 	if (ret) {
6036 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
6037 			__func__, enable ? "enabling" : "disabling", ret);
6038 		return ret;
6039 	}
6040 
6041 	hba->dev_info.wb_enabled = enable;
6042 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
6043 			__func__, enable ? "enabled" : "disabled");
6044 
6045 	return ret;
6046 }
6047 
ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba * hba,bool enable)6048 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6049 						 bool enable)
6050 {
6051 	int ret;
6052 
6053 	ret = __ufshcd_wb_toggle(hba, enable,
6054 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6055 	if (ret) {
6056 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6057 			__func__, enable ? "enabling" : "disabling", ret);
6058 		return;
6059 	}
6060 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6061 			__func__, enable ? "enabled" : "disabled");
6062 }
6063 
ufshcd_wb_toggle_buf_flush(struct ufs_hba * hba,bool enable)6064 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6065 {
6066 	int ret;
6067 
6068 	if (!ufshcd_is_wb_allowed(hba) ||
6069 	    hba->dev_info.wb_buf_flush_enabled == enable)
6070 		return 0;
6071 
6072 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6073 	if (ret) {
6074 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6075 			__func__, enable ? "enabling" : "disabling", ret);
6076 		return ret;
6077 	}
6078 
6079 	hba->dev_info.wb_buf_flush_enabled = enable;
6080 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6081 			__func__, enable ? "enabled" : "disabled");
6082 
6083 	return ret;
6084 }
6085 
ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba * hba,u32 avail_buf)6086 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
6087 						u32 avail_buf)
6088 {
6089 	u32 cur_buf;
6090 	int ret;
6091 	u8 index;
6092 
6093 	index = ufshcd_wb_get_query_index(hba);
6094 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6095 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6096 					      index, 0, &cur_buf);
6097 	if (ret) {
6098 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6099 			__func__, ret);
6100 		return false;
6101 	}
6102 
6103 	if (!cur_buf) {
6104 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6105 			 cur_buf);
6106 		return false;
6107 	}
6108 	/* Let it continue to flush when available buffer exceeds threshold */
6109 	return avail_buf < hba->vps->wb_flush_threshold;
6110 }
6111 
ufshcd_wb_force_disable(struct ufs_hba * hba)6112 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6113 {
6114 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6115 		ufshcd_wb_toggle_buf_flush(hba, false);
6116 
6117 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6118 	ufshcd_wb_toggle(hba, false);
6119 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6120 
6121 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6122 }
6123 
ufshcd_is_wb_buf_lifetime_available(struct ufs_hba * hba)6124 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6125 {
6126 	u32 lifetime;
6127 	int ret;
6128 	u8 index;
6129 
6130 	index = ufshcd_wb_get_query_index(hba);
6131 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6132 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6133 				      index, 0, &lifetime);
6134 	if (ret) {
6135 		dev_err(hba->dev,
6136 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6137 			__func__, ret);
6138 		return false;
6139 	}
6140 
6141 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6142 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6143 			__func__, lifetime);
6144 		return false;
6145 	}
6146 
6147 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6148 		__func__, lifetime);
6149 
6150 	return true;
6151 }
6152 
ufshcd_wb_need_flush(struct ufs_hba * hba)6153 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6154 {
6155 	int ret;
6156 	u32 avail_buf;
6157 	u8 index;
6158 
6159 	if (!ufshcd_is_wb_allowed(hba))
6160 		return false;
6161 
6162 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6163 		ufshcd_wb_force_disable(hba);
6164 		return false;
6165 	}
6166 
6167 	/*
6168 	 * The ufs device needs the vcc to be ON to flush.
6169 	 * With user-space reduction enabled, it's enough to enable flush
6170 	 * by checking only the available buffer. The threshold
6171 	 * defined here is > 90% full.
6172 	 * With user-space preserved enabled, the current-buffer
6173 	 * should be checked too because the wb buffer size can reduce
6174 	 * when disk tends to be full. This info is provided by current
6175 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6176 	 * keeping vcc on when current buffer is empty.
6177 	 */
6178 	index = ufshcd_wb_get_query_index(hba);
6179 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6180 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6181 				      index, 0, &avail_buf);
6182 	if (ret) {
6183 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6184 			 __func__, ret);
6185 		return false;
6186 	}
6187 
6188 	if (!hba->dev_info.b_presrv_uspc_en)
6189 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6190 
6191 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6192 }
6193 
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)6194 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6195 {
6196 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6197 					   struct ufs_hba,
6198 					   rpm_dev_flush_recheck_work);
6199 	/*
6200 	 * To prevent unnecessary VCC power drain after device finishes
6201 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6202 	 * after a certain delay to recheck the threshold by next runtime
6203 	 * suspend.
6204 	 */
6205 	ufshcd_rpm_get_sync(hba);
6206 	ufshcd_rpm_put_sync(hba);
6207 }
6208 
6209 /**
6210  * ufshcd_exception_event_handler - handle exceptions raised by device
6211  * @work: pointer to work data
6212  *
6213  * Read bExceptionEventStatus attribute from the device and handle the
6214  * exception event accordingly.
6215  */
ufshcd_exception_event_handler(struct work_struct * work)6216 static void ufshcd_exception_event_handler(struct work_struct *work)
6217 {
6218 	struct ufs_hba *hba;
6219 	int err;
6220 	u32 status = 0;
6221 	hba = container_of(work, struct ufs_hba, eeh_work);
6222 
6223 	err = ufshcd_get_ee_status(hba, &status);
6224 	if (err) {
6225 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6226 				__func__, err);
6227 		return;
6228 	}
6229 
6230 	trace_ufshcd_exception_event(hba, status);
6231 
6232 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6233 		ufshcd_bkops_exception_event_handler(hba);
6234 
6235 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6236 		ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
6237 
6238 	if (status & hba->ee_drv_mask & MASK_EE_HEALTH_CRITICAL) {
6239 		hba->critical_health_count++;
6240 		sysfs_notify(&hba->dev->kobj, NULL, "critical_health");
6241 	}
6242 
6243 	ufs_debugfs_exception_event(hba, status);
6244 }
6245 
6246 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba,bool force_compl)6247 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6248 {
6249 	if (hba->mcq_enabled)
6250 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6251 	else
6252 		ufshcd_transfer_req_compl(hba);
6253 
6254 	ufshcd_tmc_handler(hba);
6255 }
6256 
6257 /**
6258  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6259  *				to recover from the DL NAC errors or not.
6260  * @hba: per-adapter instance
6261  *
6262  * Return: true if error handling is required, false otherwise.
6263  */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)6264 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6265 {
6266 	unsigned long flags;
6267 	bool err_handling = true;
6268 
6269 	spin_lock_irqsave(hba->host->host_lock, flags);
6270 	/*
6271 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6272 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6273 	 */
6274 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6275 		goto out;
6276 
6277 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6278 	    ((hba->saved_err & UIC_ERROR) &&
6279 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6280 		goto out;
6281 
6282 	if ((hba->saved_err & UIC_ERROR) &&
6283 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6284 		int err;
6285 		/*
6286 		 * wait for 50ms to see if we can get any other errors or not.
6287 		 */
6288 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6289 		msleep(50);
6290 		spin_lock_irqsave(hba->host->host_lock, flags);
6291 
6292 		/*
6293 		 * now check if we have got any other severe errors other than
6294 		 * DL NAC error?
6295 		 */
6296 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6297 		    ((hba->saved_err & UIC_ERROR) &&
6298 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6299 			goto out;
6300 
6301 		/*
6302 		 * As DL NAC is the only error received so far, send out NOP
6303 		 * command to confirm if link is still active or not.
6304 		 *   - If we don't get any response then do error recovery.
6305 		 *   - If we get response then clear the DL NAC error bit.
6306 		 */
6307 
6308 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6309 		err = ufshcd_verify_dev_init(hba);
6310 		spin_lock_irqsave(hba->host->host_lock, flags);
6311 
6312 		if (err)
6313 			goto out;
6314 
6315 		/* Link seems to be alive hence ignore the DL NAC errors */
6316 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6317 			hba->saved_err &= ~UIC_ERROR;
6318 		/* clear NAC error */
6319 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6320 		if (!hba->saved_uic_err)
6321 			err_handling = false;
6322 	}
6323 out:
6324 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6325 	return err_handling;
6326 }
6327 
6328 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)6329 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6330 {
6331 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6332 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6333 }
6334 
ufshcd_schedule_eh_work(struct ufs_hba * hba)6335 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6336 {
6337 	lockdep_assert_held(hba->host->host_lock);
6338 
6339 	/* handle fatal errors only when link is not in error state */
6340 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6341 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6342 		    ufshcd_is_saved_err_fatal(hba))
6343 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6344 		else
6345 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6346 		queue_work(hba->eh_wq, &hba->eh_work);
6347 	}
6348 }
6349 
ufshcd_force_error_recovery(struct ufs_hba * hba)6350 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6351 {
6352 	spin_lock_irq(hba->host->host_lock);
6353 	hba->force_reset = true;
6354 	ufshcd_schedule_eh_work(hba);
6355 	spin_unlock_irq(hba->host->host_lock);
6356 }
6357 
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)6358 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6359 {
6360 	mutex_lock(&hba->wb_mutex);
6361 	down_write(&hba->clk_scaling_lock);
6362 	hba->clk_scaling.is_allowed = allow;
6363 	up_write(&hba->clk_scaling_lock);
6364 	mutex_unlock(&hba->wb_mutex);
6365 }
6366 
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)6367 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6368 {
6369 	if (suspend) {
6370 		if (hba->clk_scaling.is_enabled)
6371 			ufshcd_suspend_clkscaling(hba);
6372 		ufshcd_clk_scaling_allow(hba, false);
6373 	} else {
6374 		ufshcd_clk_scaling_allow(hba, true);
6375 		if (hba->clk_scaling.is_enabled)
6376 			ufshcd_resume_clkscaling(hba);
6377 	}
6378 }
6379 
ufshcd_err_handling_prepare(struct ufs_hba * hba)6380 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6381 {
6382 	ufshcd_rpm_get_sync(hba);
6383 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6384 	    hba->is_sys_suspended) {
6385 		enum ufs_pm_op pm_op;
6386 
6387 		/*
6388 		 * Don't assume anything of resume, if
6389 		 * resume fails, irq and clocks can be OFF, and powers
6390 		 * can be OFF or in LPM.
6391 		 */
6392 		ufshcd_setup_hba_vreg(hba, true);
6393 		ufshcd_enable_irq(hba);
6394 		ufshcd_setup_vreg(hba, true);
6395 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6396 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6397 		ufshcd_hold(hba);
6398 		if (!ufshcd_is_clkgating_allowed(hba))
6399 			ufshcd_setup_clocks(hba, true);
6400 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6401 		ufshcd_vops_resume(hba, pm_op);
6402 	} else {
6403 		ufshcd_hold(hba);
6404 		if (ufshcd_is_clkscaling_supported(hba) &&
6405 		    hba->clk_scaling.is_enabled)
6406 			ufshcd_suspend_clkscaling(hba);
6407 		ufshcd_clk_scaling_allow(hba, false);
6408 	}
6409 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6410 	blk_mq_quiesce_tagset(&hba->host->tag_set);
6411 	cancel_work_sync(&hba->eeh_work);
6412 }
6413 
ufshcd_err_handling_unprepare(struct ufs_hba * hba)6414 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6415 {
6416 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
6417 	ufshcd_release(hba);
6418 	if (ufshcd_is_clkscaling_supported(hba))
6419 		ufshcd_clk_scaling_suspend(hba, false);
6420 	ufshcd_rpm_put(hba);
6421 }
6422 
ufshcd_err_handling_should_stop(struct ufs_hba * hba)6423 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6424 {
6425 	return (!hba->is_powered || hba->shutting_down ||
6426 		!hba->ufs_device_wlun ||
6427 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6428 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6429 		   ufshcd_is_link_broken(hba))));
6430 }
6431 
6432 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)6433 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6434 {
6435 	struct Scsi_Host *shost = hba->host;
6436 	struct scsi_device *sdev;
6437 	struct request_queue *q;
6438 	int ret;
6439 
6440 	hba->is_sys_suspended = false;
6441 	/*
6442 	 * Set RPM status of wlun device to RPM_ACTIVE,
6443 	 * this also clears its runtime error.
6444 	 */
6445 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6446 
6447 	/* hba device might have a runtime error otherwise */
6448 	if (ret)
6449 		ret = pm_runtime_set_active(hba->dev);
6450 	/*
6451 	 * If wlun device had runtime error, we also need to resume those
6452 	 * consumer scsi devices in case any of them has failed to be
6453 	 * resumed due to supplier runtime resume failure. This is to unblock
6454 	 * blk_queue_enter in case there are bios waiting inside it.
6455 	 */
6456 	if (!ret) {
6457 		shost_for_each_device(sdev, shost) {
6458 			q = sdev->request_queue;
6459 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6460 				       q->rpm_status == RPM_SUSPENDING))
6461 				pm_request_resume(q->dev);
6462 		}
6463 	}
6464 }
6465 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)6466 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6467 {
6468 }
6469 #endif
6470 
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)6471 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6472 {
6473 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6474 	u32 mode;
6475 
6476 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6477 
6478 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6479 		return true;
6480 
6481 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6482 		return true;
6483 
6484 	return false;
6485 }
6486 
ufshcd_abort_one(struct request * rq,void * priv)6487 static bool ufshcd_abort_one(struct request *rq, void *priv)
6488 {
6489 	int *ret = priv;
6490 	u32 tag = rq->tag;
6491 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6492 	struct scsi_device *sdev = cmd->device;
6493 	struct Scsi_Host *shost = sdev->host;
6494 	struct ufs_hba *hba = shost_priv(shost);
6495 
6496 	*ret = ufshcd_try_to_abort_task(hba, tag);
6497 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6498 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6499 		*ret ? "failed" : "succeeded");
6500 
6501 	return *ret == 0;
6502 }
6503 
6504 /**
6505  * ufshcd_abort_all - Abort all pending commands.
6506  * @hba: Host bus adapter pointer.
6507  *
6508  * Return: true if and only if the host controller needs to be reset.
6509  */
ufshcd_abort_all(struct ufs_hba * hba)6510 static bool ufshcd_abort_all(struct ufs_hba *hba)
6511 {
6512 	int tag, ret = 0;
6513 
6514 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6515 	if (ret)
6516 		goto out;
6517 
6518 	/* Clear pending task management requests */
6519 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6520 		ret = ufshcd_clear_tm_cmd(hba, tag);
6521 		if (ret)
6522 			goto out;
6523 	}
6524 
6525 out:
6526 	/* Complete the requests that are cleared by s/w */
6527 	ufshcd_complete_requests(hba, false);
6528 
6529 	return ret != 0;
6530 }
6531 
6532 /**
6533  * ufshcd_err_handler - handle UFS errors that require s/w attention
6534  * @work: pointer to work structure
6535  */
ufshcd_err_handler(struct work_struct * work)6536 static void ufshcd_err_handler(struct work_struct *work)
6537 {
6538 	int retries = MAX_ERR_HANDLER_RETRIES;
6539 	struct ufs_hba *hba;
6540 	unsigned long flags;
6541 	bool needs_restore;
6542 	bool needs_reset;
6543 	int pmc_err;
6544 
6545 	hba = container_of(work, struct ufs_hba, eh_work);
6546 
6547 	dev_info(hba->dev,
6548 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6549 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6550 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6551 		 hba->saved_uic_err, hba->force_reset,
6552 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6553 
6554 	down(&hba->host_sem);
6555 	spin_lock_irqsave(hba->host->host_lock, flags);
6556 	if (ufshcd_err_handling_should_stop(hba)) {
6557 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6558 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6559 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6560 		up(&hba->host_sem);
6561 		return;
6562 	}
6563 	ufshcd_set_eh_in_progress(hba);
6564 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6565 	ufshcd_err_handling_prepare(hba);
6566 	/* Complete requests that have door-bell cleared by h/w */
6567 	ufshcd_complete_requests(hba, false);
6568 	spin_lock_irqsave(hba->host->host_lock, flags);
6569 again:
6570 	needs_restore = false;
6571 	needs_reset = false;
6572 
6573 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6574 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6575 	/*
6576 	 * A full reset and restore might have happened after preparation
6577 	 * is finished, double check whether we should stop.
6578 	 */
6579 	if (ufshcd_err_handling_should_stop(hba))
6580 		goto skip_err_handling;
6581 
6582 	if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6583 	    !hba->force_reset) {
6584 		bool ret;
6585 
6586 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6587 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6588 		ret = ufshcd_quirk_dl_nac_errors(hba);
6589 		spin_lock_irqsave(hba->host->host_lock, flags);
6590 		if (!ret && ufshcd_err_handling_should_stop(hba))
6591 			goto skip_err_handling;
6592 	}
6593 
6594 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6595 	    (hba->saved_uic_err &&
6596 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6597 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6598 
6599 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6600 		ufshcd_print_host_state(hba);
6601 		ufshcd_print_pwr_info(hba);
6602 		ufshcd_print_evt_hist(hba);
6603 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6604 		ufshcd_print_trs_all(hba, pr_prdt);
6605 		spin_lock_irqsave(hba->host->host_lock, flags);
6606 	}
6607 
6608 	/*
6609 	 * if host reset is required then skip clearing the pending
6610 	 * transfers forcefully because they will get cleared during
6611 	 * host reset and restore
6612 	 */
6613 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6614 	    ufshcd_is_saved_err_fatal(hba) ||
6615 	    ((hba->saved_err & UIC_ERROR) &&
6616 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6617 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6618 		needs_reset = true;
6619 		goto do_reset;
6620 	}
6621 
6622 	/*
6623 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6624 	 * check if power mode restore is needed.
6625 	 */
6626 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6627 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6628 		if (!hba->saved_uic_err)
6629 			hba->saved_err &= ~UIC_ERROR;
6630 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6631 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6632 			needs_restore = true;
6633 		spin_lock_irqsave(hba->host->host_lock, flags);
6634 		if (!hba->saved_err && !needs_restore)
6635 			goto skip_err_handling;
6636 	}
6637 
6638 	hba->silence_err_logs = true;
6639 	/* release lock as clear command might sleep */
6640 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6641 
6642 	needs_reset = ufshcd_abort_all(hba);
6643 
6644 	spin_lock_irqsave(hba->host->host_lock, flags);
6645 	hba->silence_err_logs = false;
6646 	if (needs_reset)
6647 		goto do_reset;
6648 
6649 	/*
6650 	 * After all reqs and tasks are cleared from doorbell,
6651 	 * now it is safe to retore power mode.
6652 	 */
6653 	if (needs_restore) {
6654 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6655 		/*
6656 		 * Hold the scaling lock just in case dev cmds
6657 		 * are sent via bsg and/or sysfs.
6658 		 */
6659 		down_write(&hba->clk_scaling_lock);
6660 		hba->force_pmc = true;
6661 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6662 		if (pmc_err) {
6663 			needs_reset = true;
6664 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6665 					__func__, pmc_err);
6666 		}
6667 		hba->force_pmc = false;
6668 		ufshcd_print_pwr_info(hba);
6669 		up_write(&hba->clk_scaling_lock);
6670 		spin_lock_irqsave(hba->host->host_lock, flags);
6671 	}
6672 
6673 do_reset:
6674 	/* Fatal errors need reset */
6675 	if (needs_reset) {
6676 		int err;
6677 
6678 		hba->force_reset = false;
6679 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6680 		err = ufshcd_reset_and_restore(hba);
6681 		if (err)
6682 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6683 					__func__, err);
6684 		else
6685 			ufshcd_recover_pm_error(hba);
6686 		spin_lock_irqsave(hba->host->host_lock, flags);
6687 	}
6688 
6689 skip_err_handling:
6690 	if (!needs_reset) {
6691 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6692 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6693 		if (hba->saved_err || hba->saved_uic_err)
6694 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6695 			    __func__, hba->saved_err, hba->saved_uic_err);
6696 	}
6697 	/* Exit in an operational state or dead */
6698 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6699 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6700 		if (--retries)
6701 			goto again;
6702 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6703 	}
6704 	ufshcd_clear_eh_in_progress(hba);
6705 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6706 	ufshcd_err_handling_unprepare(hba);
6707 	up(&hba->host_sem);
6708 
6709 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6710 		 ufshcd_state_name[hba->ufshcd_state]);
6711 }
6712 
6713 /**
6714  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6715  * @hba: per-adapter instance
6716  *
6717  * Return:
6718  *  IRQ_HANDLED - If interrupt is valid
6719  *  IRQ_NONE    - If invalid interrupt
6720  */
ufshcd_update_uic_error(struct ufs_hba * hba)6721 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6722 {
6723 	u32 reg;
6724 	irqreturn_t retval = IRQ_NONE;
6725 
6726 	/* PHY layer error */
6727 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6728 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6729 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6730 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6731 		/*
6732 		 * To know whether this error is fatal or not, DB timeout
6733 		 * must be checked but this error is handled separately.
6734 		 */
6735 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6736 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6737 					__func__);
6738 
6739 		/* Got a LINERESET indication. */
6740 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6741 			struct uic_command *cmd = NULL;
6742 
6743 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6744 			if (hba->uic_async_done && hba->active_uic_cmd)
6745 				cmd = hba->active_uic_cmd;
6746 			/*
6747 			 * Ignore the LINERESET during power mode change
6748 			 * operation via DME_SET command.
6749 			 */
6750 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6751 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6752 		}
6753 		retval |= IRQ_HANDLED;
6754 	}
6755 
6756 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6757 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6758 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6759 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6760 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6761 
6762 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6763 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6764 		else if (hba->dev_quirks &
6765 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6766 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6767 				hba->uic_error |=
6768 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6769 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6770 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6771 		}
6772 		retval |= IRQ_HANDLED;
6773 	}
6774 
6775 	/* UIC NL/TL/DME errors needs software retry */
6776 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6777 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6778 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6779 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6780 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6781 		retval |= IRQ_HANDLED;
6782 	}
6783 
6784 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6785 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6786 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6787 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6788 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6789 		retval |= IRQ_HANDLED;
6790 	}
6791 
6792 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6793 	if ((reg & UIC_DME_ERROR) &&
6794 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6795 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6796 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6797 		retval |= IRQ_HANDLED;
6798 	}
6799 
6800 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6801 			__func__, hba->uic_error);
6802 	return retval;
6803 }
6804 
6805 /**
6806  * ufshcd_check_errors - Check for errors that need s/w attention
6807  * @hba: per-adapter instance
6808  * @intr_status: interrupt status generated by the controller
6809  *
6810  * Return:
6811  *  IRQ_HANDLED - If interrupt is valid
6812  *  IRQ_NONE    - If invalid interrupt
6813  */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)6814 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6815 {
6816 	bool queue_eh_work = false;
6817 	irqreturn_t retval = IRQ_NONE;
6818 
6819 	spin_lock(hba->host->host_lock);
6820 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6821 
6822 	if (hba->errors & INT_FATAL_ERRORS) {
6823 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6824 				       hba->errors);
6825 		queue_eh_work = true;
6826 	}
6827 
6828 	if (hba->errors & UIC_ERROR) {
6829 		hba->uic_error = 0;
6830 		retval = ufshcd_update_uic_error(hba);
6831 		if (hba->uic_error)
6832 			queue_eh_work = true;
6833 	}
6834 
6835 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6836 		dev_err(hba->dev,
6837 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6838 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6839 			"Enter" : "Exit",
6840 			hba->errors, ufshcd_get_upmcrs(hba));
6841 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6842 				       hba->errors);
6843 		ufshcd_set_link_broken(hba);
6844 		queue_eh_work = true;
6845 	}
6846 
6847 	if (queue_eh_work) {
6848 		/*
6849 		 * update the transfer error masks to sticky bits, let's do this
6850 		 * irrespective of current ufshcd_state.
6851 		 */
6852 		hba->saved_err |= hba->errors;
6853 		hba->saved_uic_err |= hba->uic_error;
6854 
6855 		/* dump controller state before resetting */
6856 		if ((hba->saved_err &
6857 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6858 		    (hba->saved_uic_err &&
6859 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6860 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6861 					__func__, hba->saved_err,
6862 					hba->saved_uic_err);
6863 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6864 					 "host_regs: ");
6865 			ufshcd_print_pwr_info(hba);
6866 		}
6867 		ufshcd_schedule_eh_work(hba);
6868 		retval |= IRQ_HANDLED;
6869 	}
6870 	/*
6871 	 * if (!queue_eh_work) -
6872 	 * Other errors are either non-fatal where host recovers
6873 	 * itself without s/w intervention or errors that will be
6874 	 * handled by the SCSI core layer.
6875 	 */
6876 	hba->errors = 0;
6877 	hba->uic_error = 0;
6878 	spin_unlock(hba->host->host_lock);
6879 	return retval;
6880 }
6881 
6882 /**
6883  * ufshcd_tmc_handler - handle task management function completion
6884  * @hba: per adapter instance
6885  *
6886  * Return:
6887  *  IRQ_HANDLED - If interrupt is valid
6888  *  IRQ_NONE    - If invalid interrupt
6889  */
ufshcd_tmc_handler(struct ufs_hba * hba)6890 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6891 {
6892 	unsigned long flags, pending, issued;
6893 	irqreturn_t ret = IRQ_NONE;
6894 	int tag;
6895 
6896 	spin_lock_irqsave(hba->host->host_lock, flags);
6897 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6898 	issued = hba->outstanding_tasks & ~pending;
6899 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6900 		struct request *req = hba->tmf_rqs[tag];
6901 		struct completion *c = req->end_io_data;
6902 
6903 		complete(c);
6904 		ret = IRQ_HANDLED;
6905 	}
6906 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6907 
6908 	return ret;
6909 }
6910 
6911 /**
6912  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6913  * @hba: per adapter instance
6914  *
6915  * Return: IRQ_HANDLED if interrupt is handled.
6916  */
ufshcd_handle_mcq_cq_events(struct ufs_hba * hba)6917 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6918 {
6919 	struct ufs_hw_queue *hwq;
6920 	unsigned long outstanding_cqs;
6921 	unsigned int nr_queues;
6922 	int i, ret;
6923 	u32 events;
6924 
6925 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6926 	if (ret)
6927 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6928 
6929 	/* Exclude the poll queues */
6930 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6931 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6932 		hwq = &hba->uhq[i];
6933 
6934 		events = ufshcd_mcq_read_cqis(hba, i);
6935 		if (events)
6936 			ufshcd_mcq_write_cqis(hba, events, i);
6937 
6938 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6939 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6940 	}
6941 
6942 	return IRQ_HANDLED;
6943 }
6944 
6945 /**
6946  * ufshcd_sl_intr - Interrupt service routine
6947  * @hba: per adapter instance
6948  * @intr_status: contains interrupts generated by the controller
6949  *
6950  * Return:
6951  *  IRQ_HANDLED - If interrupt is valid
6952  *  IRQ_NONE    - If invalid interrupt
6953  */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)6954 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6955 {
6956 	irqreturn_t retval = IRQ_NONE;
6957 
6958 	if (intr_status & UFSHCD_UIC_MASK)
6959 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6960 
6961 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6962 		retval |= ufshcd_check_errors(hba, intr_status);
6963 
6964 	if (intr_status & UTP_TASK_REQ_COMPL)
6965 		retval |= ufshcd_tmc_handler(hba);
6966 
6967 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6968 		retval |= ufshcd_transfer_req_compl(hba);
6969 
6970 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6971 		retval |= ufshcd_handle_mcq_cq_events(hba);
6972 
6973 	return retval;
6974 }
6975 
6976 /**
6977  * ufshcd_intr - Main interrupt service routine
6978  * @irq: irq number
6979  * @__hba: pointer to adapter instance
6980  *
6981  * Return:
6982  *  IRQ_HANDLED - If interrupt is valid
6983  *  IRQ_NONE    - If invalid interrupt
6984  */
ufshcd_intr(int irq,void * __hba)6985 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6986 {
6987 	u32 intr_status, enabled_intr_status = 0;
6988 	irqreturn_t retval = IRQ_NONE;
6989 	struct ufs_hba *hba = __hba;
6990 	int retries = hba->nutrs;
6991 
6992 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6993 	hba->ufs_stats.last_intr_status = intr_status;
6994 	hba->ufs_stats.last_intr_ts = local_clock();
6995 
6996 	/*
6997 	 * There could be max of hba->nutrs reqs in flight and in worst case
6998 	 * if the reqs get finished 1 by 1 after the interrupt status is
6999 	 * read, make sure we handle them by checking the interrupt status
7000 	 * again in a loop until we process all of the reqs before returning.
7001 	 */
7002 	while (intr_status && retries--) {
7003 		enabled_intr_status =
7004 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7005 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7006 		if (enabled_intr_status)
7007 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
7008 
7009 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7010 	}
7011 
7012 	if (enabled_intr_status && retval == IRQ_NONE &&
7013 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
7014 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
7015 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
7016 					__func__,
7017 					intr_status,
7018 					hba->ufs_stats.last_intr_status,
7019 					enabled_intr_status);
7020 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
7021 	}
7022 
7023 	return retval;
7024 }
7025 
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)7026 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
7027 {
7028 	int err = 0;
7029 	u32 mask = 1 << tag;
7030 
7031 	if (!test_bit(tag, &hba->outstanding_tasks))
7032 		goto out;
7033 
7034 	ufshcd_utmrl_clear(hba, tag);
7035 
7036 	/* poll for max. 1 sec to clear door bell register by h/w */
7037 	err = ufshcd_wait_for_register(hba,
7038 			REG_UTP_TASK_REQ_DOOR_BELL,
7039 			mask, 0, 1000, 1000);
7040 
7041 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7042 		tag, err < 0 ? "failed" : "succeeded");
7043 
7044 out:
7045 	return err;
7046 }
7047 
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)7048 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7049 		struct utp_task_req_desc *treq, u8 tm_function)
7050 {
7051 	struct request_queue *q = hba->tmf_queue;
7052 	struct Scsi_Host *host = hba->host;
7053 	DECLARE_COMPLETION_ONSTACK(wait);
7054 	struct request *req;
7055 	unsigned long flags;
7056 	int task_tag, err;
7057 
7058 	/*
7059 	 * blk_mq_alloc_request() is used here only to get a free tag.
7060 	 */
7061 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7062 	if (IS_ERR(req))
7063 		return PTR_ERR(req);
7064 
7065 	req->end_io_data = &wait;
7066 	ufshcd_hold(hba);
7067 
7068 	spin_lock_irqsave(host->host_lock, flags);
7069 
7070 	task_tag = req->tag;
7071 	hba->tmf_rqs[req->tag] = req;
7072 	treq->upiu_req.req_header.task_tag = task_tag;
7073 
7074 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7075 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7076 
7077 	__set_bit(task_tag, &hba->outstanding_tasks);
7078 
7079 	spin_unlock_irqrestore(host->host_lock, flags);
7080 
7081 	/* send command to the controller */
7082 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7083 
7084 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7085 
7086 	/* wait until the task management command is completed */
7087 	err = wait_for_completion_io_timeout(&wait,
7088 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7089 	if (!err) {
7090 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7091 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7092 				__func__, tm_function);
7093 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7094 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7095 					__func__, task_tag);
7096 		err = -ETIMEDOUT;
7097 	} else {
7098 		err = 0;
7099 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7100 
7101 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7102 	}
7103 
7104 	spin_lock_irqsave(hba->host->host_lock, flags);
7105 	hba->tmf_rqs[req->tag] = NULL;
7106 	__clear_bit(task_tag, &hba->outstanding_tasks);
7107 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7108 
7109 	ufshcd_release(hba);
7110 	blk_mq_free_request(req);
7111 
7112 	return err;
7113 }
7114 
7115 /**
7116  * ufshcd_issue_tm_cmd - issues task management commands to controller
7117  * @hba: per adapter instance
7118  * @lun_id: LUN ID to which TM command is sent
7119  * @task_id: task ID to which the TM command is applicable
7120  * @tm_function: task management function opcode
7121  * @tm_response: task management service response return value
7122  *
7123  * Return: non-zero value on error, zero on success.
7124  */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)7125 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7126 		u8 tm_function, u8 *tm_response)
7127 {
7128 	struct utp_task_req_desc treq = { };
7129 	enum utp_ocs ocs_value;
7130 	int err;
7131 
7132 	/* Configure task request descriptor */
7133 	treq.header.interrupt = 1;
7134 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7135 
7136 	/* Configure task request UPIU */
7137 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7138 	treq.upiu_req.req_header.lun = lun_id;
7139 	treq.upiu_req.req_header.tm_function = tm_function;
7140 
7141 	/*
7142 	 * The host shall provide the same value for LUN field in the basic
7143 	 * header and for Input Parameter.
7144 	 */
7145 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7146 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7147 
7148 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7149 	if (err == -ETIMEDOUT)
7150 		return err;
7151 
7152 	ocs_value = treq.header.ocs & MASK_OCS;
7153 	if (ocs_value != OCS_SUCCESS)
7154 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7155 				__func__, ocs_value);
7156 	else if (tm_response)
7157 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7158 				MASK_TM_SERVICE_RESP;
7159 	return err;
7160 }
7161 
7162 /**
7163  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7164  * @hba:	per-adapter instance
7165  * @req_upiu:	upiu request
7166  * @rsp_upiu:	upiu reply
7167  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7168  * @buff_len:	descriptor size, 0 if NA
7169  * @cmd_type:	specifies the type (NOP, Query...)
7170  * @desc_op:	descriptor operation
7171  *
7172  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7173  * Therefore, it "rides" the device management infrastructure: uses its tag and
7174  * tasks work queues.
7175  *
7176  * Since there is only one available tag for device management commands,
7177  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7178  *
7179  * Return: 0 upon success; < 0 upon failure.
7180  */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)7181 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7182 					struct utp_upiu_req *req_upiu,
7183 					struct utp_upiu_req *rsp_upiu,
7184 					u8 *desc_buff, int *buff_len,
7185 					enum dev_cmd_type cmd_type,
7186 					enum query_opcode desc_op)
7187 {
7188 	const u32 tag = hba->reserved_slot;
7189 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7190 	int err = 0;
7191 	u8 upiu_flags;
7192 
7193 	/* Protects use of hba->reserved_slot. */
7194 	lockdep_assert_held(&hba->dev_cmd.lock);
7195 
7196 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
7197 
7198 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7199 
7200 	/* update the task tag in the request upiu */
7201 	req_upiu->header.task_tag = tag;
7202 
7203 	/* just copy the upiu request as it is */
7204 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7205 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7206 		/* The Data Segment Area is optional depending upon the query
7207 		 * function value. for WRITE DESCRIPTOR, the data segment
7208 		 * follows right after the tsf.
7209 		 */
7210 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7211 		*buff_len = 0;
7212 	}
7213 
7214 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7215 
7216 	/*
7217 	 * ignore the returning value here - ufshcd_check_query_response is
7218 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7219 	 * read the response directly ignoring all errors.
7220 	 */
7221 	ufshcd_issue_dev_cmd(hba, lrbp, tag, QUERY_REQ_TIMEOUT);
7222 
7223 	/* just copy the upiu response as it is */
7224 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7225 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7226 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7227 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7228 					   .data_segment_length);
7229 
7230 		if (*buff_len >= resp_len) {
7231 			memcpy(desc_buff, descp, resp_len);
7232 			*buff_len = resp_len;
7233 		} else {
7234 			dev_warn(hba->dev,
7235 				 "%s: rsp size %d is bigger than buffer size %d",
7236 				 __func__, resp_len, *buff_len);
7237 			*buff_len = 0;
7238 			err = -EINVAL;
7239 		}
7240 	}
7241 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7242 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7243 
7244 	return err;
7245 }
7246 
7247 /**
7248  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7249  * @hba:	per-adapter instance
7250  * @req_upiu:	upiu request
7251  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7252  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7253  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7254  * @buff_len:	descriptor size, 0 if NA
7255  * @desc_op:	descriptor operation
7256  *
7257  * Supports UTP Transfer requests (nop and query), and UTP Task
7258  * Management requests.
7259  * It is up to the caller to fill the upiu conent properly, as it will
7260  * be copied without any further input validations.
7261  *
7262  * Return: 0 upon success; < 0 upon failure.
7263  */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,enum upiu_request_transaction msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)7264 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7265 			     struct utp_upiu_req *req_upiu,
7266 			     struct utp_upiu_req *rsp_upiu,
7267 			     enum upiu_request_transaction msgcode,
7268 			     u8 *desc_buff, int *buff_len,
7269 			     enum query_opcode desc_op)
7270 {
7271 	int err;
7272 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7273 	struct utp_task_req_desc treq = { };
7274 	enum utp_ocs ocs_value;
7275 	u8 tm_f = req_upiu->header.tm_function;
7276 
7277 	switch (msgcode) {
7278 	case UPIU_TRANSACTION_NOP_OUT:
7279 		cmd_type = DEV_CMD_TYPE_NOP;
7280 		fallthrough;
7281 	case UPIU_TRANSACTION_QUERY_REQ:
7282 		ufshcd_dev_man_lock(hba);
7283 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7284 						   desc_buff, buff_len,
7285 						   cmd_type, desc_op);
7286 		ufshcd_dev_man_unlock(hba);
7287 
7288 		break;
7289 	case UPIU_TRANSACTION_TASK_REQ:
7290 		treq.header.interrupt = 1;
7291 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7292 
7293 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7294 
7295 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7296 		if (err == -ETIMEDOUT)
7297 			break;
7298 
7299 		ocs_value = treq.header.ocs & MASK_OCS;
7300 		if (ocs_value != OCS_SUCCESS) {
7301 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7302 				ocs_value);
7303 			break;
7304 		}
7305 
7306 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7307 
7308 		break;
7309 	default:
7310 		err = -EINVAL;
7311 
7312 		break;
7313 	}
7314 
7315 	return err;
7316 }
7317 
7318 /**
7319  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7320  * @hba:	per adapter instance
7321  * @req_upiu:	upiu request
7322  * @rsp_upiu:	upiu reply
7323  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7324  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7325  * @sg_cnt:	The number of sg lists actually used
7326  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7327  * @dir:	DMA direction
7328  *
7329  * Return: zero on success, non-zero on failure.
7330  */
ufshcd_advanced_rpmb_req_handler(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,struct ufs_ehs * req_ehs,struct ufs_ehs * rsp_ehs,int sg_cnt,struct scatterlist * sg_list,enum dma_data_direction dir)7331 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7332 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7333 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7334 			 enum dma_data_direction dir)
7335 {
7336 	const u32 tag = hba->reserved_slot;
7337 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7338 	int err = 0;
7339 	int result;
7340 	u8 upiu_flags;
7341 	u8 *ehs_data;
7342 	u16 ehs_len;
7343 	int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7344 
7345 	/* Protects use of hba->reserved_slot. */
7346 	ufshcd_dev_man_lock(hba);
7347 
7348 	ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag);
7349 
7350 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7351 
7352 	/* update the task tag */
7353 	req_upiu->header.task_tag = tag;
7354 
7355 	/* copy the UPIU(contains CDB) request as it is */
7356 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7357 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7358 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7359 
7360 	if (dir != DMA_NONE && sg_list)
7361 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7362 
7363 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7364 
7365 	err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7366 
7367 	if (!err) {
7368 		/* Just copy the upiu response as it is */
7369 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7370 		/* Get the response UPIU result */
7371 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7372 			lrbp->ucd_rsp_ptr->header.status;
7373 
7374 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7375 		/*
7376 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7377 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7378 		 * Message is 02h
7379 		 */
7380 		if (ehs_len == 2 && rsp_ehs) {
7381 			/*
7382 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7383 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7384 			 */
7385 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7386 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7387 		}
7388 	}
7389 
7390 	ufshcd_dev_man_unlock(hba);
7391 
7392 	return err ? : result;
7393 }
7394 
7395 /**
7396  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7397  * @cmd: SCSI command pointer
7398  *
7399  * Return: SUCCESS or FAILED.
7400  */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)7401 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7402 {
7403 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7404 	struct Scsi_Host *host;
7405 	struct ufs_hba *hba;
7406 	struct ufs_hw_queue *hwq;
7407 	struct ufshcd_lrb *lrbp;
7408 	u32 pos, not_cleared_mask = 0;
7409 	int err;
7410 	u8 resp = 0xF, lun;
7411 
7412 	host = cmd->device->host;
7413 	hba = shost_priv(host);
7414 
7415 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7416 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7417 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7418 		if (!err)
7419 			err = resp;
7420 		goto out;
7421 	}
7422 
7423 	if (hba->mcq_enabled) {
7424 		for (pos = 0; pos < hba->nutrs; pos++) {
7425 			lrbp = &hba->lrb[pos];
7426 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7427 			    lrbp->lun == lun) {
7428 				ufshcd_clear_cmd(hba, pos);
7429 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7430 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7431 			}
7432 		}
7433 		err = 0;
7434 		goto out;
7435 	}
7436 
7437 	/* clear the commands that were pending for corresponding LUN */
7438 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7439 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7440 		if (hba->lrb[pos].lun == lun)
7441 			__set_bit(pos, &pending_reqs);
7442 	hba->outstanding_reqs &= ~pending_reqs;
7443 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7444 
7445 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7446 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7447 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7448 			not_cleared = 1U << pos &
7449 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7450 			hba->outstanding_reqs |= not_cleared;
7451 			not_cleared_mask |= not_cleared;
7452 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7453 
7454 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7455 				__func__, pos);
7456 		}
7457 	}
7458 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7459 
7460 out:
7461 	hba->req_abort_count = 0;
7462 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7463 	if (!err) {
7464 		err = SUCCESS;
7465 	} else {
7466 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7467 		err = FAILED;
7468 	}
7469 	return err;
7470 }
7471 
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)7472 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7473 {
7474 	struct ufshcd_lrb *lrbp;
7475 	int tag;
7476 
7477 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7478 		lrbp = &hba->lrb[tag];
7479 		lrbp->req_abort_skip = true;
7480 	}
7481 }
7482 
7483 /**
7484  * ufshcd_try_to_abort_task - abort a specific task
7485  * @hba: Pointer to adapter instance
7486  * @tag: Task tag/index to be aborted
7487  *
7488  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7489  * command, and in host controller by clearing the door-bell register. There can
7490  * be race between controller sending the command to the device while abort is
7491  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7492  * really issued and then try to abort it.
7493  *
7494  * Return: zero on success, non-zero on failure.
7495  */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)7496 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7497 {
7498 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7499 	int err;
7500 	int poll_cnt;
7501 	u8 resp = 0xF;
7502 
7503 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7504 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7505 				UFS_QUERY_TASK, &resp);
7506 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7507 			/* cmd pending in the device */
7508 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7509 				__func__, tag);
7510 			break;
7511 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7512 			/*
7513 			 * cmd not pending in the device, check if it is
7514 			 * in transition.
7515 			 */
7516 			dev_info(
7517 				hba->dev,
7518 				"%s: cmd with tag %d not pending in the device.\n",
7519 				__func__, tag);
7520 			if (!ufshcd_cmd_inflight(lrbp->cmd)) {
7521 				dev_info(hba->dev,
7522 					 "%s: cmd with tag=%d completed.\n",
7523 					 __func__, tag);
7524 				return 0;
7525 			}
7526 			usleep_range(100, 200);
7527 		} else {
7528 			dev_err(hba->dev,
7529 				"%s: no response from device. tag = %d, err %d\n",
7530 				__func__, tag, err);
7531 			return err ? : resp;
7532 		}
7533 	}
7534 
7535 	if (!poll_cnt)
7536 		return -EBUSY;
7537 
7538 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7539 			UFS_ABORT_TASK, &resp);
7540 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7541 		if (!err) {
7542 			err = resp; /* service response error */
7543 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7544 				__func__, tag, err);
7545 		}
7546 		return err;
7547 	}
7548 
7549 	err = ufshcd_clear_cmd(hba, tag);
7550 	if (err)
7551 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7552 			__func__, tag, err);
7553 
7554 	return err;
7555 }
7556 
7557 /**
7558  * ufshcd_abort - scsi host template eh_abort_handler callback
7559  * @cmd: SCSI command pointer
7560  *
7561  * Return: SUCCESS or FAILED.
7562  */
ufshcd_abort(struct scsi_cmnd * cmd)7563 static int ufshcd_abort(struct scsi_cmnd *cmd)
7564 {
7565 	struct Scsi_Host *host = cmd->device->host;
7566 	struct ufs_hba *hba = shost_priv(host);
7567 	int tag = scsi_cmd_to_rq(cmd)->tag;
7568 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7569 	unsigned long flags;
7570 	int err = FAILED;
7571 	bool outstanding;
7572 	u32 reg;
7573 
7574 	ufshcd_hold(hba);
7575 
7576 	if (!hba->mcq_enabled) {
7577 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7578 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7579 			/* If command is already aborted/completed, return FAILED. */
7580 			dev_err(hba->dev,
7581 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7582 				__func__, tag, hba->outstanding_reqs, reg);
7583 			goto release;
7584 		}
7585 	}
7586 
7587 	/* Print Transfer Request of aborted task */
7588 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7589 
7590 	/*
7591 	 * Print detailed info about aborted request.
7592 	 * As more than one request might get aborted at the same time,
7593 	 * print full information only for the first aborted request in order
7594 	 * to reduce repeated printouts. For other aborted requests only print
7595 	 * basic details.
7596 	 */
7597 	scsi_print_command(cmd);
7598 	if (!hba->req_abort_count) {
7599 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7600 		ufshcd_print_evt_hist(hba);
7601 		ufshcd_print_host_state(hba);
7602 		ufshcd_print_pwr_info(hba);
7603 		ufshcd_print_tr(hba, tag, true);
7604 	} else {
7605 		ufshcd_print_tr(hba, tag, false);
7606 	}
7607 	hba->req_abort_count++;
7608 
7609 	if (!hba->mcq_enabled && !(reg & (1 << tag))) {
7610 		/* only execute this code in single doorbell mode */
7611 		dev_err(hba->dev,
7612 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7613 		__func__, tag);
7614 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7615 		goto release;
7616 	}
7617 
7618 	/*
7619 	 * Task abort to the device W-LUN is illegal. When this command
7620 	 * will fail, due to spec violation, scsi err handling next step
7621 	 * will be to send LU reset which, again, is a spec violation.
7622 	 * To avoid these unnecessary/illegal steps, first we clean up
7623 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7624 	 * then queue the eh_work and bail.
7625 	 */
7626 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7627 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7628 
7629 		spin_lock_irqsave(host->host_lock, flags);
7630 		hba->force_reset = true;
7631 		ufshcd_schedule_eh_work(hba);
7632 		spin_unlock_irqrestore(host->host_lock, flags);
7633 		goto release;
7634 	}
7635 
7636 	if (hba->mcq_enabled) {
7637 		/* MCQ mode. Branch off to handle abort for mcq mode */
7638 		err = ufshcd_mcq_abort(cmd);
7639 		goto release;
7640 	}
7641 
7642 	/* Skip task abort in case previous aborts failed and report failure */
7643 	if (lrbp->req_abort_skip) {
7644 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7645 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7646 		goto release;
7647 	}
7648 
7649 	err = ufshcd_try_to_abort_task(hba, tag);
7650 	if (err) {
7651 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7652 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7653 		err = FAILED;
7654 		goto release;
7655 	}
7656 
7657 	/*
7658 	 * Clear the corresponding bit from outstanding_reqs since the command
7659 	 * has been aborted successfully.
7660 	 */
7661 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7662 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7663 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7664 
7665 	if (outstanding)
7666 		ufshcd_release_scsi_cmd(hba, lrbp);
7667 
7668 	err = SUCCESS;
7669 
7670 release:
7671 	/* Matches the ufshcd_hold() call at the start of this function. */
7672 	ufshcd_release(hba);
7673 	return err;
7674 }
7675 
7676 /**
7677  * ufshcd_process_probe_result - Process the ufshcd_probe_hba() result.
7678  * @hba: UFS host controller instance.
7679  * @probe_start: time when the ufshcd_probe_hba() call started.
7680  * @ret: ufshcd_probe_hba() return value.
7681  */
ufshcd_process_probe_result(struct ufs_hba * hba,ktime_t probe_start,int ret)7682 static void ufshcd_process_probe_result(struct ufs_hba *hba,
7683 					ktime_t probe_start, int ret)
7684 {
7685 	unsigned long flags;
7686 
7687 	spin_lock_irqsave(hba->host->host_lock, flags);
7688 	if (ret)
7689 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7690 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7691 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7692 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7693 
7694 	trace_ufshcd_init(hba, ret,
7695 			  ktime_to_us(ktime_sub(ktime_get(), probe_start)),
7696 			  hba->curr_dev_pwr_mode, hba->uic_link_state);
7697 }
7698 
7699 /**
7700  * ufshcd_host_reset_and_restore - reset and restore host controller
7701  * @hba: per-adapter instance
7702  *
7703  * Note that host controller reset may issue DME_RESET to
7704  * local and remote (device) Uni-Pro stack and the attributes
7705  * are reset to default state.
7706  *
7707  * Return: zero on success, non-zero on failure.
7708  */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7709 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7710 {
7711 	int err;
7712 
7713 	/*
7714 	 * Stop the host controller and complete the requests
7715 	 * cleared by h/w
7716 	 */
7717 	ufshcd_hba_stop(hba);
7718 	hba->silence_err_logs = true;
7719 	ufshcd_complete_requests(hba, true);
7720 	hba->silence_err_logs = false;
7721 
7722 	/* scale up clocks to max frequency before full reinitialization */
7723 	ufshcd_scale_clks(hba, ULONG_MAX, true);
7724 
7725 	err = ufshcd_hba_enable(hba);
7726 
7727 	/* Establish the link again and restore the device */
7728 	if (!err) {
7729 		ktime_t probe_start = ktime_get();
7730 
7731 		err = ufshcd_device_init(hba, /*init_dev_params=*/false);
7732 		if (!err)
7733 			err = ufshcd_probe_hba(hba, false);
7734 		ufshcd_process_probe_result(hba, probe_start, err);
7735 	}
7736 
7737 	if (err)
7738 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7739 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7740 	return err;
7741 }
7742 
7743 /**
7744  * ufshcd_reset_and_restore - reset and re-initialize host/device
7745  * @hba: per-adapter instance
7746  *
7747  * Reset and recover device, host and re-establish link. This
7748  * is helpful to recover the communication in fatal error conditions.
7749  *
7750  * Return: zero on success, non-zero on failure.
7751  */
ufshcd_reset_and_restore(struct ufs_hba * hba)7752 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7753 {
7754 	u32 saved_err = 0;
7755 	u32 saved_uic_err = 0;
7756 	int err = 0;
7757 	unsigned long flags;
7758 	int retries = MAX_HOST_RESET_RETRIES;
7759 
7760 	spin_lock_irqsave(hba->host->host_lock, flags);
7761 	do {
7762 		/*
7763 		 * This is a fresh start, cache and clear saved error first,
7764 		 * in case new error generated during reset and restore.
7765 		 */
7766 		saved_err |= hba->saved_err;
7767 		saved_uic_err |= hba->saved_uic_err;
7768 		hba->saved_err = 0;
7769 		hba->saved_uic_err = 0;
7770 		hba->force_reset = false;
7771 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7772 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7773 
7774 		/* Reset the attached device */
7775 		ufshcd_device_reset(hba);
7776 
7777 		err = ufshcd_host_reset_and_restore(hba);
7778 
7779 		spin_lock_irqsave(hba->host->host_lock, flags);
7780 		if (err)
7781 			continue;
7782 		/* Do not exit unless operational or dead */
7783 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7784 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7785 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7786 			err = -EAGAIN;
7787 	} while (err && --retries);
7788 
7789 	/*
7790 	 * Inform scsi mid-layer that we did reset and allow to handle
7791 	 * Unit Attention properly.
7792 	 */
7793 	scsi_report_bus_reset(hba->host, 0);
7794 	if (err) {
7795 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7796 		hba->saved_err |= saved_err;
7797 		hba->saved_uic_err |= saved_uic_err;
7798 	}
7799 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7800 
7801 	return err;
7802 }
7803 
7804 /**
7805  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7806  * @cmd: SCSI command pointer
7807  *
7808  * Return: SUCCESS or FAILED.
7809  */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)7810 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7811 {
7812 	int err = SUCCESS;
7813 	unsigned long flags;
7814 	struct ufs_hba *hba;
7815 
7816 	hba = shost_priv(cmd->device->host);
7817 
7818 	/*
7819 	 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7820 	 * stuck in this function waiting for flush_work(&hba->eh_work). And
7821 	 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7822 	 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7823 	 */
7824 	if (hba->pm_op_in_progress) {
7825 		if (ufshcd_link_recovery(hba))
7826 			err = FAILED;
7827 
7828 		return err;
7829 	}
7830 
7831 	spin_lock_irqsave(hba->host->host_lock, flags);
7832 	hba->force_reset = true;
7833 	ufshcd_schedule_eh_work(hba);
7834 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7835 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7836 
7837 	flush_work(&hba->eh_work);
7838 
7839 	spin_lock_irqsave(hba->host->host_lock, flags);
7840 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7841 		err = FAILED;
7842 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7843 
7844 	return err;
7845 }
7846 
7847 /**
7848  * ufshcd_get_max_icc_level - calculate the ICC level
7849  * @sup_curr_uA: max. current supported by the regulator
7850  * @start_scan: row at the desc table to start scan from
7851  * @buff: power descriptor buffer
7852  *
7853  * Return: calculated max ICC level for specific regulator.
7854  */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,const char * buff)7855 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7856 				    const char *buff)
7857 {
7858 	int i;
7859 	int curr_uA;
7860 	u16 data;
7861 	u16 unit;
7862 
7863 	for (i = start_scan; i >= 0; i--) {
7864 		data = get_unaligned_be16(&buff[2 * i]);
7865 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7866 						ATTR_ICC_LVL_UNIT_OFFSET;
7867 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7868 		switch (unit) {
7869 		case UFSHCD_NANO_AMP:
7870 			curr_uA = curr_uA / 1000;
7871 			break;
7872 		case UFSHCD_MILI_AMP:
7873 			curr_uA = curr_uA * 1000;
7874 			break;
7875 		case UFSHCD_AMP:
7876 			curr_uA = curr_uA * 1000 * 1000;
7877 			break;
7878 		case UFSHCD_MICRO_AMP:
7879 		default:
7880 			break;
7881 		}
7882 		if (sup_curr_uA >= curr_uA)
7883 			break;
7884 	}
7885 	if (i < 0) {
7886 		i = 0;
7887 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7888 	}
7889 
7890 	return (u32)i;
7891 }
7892 
7893 /**
7894  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7895  * In case regulators are not initialized we'll return 0
7896  * @hba: per-adapter instance
7897  * @desc_buf: power descriptor buffer to extract ICC levels from.
7898  *
7899  * Return: calculated ICC level.
7900  */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,const u8 * desc_buf)7901 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7902 						const u8 *desc_buf)
7903 {
7904 	u32 icc_level = 0;
7905 
7906 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7907 						!hba->vreg_info.vccq2) {
7908 		/*
7909 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7910 		 * never-ending cycles of messages written back to storage by
7911 		 * user space causing runtime resume, causing more messages and
7912 		 * so on.
7913 		 */
7914 		dev_dbg(hba->dev,
7915 			"%s: Regulator capability was not set, actvIccLevel=%d",
7916 							__func__, icc_level);
7917 		goto out;
7918 	}
7919 
7920 	if (hba->vreg_info.vcc->max_uA)
7921 		icc_level = ufshcd_get_max_icc_level(
7922 				hba->vreg_info.vcc->max_uA,
7923 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7924 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7925 
7926 	if (hba->vreg_info.vccq->max_uA)
7927 		icc_level = ufshcd_get_max_icc_level(
7928 				hba->vreg_info.vccq->max_uA,
7929 				icc_level,
7930 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7931 
7932 	if (hba->vreg_info.vccq2->max_uA)
7933 		icc_level = ufshcd_get_max_icc_level(
7934 				hba->vreg_info.vccq2->max_uA,
7935 				icc_level,
7936 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7937 out:
7938 	return icc_level;
7939 }
7940 
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)7941 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7942 {
7943 	int ret;
7944 	u8 *desc_buf;
7945 	u32 icc_level;
7946 
7947 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7948 	if (!desc_buf)
7949 		return;
7950 
7951 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7952 				     desc_buf, QUERY_DESC_MAX_SIZE);
7953 	if (ret) {
7954 		dev_err(hba->dev,
7955 			"%s: Failed reading power descriptor ret = %d",
7956 			__func__, ret);
7957 		goto out;
7958 	}
7959 
7960 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7961 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7962 
7963 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7964 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7965 
7966 	if (ret)
7967 		dev_err(hba->dev,
7968 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7969 			__func__, icc_level, ret);
7970 
7971 out:
7972 	kfree(desc_buf);
7973 }
7974 
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)7975 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7976 {
7977 	struct Scsi_Host *shost = sdev->host;
7978 
7979 	scsi_autopm_get_device(sdev);
7980 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7981 	if (sdev->rpm_autosuspend)
7982 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7983 						 shost->rpm_autosuspend_delay);
7984 	scsi_autopm_put_device(sdev);
7985 }
7986 
7987 /**
7988  * ufshcd_scsi_add_wlus - Adds required W-LUs
7989  * @hba: per-adapter instance
7990  *
7991  * UFS device specification requires the UFS devices to support 4 well known
7992  * logical units:
7993  *	"REPORT_LUNS" (address: 01h)
7994  *	"UFS Device" (address: 50h)
7995  *	"RPMB" (address: 44h)
7996  *	"BOOT" (address: 30h)
7997  * UFS device's power management needs to be controlled by "POWER CONDITION"
7998  * field of SSU (START STOP UNIT) command. But this "power condition" field
7999  * will take effect only when its sent to "UFS device" well known logical unit
8000  * hence we require the scsi_device instance to represent this logical unit in
8001  * order for the UFS host driver to send the SSU command for power management.
8002  *
8003  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
8004  * Block) LU so user space process can control this LU. User space may also
8005  * want to have access to BOOT LU.
8006  *
8007  * This function adds scsi device instances for each of all well known LUs
8008  * (except "REPORT LUNS" LU).
8009  *
8010  * Return: zero on success (all required W-LUs are added successfully),
8011  * non-zero error value on failure (if failed to add any of the required W-LU).
8012  */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)8013 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8014 {
8015 	int ret = 0;
8016 	struct scsi_device *sdev_boot, *sdev_rpmb;
8017 
8018 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8019 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8020 	if (IS_ERR(hba->ufs_device_wlun)) {
8021 		ret = PTR_ERR(hba->ufs_device_wlun);
8022 		hba->ufs_device_wlun = NULL;
8023 		goto out;
8024 	}
8025 	scsi_device_put(hba->ufs_device_wlun);
8026 
8027 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8028 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8029 	if (IS_ERR(sdev_rpmb)) {
8030 		ret = PTR_ERR(sdev_rpmb);
8031 		goto remove_ufs_device_wlun;
8032 	}
8033 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
8034 	scsi_device_put(sdev_rpmb);
8035 
8036 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
8037 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8038 	if (IS_ERR(sdev_boot)) {
8039 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8040 	} else {
8041 		ufshcd_blk_pm_runtime_init(sdev_boot);
8042 		scsi_device_put(sdev_boot);
8043 	}
8044 	goto out;
8045 
8046 remove_ufs_device_wlun:
8047 	scsi_remove_device(hba->ufs_device_wlun);
8048 out:
8049 	return ret;
8050 }
8051 
ufshcd_wb_probe(struct ufs_hba * hba,const u8 * desc_buf)8052 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8053 {
8054 	struct ufs_dev_info *dev_info = &hba->dev_info;
8055 	u8 lun;
8056 	u32 d_lu_wb_buf_alloc;
8057 	u32 ext_ufs_feature;
8058 
8059 	if (!ufshcd_is_wb_allowed(hba))
8060 		return;
8061 
8062 	/*
8063 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8064 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8065 	 * enabled
8066 	 */
8067 	if (!(dev_info->wspecversion >= 0x310 ||
8068 	      dev_info->wspecversion == 0x220 ||
8069 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8070 		goto wb_disabled;
8071 
8072 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8073 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8074 
8075 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8076 		goto wb_disabled;
8077 
8078 	/*
8079 	 * WB may be supported but not configured while provisioning. The spec
8080 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8081 	 * buffer configured.
8082 	 */
8083 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8084 
8085 	dev_info->b_presrv_uspc_en =
8086 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8087 
8088 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8089 		if (!get_unaligned_be32(desc_buf +
8090 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8091 			goto wb_disabled;
8092 	} else {
8093 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8094 			d_lu_wb_buf_alloc = 0;
8095 			ufshcd_read_unit_desc_param(hba,
8096 					lun,
8097 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8098 					(u8 *)&d_lu_wb_buf_alloc,
8099 					sizeof(d_lu_wb_buf_alloc));
8100 			if (d_lu_wb_buf_alloc) {
8101 				dev_info->wb_dedicated_lu = lun;
8102 				break;
8103 			}
8104 		}
8105 
8106 		if (!d_lu_wb_buf_alloc)
8107 			goto wb_disabled;
8108 	}
8109 
8110 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8111 		goto wb_disabled;
8112 
8113 	return;
8114 
8115 wb_disabled:
8116 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8117 }
8118 
ufshcd_temp_notif_probe(struct ufs_hba * hba,const u8 * desc_buf)8119 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8120 {
8121 	struct ufs_dev_info *dev_info = &hba->dev_info;
8122 	u32 ext_ufs_feature;
8123 	u8 mask = 0;
8124 
8125 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8126 		return;
8127 
8128 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8129 
8130 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8131 		mask |= MASK_EE_TOO_LOW_TEMP;
8132 
8133 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8134 		mask |= MASK_EE_TOO_HIGH_TEMP;
8135 
8136 	if (mask) {
8137 		ufshcd_enable_ee(hba, mask);
8138 		ufs_hwmon_probe(hba, mask);
8139 	}
8140 }
8141 
ufshcd_set_rtt(struct ufs_hba * hba)8142 static void ufshcd_set_rtt(struct ufs_hba *hba)
8143 {
8144 	struct ufs_dev_info *dev_info = &hba->dev_info;
8145 	u32 rtt = 0;
8146 	u32 dev_rtt = 0;
8147 	int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ?
8148 			   hba->vops->max_num_rtt : hba->nortt;
8149 
8150 	/* RTT override makes sense only for UFS-4.0 and above */
8151 	if (dev_info->wspecversion < 0x400)
8152 		return;
8153 
8154 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8155 				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) {
8156 		dev_err(hba->dev, "failed reading bMaxNumOfRTT\n");
8157 		return;
8158 	}
8159 
8160 	/* do not override if it was already written */
8161 	if (dev_rtt != DEFAULT_MAX_NUM_RTT)
8162 		return;
8163 
8164 	rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap);
8165 
8166 	if (rtt == dev_rtt)
8167 		return;
8168 
8169 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8170 				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt))
8171 		dev_err(hba->dev, "failed writing bMaxNumOfRTT\n");
8172 }
8173 
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,const struct ufs_dev_quirk * fixups)8174 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8175 			     const struct ufs_dev_quirk *fixups)
8176 {
8177 	const struct ufs_dev_quirk *f;
8178 	struct ufs_dev_info *dev_info = &hba->dev_info;
8179 
8180 	if (!fixups)
8181 		return;
8182 
8183 	for (f = fixups; f->quirk; f++) {
8184 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8185 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8186 		     ((dev_info->model &&
8187 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8188 		      !strcmp(f->model, UFS_ANY_MODEL)))
8189 			hba->dev_quirks |= f->quirk;
8190 	}
8191 }
8192 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8193 
ufs_fixup_device_setup(struct ufs_hba * hba)8194 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8195 {
8196 	/* fix by general quirk table */
8197 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8198 
8199 	/* allow vendors to fix quirks */
8200 	ufshcd_vops_fixup_dev_quirks(hba);
8201 }
8202 
ufshcd_update_rtc(struct ufs_hba * hba)8203 static void ufshcd_update_rtc(struct ufs_hba *hba)
8204 {
8205 	struct timespec64 ts64;
8206 	int err;
8207 	u32 val;
8208 
8209 	ktime_get_real_ts64(&ts64);
8210 
8211 	if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8212 		dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8213 		return;
8214 	}
8215 
8216 	/*
8217 	 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8218 	 * 2146 is required, it is recommended to choose the relative RTC mode.
8219 	 */
8220 	val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8221 
8222 	/* Skip update RTC if RPM state is not RPM_ACTIVE */
8223 	if (ufshcd_rpm_get_if_active(hba) <= 0)
8224 		return;
8225 
8226 	err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8227 				0, 0, &val);
8228 	ufshcd_rpm_put(hba);
8229 
8230 	if (err)
8231 		dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8232 	else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8233 		hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8234 }
8235 
ufshcd_rtc_work(struct work_struct * work)8236 static void ufshcd_rtc_work(struct work_struct *work)
8237 {
8238 	struct ufs_hba *hba;
8239 
8240 	hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8241 
8242 	 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8243 	if (!ufshcd_is_ufs_dev_busy(hba) &&
8244 	    hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL &&
8245 	    !hba->clk_gating.active_reqs)
8246 		ufshcd_update_rtc(hba);
8247 
8248 	if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8249 		schedule_delayed_work(&hba->ufs_rtc_update_work,
8250 				      msecs_to_jiffies(hba->dev_info.rtc_update_period));
8251 }
8252 
ufs_init_rtc(struct ufs_hba * hba,u8 * desc_buf)8253 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8254 {
8255 	u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8256 	struct ufs_dev_info *dev_info = &hba->dev_info;
8257 
8258 	if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8259 		dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8260 
8261 		/*
8262 		 * The concept of measuring time in Linux as the number of seconds elapsed since
8263 		 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8264 		 * 2010 00:00, here we need to adjust ABS baseline.
8265 		 */
8266 		dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8267 							mktime64(1970, 1, 1, 0, 0, 0);
8268 	} else {
8269 		dev_info->rtc_type = UFS_RTC_RELATIVE;
8270 		dev_info->rtc_time_baseline = 0;
8271 	}
8272 
8273 	/*
8274 	 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8275 	 * how to calculate the specific update period for each time unit. And we disable periodic
8276 	 * RTC update work, let user configure by sysfs node according to specific circumstance.
8277 	 */
8278 	dev_info->rtc_update_period = 0;
8279 }
8280 
ufs_get_device_desc(struct ufs_hba * hba)8281 static int ufs_get_device_desc(struct ufs_hba *hba)
8282 {
8283 	int err;
8284 	u8 model_index;
8285 	u8 *desc_buf;
8286 	struct ufs_dev_info *dev_info = &hba->dev_info;
8287 
8288 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8289 	if (!desc_buf) {
8290 		err = -ENOMEM;
8291 		goto out;
8292 	}
8293 
8294 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8295 				     QUERY_DESC_MAX_SIZE);
8296 	if (err) {
8297 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8298 			__func__, err);
8299 		goto out;
8300 	}
8301 
8302 	/*
8303 	 * getting vendor (manufacturerID) and Bank Index in big endian
8304 	 * format
8305 	 */
8306 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8307 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8308 
8309 	/* getting Specification Version in big endian format */
8310 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8311 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8312 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8313 
8314 	dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP];
8315 
8316 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8317 
8318 	err = ufshcd_read_string_desc(hba, model_index,
8319 				      &dev_info->model, SD_ASCII_STD);
8320 	if (err < 0) {
8321 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8322 			__func__, err);
8323 		goto out;
8324 	}
8325 
8326 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8327 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8328 
8329 	ufs_fixup_device_setup(hba);
8330 
8331 	ufshcd_wb_probe(hba, desc_buf);
8332 
8333 	ufshcd_temp_notif_probe(hba, desc_buf);
8334 
8335 	if (dev_info->wspecversion >= 0x410) {
8336 		hba->critical_health_count = 0;
8337 		ufshcd_enable_ee(hba, MASK_EE_HEALTH_CRITICAL);
8338 	}
8339 
8340 	ufs_init_rtc(hba, desc_buf);
8341 
8342 	/*
8343 	 * ufshcd_read_string_desc returns size of the string
8344 	 * reset the error value
8345 	 */
8346 	err = 0;
8347 
8348 out:
8349 	kfree(desc_buf);
8350 	return err;
8351 }
8352 
ufs_put_device_desc(struct ufs_hba * hba)8353 static void ufs_put_device_desc(struct ufs_hba *hba)
8354 {
8355 	struct ufs_dev_info *dev_info = &hba->dev_info;
8356 
8357 	kfree(dev_info->model);
8358 	dev_info->model = NULL;
8359 }
8360 
8361 /**
8362  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8363  * less than device PA_TACTIVATE time.
8364  * @hba: per-adapter instance
8365  *
8366  * Some UFS devices require host PA_TACTIVATE to be lower than device
8367  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8368  * for such devices.
8369  *
8370  * Return: zero on success, non-zero error value on failure.
8371  */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)8372 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8373 {
8374 	int ret = 0;
8375 	u32 granularity, peer_granularity;
8376 	u32 pa_tactivate, peer_pa_tactivate;
8377 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8378 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8379 
8380 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8381 				  &granularity);
8382 	if (ret)
8383 		goto out;
8384 
8385 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8386 				  &peer_granularity);
8387 	if (ret)
8388 		goto out;
8389 
8390 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8391 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8392 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8393 			__func__, granularity);
8394 		return -EINVAL;
8395 	}
8396 
8397 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8398 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8399 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8400 			__func__, peer_granularity);
8401 		return -EINVAL;
8402 	}
8403 
8404 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8405 	if (ret)
8406 		goto out;
8407 
8408 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8409 				  &peer_pa_tactivate);
8410 	if (ret)
8411 		goto out;
8412 
8413 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8414 	peer_pa_tactivate_us = peer_pa_tactivate *
8415 			     gran_to_us_table[peer_granularity - 1];
8416 
8417 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8418 		u32 new_peer_pa_tactivate;
8419 
8420 		new_peer_pa_tactivate = pa_tactivate_us /
8421 				      gran_to_us_table[peer_granularity - 1];
8422 		new_peer_pa_tactivate++;
8423 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8424 					  new_peer_pa_tactivate);
8425 	}
8426 
8427 out:
8428 	return ret;
8429 }
8430 
ufshcd_tune_unipro_params(struct ufs_hba * hba)8431 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8432 {
8433 	ufshcd_vops_apply_dev_quirks(hba);
8434 
8435 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8436 		/* set 1ms timeout for PA_TACTIVATE */
8437 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8438 
8439 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8440 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8441 }
8442 
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)8443 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8444 {
8445 	hba->ufs_stats.hibern8_exit_cnt = 0;
8446 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8447 	hba->req_abort_count = 0;
8448 }
8449 
ufshcd_device_geo_params_init(struct ufs_hba * hba)8450 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8451 {
8452 	int err;
8453 	u8 *desc_buf;
8454 
8455 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8456 	if (!desc_buf) {
8457 		err = -ENOMEM;
8458 		goto out;
8459 	}
8460 
8461 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8462 				     desc_buf, QUERY_DESC_MAX_SIZE);
8463 	if (err) {
8464 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8465 				__func__, err);
8466 		goto out;
8467 	}
8468 
8469 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8470 		hba->dev_info.max_lu_supported = 32;
8471 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8472 		hba->dev_info.max_lu_supported = 8;
8473 
8474 out:
8475 	kfree(desc_buf);
8476 	return err;
8477 }
8478 
8479 struct ufs_ref_clk {
8480 	unsigned long freq_hz;
8481 	enum ufs_ref_clk_freq val;
8482 };
8483 
8484 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8485 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8486 	{26000000, REF_CLK_FREQ_26_MHZ},
8487 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8488 	{52000000, REF_CLK_FREQ_52_MHZ},
8489 	{0, REF_CLK_FREQ_INVAL},
8490 };
8491 
8492 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)8493 ufs_get_bref_clk_from_hz(unsigned long freq)
8494 {
8495 	int i;
8496 
8497 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8498 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8499 			return ufs_ref_clk_freqs[i].val;
8500 
8501 	return REF_CLK_FREQ_INVAL;
8502 }
8503 
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)8504 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8505 {
8506 	unsigned long freq;
8507 
8508 	freq = clk_get_rate(refclk);
8509 
8510 	hba->dev_ref_clk_freq =
8511 		ufs_get_bref_clk_from_hz(freq);
8512 
8513 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8514 		dev_err(hba->dev,
8515 		"invalid ref_clk setting = %ld\n", freq);
8516 }
8517 
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)8518 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8519 {
8520 	int err;
8521 	u32 ref_clk;
8522 	u32 freq = hba->dev_ref_clk_freq;
8523 
8524 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8525 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8526 
8527 	if (err) {
8528 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8529 			err);
8530 		goto out;
8531 	}
8532 
8533 	if (ref_clk == freq)
8534 		goto out; /* nothing to update */
8535 
8536 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8537 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8538 
8539 	if (err) {
8540 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8541 			ufs_ref_clk_freqs[freq].freq_hz);
8542 		goto out;
8543 	}
8544 
8545 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8546 			ufs_ref_clk_freqs[freq].freq_hz);
8547 
8548 out:
8549 	return err;
8550 }
8551 
ufshcd_device_params_init(struct ufs_hba * hba)8552 static int ufshcd_device_params_init(struct ufs_hba *hba)
8553 {
8554 	bool flag;
8555 	int ret;
8556 
8557 	/* Init UFS geometry descriptor related parameters */
8558 	ret = ufshcd_device_geo_params_init(hba);
8559 	if (ret)
8560 		goto out;
8561 
8562 	/* Check and apply UFS device quirks */
8563 	ret = ufs_get_device_desc(hba);
8564 	if (ret) {
8565 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8566 			__func__, ret);
8567 		goto out;
8568 	}
8569 
8570 	ufshcd_set_rtt(hba);
8571 
8572 	ufshcd_get_ref_clk_gating_wait(hba);
8573 
8574 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8575 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8576 		hba->dev_info.f_power_on_wp_en = flag;
8577 
8578 	/* Probe maximum power mode co-supported by both UFS host and device */
8579 	if (ufshcd_get_max_pwr_mode(hba))
8580 		dev_err(hba->dev,
8581 			"%s: Failed getting max supported power mode\n",
8582 			__func__);
8583 out:
8584 	return ret;
8585 }
8586 
ufshcd_set_timestamp_attr(struct ufs_hba * hba)8587 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8588 {
8589 	int err;
8590 	struct ufs_query_req *request = NULL;
8591 	struct ufs_query_res *response = NULL;
8592 	struct ufs_dev_info *dev_info = &hba->dev_info;
8593 	struct utp_upiu_query_v4_0 *upiu_data;
8594 
8595 	if (dev_info->wspecversion < 0x400)
8596 		return;
8597 
8598 	ufshcd_dev_man_lock(hba);
8599 
8600 	ufshcd_init_query(hba, &request, &response,
8601 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8602 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8603 
8604 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8605 
8606 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8607 
8608 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8609 
8610 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8611 
8612 	if (err)
8613 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8614 			__func__, err);
8615 
8616 	ufshcd_dev_man_unlock(hba);
8617 }
8618 
8619 /**
8620  * ufshcd_add_lus - probe and add UFS logical units
8621  * @hba: per-adapter instance
8622  *
8623  * Return: 0 upon success; < 0 upon failure.
8624  */
ufshcd_add_lus(struct ufs_hba * hba)8625 static int ufshcd_add_lus(struct ufs_hba *hba)
8626 {
8627 	int ret;
8628 
8629 	/* Add required well known logical units to scsi mid layer */
8630 	ret = ufshcd_scsi_add_wlus(hba);
8631 	if (ret)
8632 		goto out;
8633 
8634 	/* Initialize devfreq after UFS device is detected */
8635 	if (ufshcd_is_clkscaling_supported(hba)) {
8636 		memcpy(&hba->clk_scaling.saved_pwr_info,
8637 			&hba->pwr_info,
8638 			sizeof(struct ufs_pa_layer_attr));
8639 		hba->clk_scaling.is_allowed = true;
8640 
8641 		ret = ufshcd_devfreq_init(hba);
8642 		if (ret)
8643 			goto out;
8644 
8645 		hba->clk_scaling.is_enabled = true;
8646 		ufshcd_init_clk_scaling_sysfs(hba);
8647 	}
8648 
8649 	/*
8650 	 * The RTC update code accesses the hba->ufs_device_wlun->sdev_gendev
8651 	 * pointer and hence must only be started after the WLUN pointer has
8652 	 * been initialized by ufshcd_scsi_add_wlus().
8653 	 */
8654 	schedule_delayed_work(&hba->ufs_rtc_update_work,
8655 			      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8656 
8657 	ufs_bsg_probe(hba);
8658 	scsi_scan_host(hba->host);
8659 
8660 out:
8661 	return ret;
8662 }
8663 
8664 /* SDB - Single Doorbell */
ufshcd_release_sdb_queue(struct ufs_hba * hba,int nutrs)8665 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8666 {
8667 	size_t ucdl_size, utrdl_size;
8668 
8669 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8670 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8671 			   hba->ucdl_dma_addr);
8672 
8673 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8674 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8675 			   hba->utrdl_dma_addr);
8676 
8677 	devm_kfree(hba->dev, hba->lrb);
8678 }
8679 
ufshcd_alloc_mcq(struct ufs_hba * hba)8680 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8681 {
8682 	int ret;
8683 	int old_nutrs = hba->nutrs;
8684 
8685 	ret = ufshcd_mcq_decide_queue_depth(hba);
8686 	if (ret < 0)
8687 		return ret;
8688 
8689 	hba->nutrs = ret;
8690 	ret = ufshcd_mcq_init(hba);
8691 	if (ret)
8692 		goto err;
8693 
8694 	/*
8695 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8696 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8697 	 */
8698 	if (hba->nutrs != old_nutrs) {
8699 		ufshcd_release_sdb_queue(hba, old_nutrs);
8700 		ret = ufshcd_memory_alloc(hba);
8701 		if (ret)
8702 			goto err;
8703 		ufshcd_host_memory_configure(hba);
8704 	}
8705 
8706 	ret = ufshcd_mcq_memory_alloc(hba);
8707 	if (ret)
8708 		goto err;
8709 
8710 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8711 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8712 
8713 	return 0;
8714 err:
8715 	hba->nutrs = old_nutrs;
8716 	return ret;
8717 }
8718 
ufshcd_config_mcq(struct ufs_hba * hba)8719 static void ufshcd_config_mcq(struct ufs_hba *hba)
8720 {
8721 	int ret;
8722 	u32 intrs;
8723 
8724 	ret = ufshcd_mcq_vops_config_esi(hba);
8725 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8726 
8727 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8728 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8729 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8730 	ufshcd_enable_intr(hba, intrs);
8731 	ufshcd_mcq_make_queues_operational(hba);
8732 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8733 
8734 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8735 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8736 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8737 		 hba->nutrs);
8738 }
8739 
ufshcd_post_device_init(struct ufs_hba * hba)8740 static int ufshcd_post_device_init(struct ufs_hba *hba)
8741 {
8742 	int ret;
8743 
8744 	ufshcd_tune_unipro_params(hba);
8745 
8746 	/* UFS device is also active now */
8747 	ufshcd_set_ufs_dev_active(hba);
8748 	ufshcd_force_reset_auto_bkops(hba);
8749 
8750 	ufshcd_set_timestamp_attr(hba);
8751 
8752 	if (!hba->max_pwr_info.is_valid)
8753 		return 0;
8754 
8755 	/*
8756 	 * Set the right value to bRefClkFreq before attempting to
8757 	 * switch to HS gears.
8758 	 */
8759 	if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8760 		ufshcd_set_dev_ref_clk(hba);
8761 	/* Gear up to HS gear. */
8762 	ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8763 	if (ret) {
8764 		dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8765 			__func__, ret);
8766 		return ret;
8767 	}
8768 
8769 	return 0;
8770 }
8771 
ufshcd_device_init(struct ufs_hba * hba,bool init_dev_params)8772 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8773 {
8774 	int ret;
8775 
8776 	WARN_ON_ONCE(!hba->scsi_host_added);
8777 
8778 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8779 
8780 	ret = ufshcd_link_startup(hba);
8781 	if (ret)
8782 		return ret;
8783 
8784 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8785 		return ret;
8786 
8787 	/* Debug counters initialization */
8788 	ufshcd_clear_dbg_ufs_stats(hba);
8789 
8790 	/* UniPro link is active now */
8791 	ufshcd_set_link_active(hba);
8792 
8793 	/* Reconfigure MCQ upon reset */
8794 	if (hba->mcq_enabled && !init_dev_params) {
8795 		ufshcd_config_mcq(hba);
8796 		ufshcd_mcq_enable(hba);
8797 	}
8798 
8799 	/* Verify device initialization by sending NOP OUT UPIU */
8800 	ret = ufshcd_verify_dev_init(hba);
8801 	if (ret)
8802 		return ret;
8803 
8804 	/* Initiate UFS initialization, and waiting until completion */
8805 	ret = ufshcd_complete_dev_init(hba);
8806 	if (ret)
8807 		return ret;
8808 
8809 	/*
8810 	 * Initialize UFS device parameters used by driver, these
8811 	 * parameters are associated with UFS descriptors.
8812 	 */
8813 	if (init_dev_params) {
8814 		ret = ufshcd_device_params_init(hba);
8815 		if (ret)
8816 			return ret;
8817 		if (is_mcq_supported(hba) &&
8818 		    hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
8819 			ufshcd_config_mcq(hba);
8820 			ufshcd_mcq_enable(hba);
8821 		}
8822 	}
8823 
8824 	return ufshcd_post_device_init(hba);
8825 }
8826 
8827 /**
8828  * ufshcd_probe_hba - probe hba to detect device and initialize it
8829  * @hba: per-adapter instance
8830  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8831  *
8832  * Execute link-startup and verify device initialization
8833  *
8834  * Return: 0 upon success; < 0 upon failure.
8835  */
ufshcd_probe_hba(struct ufs_hba * hba,bool init_dev_params)8836 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8837 {
8838 	int ret;
8839 
8840 	if (!hba->pm_op_in_progress &&
8841 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8842 		/* Reset the device and controller before doing reinit */
8843 		ufshcd_device_reset(hba);
8844 		ufs_put_device_desc(hba);
8845 		ufshcd_hba_stop(hba);
8846 		ret = ufshcd_hba_enable(hba);
8847 		if (ret) {
8848 			dev_err(hba->dev, "Host controller enable failed\n");
8849 			ufshcd_print_evt_hist(hba);
8850 			ufshcd_print_host_state(hba);
8851 			return ret;
8852 		}
8853 
8854 		/* Reinit the device */
8855 		ret = ufshcd_device_init(hba, init_dev_params);
8856 		if (ret)
8857 			return ret;
8858 	}
8859 
8860 	ufshcd_print_pwr_info(hba);
8861 
8862 	/*
8863 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8864 	 * and for removable UFS card as well, hence always set the parameter.
8865 	 * Note: Error handler may issue the device reset hence resetting
8866 	 * bActiveICCLevel as well so it is always safe to set this here.
8867 	 */
8868 	ufshcd_set_active_icc_lvl(hba);
8869 
8870 	/* Enable UFS Write Booster if supported */
8871 	ufshcd_configure_wb(hba);
8872 
8873 	if (hba->ee_usr_mask)
8874 		ufshcd_write_ee_control(hba);
8875 	ufshcd_configure_auto_hibern8(hba);
8876 
8877 	return 0;
8878 }
8879 
8880 /**
8881  * ufshcd_async_scan - asynchronous execution for probing hba
8882  * @data: data pointer to pass to this function
8883  * @cookie: cookie data
8884  */
ufshcd_async_scan(void * data,async_cookie_t cookie)8885 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8886 {
8887 	struct ufs_hba *hba = (struct ufs_hba *)data;
8888 	ktime_t probe_start;
8889 	int ret;
8890 
8891 	down(&hba->host_sem);
8892 	/* Initialize hba, detect and initialize UFS device */
8893 	probe_start = ktime_get();
8894 	ret = ufshcd_probe_hba(hba, true);
8895 	ufshcd_process_probe_result(hba, probe_start, ret);
8896 	up(&hba->host_sem);
8897 	if (ret)
8898 		goto out;
8899 
8900 	/* Probe and add UFS logical units  */
8901 	ret = ufshcd_add_lus(hba);
8902 
8903 out:
8904 	pm_runtime_put_sync(hba->dev);
8905 
8906 	if (ret)
8907 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8908 }
8909 
ufshcd_eh_timed_out(struct scsi_cmnd * scmd)8910 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8911 {
8912 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8913 
8914 	if (!hba->system_suspending) {
8915 		/* Activate the error handler in the SCSI core. */
8916 		return SCSI_EH_NOT_HANDLED;
8917 	}
8918 
8919 	/*
8920 	 * If we get here we know that no TMFs are outstanding and also that
8921 	 * the only pending command is a START STOP UNIT command. Handle the
8922 	 * timeout of that command directly to prevent a deadlock between
8923 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8924 	 */
8925 	ufshcd_link_recovery(hba);
8926 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8927 		 __func__, hba->outstanding_tasks);
8928 
8929 	return scsi_host_busy(hba->host) ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8930 }
8931 
8932 static const struct attribute_group *ufshcd_driver_groups[] = {
8933 	&ufs_sysfs_unit_descriptor_group,
8934 	&ufs_sysfs_lun_attributes_group,
8935 	NULL,
8936 };
8937 
8938 static struct ufs_hba_variant_params ufs_hba_vps = {
8939 	.hba_enable_delay_us		= 1000,
8940 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8941 	.devfreq_profile.polling_ms	= 100,
8942 	.devfreq_profile.target		= ufshcd_devfreq_target,
8943 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8944 	.ondemand_data.upthreshold	= 70,
8945 	.ondemand_data.downdifferential	= 5,
8946 };
8947 
8948 static const struct scsi_host_template ufshcd_driver_template = {
8949 	.module			= THIS_MODULE,
8950 	.name			= UFSHCD,
8951 	.proc_name		= UFSHCD,
8952 	.map_queues		= ufshcd_map_queues,
8953 	.queuecommand		= ufshcd_queuecommand,
8954 	.mq_poll		= ufshcd_poll,
8955 	.sdev_init		= ufshcd_sdev_init,
8956 	.sdev_configure		= ufshcd_sdev_configure,
8957 	.sdev_destroy		= ufshcd_sdev_destroy,
8958 	.change_queue_depth	= ufshcd_change_queue_depth,
8959 	.eh_abort_handler	= ufshcd_abort,
8960 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8961 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8962 	.eh_timed_out		= ufshcd_eh_timed_out,
8963 	.this_id		= -1,
8964 	.sg_tablesize		= SG_ALL,
8965 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8966 	.max_sectors		= SZ_1M / SECTOR_SIZE,
8967 	.max_host_blocked	= 1,
8968 	.track_queue_depth	= 1,
8969 	.skip_settle_delay	= 1,
8970 	.sdev_groups		= ufshcd_driver_groups,
8971 };
8972 
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)8973 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8974 				   int ua)
8975 {
8976 	int ret;
8977 
8978 	if (!vreg)
8979 		return 0;
8980 
8981 	/*
8982 	 * "set_load" operation shall be required on those regulators
8983 	 * which specifically configured current limitation. Otherwise
8984 	 * zero max_uA may cause unexpected behavior when regulator is
8985 	 * enabled or set as high power mode.
8986 	 */
8987 	if (!vreg->max_uA)
8988 		return 0;
8989 
8990 	ret = regulator_set_load(vreg->reg, ua);
8991 	if (ret < 0) {
8992 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8993 				__func__, vreg->name, ua, ret);
8994 	}
8995 
8996 	return ret;
8997 }
8998 
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)8999 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9000 					 struct ufs_vreg *vreg)
9001 {
9002 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9003 }
9004 
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9005 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9006 					 struct ufs_vreg *vreg)
9007 {
9008 	if (!vreg)
9009 		return 0;
9010 
9011 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9012 }
9013 
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)9014 static int ufshcd_config_vreg(struct device *dev,
9015 		struct ufs_vreg *vreg, bool on)
9016 {
9017 	if (regulator_count_voltages(vreg->reg) <= 0)
9018 		return 0;
9019 
9020 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9021 }
9022 
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)9023 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9024 {
9025 	int ret = 0;
9026 
9027 	if (!vreg || vreg->enabled)
9028 		goto out;
9029 
9030 	ret = ufshcd_config_vreg(dev, vreg, true);
9031 	if (!ret)
9032 		ret = regulator_enable(vreg->reg);
9033 
9034 	if (!ret)
9035 		vreg->enabled = true;
9036 	else
9037 		dev_err(dev, "%s: %s enable failed, err=%d\n",
9038 				__func__, vreg->name, ret);
9039 out:
9040 	return ret;
9041 }
9042 
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)9043 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9044 {
9045 	int ret = 0;
9046 
9047 	if (!vreg || !vreg->enabled || vreg->always_on)
9048 		goto out;
9049 
9050 	ret = regulator_disable(vreg->reg);
9051 
9052 	if (!ret) {
9053 		/* ignore errors on applying disable config */
9054 		ufshcd_config_vreg(dev, vreg, false);
9055 		vreg->enabled = false;
9056 	} else {
9057 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9058 				__func__, vreg->name, ret);
9059 	}
9060 out:
9061 	return ret;
9062 }
9063 
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)9064 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9065 {
9066 	int ret = 0;
9067 	struct device *dev = hba->dev;
9068 	struct ufs_vreg_info *info = &hba->vreg_info;
9069 
9070 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9071 	if (ret)
9072 		goto out;
9073 
9074 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9075 	if (ret)
9076 		goto out;
9077 
9078 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9079 
9080 out:
9081 	if (ret) {
9082 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9083 		ufshcd_toggle_vreg(dev, info->vccq, false);
9084 		ufshcd_toggle_vreg(dev, info->vcc, false);
9085 	}
9086 	return ret;
9087 }
9088 
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)9089 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9090 {
9091 	struct ufs_vreg_info *info = &hba->vreg_info;
9092 
9093 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9094 }
9095 
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)9096 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9097 {
9098 	int ret = 0;
9099 
9100 	if (!vreg)
9101 		goto out;
9102 
9103 	vreg->reg = devm_regulator_get(dev, vreg->name);
9104 	if (IS_ERR(vreg->reg)) {
9105 		ret = PTR_ERR(vreg->reg);
9106 		dev_err(dev, "%s: %s get failed, err=%d\n",
9107 				__func__, vreg->name, ret);
9108 	}
9109 out:
9110 	return ret;
9111 }
9112 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9113 
ufshcd_init_vreg(struct ufs_hba * hba)9114 static int ufshcd_init_vreg(struct ufs_hba *hba)
9115 {
9116 	int ret = 0;
9117 	struct device *dev = hba->dev;
9118 	struct ufs_vreg_info *info = &hba->vreg_info;
9119 
9120 	ret = ufshcd_get_vreg(dev, info->vcc);
9121 	if (ret)
9122 		goto out;
9123 
9124 	ret = ufshcd_get_vreg(dev, info->vccq);
9125 	if (!ret)
9126 		ret = ufshcd_get_vreg(dev, info->vccq2);
9127 out:
9128 	return ret;
9129 }
9130 
ufshcd_init_hba_vreg(struct ufs_hba * hba)9131 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9132 {
9133 	struct ufs_vreg_info *info = &hba->vreg_info;
9134 
9135 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9136 }
9137 
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)9138 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9139 {
9140 	int ret = 0;
9141 	struct ufs_clk_info *clki;
9142 	struct list_head *head = &hba->clk_list_head;
9143 	ktime_t start = ktime_get();
9144 	bool clk_state_changed = false;
9145 
9146 	if (list_empty(head))
9147 		goto out;
9148 
9149 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9150 	if (ret)
9151 		return ret;
9152 
9153 	list_for_each_entry(clki, head, list) {
9154 		if (!IS_ERR_OR_NULL(clki->clk)) {
9155 			/*
9156 			 * Don't disable clocks which are needed
9157 			 * to keep the link active.
9158 			 */
9159 			if (ufshcd_is_link_active(hba) &&
9160 			    clki->keep_link_active)
9161 				continue;
9162 
9163 			clk_state_changed = on ^ clki->enabled;
9164 			if (on && !clki->enabled) {
9165 				ret = clk_prepare_enable(clki->clk);
9166 				if (ret) {
9167 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9168 						__func__, clki->name, ret);
9169 					goto out;
9170 				}
9171 			} else if (!on && clki->enabled) {
9172 				clk_disable_unprepare(clki->clk);
9173 			}
9174 			clki->enabled = on;
9175 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9176 					clki->name, on ? "en" : "dis");
9177 		}
9178 	}
9179 
9180 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9181 	if (ret)
9182 		return ret;
9183 
9184 	if (!ufshcd_is_clkscaling_supported(hba))
9185 		ufshcd_pm_qos_update(hba, on);
9186 out:
9187 	if (ret) {
9188 		list_for_each_entry(clki, head, list) {
9189 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9190 				clk_disable_unprepare(clki->clk);
9191 		}
9192 	} else if (!ret && on && hba->clk_gating.is_initialized) {
9193 		scoped_guard(spinlock_irqsave, &hba->clk_gating.lock)
9194 			hba->clk_gating.state = CLKS_ON;
9195 		trace_ufshcd_clk_gating(hba,
9196 					hba->clk_gating.state);
9197 	}
9198 
9199 	if (clk_state_changed)
9200 		trace_ufshcd_profile_clk_gating(hba,
9201 			(on ? "on" : "off"),
9202 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9203 	return ret;
9204 }
9205 
ufshcd_parse_ref_clk_property(struct ufs_hba * hba)9206 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9207 {
9208 	u32 freq;
9209 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9210 
9211 	if (ret) {
9212 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9213 		return REF_CLK_FREQ_INVAL;
9214 	}
9215 
9216 	return ufs_get_bref_clk_from_hz(freq);
9217 }
9218 
ufshcd_init_clocks(struct ufs_hba * hba)9219 static int ufshcd_init_clocks(struct ufs_hba *hba)
9220 {
9221 	int ret = 0;
9222 	struct ufs_clk_info *clki;
9223 	struct device *dev = hba->dev;
9224 	struct list_head *head = &hba->clk_list_head;
9225 
9226 	if (list_empty(head))
9227 		goto out;
9228 
9229 	list_for_each_entry(clki, head, list) {
9230 		if (!clki->name)
9231 			continue;
9232 
9233 		clki->clk = devm_clk_get(dev, clki->name);
9234 		if (IS_ERR(clki->clk)) {
9235 			ret = PTR_ERR(clki->clk);
9236 			dev_err(dev, "%s: %s clk get failed, %d\n",
9237 					__func__, clki->name, ret);
9238 			goto out;
9239 		}
9240 
9241 		/*
9242 		 * Parse device ref clk freq as per device tree "ref_clk".
9243 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9244 		 * in ufshcd_alloc_host().
9245 		 */
9246 		if (!strcmp(clki->name, "ref_clk"))
9247 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9248 
9249 		if (clki->max_freq) {
9250 			ret = clk_set_rate(clki->clk, clki->max_freq);
9251 			if (ret) {
9252 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9253 					__func__, clki->name,
9254 					clki->max_freq, ret);
9255 				goto out;
9256 			}
9257 			clki->curr_freq = clki->max_freq;
9258 		}
9259 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9260 				clki->name, clk_get_rate(clki->clk));
9261 	}
9262 
9263 	/* Set Max. frequency for all clocks */
9264 	if (hba->use_pm_opp) {
9265 		ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9266 		if (ret) {
9267 			dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9268 				ret);
9269 			goto out;
9270 		}
9271 	}
9272 
9273 out:
9274 	return ret;
9275 }
9276 
ufshcd_variant_hba_init(struct ufs_hba * hba)9277 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9278 {
9279 	int err = 0;
9280 
9281 	if (!hba->vops)
9282 		goto out;
9283 
9284 	err = ufshcd_vops_init(hba);
9285 	if (err)
9286 		dev_err_probe(hba->dev, err,
9287 			      "%s: variant %s init failed with err %d\n",
9288 			      __func__, ufshcd_get_var_name(hba), err);
9289 out:
9290 	return err;
9291 }
9292 
ufshcd_variant_hba_exit(struct ufs_hba * hba)9293 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9294 {
9295 	if (!hba->vops)
9296 		return;
9297 
9298 	ufshcd_vops_exit(hba);
9299 }
9300 
ufshcd_hba_init(struct ufs_hba * hba)9301 static int ufshcd_hba_init(struct ufs_hba *hba)
9302 {
9303 	int err;
9304 
9305 	/*
9306 	 * Handle host controller power separately from the UFS device power
9307 	 * rails as it will help controlling the UFS host controller power
9308 	 * collapse easily which is different than UFS device power collapse.
9309 	 * Also, enable the host controller power before we go ahead with rest
9310 	 * of the initialization here.
9311 	 */
9312 	err = ufshcd_init_hba_vreg(hba);
9313 	if (err)
9314 		goto out;
9315 
9316 	err = ufshcd_setup_hba_vreg(hba, true);
9317 	if (err)
9318 		goto out;
9319 
9320 	err = ufshcd_init_clocks(hba);
9321 	if (err)
9322 		goto out_disable_hba_vreg;
9323 
9324 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9325 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9326 
9327 	err = ufshcd_setup_clocks(hba, true);
9328 	if (err)
9329 		goto out_disable_hba_vreg;
9330 
9331 	err = ufshcd_init_vreg(hba);
9332 	if (err)
9333 		goto out_disable_clks;
9334 
9335 	err = ufshcd_setup_vreg(hba, true);
9336 	if (err)
9337 		goto out_disable_clks;
9338 
9339 	err = ufshcd_variant_hba_init(hba);
9340 	if (err)
9341 		goto out_disable_vreg;
9342 
9343 	ufs_debugfs_hba_init(hba);
9344 	ufs_fault_inject_hba_init(hba);
9345 
9346 	hba->is_powered = true;
9347 	goto out;
9348 
9349 out_disable_vreg:
9350 	ufshcd_setup_vreg(hba, false);
9351 out_disable_clks:
9352 	ufshcd_setup_clocks(hba, false);
9353 out_disable_hba_vreg:
9354 	ufshcd_setup_hba_vreg(hba, false);
9355 out:
9356 	return err;
9357 }
9358 
ufshcd_hba_exit(struct ufs_hba * hba)9359 static void ufshcd_hba_exit(struct ufs_hba *hba)
9360 {
9361 	if (hba->is_powered) {
9362 		ufshcd_pm_qos_exit(hba);
9363 		ufshcd_exit_clk_scaling(hba);
9364 		ufshcd_exit_clk_gating(hba);
9365 		if (hba->eh_wq)
9366 			destroy_workqueue(hba->eh_wq);
9367 		ufs_debugfs_hba_exit(hba);
9368 		ufshcd_variant_hba_exit(hba);
9369 		ufshcd_setup_vreg(hba, false);
9370 		ufshcd_setup_clocks(hba, false);
9371 		ufshcd_setup_hba_vreg(hba, false);
9372 		hba->is_powered = false;
9373 		ufs_put_device_desc(hba);
9374 	}
9375 }
9376 
ufshcd_execute_start_stop(struct scsi_device * sdev,enum ufs_dev_pwr_mode pwr_mode,struct scsi_sense_hdr * sshdr)9377 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9378 				     enum ufs_dev_pwr_mode pwr_mode,
9379 				     struct scsi_sense_hdr *sshdr)
9380 {
9381 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9382 	struct scsi_failure failure_defs[] = {
9383 		{
9384 			.allowed = 2,
9385 			.result = SCMD_FAILURE_RESULT_ANY,
9386 		},
9387 	};
9388 	struct scsi_failures failures = {
9389 		.failure_definitions = failure_defs,
9390 	};
9391 	const struct scsi_exec_args args = {
9392 		.failures = &failures,
9393 		.sshdr = sshdr,
9394 		.req_flags = BLK_MQ_REQ_PM,
9395 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9396 	};
9397 
9398 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9399 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9400 			&args);
9401 }
9402 
9403 /**
9404  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9405  *			     power mode
9406  * @hba: per adapter instance
9407  * @pwr_mode: device power mode to set
9408  *
9409  * Return: 0 if requested power mode is set successfully;
9410  *         < 0 if failed to set the requested power mode.
9411  */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)9412 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9413 				     enum ufs_dev_pwr_mode pwr_mode)
9414 {
9415 	struct scsi_sense_hdr sshdr;
9416 	struct scsi_device *sdp;
9417 	unsigned long flags;
9418 	int ret;
9419 
9420 	spin_lock_irqsave(hba->host->host_lock, flags);
9421 	sdp = hba->ufs_device_wlun;
9422 	if (sdp && scsi_device_online(sdp))
9423 		ret = scsi_device_get(sdp);
9424 	else
9425 		ret = -ENODEV;
9426 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9427 
9428 	if (ret)
9429 		return ret;
9430 
9431 	/*
9432 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9433 	 * handling, which would wait for host to be resumed. Since we know
9434 	 * we are functional while we are here, skip host resume in error
9435 	 * handling context.
9436 	 */
9437 	hba->host->eh_noresume = 1;
9438 
9439 	/*
9440 	 * Current function would be generally called from the power management
9441 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9442 	 * already suspended childs.
9443 	 */
9444 	ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9445 	if (ret) {
9446 		sdev_printk(KERN_WARNING, sdp,
9447 			    "START_STOP failed for power mode: %d, result %x\n",
9448 			    pwr_mode, ret);
9449 		if (ret > 0) {
9450 			if (scsi_sense_valid(&sshdr))
9451 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9452 			ret = -EIO;
9453 		}
9454 	} else {
9455 		hba->curr_dev_pwr_mode = pwr_mode;
9456 	}
9457 
9458 	scsi_device_put(sdp);
9459 	hba->host->eh_noresume = 0;
9460 	return ret;
9461 }
9462 
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,bool check_for_bkops)9463 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9464 					enum uic_link_state req_link_state,
9465 					bool check_for_bkops)
9466 {
9467 	int ret = 0;
9468 
9469 	if (req_link_state == hba->uic_link_state)
9470 		return 0;
9471 
9472 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9473 		ret = ufshcd_uic_hibern8_enter(hba);
9474 		if (!ret) {
9475 			ufshcd_set_link_hibern8(hba);
9476 		} else {
9477 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9478 					__func__, ret);
9479 			goto out;
9480 		}
9481 	}
9482 	/*
9483 	 * If autobkops is enabled, link can't be turned off because
9484 	 * turning off the link would also turn off the device, except in the
9485 	 * case of DeepSleep where the device is expected to remain powered.
9486 	 */
9487 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9488 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9489 		/*
9490 		 * Let's make sure that link is in low power mode, we are doing
9491 		 * this currently by putting the link in Hibern8. Otherway to
9492 		 * put the link in low power mode is to send the DME end point
9493 		 * to device and then send the DME reset command to local
9494 		 * unipro. But putting the link in hibern8 is much faster.
9495 		 *
9496 		 * Note also that putting the link in Hibern8 is a requirement
9497 		 * for entering DeepSleep.
9498 		 */
9499 		ret = ufshcd_uic_hibern8_enter(hba);
9500 		if (ret) {
9501 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9502 					__func__, ret);
9503 			goto out;
9504 		}
9505 		/*
9506 		 * Change controller state to "reset state" which
9507 		 * should also put the link in off/reset state
9508 		 */
9509 		ufshcd_hba_stop(hba);
9510 		/*
9511 		 * TODO: Check if we need any delay to make sure that
9512 		 * controller is reset
9513 		 */
9514 		ufshcd_set_link_off(hba);
9515 	}
9516 
9517 out:
9518 	return ret;
9519 }
9520 
ufshcd_vreg_set_lpm(struct ufs_hba * hba)9521 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9522 {
9523 	bool vcc_off = false;
9524 
9525 	/*
9526 	 * It seems some UFS devices may keep drawing more than sleep current
9527 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9528 	 * To avoid this situation, add 2ms delay before putting these UFS
9529 	 * rails in LPM mode.
9530 	 */
9531 	if (!ufshcd_is_link_active(hba) &&
9532 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9533 		usleep_range(2000, 2100);
9534 
9535 	/*
9536 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9537 	 * power.
9538 	 *
9539 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9540 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9541 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9542 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9543 	 *
9544 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9545 	 * in low power state which would save some power.
9546 	 *
9547 	 * If Write Booster is enabled and the device needs to flush the WB
9548 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9549 	 */
9550 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9551 	    !hba->dev_info.is_lu_power_on_wp) {
9552 		ufshcd_setup_vreg(hba, false);
9553 		vcc_off = true;
9554 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9555 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9556 		vcc_off = true;
9557 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9558 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9559 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9560 		}
9561 	}
9562 
9563 	/*
9564 	 * Some UFS devices require delay after VCC power rail is turned-off.
9565 	 */
9566 	if (vcc_off && hba->vreg_info.vcc &&
9567 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9568 		usleep_range(5000, 5100);
9569 }
9570 
9571 #ifdef CONFIG_PM
ufshcd_vreg_set_hpm(struct ufs_hba * hba)9572 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9573 {
9574 	int ret = 0;
9575 
9576 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9577 	    !hba->dev_info.is_lu_power_on_wp) {
9578 		ret = ufshcd_setup_vreg(hba, true);
9579 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9580 		if (!ufshcd_is_link_active(hba)) {
9581 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9582 			if (ret)
9583 				goto vcc_disable;
9584 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9585 			if (ret)
9586 				goto vccq_lpm;
9587 		}
9588 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9589 	}
9590 	goto out;
9591 
9592 vccq_lpm:
9593 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9594 vcc_disable:
9595 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9596 out:
9597 	return ret;
9598 }
9599 #endif /* CONFIG_PM */
9600 
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)9601 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9602 {
9603 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9604 		ufshcd_setup_hba_vreg(hba, false);
9605 }
9606 
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)9607 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9608 {
9609 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9610 		ufshcd_setup_hba_vreg(hba, true);
9611 }
9612 
__ufshcd_wl_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)9613 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9614 {
9615 	int ret = 0;
9616 	bool check_for_bkops;
9617 	enum ufs_pm_level pm_lvl;
9618 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9619 	enum uic_link_state req_link_state;
9620 
9621 	hba->pm_op_in_progress = true;
9622 	if (pm_op != UFS_SHUTDOWN_PM) {
9623 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9624 			 hba->rpm_lvl : hba->spm_lvl;
9625 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9626 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9627 	} else {
9628 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9629 		req_link_state = UIC_LINK_OFF_STATE;
9630 	}
9631 
9632 	/*
9633 	 * If we can't transition into any of the low power modes
9634 	 * just gate the clocks.
9635 	 */
9636 	ufshcd_hold(hba);
9637 	hba->clk_gating.is_suspended = true;
9638 
9639 	if (ufshcd_is_clkscaling_supported(hba))
9640 		ufshcd_clk_scaling_suspend(hba, true);
9641 
9642 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9643 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9644 		goto vops_suspend;
9645 	}
9646 
9647 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9648 	    (req_link_state == hba->uic_link_state))
9649 		goto enable_scaling;
9650 
9651 	/* UFS device & link must be active before we enter in this function */
9652 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9653 		/*  Wait err handler finish or trigger err recovery */
9654 		if (!ufshcd_eh_in_progress(hba))
9655 			ufshcd_force_error_recovery(hba);
9656 		ret = -EBUSY;
9657 		goto enable_scaling;
9658 	}
9659 
9660 	if (pm_op == UFS_RUNTIME_PM) {
9661 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9662 			/*
9663 			 * The device is idle with no requests in the queue,
9664 			 * allow background operations if bkops status shows
9665 			 * that performance might be impacted.
9666 			 */
9667 			ret = ufshcd_bkops_ctrl(hba);
9668 			if (ret) {
9669 				/*
9670 				 * If return err in suspend flow, IO will hang.
9671 				 * Trigger error handler and break suspend for
9672 				 * error recovery.
9673 				 */
9674 				ufshcd_force_error_recovery(hba);
9675 				ret = -EBUSY;
9676 				goto enable_scaling;
9677 			}
9678 		} else {
9679 			/* make sure that auto bkops is disabled */
9680 			ufshcd_disable_auto_bkops(hba);
9681 		}
9682 		/*
9683 		 * If device needs to do BKOP or WB buffer flush during
9684 		 * Hibern8, keep device power mode as "active power mode"
9685 		 * and VCC supply.
9686 		 */
9687 		hba->dev_info.b_rpm_dev_flush_capable =
9688 			hba->auto_bkops_enabled ||
9689 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9690 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9691 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9692 			ufshcd_wb_need_flush(hba));
9693 	}
9694 
9695 	flush_work(&hba->eeh_work);
9696 
9697 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9698 	if (ret)
9699 		goto enable_scaling;
9700 
9701 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9702 		if (pm_op != UFS_RUNTIME_PM)
9703 			/* ensure that bkops is disabled */
9704 			ufshcd_disable_auto_bkops(hba);
9705 
9706 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9707 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9708 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9709 				/*
9710 				 * If return err in suspend flow, IO will hang.
9711 				 * Trigger error handler and break suspend for
9712 				 * error recovery.
9713 				 */
9714 				ufshcd_force_error_recovery(hba);
9715 				ret = -EBUSY;
9716 			}
9717 			if (ret)
9718 				goto enable_scaling;
9719 		}
9720 	}
9721 
9722 	/*
9723 	 * In the case of DeepSleep, the device is expected to remain powered
9724 	 * with the link off, so do not check for bkops.
9725 	 */
9726 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9727 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9728 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9729 		/*
9730 		 * If return err in suspend flow, IO will hang.
9731 		 * Trigger error handler and break suspend for
9732 		 * error recovery.
9733 		 */
9734 		ufshcd_force_error_recovery(hba);
9735 		ret = -EBUSY;
9736 	}
9737 	if (ret)
9738 		goto set_dev_active;
9739 
9740 vops_suspend:
9741 	/*
9742 	 * Call vendor specific suspend callback. As these callbacks may access
9743 	 * vendor specific host controller register space call them before the
9744 	 * host clocks are ON.
9745 	 */
9746 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9747 	if (ret)
9748 		goto set_link_active;
9749 
9750 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9751 	goto out;
9752 
9753 set_link_active:
9754 	/*
9755 	 * Device hardware reset is required to exit DeepSleep. Also, for
9756 	 * DeepSleep, the link is off so host reset and restore will be done
9757 	 * further below.
9758 	 */
9759 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9760 		ufshcd_device_reset(hba);
9761 		WARN_ON(!ufshcd_is_link_off(hba));
9762 	}
9763 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9764 		ufshcd_set_link_active(hba);
9765 	else if (ufshcd_is_link_off(hba))
9766 		ufshcd_host_reset_and_restore(hba);
9767 set_dev_active:
9768 	/* Can also get here needing to exit DeepSleep */
9769 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9770 		ufshcd_device_reset(hba);
9771 		ufshcd_host_reset_and_restore(hba);
9772 	}
9773 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9774 		ufshcd_disable_auto_bkops(hba);
9775 enable_scaling:
9776 	if (ufshcd_is_clkscaling_supported(hba))
9777 		ufshcd_clk_scaling_suspend(hba, false);
9778 
9779 	hba->dev_info.b_rpm_dev_flush_capable = false;
9780 out:
9781 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9782 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9783 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9784 	}
9785 
9786 	if (ret) {
9787 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9788 		hba->clk_gating.is_suspended = false;
9789 		ufshcd_release(hba);
9790 	}
9791 	hba->pm_op_in_progress = false;
9792 	return ret;
9793 }
9794 
9795 #ifdef CONFIG_PM
__ufshcd_wl_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)9796 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9797 {
9798 	int ret;
9799 	enum uic_link_state old_link_state = hba->uic_link_state;
9800 
9801 	hba->pm_op_in_progress = true;
9802 
9803 	/*
9804 	 * Call vendor specific resume callback. As these callbacks may access
9805 	 * vendor specific host controller register space call them when the
9806 	 * host clocks are ON.
9807 	 */
9808 	ret = ufshcd_vops_resume(hba, pm_op);
9809 	if (ret)
9810 		goto out;
9811 
9812 	/* For DeepSleep, the only supported option is to have the link off */
9813 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9814 
9815 	if (ufshcd_is_link_hibern8(hba)) {
9816 		ret = ufshcd_uic_hibern8_exit(hba);
9817 		if (!ret) {
9818 			ufshcd_set_link_active(hba);
9819 		} else {
9820 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9821 					__func__, ret);
9822 			goto vendor_suspend;
9823 		}
9824 	} else if (ufshcd_is_link_off(hba)) {
9825 		/*
9826 		 * A full initialization of the host and the device is
9827 		 * required since the link was put to off during suspend.
9828 		 * Note, in the case of DeepSleep, the device will exit
9829 		 * DeepSleep due to device reset.
9830 		 */
9831 		ret = ufshcd_reset_and_restore(hba);
9832 		/*
9833 		 * ufshcd_reset_and_restore() should have already
9834 		 * set the link state as active
9835 		 */
9836 		if (ret || !ufshcd_is_link_active(hba))
9837 			goto vendor_suspend;
9838 	}
9839 
9840 	if (!ufshcd_is_ufs_dev_active(hba)) {
9841 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9842 		if (ret)
9843 			goto set_old_link_state;
9844 		ufshcd_set_timestamp_attr(hba);
9845 		schedule_delayed_work(&hba->ufs_rtc_update_work,
9846 				      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
9847 	}
9848 
9849 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9850 		ufshcd_enable_auto_bkops(hba);
9851 	else
9852 		/*
9853 		 * If BKOPs operations are urgently needed at this moment then
9854 		 * keep auto-bkops enabled or else disable it.
9855 		 */
9856 		ufshcd_bkops_ctrl(hba);
9857 
9858 	if (hba->ee_usr_mask)
9859 		ufshcd_write_ee_control(hba);
9860 
9861 	if (ufshcd_is_clkscaling_supported(hba))
9862 		ufshcd_clk_scaling_suspend(hba, false);
9863 
9864 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9865 		hba->dev_info.b_rpm_dev_flush_capable = false;
9866 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9867 	}
9868 
9869 	ufshcd_configure_auto_hibern8(hba);
9870 
9871 	goto out;
9872 
9873 set_old_link_state:
9874 	ufshcd_link_state_transition(hba, old_link_state, 0);
9875 vendor_suspend:
9876 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9877 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9878 out:
9879 	if (ret)
9880 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9881 	hba->clk_gating.is_suspended = false;
9882 	ufshcd_release(hba);
9883 	hba->pm_op_in_progress = false;
9884 	return ret;
9885 }
9886 
ufshcd_wl_runtime_suspend(struct device * dev)9887 static int ufshcd_wl_runtime_suspend(struct device *dev)
9888 {
9889 	struct scsi_device *sdev = to_scsi_device(dev);
9890 	struct ufs_hba *hba;
9891 	int ret;
9892 	ktime_t start = ktime_get();
9893 
9894 	hba = shost_priv(sdev->host);
9895 
9896 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9897 	if (ret)
9898 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9899 
9900 	trace_ufshcd_wl_runtime_suspend(hba, ret,
9901 		ktime_to_us(ktime_sub(ktime_get(), start)),
9902 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9903 
9904 	return ret;
9905 }
9906 
ufshcd_wl_runtime_resume(struct device * dev)9907 static int ufshcd_wl_runtime_resume(struct device *dev)
9908 {
9909 	struct scsi_device *sdev = to_scsi_device(dev);
9910 	struct ufs_hba *hba;
9911 	int ret = 0;
9912 	ktime_t start = ktime_get();
9913 
9914 	hba = shost_priv(sdev->host);
9915 
9916 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9917 	if (ret)
9918 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9919 
9920 	trace_ufshcd_wl_runtime_resume(hba, ret,
9921 		ktime_to_us(ktime_sub(ktime_get(), start)),
9922 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9923 
9924 	return ret;
9925 }
9926 #endif
9927 
9928 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_suspend(struct device * dev)9929 static int ufshcd_wl_suspend(struct device *dev)
9930 {
9931 	struct scsi_device *sdev = to_scsi_device(dev);
9932 	struct ufs_hba *hba;
9933 	int ret = 0;
9934 	ktime_t start = ktime_get();
9935 
9936 	hba = shost_priv(sdev->host);
9937 	down(&hba->host_sem);
9938 	hba->system_suspending = true;
9939 
9940 	if (pm_runtime_suspended(dev))
9941 		goto out;
9942 
9943 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9944 	if (ret) {
9945 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9946 		up(&hba->host_sem);
9947 	}
9948 
9949 out:
9950 	if (!ret)
9951 		hba->is_sys_suspended = true;
9952 	trace_ufshcd_wl_suspend(hba, ret,
9953 		ktime_to_us(ktime_sub(ktime_get(), start)),
9954 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9955 
9956 	return ret;
9957 }
9958 
ufshcd_wl_resume(struct device * dev)9959 static int ufshcd_wl_resume(struct device *dev)
9960 {
9961 	struct scsi_device *sdev = to_scsi_device(dev);
9962 	struct ufs_hba *hba;
9963 	int ret = 0;
9964 	ktime_t start = ktime_get();
9965 
9966 	hba = shost_priv(sdev->host);
9967 
9968 	if (pm_runtime_suspended(dev))
9969 		goto out;
9970 
9971 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9972 	if (ret)
9973 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9974 out:
9975 	trace_ufshcd_wl_resume(hba, ret,
9976 		ktime_to_us(ktime_sub(ktime_get(), start)),
9977 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9978 	if (!ret)
9979 		hba->is_sys_suspended = false;
9980 	hba->system_suspending = false;
9981 	up(&hba->host_sem);
9982 	return ret;
9983 }
9984 #endif
9985 
9986 /**
9987  * ufshcd_suspend - helper function for suspend operations
9988  * @hba: per adapter instance
9989  *
9990  * This function will put disable irqs, turn off clocks
9991  * and set vreg and hba-vreg in lpm mode.
9992  *
9993  * Return: 0 upon success; < 0 upon failure.
9994  */
ufshcd_suspend(struct ufs_hba * hba)9995 static int ufshcd_suspend(struct ufs_hba *hba)
9996 {
9997 	int ret;
9998 
9999 	if (!hba->is_powered)
10000 		return 0;
10001 	/*
10002 	 * Disable the host irq as host controller as there won't be any
10003 	 * host controller transaction expected till resume.
10004 	 */
10005 	ufshcd_disable_irq(hba);
10006 	ret = ufshcd_setup_clocks(hba, false);
10007 	if (ret) {
10008 		ufshcd_enable_irq(hba);
10009 		return ret;
10010 	}
10011 	if (ufshcd_is_clkgating_allowed(hba)) {
10012 		hba->clk_gating.state = CLKS_OFF;
10013 		trace_ufshcd_clk_gating(hba,
10014 					hba->clk_gating.state);
10015 	}
10016 
10017 	ufshcd_vreg_set_lpm(hba);
10018 	/* Put the host controller in low power mode if possible */
10019 	ufshcd_hba_vreg_set_lpm(hba);
10020 	ufshcd_pm_qos_update(hba, false);
10021 	return ret;
10022 }
10023 
10024 #ifdef CONFIG_PM
10025 /**
10026  * ufshcd_resume - helper function for resume operations
10027  * @hba: per adapter instance
10028  *
10029  * This function basically turns on the regulators, clocks and
10030  * irqs of the hba.
10031  *
10032  * Return: 0 for success and non-zero for failure.
10033  */
ufshcd_resume(struct ufs_hba * hba)10034 static int ufshcd_resume(struct ufs_hba *hba)
10035 {
10036 	int ret;
10037 
10038 	if (!hba->is_powered)
10039 		return 0;
10040 
10041 	ufshcd_hba_vreg_set_hpm(hba);
10042 	ret = ufshcd_vreg_set_hpm(hba);
10043 	if (ret)
10044 		goto out;
10045 
10046 	/* Make sure clocks are enabled before accessing controller */
10047 	ret = ufshcd_setup_clocks(hba, true);
10048 	if (ret)
10049 		goto disable_vreg;
10050 
10051 	/* enable the host irq as host controller would be active soon */
10052 	ufshcd_enable_irq(hba);
10053 
10054 	goto out;
10055 
10056 disable_vreg:
10057 	ufshcd_vreg_set_lpm(hba);
10058 out:
10059 	if (ret)
10060 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10061 	return ret;
10062 }
10063 #endif /* CONFIG_PM */
10064 
10065 #ifdef CONFIG_PM_SLEEP
10066 /**
10067  * ufshcd_system_suspend - system suspend callback
10068  * @dev: Device associated with the UFS controller.
10069  *
10070  * Executed before putting the system into a sleep state in which the contents
10071  * of main memory are preserved.
10072  *
10073  * Return: 0 for success and non-zero for failure.
10074  */
ufshcd_system_suspend(struct device * dev)10075 int ufshcd_system_suspend(struct device *dev)
10076 {
10077 	struct ufs_hba *hba = dev_get_drvdata(dev);
10078 	int ret = 0;
10079 	ktime_t start = ktime_get();
10080 
10081 	if (pm_runtime_suspended(hba->dev))
10082 		goto out;
10083 
10084 	ret = ufshcd_suspend(hba);
10085 out:
10086 	trace_ufshcd_system_suspend(hba, ret,
10087 		ktime_to_us(ktime_sub(ktime_get(), start)),
10088 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10089 	return ret;
10090 }
10091 EXPORT_SYMBOL(ufshcd_system_suspend);
10092 
10093 /**
10094  * ufshcd_system_resume - system resume callback
10095  * @dev: Device associated with the UFS controller.
10096  *
10097  * Executed after waking the system up from a sleep state in which the contents
10098  * of main memory were preserved.
10099  *
10100  * Return: 0 for success and non-zero for failure.
10101  */
ufshcd_system_resume(struct device * dev)10102 int ufshcd_system_resume(struct device *dev)
10103 {
10104 	struct ufs_hba *hba = dev_get_drvdata(dev);
10105 	ktime_t start = ktime_get();
10106 	int ret = 0;
10107 
10108 	if (pm_runtime_suspended(hba->dev))
10109 		goto out;
10110 
10111 	ret = ufshcd_resume(hba);
10112 
10113 out:
10114 	trace_ufshcd_system_resume(hba, ret,
10115 		ktime_to_us(ktime_sub(ktime_get(), start)),
10116 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10117 
10118 	return ret;
10119 }
10120 EXPORT_SYMBOL(ufshcd_system_resume);
10121 #endif /* CONFIG_PM_SLEEP */
10122 
10123 #ifdef CONFIG_PM
10124 /**
10125  * ufshcd_runtime_suspend - runtime suspend callback
10126  * @dev: Device associated with the UFS controller.
10127  *
10128  * Check the description of ufshcd_suspend() function for more details.
10129  *
10130  * Return: 0 for success and non-zero for failure.
10131  */
ufshcd_runtime_suspend(struct device * dev)10132 int ufshcd_runtime_suspend(struct device *dev)
10133 {
10134 	struct ufs_hba *hba = dev_get_drvdata(dev);
10135 	int ret;
10136 	ktime_t start = ktime_get();
10137 
10138 	ret = ufshcd_suspend(hba);
10139 
10140 	trace_ufshcd_runtime_suspend(hba, ret,
10141 		ktime_to_us(ktime_sub(ktime_get(), start)),
10142 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10143 	return ret;
10144 }
10145 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10146 
10147 /**
10148  * ufshcd_runtime_resume - runtime resume routine
10149  * @dev: Device associated with the UFS controller.
10150  *
10151  * This function basically brings controller
10152  * to active state. Following operations are done in this function:
10153  *
10154  * 1. Turn on all the controller related clocks
10155  * 2. Turn ON VCC rail
10156  *
10157  * Return: 0 upon success; < 0 upon failure.
10158  */
ufshcd_runtime_resume(struct device * dev)10159 int ufshcd_runtime_resume(struct device *dev)
10160 {
10161 	struct ufs_hba *hba = dev_get_drvdata(dev);
10162 	int ret;
10163 	ktime_t start = ktime_get();
10164 
10165 	ret = ufshcd_resume(hba);
10166 
10167 	trace_ufshcd_runtime_resume(hba, ret,
10168 		ktime_to_us(ktime_sub(ktime_get(), start)),
10169 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10170 	return ret;
10171 }
10172 EXPORT_SYMBOL(ufshcd_runtime_resume);
10173 #endif /* CONFIG_PM */
10174 
ufshcd_wl_shutdown(struct device * dev)10175 static void ufshcd_wl_shutdown(struct device *dev)
10176 {
10177 	struct scsi_device *sdev = to_scsi_device(dev);
10178 	struct ufs_hba *hba = shost_priv(sdev->host);
10179 
10180 	down(&hba->host_sem);
10181 	hba->shutting_down = true;
10182 	up(&hba->host_sem);
10183 
10184 	/* Turn on everything while shutting down */
10185 	ufshcd_rpm_get_sync(hba);
10186 	scsi_device_quiesce(sdev);
10187 	shost_for_each_device(sdev, hba->host) {
10188 		if (sdev == hba->ufs_device_wlun)
10189 			continue;
10190 		mutex_lock(&sdev->state_mutex);
10191 		scsi_device_set_state(sdev, SDEV_OFFLINE);
10192 		mutex_unlock(&sdev->state_mutex);
10193 	}
10194 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10195 
10196 	/*
10197 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10198 	 * clocks.
10199 	 */
10200 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10201 		ufshcd_suspend(hba);
10202 
10203 	hba->is_powered = false;
10204 }
10205 
10206 /**
10207  * ufshcd_remove - de-allocate SCSI host and host memory space
10208  *		data structure memory
10209  * @hba: per adapter instance
10210  */
ufshcd_remove(struct ufs_hba * hba)10211 void ufshcd_remove(struct ufs_hba *hba)
10212 {
10213 	if (hba->ufs_device_wlun)
10214 		ufshcd_rpm_get_sync(hba);
10215 	ufs_hwmon_remove(hba);
10216 	ufs_bsg_remove(hba);
10217 	ufs_sysfs_remove_nodes(hba->dev);
10218 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10219 	blk_mq_destroy_queue(hba->tmf_queue);
10220 	blk_put_queue(hba->tmf_queue);
10221 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10222 	if (hba->scsi_host_added)
10223 		scsi_remove_host(hba->host);
10224 	/* disable interrupts */
10225 	ufshcd_disable_intr(hba, hba->intr_mask);
10226 	ufshcd_hba_stop(hba);
10227 	ufshcd_hba_exit(hba);
10228 }
10229 EXPORT_SYMBOL_GPL(ufshcd_remove);
10230 
10231 #ifdef CONFIG_PM_SLEEP
ufshcd_system_freeze(struct device * dev)10232 int ufshcd_system_freeze(struct device *dev)
10233 {
10234 
10235 	return ufshcd_system_suspend(dev);
10236 
10237 }
10238 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10239 
ufshcd_system_restore(struct device * dev)10240 int ufshcd_system_restore(struct device *dev)
10241 {
10242 
10243 	struct ufs_hba *hba = dev_get_drvdata(dev);
10244 	int ret;
10245 
10246 	ret = ufshcd_system_resume(dev);
10247 	if (ret)
10248 		return ret;
10249 
10250 	/* Configure UTRL and UTMRL base address registers */
10251 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10252 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10253 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10254 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10255 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10256 			REG_UTP_TASK_REQ_LIST_BASE_L);
10257 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10258 			REG_UTP_TASK_REQ_LIST_BASE_H);
10259 	/*
10260 	 * Make sure that UTRL and UTMRL base address registers
10261 	 * are updated with the latest queue addresses. Only after
10262 	 * updating these addresses, we can queue the new commands.
10263 	 */
10264 	ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10265 
10266 	return 0;
10267 
10268 }
10269 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10270 
ufshcd_system_thaw(struct device * dev)10271 int ufshcd_system_thaw(struct device *dev)
10272 {
10273 	return ufshcd_system_resume(dev);
10274 }
10275 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10276 #endif /* CONFIG_PM_SLEEP  */
10277 
10278 /**
10279  * ufshcd_set_dma_mask - Set dma mask based on the controller
10280  *			 addressing capability
10281  * @hba: per adapter instance
10282  *
10283  * Return: 0 for success, non-zero for failure.
10284  */
ufshcd_set_dma_mask(struct ufs_hba * hba)10285 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10286 {
10287 	if (hba->vops && hba->vops->set_dma_mask)
10288 		return hba->vops->set_dma_mask(hba);
10289 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10290 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10291 			return 0;
10292 	}
10293 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10294 }
10295 
10296 /**
10297  * ufshcd_devres_release - devres cleanup handler, invoked during release of
10298  *			   hba->dev
10299  * @host: pointer to SCSI host
10300  */
ufshcd_devres_release(void * host)10301 static void ufshcd_devres_release(void *host)
10302 {
10303 	scsi_host_put(host);
10304 }
10305 
10306 /**
10307  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10308  * @dev: pointer to device handle
10309  * @hba_handle: driver private handle
10310  *
10311  * Return: 0 on success, non-zero value on failure.
10312  *
10313  * NOTE: There is no corresponding ufshcd_dealloc_host() because this function
10314  * keeps track of its allocations using devres and deallocates everything on
10315  * device removal automatically.
10316  */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)10317 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10318 {
10319 	struct Scsi_Host *host;
10320 	struct ufs_hba *hba;
10321 	int err = 0;
10322 
10323 	if (!dev) {
10324 		dev_err(dev,
10325 		"Invalid memory reference for dev is NULL\n");
10326 		err = -ENODEV;
10327 		goto out_error;
10328 	}
10329 
10330 	host = scsi_host_alloc(&ufshcd_driver_template,
10331 				sizeof(struct ufs_hba));
10332 	if (!host) {
10333 		dev_err(dev, "scsi_host_alloc failed\n");
10334 		err = -ENOMEM;
10335 		goto out_error;
10336 	}
10337 
10338 	err = devm_add_action_or_reset(dev, ufshcd_devres_release,
10339 				       host);
10340 	if (err)
10341 		return dev_err_probe(dev, err,
10342 				     "failed to add ufshcd dealloc action\n");
10343 
10344 	host->nr_maps = HCTX_TYPE_POLL + 1;
10345 	hba = shost_priv(host);
10346 	hba->host = host;
10347 	hba->dev = dev;
10348 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10349 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10350 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10351 	INIT_LIST_HEAD(&hba->clk_list_head);
10352 	spin_lock_init(&hba->outstanding_lock);
10353 
10354 	*hba_handle = hba;
10355 
10356 out_error:
10357 	return err;
10358 }
10359 EXPORT_SYMBOL(ufshcd_alloc_host);
10360 
10361 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)10362 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10363 				     const struct blk_mq_queue_data *qd)
10364 {
10365 	WARN_ON_ONCE(true);
10366 	return BLK_STS_NOTSUPP;
10367 }
10368 
10369 static const struct blk_mq_ops ufshcd_tmf_ops = {
10370 	.queue_rq = ufshcd_queue_tmf,
10371 };
10372 
ufshcd_add_scsi_host(struct ufs_hba * hba)10373 static int ufshcd_add_scsi_host(struct ufs_hba *hba)
10374 {
10375 	int err;
10376 
10377 	if (is_mcq_supported(hba)) {
10378 		ufshcd_mcq_enable(hba);
10379 		err = ufshcd_alloc_mcq(hba);
10380 		if (!err) {
10381 			ufshcd_config_mcq(hba);
10382 		} else {
10383 			/* Continue with SDB mode */
10384 			ufshcd_mcq_disable(hba);
10385 			use_mcq_mode = false;
10386 			dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
10387 				err);
10388 		}
10389 	}
10390 	if (!is_mcq_supported(hba) && !hba->lsdb_sup) {
10391 		dev_err(hba->dev,
10392 			"%s: failed to initialize (legacy doorbell mode not supported)\n",
10393 			__func__);
10394 		return -EINVAL;
10395 	}
10396 
10397 	err = scsi_add_host(hba->host, hba->dev);
10398 	if (err) {
10399 		dev_err(hba->dev, "scsi_add_host failed\n");
10400 		return err;
10401 	}
10402 	hba->scsi_host_added = true;
10403 
10404 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10405 		.nr_hw_queues	= 1,
10406 		.queue_depth	= hba->nutmrs,
10407 		.ops		= &ufshcd_tmf_ops,
10408 	};
10409 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10410 	if (err < 0)
10411 		goto remove_scsi_host;
10412 	hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10413 	if (IS_ERR(hba->tmf_queue)) {
10414 		err = PTR_ERR(hba->tmf_queue);
10415 		goto free_tmf_tag_set;
10416 	}
10417 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10418 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10419 	if (!hba->tmf_rqs) {
10420 		err = -ENOMEM;
10421 		goto free_tmf_queue;
10422 	}
10423 
10424 	return 0;
10425 
10426 free_tmf_queue:
10427 	blk_mq_destroy_queue(hba->tmf_queue);
10428 	blk_put_queue(hba->tmf_queue);
10429 
10430 free_tmf_tag_set:
10431 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10432 
10433 remove_scsi_host:
10434 	if (hba->scsi_host_added)
10435 		scsi_remove_host(hba->host);
10436 
10437 	return err;
10438 }
10439 
10440 /**
10441  * ufshcd_init - Driver initialization routine
10442  * @hba: per-adapter instance
10443  * @mmio_base: base register address
10444  * @irq: Interrupt line of device
10445  *
10446  * Return: 0 on success, non-zero value on failure.
10447  */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)10448 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10449 {
10450 	int err;
10451 	struct Scsi_Host *host = hba->host;
10452 	struct device *dev = hba->dev;
10453 
10454 	/*
10455 	 * dev_set_drvdata() must be called before any callbacks are registered
10456 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10457 	 * sysfs).
10458 	 */
10459 	dev_set_drvdata(dev, hba);
10460 
10461 	if (!mmio_base) {
10462 		dev_err(hba->dev,
10463 		"Invalid memory reference for mmio_base is NULL\n");
10464 		err = -ENODEV;
10465 		goto out_error;
10466 	}
10467 
10468 	hba->mmio_base = mmio_base;
10469 	hba->irq = irq;
10470 	hba->vps = &ufs_hba_vps;
10471 
10472 	/*
10473 	 * Initialize clk_gating.lock early since it is being used in
10474 	 * ufshcd_setup_clocks()
10475 	 */
10476 	spin_lock_init(&hba->clk_gating.lock);
10477 
10478 	/*
10479 	 * Set the default power management level for runtime and system PM.
10480 	 * Host controller drivers can override them in their
10481 	 * 'ufs_hba_variant_ops::init' callback.
10482 	 *
10483 	 * Default power saving mode is to keep UFS link in Hibern8 state
10484 	 * and UFS device in sleep state.
10485 	 */
10486 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10487 						UFS_SLEEP_PWR_MODE,
10488 						UIC_LINK_HIBERN8_STATE);
10489 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10490 						UFS_SLEEP_PWR_MODE,
10491 						UIC_LINK_HIBERN8_STATE);
10492 
10493 	err = ufshcd_hba_init(hba);
10494 	if (err)
10495 		goto out_error;
10496 
10497 	/* Read capabilities registers */
10498 	err = ufshcd_hba_capabilities(hba);
10499 	if (err)
10500 		goto out_disable;
10501 
10502 	/* Get UFS version supported by the controller */
10503 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10504 
10505 	/* Get Interrupt bit mask per version */
10506 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10507 
10508 	err = ufshcd_set_dma_mask(hba);
10509 	if (err) {
10510 		dev_err(hba->dev, "set dma mask failed\n");
10511 		goto out_disable;
10512 	}
10513 
10514 	/* Allocate memory for host memory space */
10515 	err = ufshcd_memory_alloc(hba);
10516 	if (err) {
10517 		dev_err(hba->dev, "Memory allocation failed\n");
10518 		goto out_disable;
10519 	}
10520 
10521 	/* Configure LRB */
10522 	ufshcd_host_memory_configure(hba);
10523 
10524 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10525 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10526 	host->max_id = UFSHCD_MAX_ID;
10527 	host->max_lun = UFS_MAX_LUNS;
10528 	host->max_channel = UFSHCD_MAX_CHANNEL;
10529 	host->unique_id = host->host_no;
10530 	host->max_cmd_len = UFS_CDB_SIZE;
10531 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10532 
10533 	/* Use default RPM delay if host not set */
10534 	if (host->rpm_autosuspend_delay == 0)
10535 		host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10536 
10537 	hba->max_pwr_info.is_valid = false;
10538 
10539 	/* Initialize work queues */
10540 	hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM,
10541 					     hba->host->host_no);
10542 	if (!hba->eh_wq) {
10543 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10544 			__func__);
10545 		err = -ENOMEM;
10546 		goto out_disable;
10547 	}
10548 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10549 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10550 
10551 	sema_init(&hba->host_sem, 1);
10552 
10553 	/* Initialize UIC command mutex */
10554 	mutex_init(&hba->uic_cmd_mutex);
10555 
10556 	/* Initialize mutex for device management commands */
10557 	mutex_init(&hba->dev_cmd.lock);
10558 
10559 	/* Initialize mutex for exception event control */
10560 	mutex_init(&hba->ee_ctrl_mutex);
10561 
10562 	mutex_init(&hba->wb_mutex);
10563 	init_rwsem(&hba->clk_scaling_lock);
10564 
10565 	ufshcd_init_clk_gating(hba);
10566 
10567 	ufshcd_init_clk_scaling(hba);
10568 
10569 	/*
10570 	 * In order to avoid any spurious interrupt immediately after
10571 	 * registering UFS controller interrupt handler, clear any pending UFS
10572 	 * interrupt status and disable all the UFS interrupts.
10573 	 */
10574 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10575 		      REG_INTERRUPT_STATUS);
10576 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10577 	/*
10578 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10579 	 * status is cleared before registering UFS interrupt handler.
10580 	 */
10581 	ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10582 
10583 	/* IRQ registration */
10584 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10585 	if (err) {
10586 		dev_err(hba->dev, "request irq failed\n");
10587 		goto out_disable;
10588 	} else {
10589 		hba->is_irq_enabled = true;
10590 	}
10591 
10592 	/* Reset the attached device */
10593 	ufshcd_device_reset(hba);
10594 
10595 	ufshcd_init_crypto(hba);
10596 
10597 	/* Host controller enable */
10598 	err = ufshcd_hba_enable(hba);
10599 	if (err) {
10600 		dev_err(hba->dev, "Host controller enable failed\n");
10601 		ufshcd_print_evt_hist(hba);
10602 		ufshcd_print_host_state(hba);
10603 		goto out_disable;
10604 	}
10605 
10606 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10607 	INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10608 
10609 	/* Set the default auto-hiberate idle timer value to 150 ms */
10610 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10611 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10612 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10613 	}
10614 
10615 	/* Hold auto suspend until async scan completes */
10616 	pm_runtime_get_sync(dev);
10617 
10618 	/*
10619 	 * We are assuming that device wasn't put in sleep/power-down
10620 	 * state exclusively during the boot stage before kernel.
10621 	 * This assumption helps avoid doing link startup twice during
10622 	 * ufshcd_probe_hba().
10623 	 */
10624 	ufshcd_set_ufs_dev_active(hba);
10625 
10626 	/* Initialize hba, detect and initialize UFS device */
10627 	ktime_t probe_start = ktime_get();
10628 
10629 	hba->ufshcd_state = UFSHCD_STATE_RESET;
10630 
10631 	err = ufshcd_link_startup(hba);
10632 	if (err)
10633 		goto out_disable;
10634 
10635 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
10636 		goto initialized;
10637 
10638 	/* Debug counters initialization */
10639 	ufshcd_clear_dbg_ufs_stats(hba);
10640 
10641 	/* UniPro link is active now */
10642 	ufshcd_set_link_active(hba);
10643 
10644 	/* Verify device initialization by sending NOP OUT UPIU */
10645 	err = ufshcd_verify_dev_init(hba);
10646 	if (err)
10647 		goto out_disable;
10648 
10649 	/* Initiate UFS initialization, and waiting until completion */
10650 	err = ufshcd_complete_dev_init(hba);
10651 	if (err)
10652 		goto out_disable;
10653 
10654 	err = ufshcd_device_params_init(hba);
10655 	if (err)
10656 		goto out_disable;
10657 
10658 	err = ufshcd_post_device_init(hba);
10659 
10660 initialized:
10661 	ufshcd_process_probe_result(hba, probe_start, err);
10662 	if (err)
10663 		goto out_disable;
10664 
10665 	err = ufshcd_add_scsi_host(hba);
10666 	if (err)
10667 		goto out_disable;
10668 
10669 	async_schedule(ufshcd_async_scan, hba);
10670 	ufs_sysfs_add_nodes(hba->dev);
10671 
10672 	device_enable_async_suspend(dev);
10673 	ufshcd_pm_qos_init(hba);
10674 	return 0;
10675 
10676 out_disable:
10677 	hba->is_irq_enabled = false;
10678 	ufshcd_hba_exit(hba);
10679 out_error:
10680 	return err;
10681 }
10682 EXPORT_SYMBOL_GPL(ufshcd_init);
10683 
ufshcd_resume_complete(struct device * dev)10684 void ufshcd_resume_complete(struct device *dev)
10685 {
10686 	struct ufs_hba *hba = dev_get_drvdata(dev);
10687 
10688 	if (hba->complete_put) {
10689 		ufshcd_rpm_put(hba);
10690 		hba->complete_put = false;
10691 	}
10692 }
10693 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10694 
ufshcd_rpm_ok_for_spm(struct ufs_hba * hba)10695 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10696 {
10697 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10698 	enum ufs_dev_pwr_mode dev_pwr_mode;
10699 	enum uic_link_state link_state;
10700 	unsigned long flags;
10701 	bool res;
10702 
10703 	spin_lock_irqsave(&dev->power.lock, flags);
10704 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10705 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10706 	res = pm_runtime_suspended(dev) &&
10707 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10708 	      hba->uic_link_state == link_state &&
10709 	      !hba->dev_info.b_rpm_dev_flush_capable;
10710 	spin_unlock_irqrestore(&dev->power.lock, flags);
10711 
10712 	return res;
10713 }
10714 
__ufshcd_suspend_prepare(struct device * dev,bool rpm_ok_for_spm)10715 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10716 {
10717 	struct ufs_hba *hba = dev_get_drvdata(dev);
10718 	int ret;
10719 
10720 	/*
10721 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10722 	 * are same. And it doesn't wake up the device for system-suspend
10723 	 * if it's runtime suspended. But ufs doesn't follow that.
10724 	 * Refer ufshcd_resume_complete()
10725 	 */
10726 	if (hba->ufs_device_wlun) {
10727 		/* Prevent runtime suspend */
10728 		ufshcd_rpm_get_noresume(hba);
10729 		/*
10730 		 * Check if already runtime suspended in same state as system
10731 		 * suspend would be.
10732 		 */
10733 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10734 			/* RPM state is not ok for SPM, so runtime resume */
10735 			ret = ufshcd_rpm_resume(hba);
10736 			if (ret < 0 && ret != -EACCES) {
10737 				ufshcd_rpm_put(hba);
10738 				return ret;
10739 			}
10740 		}
10741 		hba->complete_put = true;
10742 	}
10743 	return 0;
10744 }
10745 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10746 
ufshcd_suspend_prepare(struct device * dev)10747 int ufshcd_suspend_prepare(struct device *dev)
10748 {
10749 	return __ufshcd_suspend_prepare(dev, true);
10750 }
10751 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10752 
10753 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_poweroff(struct device * dev)10754 static int ufshcd_wl_poweroff(struct device *dev)
10755 {
10756 	struct scsi_device *sdev = to_scsi_device(dev);
10757 	struct ufs_hba *hba = shost_priv(sdev->host);
10758 
10759 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10760 	return 0;
10761 }
10762 #endif
10763 
ufshcd_wl_probe(struct device * dev)10764 static int ufshcd_wl_probe(struct device *dev)
10765 {
10766 	struct scsi_device *sdev = to_scsi_device(dev);
10767 
10768 	if (!is_device_wlun(sdev))
10769 		return -ENODEV;
10770 
10771 	blk_pm_runtime_init(sdev->request_queue, dev);
10772 	pm_runtime_set_autosuspend_delay(dev, 0);
10773 	pm_runtime_allow(dev);
10774 
10775 	return  0;
10776 }
10777 
ufshcd_wl_remove(struct device * dev)10778 static int ufshcd_wl_remove(struct device *dev)
10779 {
10780 	pm_runtime_forbid(dev);
10781 	return 0;
10782 }
10783 
10784 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10785 #ifdef CONFIG_PM_SLEEP
10786 	.suspend = ufshcd_wl_suspend,
10787 	.resume = ufshcd_wl_resume,
10788 	.freeze = ufshcd_wl_suspend,
10789 	.thaw = ufshcd_wl_resume,
10790 	.poweroff = ufshcd_wl_poweroff,
10791 	.restore = ufshcd_wl_resume,
10792 #endif
10793 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10794 };
10795 
ufshcd_check_header_layout(void)10796 static void ufshcd_check_header_layout(void)
10797 {
10798 	/*
10799 	 * gcc compilers before version 10 cannot do constant-folding for
10800 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10801 	 * before.
10802 	 */
10803 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10804 		return;
10805 
10806 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10807 				.cci = 3})[0] != 3);
10808 
10809 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10810 				.ehs_length = 2})[1] != 2);
10811 
10812 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10813 				.enable_crypto = 1})[2]
10814 		     != 0x80);
10815 
10816 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10817 					.command_type = 5,
10818 					.data_direction = 3,
10819 					.interrupt = 1,
10820 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10821 
10822 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10823 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10824 		cpu_to_le32(0xdeadbeef));
10825 
10826 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10827 				.ocs = 4})[8] != 4);
10828 
10829 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10830 				.cds = 5})[9] != 5);
10831 
10832 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10833 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10834 		cpu_to_le32(0xbadcafe));
10835 
10836 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10837 			     .iid = 0xf })[4] != 0xf0);
10838 
10839 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10840 			     .command_set_type = 0xf })[4] != 0xf);
10841 }
10842 
10843 /*
10844  * ufs_dev_wlun_template - describes ufs device wlun
10845  * ufs-device wlun - used to send pm commands
10846  * All luns are consumers of ufs-device wlun.
10847  *
10848  * Currently, no sd driver is present for wluns.
10849  * Hence the no specific pm operations are performed.
10850  * With ufs design, SSU should be sent to ufs-device wlun.
10851  * Hence register a scsi driver for ufs wluns only.
10852  */
10853 static struct scsi_driver ufs_dev_wlun_template = {
10854 	.gendrv = {
10855 		.name = "ufs_device_wlun",
10856 		.probe = ufshcd_wl_probe,
10857 		.remove = ufshcd_wl_remove,
10858 		.pm = &ufshcd_wl_pm_ops,
10859 		.shutdown = ufshcd_wl_shutdown,
10860 	},
10861 };
10862 
ufshcd_core_init(void)10863 static int __init ufshcd_core_init(void)
10864 {
10865 	int ret;
10866 
10867 	ufshcd_check_header_layout();
10868 
10869 	ufs_debugfs_init();
10870 
10871 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10872 	if (ret)
10873 		ufs_debugfs_exit();
10874 	return ret;
10875 }
10876 
ufshcd_core_exit(void)10877 static void __exit ufshcd_core_exit(void)
10878 {
10879 	ufs_debugfs_exit();
10880 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10881 }
10882 
10883 module_init(ufshcd_core_init);
10884 module_exit(ufshcd_core_exit);
10885 
10886 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10887 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10888 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10889 MODULE_SOFTDEP("pre: governor_simpleondemand");
10890 MODULE_LICENSE("GPL");
10891