xref: /linux/drivers/ufs/core/ufshcd.c (revision 2e3fcbcc3b0eb9b96d2912cdac920f0ae8d1c8f2)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * Universal Flash Storage Host controller driver Core
4   * Copyright (C) 2011-2013 Samsung India Software Operations
5   * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6   *
7   * Authors:
8   *	Santosh Yaraganavi <santosh.sy@samsung.com>
9   *	Vinayak Holikatti <h.vinayak@samsung.com>
10   */
11  
12  #include <linux/async.h>
13  #include <linux/devfreq.h>
14  #include <linux/nls.h>
15  #include <linux/of.h>
16  #include <linux/bitfield.h>
17  #include <linux/blk-pm.h>
18  #include <linux/blkdev.h>
19  #include <linux/clk.h>
20  #include <linux/delay.h>
21  #include <linux/interrupt.h>
22  #include <linux/module.h>
23  #include <linux/pm_opp.h>
24  #include <linux/regulator/consumer.h>
25  #include <linux/sched/clock.h>
26  #include <linux/iopoll.h>
27  #include <scsi/scsi_cmnd.h>
28  #include <scsi/scsi_dbg.h>
29  #include <scsi/scsi_driver.h>
30  #include <scsi/scsi_eh.h>
31  #include "ufshcd-priv.h"
32  #include <ufs/ufs_quirks.h>
33  #include <ufs/unipro.h>
34  #include "ufs-sysfs.h"
35  #include "ufs-debugfs.h"
36  #include "ufs-fault-injection.h"
37  #include "ufs_bsg.h"
38  #include "ufshcd-crypto.h"
39  #include <linux/unaligned.h>
40  
41  #define CREATE_TRACE_POINTS
42  #include "ufs_trace.h"
43  
44  #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
45  				 UTP_TASK_REQ_COMPL |\
46  				 UFSHCD_ERROR_MASK)
47  
48  #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
49  				 UFSHCD_ERROR_MASK |\
50  				 MCQ_CQ_EVENT_STATUS)
51  
52  
53  /* UIC command timeout, unit: ms */
54  enum {
55  	UIC_CMD_TIMEOUT_DEFAULT	= 500,
56  	UIC_CMD_TIMEOUT_MAX	= 2000,
57  };
58  /* NOP OUT retries waiting for NOP IN response */
59  #define NOP_OUT_RETRIES    10
60  /* Timeout after 50 msecs if NOP OUT hangs without response */
61  #define NOP_OUT_TIMEOUT    50 /* msecs */
62  
63  /* Query request retries */
64  #define QUERY_REQ_RETRIES 3
65  /* Query request timeout */
66  #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
67  
68  /* Advanced RPMB request timeout */
69  #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
70  
71  /* Task management command timeout */
72  #define TM_CMD_TIMEOUT	100 /* msecs */
73  
74  /* maximum number of retries for a general UIC command  */
75  #define UFS_UIC_COMMAND_RETRIES 3
76  
77  /* maximum number of link-startup retries */
78  #define DME_LINKSTARTUP_RETRIES 3
79  
80  /* maximum number of reset retries before giving up */
81  #define MAX_HOST_RESET_RETRIES 5
82  
83  /* Maximum number of error handler retries before giving up */
84  #define MAX_ERR_HANDLER_RETRIES 5
85  
86  /* Expose the flag value from utp_upiu_query.value */
87  #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
88  
89  /* Interrupt aggregation default timeout, unit: 40us */
90  #define INT_AGGR_DEF_TO	0x02
91  
92  /* default delay of autosuspend: 2000 ms */
93  #define RPM_AUTOSUSPEND_DELAY_MS 2000
94  
95  /* Default delay of RPM device flush delayed work */
96  #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
97  
98  /* Default value of wait time before gating device ref clock */
99  #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
100  
101  /* Polling time to wait for fDeviceInit */
102  #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
103  
104  /* Default RTC update every 10 seconds */
105  #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
106  
107  /* bMaxNumOfRTT is equal to two after device manufacturing */
108  #define DEFAULT_MAX_NUM_RTT 2
109  
110  /* UFSHC 4.0 compliant HC support this mode. */
111  static bool use_mcq_mode = true;
112  
is_mcq_supported(struct ufs_hba * hba)113  static bool is_mcq_supported(struct ufs_hba *hba)
114  {
115  	return hba->mcq_sup && use_mcq_mode;
116  }
117  
118  module_param(use_mcq_mode, bool, 0644);
119  MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
120  
121  static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT;
122  
uic_cmd_timeout_set(const char * val,const struct kernel_param * kp)123  static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp)
124  {
125  	return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT,
126  				     UIC_CMD_TIMEOUT_MAX);
127  }
128  
129  static const struct kernel_param_ops uic_cmd_timeout_ops = {
130  	.set = uic_cmd_timeout_set,
131  	.get = param_get_uint,
132  };
133  
134  module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644);
135  MODULE_PARM_DESC(uic_cmd_timeout,
136  		 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 2 seconds inclusively");
137  
138  #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
139  	({                                                              \
140  		int _ret;                                               \
141  		if (_on)                                                \
142  			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
143  		else                                                    \
144  			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
145  		_ret;                                                   \
146  	})
147  
148  #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
149  	size_t __len = (len);                                            \
150  	print_hex_dump(KERN_ERR, prefix_str,                             \
151  		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
152  		       16, 4, buf, __len, false);                        \
153  } while (0)
154  
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)155  int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
156  		     const char *prefix)
157  {
158  	u32 *regs;
159  	size_t pos;
160  
161  	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
162  		return -EINVAL;
163  
164  	regs = kzalloc(len, GFP_ATOMIC);
165  	if (!regs)
166  		return -ENOMEM;
167  
168  	for (pos = 0; pos < len; pos += 4) {
169  		if (offset == 0 &&
170  		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
171  		    pos <= REG_UIC_ERROR_CODE_DME)
172  			continue;
173  		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
174  	}
175  
176  	ufshcd_hex_dump(prefix, regs, len);
177  	kfree(regs);
178  
179  	return 0;
180  }
181  EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
182  
183  enum {
184  	UFSHCD_MAX_CHANNEL	= 0,
185  	UFSHCD_MAX_ID		= 1,
186  };
187  
188  static const char *const ufshcd_state_name[] = {
189  	[UFSHCD_STATE_RESET]			= "reset",
190  	[UFSHCD_STATE_OPERATIONAL]		= "operational",
191  	[UFSHCD_STATE_ERROR]			= "error",
192  	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
193  	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
194  };
195  
196  /* UFSHCD error handling flags */
197  enum {
198  	UFSHCD_EH_IN_PROGRESS = (1 << 0),
199  };
200  
201  /* UFSHCD UIC layer error flags */
202  enum {
203  	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
204  	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
205  	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
206  	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
207  	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
208  	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
209  	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
210  };
211  
212  #define ufshcd_set_eh_in_progress(h) \
213  	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
214  #define ufshcd_eh_in_progress(h) \
215  	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
216  #define ufshcd_clear_eh_in_progress(h) \
217  	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
218  
219  const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
220  	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
221  	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
222  	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
223  	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
224  	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
225  	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
226  	/*
227  	 * For DeepSleep, the link is first put in hibern8 and then off.
228  	 * Leaving the link in hibern8 is not supported.
229  	 */
230  	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
231  };
232  
233  static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)234  ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
235  {
236  	return ufs_pm_lvl_states[lvl].dev_state;
237  }
238  
239  static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)240  ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
241  {
242  	return ufs_pm_lvl_states[lvl].link_state;
243  }
244  
245  static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)246  ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
247  					enum uic_link_state link_state)
248  {
249  	enum ufs_pm_level lvl;
250  
251  	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
252  		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
253  			(ufs_pm_lvl_states[lvl].link_state == link_state))
254  			return lvl;
255  	}
256  
257  	/* if no match found, return the level 0 */
258  	return UFS_PM_LVL_0;
259  }
260  
ufshcd_has_pending_tasks(struct ufs_hba * hba)261  static bool ufshcd_has_pending_tasks(struct ufs_hba *hba)
262  {
263  	return hba->outstanding_tasks || hba->active_uic_cmd ||
264  	       hba->uic_async_done;
265  }
266  
ufshcd_is_ufs_dev_busy(struct ufs_hba * hba)267  static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
268  {
269  	return scsi_host_busy(hba->host) || ufshcd_has_pending_tasks(hba);
270  }
271  
272  static const struct ufs_dev_quirk ufs_fixups[] = {
273  	/* UFS cards deviations table */
274  	{ .wmanufacturerid = UFS_VENDOR_MICRON,
275  	  .model = UFS_ANY_MODEL,
276  	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
277  	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
278  	  .model = UFS_ANY_MODEL,
279  	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
280  		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
281  		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
282  	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
283  	  .model = UFS_ANY_MODEL,
284  	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
285  	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
286  	  .model = "hB8aL1" /*H28U62301AMR*/,
287  	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
288  	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
289  	  .model = UFS_ANY_MODEL,
290  	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
291  	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
292  	  .model = "THGLF2G9C8KBADG",
293  	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
294  	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
295  	  .model = "THGLF2G9D8KBADG",
296  	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
297  	{}
298  };
299  
300  static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
301  static void ufshcd_async_scan(void *data, async_cookie_t cookie);
302  static int ufshcd_reset_and_restore(struct ufs_hba *hba);
303  static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
304  static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
305  static void ufshcd_hba_exit(struct ufs_hba *hba);
306  static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params);
307  static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
308  static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
309  static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
310  static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
311  static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
312  static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
313  static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
314  			     bool scale_up);
315  static irqreturn_t ufshcd_intr(int irq, void *__hba);
316  static int ufshcd_change_power_mode(struct ufs_hba *hba,
317  			     struct ufs_pa_layer_attr *pwr_mode);
318  static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
319  static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
320  static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
321  					 struct ufs_vreg *vreg);
322  static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
323  						 bool enable);
324  static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
325  static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
326  
ufshcd_enable_irq(struct ufs_hba * hba)327  void ufshcd_enable_irq(struct ufs_hba *hba)
328  {
329  	if (!hba->is_irq_enabled) {
330  		enable_irq(hba->irq);
331  		hba->is_irq_enabled = true;
332  	}
333  }
334  EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
335  
ufshcd_disable_irq(struct ufs_hba * hba)336  void ufshcd_disable_irq(struct ufs_hba *hba)
337  {
338  	if (hba->is_irq_enabled) {
339  		disable_irq(hba->irq);
340  		hba->is_irq_enabled = false;
341  	}
342  }
343  EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
344  
ufshcd_configure_wb(struct ufs_hba * hba)345  static void ufshcd_configure_wb(struct ufs_hba *hba)
346  {
347  	if (!ufshcd_is_wb_allowed(hba))
348  		return;
349  
350  	ufshcd_wb_toggle(hba, true);
351  
352  	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
353  
354  	if (ufshcd_is_wb_buf_flush_allowed(hba))
355  		ufshcd_wb_toggle_buf_flush(hba, true);
356  }
357  
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)358  static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
359  				      enum ufs_trace_str_t str_t)
360  {
361  	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
362  	struct utp_upiu_header *header;
363  
364  	if (!trace_ufshcd_upiu_enabled())
365  		return;
366  
367  	if (str_t == UFS_CMD_SEND)
368  		header = &rq->header;
369  	else
370  		header = &hba->lrb[tag].ucd_rsp_ptr->header;
371  
372  	trace_ufshcd_upiu(hba, str_t, header, &rq->sc.cdb,
373  			  UFS_TSF_CDB);
374  }
375  
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,enum ufs_trace_str_t str_t,struct utp_upiu_req * rq_rsp)376  static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
377  					enum ufs_trace_str_t str_t,
378  					struct utp_upiu_req *rq_rsp)
379  {
380  	if (!trace_ufshcd_upiu_enabled())
381  		return;
382  
383  	trace_ufshcd_upiu(hba, str_t, &rq_rsp->header,
384  			  &rq_rsp->qr, UFS_TSF_OSF);
385  }
386  
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)387  static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
388  				     enum ufs_trace_str_t str_t)
389  {
390  	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
391  
392  	if (!trace_ufshcd_upiu_enabled())
393  		return;
394  
395  	if (str_t == UFS_TM_SEND)
396  		trace_ufshcd_upiu(hba, str_t,
397  				  &descp->upiu_req.req_header,
398  				  &descp->upiu_req.input_param1,
399  				  UFS_TSF_TM_INPUT);
400  	else
401  		trace_ufshcd_upiu(hba, str_t,
402  				  &descp->upiu_rsp.rsp_header,
403  				  &descp->upiu_rsp.output_param1,
404  				  UFS_TSF_TM_OUTPUT);
405  }
406  
ufshcd_add_uic_command_trace(struct ufs_hba * hba,const struct uic_command * ucmd,enum ufs_trace_str_t str_t)407  static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
408  					 const struct uic_command *ucmd,
409  					 enum ufs_trace_str_t str_t)
410  {
411  	u32 cmd;
412  
413  	if (!trace_ufshcd_uic_command_enabled())
414  		return;
415  
416  	if (str_t == UFS_CMD_SEND)
417  		cmd = ucmd->command;
418  	else
419  		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
420  
421  	trace_ufshcd_uic_command(hba, str_t, cmd,
422  				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
423  				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
424  				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
425  }
426  
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)427  static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
428  				     enum ufs_trace_str_t str_t)
429  {
430  	u64 lba = 0;
431  	u8 opcode = 0, group_id = 0;
432  	u32 doorbell = 0;
433  	u32 intr;
434  	int hwq_id = -1;
435  	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
436  	struct scsi_cmnd *cmd = lrbp->cmd;
437  	struct request *rq = scsi_cmd_to_rq(cmd);
438  	int transfer_len = -1;
439  
440  	if (!cmd)
441  		return;
442  
443  	/* trace UPIU also */
444  	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
445  	if (!trace_ufshcd_command_enabled())
446  		return;
447  
448  	opcode = cmd->cmnd[0];
449  
450  	if (opcode == READ_10 || opcode == WRITE_10) {
451  		/*
452  		 * Currently we only fully trace read(10) and write(10) commands
453  		 */
454  		transfer_len =
455  		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
456  		lba = scsi_get_lba(cmd);
457  		if (opcode == WRITE_10)
458  			group_id = lrbp->cmd->cmnd[6];
459  	} else if (opcode == UNMAP) {
460  		/*
461  		 * The number of Bytes to be unmapped beginning with the lba.
462  		 */
463  		transfer_len = blk_rq_bytes(rq);
464  		lba = scsi_get_lba(cmd);
465  	}
466  
467  	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
468  
469  	if (hba->mcq_enabled) {
470  		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
471  
472  		hwq_id = hwq->id;
473  	} else {
474  		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
475  	}
476  	trace_ufshcd_command(cmd->device, hba, str_t, tag, doorbell, hwq_id,
477  			     transfer_len, intr, lba, opcode, group_id);
478  }
479  
ufshcd_print_clk_freqs(struct ufs_hba * hba)480  static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
481  {
482  	struct ufs_clk_info *clki;
483  	struct list_head *head = &hba->clk_list_head;
484  
485  	if (list_empty(head))
486  		return;
487  
488  	list_for_each_entry(clki, head, list) {
489  		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
490  				clki->max_freq)
491  			dev_err(hba->dev, "clk: %s, rate: %u\n",
492  					clki->name, clki->curr_freq);
493  	}
494  }
495  
ufshcd_print_evt(struct ufs_hba * hba,u32 id,const char * err_name)496  static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
497  			     const char *err_name)
498  {
499  	int i;
500  	bool found = false;
501  	const struct ufs_event_hist *e;
502  
503  	if (id >= UFS_EVT_CNT)
504  		return;
505  
506  	e = &hba->ufs_stats.event[id];
507  
508  	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
509  		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
510  
511  		if (e->tstamp[p] == 0)
512  			continue;
513  		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
514  			e->val[p], div_u64(e->tstamp[p], 1000));
515  		found = true;
516  	}
517  
518  	if (!found)
519  		dev_err(hba->dev, "No record of %s\n", err_name);
520  	else
521  		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
522  }
523  
ufshcd_print_evt_hist(struct ufs_hba * hba)524  static void ufshcd_print_evt_hist(struct ufs_hba *hba)
525  {
526  	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
527  
528  	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
529  	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
530  	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
531  	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
532  	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
533  	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
534  			 "auto_hibern8_err");
535  	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
536  	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
537  			 "link_startup_fail");
538  	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
539  	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
540  			 "suspend_fail");
541  	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
542  	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
543  			 "wlun suspend_fail");
544  	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
545  	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
546  	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
547  
548  	ufshcd_vops_dbg_register_dump(hba);
549  }
550  
551  static
ufshcd_print_tr(struct ufs_hba * hba,int tag,bool pr_prdt)552  void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
553  {
554  	const struct ufshcd_lrb *lrbp;
555  	int prdt_length;
556  
557  	lrbp = &hba->lrb[tag];
558  
559  	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
560  			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
561  	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
562  			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
563  	dev_err(hba->dev,
564  		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
565  		tag, (u64)lrbp->utrd_dma_addr);
566  
567  	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
568  			sizeof(struct utp_transfer_req_desc));
569  	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
570  		(u64)lrbp->ucd_req_dma_addr);
571  	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
572  			sizeof(struct utp_upiu_req));
573  	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
574  		(u64)lrbp->ucd_rsp_dma_addr);
575  	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
576  			sizeof(struct utp_upiu_rsp));
577  
578  	prdt_length = le16_to_cpu(
579  		lrbp->utr_descriptor_ptr->prd_table_length);
580  	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
581  		prdt_length /= ufshcd_sg_entry_size(hba);
582  
583  	dev_err(hba->dev,
584  		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
585  		tag, prdt_length,
586  		(u64)lrbp->ucd_prdt_dma_addr);
587  
588  	if (pr_prdt)
589  		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
590  			ufshcd_sg_entry_size(hba) * prdt_length);
591  }
592  
ufshcd_print_tr_iter(struct request * req,void * priv)593  static bool ufshcd_print_tr_iter(struct request *req, void *priv)
594  {
595  	struct scsi_device *sdev = req->q->queuedata;
596  	struct Scsi_Host *shost = sdev->host;
597  	struct ufs_hba *hba = shost_priv(shost);
598  
599  	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
600  
601  	return true;
602  }
603  
604  /**
605   * ufshcd_print_trs_all - print trs for all started requests.
606   * @hba: per-adapter instance.
607   * @pr_prdt: need to print prdt or not.
608   */
ufshcd_print_trs_all(struct ufs_hba * hba,bool pr_prdt)609  static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
610  {
611  	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
612  }
613  
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)614  static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
615  {
616  	int tag;
617  
618  	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
619  		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
620  
621  		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
622  		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
623  	}
624  }
625  
ufshcd_print_host_state(struct ufs_hba * hba)626  static void ufshcd_print_host_state(struct ufs_hba *hba)
627  {
628  	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
629  
630  	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
631  	dev_err(hba->dev, "%d outstanding reqs, tasks=0x%lx\n",
632  		scsi_host_busy(hba->host), hba->outstanding_tasks);
633  	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
634  		hba->saved_err, hba->saved_uic_err);
635  	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
636  		hba->curr_dev_pwr_mode, hba->uic_link_state);
637  	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
638  		hba->pm_op_in_progress, hba->is_sys_suspended);
639  	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
640  		hba->auto_bkops_enabled, hba->host->host_self_blocked);
641  	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
642  	dev_err(hba->dev,
643  		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
644  		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
645  		hba->ufs_stats.hibern8_exit_cnt);
646  	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
647  		div_u64(hba->ufs_stats.last_intr_ts, 1000),
648  		hba->ufs_stats.last_intr_status);
649  	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
650  		hba->eh_flags, hba->req_abort_count);
651  	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
652  		hba->ufs_version, hba->capabilities, hba->caps);
653  	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
654  		hba->dev_quirks);
655  	if (sdev_ufs)
656  		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
657  			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
658  
659  	ufshcd_print_clk_freqs(hba);
660  }
661  
662  /**
663   * ufshcd_print_pwr_info - print power params as saved in hba
664   * power info
665   * @hba: per-adapter instance
666   */
ufshcd_print_pwr_info(struct ufs_hba * hba)667  static void ufshcd_print_pwr_info(struct ufs_hba *hba)
668  {
669  	static const char * const names[] = {
670  		"INVALID MODE",
671  		"FAST MODE",
672  		"SLOW_MODE",
673  		"INVALID MODE",
674  		"FASTAUTO_MODE",
675  		"SLOWAUTO_MODE",
676  		"INVALID MODE",
677  	};
678  
679  	/*
680  	 * Using dev_dbg to avoid messages during runtime PM to avoid
681  	 * never-ending cycles of messages written back to storage by user space
682  	 * causing runtime resume, causing more messages and so on.
683  	 */
684  	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
685  		 __func__,
686  		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
687  		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
688  		 names[hba->pwr_info.pwr_rx],
689  		 names[hba->pwr_info.pwr_tx],
690  		 hba->pwr_info.hs_rate);
691  }
692  
ufshcd_device_reset(struct ufs_hba * hba)693  static void ufshcd_device_reset(struct ufs_hba *hba)
694  {
695  	int err;
696  
697  	err = ufshcd_vops_device_reset(hba);
698  
699  	if (!err) {
700  		ufshcd_set_ufs_dev_active(hba);
701  		if (ufshcd_is_wb_allowed(hba)) {
702  			hba->dev_info.wb_enabled = false;
703  			hba->dev_info.wb_buf_flush_enabled = false;
704  		}
705  		if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
706  			hba->dev_info.rtc_time_baseline = 0;
707  	}
708  	if (err != -EOPNOTSUPP)
709  		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
710  }
711  
ufshcd_delay_us(unsigned long us,unsigned long tolerance)712  void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
713  {
714  	if (!us)
715  		return;
716  
717  	if (us < 10)
718  		udelay(us);
719  	else
720  		usleep_range(us, us + tolerance);
721  }
722  EXPORT_SYMBOL_GPL(ufshcd_delay_us);
723  
724  /**
725   * ufshcd_wait_for_register - wait for register value to change
726   * @hba: per-adapter interface
727   * @reg: mmio register offset
728   * @mask: mask to apply to the read register value
729   * @val: value to wait for
730   * @interval_us: polling interval in microseconds
731   * @timeout_ms: timeout in milliseconds
732   *
733   * Return: -ETIMEDOUT on error, zero on success.
734   */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)735  static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
736  				    u32 val, unsigned long interval_us,
737  				    unsigned long timeout_ms)
738  {
739  	u32 v;
740  
741  	val &= mask; /* ignore bits that we don't intend to wait on */
742  
743  	return read_poll_timeout(ufshcd_readl, v, (v & mask) == val,
744  				 interval_us, timeout_ms * 1000, false, hba, reg);
745  }
746  
747  /**
748   * ufshcd_get_intr_mask - Get the interrupt bit mask
749   * @hba: Pointer to adapter instance
750   *
751   * Return: interrupt bit mask per version
752   */
ufshcd_get_intr_mask(struct ufs_hba * hba)753  static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
754  {
755  	if (hba->ufs_version <= ufshci_version(2, 0))
756  		return INTERRUPT_MASK_ALL_VER_11;
757  
758  	return INTERRUPT_MASK_ALL_VER_21;
759  }
760  
761  /**
762   * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
763   * @hba: Pointer to adapter instance
764   *
765   * Return: UFSHCI version supported by the controller
766   */
ufshcd_get_ufs_version(struct ufs_hba * hba)767  static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
768  {
769  	u32 ufshci_ver;
770  
771  	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
772  		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
773  	else
774  		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
775  
776  	/*
777  	 * UFSHCI v1.x uses a different version scheme, in order
778  	 * to allow the use of comparisons with the ufshci_version
779  	 * function, we convert it to the same scheme as ufs 2.0+.
780  	 */
781  	if (ufshci_ver & 0x00010000)
782  		return ufshci_version(1, ufshci_ver & 0x00000100);
783  
784  	return ufshci_ver;
785  }
786  
787  /**
788   * ufshcd_is_device_present - Check if any device connected to
789   *			      the host controller
790   * @hba: pointer to adapter instance
791   *
792   * Return: true if device present, false if no device detected
793   */
ufshcd_is_device_present(struct ufs_hba * hba)794  static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
795  {
796  	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
797  }
798  
799  /**
800   * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
801   * @lrbp: pointer to local command reference block
802   * @cqe: pointer to the completion queue entry
803   *
804   * This function is used to get the OCS field from UTRD
805   *
806   * Return: the OCS field in the UTRD.
807   */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp,struct cq_entry * cqe)808  static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
809  				      struct cq_entry *cqe)
810  {
811  	if (cqe)
812  		return le32_to_cpu(cqe->status) & MASK_OCS;
813  
814  	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
815  }
816  
817  /**
818   * ufshcd_utrl_clear() - Clear requests from the controller request list.
819   * @hba: per adapter instance
820   * @mask: mask with one bit set for each request to be cleared
821   */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 mask)822  static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
823  {
824  	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
825  		mask = ~mask;
826  	/*
827  	 * From the UFSHCI specification: "UTP Transfer Request List CLear
828  	 * Register (UTRLCLR): This field is bit significant. Each bit
829  	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
830  	 * corresponds to request slot 0. A bit in this field is set to ‘0’
831  	 * by host software to indicate to the host controller that a transfer
832  	 * request slot is cleared. The host controller
833  	 * shall free up any resources associated to the request slot
834  	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
835  	 * host software indicates no change to request slots by setting the
836  	 * associated bits in this field to ‘1’. Bits in this field shall only
837  	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
838  	 */
839  	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
840  }
841  
842  /**
843   * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
844   * @hba: per adapter instance
845   * @pos: position of the bit to be cleared
846   */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)847  static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
848  {
849  	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
850  		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
851  	else
852  		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
853  }
854  
855  /**
856   * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
857   * @reg: Register value of host controller status
858   *
859   * Return: 0 on success; a positive value if failed.
860   */
ufshcd_get_lists_status(u32 reg)861  static inline int ufshcd_get_lists_status(u32 reg)
862  {
863  	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
864  }
865  
866  /**
867   * ufshcd_get_uic_cmd_result - Get the UIC command result
868   * @hba: Pointer to adapter instance
869   *
870   * This function gets the result of UIC command completion
871   *
872   * Return: 0 on success; non-zero value on error.
873   */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)874  static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
875  {
876  	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
877  	       MASK_UIC_COMMAND_RESULT;
878  }
879  
880  /**
881   * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
882   * @hba: Pointer to adapter instance
883   *
884   * This function gets UIC command argument3
885   *
886   * Return: 0 on success; non-zero value on error.
887   */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)888  static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
889  {
890  	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
891  }
892  
893  /**
894   * ufshcd_get_req_rsp - returns the TR response transaction type
895   * @ucd_rsp_ptr: pointer to response UPIU
896   *
897   * Return: UPIU type.
898   */
899  static inline enum upiu_response_transaction
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)900  ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
901  {
902  	return ucd_rsp_ptr->header.transaction_code;
903  }
904  
905  /**
906   * ufshcd_is_exception_event - Check if the device raised an exception event
907   * @ucd_rsp_ptr: pointer to response UPIU
908   *
909   * The function checks if the device raised an exception event indicated in
910   * the Device Information field of response UPIU.
911   *
912   * Return: true if exception is raised, false otherwise.
913   */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)914  static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
915  {
916  	return ucd_rsp_ptr->header.device_information & 1;
917  }
918  
919  /**
920   * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
921   * @hba: per adapter instance
922   */
923  static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)924  ufshcd_reset_intr_aggr(struct ufs_hba *hba)
925  {
926  	ufshcd_writel(hba, INT_AGGR_ENABLE |
927  		      INT_AGGR_COUNTER_AND_TIMER_RESET,
928  		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
929  }
930  
931  /**
932   * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
933   * @hba: per adapter instance
934   * @cnt: Interrupt aggregation counter threshold
935   * @tmout: Interrupt aggregation timeout value
936   */
937  static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)938  ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
939  {
940  	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
941  		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
942  		      INT_AGGR_TIMEOUT_VAL(tmout),
943  		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
944  }
945  
946  /**
947   * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
948   * @hba: per adapter instance
949   */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)950  static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
951  {
952  	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
953  }
954  
955  /**
956   * ufshcd_enable_run_stop_reg - Enable run-stop registers,
957   *			When run-stop registers are set to 1, it indicates the
958   *			host controller that it can process the requests
959   * @hba: per adapter instance
960   */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)961  static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
962  {
963  	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
964  		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
965  	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
966  		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
967  }
968  
969  /**
970   * ufshcd_hba_start - Start controller initialization sequence
971   * @hba: per adapter instance
972   */
ufshcd_hba_start(struct ufs_hba * hba)973  static inline void ufshcd_hba_start(struct ufs_hba *hba)
974  {
975  	u32 val = CONTROLLER_ENABLE;
976  
977  	if (ufshcd_crypto_enable(hba))
978  		val |= CRYPTO_GENERAL_ENABLE;
979  
980  	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
981  }
982  
983  /**
984   * ufshcd_is_hba_active - Get controller state
985   * @hba: per adapter instance
986   *
987   * Return: true if and only if the controller is active.
988   */
ufshcd_is_hba_active(struct ufs_hba * hba)989  bool ufshcd_is_hba_active(struct ufs_hba *hba)
990  {
991  	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
992  }
993  EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
994  
995  /**
996   * ufshcd_pm_qos_init - initialize PM QoS request
997   * @hba: per adapter instance
998   */
ufshcd_pm_qos_init(struct ufs_hba * hba)999  void ufshcd_pm_qos_init(struct ufs_hba *hba)
1000  {
1001  
1002  	if (hba->pm_qos_enabled)
1003  		return;
1004  
1005  	cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1006  
1007  	if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1008  		hba->pm_qos_enabled = true;
1009  }
1010  
1011  /**
1012   * ufshcd_pm_qos_exit - remove request from PM QoS
1013   * @hba: per adapter instance
1014   */
ufshcd_pm_qos_exit(struct ufs_hba * hba)1015  void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1016  {
1017  	if (!hba->pm_qos_enabled)
1018  		return;
1019  
1020  	cpu_latency_qos_remove_request(&hba->pm_qos_req);
1021  	hba->pm_qos_enabled = false;
1022  }
1023  
1024  /**
1025   * ufshcd_pm_qos_update - update PM QoS request
1026   * @hba: per adapter instance
1027   * @on: If True, vote for perf PM QoS mode otherwise power save mode
1028   */
ufshcd_pm_qos_update(struct ufs_hba * hba,bool on)1029  static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1030  {
1031  	if (!hba->pm_qos_enabled)
1032  		return;
1033  
1034  	cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1035  }
1036  
1037  /**
1038   * ufshcd_set_clk_freq - set UFS controller clock frequencies
1039   * @hba: per adapter instance
1040   * @scale_up: If True, set max possible frequency othewise set low frequency
1041   *
1042   * Return: 0 if successful; < 0 upon failure.
1043   */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)1044  static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1045  {
1046  	int ret = 0;
1047  	struct ufs_clk_info *clki;
1048  	struct list_head *head = &hba->clk_list_head;
1049  
1050  	if (list_empty(head))
1051  		goto out;
1052  
1053  	list_for_each_entry(clki, head, list) {
1054  		if (!IS_ERR_OR_NULL(clki->clk)) {
1055  			if (scale_up && clki->max_freq) {
1056  				if (clki->curr_freq == clki->max_freq)
1057  					continue;
1058  
1059  				ret = clk_set_rate(clki->clk, clki->max_freq);
1060  				if (ret) {
1061  					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1062  						__func__, clki->name,
1063  						clki->max_freq, ret);
1064  					break;
1065  				}
1066  				trace_ufshcd_clk_scaling(hba,
1067  						"scaled up", clki->name,
1068  						clki->curr_freq,
1069  						clki->max_freq);
1070  
1071  				clki->curr_freq = clki->max_freq;
1072  
1073  			} else if (!scale_up && clki->min_freq) {
1074  				if (clki->curr_freq == clki->min_freq)
1075  					continue;
1076  
1077  				ret = clk_set_rate(clki->clk, clki->min_freq);
1078  				if (ret) {
1079  					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1080  						__func__, clki->name,
1081  						clki->min_freq, ret);
1082  					break;
1083  				}
1084  				trace_ufshcd_clk_scaling(hba,
1085  						"scaled down", clki->name,
1086  						clki->curr_freq,
1087  						clki->min_freq);
1088  				clki->curr_freq = clki->min_freq;
1089  			}
1090  		}
1091  		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1092  				clki->name, clk_get_rate(clki->clk));
1093  	}
1094  
1095  out:
1096  	return ret;
1097  }
1098  
ufshcd_opp_config_clks(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)1099  int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1100  			   struct dev_pm_opp *opp, void *data,
1101  			   bool scaling_down)
1102  {
1103  	struct ufs_hba *hba = dev_get_drvdata(dev);
1104  	struct list_head *head = &hba->clk_list_head;
1105  	struct ufs_clk_info *clki;
1106  	unsigned long freq;
1107  	u8 idx = 0;
1108  	int ret;
1109  
1110  	list_for_each_entry(clki, head, list) {
1111  		if (!IS_ERR_OR_NULL(clki->clk)) {
1112  			freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1113  
1114  			/* Do not set rate for clocks having frequency as 0 */
1115  			if (!freq)
1116  				continue;
1117  
1118  			ret = clk_set_rate(clki->clk, freq);
1119  			if (ret) {
1120  				dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1121  					__func__, clki->name, freq, ret);
1122  				return ret;
1123  			}
1124  
1125  			trace_ufshcd_clk_scaling(hba,
1126  				(scaling_down ? "scaled down" : "scaled up"),
1127  				clki->name, hba->clk_scaling.target_freq, freq);
1128  		}
1129  	}
1130  
1131  	return 0;
1132  }
1133  EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1134  
ufshcd_opp_set_rate(struct ufs_hba * hba,unsigned long freq)1135  static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1136  {
1137  	struct dev_pm_opp *opp;
1138  	int ret;
1139  
1140  	opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1141  						 &freq, 0);
1142  	if (IS_ERR(opp))
1143  		return PTR_ERR(opp);
1144  
1145  	ret = dev_pm_opp_set_opp(hba->dev, opp);
1146  	dev_pm_opp_put(opp);
1147  
1148  	return ret;
1149  }
1150  
1151  /**
1152   * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1153   * @hba: per adapter instance
1154   * @freq: frequency to scale
1155   * @scale_up: True if scaling up and false if scaling down
1156   *
1157   * Return: 0 if successful; < 0 upon failure.
1158   */
ufshcd_scale_clks(struct ufs_hba * hba,unsigned long freq,bool scale_up)1159  static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1160  			     bool scale_up)
1161  {
1162  	int ret = 0;
1163  	ktime_t start = ktime_get();
1164  
1165  	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, PRE_CHANGE);
1166  	if (ret)
1167  		goto out;
1168  
1169  	if (hba->use_pm_opp)
1170  		ret = ufshcd_opp_set_rate(hba, freq);
1171  	else
1172  		ret = ufshcd_set_clk_freq(hba, scale_up);
1173  	if (ret)
1174  		goto out;
1175  
1176  	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, POST_CHANGE);
1177  	if (ret) {
1178  		if (hba->use_pm_opp)
1179  			ufshcd_opp_set_rate(hba,
1180  					    hba->devfreq->previous_freq);
1181  		else
1182  			ufshcd_set_clk_freq(hba, !scale_up);
1183  		goto out;
1184  	}
1185  
1186  	ufshcd_pm_qos_update(hba, scale_up);
1187  
1188  out:
1189  	trace_ufshcd_profile_clk_scaling(hba,
1190  			(scale_up ? "up" : "down"),
1191  			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1192  	return ret;
1193  }
1194  
1195  /**
1196   * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1197   * @hba: per adapter instance
1198   * @freq: frequency to scale
1199   * @scale_up: True if scaling up and false if scaling down
1200   *
1201   * Return: true if scaling is required, false otherwise.
1202   */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,unsigned long freq,bool scale_up)1203  static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1204  					       unsigned long freq, bool scale_up)
1205  {
1206  	struct ufs_clk_info *clki;
1207  	struct list_head *head = &hba->clk_list_head;
1208  
1209  	if (list_empty(head))
1210  		return false;
1211  
1212  	if (hba->use_pm_opp)
1213  		return freq != hba->clk_scaling.target_freq;
1214  
1215  	list_for_each_entry(clki, head, list) {
1216  		if (!IS_ERR_OR_NULL(clki->clk)) {
1217  			if (scale_up && clki->max_freq) {
1218  				if (clki->curr_freq == clki->max_freq)
1219  					continue;
1220  				return true;
1221  			} else if (!scale_up && clki->min_freq) {
1222  				if (clki->curr_freq == clki->min_freq)
1223  					continue;
1224  				return true;
1225  			}
1226  		}
1227  	}
1228  
1229  	return false;
1230  }
1231  
1232  /*
1233   * Determine the number of pending commands by counting the bits in the SCSI
1234   * device budget maps. This approach has been selected because a bit is set in
1235   * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1236   * flag. The host_self_blocked flag can be modified by calling
1237   * scsi_block_requests() or scsi_unblock_requests().
1238   */
ufshcd_pending_cmds(struct ufs_hba * hba)1239  static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1240  {
1241  	const struct scsi_device *sdev;
1242  	unsigned long flags;
1243  	u32 pending = 0;
1244  
1245  	spin_lock_irqsave(hba->host->host_lock, flags);
1246  	__shost_for_each_device(sdev, hba->host)
1247  		pending += sbitmap_weight(&sdev->budget_map);
1248  	spin_unlock_irqrestore(hba->host->host_lock, flags);
1249  
1250  	return pending;
1251  }
1252  
1253  /*
1254   * Wait until all pending SCSI commands and TMFs have finished or the timeout
1255   * has expired.
1256   *
1257   * Return: 0 upon success; -EBUSY upon timeout.
1258   */
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1259  static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1260  					u64 wait_timeout_us)
1261  {
1262  	int ret = 0;
1263  	u32 tm_doorbell;
1264  	u32 tr_pending;
1265  	bool timeout = false, do_last_check = false;
1266  	ktime_t start;
1267  
1268  	ufshcd_hold(hba);
1269  	/*
1270  	 * Wait for all the outstanding tasks/transfer requests.
1271  	 * Verify by checking the doorbell registers are clear.
1272  	 */
1273  	start = ktime_get();
1274  	do {
1275  		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1276  			ret = -EBUSY;
1277  			goto out;
1278  		}
1279  
1280  		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1281  		tr_pending = ufshcd_pending_cmds(hba);
1282  		if (!tm_doorbell && !tr_pending) {
1283  			timeout = false;
1284  			break;
1285  		} else if (do_last_check) {
1286  			break;
1287  		}
1288  
1289  		io_schedule_timeout(msecs_to_jiffies(20));
1290  		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1291  		    wait_timeout_us) {
1292  			timeout = true;
1293  			/*
1294  			 * We might have scheduled out for long time so make
1295  			 * sure to check if doorbells are cleared by this time
1296  			 * or not.
1297  			 */
1298  			do_last_check = true;
1299  		}
1300  	} while (tm_doorbell || tr_pending);
1301  
1302  	if (timeout) {
1303  		dev_err(hba->dev,
1304  			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1305  			__func__, tm_doorbell, tr_pending);
1306  		ret = -EBUSY;
1307  	}
1308  out:
1309  	ufshcd_release(hba);
1310  	return ret;
1311  }
1312  
1313  /**
1314   * ufshcd_scale_gear - scale up/down UFS gear
1315   * @hba: per adapter instance
1316   * @target_gear: target gear to scale to
1317   * @scale_up: True for scaling up gear and false for scaling down
1318   *
1319   * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1320   * non-zero for any other errors.
1321   */
ufshcd_scale_gear(struct ufs_hba * hba,u32 target_gear,bool scale_up)1322  static int ufshcd_scale_gear(struct ufs_hba *hba, u32 target_gear, bool scale_up)
1323  {
1324  	int ret = 0;
1325  	struct ufs_pa_layer_attr new_pwr_info;
1326  
1327  	if (target_gear) {
1328  		new_pwr_info = hba->pwr_info;
1329  		new_pwr_info.gear_tx = target_gear;
1330  		new_pwr_info.gear_rx = target_gear;
1331  
1332  		goto config_pwr_mode;
1333  	}
1334  
1335  	/* Legacy gear scaling, in case vops_freq_to_gear_speed() is not implemented */
1336  	if (scale_up) {
1337  		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1338  		       sizeof(struct ufs_pa_layer_attr));
1339  	} else {
1340  		memcpy(&new_pwr_info, &hba->pwr_info,
1341  		       sizeof(struct ufs_pa_layer_attr));
1342  
1343  		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1344  		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1345  			/* save the current power mode */
1346  			memcpy(&hba->clk_scaling.saved_pwr_info,
1347  				&hba->pwr_info,
1348  				sizeof(struct ufs_pa_layer_attr));
1349  
1350  			/* scale down gear */
1351  			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1352  			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1353  		}
1354  	}
1355  
1356  config_pwr_mode:
1357  	/* check if the power mode needs to be changed or not? */
1358  	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1359  	if (ret)
1360  		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1361  			__func__, ret,
1362  			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1363  			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1364  
1365  	return ret;
1366  }
1367  
1368  /*
1369   * Wait until all pending SCSI commands and TMFs have finished or the timeout
1370   * has expired.
1371   *
1372   * Return: 0 upon success; -EBUSY upon timeout.
1373   */
ufshcd_clock_scaling_prepare(struct ufs_hba * hba,u64 timeout_us)1374  static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1375  {
1376  	int ret = 0;
1377  	/*
1378  	 * make sure that there are no outstanding requests when
1379  	 * clock scaling is in progress
1380  	 */
1381  	blk_mq_quiesce_tagset(&hba->host->tag_set);
1382  	mutex_lock(&hba->wb_mutex);
1383  	down_write(&hba->clk_scaling_lock);
1384  
1385  	if (!hba->clk_scaling.is_allowed ||
1386  	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1387  		ret = -EBUSY;
1388  		up_write(&hba->clk_scaling_lock);
1389  		mutex_unlock(&hba->wb_mutex);
1390  		blk_mq_unquiesce_tagset(&hba->host->tag_set);
1391  		goto out;
1392  	}
1393  
1394  	/* let's not get into low power until clock scaling is completed */
1395  	ufshcd_hold(hba);
1396  
1397  out:
1398  	return ret;
1399  }
1400  
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,int err)1401  static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err)
1402  {
1403  	up_write(&hba->clk_scaling_lock);
1404  
1405  	/* Enable Write Booster if current gear requires it else disable it */
1406  	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1407  		ufshcd_wb_toggle(hba, hba->pwr_info.gear_rx >= hba->clk_scaling.wb_gear);
1408  
1409  	mutex_unlock(&hba->wb_mutex);
1410  
1411  	blk_mq_unquiesce_tagset(&hba->host->tag_set);
1412  	ufshcd_release(hba);
1413  }
1414  
1415  /**
1416   * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1417   * @hba: per adapter instance
1418   * @freq: frequency to scale
1419   * @scale_up: True for scaling up and false for scalin down
1420   *
1421   * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1422   * for any other errors.
1423   */
ufshcd_devfreq_scale(struct ufs_hba * hba,unsigned long freq,bool scale_up)1424  static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1425  				bool scale_up)
1426  {
1427  	u32 old_gear = hba->pwr_info.gear_rx;
1428  	u32 new_gear = 0;
1429  	int ret = 0;
1430  
1431  	new_gear = ufshcd_vops_freq_to_gear_speed(hba, freq);
1432  
1433  	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1434  	if (ret)
1435  		return ret;
1436  
1437  	/* scale down the gear before scaling down clocks */
1438  	if (!scale_up) {
1439  		ret = ufshcd_scale_gear(hba, new_gear, false);
1440  		if (ret)
1441  			goto out_unprepare;
1442  	}
1443  
1444  	ret = ufshcd_scale_clks(hba, freq, scale_up);
1445  	if (ret) {
1446  		if (!scale_up)
1447  			ufshcd_scale_gear(hba, old_gear, true);
1448  		goto out_unprepare;
1449  	}
1450  
1451  	/* scale up the gear after scaling up clocks */
1452  	if (scale_up) {
1453  		ret = ufshcd_scale_gear(hba, new_gear, true);
1454  		if (ret) {
1455  			ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1456  					  false);
1457  			goto out_unprepare;
1458  		}
1459  	}
1460  
1461  out_unprepare:
1462  	ufshcd_clock_scaling_unprepare(hba, ret);
1463  	return ret;
1464  }
1465  
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1466  static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1467  {
1468  	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1469  					   clk_scaling.suspend_work);
1470  
1471  	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1472  	{
1473  		if (hba->clk_scaling.active_reqs ||
1474  		    hba->clk_scaling.is_suspended)
1475  			return;
1476  
1477  		hba->clk_scaling.is_suspended = true;
1478  		hba->clk_scaling.window_start_t = 0;
1479  	}
1480  
1481  	devfreq_suspend_device(hba->devfreq);
1482  }
1483  
ufshcd_clk_scaling_resume_work(struct work_struct * work)1484  static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1485  {
1486  	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1487  					   clk_scaling.resume_work);
1488  
1489  	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1490  	{
1491  		if (!hba->clk_scaling.is_suspended)
1492  			return;
1493  		hba->clk_scaling.is_suspended = false;
1494  	}
1495  
1496  	devfreq_resume_device(hba->devfreq);
1497  }
1498  
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1499  static int ufshcd_devfreq_target(struct device *dev,
1500  				unsigned long *freq, u32 flags)
1501  {
1502  	int ret = 0;
1503  	struct ufs_hba *hba = dev_get_drvdata(dev);
1504  	ktime_t start;
1505  	bool scale_up = false, sched_clk_scaling_suspend_work = false;
1506  	struct list_head *clk_list = &hba->clk_list_head;
1507  	struct ufs_clk_info *clki;
1508  
1509  	if (!ufshcd_is_clkscaling_supported(hba))
1510  		return -EINVAL;
1511  
1512  	if (hba->use_pm_opp) {
1513  		struct dev_pm_opp *opp;
1514  
1515  		/* Get the recommended frequency from OPP framework */
1516  		opp = devfreq_recommended_opp(dev, freq, flags);
1517  		if (IS_ERR(opp))
1518  			return PTR_ERR(opp);
1519  
1520  		dev_pm_opp_put(opp);
1521  	} else {
1522  		/* Override with the closest supported frequency */
1523  		clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1524  					list);
1525  		*freq =	(unsigned long) clk_round_rate(clki->clk, *freq);
1526  	}
1527  
1528  	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1529  	{
1530  		if (ufshcd_eh_in_progress(hba))
1531  			return 0;
1532  
1533  		/* Skip scaling clock when clock scaling is suspended */
1534  		if (hba->clk_scaling.is_suspended) {
1535  			dev_warn(hba->dev, "clock scaling is suspended, skip");
1536  			return 0;
1537  		}
1538  
1539  		if (!hba->clk_scaling.active_reqs)
1540  			sched_clk_scaling_suspend_work = true;
1541  
1542  		if (list_empty(clk_list))
1543  			goto out;
1544  
1545  		/* Decide based on the target or rounded-off frequency and update */
1546  		if (hba->use_pm_opp)
1547  			scale_up = *freq > hba->clk_scaling.target_freq;
1548  		else
1549  			scale_up = *freq == clki->max_freq;
1550  
1551  		if (!hba->use_pm_opp && !scale_up)
1552  			*freq = clki->min_freq;
1553  
1554  		/* Update the frequency */
1555  		if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1556  			ret = 0;
1557  			goto out; /* no state change required */
1558  		}
1559  	}
1560  
1561  	start = ktime_get();
1562  	ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1563  	if (!ret)
1564  		hba->clk_scaling.target_freq = *freq;
1565  
1566  	trace_ufshcd_profile_clk_scaling(hba,
1567  		(scale_up ? "up" : "down"),
1568  		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1569  
1570  out:
1571  	if (sched_clk_scaling_suspend_work &&
1572  			(!scale_up || hba->clk_scaling.suspend_on_no_request))
1573  		queue_work(hba->clk_scaling.workq,
1574  			   &hba->clk_scaling.suspend_work);
1575  
1576  	return ret;
1577  }
1578  
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1579  static int ufshcd_devfreq_get_dev_status(struct device *dev,
1580  		struct devfreq_dev_status *stat)
1581  {
1582  	struct ufs_hba *hba = dev_get_drvdata(dev);
1583  	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1584  	ktime_t curr_t;
1585  
1586  	if (!ufshcd_is_clkscaling_supported(hba))
1587  		return -EINVAL;
1588  
1589  	memset(stat, 0, sizeof(*stat));
1590  
1591  	guard(spinlock_irqsave)(&hba->clk_scaling.lock);
1592  
1593  	curr_t = ktime_get();
1594  	if (!scaling->window_start_t)
1595  		goto start_window;
1596  
1597  	/*
1598  	 * If current frequency is 0, then the ondemand governor considers
1599  	 * there's no initial frequency set. And it always requests to set
1600  	 * to max. frequency.
1601  	 */
1602  	if (hba->use_pm_opp) {
1603  		stat->current_frequency = hba->clk_scaling.target_freq;
1604  	} else {
1605  		struct list_head *clk_list = &hba->clk_list_head;
1606  		struct ufs_clk_info *clki;
1607  
1608  		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1609  		stat->current_frequency = clki->curr_freq;
1610  	}
1611  
1612  	if (scaling->is_busy_started)
1613  		scaling->tot_busy_t += ktime_us_delta(curr_t,
1614  				scaling->busy_start_t);
1615  	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1616  	stat->busy_time = scaling->tot_busy_t;
1617  start_window:
1618  	scaling->window_start_t = curr_t;
1619  	scaling->tot_busy_t = 0;
1620  
1621  	if (scaling->active_reqs) {
1622  		scaling->busy_start_t = curr_t;
1623  		scaling->is_busy_started = true;
1624  	} else {
1625  		scaling->busy_start_t = 0;
1626  		scaling->is_busy_started = false;
1627  	}
1628  
1629  	return 0;
1630  }
1631  
ufshcd_devfreq_init(struct ufs_hba * hba)1632  static int ufshcd_devfreq_init(struct ufs_hba *hba)
1633  {
1634  	struct list_head *clk_list = &hba->clk_list_head;
1635  	struct ufs_clk_info *clki;
1636  	struct devfreq *devfreq;
1637  	int ret;
1638  
1639  	/* Skip devfreq if we don't have any clocks in the list */
1640  	if (list_empty(clk_list))
1641  		return 0;
1642  
1643  	if (!hba->use_pm_opp) {
1644  		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1645  		dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1646  		dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1647  	}
1648  
1649  	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1650  					 &hba->vps->ondemand_data);
1651  	devfreq = devfreq_add_device(hba->dev,
1652  			&hba->vps->devfreq_profile,
1653  			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1654  			&hba->vps->ondemand_data);
1655  	if (IS_ERR(devfreq)) {
1656  		ret = PTR_ERR(devfreq);
1657  		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1658  
1659  		if (!hba->use_pm_opp) {
1660  			dev_pm_opp_remove(hba->dev, clki->min_freq);
1661  			dev_pm_opp_remove(hba->dev, clki->max_freq);
1662  		}
1663  		return ret;
1664  	}
1665  
1666  	hba->devfreq = devfreq;
1667  
1668  	return 0;
1669  }
1670  
ufshcd_devfreq_remove(struct ufs_hba * hba)1671  static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1672  {
1673  	struct list_head *clk_list = &hba->clk_list_head;
1674  
1675  	if (!hba->devfreq)
1676  		return;
1677  
1678  	devfreq_remove_device(hba->devfreq);
1679  	hba->devfreq = NULL;
1680  
1681  	if (!hba->use_pm_opp) {
1682  		struct ufs_clk_info *clki;
1683  
1684  		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1685  		dev_pm_opp_remove(hba->dev, clki->min_freq);
1686  		dev_pm_opp_remove(hba->dev, clki->max_freq);
1687  	}
1688  }
1689  
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1690  static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1691  {
1692  	bool suspend = false;
1693  
1694  	cancel_work_sync(&hba->clk_scaling.suspend_work);
1695  	cancel_work_sync(&hba->clk_scaling.resume_work);
1696  
1697  	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1698  	{
1699  		if (!hba->clk_scaling.is_suspended) {
1700  			suspend = true;
1701  			hba->clk_scaling.is_suspended = true;
1702  			hba->clk_scaling.window_start_t = 0;
1703  		}
1704  	}
1705  
1706  	if (suspend)
1707  		devfreq_suspend_device(hba->devfreq);
1708  }
1709  
ufshcd_resume_clkscaling(struct ufs_hba * hba)1710  static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1711  {
1712  	bool resume = false;
1713  
1714  	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1715  	{
1716  		if (hba->clk_scaling.is_suspended) {
1717  			resume = true;
1718  			hba->clk_scaling.is_suspended = false;
1719  		}
1720  	}
1721  
1722  	if (resume)
1723  		devfreq_resume_device(hba->devfreq);
1724  }
1725  
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1726  static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1727  		struct device_attribute *attr, char *buf)
1728  {
1729  	struct ufs_hba *hba = dev_get_drvdata(dev);
1730  
1731  	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1732  }
1733  
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1734  static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1735  		struct device_attribute *attr, const char *buf, size_t count)
1736  {
1737  	struct ufs_hba *hba = dev_get_drvdata(dev);
1738  	struct ufs_clk_info *clki;
1739  	unsigned long freq;
1740  	u32 value;
1741  	int err = 0;
1742  
1743  	if (kstrtou32(buf, 0, &value))
1744  		return -EINVAL;
1745  
1746  	down(&hba->host_sem);
1747  	if (!ufshcd_is_user_access_allowed(hba)) {
1748  		err = -EBUSY;
1749  		goto out;
1750  	}
1751  
1752  	value = !!value;
1753  	if (value == hba->clk_scaling.is_enabled)
1754  		goto out;
1755  
1756  	ufshcd_rpm_get_sync(hba);
1757  	ufshcd_hold(hba);
1758  
1759  	hba->clk_scaling.is_enabled = value;
1760  
1761  	if (value) {
1762  		ufshcd_resume_clkscaling(hba);
1763  		goto out_rel;
1764  	}
1765  
1766  	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1767  	freq = clki->max_freq;
1768  
1769  	ufshcd_suspend_clkscaling(hba);
1770  
1771  	if (!ufshcd_is_devfreq_scaling_required(hba, freq, true))
1772  		goto out_rel;
1773  
1774  	err = ufshcd_devfreq_scale(hba, freq, true);
1775  	if (err)
1776  		dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1777  				__func__, err);
1778  	else
1779  		hba->clk_scaling.target_freq = freq;
1780  
1781  out_rel:
1782  	ufshcd_release(hba);
1783  	ufshcd_rpm_put_sync(hba);
1784  out:
1785  	up(&hba->host_sem);
1786  	return err ? err : count;
1787  }
1788  
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1789  static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1790  {
1791  	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1792  	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1793  	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1794  	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1795  	hba->clk_scaling.enable_attr.attr.mode = 0644;
1796  	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1797  		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1798  }
1799  
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1800  static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1801  {
1802  	if (hba->clk_scaling.enable_attr.attr.name)
1803  		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1804  }
1805  
ufshcd_init_clk_scaling(struct ufs_hba * hba)1806  static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1807  {
1808  	if (!ufshcd_is_clkscaling_supported(hba))
1809  		return;
1810  
1811  	if (!hba->clk_scaling.min_gear)
1812  		hba->clk_scaling.min_gear = UFS_HS_G1;
1813  
1814  	if (!hba->clk_scaling.wb_gear)
1815  		/* Use intermediate gear speed HS_G3 as the default wb_gear */
1816  		hba->clk_scaling.wb_gear = UFS_HS_G3;
1817  
1818  	INIT_WORK(&hba->clk_scaling.suspend_work,
1819  		  ufshcd_clk_scaling_suspend_work);
1820  	INIT_WORK(&hba->clk_scaling.resume_work,
1821  		  ufshcd_clk_scaling_resume_work);
1822  
1823  	spin_lock_init(&hba->clk_scaling.lock);
1824  
1825  	hba->clk_scaling.workq = alloc_ordered_workqueue(
1826  		"ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no);
1827  
1828  	hba->clk_scaling.is_initialized = true;
1829  }
1830  
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1831  static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1832  {
1833  	if (!hba->clk_scaling.is_initialized)
1834  		return;
1835  
1836  	ufshcd_remove_clk_scaling_sysfs(hba);
1837  	destroy_workqueue(hba->clk_scaling.workq);
1838  	ufshcd_devfreq_remove(hba);
1839  	hba->clk_scaling.is_initialized = false;
1840  }
1841  
ufshcd_ungate_work(struct work_struct * work)1842  static void ufshcd_ungate_work(struct work_struct *work)
1843  {
1844  	int ret;
1845  	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1846  			clk_gating.ungate_work);
1847  
1848  	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1849  
1850  	scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
1851  		if (hba->clk_gating.state == CLKS_ON)
1852  			return;
1853  	}
1854  
1855  	ufshcd_hba_vreg_set_hpm(hba);
1856  	ufshcd_setup_clocks(hba, true);
1857  
1858  	ufshcd_enable_irq(hba);
1859  
1860  	/* Exit from hibern8 */
1861  	if (ufshcd_can_hibern8_during_gating(hba)) {
1862  		/* Prevent gating in this path */
1863  		hba->clk_gating.is_suspended = true;
1864  		if (ufshcd_is_link_hibern8(hba)) {
1865  			ret = ufshcd_uic_hibern8_exit(hba);
1866  			if (ret)
1867  				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1868  					__func__, ret);
1869  			else
1870  				ufshcd_set_link_active(hba);
1871  		}
1872  		hba->clk_gating.is_suspended = false;
1873  	}
1874  }
1875  
1876  /**
1877   * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1878   * Also, exit from hibern8 mode and set the link as active.
1879   * @hba: per adapter instance
1880   */
ufshcd_hold(struct ufs_hba * hba)1881  void ufshcd_hold(struct ufs_hba *hba)
1882  {
1883  	bool flush_result;
1884  	unsigned long flags;
1885  
1886  	if (!ufshcd_is_clkgating_allowed(hba) ||
1887  	    !hba->clk_gating.is_initialized)
1888  		return;
1889  	spin_lock_irqsave(&hba->clk_gating.lock, flags);
1890  	hba->clk_gating.active_reqs++;
1891  
1892  start:
1893  	switch (hba->clk_gating.state) {
1894  	case CLKS_ON:
1895  		/*
1896  		 * Wait for the ungate work to complete if in progress.
1897  		 * Though the clocks may be in ON state, the link could
1898  		 * still be in hibner8 state if hibern8 is allowed
1899  		 * during clock gating.
1900  		 * Make sure we exit hibern8 state also in addition to
1901  		 * clocks being ON.
1902  		 */
1903  		if (ufshcd_can_hibern8_during_gating(hba) &&
1904  		    ufshcd_is_link_hibern8(hba)) {
1905  			spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1906  			flush_result = flush_work(&hba->clk_gating.ungate_work);
1907  			if (hba->clk_gating.is_suspended && !flush_result)
1908  				return;
1909  			spin_lock_irqsave(&hba->clk_gating.lock, flags);
1910  			goto start;
1911  		}
1912  		break;
1913  	case REQ_CLKS_OFF:
1914  		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1915  			hba->clk_gating.state = CLKS_ON;
1916  			trace_ufshcd_clk_gating(hba,
1917  						hba->clk_gating.state);
1918  			break;
1919  		}
1920  		/*
1921  		 * If we are here, it means gating work is either done or
1922  		 * currently running. Hence, fall through to cancel gating
1923  		 * work and to enable clocks.
1924  		 */
1925  		fallthrough;
1926  	case CLKS_OFF:
1927  		hba->clk_gating.state = REQ_CLKS_ON;
1928  		trace_ufshcd_clk_gating(hba,
1929  					hba->clk_gating.state);
1930  		queue_work(hba->clk_gating.clk_gating_workq,
1931  			   &hba->clk_gating.ungate_work);
1932  		/*
1933  		 * fall through to check if we should wait for this
1934  		 * work to be done or not.
1935  		 */
1936  		fallthrough;
1937  	case REQ_CLKS_ON:
1938  		spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1939  		flush_work(&hba->clk_gating.ungate_work);
1940  		/* Make sure state is CLKS_ON before returning */
1941  		spin_lock_irqsave(&hba->clk_gating.lock, flags);
1942  		goto start;
1943  	default:
1944  		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1945  				__func__, hba->clk_gating.state);
1946  		break;
1947  	}
1948  	spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1949  }
1950  EXPORT_SYMBOL_GPL(ufshcd_hold);
1951  
ufshcd_gate_work(struct work_struct * work)1952  static void ufshcd_gate_work(struct work_struct *work)
1953  {
1954  	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1955  			clk_gating.gate_work.work);
1956  	int ret;
1957  
1958  	scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
1959  		/*
1960  		 * In case you are here to cancel this work the gating state
1961  		 * would be marked as REQ_CLKS_ON. In this case save time by
1962  		 * skipping the gating work and exit after changing the clock
1963  		 * state to CLKS_ON.
1964  		 */
1965  		if (hba->clk_gating.is_suspended ||
1966  		    hba->clk_gating.state != REQ_CLKS_OFF) {
1967  			hba->clk_gating.state = CLKS_ON;
1968  			trace_ufshcd_clk_gating(hba,
1969  						hba->clk_gating.state);
1970  			return;
1971  		}
1972  
1973  		if (hba->clk_gating.active_reqs)
1974  			return;
1975  	}
1976  
1977  	scoped_guard(spinlock_irqsave, hba->host->host_lock) {
1978  		if (ufshcd_is_ufs_dev_busy(hba) ||
1979  		    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
1980  			return;
1981  	}
1982  
1983  	/* put the link into hibern8 mode before turning off clocks */
1984  	if (ufshcd_can_hibern8_during_gating(hba)) {
1985  		ret = ufshcd_uic_hibern8_enter(hba);
1986  		if (ret) {
1987  			hba->clk_gating.state = CLKS_ON;
1988  			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1989  					__func__, ret);
1990  			trace_ufshcd_clk_gating(hba,
1991  						hba->clk_gating.state);
1992  			return;
1993  		}
1994  		ufshcd_set_link_hibern8(hba);
1995  	}
1996  
1997  	ufshcd_disable_irq(hba);
1998  
1999  	ufshcd_setup_clocks(hba, false);
2000  
2001  	/* Put the host controller in low power mode if possible */
2002  	ufshcd_hba_vreg_set_lpm(hba);
2003  	/*
2004  	 * In case you are here to cancel this work the gating state
2005  	 * would be marked as REQ_CLKS_ON. In this case keep the state
2006  	 * as REQ_CLKS_ON which would anyway imply that clocks are off
2007  	 * and a request to turn them on is pending. By doing this way,
2008  	 * we keep the state machine in tact and this would ultimately
2009  	 * prevent from doing cancel work multiple times when there are
2010  	 * new requests arriving before the current cancel work is done.
2011  	 */
2012  	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2013  	if (hba->clk_gating.state == REQ_CLKS_OFF) {
2014  		hba->clk_gating.state = CLKS_OFF;
2015  		trace_ufshcd_clk_gating(hba,
2016  					hba->clk_gating.state);
2017  	}
2018  }
2019  
__ufshcd_release(struct ufs_hba * hba)2020  static void __ufshcd_release(struct ufs_hba *hba)
2021  {
2022  	lockdep_assert_held(&hba->clk_gating.lock);
2023  
2024  	if (!ufshcd_is_clkgating_allowed(hba))
2025  		return;
2026  
2027  	hba->clk_gating.active_reqs--;
2028  
2029  	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2030  	    !hba->clk_gating.is_initialized ||
2031  	    hba->clk_gating.state == CLKS_OFF)
2032  		return;
2033  
2034  	scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2035  		if (ufshcd_has_pending_tasks(hba) ||
2036  		    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2037  			return;
2038  	}
2039  
2040  	hba->clk_gating.state = REQ_CLKS_OFF;
2041  	trace_ufshcd_clk_gating(hba, hba->clk_gating.state);
2042  	queue_delayed_work(hba->clk_gating.clk_gating_workq,
2043  			   &hba->clk_gating.gate_work,
2044  			   msecs_to_jiffies(hba->clk_gating.delay_ms));
2045  }
2046  
ufshcd_release(struct ufs_hba * hba)2047  void ufshcd_release(struct ufs_hba *hba)
2048  {
2049  	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2050  	__ufshcd_release(hba);
2051  }
2052  EXPORT_SYMBOL_GPL(ufshcd_release);
2053  
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)2054  static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2055  		struct device_attribute *attr, char *buf)
2056  {
2057  	struct ufs_hba *hba = dev_get_drvdata(dev);
2058  
2059  	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2060  }
2061  
ufshcd_clkgate_delay_set(struct device * dev,unsigned long value)2062  void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2063  {
2064  	struct ufs_hba *hba = dev_get_drvdata(dev);
2065  
2066  	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2067  	hba->clk_gating.delay_ms = value;
2068  }
2069  EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2070  
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2071  static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2072  		struct device_attribute *attr, const char *buf, size_t count)
2073  {
2074  	unsigned long value;
2075  
2076  	if (kstrtoul(buf, 0, &value))
2077  		return -EINVAL;
2078  
2079  	ufshcd_clkgate_delay_set(dev, value);
2080  	return count;
2081  }
2082  
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)2083  static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2084  		struct device_attribute *attr, char *buf)
2085  {
2086  	struct ufs_hba *hba = dev_get_drvdata(dev);
2087  
2088  	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2089  }
2090  
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2091  static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2092  		struct device_attribute *attr, const char *buf, size_t count)
2093  {
2094  	struct ufs_hba *hba = dev_get_drvdata(dev);
2095  	u32 value;
2096  
2097  	if (kstrtou32(buf, 0, &value))
2098  		return -EINVAL;
2099  
2100  	value = !!value;
2101  
2102  	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2103  
2104  	if (value == hba->clk_gating.is_enabled)
2105  		return count;
2106  
2107  	if (value)
2108  		__ufshcd_release(hba);
2109  	else
2110  		hba->clk_gating.active_reqs++;
2111  
2112  	hba->clk_gating.is_enabled = value;
2113  
2114  	return count;
2115  }
2116  
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)2117  static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2118  {
2119  	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2120  	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2121  	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2122  	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2123  	hba->clk_gating.delay_attr.attr.mode = 0644;
2124  	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2125  		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2126  
2127  	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2128  	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2129  	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2130  	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2131  	hba->clk_gating.enable_attr.attr.mode = 0644;
2132  	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2133  		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2134  }
2135  
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)2136  static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2137  {
2138  	if (hba->clk_gating.delay_attr.attr.name)
2139  		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2140  	if (hba->clk_gating.enable_attr.attr.name)
2141  		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2142  }
2143  
ufshcd_init_clk_gating(struct ufs_hba * hba)2144  static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2145  {
2146  	if (!ufshcd_is_clkgating_allowed(hba))
2147  		return;
2148  
2149  	hba->clk_gating.state = CLKS_ON;
2150  
2151  	hba->clk_gating.delay_ms = 150;
2152  	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2153  	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2154  
2155  	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(
2156  		"ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI,
2157  		hba->host->host_no);
2158  
2159  	ufshcd_init_clk_gating_sysfs(hba);
2160  
2161  	hba->clk_gating.is_enabled = true;
2162  	hba->clk_gating.is_initialized = true;
2163  }
2164  
ufshcd_exit_clk_gating(struct ufs_hba * hba)2165  static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2166  {
2167  	if (!hba->clk_gating.is_initialized)
2168  		return;
2169  
2170  	ufshcd_remove_clk_gating_sysfs(hba);
2171  
2172  	/* Ungate the clock if necessary. */
2173  	ufshcd_hold(hba);
2174  	hba->clk_gating.is_initialized = false;
2175  	ufshcd_release(hba);
2176  
2177  	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2178  }
2179  
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)2180  static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2181  {
2182  	bool queue_resume_work = false;
2183  	ktime_t curr_t = ktime_get();
2184  
2185  	if (!ufshcd_is_clkscaling_supported(hba))
2186  		return;
2187  
2188  	guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2189  
2190  	if (!hba->clk_scaling.active_reqs++)
2191  		queue_resume_work = true;
2192  
2193  	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress)
2194  		return;
2195  
2196  	if (queue_resume_work)
2197  		queue_work(hba->clk_scaling.workq,
2198  			   &hba->clk_scaling.resume_work);
2199  
2200  	if (!hba->clk_scaling.window_start_t) {
2201  		hba->clk_scaling.window_start_t = curr_t;
2202  		hba->clk_scaling.tot_busy_t = 0;
2203  		hba->clk_scaling.is_busy_started = false;
2204  	}
2205  
2206  	if (!hba->clk_scaling.is_busy_started) {
2207  		hba->clk_scaling.busy_start_t = curr_t;
2208  		hba->clk_scaling.is_busy_started = true;
2209  	}
2210  }
2211  
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)2212  static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2213  {
2214  	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2215  
2216  	if (!ufshcd_is_clkscaling_supported(hba))
2217  		return;
2218  
2219  	guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2220  
2221  	hba->clk_scaling.active_reqs--;
2222  	if (!scaling->active_reqs && scaling->is_busy_started) {
2223  		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2224  					scaling->busy_start_t));
2225  		scaling->busy_start_t = 0;
2226  		scaling->is_busy_started = false;
2227  	}
2228  }
2229  
ufshcd_monitor_opcode2dir(u8 opcode)2230  static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2231  {
2232  	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2233  		return READ;
2234  	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2235  		return WRITE;
2236  	else
2237  		return -EINVAL;
2238  }
2239  
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2240  static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2241  						struct ufshcd_lrb *lrbp)
2242  {
2243  	const struct ufs_hba_monitor *m = &hba->monitor;
2244  
2245  	return (m->enabled && lrbp && lrbp->cmd &&
2246  		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2247  		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2248  }
2249  
ufshcd_start_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2250  static void ufshcd_start_monitor(struct ufs_hba *hba,
2251  				 const struct ufshcd_lrb *lrbp)
2252  {
2253  	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2254  	unsigned long flags;
2255  
2256  	spin_lock_irqsave(hba->host->host_lock, flags);
2257  	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2258  		hba->monitor.busy_start_ts[dir] = ktime_get();
2259  	spin_unlock_irqrestore(hba->host->host_lock, flags);
2260  }
2261  
ufshcd_update_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2262  static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2263  {
2264  	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2265  	unsigned long flags;
2266  
2267  	spin_lock_irqsave(hba->host->host_lock, flags);
2268  	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2269  		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2270  		struct ufs_hba_monitor *m = &hba->monitor;
2271  		ktime_t now, inc, lat;
2272  
2273  		now = lrbp->compl_time_stamp;
2274  		inc = ktime_sub(now, m->busy_start_ts[dir]);
2275  		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2276  		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2277  
2278  		/* Update latencies */
2279  		m->nr_req[dir]++;
2280  		lat = ktime_sub(now, lrbp->issue_time_stamp);
2281  		m->lat_sum[dir] += lat;
2282  		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2283  			m->lat_max[dir] = lat;
2284  		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2285  			m->lat_min[dir] = lat;
2286  
2287  		m->nr_queued[dir]--;
2288  		/* Push forward the busy start of monitor */
2289  		m->busy_start_ts[dir] = now;
2290  	}
2291  	spin_unlock_irqrestore(hba->host->host_lock, flags);
2292  }
2293  
2294  /**
2295   * ufshcd_send_command - Send SCSI or device management commands
2296   * @hba: per adapter instance
2297   * @task_tag: Task tag of the command
2298   * @hwq: pointer to hardware queue instance
2299   */
2300  static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag,struct ufs_hw_queue * hwq)2301  void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2302  			 struct ufs_hw_queue *hwq)
2303  {
2304  	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2305  	unsigned long flags;
2306  
2307  	lrbp->issue_time_stamp = ktime_get();
2308  	lrbp->issue_time_stamp_local_clock = local_clock();
2309  	lrbp->compl_time_stamp = ktime_set(0, 0);
2310  	lrbp->compl_time_stamp_local_clock = 0;
2311  	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2312  	if (lrbp->cmd)
2313  		ufshcd_clk_scaling_start_busy(hba);
2314  	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2315  		ufshcd_start_monitor(hba, lrbp);
2316  
2317  	if (hba->mcq_enabled) {
2318  		int utrd_size = sizeof(struct utp_transfer_req_desc);
2319  		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2320  		struct utp_transfer_req_desc *dest;
2321  
2322  		spin_lock(&hwq->sq_lock);
2323  		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2324  		memcpy(dest, src, utrd_size);
2325  		ufshcd_inc_sq_tail(hwq);
2326  		spin_unlock(&hwq->sq_lock);
2327  	} else {
2328  		spin_lock_irqsave(&hba->outstanding_lock, flags);
2329  		if (hba->vops && hba->vops->setup_xfer_req)
2330  			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2331  						  !!lrbp->cmd);
2332  		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2333  		ufshcd_writel(hba, 1 << lrbp->task_tag,
2334  			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2335  		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2336  	}
2337  }
2338  
2339  /**
2340   * ufshcd_copy_sense_data - Copy sense data in case of check condition
2341   * @lrbp: pointer to local reference block
2342   */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)2343  static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2344  {
2345  	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2346  	u16 resp_len;
2347  	int len;
2348  
2349  	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2350  	if (sense_buffer && resp_len) {
2351  		int len_to_copy;
2352  
2353  		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2354  		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2355  
2356  		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2357  		       len_to_copy);
2358  	}
2359  }
2360  
2361  /**
2362   * ufshcd_copy_query_response() - Copy the Query Response and the data
2363   * descriptor
2364   * @hba: per adapter instance
2365   * @lrbp: pointer to local reference block
2366   *
2367   * Return: 0 upon success; < 0 upon failure.
2368   */
2369  static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2370  int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2371  {
2372  	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2373  
2374  	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2375  
2376  	/* Get the descriptor */
2377  	if (hba->dev_cmd.query.descriptor &&
2378  	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2379  		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2380  				GENERAL_UPIU_REQUEST_SIZE;
2381  		u16 resp_len;
2382  		u16 buf_len;
2383  
2384  		/* data segment length */
2385  		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2386  				       .data_segment_length);
2387  		buf_len = be16_to_cpu(
2388  				hba->dev_cmd.query.request.upiu_req.length);
2389  		if (likely(buf_len >= resp_len)) {
2390  			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2391  		} else {
2392  			dev_warn(hba->dev,
2393  				 "%s: rsp size %d is bigger than buffer size %d",
2394  				 __func__, resp_len, buf_len);
2395  			return -EINVAL;
2396  		}
2397  	}
2398  
2399  	return 0;
2400  }
2401  
2402  /**
2403   * ufshcd_hba_capabilities - Read controller capabilities
2404   * @hba: per adapter instance
2405   *
2406   * Return: 0 on success, negative on error.
2407   */
ufshcd_hba_capabilities(struct ufs_hba * hba)2408  static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2409  {
2410  	int err;
2411  
2412  	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2413  
2414  	/* nutrs and nutmrs are 0 based values */
2415  	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1;
2416  	hba->nutmrs =
2417  	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2418  	hba->reserved_slot = hba->nutrs - 1;
2419  
2420  	hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1;
2421  
2422  	/* Read crypto capabilities */
2423  	err = ufshcd_hba_init_crypto_capabilities(hba);
2424  	if (err) {
2425  		dev_err(hba->dev, "crypto setup failed\n");
2426  		return err;
2427  	}
2428  
2429  	/*
2430  	 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2431  	 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2432  	 * means we can simply read values regardless of version.
2433  	 */
2434  	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2435  	/*
2436  	 * 0h: legacy single doorbell support is available
2437  	 * 1h: indicate that legacy single doorbell support has been removed
2438  	 */
2439  	if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP))
2440  		hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2441  	else
2442  		hba->lsdb_sup = true;
2443  
2444  	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2445  
2446  	return 0;
2447  }
2448  
2449  /**
2450   * ufshcd_ready_for_uic_cmd - Check if controller is ready
2451   *                            to accept UIC commands
2452   * @hba: per adapter instance
2453   *
2454   * Return: true on success, else false.
2455   */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2456  static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2457  {
2458  	u32 val;
2459  	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2460  				    500, uic_cmd_timeout * 1000, false, hba,
2461  				    REG_CONTROLLER_STATUS);
2462  	return ret == 0;
2463  }
2464  
2465  /**
2466   * ufshcd_get_upmcrs - Get the power mode change request status
2467   * @hba: Pointer to adapter instance
2468   *
2469   * This function gets the UPMCRS field of HCS register
2470   *
2471   * Return: value of UPMCRS field.
2472   */
ufshcd_get_upmcrs(struct ufs_hba * hba)2473  static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2474  {
2475  	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2476  }
2477  
2478  /**
2479   * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2480   * @hba: per adapter instance
2481   * @uic_cmd: UIC command
2482   */
2483  static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2484  ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2485  {
2486  	lockdep_assert_held(&hba->uic_cmd_mutex);
2487  
2488  	WARN_ON(hba->active_uic_cmd);
2489  
2490  	hba->active_uic_cmd = uic_cmd;
2491  
2492  	/* Write Args */
2493  	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2494  	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2495  	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2496  
2497  	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2498  
2499  	/* Write UIC Cmd */
2500  	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2501  		      REG_UIC_COMMAND);
2502  }
2503  
2504  /**
2505   * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2506   * @hba: per adapter instance
2507   * @uic_cmd: UIC command
2508   *
2509   * Return: 0 only if success.
2510   */
2511  static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2512  ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2513  {
2514  	int ret;
2515  	unsigned long flags;
2516  
2517  	lockdep_assert_held(&hba->uic_cmd_mutex);
2518  
2519  	if (wait_for_completion_timeout(&uic_cmd->done,
2520  					msecs_to_jiffies(uic_cmd_timeout))) {
2521  		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2522  	} else {
2523  		ret = -ETIMEDOUT;
2524  		dev_err(hba->dev,
2525  			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2526  			uic_cmd->command, uic_cmd->argument3);
2527  
2528  		if (!uic_cmd->cmd_active) {
2529  			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2530  				__func__);
2531  			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2532  		}
2533  	}
2534  
2535  	spin_lock_irqsave(hba->host->host_lock, flags);
2536  	hba->active_uic_cmd = NULL;
2537  	spin_unlock_irqrestore(hba->host->host_lock, flags);
2538  
2539  	return ret;
2540  }
2541  
2542  /**
2543   * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2544   * @hba: per adapter instance
2545   * @uic_cmd: UIC command
2546   *
2547   * Return: 0 only if success.
2548   */
2549  static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2550  __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2551  {
2552  	lockdep_assert_held(&hba->uic_cmd_mutex);
2553  
2554  	if (!ufshcd_ready_for_uic_cmd(hba)) {
2555  		dev_err(hba->dev,
2556  			"Controller not ready to accept UIC commands\n");
2557  		return -EIO;
2558  	}
2559  
2560  	init_completion(&uic_cmd->done);
2561  
2562  	uic_cmd->cmd_active = 1;
2563  	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2564  
2565  	return 0;
2566  }
2567  
2568  /**
2569   * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2570   * @hba: per adapter instance
2571   * @uic_cmd: UIC command
2572   *
2573   * Return: 0 only if success.
2574   */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2575  int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2576  {
2577  	int ret;
2578  
2579  	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2580  		return 0;
2581  
2582  	ufshcd_hold(hba);
2583  	mutex_lock(&hba->uic_cmd_mutex);
2584  	ufshcd_add_delay_before_dme_cmd(hba);
2585  
2586  	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2587  	if (!ret)
2588  		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2589  
2590  	mutex_unlock(&hba->uic_cmd_mutex);
2591  
2592  	ufshcd_release(hba);
2593  	return ret;
2594  }
2595  
2596  /**
2597   * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2598   * @hba:	per-adapter instance
2599   * @lrbp:	pointer to local reference block
2600   * @sg_entries:	The number of sg lists actually used
2601   * @sg_list:	Pointer to SG list
2602   */
ufshcd_sgl_to_prdt(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int sg_entries,struct scatterlist * sg_list)2603  static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2604  			       struct scatterlist *sg_list)
2605  {
2606  	struct ufshcd_sg_entry *prd;
2607  	struct scatterlist *sg;
2608  	int i;
2609  
2610  	if (sg_entries) {
2611  
2612  		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2613  			lrbp->utr_descriptor_ptr->prd_table_length =
2614  				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2615  		else
2616  			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2617  
2618  		prd = lrbp->ucd_prdt_ptr;
2619  
2620  		for_each_sg(sg_list, sg, sg_entries, i) {
2621  			const unsigned int len = sg_dma_len(sg);
2622  
2623  			/*
2624  			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2625  			 * based value that indicates the length, in bytes, of
2626  			 * the data block. A maximum of length of 256KB may
2627  			 * exist for any entry. Bits 1:0 of this field shall be
2628  			 * 11b to indicate Dword granularity. A value of '3'
2629  			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2630  			 */
2631  			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2632  			prd->size = cpu_to_le32(len - 1);
2633  			prd->addr = cpu_to_le64(sg->dma_address);
2634  			prd->reserved = 0;
2635  			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2636  		}
2637  	} else {
2638  		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2639  	}
2640  }
2641  
2642  /**
2643   * ufshcd_map_sg - Map scatter-gather list to prdt
2644   * @hba: per adapter instance
2645   * @lrbp: pointer to local reference block
2646   *
2647   * Return: 0 in case of success, non-zero value in case of failure.
2648   */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2649  static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2650  {
2651  	struct scsi_cmnd *cmd = lrbp->cmd;
2652  	int sg_segments = scsi_dma_map(cmd);
2653  
2654  	if (sg_segments < 0)
2655  		return sg_segments;
2656  
2657  	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2658  
2659  	return ufshcd_crypto_fill_prdt(hba, lrbp);
2660  }
2661  
2662  /**
2663   * ufshcd_enable_intr - enable interrupts
2664   * @hba: per adapter instance
2665   * @intrs: interrupt bits
2666   */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2667  static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2668  {
2669  	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2670  
2671  	set |= intrs;
2672  	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2673  }
2674  
2675  /**
2676   * ufshcd_disable_intr - disable interrupts
2677   * @hba: per adapter instance
2678   * @intrs: interrupt bits
2679   */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2680  static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2681  {
2682  	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2683  
2684  	set &= ~intrs;
2685  	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2686  }
2687  
2688  /**
2689   * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2690   * descriptor according to request
2691   * @hba: per adapter instance
2692   * @lrbp: pointer to local reference block
2693   * @upiu_flags: flags required in the header
2694   * @cmd_dir: requests data direction
2695   * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2696   */
2697  static void
ufshcd_prepare_req_desc_hdr(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir,int ehs_length)2698  ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2699  			    u8 *upiu_flags, enum dma_data_direction cmd_dir,
2700  			    int ehs_length)
2701  {
2702  	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2703  	struct request_desc_header *h = &req_desc->header;
2704  	enum utp_data_direction data_direction;
2705  
2706  	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2707  
2708  	*h = (typeof(*h)){ };
2709  
2710  	if (cmd_dir == DMA_FROM_DEVICE) {
2711  		data_direction = UTP_DEVICE_TO_HOST;
2712  		*upiu_flags = UPIU_CMD_FLAGS_READ;
2713  	} else if (cmd_dir == DMA_TO_DEVICE) {
2714  		data_direction = UTP_HOST_TO_DEVICE;
2715  		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2716  	} else {
2717  		data_direction = UTP_NO_DATA_TRANSFER;
2718  		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2719  	}
2720  
2721  	h->command_type = lrbp->command_type;
2722  	h->data_direction = data_direction;
2723  	h->ehs_length = ehs_length;
2724  
2725  	if (lrbp->intr_cmd)
2726  		h->interrupt = 1;
2727  
2728  	/* Prepare crypto related dwords */
2729  	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2730  
2731  	/*
2732  	 * assigning invalid value for command status. Controller
2733  	 * updates OCS on command completion, with the command
2734  	 * status
2735  	 */
2736  	h->ocs = OCS_INVALID_COMMAND_STATUS;
2737  
2738  	req_desc->prd_table_length = 0;
2739  }
2740  
2741  /**
2742   * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2743   * for scsi commands
2744   * @lrbp: local reference block pointer
2745   * @upiu_flags: flags
2746   */
2747  static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2748  void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2749  {
2750  	struct scsi_cmnd *cmd = lrbp->cmd;
2751  	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2752  	unsigned short cdb_len;
2753  
2754  	ucd_req_ptr->header = (struct utp_upiu_header){
2755  		.transaction_code = UPIU_TRANSACTION_COMMAND,
2756  		.flags = upiu_flags,
2757  		.lun = lrbp->lun,
2758  		.task_tag = lrbp->task_tag,
2759  		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2760  	};
2761  
2762  	WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2763  
2764  	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2765  
2766  	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2767  	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2768  
2769  	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2770  }
2771  
2772  /**
2773   * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2774   * @hba: UFS hba
2775   * @lrbp: local reference block pointer
2776   * @upiu_flags: flags
2777   */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2778  static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2779  				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2780  {
2781  	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2782  	struct ufs_query *query = &hba->dev_cmd.query;
2783  	u16 len = be16_to_cpu(query->request.upiu_req.length);
2784  
2785  	/* Query request header */
2786  	ucd_req_ptr->header = (struct utp_upiu_header){
2787  		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2788  		.flags = upiu_flags,
2789  		.lun = lrbp->lun,
2790  		.task_tag = lrbp->task_tag,
2791  		.query_function = query->request.query_func,
2792  		/* Data segment length only need for WRITE_DESC */
2793  		.data_segment_length =
2794  			query->request.upiu_req.opcode ==
2795  					UPIU_QUERY_OPCODE_WRITE_DESC ?
2796  				cpu_to_be16(len) :
2797  				0,
2798  	};
2799  
2800  	/* Copy the Query Request buffer as is */
2801  	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2802  			QUERY_OSF_SIZE);
2803  
2804  	/* Copy the Descriptor */
2805  	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2806  		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2807  
2808  	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2809  }
2810  
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2811  static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2812  {
2813  	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2814  
2815  	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2816  
2817  	ucd_req_ptr->header = (struct utp_upiu_header){
2818  		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2819  		.task_tag = lrbp->task_tag,
2820  	};
2821  
2822  	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2823  }
2824  
2825  /**
2826   * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2827   *			     for Device Management Purposes
2828   * @hba: per adapter instance
2829   * @lrbp: pointer to local reference block
2830   *
2831   * Return: 0 upon success; < 0 upon failure.
2832   */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2833  static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2834  				      struct ufshcd_lrb *lrbp)
2835  {
2836  	u8 upiu_flags;
2837  	int ret = 0;
2838  
2839  	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2840  
2841  	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2842  		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2843  	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2844  		ufshcd_prepare_utp_nop_upiu(lrbp);
2845  	else
2846  		ret = -EINVAL;
2847  
2848  	return ret;
2849  }
2850  
2851  /**
2852   * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2853   *			   for SCSI Purposes
2854   * @hba: per adapter instance
2855   * @lrbp: pointer to local reference block
2856   */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2857  static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2858  {
2859  	struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2860  	unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2861  	u8 upiu_flags;
2862  
2863  	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2864  	if (ioprio_class == IOPRIO_CLASS_RT)
2865  		upiu_flags |= UPIU_CMD_FLAGS_CP;
2866  	ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2867  }
2868  
__ufshcd_setup_cmd(struct ufshcd_lrb * lrbp,struct scsi_cmnd * cmd,u8 lun,int tag)2869  static void __ufshcd_setup_cmd(struct ufshcd_lrb *lrbp, struct scsi_cmnd *cmd, u8 lun, int tag)
2870  {
2871  	memset(lrbp->ucd_req_ptr, 0, sizeof(*lrbp->ucd_req_ptr));
2872  
2873  	lrbp->cmd = cmd;
2874  	lrbp->task_tag = tag;
2875  	lrbp->lun = lun;
2876  	ufshcd_prepare_lrbp_crypto(cmd ? scsi_cmd_to_rq(cmd) : NULL, lrbp);
2877  }
2878  
ufshcd_setup_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct scsi_cmnd * cmd,u8 lun,int tag)2879  static void ufshcd_setup_scsi_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2880  				  struct scsi_cmnd *cmd, u8 lun, int tag)
2881  {
2882  	__ufshcd_setup_cmd(lrbp, cmd, lun, tag);
2883  	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2884  	lrbp->req_abort_skip = false;
2885  
2886  	ufshcd_comp_scsi_upiu(hba, lrbp);
2887  }
2888  
2889  /**
2890   * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2891   * @upiu_wlun_id: UPIU W-LUN id
2892   *
2893   * Return: SCSI W-LUN id.
2894   */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2895  static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2896  {
2897  	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2898  }
2899  
is_device_wlun(struct scsi_device * sdev)2900  static inline bool is_device_wlun(struct scsi_device *sdev)
2901  {
2902  	return sdev->lun ==
2903  		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2904  }
2905  
2906  /*
2907   * Associate the UFS controller queue with the default and poll HCTX types.
2908   * Initialize the mq_map[] arrays.
2909   */
ufshcd_map_queues(struct Scsi_Host * shost)2910  static void ufshcd_map_queues(struct Scsi_Host *shost)
2911  {
2912  	struct ufs_hba *hba = shost_priv(shost);
2913  	int i, queue_offset = 0;
2914  
2915  	if (!is_mcq_supported(hba)) {
2916  		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2917  		hba->nr_queues[HCTX_TYPE_READ] = 0;
2918  		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2919  		hba->nr_hw_queues = 1;
2920  	}
2921  
2922  	for (i = 0; i < shost->nr_maps; i++) {
2923  		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2924  
2925  		map->nr_queues = hba->nr_queues[i];
2926  		if (!map->nr_queues)
2927  			continue;
2928  		map->queue_offset = queue_offset;
2929  		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2930  			map->queue_offset = 0;
2931  
2932  		blk_mq_map_queues(map);
2933  		queue_offset += map->nr_queues;
2934  	}
2935  }
2936  
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2937  static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2938  {
2939  	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2940  		i * ufshcd_get_ucd_size(hba);
2941  	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2942  	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2943  		i * ufshcd_get_ucd_size(hba);
2944  	u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset);
2945  	u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset);
2946  
2947  	lrb->utr_descriptor_ptr = utrdlp + i;
2948  	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2949  		i * sizeof(struct utp_transfer_req_desc);
2950  	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2951  	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2952  	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2953  	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2954  	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2955  	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2956  }
2957  
2958  /**
2959   * ufshcd_queuecommand - main entry point for SCSI requests
2960   * @host: SCSI host pointer
2961   * @cmd: command from SCSI Midlayer
2962   *
2963   * Return: 0 for success, non-zero in case of failure.
2964   */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2965  static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2966  {
2967  	struct ufs_hba *hba = shost_priv(host);
2968  	int tag = scsi_cmd_to_rq(cmd)->tag;
2969  	struct ufshcd_lrb *lrbp;
2970  	int err = 0;
2971  	struct ufs_hw_queue *hwq = NULL;
2972  
2973  	switch (hba->ufshcd_state) {
2974  	case UFSHCD_STATE_OPERATIONAL:
2975  		break;
2976  	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2977  		/*
2978  		 * SCSI error handler can call ->queuecommand() while UFS error
2979  		 * handler is in progress. Error interrupts could change the
2980  		 * state from UFSHCD_STATE_RESET to
2981  		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2982  		 * being issued in that case.
2983  		 */
2984  		if (ufshcd_eh_in_progress(hba)) {
2985  			err = SCSI_MLQUEUE_HOST_BUSY;
2986  			goto out;
2987  		}
2988  		break;
2989  	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2990  		/*
2991  		 * pm_runtime_get_sync() is used at error handling preparation
2992  		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2993  		 * PM ops, it can never be finished if we let SCSI layer keep
2994  		 * retrying it, which gets err handler stuck forever. Neither
2995  		 * can we let the scsi cmd pass through, because UFS is in bad
2996  		 * state, the scsi cmd may eventually time out, which will get
2997  		 * err handler blocked for too long. So, just fail the scsi cmd
2998  		 * sent from PM ops, err handler can recover PM error anyways.
2999  		 */
3000  		if (hba->pm_op_in_progress) {
3001  			hba->force_reset = true;
3002  			set_host_byte(cmd, DID_BAD_TARGET);
3003  			scsi_done(cmd);
3004  			goto out;
3005  		}
3006  		fallthrough;
3007  	case UFSHCD_STATE_RESET:
3008  		err = SCSI_MLQUEUE_HOST_BUSY;
3009  		goto out;
3010  	case UFSHCD_STATE_ERROR:
3011  		set_host_byte(cmd, DID_ERROR);
3012  		scsi_done(cmd);
3013  		goto out;
3014  	}
3015  
3016  	hba->req_abort_count = 0;
3017  
3018  	ufshcd_hold(hba);
3019  
3020  	lrbp = &hba->lrb[tag];
3021  
3022  	ufshcd_setup_scsi_cmd(hba, lrbp, cmd, ufshcd_scsi_to_upiu_lun(cmd->device->lun), tag);
3023  
3024  	err = ufshcd_map_sg(hba, lrbp);
3025  	if (err) {
3026  		ufshcd_release(hba);
3027  		goto out;
3028  	}
3029  
3030  	if (hba->mcq_enabled)
3031  		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3032  
3033  	ufshcd_send_command(hba, tag, hwq);
3034  
3035  out:
3036  	if (ufs_trigger_eh(hba)) {
3037  		unsigned long flags;
3038  
3039  		spin_lock_irqsave(hba->host->host_lock, flags);
3040  		ufshcd_schedule_eh_work(hba);
3041  		spin_unlock_irqrestore(hba->host->host_lock, flags);
3042  	}
3043  
3044  	return err;
3045  }
3046  
ufshcd_setup_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,u8 lun,int tag)3047  static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3048  			     enum dev_cmd_type cmd_type, u8 lun, int tag)
3049  {
3050  	__ufshcd_setup_cmd(lrbp, NULL, lun, tag);
3051  	lrbp->intr_cmd = true; /* No interrupt aggregation */
3052  	hba->dev_cmd.type = cmd_type;
3053  }
3054  
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)3055  static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3056  		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3057  {
3058  	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
3059  
3060  	return ufshcd_compose_devman_upiu(hba, lrbp);
3061  }
3062  
3063  /*
3064   * Check with the block layer if the command is inflight
3065   * @cmd: command to check.
3066   *
3067   * Return: true if command is inflight; false if not.
3068   */
ufshcd_cmd_inflight(struct scsi_cmnd * cmd)3069  bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3070  {
3071  	return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3072  }
3073  
3074  /*
3075   * Clear the pending command in the controller and wait until
3076   * the controller confirms that the command has been cleared.
3077   * @hba: per adapter instance
3078   * @task_tag: The tag number of the command to be cleared.
3079   */
ufshcd_clear_cmd(struct ufs_hba * hba,u32 task_tag)3080  static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3081  {
3082  	u32 mask;
3083  	int err;
3084  
3085  	if (hba->mcq_enabled) {
3086  		/*
3087  		 * MCQ mode. Clean up the MCQ resources similar to
3088  		 * what the ufshcd_utrl_clear() does for SDB mode.
3089  		 */
3090  		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3091  		if (err) {
3092  			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3093  				__func__, task_tag, err);
3094  			return err;
3095  		}
3096  		return 0;
3097  	}
3098  
3099  	mask = 1U << task_tag;
3100  
3101  	/* clear outstanding transaction before retry */
3102  	ufshcd_utrl_clear(hba, mask);
3103  
3104  	/*
3105  	 * wait for h/w to clear corresponding bit in door-bell.
3106  	 * max. wait is 1 sec.
3107  	 */
3108  	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3109  					mask, ~mask, 1000, 1000);
3110  }
3111  
3112  /**
3113   * ufshcd_dev_cmd_completion() - handles device management command responses
3114   * @hba: per adapter instance
3115   * @lrbp: pointer to local reference block
3116   *
3117   * Return: 0 upon success; < 0 upon failure.
3118   */
3119  static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)3120  ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3121  {
3122  	enum upiu_response_transaction resp;
3123  	int err = 0;
3124  
3125  	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3126  	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3127  
3128  	switch (resp) {
3129  	case UPIU_TRANSACTION_NOP_IN:
3130  		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3131  			err = -EINVAL;
3132  			dev_err(hba->dev, "%s: unexpected response %x\n",
3133  					__func__, resp);
3134  		}
3135  		break;
3136  	case UPIU_TRANSACTION_QUERY_RSP: {
3137  		u8 response = lrbp->ucd_rsp_ptr->header.response;
3138  
3139  		if (response == 0) {
3140  			err = ufshcd_copy_query_response(hba, lrbp);
3141  		} else {
3142  			err = -EINVAL;
3143  			dev_err(hba->dev, "%s: unexpected response in Query RSP: %x\n",
3144  					__func__, response);
3145  		}
3146  		break;
3147  	}
3148  	case UPIU_TRANSACTION_REJECT_UPIU:
3149  		/* TODO: handle Reject UPIU Response */
3150  		err = -EPERM;
3151  		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3152  				__func__);
3153  		break;
3154  	case UPIU_TRANSACTION_RESPONSE:
3155  		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3156  			err = -EINVAL;
3157  			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3158  		}
3159  		break;
3160  	default:
3161  		err = -EINVAL;
3162  		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3163  				__func__, resp);
3164  		break;
3165  	}
3166  
3167  	return err;
3168  }
3169  
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)3170  static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3171  		struct ufshcd_lrb *lrbp, int max_timeout)
3172  {
3173  	unsigned long time_left = msecs_to_jiffies(max_timeout);
3174  	unsigned long flags;
3175  	bool pending;
3176  	int err;
3177  
3178  retry:
3179  	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3180  						time_left);
3181  
3182  	if (likely(time_left)) {
3183  		/*
3184  		 * The completion handler called complete() and the caller of
3185  		 * this function still owns the @lrbp tag so the code below does
3186  		 * not trigger any race conditions.
3187  		 */
3188  		hba->dev_cmd.complete = NULL;
3189  		err = ufshcd_get_tr_ocs(lrbp, NULL);
3190  		if (!err)
3191  			err = ufshcd_dev_cmd_completion(hba, lrbp);
3192  	} else {
3193  		err = -ETIMEDOUT;
3194  		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3195  			__func__, lrbp->task_tag);
3196  
3197  		/* MCQ mode */
3198  		if (hba->mcq_enabled) {
3199  			/* successfully cleared the command, retry if needed */
3200  			if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3201  				err = -EAGAIN;
3202  			hba->dev_cmd.complete = NULL;
3203  			return err;
3204  		}
3205  
3206  		/* SDB mode */
3207  		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3208  			/* successfully cleared the command, retry if needed */
3209  			err = -EAGAIN;
3210  			/*
3211  			 * Since clearing the command succeeded we also need to
3212  			 * clear the task tag bit from the outstanding_reqs
3213  			 * variable.
3214  			 */
3215  			spin_lock_irqsave(&hba->outstanding_lock, flags);
3216  			pending = test_bit(lrbp->task_tag,
3217  					   &hba->outstanding_reqs);
3218  			if (pending) {
3219  				hba->dev_cmd.complete = NULL;
3220  				__clear_bit(lrbp->task_tag,
3221  					    &hba->outstanding_reqs);
3222  			}
3223  			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3224  
3225  			if (!pending) {
3226  				/*
3227  				 * The completion handler ran while we tried to
3228  				 * clear the command.
3229  				 */
3230  				time_left = 1;
3231  				goto retry;
3232  			}
3233  		} else {
3234  			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3235  				__func__, lrbp->task_tag);
3236  
3237  			spin_lock_irqsave(&hba->outstanding_lock, flags);
3238  			pending = test_bit(lrbp->task_tag,
3239  					   &hba->outstanding_reqs);
3240  			if (pending)
3241  				hba->dev_cmd.complete = NULL;
3242  			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3243  
3244  			if (!pending) {
3245  				/*
3246  				 * The completion handler ran while we tried to
3247  				 * clear the command.
3248  				 */
3249  				time_left = 1;
3250  				goto retry;
3251  			}
3252  		}
3253  	}
3254  
3255  	return err;
3256  }
3257  
ufshcd_dev_man_lock(struct ufs_hba * hba)3258  static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3259  {
3260  	ufshcd_hold(hba);
3261  	mutex_lock(&hba->dev_cmd.lock);
3262  	down_read(&hba->clk_scaling_lock);
3263  }
3264  
ufshcd_dev_man_unlock(struct ufs_hba * hba)3265  static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3266  {
3267  	up_read(&hba->clk_scaling_lock);
3268  	mutex_unlock(&hba->dev_cmd.lock);
3269  	ufshcd_release(hba);
3270  }
3271  
ufshcd_issue_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,const u32 tag,int timeout)3272  static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3273  			  const u32 tag, int timeout)
3274  {
3275  	DECLARE_COMPLETION_ONSTACK(wait);
3276  	int err;
3277  
3278  	hba->dev_cmd.complete = &wait;
3279  
3280  	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3281  
3282  	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3283  	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3284  
3285  	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3286  				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3287  
3288  	return err;
3289  }
3290  
3291  /**
3292   * ufshcd_exec_dev_cmd - API for sending device management requests
3293   * @hba: UFS hba
3294   * @cmd_type: specifies the type (NOP, Query...)
3295   * @timeout: timeout in milliseconds
3296   *
3297   * Return: 0 upon success; < 0 upon failure.
3298   *
3299   * NOTE: Since there is only one available tag for device management commands,
3300   * it is expected you hold the hba->dev_cmd.lock mutex.
3301   */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)3302  static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3303  		enum dev_cmd_type cmd_type, int timeout)
3304  {
3305  	const u32 tag = hba->reserved_slot;
3306  	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
3307  	int err;
3308  
3309  	/* Protects use of hba->reserved_slot. */
3310  	lockdep_assert_held(&hba->dev_cmd.lock);
3311  
3312  	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3313  	if (unlikely(err))
3314  		return err;
3315  
3316  	return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout);
3317  }
3318  
3319  /**
3320   * ufshcd_init_query() - init the query response and request parameters
3321   * @hba: per-adapter instance
3322   * @request: address of the request pointer to be initialized
3323   * @response: address of the response pointer to be initialized
3324   * @opcode: operation to perform
3325   * @idn: flag idn to access
3326   * @index: LU number to access
3327   * @selector: query/flag/descriptor further identification
3328   */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)3329  static inline void ufshcd_init_query(struct ufs_hba *hba,
3330  		struct ufs_query_req **request, struct ufs_query_res **response,
3331  		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3332  {
3333  	*request = &hba->dev_cmd.query.request;
3334  	*response = &hba->dev_cmd.query.response;
3335  	memset(*request, 0, sizeof(struct ufs_query_req));
3336  	memset(*response, 0, sizeof(struct ufs_query_res));
3337  	(*request)->upiu_req.opcode = opcode;
3338  	(*request)->upiu_req.idn = idn;
3339  	(*request)->upiu_req.index = index;
3340  	(*request)->upiu_req.selector = selector;
3341  }
3342  
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3343  static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3344  	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3345  {
3346  	int ret;
3347  	int retries;
3348  
3349  	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3350  		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3351  		if (ret)
3352  			dev_dbg(hba->dev,
3353  				"%s: failed with error %d, retries %d\n",
3354  				__func__, ret, retries);
3355  		else
3356  			break;
3357  	}
3358  
3359  	if (ret)
3360  		dev_err(hba->dev,
3361  			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3362  			__func__, opcode, idn, ret, retries);
3363  	return ret;
3364  }
3365  
3366  /**
3367   * ufshcd_query_flag() - API function for sending flag query requests
3368   * @hba: per-adapter instance
3369   * @opcode: flag query to perform
3370   * @idn: flag idn to access
3371   * @index: flag index to access
3372   * @flag_res: the flag value after the query request completes
3373   *
3374   * Return: 0 for success, non-zero in case of failure.
3375   */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3376  int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3377  			enum flag_idn idn, u8 index, bool *flag_res)
3378  {
3379  	struct ufs_query_req *request = NULL;
3380  	struct ufs_query_res *response = NULL;
3381  	int err, selector = 0;
3382  	int timeout = QUERY_REQ_TIMEOUT;
3383  
3384  	BUG_ON(!hba);
3385  
3386  	ufshcd_dev_man_lock(hba);
3387  
3388  	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3389  			selector);
3390  
3391  	switch (opcode) {
3392  	case UPIU_QUERY_OPCODE_SET_FLAG:
3393  	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3394  	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3395  		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3396  		break;
3397  	case UPIU_QUERY_OPCODE_READ_FLAG:
3398  		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3399  		if (!flag_res) {
3400  			/* No dummy reads */
3401  			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3402  					__func__);
3403  			err = -EINVAL;
3404  			goto out_unlock;
3405  		}
3406  		break;
3407  	default:
3408  		dev_err(hba->dev,
3409  			"%s: Expected query flag opcode but got = %d\n",
3410  			__func__, opcode);
3411  		err = -EINVAL;
3412  		goto out_unlock;
3413  	}
3414  
3415  	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3416  
3417  	if (err) {
3418  		dev_err(hba->dev,
3419  			"%s: Sending flag query for idn %d failed, err = %d\n",
3420  			__func__, idn, err);
3421  		goto out_unlock;
3422  	}
3423  
3424  	if (flag_res)
3425  		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3426  				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3427  
3428  out_unlock:
3429  	ufshcd_dev_man_unlock(hba);
3430  	return err;
3431  }
3432  
3433  /**
3434   * ufshcd_query_attr - API function for sending attribute requests
3435   * @hba: per-adapter instance
3436   * @opcode: attribute opcode
3437   * @idn: attribute idn to access
3438   * @index: index field
3439   * @selector: selector field
3440   * @attr_val: the attribute value after the query request completes
3441   *
3442   * Return: 0 for success, non-zero in case of failure.
3443  */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3444  int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3445  		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3446  {
3447  	struct ufs_query_req *request = NULL;
3448  	struct ufs_query_res *response = NULL;
3449  	int err;
3450  
3451  	BUG_ON(!hba);
3452  
3453  	if (!attr_val) {
3454  		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3455  				__func__, opcode);
3456  		return -EINVAL;
3457  	}
3458  
3459  	ufshcd_dev_man_lock(hba);
3460  
3461  	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3462  			selector);
3463  
3464  	switch (opcode) {
3465  	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3466  		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3467  		request->upiu_req.value = cpu_to_be32(*attr_val);
3468  		break;
3469  	case UPIU_QUERY_OPCODE_READ_ATTR:
3470  		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3471  		break;
3472  	default:
3473  		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3474  				__func__, opcode);
3475  		err = -EINVAL;
3476  		goto out_unlock;
3477  	}
3478  
3479  	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3480  
3481  	if (err) {
3482  		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3483  				__func__, opcode, idn, index, err);
3484  		goto out_unlock;
3485  	}
3486  
3487  	*attr_val = be32_to_cpu(response->upiu_res.value);
3488  
3489  out_unlock:
3490  	ufshcd_dev_man_unlock(hba);
3491  	return err;
3492  }
3493  
3494  /**
3495   * ufshcd_query_attr_retry() - API function for sending query
3496   * attribute with retries
3497   * @hba: per-adapter instance
3498   * @opcode: attribute opcode
3499   * @idn: attribute idn to access
3500   * @index: index field
3501   * @selector: selector field
3502   * @attr_val: the attribute value after the query request
3503   * completes
3504   *
3505   * Return: 0 for success, non-zero in case of failure.
3506  */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3507  int ufshcd_query_attr_retry(struct ufs_hba *hba,
3508  	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3509  	u32 *attr_val)
3510  {
3511  	int ret = 0;
3512  	u32 retries;
3513  
3514  	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3515  		ret = ufshcd_query_attr(hba, opcode, idn, index,
3516  						selector, attr_val);
3517  		if (ret)
3518  			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3519  				__func__, ret, retries);
3520  		else
3521  			break;
3522  	}
3523  
3524  	if (ret)
3525  		dev_err(hba->dev,
3526  			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3527  			__func__, idn, ret, QUERY_REQ_RETRIES);
3528  	return ret;
3529  }
3530  
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3531  static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3532  			enum query_opcode opcode, enum desc_idn idn, u8 index,
3533  			u8 selector, u8 *desc_buf, int *buf_len)
3534  {
3535  	struct ufs_query_req *request = NULL;
3536  	struct ufs_query_res *response = NULL;
3537  	int err;
3538  
3539  	BUG_ON(!hba);
3540  
3541  	if (!desc_buf) {
3542  		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3543  				__func__, opcode);
3544  		return -EINVAL;
3545  	}
3546  
3547  	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3548  		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3549  				__func__, *buf_len);
3550  		return -EINVAL;
3551  	}
3552  
3553  	ufshcd_dev_man_lock(hba);
3554  
3555  	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3556  			selector);
3557  	hba->dev_cmd.query.descriptor = desc_buf;
3558  	request->upiu_req.length = cpu_to_be16(*buf_len);
3559  
3560  	switch (opcode) {
3561  	case UPIU_QUERY_OPCODE_WRITE_DESC:
3562  		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3563  		break;
3564  	case UPIU_QUERY_OPCODE_READ_DESC:
3565  		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3566  		break;
3567  	default:
3568  		dev_err(hba->dev,
3569  				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3570  				__func__, opcode);
3571  		err = -EINVAL;
3572  		goto out_unlock;
3573  	}
3574  
3575  	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3576  
3577  	if (err) {
3578  		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3579  				__func__, opcode, idn, index, err);
3580  		goto out_unlock;
3581  	}
3582  
3583  	*buf_len = be16_to_cpu(response->upiu_res.length);
3584  
3585  out_unlock:
3586  	hba->dev_cmd.query.descriptor = NULL;
3587  	ufshcd_dev_man_unlock(hba);
3588  	return err;
3589  }
3590  
3591  /**
3592   * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3593   * @hba: per-adapter instance
3594   * @opcode: attribute opcode
3595   * @idn: attribute idn to access
3596   * @index: index field
3597   * @selector: selector field
3598   * @desc_buf: the buffer that contains the descriptor
3599   * @buf_len: length parameter passed to the device
3600   *
3601   * The buf_len parameter will contain, on return, the length parameter
3602   * received on the response.
3603   *
3604   * Return: 0 for success, non-zero in case of failure.
3605   */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3606  int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3607  				  enum query_opcode opcode,
3608  				  enum desc_idn idn, u8 index,
3609  				  u8 selector,
3610  				  u8 *desc_buf, int *buf_len)
3611  {
3612  	int err;
3613  	int retries;
3614  
3615  	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3616  		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3617  						selector, desc_buf, buf_len);
3618  		if (!err || err == -EINVAL)
3619  			break;
3620  	}
3621  
3622  	return err;
3623  }
3624  
3625  /**
3626   * ufshcd_read_desc_param - read the specified descriptor parameter
3627   * @hba: Pointer to adapter instance
3628   * @desc_id: descriptor idn value
3629   * @desc_index: descriptor index
3630   * @param_offset: offset of the parameter to read
3631   * @param_read_buf: pointer to buffer where parameter would be read
3632   * @param_size: sizeof(param_read_buf)
3633   *
3634   * Return: 0 in case of success, non-zero otherwise.
3635   */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3636  int ufshcd_read_desc_param(struct ufs_hba *hba,
3637  			   enum desc_idn desc_id,
3638  			   int desc_index,
3639  			   u8 param_offset,
3640  			   u8 *param_read_buf,
3641  			   u8 param_size)
3642  {
3643  	int ret;
3644  	u8 *desc_buf;
3645  	int buff_len = QUERY_DESC_MAX_SIZE;
3646  	bool is_kmalloc = true;
3647  
3648  	/* Safety check */
3649  	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3650  		return -EINVAL;
3651  
3652  	/* Check whether we need temp memory */
3653  	if (param_offset != 0 || param_size < buff_len) {
3654  		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3655  		if (!desc_buf)
3656  			return -ENOMEM;
3657  	} else {
3658  		desc_buf = param_read_buf;
3659  		is_kmalloc = false;
3660  	}
3661  
3662  	/* Request for full descriptor */
3663  	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3664  					    desc_id, desc_index, 0,
3665  					    desc_buf, &buff_len);
3666  	if (ret) {
3667  		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3668  			__func__, desc_id, desc_index, param_offset, ret);
3669  		goto out;
3670  	}
3671  
3672  	/* Update descriptor length */
3673  	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3674  
3675  	if (param_offset >= buff_len) {
3676  		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3677  			__func__, param_offset, desc_id, buff_len);
3678  		ret = -EINVAL;
3679  		goto out;
3680  	}
3681  
3682  	/* Sanity check */
3683  	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3684  		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3685  			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3686  		ret = -EINVAL;
3687  		goto out;
3688  	}
3689  
3690  	if (is_kmalloc) {
3691  		/* Make sure we don't copy more data than available */
3692  		if (param_offset >= buff_len)
3693  			ret = -EINVAL;
3694  		else
3695  			memcpy(param_read_buf, &desc_buf[param_offset],
3696  			       min_t(u32, param_size, buff_len - param_offset));
3697  	}
3698  out:
3699  	if (is_kmalloc)
3700  		kfree(desc_buf);
3701  	return ret;
3702  }
3703  
3704  /**
3705   * struct uc_string_id - unicode string
3706   *
3707   * @len: size of this descriptor inclusive
3708   * @type: descriptor type
3709   * @uc: unicode string character
3710   */
3711  struct uc_string_id {
3712  	u8 len;
3713  	u8 type;
3714  	wchar_t uc[];
3715  } __packed;
3716  
3717  /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3718  static inline char ufshcd_remove_non_printable(u8 ch)
3719  {
3720  	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3721  }
3722  
3723  /**
3724   * ufshcd_read_string_desc - read string descriptor
3725   * @hba: pointer to adapter instance
3726   * @desc_index: descriptor index
3727   * @buf: pointer to buffer where descriptor would be read,
3728   *       the caller should free the memory.
3729   * @ascii: if true convert from unicode to ascii characters
3730   *         null terminated string.
3731   *
3732   * Return:
3733   * *      string size on success.
3734   * *      -ENOMEM: on allocation failure
3735   * *      -EINVAL: on a wrong parameter
3736   */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3737  int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3738  			    u8 **buf, bool ascii)
3739  {
3740  	struct uc_string_id *uc_str;
3741  	u8 *str;
3742  	int ret;
3743  
3744  	if (!buf)
3745  		return -EINVAL;
3746  
3747  	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3748  	if (!uc_str)
3749  		return -ENOMEM;
3750  
3751  	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3752  				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3753  	if (ret < 0) {
3754  		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3755  			QUERY_REQ_RETRIES, ret);
3756  		str = NULL;
3757  		goto out;
3758  	}
3759  
3760  	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3761  		dev_dbg(hba->dev, "String Desc is of zero length\n");
3762  		str = NULL;
3763  		ret = 0;
3764  		goto out;
3765  	}
3766  
3767  	if (ascii) {
3768  		ssize_t ascii_len;
3769  		int i;
3770  		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3771  		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3772  		str = kzalloc(ascii_len, GFP_KERNEL);
3773  		if (!str) {
3774  			ret = -ENOMEM;
3775  			goto out;
3776  		}
3777  
3778  		/*
3779  		 * the descriptor contains string in UTF16 format
3780  		 * we need to convert to utf-8 so it can be displayed
3781  		 */
3782  		ret = utf16s_to_utf8s(uc_str->uc,
3783  				      uc_str->len - QUERY_DESC_HDR_SIZE,
3784  				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3785  
3786  		/* replace non-printable or non-ASCII characters with spaces */
3787  		for (i = 0; i < ret; i++)
3788  			str[i] = ufshcd_remove_non_printable(str[i]);
3789  
3790  		str[ret++] = '\0';
3791  
3792  	} else {
3793  		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3794  		if (!str) {
3795  			ret = -ENOMEM;
3796  			goto out;
3797  		}
3798  		ret = uc_str->len;
3799  	}
3800  out:
3801  	*buf = str;
3802  	kfree(uc_str);
3803  	return ret;
3804  }
3805  
3806  /**
3807   * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3808   * @hba: Pointer to adapter instance
3809   * @lun: lun id
3810   * @param_offset: offset of the parameter to read
3811   * @param_read_buf: pointer to buffer where parameter would be read
3812   * @param_size: sizeof(param_read_buf)
3813   *
3814   * Return: 0 in case of success, non-zero otherwise.
3815   */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3816  static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3817  					      int lun,
3818  					      enum unit_desc_param param_offset,
3819  					      u8 *param_read_buf,
3820  					      u32 param_size)
3821  {
3822  	/*
3823  	 * Unit descriptors are only available for general purpose LUs (LUN id
3824  	 * from 0 to 7) and RPMB Well known LU.
3825  	 */
3826  	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3827  		return -EOPNOTSUPP;
3828  
3829  	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3830  				      param_offset, param_read_buf, param_size);
3831  }
3832  
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3833  static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3834  {
3835  	int err = 0;
3836  	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3837  
3838  	if (hba->dev_info.wspecversion >= 0x300) {
3839  		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3840  				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3841  				&gating_wait);
3842  		if (err)
3843  			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3844  					 err, gating_wait);
3845  
3846  		if (gating_wait == 0) {
3847  			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3848  			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3849  					 gating_wait);
3850  		}
3851  
3852  		hba->dev_info.clk_gating_wait_us = gating_wait;
3853  	}
3854  
3855  	return err;
3856  }
3857  
3858  /**
3859   * ufshcd_memory_alloc - allocate memory for host memory space data structures
3860   * @hba: per adapter instance
3861   *
3862   * 1. Allocate DMA memory for Command Descriptor array
3863   *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3864   * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3865   * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3866   *	(UTMRDL)
3867   * 4. Allocate memory for local reference block(lrb).
3868   *
3869   * Return: 0 for success, non-zero in case of failure.
3870   */
ufshcd_memory_alloc(struct ufs_hba * hba)3871  static int ufshcd_memory_alloc(struct ufs_hba *hba)
3872  {
3873  	size_t utmrdl_size, utrdl_size, ucdl_size;
3874  
3875  	/* Allocate memory for UTP command descriptors */
3876  	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3877  	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3878  						  ucdl_size,
3879  						  &hba->ucdl_dma_addr,
3880  						  GFP_KERNEL);
3881  
3882  	/*
3883  	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3884  	 */
3885  	if (!hba->ucdl_base_addr ||
3886  	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3887  		dev_err(hba->dev,
3888  			"Command Descriptor Memory allocation failed\n");
3889  		goto out;
3890  	}
3891  
3892  	/*
3893  	 * Allocate memory for UTP Transfer descriptors
3894  	 * UFSHCI requires 1KB alignment of UTRD
3895  	 */
3896  	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3897  	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3898  						   utrdl_size,
3899  						   &hba->utrdl_dma_addr,
3900  						   GFP_KERNEL);
3901  	if (!hba->utrdl_base_addr ||
3902  	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3903  		dev_err(hba->dev,
3904  			"Transfer Descriptor Memory allocation failed\n");
3905  		goto out;
3906  	}
3907  
3908  	/*
3909  	 * Skip utmrdl allocation; it may have been
3910  	 * allocated during first pass and not released during
3911  	 * MCQ memory allocation.
3912  	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3913  	 */
3914  	if (hba->utmrdl_base_addr)
3915  		goto skip_utmrdl;
3916  	/*
3917  	 * Allocate memory for UTP Task Management descriptors
3918  	 * UFSHCI requires 1KB alignment of UTMRD
3919  	 */
3920  	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3921  	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3922  						    utmrdl_size,
3923  						    &hba->utmrdl_dma_addr,
3924  						    GFP_KERNEL);
3925  	if (!hba->utmrdl_base_addr ||
3926  	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3927  		dev_err(hba->dev,
3928  		"Task Management Descriptor Memory allocation failed\n");
3929  		goto out;
3930  	}
3931  
3932  skip_utmrdl:
3933  	/* Allocate memory for local reference block */
3934  	hba->lrb = devm_kcalloc(hba->dev,
3935  				hba->nutrs, sizeof(struct ufshcd_lrb),
3936  				GFP_KERNEL);
3937  	if (!hba->lrb) {
3938  		dev_err(hba->dev, "LRB Memory allocation failed\n");
3939  		goto out;
3940  	}
3941  	return 0;
3942  out:
3943  	return -ENOMEM;
3944  }
3945  
3946  /**
3947   * ufshcd_host_memory_configure - configure local reference block with
3948   *				memory offsets
3949   * @hba: per adapter instance
3950   *
3951   * Configure Host memory space
3952   * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3953   * address.
3954   * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3955   * and PRDT offset.
3956   * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3957   * into local reference block.
3958   */
ufshcd_host_memory_configure(struct ufs_hba * hba)3959  static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3960  {
3961  	struct utp_transfer_req_desc *utrdlp;
3962  	dma_addr_t cmd_desc_dma_addr;
3963  	dma_addr_t cmd_desc_element_addr;
3964  	u16 response_offset;
3965  	u16 prdt_offset;
3966  	int cmd_desc_size;
3967  	int i;
3968  
3969  	utrdlp = hba->utrdl_base_addr;
3970  
3971  	response_offset =
3972  		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3973  	prdt_offset =
3974  		offsetof(struct utp_transfer_cmd_desc, prd_table);
3975  
3976  	cmd_desc_size = ufshcd_get_ucd_size(hba);
3977  	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3978  
3979  	for (i = 0; i < hba->nutrs; i++) {
3980  		/* Configure UTRD with command descriptor base address */
3981  		cmd_desc_element_addr =
3982  				(cmd_desc_dma_addr + (cmd_desc_size * i));
3983  		utrdlp[i].command_desc_base_addr =
3984  				cpu_to_le64(cmd_desc_element_addr);
3985  
3986  		/* Response upiu and prdt offset should be in double words */
3987  		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3988  			utrdlp[i].response_upiu_offset =
3989  				cpu_to_le16(response_offset);
3990  			utrdlp[i].prd_table_offset =
3991  				cpu_to_le16(prdt_offset);
3992  			utrdlp[i].response_upiu_length =
3993  				cpu_to_le16(ALIGNED_UPIU_SIZE);
3994  		} else {
3995  			utrdlp[i].response_upiu_offset =
3996  				cpu_to_le16(response_offset >> 2);
3997  			utrdlp[i].prd_table_offset =
3998  				cpu_to_le16(prdt_offset >> 2);
3999  			utrdlp[i].response_upiu_length =
4000  				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
4001  		}
4002  
4003  		ufshcd_init_lrb(hba, &hba->lrb[i], i);
4004  	}
4005  }
4006  
4007  /**
4008   * ufshcd_dme_link_startup - Notify Unipro to perform link startup
4009   * @hba: per adapter instance
4010   *
4011   * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
4012   * in order to initialize the Unipro link startup procedure.
4013   * Once the Unipro links are up, the device connected to the controller
4014   * is detected.
4015   *
4016   * Return: 0 on success, non-zero value on failure.
4017   */
ufshcd_dme_link_startup(struct ufs_hba * hba)4018  static int ufshcd_dme_link_startup(struct ufs_hba *hba)
4019  {
4020  	struct uic_command uic_cmd = {
4021  		.command = UIC_CMD_DME_LINK_STARTUP,
4022  	};
4023  	int ret;
4024  
4025  	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4026  	if (ret)
4027  		dev_dbg(hba->dev,
4028  			"dme-link-startup: error code %d\n", ret);
4029  	return ret;
4030  }
4031  /**
4032   * ufshcd_dme_reset - UIC command for DME_RESET
4033   * @hba: per adapter instance
4034   *
4035   * DME_RESET command is issued in order to reset UniPro stack.
4036   * This function now deals with cold reset.
4037   *
4038   * Return: 0 on success, non-zero value on failure.
4039   */
ufshcd_dme_reset(struct ufs_hba * hba)4040  int ufshcd_dme_reset(struct ufs_hba *hba)
4041  {
4042  	struct uic_command uic_cmd = {
4043  		.command = UIC_CMD_DME_RESET,
4044  	};
4045  	int ret;
4046  
4047  	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4048  	if (ret)
4049  		dev_err(hba->dev,
4050  			"dme-reset: error code %d\n", ret);
4051  
4052  	return ret;
4053  }
4054  EXPORT_SYMBOL_GPL(ufshcd_dme_reset);
4055  
ufshcd_dme_configure_adapt(struct ufs_hba * hba,int agreed_gear,int adapt_val)4056  int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4057  			       int agreed_gear,
4058  			       int adapt_val)
4059  {
4060  	int ret;
4061  
4062  	if (agreed_gear < UFS_HS_G4)
4063  		adapt_val = PA_NO_ADAPT;
4064  
4065  	ret = ufshcd_dme_set(hba,
4066  			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4067  			     adapt_val);
4068  	return ret;
4069  }
4070  EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4071  
4072  /**
4073   * ufshcd_dme_enable - UIC command for DME_ENABLE
4074   * @hba: per adapter instance
4075   *
4076   * DME_ENABLE command is issued in order to enable UniPro stack.
4077   *
4078   * Return: 0 on success, non-zero value on failure.
4079   */
ufshcd_dme_enable(struct ufs_hba * hba)4080  int ufshcd_dme_enable(struct ufs_hba *hba)
4081  {
4082  	struct uic_command uic_cmd = {
4083  		.command = UIC_CMD_DME_ENABLE,
4084  	};
4085  	int ret;
4086  
4087  	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4088  	if (ret)
4089  		dev_err(hba->dev,
4090  			"dme-enable: error code %d\n", ret);
4091  
4092  	return ret;
4093  }
4094  EXPORT_SYMBOL_GPL(ufshcd_dme_enable);
4095  
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)4096  static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4097  {
4098  	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
4099  	unsigned long min_sleep_time_us;
4100  
4101  	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4102  		return;
4103  
4104  	/*
4105  	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4106  	 * this function
4107  	 */
4108  	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4109  		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4110  	} else {
4111  		unsigned long delta =
4112  			(unsigned long) ktime_to_us(
4113  				ktime_sub(ktime_get(),
4114  				hba->last_dme_cmd_tstamp));
4115  
4116  		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4117  			min_sleep_time_us =
4118  				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4119  		else
4120  			min_sleep_time_us = 0; /* no more delay required */
4121  	}
4122  
4123  	if (min_sleep_time_us > 0) {
4124  		/* allow sleep for extra 50us if needed */
4125  		usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4126  	}
4127  
4128  	/* update the last_dme_cmd_tstamp */
4129  	hba->last_dme_cmd_tstamp = ktime_get();
4130  }
4131  
4132  /**
4133   * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4134   * @hba: per adapter instance
4135   * @attr_sel: uic command argument1
4136   * @attr_set: attribute set type as uic command argument2
4137   * @mib_val: setting value as uic command argument3
4138   * @peer: indicate whether peer or local
4139   *
4140   * Return: 0 on success, non-zero value on failure.
4141   */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)4142  int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4143  			u8 attr_set, u32 mib_val, u8 peer)
4144  {
4145  	struct uic_command uic_cmd = {
4146  		.command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET,
4147  		.argument1 = attr_sel,
4148  		.argument2 = UIC_ARG_ATTR_TYPE(attr_set),
4149  		.argument3 = mib_val,
4150  	};
4151  	static const char *const action[] = {
4152  		"dme-set",
4153  		"dme-peer-set"
4154  	};
4155  	const char *set = action[!!peer];
4156  	int ret;
4157  	int retries = UFS_UIC_COMMAND_RETRIES;
4158  
4159  	do {
4160  		/* for peer attributes we retry upon failure */
4161  		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4162  		if (ret)
4163  			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4164  				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4165  	} while (ret && peer && --retries);
4166  
4167  	if (ret)
4168  		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4169  			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4170  			UFS_UIC_COMMAND_RETRIES - retries);
4171  
4172  	return ret;
4173  }
4174  EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4175  
4176  /**
4177   * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4178   * @hba: per adapter instance
4179   * @attr_sel: uic command argument1
4180   * @mib_val: the value of the attribute as returned by the UIC command
4181   * @peer: indicate whether peer or local
4182   *
4183   * Return: 0 on success, non-zero value on failure.
4184   */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)4185  int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4186  			u32 *mib_val, u8 peer)
4187  {
4188  	struct uic_command uic_cmd = {
4189  		.command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET,
4190  		.argument1 = attr_sel,
4191  	};
4192  	static const char *const action[] = {
4193  		"dme-get",
4194  		"dme-peer-get"
4195  	};
4196  	const char *get = action[!!peer];
4197  	int ret;
4198  	int retries = UFS_UIC_COMMAND_RETRIES;
4199  	struct ufs_pa_layer_attr orig_pwr_info;
4200  	struct ufs_pa_layer_attr temp_pwr_info;
4201  	bool pwr_mode_change = false;
4202  
4203  	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4204  		orig_pwr_info = hba->pwr_info;
4205  		temp_pwr_info = orig_pwr_info;
4206  
4207  		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4208  		    orig_pwr_info.pwr_rx == FAST_MODE) {
4209  			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4210  			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4211  			pwr_mode_change = true;
4212  		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4213  		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4214  			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4215  			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4216  			pwr_mode_change = true;
4217  		}
4218  		if (pwr_mode_change) {
4219  			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4220  			if (ret)
4221  				goto out;
4222  		}
4223  	}
4224  
4225  	do {
4226  		/* for peer attributes we retry upon failure */
4227  		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4228  		if (ret)
4229  			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4230  				get, UIC_GET_ATTR_ID(attr_sel), ret);
4231  	} while (ret && peer && --retries);
4232  
4233  	if (ret)
4234  		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4235  			get, UIC_GET_ATTR_ID(attr_sel),
4236  			UFS_UIC_COMMAND_RETRIES - retries);
4237  
4238  	if (mib_val && !ret)
4239  		*mib_val = uic_cmd.argument3;
4240  
4241  	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4242  	    && pwr_mode_change)
4243  		ufshcd_change_power_mode(hba, &orig_pwr_info);
4244  out:
4245  	return ret;
4246  }
4247  EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4248  
4249  /**
4250   * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4251   * state) and waits for it to take effect.
4252   *
4253   * @hba: per adapter instance
4254   * @cmd: UIC command to execute
4255   *
4256   * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4257   * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4258   * and device UniPro link and hence it's final completion would be indicated by
4259   * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4260   * addition to normal UIC command completion Status (UCCS). This function only
4261   * returns after the relevant status bits indicate the completion.
4262   *
4263   * Return: 0 on success, non-zero value on failure.
4264   */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)4265  static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4266  {
4267  	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4268  	unsigned long flags;
4269  	u8 status;
4270  	int ret;
4271  	bool reenable_intr = false;
4272  
4273  	mutex_lock(&hba->uic_cmd_mutex);
4274  	ufshcd_add_delay_before_dme_cmd(hba);
4275  
4276  	spin_lock_irqsave(hba->host->host_lock, flags);
4277  	if (ufshcd_is_link_broken(hba)) {
4278  		ret = -ENOLINK;
4279  		goto out_unlock;
4280  	}
4281  	hba->uic_async_done = &uic_async_done;
4282  	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4283  		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4284  		/*
4285  		 * Make sure UIC command completion interrupt is disabled before
4286  		 * issuing UIC command.
4287  		 */
4288  		ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
4289  		reenable_intr = true;
4290  	}
4291  	spin_unlock_irqrestore(hba->host->host_lock, flags);
4292  	ret = __ufshcd_send_uic_cmd(hba, cmd);
4293  	if (ret) {
4294  		dev_err(hba->dev,
4295  			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4296  			cmd->command, cmd->argument3, ret);
4297  		goto out;
4298  	}
4299  
4300  	if (!wait_for_completion_timeout(hba->uic_async_done,
4301  					 msecs_to_jiffies(uic_cmd_timeout))) {
4302  		dev_err(hba->dev,
4303  			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4304  			cmd->command, cmd->argument3);
4305  
4306  		if (!cmd->cmd_active) {
4307  			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4308  				__func__);
4309  			goto check_upmcrs;
4310  		}
4311  
4312  		ret = -ETIMEDOUT;
4313  		goto out;
4314  	}
4315  
4316  check_upmcrs:
4317  	status = ufshcd_get_upmcrs(hba);
4318  	if (status != PWR_LOCAL) {
4319  		dev_err(hba->dev,
4320  			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4321  			cmd->command, status);
4322  		ret = (status != PWR_OK) ? status : -1;
4323  	}
4324  out:
4325  	if (ret) {
4326  		ufshcd_print_host_state(hba);
4327  		ufshcd_print_pwr_info(hba);
4328  		ufshcd_print_evt_hist(hba);
4329  	}
4330  
4331  	spin_lock_irqsave(hba->host->host_lock, flags);
4332  	hba->active_uic_cmd = NULL;
4333  	hba->uic_async_done = NULL;
4334  	if (reenable_intr)
4335  		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4336  	if (ret) {
4337  		ufshcd_set_link_broken(hba);
4338  		ufshcd_schedule_eh_work(hba);
4339  	}
4340  out_unlock:
4341  	spin_unlock_irqrestore(hba->host->host_lock, flags);
4342  	mutex_unlock(&hba->uic_cmd_mutex);
4343  
4344  	return ret;
4345  }
4346  
4347  /**
4348   * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result
4349   * @hba: per adapter instance
4350   * @uic_cmd: UIC command
4351   *
4352   * Return: 0 only if success.
4353   */
ufshcd_send_bsg_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)4354  int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
4355  {
4356  	int ret;
4357  
4358  	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
4359  		return 0;
4360  
4361  	ufshcd_hold(hba);
4362  
4363  	if (uic_cmd->argument1 == UIC_ARG_MIB(PA_PWRMODE) &&
4364  	    uic_cmd->command == UIC_CMD_DME_SET) {
4365  		ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd);
4366  		goto out;
4367  	}
4368  
4369  	mutex_lock(&hba->uic_cmd_mutex);
4370  	ufshcd_add_delay_before_dme_cmd(hba);
4371  
4372  	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
4373  	if (!ret)
4374  		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
4375  
4376  	mutex_unlock(&hba->uic_cmd_mutex);
4377  
4378  out:
4379  	ufshcd_release(hba);
4380  	return ret;
4381  }
4382  
4383  /**
4384   * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4385   *				using DME_SET primitives.
4386   * @hba: per adapter instance
4387   * @mode: powr mode value
4388   *
4389   * Return: 0 on success, non-zero value on failure.
4390   */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4391  int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4392  {
4393  	struct uic_command uic_cmd = {
4394  		.command = UIC_CMD_DME_SET,
4395  		.argument1 = UIC_ARG_MIB(PA_PWRMODE),
4396  		.argument3 = mode,
4397  	};
4398  	int ret;
4399  
4400  	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4401  		ret = ufshcd_dme_set(hba,
4402  				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4403  		if (ret) {
4404  			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4405  						__func__, ret);
4406  			goto out;
4407  		}
4408  	}
4409  
4410  	ufshcd_hold(hba);
4411  	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4412  	ufshcd_release(hba);
4413  
4414  out:
4415  	return ret;
4416  }
4417  EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4418  
ufshcd_link_recovery(struct ufs_hba * hba)4419  int ufshcd_link_recovery(struct ufs_hba *hba)
4420  {
4421  	int ret;
4422  	unsigned long flags;
4423  
4424  	spin_lock_irqsave(hba->host->host_lock, flags);
4425  	hba->ufshcd_state = UFSHCD_STATE_RESET;
4426  	ufshcd_set_eh_in_progress(hba);
4427  	spin_unlock_irqrestore(hba->host->host_lock, flags);
4428  
4429  	/* Reset the attached device */
4430  	ufshcd_device_reset(hba);
4431  
4432  	ret = ufshcd_host_reset_and_restore(hba);
4433  
4434  	spin_lock_irqsave(hba->host->host_lock, flags);
4435  	if (ret)
4436  		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4437  	ufshcd_clear_eh_in_progress(hba);
4438  	spin_unlock_irqrestore(hba->host->host_lock, flags);
4439  
4440  	if (ret)
4441  		dev_err(hba->dev, "%s: link recovery failed, err %d",
4442  			__func__, ret);
4443  
4444  	return ret;
4445  }
4446  EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4447  
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4448  int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4449  {
4450  	struct uic_command uic_cmd = {
4451  		.command = UIC_CMD_DME_HIBER_ENTER,
4452  	};
4453  	ktime_t start = ktime_get();
4454  	int ret;
4455  
4456  	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4457  
4458  	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4459  	trace_ufshcd_profile_hibern8(hba, "enter",
4460  			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4461  
4462  	if (ret)
4463  		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4464  			__func__, ret);
4465  	else
4466  		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4467  								POST_CHANGE);
4468  
4469  	return ret;
4470  }
4471  EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4472  
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4473  int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4474  {
4475  	struct uic_command uic_cmd = {
4476  		.command = UIC_CMD_DME_HIBER_EXIT,
4477  	};
4478  	int ret;
4479  	ktime_t start = ktime_get();
4480  
4481  	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4482  
4483  	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4484  	trace_ufshcd_profile_hibern8(hba, "exit",
4485  			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4486  
4487  	if (ret) {
4488  		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4489  			__func__, ret);
4490  	} else {
4491  		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4492  								POST_CHANGE);
4493  		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4494  		hba->ufs_stats.hibern8_exit_cnt++;
4495  	}
4496  
4497  	return ret;
4498  }
4499  EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4500  
ufshcd_configure_auto_hibern8(struct ufs_hba * hba)4501  static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4502  {
4503  	if (!ufshcd_is_auto_hibern8_supported(hba))
4504  		return;
4505  
4506  	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4507  }
4508  
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4509  void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4510  {
4511  	const u32 cur_ahit = READ_ONCE(hba->ahit);
4512  
4513  	if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4514  		return;
4515  
4516  	WRITE_ONCE(hba->ahit, ahit);
4517  	if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4518  		ufshcd_rpm_get_sync(hba);
4519  		ufshcd_hold(hba);
4520  		ufshcd_configure_auto_hibern8(hba);
4521  		ufshcd_release(hba);
4522  		ufshcd_rpm_put_sync(hba);
4523  	}
4524  }
4525  EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4526  
4527   /**
4528   * ufshcd_init_pwr_info - setting the POR (power on reset)
4529   * values in hba power info
4530   * @hba: per-adapter instance
4531   */
ufshcd_init_pwr_info(struct ufs_hba * hba)4532  static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4533  {
4534  	hba->pwr_info.gear_rx = UFS_PWM_G1;
4535  	hba->pwr_info.gear_tx = UFS_PWM_G1;
4536  	hba->pwr_info.lane_rx = UFS_LANE_1;
4537  	hba->pwr_info.lane_tx = UFS_LANE_1;
4538  	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4539  	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4540  	hba->pwr_info.hs_rate = 0;
4541  }
4542  
4543  /**
4544   * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4545   * @hba: per-adapter instance
4546   *
4547   * Return: 0 upon success; < 0 upon failure.
4548   */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4549  static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4550  {
4551  	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4552  
4553  	if (hba->max_pwr_info.is_valid)
4554  		return 0;
4555  
4556  	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4557  		pwr_info->pwr_tx = FASTAUTO_MODE;
4558  		pwr_info->pwr_rx = FASTAUTO_MODE;
4559  	} else {
4560  		pwr_info->pwr_tx = FAST_MODE;
4561  		pwr_info->pwr_rx = FAST_MODE;
4562  	}
4563  	pwr_info->hs_rate = PA_HS_MODE_B;
4564  
4565  	/* Get the connected lane count */
4566  	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4567  			&pwr_info->lane_rx);
4568  	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4569  			&pwr_info->lane_tx);
4570  
4571  	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4572  		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4573  				__func__,
4574  				pwr_info->lane_rx,
4575  				pwr_info->lane_tx);
4576  		return -EINVAL;
4577  	}
4578  
4579  	if (pwr_info->lane_rx != pwr_info->lane_tx) {
4580  		dev_err(hba->dev, "%s: asymmetric connected lanes. rx=%d, tx=%d\n",
4581  			__func__,
4582  				pwr_info->lane_rx,
4583  				pwr_info->lane_tx);
4584  		return -EINVAL;
4585  	}
4586  
4587  	/*
4588  	 * First, get the maximum gears of HS speed.
4589  	 * If a zero value, it means there is no HSGEAR capability.
4590  	 * Then, get the maximum gears of PWM speed.
4591  	 */
4592  	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4593  	if (!pwr_info->gear_rx) {
4594  		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4595  				&pwr_info->gear_rx);
4596  		if (!pwr_info->gear_rx) {
4597  			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4598  				__func__, pwr_info->gear_rx);
4599  			return -EINVAL;
4600  		}
4601  		pwr_info->pwr_rx = SLOW_MODE;
4602  	}
4603  
4604  	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4605  			&pwr_info->gear_tx);
4606  	if (!pwr_info->gear_tx) {
4607  		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4608  				&pwr_info->gear_tx);
4609  		if (!pwr_info->gear_tx) {
4610  			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4611  				__func__, pwr_info->gear_tx);
4612  			return -EINVAL;
4613  		}
4614  		pwr_info->pwr_tx = SLOW_MODE;
4615  	}
4616  
4617  	hba->max_pwr_info.is_valid = true;
4618  	return 0;
4619  }
4620  
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4621  static int ufshcd_change_power_mode(struct ufs_hba *hba,
4622  			     struct ufs_pa_layer_attr *pwr_mode)
4623  {
4624  	int ret;
4625  
4626  	/* if already configured to the requested pwr_mode */
4627  	if (!hba->force_pmc &&
4628  	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4629  	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4630  	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4631  	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4632  	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4633  	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4634  	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4635  		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4636  		return 0;
4637  	}
4638  
4639  	/*
4640  	 * Configure attributes for power mode change with below.
4641  	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4642  	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4643  	 * - PA_HSSERIES
4644  	 */
4645  	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4646  	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4647  			pwr_mode->lane_rx);
4648  	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4649  			pwr_mode->pwr_rx == FAST_MODE)
4650  		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4651  	else
4652  		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4653  
4654  	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4655  	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4656  			pwr_mode->lane_tx);
4657  	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4658  			pwr_mode->pwr_tx == FAST_MODE)
4659  		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4660  	else
4661  		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4662  
4663  	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4664  	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4665  	    pwr_mode->pwr_rx == FAST_MODE ||
4666  	    pwr_mode->pwr_tx == FAST_MODE)
4667  		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4668  						pwr_mode->hs_rate);
4669  
4670  	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4671  		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4672  				DL_FC0ProtectionTimeOutVal_Default);
4673  		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4674  				DL_TC0ReplayTimeOutVal_Default);
4675  		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4676  				DL_AFC0ReqTimeOutVal_Default);
4677  		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4678  				DL_FC1ProtectionTimeOutVal_Default);
4679  		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4680  				DL_TC1ReplayTimeOutVal_Default);
4681  		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4682  				DL_AFC1ReqTimeOutVal_Default);
4683  
4684  		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4685  				DL_FC0ProtectionTimeOutVal_Default);
4686  		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4687  				DL_TC0ReplayTimeOutVal_Default);
4688  		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4689  				DL_AFC0ReqTimeOutVal_Default);
4690  	}
4691  
4692  	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4693  			| pwr_mode->pwr_tx);
4694  
4695  	if (ret) {
4696  		dev_err(hba->dev,
4697  			"%s: power mode change failed %d\n", __func__, ret);
4698  	} else {
4699  		memcpy(&hba->pwr_info, pwr_mode,
4700  			sizeof(struct ufs_pa_layer_attr));
4701  	}
4702  
4703  	return ret;
4704  }
4705  
4706  /**
4707   * ufshcd_config_pwr_mode - configure a new power mode
4708   * @hba: per-adapter instance
4709   * @desired_pwr_mode: desired power configuration
4710   *
4711   * Return: 0 upon success; < 0 upon failure.
4712   */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4713  int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4714  		struct ufs_pa_layer_attr *desired_pwr_mode)
4715  {
4716  	struct ufs_pa_layer_attr final_params = { 0 };
4717  	int ret;
4718  
4719  	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4720  					desired_pwr_mode, &final_params);
4721  
4722  	if (ret)
4723  		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4724  
4725  	ret = ufshcd_change_power_mode(hba, &final_params);
4726  
4727  	if (!ret)
4728  		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4729  					&final_params);
4730  
4731  	return ret;
4732  }
4733  EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4734  
4735  /**
4736   * ufshcd_complete_dev_init() - checks device readiness
4737   * @hba: per-adapter instance
4738   *
4739   * Set fDeviceInit flag and poll until device toggles it.
4740   *
4741   * Return: 0 upon success; < 0 upon failure.
4742   */
ufshcd_complete_dev_init(struct ufs_hba * hba)4743  static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4744  {
4745  	int err;
4746  	bool flag_res = true;
4747  	ktime_t timeout;
4748  
4749  	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4750  		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4751  	if (err) {
4752  		dev_err(hba->dev,
4753  			"%s: setting fDeviceInit flag failed with error %d\n",
4754  			__func__, err);
4755  		goto out;
4756  	}
4757  
4758  	/* Poll fDeviceInit flag to be cleared */
4759  	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4760  	do {
4761  		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4762  					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4763  		if (!flag_res)
4764  			break;
4765  		usleep_range(500, 1000);
4766  	} while (ktime_before(ktime_get(), timeout));
4767  
4768  	if (err) {
4769  		dev_err(hba->dev,
4770  				"%s: reading fDeviceInit flag failed with error %d\n",
4771  				__func__, err);
4772  	} else if (flag_res) {
4773  		dev_err(hba->dev,
4774  				"%s: fDeviceInit was not cleared by the device\n",
4775  				__func__);
4776  		err = -EBUSY;
4777  	}
4778  out:
4779  	return err;
4780  }
4781  
4782  /**
4783   * ufshcd_make_hba_operational - Make UFS controller operational
4784   * @hba: per adapter instance
4785   *
4786   * To bring UFS host controller to operational state,
4787   * 1. Enable required interrupts
4788   * 2. Configure interrupt aggregation
4789   * 3. Program UTRL and UTMRL base address
4790   * 4. Configure run-stop-registers
4791   *
4792   * Return: 0 on success, non-zero value on failure.
4793   */
ufshcd_make_hba_operational(struct ufs_hba * hba)4794  int ufshcd_make_hba_operational(struct ufs_hba *hba)
4795  {
4796  	int err = 0;
4797  	u32 reg;
4798  
4799  	/* Enable required interrupts */
4800  	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4801  
4802  	/* Configure interrupt aggregation */
4803  	if (ufshcd_is_intr_aggr_allowed(hba))
4804  		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4805  	else
4806  		ufshcd_disable_intr_aggr(hba);
4807  
4808  	/* Configure UTRL and UTMRL base address registers */
4809  	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4810  			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4811  	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4812  			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4813  	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4814  			REG_UTP_TASK_REQ_LIST_BASE_L);
4815  	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4816  			REG_UTP_TASK_REQ_LIST_BASE_H);
4817  
4818  	/*
4819  	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4820  	 */
4821  	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4822  	if (!(ufshcd_get_lists_status(reg))) {
4823  		ufshcd_enable_run_stop_reg(hba);
4824  	} else {
4825  		dev_err(hba->dev,
4826  			"Host controller not ready to process requests");
4827  		err = -EIO;
4828  	}
4829  
4830  	return err;
4831  }
4832  EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4833  
4834  /**
4835   * ufshcd_hba_stop - Send controller to reset state
4836   * @hba: per adapter instance
4837   */
ufshcd_hba_stop(struct ufs_hba * hba)4838  void ufshcd_hba_stop(struct ufs_hba *hba)
4839  {
4840  	int err;
4841  
4842  	ufshcd_disable_irq(hba);
4843  	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4844  	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4845  					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4846  					10, 1);
4847  	ufshcd_enable_irq(hba);
4848  	if (err)
4849  		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4850  }
4851  EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4852  
4853  /**
4854   * ufshcd_hba_execute_hce - initialize the controller
4855   * @hba: per adapter instance
4856   *
4857   * The controller resets itself and controller firmware initialization
4858   * sequence kicks off. When controller is ready it will set
4859   * the Host Controller Enable bit to 1.
4860   *
4861   * Return: 0 on success, non-zero value on failure.
4862   */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4863  static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4864  {
4865  	int retry;
4866  
4867  	for (retry = 3; retry > 0; retry--) {
4868  		if (ufshcd_is_hba_active(hba))
4869  			/* change controller state to "reset state" */
4870  			ufshcd_hba_stop(hba);
4871  
4872  		/* UniPro link is disabled at this point */
4873  		ufshcd_set_link_off(hba);
4874  
4875  		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4876  
4877  		/* start controller initialization sequence */
4878  		ufshcd_hba_start(hba);
4879  
4880  		/*
4881  		 * To initialize a UFS host controller HCE bit must be set to 1.
4882  		 * During initialization the HCE bit value changes from 1->0->1.
4883  		 * When the host controller completes initialization sequence
4884  		 * it sets the value of HCE bit to 1. The same HCE bit is read back
4885  		 * to check if the controller has completed initialization sequence.
4886  		 * So without this delay the value HCE = 1, set in the previous
4887  		 * instruction might be read back.
4888  		 * This delay can be changed based on the controller.
4889  		 */
4890  		ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4891  
4892  		/* wait for the host controller to complete initialization */
4893  		if (!ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE,
4894  					      CONTROLLER_ENABLE, 1000, 50))
4895  			break;
4896  
4897  		dev_err(hba->dev, "Enabling the controller failed\n");
4898  	}
4899  
4900  	if (!retry)
4901  		return -EIO;
4902  
4903  	/* enable UIC related interrupts */
4904  	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4905  
4906  	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4907  
4908  	return 0;
4909  }
4910  
ufshcd_hba_enable(struct ufs_hba * hba)4911  int ufshcd_hba_enable(struct ufs_hba *hba)
4912  {
4913  	int ret;
4914  
4915  	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4916  		ufshcd_set_link_off(hba);
4917  		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4918  
4919  		/* enable UIC related interrupts */
4920  		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4921  		ret = ufshcd_dme_reset(hba);
4922  		if (ret) {
4923  			dev_err(hba->dev, "DME_RESET failed\n");
4924  			return ret;
4925  		}
4926  
4927  		ret = ufshcd_dme_enable(hba);
4928  		if (ret) {
4929  			dev_err(hba->dev, "Enabling DME failed\n");
4930  			return ret;
4931  		}
4932  
4933  		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4934  	} else {
4935  		ret = ufshcd_hba_execute_hce(hba);
4936  	}
4937  
4938  	return ret;
4939  }
4940  EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4941  
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4942  static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4943  {
4944  	int tx_lanes = 0, i, err = 0;
4945  
4946  	if (!peer)
4947  		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4948  			       &tx_lanes);
4949  	else
4950  		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4951  				    &tx_lanes);
4952  	for (i = 0; i < tx_lanes; i++) {
4953  		if (!peer)
4954  			err = ufshcd_dme_set(hba,
4955  				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4956  					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4957  					0);
4958  		else
4959  			err = ufshcd_dme_peer_set(hba,
4960  				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4961  					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4962  					0);
4963  		if (err) {
4964  			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4965  				__func__, peer, i, err);
4966  			break;
4967  		}
4968  	}
4969  
4970  	return err;
4971  }
4972  
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4973  static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4974  {
4975  	return ufshcd_disable_tx_lcc(hba, true);
4976  }
4977  
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)4978  void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4979  {
4980  	struct ufs_event_hist *e;
4981  
4982  	if (id >= UFS_EVT_CNT)
4983  		return;
4984  
4985  	e = &hba->ufs_stats.event[id];
4986  	e->val[e->pos] = val;
4987  	e->tstamp[e->pos] = local_clock();
4988  	e->cnt += 1;
4989  	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4990  
4991  	ufshcd_vops_event_notify(hba, id, &val);
4992  }
4993  EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4994  
4995  /**
4996   * ufshcd_link_startup - Initialize unipro link startup
4997   * @hba: per adapter instance
4998   *
4999   * Return: 0 for success, non-zero in case of failure.
5000   */
ufshcd_link_startup(struct ufs_hba * hba)5001  static int ufshcd_link_startup(struct ufs_hba *hba)
5002  {
5003  	int ret;
5004  	int retries = DME_LINKSTARTUP_RETRIES;
5005  	bool link_startup_again = false;
5006  
5007  	/*
5008  	 * If UFS device isn't active then we will have to issue link startup
5009  	 * 2 times to make sure the device state move to active.
5010  	 */
5011  	if (!ufshcd_is_ufs_dev_active(hba))
5012  		link_startup_again = true;
5013  
5014  link_startup:
5015  	do {
5016  		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
5017  
5018  		ret = ufshcd_dme_link_startup(hba);
5019  
5020  		/* check if device is detected by inter-connect layer */
5021  		if (!ret && !ufshcd_is_device_present(hba)) {
5022  			ufshcd_update_evt_hist(hba,
5023  					       UFS_EVT_LINK_STARTUP_FAIL,
5024  					       0);
5025  			dev_err(hba->dev, "%s: Device not present\n", __func__);
5026  			ret = -ENXIO;
5027  			goto out;
5028  		}
5029  
5030  		/*
5031  		 * DME link lost indication is only received when link is up,
5032  		 * but we can't be sure if the link is up until link startup
5033  		 * succeeds. So reset the local Uni-Pro and try again.
5034  		 */
5035  		if (ret && retries && ufshcd_hba_enable(hba)) {
5036  			ufshcd_update_evt_hist(hba,
5037  					       UFS_EVT_LINK_STARTUP_FAIL,
5038  					       (u32)ret);
5039  			goto out;
5040  		}
5041  	} while (ret && retries--);
5042  
5043  	if (ret) {
5044  		/* failed to get the link up... retire */
5045  		ufshcd_update_evt_hist(hba,
5046  				       UFS_EVT_LINK_STARTUP_FAIL,
5047  				       (u32)ret);
5048  		goto out;
5049  	}
5050  
5051  	if (link_startup_again) {
5052  		link_startup_again = false;
5053  		retries = DME_LINKSTARTUP_RETRIES;
5054  		goto link_startup;
5055  	}
5056  
5057  	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5058  	ufshcd_init_pwr_info(hba);
5059  	ufshcd_print_pwr_info(hba);
5060  
5061  	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5062  		ret = ufshcd_disable_device_tx_lcc(hba);
5063  		if (ret)
5064  			goto out;
5065  	}
5066  
5067  	/* Include any host controller configuration via UIC commands */
5068  	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5069  	if (ret)
5070  		goto out;
5071  
5072  	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5073  	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5074  	ret = ufshcd_make_hba_operational(hba);
5075  out:
5076  	if (ret) {
5077  		dev_err(hba->dev, "link startup failed %d\n", ret);
5078  		ufshcd_print_host_state(hba);
5079  		ufshcd_print_pwr_info(hba);
5080  		ufshcd_print_evt_hist(hba);
5081  	}
5082  	return ret;
5083  }
5084  
5085  /**
5086   * ufshcd_verify_dev_init() - Verify device initialization
5087   * @hba: per-adapter instance
5088   *
5089   * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5090   * device Transport Protocol (UTP) layer is ready after a reset.
5091   * If the UTP layer at the device side is not initialized, it may
5092   * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5093   * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5094   *
5095   * Return: 0 upon success; < 0 upon failure.
5096   */
ufshcd_verify_dev_init(struct ufs_hba * hba)5097  static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5098  {
5099  	int err = 0;
5100  	int retries;
5101  
5102  	ufshcd_dev_man_lock(hba);
5103  
5104  	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5105  		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5106  					  hba->nop_out_timeout);
5107  
5108  		if (!err || err == -ETIMEDOUT)
5109  			break;
5110  
5111  		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5112  	}
5113  
5114  	ufshcd_dev_man_unlock(hba);
5115  
5116  	if (err)
5117  		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5118  	return err;
5119  }
5120  
5121  /**
5122   * ufshcd_setup_links - associate link b/w device wlun and other luns
5123   * @sdev: pointer to SCSI device
5124   * @hba: pointer to ufs hba
5125   */
ufshcd_setup_links(struct ufs_hba * hba,struct scsi_device * sdev)5126  static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5127  {
5128  	struct device_link *link;
5129  
5130  	/*
5131  	 * Device wlun is the supplier & rest of the luns are consumers.
5132  	 * This ensures that device wlun suspends after all other luns.
5133  	 */
5134  	if (hba->ufs_device_wlun) {
5135  		link = device_link_add(&sdev->sdev_gendev,
5136  				       &hba->ufs_device_wlun->sdev_gendev,
5137  				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5138  		if (!link) {
5139  			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5140  				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5141  			return;
5142  		}
5143  		hba->luns_avail--;
5144  		/* Ignore REPORT_LUN wlun probing */
5145  		if (hba->luns_avail == 1) {
5146  			ufshcd_rpm_put(hba);
5147  			return;
5148  		}
5149  	} else {
5150  		/*
5151  		 * Device wlun is probed. The assumption is that WLUNs are
5152  		 * scanned before other LUNs.
5153  		 */
5154  		hba->luns_avail--;
5155  	}
5156  }
5157  
5158  /**
5159   * ufshcd_lu_init - Initialize the relevant parameters of the LU
5160   * @hba: per-adapter instance
5161   * @sdev: pointer to SCSI device
5162   */
ufshcd_lu_init(struct ufs_hba * hba,struct scsi_device * sdev)5163  static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5164  {
5165  	int len = QUERY_DESC_MAX_SIZE;
5166  	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5167  	u8 lun_qdepth = hba->nutrs;
5168  	u8 *desc_buf;
5169  	int ret;
5170  
5171  	desc_buf = kzalloc(len, GFP_KERNEL);
5172  	if (!desc_buf)
5173  		goto set_qdepth;
5174  
5175  	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5176  	if (ret < 0) {
5177  		if (ret == -EOPNOTSUPP)
5178  			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5179  			lun_qdepth = 1;
5180  		kfree(desc_buf);
5181  		goto set_qdepth;
5182  	}
5183  
5184  	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5185  		/*
5186  		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5187  		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5188  		 */
5189  		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5190  	}
5191  	/*
5192  	 * According to UFS device specification, the write protection mode is only supported by
5193  	 * normal LU, not supported by WLUN.
5194  	 */
5195  	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5196  	    !hba->dev_info.is_lu_power_on_wp &&
5197  	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5198  		hba->dev_info.is_lu_power_on_wp = true;
5199  
5200  	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5201  	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5202  	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5203  		hba->dev_info.b_advanced_rpmb_en = true;
5204  
5205  
5206  	kfree(desc_buf);
5207  set_qdepth:
5208  	/*
5209  	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5210  	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5211  	 */
5212  	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5213  	scsi_change_queue_depth(sdev, lun_qdepth);
5214  }
5215  
5216  /**
5217   * ufshcd_sdev_init - handle initial SCSI device configurations
5218   * @sdev: pointer to SCSI device
5219   *
5220   * Return: success.
5221   */
ufshcd_sdev_init(struct scsi_device * sdev)5222  static int ufshcd_sdev_init(struct scsi_device *sdev)
5223  {
5224  	struct ufs_hba *hba;
5225  
5226  	hba = shost_priv(sdev->host);
5227  
5228  	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5229  	sdev->use_10_for_ms = 1;
5230  
5231  	/* DBD field should be set to 1 in mode sense(10) */
5232  	sdev->set_dbd_for_ms = 1;
5233  
5234  	/* allow SCSI layer to restart the device in case of errors */
5235  	sdev->allow_restart = 1;
5236  
5237  	/* REPORT SUPPORTED OPERATION CODES is not supported */
5238  	sdev->no_report_opcodes = 1;
5239  
5240  	/* WRITE_SAME command is not supported */
5241  	sdev->no_write_same = 1;
5242  
5243  	ufshcd_lu_init(hba, sdev);
5244  
5245  	ufshcd_setup_links(hba, sdev);
5246  
5247  	return 0;
5248  }
5249  
5250  /**
5251   * ufshcd_change_queue_depth - change queue depth
5252   * @sdev: pointer to SCSI device
5253   * @depth: required depth to set
5254   *
5255   * Change queue depth and make sure the max. limits are not crossed.
5256   *
5257   * Return: new queue depth.
5258   */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)5259  static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5260  {
5261  	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5262  }
5263  
5264  /**
5265   * ufshcd_sdev_configure - adjust SCSI device configurations
5266   * @sdev: pointer to SCSI device
5267   * @lim: queue limits
5268   *
5269   * Return: 0 (success).
5270   */
ufshcd_sdev_configure(struct scsi_device * sdev,struct queue_limits * lim)5271  static int ufshcd_sdev_configure(struct scsi_device *sdev,
5272  				 struct queue_limits *lim)
5273  {
5274  	struct ufs_hba *hba = shost_priv(sdev->host);
5275  	struct request_queue *q = sdev->request_queue;
5276  
5277  	lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1;
5278  
5279  	/*
5280  	 * Block runtime-pm until all consumers are added.
5281  	 * Refer ufshcd_setup_links().
5282  	 */
5283  	if (is_device_wlun(sdev))
5284  		pm_runtime_get_noresume(&sdev->sdev_gendev);
5285  	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5286  		sdev->rpm_autosuspend = 1;
5287  	/*
5288  	 * Do not print messages during runtime PM to avoid never-ending cycles
5289  	 * of messages written back to storage by user space causing runtime
5290  	 * resume, causing more messages and so on.
5291  	 */
5292  	sdev->silence_suspend = 1;
5293  
5294  	if (hba->vops && hba->vops->config_scsi_dev)
5295  		hba->vops->config_scsi_dev(sdev);
5296  
5297  	ufshcd_crypto_register(hba, q);
5298  
5299  	return 0;
5300  }
5301  
5302  /**
5303   * ufshcd_sdev_destroy - remove SCSI device configurations
5304   * @sdev: pointer to SCSI device
5305   */
ufshcd_sdev_destroy(struct scsi_device * sdev)5306  static void ufshcd_sdev_destroy(struct scsi_device *sdev)
5307  {
5308  	struct ufs_hba *hba;
5309  	unsigned long flags;
5310  
5311  	hba = shost_priv(sdev->host);
5312  
5313  	/* Drop the reference as it won't be needed anymore */
5314  	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5315  		spin_lock_irqsave(hba->host->host_lock, flags);
5316  		hba->ufs_device_wlun = NULL;
5317  		spin_unlock_irqrestore(hba->host->host_lock, flags);
5318  	} else if (hba->ufs_device_wlun) {
5319  		struct device *supplier = NULL;
5320  
5321  		/* Ensure UFS Device WLUN exists and does not disappear */
5322  		spin_lock_irqsave(hba->host->host_lock, flags);
5323  		if (hba->ufs_device_wlun) {
5324  			supplier = &hba->ufs_device_wlun->sdev_gendev;
5325  			get_device(supplier);
5326  		}
5327  		spin_unlock_irqrestore(hba->host->host_lock, flags);
5328  
5329  		if (supplier) {
5330  			/*
5331  			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5332  			 * device will not have been registered but can still
5333  			 * have a device link holding a reference to the device.
5334  			 */
5335  			device_link_remove(&sdev->sdev_gendev, supplier);
5336  			put_device(supplier);
5337  		}
5338  	}
5339  }
5340  
5341  /**
5342   * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5343   * @lrbp: pointer to local reference block of completed command
5344   * @scsi_status: SCSI command status
5345   *
5346   * Return: value base on SCSI command status.
5347   */
5348  static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)5349  ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5350  {
5351  	int result = 0;
5352  
5353  	switch (scsi_status) {
5354  	case SAM_STAT_CHECK_CONDITION:
5355  		ufshcd_copy_sense_data(lrbp);
5356  		fallthrough;
5357  	case SAM_STAT_GOOD:
5358  		result |= DID_OK << 16 | scsi_status;
5359  		break;
5360  	case SAM_STAT_TASK_SET_FULL:
5361  	case SAM_STAT_BUSY:
5362  	case SAM_STAT_TASK_ABORTED:
5363  		ufshcd_copy_sense_data(lrbp);
5364  		result |= scsi_status;
5365  		break;
5366  	default:
5367  		result |= DID_ERROR << 16;
5368  		break;
5369  	} /* end of switch */
5370  
5371  	return result;
5372  }
5373  
5374  /**
5375   * ufshcd_transfer_rsp_status - Get overall status of the response
5376   * @hba: per adapter instance
5377   * @lrbp: pointer to local reference block of completed command
5378   * @cqe: pointer to the completion queue entry
5379   *
5380   * Return: result of the command to notify SCSI midlayer.
5381   */
5382  static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct cq_entry * cqe)5383  ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5384  			   struct cq_entry *cqe)
5385  {
5386  	int result = 0;
5387  	int scsi_status;
5388  	enum utp_ocs ocs;
5389  	u8 upiu_flags;
5390  	u32 resid;
5391  
5392  	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5393  	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5394  	/*
5395  	 * Test !overflow instead of underflow to support UFS devices that do
5396  	 * not set either flag.
5397  	 */
5398  	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5399  		scsi_set_resid(lrbp->cmd, resid);
5400  
5401  	/* overall command status of utrd */
5402  	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5403  
5404  	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5405  		if (lrbp->ucd_rsp_ptr->header.response ||
5406  		    lrbp->ucd_rsp_ptr->header.status)
5407  			ocs = OCS_SUCCESS;
5408  	}
5409  
5410  	switch (ocs) {
5411  	case OCS_SUCCESS:
5412  		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5413  		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5414  		case UPIU_TRANSACTION_RESPONSE:
5415  			/*
5416  			 * get the result based on SCSI status response
5417  			 * to notify the SCSI midlayer of the command status
5418  			 */
5419  			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5420  			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5421  
5422  			/*
5423  			 * Currently we are only supporting BKOPs exception
5424  			 * events hence we can ignore BKOPs exception event
5425  			 * during power management callbacks. BKOPs exception
5426  			 * event is not expected to be raised in runtime suspend
5427  			 * callback as it allows the urgent bkops.
5428  			 * During system suspend, we are anyway forcefully
5429  			 * disabling the bkops and if urgent bkops is needed
5430  			 * it will be enabled on system resume. Long term
5431  			 * solution could be to abort the system suspend if
5432  			 * UFS device needs urgent BKOPs.
5433  			 */
5434  			if (!hba->pm_op_in_progress &&
5435  			    !ufshcd_eh_in_progress(hba) &&
5436  			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5437  				/* Flushed in suspend */
5438  				schedule_work(&hba->eeh_work);
5439  			break;
5440  		case UPIU_TRANSACTION_REJECT_UPIU:
5441  			/* TODO: handle Reject UPIU Response */
5442  			result = DID_ERROR << 16;
5443  			dev_err(hba->dev,
5444  				"Reject UPIU not fully implemented\n");
5445  			break;
5446  		default:
5447  			dev_err(hba->dev,
5448  				"Unexpected request response code = %x\n",
5449  				result);
5450  			result = DID_ERROR << 16;
5451  			break;
5452  		}
5453  		break;
5454  	case OCS_ABORTED:
5455  	case OCS_INVALID_COMMAND_STATUS:
5456  		result |= DID_REQUEUE << 16;
5457  		dev_warn(hba->dev,
5458  				"OCS %s from controller for tag %d\n",
5459  				(ocs == OCS_ABORTED ? "aborted" : "invalid"),
5460  				lrbp->task_tag);
5461  		break;
5462  	case OCS_INVALID_CMD_TABLE_ATTR:
5463  	case OCS_INVALID_PRDT_ATTR:
5464  	case OCS_MISMATCH_DATA_BUF_SIZE:
5465  	case OCS_MISMATCH_RESP_UPIU_SIZE:
5466  	case OCS_PEER_COMM_FAILURE:
5467  	case OCS_FATAL_ERROR:
5468  	case OCS_DEVICE_FATAL_ERROR:
5469  	case OCS_INVALID_CRYPTO_CONFIG:
5470  	case OCS_GENERAL_CRYPTO_ERROR:
5471  	default:
5472  		result |= DID_ERROR << 16;
5473  		dev_err(hba->dev,
5474  				"OCS error from controller = %x for tag %d\n",
5475  				ocs, lrbp->task_tag);
5476  		ufshcd_print_evt_hist(hba);
5477  		ufshcd_print_host_state(hba);
5478  		break;
5479  	} /* end of switch */
5480  
5481  	if ((host_byte(result) != DID_OK) &&
5482  	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5483  		ufshcd_print_tr(hba, lrbp->task_tag, true);
5484  	return result;
5485  }
5486  
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5487  static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5488  					 u32 intr_mask)
5489  {
5490  	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5491  	    !ufshcd_is_auto_hibern8_enabled(hba))
5492  		return false;
5493  
5494  	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5495  		return false;
5496  
5497  	if (hba->active_uic_cmd &&
5498  	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5499  	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5500  		return false;
5501  
5502  	return true;
5503  }
5504  
5505  /**
5506   * ufshcd_uic_cmd_compl - handle completion of uic command
5507   * @hba: per adapter instance
5508   * @intr_status: interrupt status generated by the controller
5509   *
5510   * Return:
5511   *  IRQ_HANDLED - If interrupt is valid
5512   *  IRQ_NONE    - If invalid interrupt
5513   */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5514  static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5515  {
5516  	irqreturn_t retval = IRQ_NONE;
5517  	struct uic_command *cmd;
5518  
5519  	spin_lock(hba->host->host_lock);
5520  	cmd = hba->active_uic_cmd;
5521  	if (WARN_ON_ONCE(!cmd))
5522  		goto unlock;
5523  
5524  	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5525  		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5526  
5527  	if (intr_status & UIC_COMMAND_COMPL) {
5528  		cmd->argument2 |= ufshcd_get_uic_cmd_result(hba);
5529  		cmd->argument3 = ufshcd_get_dme_attr_val(hba);
5530  		if (!hba->uic_async_done)
5531  			cmd->cmd_active = 0;
5532  		complete(&cmd->done);
5533  		retval = IRQ_HANDLED;
5534  	}
5535  
5536  	if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) {
5537  		cmd->cmd_active = 0;
5538  		complete(hba->uic_async_done);
5539  		retval = IRQ_HANDLED;
5540  	}
5541  
5542  	if (retval == IRQ_HANDLED)
5543  		ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP);
5544  
5545  unlock:
5546  	spin_unlock(hba->host->host_lock);
5547  
5548  	return retval;
5549  }
5550  
5551  /* Release the resources allocated for processing a SCSI command. */
ufshcd_release_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5552  void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5553  			     struct ufshcd_lrb *lrbp)
5554  {
5555  	struct scsi_cmnd *cmd = lrbp->cmd;
5556  
5557  	scsi_dma_unmap(cmd);
5558  	ufshcd_crypto_clear_prdt(hba, lrbp);
5559  	ufshcd_release(hba);
5560  	ufshcd_clk_scaling_update_busy(hba);
5561  }
5562  
5563  /**
5564   * ufshcd_compl_one_cqe - handle a completion queue entry
5565   * @hba: per adapter instance
5566   * @task_tag: the task tag of the request to be completed
5567   * @cqe: pointer to the completion queue entry
5568   */
ufshcd_compl_one_cqe(struct ufs_hba * hba,int task_tag,struct cq_entry * cqe)5569  void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5570  			  struct cq_entry *cqe)
5571  {
5572  	struct ufshcd_lrb *lrbp;
5573  	struct scsi_cmnd *cmd;
5574  	enum utp_ocs ocs;
5575  
5576  	lrbp = &hba->lrb[task_tag];
5577  	lrbp->compl_time_stamp = ktime_get();
5578  	lrbp->compl_time_stamp_local_clock = local_clock();
5579  	cmd = lrbp->cmd;
5580  	if (cmd) {
5581  		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5582  			ufshcd_update_monitor(hba, lrbp);
5583  		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5584  		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5585  		ufshcd_release_scsi_cmd(hba, lrbp);
5586  		/* Do not touch lrbp after scsi done */
5587  		scsi_done(cmd);
5588  	} else if (hba->dev_cmd.complete) {
5589  		if (cqe) {
5590  			ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5591  			lrbp->utr_descriptor_ptr->header.ocs = ocs;
5592  		}
5593  		complete(hba->dev_cmd.complete);
5594  	}
5595  }
5596  
5597  /**
5598   * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5599   * @hba: per adapter instance
5600   * @completed_reqs: bitmask that indicates which requests to complete
5601   */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)5602  static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5603  					unsigned long completed_reqs)
5604  {
5605  	int tag;
5606  
5607  	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5608  		ufshcd_compl_one_cqe(hba, tag, NULL);
5609  }
5610  
5611  /* Any value that is not an existing queue number is fine for this constant. */
5612  enum {
5613  	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5614  };
5615  
ufshcd_clear_polled(struct ufs_hba * hba,unsigned long * completed_reqs)5616  static void ufshcd_clear_polled(struct ufs_hba *hba,
5617  				unsigned long *completed_reqs)
5618  {
5619  	int tag;
5620  
5621  	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5622  		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5623  
5624  		if (!cmd)
5625  			continue;
5626  		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5627  			__clear_bit(tag, completed_reqs);
5628  	}
5629  }
5630  
5631  /*
5632   * Return: > 0 if one or more commands have been completed or 0 if no
5633   * requests have been completed.
5634   */
ufshcd_poll(struct Scsi_Host * shost,unsigned int queue_num)5635  static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5636  {
5637  	struct ufs_hba *hba = shost_priv(shost);
5638  	unsigned long completed_reqs, flags;
5639  	u32 tr_doorbell;
5640  	struct ufs_hw_queue *hwq;
5641  
5642  	if (hba->mcq_enabled) {
5643  		hwq = &hba->uhq[queue_num];
5644  
5645  		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5646  	}
5647  
5648  	spin_lock_irqsave(&hba->outstanding_lock, flags);
5649  	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5650  	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5651  	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5652  		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5653  		  hba->outstanding_reqs);
5654  	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5655  		/* Do not complete polled requests from interrupt context. */
5656  		ufshcd_clear_polled(hba, &completed_reqs);
5657  	}
5658  	hba->outstanding_reqs &= ~completed_reqs;
5659  	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5660  
5661  	if (completed_reqs)
5662  		__ufshcd_transfer_req_compl(hba, completed_reqs);
5663  
5664  	return completed_reqs != 0;
5665  }
5666  
5667  /**
5668   * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5669   * invoked from the error handler context or ufshcd_host_reset_and_restore()
5670   * to complete the pending transfers and free the resources associated with
5671   * the scsi command.
5672   *
5673   * @hba: per adapter instance
5674   * @force_compl: This flag is set to true when invoked
5675   * from ufshcd_host_reset_and_restore() in which case it requires special
5676   * handling because the host controller has been reset by ufshcd_hba_stop().
5677   */
ufshcd_mcq_compl_pending_transfer(struct ufs_hba * hba,bool force_compl)5678  static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5679  					      bool force_compl)
5680  {
5681  	struct ufs_hw_queue *hwq;
5682  	struct ufshcd_lrb *lrbp;
5683  	struct scsi_cmnd *cmd;
5684  	unsigned long flags;
5685  	int tag;
5686  
5687  	for (tag = 0; tag < hba->nutrs; tag++) {
5688  		lrbp = &hba->lrb[tag];
5689  		cmd = lrbp->cmd;
5690  		if (!ufshcd_cmd_inflight(cmd) ||
5691  		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5692  			continue;
5693  
5694  		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
5695  
5696  		if (force_compl) {
5697  			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5698  			/*
5699  			 * For those cmds of which the cqes are not present
5700  			 * in the cq, complete them explicitly.
5701  			 */
5702  			spin_lock_irqsave(&hwq->cq_lock, flags);
5703  			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5704  				set_host_byte(cmd, DID_REQUEUE);
5705  				ufshcd_release_scsi_cmd(hba, lrbp);
5706  				scsi_done(cmd);
5707  			}
5708  			spin_unlock_irqrestore(&hwq->cq_lock, flags);
5709  		} else {
5710  			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5711  		}
5712  	}
5713  }
5714  
5715  /**
5716   * ufshcd_transfer_req_compl - handle SCSI and query command completion
5717   * @hba: per adapter instance
5718   *
5719   * Return:
5720   *  IRQ_HANDLED - If interrupt is valid
5721   *  IRQ_NONE    - If invalid interrupt
5722   */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5723  static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5724  {
5725  	/* Resetting interrupt aggregation counters first and reading the
5726  	 * DOOR_BELL afterward allows us to handle all the completed requests.
5727  	 * In order to prevent other interrupts starvation the DB is read once
5728  	 * after reset. The down side of this solution is the possibility of
5729  	 * false interrupt if device completes another request after resetting
5730  	 * aggregation and before reading the DB.
5731  	 */
5732  	if (ufshcd_is_intr_aggr_allowed(hba) &&
5733  	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5734  		ufshcd_reset_intr_aggr(hba);
5735  
5736  	if (ufs_fail_completion(hba))
5737  		return IRQ_HANDLED;
5738  
5739  	/*
5740  	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5741  	 * do not want polling to trigger spurious interrupt complaints.
5742  	 */
5743  	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5744  
5745  	return IRQ_HANDLED;
5746  }
5747  
__ufshcd_write_ee_control(struct ufs_hba * hba,u32 ee_ctrl_mask)5748  int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5749  {
5750  	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5751  				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5752  				       &ee_ctrl_mask);
5753  }
5754  
ufshcd_write_ee_control(struct ufs_hba * hba)5755  int ufshcd_write_ee_control(struct ufs_hba *hba)
5756  {
5757  	int err;
5758  
5759  	mutex_lock(&hba->ee_ctrl_mutex);
5760  	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5761  	mutex_unlock(&hba->ee_ctrl_mutex);
5762  	if (err)
5763  		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5764  			__func__, err);
5765  	return err;
5766  }
5767  
ufshcd_update_ee_control(struct ufs_hba * hba,u16 * mask,const u16 * other_mask,u16 set,u16 clr)5768  int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5769  			     const u16 *other_mask, u16 set, u16 clr)
5770  {
5771  	u16 new_mask, ee_ctrl_mask;
5772  	int err = 0;
5773  
5774  	mutex_lock(&hba->ee_ctrl_mutex);
5775  	new_mask = (*mask & ~clr) | set;
5776  	ee_ctrl_mask = new_mask | *other_mask;
5777  	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5778  		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5779  	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5780  	if (!err) {
5781  		hba->ee_ctrl_mask = ee_ctrl_mask;
5782  		*mask = new_mask;
5783  	}
5784  	mutex_unlock(&hba->ee_ctrl_mutex);
5785  	return err;
5786  }
5787  
5788  /**
5789   * ufshcd_disable_ee - disable exception event
5790   * @hba: per-adapter instance
5791   * @mask: exception event to disable
5792   *
5793   * Disables exception event in the device so that the EVENT_ALERT
5794   * bit is not set.
5795   *
5796   * Return: zero on success, non-zero error value on failure.
5797   */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5798  static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5799  {
5800  	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5801  }
5802  
5803  /**
5804   * ufshcd_enable_ee - enable exception event
5805   * @hba: per-adapter instance
5806   * @mask: exception event to enable
5807   *
5808   * Enable corresponding exception event in the device to allow
5809   * device to alert host in critical scenarios.
5810   *
5811   * Return: zero on success, non-zero error value on failure.
5812   */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5813  static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5814  {
5815  	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5816  }
5817  
5818  /**
5819   * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5820   * @hba: per-adapter instance
5821   *
5822   * Allow device to manage background operations on its own. Enabling
5823   * this might lead to inconsistent latencies during normal data transfers
5824   * as the device is allowed to manage its own way of handling background
5825   * operations.
5826   *
5827   * Return: zero on success, non-zero on failure.
5828   */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5829  static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5830  {
5831  	int err = 0;
5832  
5833  	if (hba->auto_bkops_enabled)
5834  		goto out;
5835  
5836  	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5837  			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5838  	if (err) {
5839  		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5840  				__func__, err);
5841  		goto out;
5842  	}
5843  
5844  	hba->auto_bkops_enabled = true;
5845  	trace_ufshcd_auto_bkops_state(hba, "Enabled");
5846  
5847  	/* No need of URGENT_BKOPS exception from the device */
5848  	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5849  	if (err)
5850  		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5851  				__func__, err);
5852  out:
5853  	return err;
5854  }
5855  
5856  /**
5857   * ufshcd_disable_auto_bkops - block device in doing background operations
5858   * @hba: per-adapter instance
5859   *
5860   * Disabling background operations improves command response latency but
5861   * has drawback of device moving into critical state where the device is
5862   * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5863   * host is idle so that BKOPS are managed effectively without any negative
5864   * impacts.
5865   *
5866   * Return: zero on success, non-zero on failure.
5867   */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5868  static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5869  {
5870  	int err = 0;
5871  
5872  	if (!hba->auto_bkops_enabled)
5873  		goto out;
5874  
5875  	/*
5876  	 * If host assisted BKOPs is to be enabled, make sure
5877  	 * urgent bkops exception is allowed.
5878  	 */
5879  	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5880  	if (err) {
5881  		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5882  				__func__, err);
5883  		goto out;
5884  	}
5885  
5886  	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5887  			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5888  	if (err) {
5889  		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5890  				__func__, err);
5891  		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5892  		goto out;
5893  	}
5894  
5895  	hba->auto_bkops_enabled = false;
5896  	trace_ufshcd_auto_bkops_state(hba, "Disabled");
5897  	hba->is_urgent_bkops_lvl_checked = false;
5898  out:
5899  	return err;
5900  }
5901  
5902  /**
5903   * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5904   * @hba: per adapter instance
5905   *
5906   * After a device reset the device may toggle the BKOPS_EN flag
5907   * to default value. The s/w tracking variables should be updated
5908   * as well. This function would change the auto-bkops state based on
5909   * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5910   */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5911  static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5912  {
5913  	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5914  		hba->auto_bkops_enabled = false;
5915  		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5916  		ufshcd_enable_auto_bkops(hba);
5917  	} else {
5918  		hba->auto_bkops_enabled = true;
5919  		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5920  		ufshcd_disable_auto_bkops(hba);
5921  	}
5922  	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5923  	hba->is_urgent_bkops_lvl_checked = false;
5924  }
5925  
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5926  static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5927  {
5928  	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5929  			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5930  }
5931  
5932  /**
5933   * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5934   * @hba: per-adapter instance
5935   *
5936   * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5937   * flag in the device to permit background operations if the device
5938   * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl",
5939   * disable otherwise.
5940   *
5941   * Return: 0 for success, non-zero in case of failure.
5942   *
5943   * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5944   * to know whether auto bkops is enabled or disabled after this function
5945   * returns control to it.
5946   */
ufshcd_bkops_ctrl(struct ufs_hba * hba)5947  static int ufshcd_bkops_ctrl(struct ufs_hba *hba)
5948  {
5949  	enum bkops_status status = hba->urgent_bkops_lvl;
5950  	u32 curr_status = 0;
5951  	int err;
5952  
5953  	err = ufshcd_get_bkops_status(hba, &curr_status);
5954  	if (err) {
5955  		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5956  				__func__, err);
5957  		goto out;
5958  	} else if (curr_status > BKOPS_STATUS_MAX) {
5959  		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5960  				__func__, curr_status);
5961  		err = -EINVAL;
5962  		goto out;
5963  	}
5964  
5965  	if (curr_status >= status)
5966  		err = ufshcd_enable_auto_bkops(hba);
5967  	else
5968  		err = ufshcd_disable_auto_bkops(hba);
5969  out:
5970  	return err;
5971  }
5972  
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5973  static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5974  {
5975  	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5976  			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5977  }
5978  
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5979  static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5980  {
5981  	int err;
5982  	u32 curr_status = 0;
5983  
5984  	if (hba->is_urgent_bkops_lvl_checked)
5985  		goto enable_auto_bkops;
5986  
5987  	err = ufshcd_get_bkops_status(hba, &curr_status);
5988  	if (err) {
5989  		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5990  				__func__, err);
5991  		goto out;
5992  	}
5993  
5994  	/*
5995  	 * We are seeing that some devices are raising the urgent bkops
5996  	 * exception events even when BKOPS status doesn't indicate performace
5997  	 * impacted or critical. Handle these device by determining their urgent
5998  	 * bkops status at runtime.
5999  	 */
6000  	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
6001  		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
6002  				__func__, curr_status);
6003  		/* update the current status as the urgent bkops level */
6004  		hba->urgent_bkops_lvl = curr_status;
6005  		hba->is_urgent_bkops_lvl_checked = true;
6006  	}
6007  
6008  enable_auto_bkops:
6009  	err = ufshcd_enable_auto_bkops(hba);
6010  out:
6011  	if (err < 0)
6012  		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
6013  				__func__, err);
6014  }
6015  
__ufshcd_wb_toggle(struct ufs_hba * hba,bool set,enum flag_idn idn)6016  static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
6017  {
6018  	u8 index;
6019  	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
6020  				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
6021  
6022  	index = ufshcd_wb_get_query_index(hba);
6023  	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
6024  }
6025  
ufshcd_wb_toggle(struct ufs_hba * hba,bool enable)6026  int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
6027  {
6028  	int ret;
6029  
6030  	if (!ufshcd_is_wb_allowed(hba) ||
6031  	    hba->dev_info.wb_enabled == enable)
6032  		return 0;
6033  
6034  	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
6035  	if (ret) {
6036  		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
6037  			__func__, enable ? "enabling" : "disabling", ret);
6038  		return ret;
6039  	}
6040  
6041  	hba->dev_info.wb_enabled = enable;
6042  	dev_dbg(hba->dev, "%s: Write Booster %s\n",
6043  			__func__, enable ? "enabled" : "disabled");
6044  
6045  	return ret;
6046  }
6047  
ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba * hba,bool enable)6048  static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6049  						 bool enable)
6050  {
6051  	int ret;
6052  
6053  	ret = __ufshcd_wb_toggle(hba, enable,
6054  			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6055  	if (ret) {
6056  		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6057  			__func__, enable ? "enabling" : "disabling", ret);
6058  		return;
6059  	}
6060  	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6061  			__func__, enable ? "enabled" : "disabled");
6062  }
6063  
ufshcd_wb_toggle_buf_flush(struct ufs_hba * hba,bool enable)6064  int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6065  {
6066  	int ret;
6067  
6068  	if (!ufshcd_is_wb_allowed(hba) ||
6069  	    hba->dev_info.wb_buf_flush_enabled == enable)
6070  		return 0;
6071  
6072  	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6073  	if (ret) {
6074  		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6075  			__func__, enable ? "enabling" : "disabling", ret);
6076  		return ret;
6077  	}
6078  
6079  	hba->dev_info.wb_buf_flush_enabled = enable;
6080  	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6081  			__func__, enable ? "enabled" : "disabled");
6082  
6083  	return ret;
6084  }
6085  
ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba * hba,u32 avail_buf)6086  static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
6087  						u32 avail_buf)
6088  {
6089  	u32 cur_buf;
6090  	int ret;
6091  	u8 index;
6092  
6093  	index = ufshcd_wb_get_query_index(hba);
6094  	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6095  					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6096  					      index, 0, &cur_buf);
6097  	if (ret) {
6098  		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6099  			__func__, ret);
6100  		return false;
6101  	}
6102  
6103  	if (!cur_buf) {
6104  		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6105  			 cur_buf);
6106  		return false;
6107  	}
6108  	/* Let it continue to flush when available buffer exceeds threshold */
6109  	return avail_buf < hba->vps->wb_flush_threshold;
6110  }
6111  
ufshcd_wb_force_disable(struct ufs_hba * hba)6112  static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6113  {
6114  	if (ufshcd_is_wb_buf_flush_allowed(hba))
6115  		ufshcd_wb_toggle_buf_flush(hba, false);
6116  
6117  	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6118  	ufshcd_wb_toggle(hba, false);
6119  	hba->caps &= ~UFSHCD_CAP_WB_EN;
6120  
6121  	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6122  }
6123  
ufshcd_is_wb_buf_lifetime_available(struct ufs_hba * hba)6124  static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6125  {
6126  	u32 lifetime;
6127  	int ret;
6128  	u8 index;
6129  
6130  	index = ufshcd_wb_get_query_index(hba);
6131  	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6132  				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6133  				      index, 0, &lifetime);
6134  	if (ret) {
6135  		dev_err(hba->dev,
6136  			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6137  			__func__, ret);
6138  		return false;
6139  	}
6140  
6141  	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6142  		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6143  			__func__, lifetime);
6144  		return false;
6145  	}
6146  
6147  	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6148  		__func__, lifetime);
6149  
6150  	return true;
6151  }
6152  
ufshcd_wb_need_flush(struct ufs_hba * hba)6153  static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6154  {
6155  	int ret;
6156  	u32 avail_buf;
6157  	u8 index;
6158  
6159  	if (!ufshcd_is_wb_allowed(hba))
6160  		return false;
6161  
6162  	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6163  		ufshcd_wb_force_disable(hba);
6164  		return false;
6165  	}
6166  
6167  	/*
6168  	 * The ufs device needs the vcc to be ON to flush.
6169  	 * With user-space reduction enabled, it's enough to enable flush
6170  	 * by checking only the available buffer. The threshold
6171  	 * defined here is > 90% full.
6172  	 * With user-space preserved enabled, the current-buffer
6173  	 * should be checked too because the wb buffer size can reduce
6174  	 * when disk tends to be full. This info is provided by current
6175  	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6176  	 * keeping vcc on when current buffer is empty.
6177  	 */
6178  	index = ufshcd_wb_get_query_index(hba);
6179  	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6180  				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6181  				      index, 0, &avail_buf);
6182  	if (ret) {
6183  		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6184  			 __func__, ret);
6185  		return false;
6186  	}
6187  
6188  	if (!hba->dev_info.b_presrv_uspc_en)
6189  		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6190  
6191  	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6192  }
6193  
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)6194  static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6195  {
6196  	struct ufs_hba *hba = container_of(to_delayed_work(work),
6197  					   struct ufs_hba,
6198  					   rpm_dev_flush_recheck_work);
6199  	/*
6200  	 * To prevent unnecessary VCC power drain after device finishes
6201  	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6202  	 * after a certain delay to recheck the threshold by next runtime
6203  	 * suspend.
6204  	 */
6205  	ufshcd_rpm_get_sync(hba);
6206  	ufshcd_rpm_put_sync(hba);
6207  }
6208  
6209  /**
6210   * ufshcd_exception_event_handler - handle exceptions raised by device
6211   * @work: pointer to work data
6212   *
6213   * Read bExceptionEventStatus attribute from the device and handle the
6214   * exception event accordingly.
6215   */
ufshcd_exception_event_handler(struct work_struct * work)6216  static void ufshcd_exception_event_handler(struct work_struct *work)
6217  {
6218  	struct ufs_hba *hba;
6219  	int err;
6220  	u32 status = 0;
6221  	hba = container_of(work, struct ufs_hba, eeh_work);
6222  
6223  	err = ufshcd_get_ee_status(hba, &status);
6224  	if (err) {
6225  		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6226  				__func__, err);
6227  		return;
6228  	}
6229  
6230  	trace_ufshcd_exception_event(hba, status);
6231  
6232  	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6233  		ufshcd_bkops_exception_event_handler(hba);
6234  
6235  	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6236  		ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
6237  
6238  	if (status & hba->ee_drv_mask & MASK_EE_HEALTH_CRITICAL) {
6239  		hba->critical_health_count++;
6240  		sysfs_notify(&hba->dev->kobj, NULL, "critical_health");
6241  	}
6242  
6243  	ufs_debugfs_exception_event(hba, status);
6244  }
6245  
6246  /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba,bool force_compl)6247  static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6248  {
6249  	if (hba->mcq_enabled)
6250  		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6251  	else
6252  		ufshcd_transfer_req_compl(hba);
6253  
6254  	ufshcd_tmc_handler(hba);
6255  }
6256  
6257  /**
6258   * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6259   *				to recover from the DL NAC errors or not.
6260   * @hba: per-adapter instance
6261   *
6262   * Return: true if error handling is required, false otherwise.
6263   */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)6264  static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6265  {
6266  	unsigned long flags;
6267  	bool err_handling = true;
6268  
6269  	spin_lock_irqsave(hba->host->host_lock, flags);
6270  	/*
6271  	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6272  	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6273  	 */
6274  	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6275  		goto out;
6276  
6277  	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6278  	    ((hba->saved_err & UIC_ERROR) &&
6279  	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6280  		goto out;
6281  
6282  	if ((hba->saved_err & UIC_ERROR) &&
6283  	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6284  		int err;
6285  		/*
6286  		 * wait for 50ms to see if we can get any other errors or not.
6287  		 */
6288  		spin_unlock_irqrestore(hba->host->host_lock, flags);
6289  		msleep(50);
6290  		spin_lock_irqsave(hba->host->host_lock, flags);
6291  
6292  		/*
6293  		 * now check if we have got any other severe errors other than
6294  		 * DL NAC error?
6295  		 */
6296  		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6297  		    ((hba->saved_err & UIC_ERROR) &&
6298  		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6299  			goto out;
6300  
6301  		/*
6302  		 * As DL NAC is the only error received so far, send out NOP
6303  		 * command to confirm if link is still active or not.
6304  		 *   - If we don't get any response then do error recovery.
6305  		 *   - If we get response then clear the DL NAC error bit.
6306  		 */
6307  
6308  		spin_unlock_irqrestore(hba->host->host_lock, flags);
6309  		err = ufshcd_verify_dev_init(hba);
6310  		spin_lock_irqsave(hba->host->host_lock, flags);
6311  
6312  		if (err)
6313  			goto out;
6314  
6315  		/* Link seems to be alive hence ignore the DL NAC errors */
6316  		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6317  			hba->saved_err &= ~UIC_ERROR;
6318  		/* clear NAC error */
6319  		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6320  		if (!hba->saved_uic_err)
6321  			err_handling = false;
6322  	}
6323  out:
6324  	spin_unlock_irqrestore(hba->host->host_lock, flags);
6325  	return err_handling;
6326  }
6327  
6328  /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)6329  static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6330  {
6331  	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6332  	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6333  }
6334  
ufshcd_schedule_eh_work(struct ufs_hba * hba)6335  void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6336  {
6337  	lockdep_assert_held(hba->host->host_lock);
6338  
6339  	/* handle fatal errors only when link is not in error state */
6340  	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6341  		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6342  		    ufshcd_is_saved_err_fatal(hba))
6343  			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6344  		else
6345  			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6346  		queue_work(hba->eh_wq, &hba->eh_work);
6347  	}
6348  }
6349  
ufshcd_force_error_recovery(struct ufs_hba * hba)6350  static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6351  {
6352  	spin_lock_irq(hba->host->host_lock);
6353  	hba->force_reset = true;
6354  	ufshcd_schedule_eh_work(hba);
6355  	spin_unlock_irq(hba->host->host_lock);
6356  }
6357  
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)6358  static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6359  {
6360  	mutex_lock(&hba->wb_mutex);
6361  	down_write(&hba->clk_scaling_lock);
6362  	hba->clk_scaling.is_allowed = allow;
6363  	up_write(&hba->clk_scaling_lock);
6364  	mutex_unlock(&hba->wb_mutex);
6365  }
6366  
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)6367  static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6368  {
6369  	if (suspend) {
6370  		if (hba->clk_scaling.is_enabled)
6371  			ufshcd_suspend_clkscaling(hba);
6372  		ufshcd_clk_scaling_allow(hba, false);
6373  	} else {
6374  		ufshcd_clk_scaling_allow(hba, true);
6375  		if (hba->clk_scaling.is_enabled)
6376  			ufshcd_resume_clkscaling(hba);
6377  	}
6378  }
6379  
ufshcd_err_handling_prepare(struct ufs_hba * hba)6380  static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6381  {
6382  	ufshcd_rpm_get_sync(hba);
6383  	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6384  	    hba->is_sys_suspended) {
6385  		enum ufs_pm_op pm_op;
6386  
6387  		/*
6388  		 * Don't assume anything of resume, if
6389  		 * resume fails, irq and clocks can be OFF, and powers
6390  		 * can be OFF or in LPM.
6391  		 */
6392  		ufshcd_setup_hba_vreg(hba, true);
6393  		ufshcd_enable_irq(hba);
6394  		ufshcd_setup_vreg(hba, true);
6395  		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6396  		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6397  		ufshcd_hold(hba);
6398  		if (!ufshcd_is_clkgating_allowed(hba))
6399  			ufshcd_setup_clocks(hba, true);
6400  		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6401  		ufshcd_vops_resume(hba, pm_op);
6402  	} else {
6403  		ufshcd_hold(hba);
6404  		if (ufshcd_is_clkscaling_supported(hba) &&
6405  		    hba->clk_scaling.is_enabled)
6406  			ufshcd_suspend_clkscaling(hba);
6407  		ufshcd_clk_scaling_allow(hba, false);
6408  	}
6409  	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6410  	blk_mq_quiesce_tagset(&hba->host->tag_set);
6411  	cancel_work_sync(&hba->eeh_work);
6412  }
6413  
ufshcd_err_handling_unprepare(struct ufs_hba * hba)6414  static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6415  {
6416  	blk_mq_unquiesce_tagset(&hba->host->tag_set);
6417  	ufshcd_release(hba);
6418  	if (ufshcd_is_clkscaling_supported(hba))
6419  		ufshcd_clk_scaling_suspend(hba, false);
6420  	ufshcd_rpm_put(hba);
6421  }
6422  
ufshcd_err_handling_should_stop(struct ufs_hba * hba)6423  static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6424  {
6425  	return (!hba->is_powered || hba->shutting_down ||
6426  		!hba->ufs_device_wlun ||
6427  		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6428  		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6429  		   ufshcd_is_link_broken(hba))));
6430  }
6431  
6432  #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)6433  static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6434  {
6435  	struct Scsi_Host *shost = hba->host;
6436  	struct scsi_device *sdev;
6437  	struct request_queue *q;
6438  	int ret;
6439  
6440  	hba->is_sys_suspended = false;
6441  	/*
6442  	 * Set RPM status of wlun device to RPM_ACTIVE,
6443  	 * this also clears its runtime error.
6444  	 */
6445  	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6446  
6447  	/* hba device might have a runtime error otherwise */
6448  	if (ret)
6449  		ret = pm_runtime_set_active(hba->dev);
6450  	/*
6451  	 * If wlun device had runtime error, we also need to resume those
6452  	 * consumer scsi devices in case any of them has failed to be
6453  	 * resumed due to supplier runtime resume failure. This is to unblock
6454  	 * blk_queue_enter in case there are bios waiting inside it.
6455  	 */
6456  	if (!ret) {
6457  		shost_for_each_device(sdev, shost) {
6458  			q = sdev->request_queue;
6459  			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6460  				       q->rpm_status == RPM_SUSPENDING))
6461  				pm_request_resume(q->dev);
6462  		}
6463  	}
6464  }
6465  #else
ufshcd_recover_pm_error(struct ufs_hba * hba)6466  static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6467  {
6468  }
6469  #endif
6470  
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)6471  static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6472  {
6473  	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6474  	u32 mode;
6475  
6476  	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6477  
6478  	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6479  		return true;
6480  
6481  	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6482  		return true;
6483  
6484  	return false;
6485  }
6486  
ufshcd_abort_one(struct request * rq,void * priv)6487  static bool ufshcd_abort_one(struct request *rq, void *priv)
6488  {
6489  	int *ret = priv;
6490  	u32 tag = rq->tag;
6491  	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6492  	struct scsi_device *sdev = cmd->device;
6493  	struct Scsi_Host *shost = sdev->host;
6494  	struct ufs_hba *hba = shost_priv(shost);
6495  
6496  	*ret = ufshcd_try_to_abort_task(hba, tag);
6497  	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6498  		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6499  		*ret ? "failed" : "succeeded");
6500  
6501  	return *ret == 0;
6502  }
6503  
6504  /**
6505   * ufshcd_abort_all - Abort all pending commands.
6506   * @hba: Host bus adapter pointer.
6507   *
6508   * Return: true if and only if the host controller needs to be reset.
6509   */
ufshcd_abort_all(struct ufs_hba * hba)6510  static bool ufshcd_abort_all(struct ufs_hba *hba)
6511  {
6512  	int tag, ret = 0;
6513  
6514  	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6515  	if (ret)
6516  		goto out;
6517  
6518  	/* Clear pending task management requests */
6519  	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6520  		ret = ufshcd_clear_tm_cmd(hba, tag);
6521  		if (ret)
6522  			goto out;
6523  	}
6524  
6525  out:
6526  	/* Complete the requests that are cleared by s/w */
6527  	ufshcd_complete_requests(hba, false);
6528  
6529  	return ret != 0;
6530  }
6531  
6532  /**
6533   * ufshcd_err_handler - handle UFS errors that require s/w attention
6534   * @work: pointer to work structure
6535   */
ufshcd_err_handler(struct work_struct * work)6536  static void ufshcd_err_handler(struct work_struct *work)
6537  {
6538  	int retries = MAX_ERR_HANDLER_RETRIES;
6539  	struct ufs_hba *hba;
6540  	unsigned long flags;
6541  	bool needs_restore;
6542  	bool needs_reset;
6543  	int pmc_err;
6544  
6545  	hba = container_of(work, struct ufs_hba, eh_work);
6546  
6547  	dev_info(hba->dev,
6548  		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6549  		 __func__, ufshcd_state_name[hba->ufshcd_state],
6550  		 hba->is_powered, hba->shutting_down, hba->saved_err,
6551  		 hba->saved_uic_err, hba->force_reset,
6552  		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6553  
6554  	down(&hba->host_sem);
6555  	spin_lock_irqsave(hba->host->host_lock, flags);
6556  	if (ufshcd_err_handling_should_stop(hba)) {
6557  		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6558  			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6559  		spin_unlock_irqrestore(hba->host->host_lock, flags);
6560  		up(&hba->host_sem);
6561  		return;
6562  	}
6563  	ufshcd_set_eh_in_progress(hba);
6564  	spin_unlock_irqrestore(hba->host->host_lock, flags);
6565  	ufshcd_err_handling_prepare(hba);
6566  	/* Complete requests that have door-bell cleared by h/w */
6567  	ufshcd_complete_requests(hba, false);
6568  	spin_lock_irqsave(hba->host->host_lock, flags);
6569  again:
6570  	needs_restore = false;
6571  	needs_reset = false;
6572  
6573  	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6574  		hba->ufshcd_state = UFSHCD_STATE_RESET;
6575  	/*
6576  	 * A full reset and restore might have happened after preparation
6577  	 * is finished, double check whether we should stop.
6578  	 */
6579  	if (ufshcd_err_handling_should_stop(hba))
6580  		goto skip_err_handling;
6581  
6582  	if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6583  	    !hba->force_reset) {
6584  		bool ret;
6585  
6586  		spin_unlock_irqrestore(hba->host->host_lock, flags);
6587  		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6588  		ret = ufshcd_quirk_dl_nac_errors(hba);
6589  		spin_lock_irqsave(hba->host->host_lock, flags);
6590  		if (!ret && ufshcd_err_handling_should_stop(hba))
6591  			goto skip_err_handling;
6592  	}
6593  
6594  	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6595  	    (hba->saved_uic_err &&
6596  	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6597  		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6598  
6599  		spin_unlock_irqrestore(hba->host->host_lock, flags);
6600  		ufshcd_print_host_state(hba);
6601  		ufshcd_print_pwr_info(hba);
6602  		ufshcd_print_evt_hist(hba);
6603  		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6604  		ufshcd_print_trs_all(hba, pr_prdt);
6605  		spin_lock_irqsave(hba->host->host_lock, flags);
6606  	}
6607  
6608  	/*
6609  	 * if host reset is required then skip clearing the pending
6610  	 * transfers forcefully because they will get cleared during
6611  	 * host reset and restore
6612  	 */
6613  	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6614  	    ufshcd_is_saved_err_fatal(hba) ||
6615  	    ((hba->saved_err & UIC_ERROR) &&
6616  	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6617  				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6618  		needs_reset = true;
6619  		goto do_reset;
6620  	}
6621  
6622  	/*
6623  	 * If LINERESET was caught, UFS might have been put to PWM mode,
6624  	 * check if power mode restore is needed.
6625  	 */
6626  	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6627  		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6628  		if (!hba->saved_uic_err)
6629  			hba->saved_err &= ~UIC_ERROR;
6630  		spin_unlock_irqrestore(hba->host->host_lock, flags);
6631  		if (ufshcd_is_pwr_mode_restore_needed(hba))
6632  			needs_restore = true;
6633  		spin_lock_irqsave(hba->host->host_lock, flags);
6634  		if (!hba->saved_err && !needs_restore)
6635  			goto skip_err_handling;
6636  	}
6637  
6638  	hba->silence_err_logs = true;
6639  	/* release lock as clear command might sleep */
6640  	spin_unlock_irqrestore(hba->host->host_lock, flags);
6641  
6642  	needs_reset = ufshcd_abort_all(hba);
6643  
6644  	spin_lock_irqsave(hba->host->host_lock, flags);
6645  	hba->silence_err_logs = false;
6646  	if (needs_reset)
6647  		goto do_reset;
6648  
6649  	/*
6650  	 * After all reqs and tasks are cleared from doorbell,
6651  	 * now it is safe to retore power mode.
6652  	 */
6653  	if (needs_restore) {
6654  		spin_unlock_irqrestore(hba->host->host_lock, flags);
6655  		/*
6656  		 * Hold the scaling lock just in case dev cmds
6657  		 * are sent via bsg and/or sysfs.
6658  		 */
6659  		down_write(&hba->clk_scaling_lock);
6660  		hba->force_pmc = true;
6661  		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6662  		if (pmc_err) {
6663  			needs_reset = true;
6664  			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6665  					__func__, pmc_err);
6666  		}
6667  		hba->force_pmc = false;
6668  		ufshcd_print_pwr_info(hba);
6669  		up_write(&hba->clk_scaling_lock);
6670  		spin_lock_irqsave(hba->host->host_lock, flags);
6671  	}
6672  
6673  do_reset:
6674  	/* Fatal errors need reset */
6675  	if (needs_reset) {
6676  		int err;
6677  
6678  		hba->force_reset = false;
6679  		spin_unlock_irqrestore(hba->host->host_lock, flags);
6680  		err = ufshcd_reset_and_restore(hba);
6681  		if (err)
6682  			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6683  					__func__, err);
6684  		else
6685  			ufshcd_recover_pm_error(hba);
6686  		spin_lock_irqsave(hba->host->host_lock, flags);
6687  	}
6688  
6689  skip_err_handling:
6690  	if (!needs_reset) {
6691  		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6692  			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6693  		if (hba->saved_err || hba->saved_uic_err)
6694  			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6695  			    __func__, hba->saved_err, hba->saved_uic_err);
6696  	}
6697  	/* Exit in an operational state or dead */
6698  	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6699  	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6700  		if (--retries)
6701  			goto again;
6702  		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6703  	}
6704  	ufshcd_clear_eh_in_progress(hba);
6705  	spin_unlock_irqrestore(hba->host->host_lock, flags);
6706  	ufshcd_err_handling_unprepare(hba);
6707  	up(&hba->host_sem);
6708  
6709  	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6710  		 ufshcd_state_name[hba->ufshcd_state]);
6711  }
6712  
6713  /**
6714   * ufshcd_update_uic_error - check and set fatal UIC error flags.
6715   * @hba: per-adapter instance
6716   *
6717   * Return:
6718   *  IRQ_HANDLED - If interrupt is valid
6719   *  IRQ_NONE    - If invalid interrupt
6720   */
ufshcd_update_uic_error(struct ufs_hba * hba)6721  static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6722  {
6723  	u32 reg;
6724  	irqreturn_t retval = IRQ_NONE;
6725  
6726  	/* PHY layer error */
6727  	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6728  	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6729  	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6730  		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6731  		/*
6732  		 * To know whether this error is fatal or not, DB timeout
6733  		 * must be checked but this error is handled separately.
6734  		 */
6735  		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6736  			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6737  					__func__);
6738  
6739  		/* Got a LINERESET indication. */
6740  		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6741  			struct uic_command *cmd = NULL;
6742  
6743  			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6744  			if (hba->uic_async_done && hba->active_uic_cmd)
6745  				cmd = hba->active_uic_cmd;
6746  			/*
6747  			 * Ignore the LINERESET during power mode change
6748  			 * operation via DME_SET command.
6749  			 */
6750  			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6751  				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6752  		}
6753  		retval |= IRQ_HANDLED;
6754  	}
6755  
6756  	/* PA_INIT_ERROR is fatal and needs UIC reset */
6757  	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6758  	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6759  	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6760  		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6761  
6762  		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6763  			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6764  		else if (hba->dev_quirks &
6765  				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6766  			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6767  				hba->uic_error |=
6768  					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6769  			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6770  				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6771  		}
6772  		retval |= IRQ_HANDLED;
6773  	}
6774  
6775  	/* UIC NL/TL/DME errors needs software retry */
6776  	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6777  	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6778  	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6779  		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6780  		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6781  		retval |= IRQ_HANDLED;
6782  	}
6783  
6784  	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6785  	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6786  	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6787  		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6788  		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6789  		retval |= IRQ_HANDLED;
6790  	}
6791  
6792  	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6793  	if ((reg & UIC_DME_ERROR) &&
6794  	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6795  		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6796  		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6797  		retval |= IRQ_HANDLED;
6798  	}
6799  
6800  	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6801  			__func__, hba->uic_error);
6802  	return retval;
6803  }
6804  
6805  /**
6806   * ufshcd_check_errors - Check for errors that need s/w attention
6807   * @hba: per-adapter instance
6808   * @intr_status: interrupt status generated by the controller
6809   *
6810   * Return:
6811   *  IRQ_HANDLED - If interrupt is valid
6812   *  IRQ_NONE    - If invalid interrupt
6813   */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)6814  static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6815  {
6816  	bool queue_eh_work = false;
6817  	irqreturn_t retval = IRQ_NONE;
6818  
6819  	spin_lock(hba->host->host_lock);
6820  	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6821  
6822  	if (hba->errors & INT_FATAL_ERRORS) {
6823  		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6824  				       hba->errors);
6825  		queue_eh_work = true;
6826  	}
6827  
6828  	if (hba->errors & UIC_ERROR) {
6829  		hba->uic_error = 0;
6830  		retval = ufshcd_update_uic_error(hba);
6831  		if (hba->uic_error)
6832  			queue_eh_work = true;
6833  	}
6834  
6835  	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6836  		dev_err(hba->dev,
6837  			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6838  			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6839  			"Enter" : "Exit",
6840  			hba->errors, ufshcd_get_upmcrs(hba));
6841  		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6842  				       hba->errors);
6843  		ufshcd_set_link_broken(hba);
6844  		queue_eh_work = true;
6845  	}
6846  
6847  	if (queue_eh_work) {
6848  		/*
6849  		 * update the transfer error masks to sticky bits, let's do this
6850  		 * irrespective of current ufshcd_state.
6851  		 */
6852  		hba->saved_err |= hba->errors;
6853  		hba->saved_uic_err |= hba->uic_error;
6854  
6855  		/* dump controller state before resetting */
6856  		if ((hba->saved_err &
6857  		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6858  		    (hba->saved_uic_err &&
6859  		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6860  			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6861  					__func__, hba->saved_err,
6862  					hba->saved_uic_err);
6863  			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6864  					 "host_regs: ");
6865  			ufshcd_print_pwr_info(hba);
6866  		}
6867  		ufshcd_schedule_eh_work(hba);
6868  		retval |= IRQ_HANDLED;
6869  	}
6870  	/*
6871  	 * if (!queue_eh_work) -
6872  	 * Other errors are either non-fatal where host recovers
6873  	 * itself without s/w intervention or errors that will be
6874  	 * handled by the SCSI core layer.
6875  	 */
6876  	hba->errors = 0;
6877  	hba->uic_error = 0;
6878  	spin_unlock(hba->host->host_lock);
6879  	return retval;
6880  }
6881  
6882  /**
6883   * ufshcd_tmc_handler - handle task management function completion
6884   * @hba: per adapter instance
6885   *
6886   * Return:
6887   *  IRQ_HANDLED - If interrupt is valid
6888   *  IRQ_NONE    - If invalid interrupt
6889   */
ufshcd_tmc_handler(struct ufs_hba * hba)6890  static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6891  {
6892  	unsigned long flags, pending, issued;
6893  	irqreturn_t ret = IRQ_NONE;
6894  	int tag;
6895  
6896  	spin_lock_irqsave(hba->host->host_lock, flags);
6897  	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6898  	issued = hba->outstanding_tasks & ~pending;
6899  	for_each_set_bit(tag, &issued, hba->nutmrs) {
6900  		struct request *req = hba->tmf_rqs[tag];
6901  		struct completion *c = req->end_io_data;
6902  
6903  		complete(c);
6904  		ret = IRQ_HANDLED;
6905  	}
6906  	spin_unlock_irqrestore(hba->host->host_lock, flags);
6907  
6908  	return ret;
6909  }
6910  
6911  /**
6912   * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6913   * @hba: per adapter instance
6914   *
6915   * Return: IRQ_HANDLED if interrupt is handled.
6916   */
ufshcd_handle_mcq_cq_events(struct ufs_hba * hba)6917  static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6918  {
6919  	struct ufs_hw_queue *hwq;
6920  	unsigned long outstanding_cqs;
6921  	unsigned int nr_queues;
6922  	int i, ret;
6923  	u32 events;
6924  
6925  	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6926  	if (ret)
6927  		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6928  
6929  	/* Exclude the poll queues */
6930  	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6931  	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6932  		hwq = &hba->uhq[i];
6933  
6934  		events = ufshcd_mcq_read_cqis(hba, i);
6935  		if (events)
6936  			ufshcd_mcq_write_cqis(hba, events, i);
6937  
6938  		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6939  			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6940  	}
6941  
6942  	return IRQ_HANDLED;
6943  }
6944  
6945  /**
6946   * ufshcd_sl_intr - Interrupt service routine
6947   * @hba: per adapter instance
6948   * @intr_status: contains interrupts generated by the controller
6949   *
6950   * Return:
6951   *  IRQ_HANDLED - If interrupt is valid
6952   *  IRQ_NONE    - If invalid interrupt
6953   */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)6954  static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6955  {
6956  	irqreturn_t retval = IRQ_NONE;
6957  
6958  	if (intr_status & UFSHCD_UIC_MASK)
6959  		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6960  
6961  	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6962  		retval |= ufshcd_check_errors(hba, intr_status);
6963  
6964  	if (intr_status & UTP_TASK_REQ_COMPL)
6965  		retval |= ufshcd_tmc_handler(hba);
6966  
6967  	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6968  		retval |= ufshcd_transfer_req_compl(hba);
6969  
6970  	if (intr_status & MCQ_CQ_EVENT_STATUS)
6971  		retval |= ufshcd_handle_mcq_cq_events(hba);
6972  
6973  	return retval;
6974  }
6975  
6976  /**
6977   * ufshcd_intr - Main interrupt service routine
6978   * @irq: irq number
6979   * @__hba: pointer to adapter instance
6980   *
6981   * Return:
6982   *  IRQ_HANDLED - If interrupt is valid
6983   *  IRQ_NONE    - If invalid interrupt
6984   */
ufshcd_intr(int irq,void * __hba)6985  static irqreturn_t ufshcd_intr(int irq, void *__hba)
6986  {
6987  	u32 intr_status, enabled_intr_status = 0;
6988  	irqreturn_t retval = IRQ_NONE;
6989  	struct ufs_hba *hba = __hba;
6990  	int retries = hba->nutrs;
6991  
6992  	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6993  	hba->ufs_stats.last_intr_status = intr_status;
6994  	hba->ufs_stats.last_intr_ts = local_clock();
6995  
6996  	/*
6997  	 * There could be max of hba->nutrs reqs in flight and in worst case
6998  	 * if the reqs get finished 1 by 1 after the interrupt status is
6999  	 * read, make sure we handle them by checking the interrupt status
7000  	 * again in a loop until we process all of the reqs before returning.
7001  	 */
7002  	while (intr_status && retries--) {
7003  		enabled_intr_status =
7004  			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7005  		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7006  		if (enabled_intr_status)
7007  			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
7008  
7009  		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7010  	}
7011  
7012  	if (enabled_intr_status && retval == IRQ_NONE &&
7013  	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
7014  	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
7015  		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
7016  					__func__,
7017  					intr_status,
7018  					hba->ufs_stats.last_intr_status,
7019  					enabled_intr_status);
7020  		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
7021  	}
7022  
7023  	return retval;
7024  }
7025  
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)7026  static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
7027  {
7028  	int err = 0;
7029  	u32 mask = 1 << tag;
7030  
7031  	if (!test_bit(tag, &hba->outstanding_tasks))
7032  		goto out;
7033  
7034  	ufshcd_utmrl_clear(hba, tag);
7035  
7036  	/* poll for max. 1 sec to clear door bell register by h/w */
7037  	err = ufshcd_wait_for_register(hba,
7038  			REG_UTP_TASK_REQ_DOOR_BELL,
7039  			mask, 0, 1000, 1000);
7040  
7041  	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7042  		tag, err < 0 ? "failed" : "succeeded");
7043  
7044  out:
7045  	return err;
7046  }
7047  
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)7048  static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7049  		struct utp_task_req_desc *treq, u8 tm_function)
7050  {
7051  	struct request_queue *q = hba->tmf_queue;
7052  	struct Scsi_Host *host = hba->host;
7053  	DECLARE_COMPLETION_ONSTACK(wait);
7054  	struct request *req;
7055  	unsigned long flags;
7056  	int task_tag, err;
7057  
7058  	/*
7059  	 * blk_mq_alloc_request() is used here only to get a free tag.
7060  	 */
7061  	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7062  	if (IS_ERR(req))
7063  		return PTR_ERR(req);
7064  
7065  	req->end_io_data = &wait;
7066  	ufshcd_hold(hba);
7067  
7068  	spin_lock_irqsave(host->host_lock, flags);
7069  
7070  	task_tag = req->tag;
7071  	hba->tmf_rqs[req->tag] = req;
7072  	treq->upiu_req.req_header.task_tag = task_tag;
7073  
7074  	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7075  	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7076  
7077  	__set_bit(task_tag, &hba->outstanding_tasks);
7078  
7079  	spin_unlock_irqrestore(host->host_lock, flags);
7080  
7081  	/* send command to the controller */
7082  	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7083  
7084  	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7085  
7086  	/* wait until the task management command is completed */
7087  	err = wait_for_completion_io_timeout(&wait,
7088  			msecs_to_jiffies(TM_CMD_TIMEOUT));
7089  	if (!err) {
7090  		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7091  		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7092  				__func__, tm_function);
7093  		if (ufshcd_clear_tm_cmd(hba, task_tag))
7094  			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7095  					__func__, task_tag);
7096  		err = -ETIMEDOUT;
7097  	} else {
7098  		err = 0;
7099  		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7100  
7101  		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7102  	}
7103  
7104  	spin_lock_irqsave(hba->host->host_lock, flags);
7105  	hba->tmf_rqs[req->tag] = NULL;
7106  	__clear_bit(task_tag, &hba->outstanding_tasks);
7107  	spin_unlock_irqrestore(hba->host->host_lock, flags);
7108  
7109  	ufshcd_release(hba);
7110  	blk_mq_free_request(req);
7111  
7112  	return err;
7113  }
7114  
7115  /**
7116   * ufshcd_issue_tm_cmd - issues task management commands to controller
7117   * @hba: per adapter instance
7118   * @lun_id: LUN ID to which TM command is sent
7119   * @task_id: task ID to which the TM command is applicable
7120   * @tm_function: task management function opcode
7121   * @tm_response: task management service response return value
7122   *
7123   * Return: non-zero value on error, zero on success.
7124   */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)7125  static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7126  		u8 tm_function, u8 *tm_response)
7127  {
7128  	struct utp_task_req_desc treq = { };
7129  	enum utp_ocs ocs_value;
7130  	int err;
7131  
7132  	/* Configure task request descriptor */
7133  	treq.header.interrupt = 1;
7134  	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7135  
7136  	/* Configure task request UPIU */
7137  	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7138  	treq.upiu_req.req_header.lun = lun_id;
7139  	treq.upiu_req.req_header.tm_function = tm_function;
7140  
7141  	/*
7142  	 * The host shall provide the same value for LUN field in the basic
7143  	 * header and for Input Parameter.
7144  	 */
7145  	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7146  	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7147  
7148  	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7149  	if (err == -ETIMEDOUT)
7150  		return err;
7151  
7152  	ocs_value = treq.header.ocs & MASK_OCS;
7153  	if (ocs_value != OCS_SUCCESS)
7154  		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7155  				__func__, ocs_value);
7156  	else if (tm_response)
7157  		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7158  				MASK_TM_SERVICE_RESP;
7159  	return err;
7160  }
7161  
7162  /**
7163   * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7164   * @hba:	per-adapter instance
7165   * @req_upiu:	upiu request
7166   * @rsp_upiu:	upiu reply
7167   * @desc_buff:	pointer to descriptor buffer, NULL if NA
7168   * @buff_len:	descriptor size, 0 if NA
7169   * @cmd_type:	specifies the type (NOP, Query...)
7170   * @desc_op:	descriptor operation
7171   *
7172   * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7173   * Therefore, it "rides" the device management infrastructure: uses its tag and
7174   * tasks work queues.
7175   *
7176   * Since there is only one available tag for device management commands,
7177   * the caller is expected to hold the hba->dev_cmd.lock mutex.
7178   *
7179   * Return: 0 upon success; < 0 upon failure.
7180   */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)7181  static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7182  					struct utp_upiu_req *req_upiu,
7183  					struct utp_upiu_req *rsp_upiu,
7184  					u8 *desc_buff, int *buff_len,
7185  					enum dev_cmd_type cmd_type,
7186  					enum query_opcode desc_op)
7187  {
7188  	const u32 tag = hba->reserved_slot;
7189  	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7190  	int err = 0;
7191  	u8 upiu_flags;
7192  
7193  	/* Protects use of hba->reserved_slot. */
7194  	lockdep_assert_held(&hba->dev_cmd.lock);
7195  
7196  	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
7197  
7198  	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7199  
7200  	/* update the task tag in the request upiu */
7201  	req_upiu->header.task_tag = tag;
7202  
7203  	/* just copy the upiu request as it is */
7204  	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7205  	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7206  		/* The Data Segment Area is optional depending upon the query
7207  		 * function value. for WRITE DESCRIPTOR, the data segment
7208  		 * follows right after the tsf.
7209  		 */
7210  		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7211  		*buff_len = 0;
7212  	}
7213  
7214  	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7215  
7216  	/*
7217  	 * ignore the returning value here - ufshcd_check_query_response is
7218  	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7219  	 * read the response directly ignoring all errors.
7220  	 */
7221  	ufshcd_issue_dev_cmd(hba, lrbp, tag, QUERY_REQ_TIMEOUT);
7222  
7223  	/* just copy the upiu response as it is */
7224  	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7225  	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7226  		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7227  		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7228  					   .data_segment_length);
7229  
7230  		if (*buff_len >= resp_len) {
7231  			memcpy(desc_buff, descp, resp_len);
7232  			*buff_len = resp_len;
7233  		} else {
7234  			dev_warn(hba->dev,
7235  				 "%s: rsp size %d is bigger than buffer size %d",
7236  				 __func__, resp_len, *buff_len);
7237  			*buff_len = 0;
7238  			err = -EINVAL;
7239  		}
7240  	}
7241  	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7242  				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7243  
7244  	return err;
7245  }
7246  
7247  /**
7248   * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7249   * @hba:	per-adapter instance
7250   * @req_upiu:	upiu request
7251   * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7252   * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7253   * @desc_buff:	pointer to descriptor buffer, NULL if NA
7254   * @buff_len:	descriptor size, 0 if NA
7255   * @desc_op:	descriptor operation
7256   *
7257   * Supports UTP Transfer requests (nop and query), and UTP Task
7258   * Management requests.
7259   * It is up to the caller to fill the upiu conent properly, as it will
7260   * be copied without any further input validations.
7261   *
7262   * Return: 0 upon success; < 0 upon failure.
7263   */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,enum upiu_request_transaction msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)7264  int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7265  			     struct utp_upiu_req *req_upiu,
7266  			     struct utp_upiu_req *rsp_upiu,
7267  			     enum upiu_request_transaction msgcode,
7268  			     u8 *desc_buff, int *buff_len,
7269  			     enum query_opcode desc_op)
7270  {
7271  	int err;
7272  	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7273  	struct utp_task_req_desc treq = { };
7274  	enum utp_ocs ocs_value;
7275  	u8 tm_f = req_upiu->header.tm_function;
7276  
7277  	switch (msgcode) {
7278  	case UPIU_TRANSACTION_NOP_OUT:
7279  		cmd_type = DEV_CMD_TYPE_NOP;
7280  		fallthrough;
7281  	case UPIU_TRANSACTION_QUERY_REQ:
7282  		ufshcd_dev_man_lock(hba);
7283  		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7284  						   desc_buff, buff_len,
7285  						   cmd_type, desc_op);
7286  		ufshcd_dev_man_unlock(hba);
7287  
7288  		break;
7289  	case UPIU_TRANSACTION_TASK_REQ:
7290  		treq.header.interrupt = 1;
7291  		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7292  
7293  		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7294  
7295  		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7296  		if (err == -ETIMEDOUT)
7297  			break;
7298  
7299  		ocs_value = treq.header.ocs & MASK_OCS;
7300  		if (ocs_value != OCS_SUCCESS) {
7301  			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7302  				ocs_value);
7303  			break;
7304  		}
7305  
7306  		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7307  
7308  		break;
7309  	default:
7310  		err = -EINVAL;
7311  
7312  		break;
7313  	}
7314  
7315  	return err;
7316  }
7317  
7318  /**
7319   * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7320   * @hba:	per adapter instance
7321   * @req_upiu:	upiu request
7322   * @rsp_upiu:	upiu reply
7323   * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7324   * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7325   * @sg_cnt:	The number of sg lists actually used
7326   * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7327   * @dir:	DMA direction
7328   *
7329   * Return: zero on success, non-zero on failure.
7330   */
ufshcd_advanced_rpmb_req_handler(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,struct ufs_ehs * req_ehs,struct ufs_ehs * rsp_ehs,int sg_cnt,struct scatterlist * sg_list,enum dma_data_direction dir)7331  int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7332  			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7333  			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7334  			 enum dma_data_direction dir)
7335  {
7336  	const u32 tag = hba->reserved_slot;
7337  	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7338  	int err = 0;
7339  	int result;
7340  	u8 upiu_flags;
7341  	u8 *ehs_data;
7342  	u16 ehs_len;
7343  	int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7344  
7345  	/* Protects use of hba->reserved_slot. */
7346  	ufshcd_dev_man_lock(hba);
7347  
7348  	ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag);
7349  
7350  	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7351  
7352  	/* update the task tag */
7353  	req_upiu->header.task_tag = tag;
7354  
7355  	/* copy the UPIU(contains CDB) request as it is */
7356  	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7357  	/* Copy EHS, starting with byte32, immediately after the CDB package */
7358  	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7359  
7360  	if (dir != DMA_NONE && sg_list)
7361  		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7362  
7363  	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7364  
7365  	err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7366  
7367  	if (!err) {
7368  		/* Just copy the upiu response as it is */
7369  		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7370  		/* Get the response UPIU result */
7371  		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7372  			lrbp->ucd_rsp_ptr->header.status;
7373  
7374  		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7375  		/*
7376  		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7377  		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7378  		 * Message is 02h
7379  		 */
7380  		if (ehs_len == 2 && rsp_ehs) {
7381  			/*
7382  			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7383  			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7384  			 */
7385  			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7386  			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7387  		}
7388  	}
7389  
7390  	ufshcd_dev_man_unlock(hba);
7391  
7392  	return err ? : result;
7393  }
7394  
7395  /**
7396   * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7397   * @cmd: SCSI command pointer
7398   *
7399   * Return: SUCCESS or FAILED.
7400   */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)7401  static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7402  {
7403  	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7404  	struct Scsi_Host *host;
7405  	struct ufs_hba *hba;
7406  	struct ufs_hw_queue *hwq;
7407  	struct ufshcd_lrb *lrbp;
7408  	u32 pos, not_cleared_mask = 0;
7409  	int err;
7410  	u8 resp = 0xF, lun;
7411  
7412  	host = cmd->device->host;
7413  	hba = shost_priv(host);
7414  
7415  	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7416  	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7417  	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7418  		if (!err)
7419  			err = resp;
7420  		goto out;
7421  	}
7422  
7423  	if (hba->mcq_enabled) {
7424  		for (pos = 0; pos < hba->nutrs; pos++) {
7425  			lrbp = &hba->lrb[pos];
7426  			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7427  			    lrbp->lun == lun) {
7428  				ufshcd_clear_cmd(hba, pos);
7429  				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7430  				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7431  			}
7432  		}
7433  		err = 0;
7434  		goto out;
7435  	}
7436  
7437  	/* clear the commands that were pending for corresponding LUN */
7438  	spin_lock_irqsave(&hba->outstanding_lock, flags);
7439  	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7440  		if (hba->lrb[pos].lun == lun)
7441  			__set_bit(pos, &pending_reqs);
7442  	hba->outstanding_reqs &= ~pending_reqs;
7443  	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7444  
7445  	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7446  		if (ufshcd_clear_cmd(hba, pos) < 0) {
7447  			spin_lock_irqsave(&hba->outstanding_lock, flags);
7448  			not_cleared = 1U << pos &
7449  				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7450  			hba->outstanding_reqs |= not_cleared;
7451  			not_cleared_mask |= not_cleared;
7452  			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7453  
7454  			dev_err(hba->dev, "%s: failed to clear request %d\n",
7455  				__func__, pos);
7456  		}
7457  	}
7458  	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7459  
7460  out:
7461  	hba->req_abort_count = 0;
7462  	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7463  	if (!err) {
7464  		err = SUCCESS;
7465  	} else {
7466  		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7467  		err = FAILED;
7468  	}
7469  	return err;
7470  }
7471  
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)7472  static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7473  {
7474  	struct ufshcd_lrb *lrbp;
7475  	int tag;
7476  
7477  	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7478  		lrbp = &hba->lrb[tag];
7479  		lrbp->req_abort_skip = true;
7480  	}
7481  }
7482  
7483  /**
7484   * ufshcd_try_to_abort_task - abort a specific task
7485   * @hba: Pointer to adapter instance
7486   * @tag: Task tag/index to be aborted
7487   *
7488   * Abort the pending command in device by sending UFS_ABORT_TASK task management
7489   * command, and in host controller by clearing the door-bell register. There can
7490   * be race between controller sending the command to the device while abort is
7491   * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7492   * really issued and then try to abort it.
7493   *
7494   * Return: zero on success, non-zero on failure.
7495   */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)7496  int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7497  {
7498  	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7499  	int err;
7500  	int poll_cnt;
7501  	u8 resp = 0xF;
7502  
7503  	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7504  		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7505  				UFS_QUERY_TASK, &resp);
7506  		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7507  			/* cmd pending in the device */
7508  			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7509  				__func__, tag);
7510  			break;
7511  		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7512  			/*
7513  			 * cmd not pending in the device, check if it is
7514  			 * in transition.
7515  			 */
7516  			dev_info(
7517  				hba->dev,
7518  				"%s: cmd with tag %d not pending in the device.\n",
7519  				__func__, tag);
7520  			if (!ufshcd_cmd_inflight(lrbp->cmd)) {
7521  				dev_info(hba->dev,
7522  					 "%s: cmd with tag=%d completed.\n",
7523  					 __func__, tag);
7524  				return 0;
7525  			}
7526  			usleep_range(100, 200);
7527  		} else {
7528  			dev_err(hba->dev,
7529  				"%s: no response from device. tag = %d, err %d\n",
7530  				__func__, tag, err);
7531  			return err ? : resp;
7532  		}
7533  	}
7534  
7535  	if (!poll_cnt)
7536  		return -EBUSY;
7537  
7538  	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7539  			UFS_ABORT_TASK, &resp);
7540  	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7541  		if (!err) {
7542  			err = resp; /* service response error */
7543  			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7544  				__func__, tag, err);
7545  		}
7546  		return err;
7547  	}
7548  
7549  	err = ufshcd_clear_cmd(hba, tag);
7550  	if (err)
7551  		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7552  			__func__, tag, err);
7553  
7554  	return err;
7555  }
7556  
7557  /**
7558   * ufshcd_abort - scsi host template eh_abort_handler callback
7559   * @cmd: SCSI command pointer
7560   *
7561   * Return: SUCCESS or FAILED.
7562   */
ufshcd_abort(struct scsi_cmnd * cmd)7563  static int ufshcd_abort(struct scsi_cmnd *cmd)
7564  {
7565  	struct Scsi_Host *host = cmd->device->host;
7566  	struct ufs_hba *hba = shost_priv(host);
7567  	int tag = scsi_cmd_to_rq(cmd)->tag;
7568  	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7569  	unsigned long flags;
7570  	int err = FAILED;
7571  	bool outstanding;
7572  	u32 reg;
7573  
7574  	ufshcd_hold(hba);
7575  
7576  	if (!hba->mcq_enabled) {
7577  		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7578  		if (!test_bit(tag, &hba->outstanding_reqs)) {
7579  			/* If command is already aborted/completed, return FAILED. */
7580  			dev_err(hba->dev,
7581  				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7582  				__func__, tag, hba->outstanding_reqs, reg);
7583  			goto release;
7584  		}
7585  	}
7586  
7587  	/* Print Transfer Request of aborted task */
7588  	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7589  
7590  	/*
7591  	 * Print detailed info about aborted request.
7592  	 * As more than one request might get aborted at the same time,
7593  	 * print full information only for the first aborted request in order
7594  	 * to reduce repeated printouts. For other aborted requests only print
7595  	 * basic details.
7596  	 */
7597  	scsi_print_command(cmd);
7598  	if (!hba->req_abort_count) {
7599  		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7600  		ufshcd_print_evt_hist(hba);
7601  		ufshcd_print_host_state(hba);
7602  		ufshcd_print_pwr_info(hba);
7603  		ufshcd_print_tr(hba, tag, true);
7604  	} else {
7605  		ufshcd_print_tr(hba, tag, false);
7606  	}
7607  	hba->req_abort_count++;
7608  
7609  	if (!hba->mcq_enabled && !(reg & (1 << tag))) {
7610  		/* only execute this code in single doorbell mode */
7611  		dev_err(hba->dev,
7612  		"%s: cmd was completed, but without a notifying intr, tag = %d",
7613  		__func__, tag);
7614  		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7615  		goto release;
7616  	}
7617  
7618  	/*
7619  	 * Task abort to the device W-LUN is illegal. When this command
7620  	 * will fail, due to spec violation, scsi err handling next step
7621  	 * will be to send LU reset which, again, is a spec violation.
7622  	 * To avoid these unnecessary/illegal steps, first we clean up
7623  	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7624  	 * then queue the eh_work and bail.
7625  	 */
7626  	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7627  		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7628  
7629  		spin_lock_irqsave(host->host_lock, flags);
7630  		hba->force_reset = true;
7631  		ufshcd_schedule_eh_work(hba);
7632  		spin_unlock_irqrestore(host->host_lock, flags);
7633  		goto release;
7634  	}
7635  
7636  	if (hba->mcq_enabled) {
7637  		/* MCQ mode. Branch off to handle abort for mcq mode */
7638  		err = ufshcd_mcq_abort(cmd);
7639  		goto release;
7640  	}
7641  
7642  	/* Skip task abort in case previous aborts failed and report failure */
7643  	if (lrbp->req_abort_skip) {
7644  		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7645  		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7646  		goto release;
7647  	}
7648  
7649  	err = ufshcd_try_to_abort_task(hba, tag);
7650  	if (err) {
7651  		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7652  		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7653  		err = FAILED;
7654  		goto release;
7655  	}
7656  
7657  	/*
7658  	 * Clear the corresponding bit from outstanding_reqs since the command
7659  	 * has been aborted successfully.
7660  	 */
7661  	spin_lock_irqsave(&hba->outstanding_lock, flags);
7662  	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7663  	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7664  
7665  	if (outstanding)
7666  		ufshcd_release_scsi_cmd(hba, lrbp);
7667  
7668  	err = SUCCESS;
7669  
7670  release:
7671  	/* Matches the ufshcd_hold() call at the start of this function. */
7672  	ufshcd_release(hba);
7673  	return err;
7674  }
7675  
7676  /**
7677   * ufshcd_process_probe_result - Process the ufshcd_probe_hba() result.
7678   * @hba: UFS host controller instance.
7679   * @probe_start: time when the ufshcd_probe_hba() call started.
7680   * @ret: ufshcd_probe_hba() return value.
7681   */
ufshcd_process_probe_result(struct ufs_hba * hba,ktime_t probe_start,int ret)7682  static void ufshcd_process_probe_result(struct ufs_hba *hba,
7683  					ktime_t probe_start, int ret)
7684  {
7685  	unsigned long flags;
7686  
7687  	spin_lock_irqsave(hba->host->host_lock, flags);
7688  	if (ret)
7689  		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7690  	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7691  		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7692  	spin_unlock_irqrestore(hba->host->host_lock, flags);
7693  
7694  	trace_ufshcd_init(hba, ret,
7695  			  ktime_to_us(ktime_sub(ktime_get(), probe_start)),
7696  			  hba->curr_dev_pwr_mode, hba->uic_link_state);
7697  }
7698  
7699  /**
7700   * ufshcd_host_reset_and_restore - reset and restore host controller
7701   * @hba: per-adapter instance
7702   *
7703   * Note that host controller reset may issue DME_RESET to
7704   * local and remote (device) Uni-Pro stack and the attributes
7705   * are reset to default state.
7706   *
7707   * Return: zero on success, non-zero on failure.
7708   */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7709  static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7710  {
7711  	int err;
7712  
7713  	/*
7714  	 * Stop the host controller and complete the requests
7715  	 * cleared by h/w
7716  	 */
7717  	ufshcd_hba_stop(hba);
7718  	hba->silence_err_logs = true;
7719  	ufshcd_complete_requests(hba, true);
7720  	hba->silence_err_logs = false;
7721  
7722  	/* scale up clocks to max frequency before full reinitialization */
7723  	ufshcd_scale_clks(hba, ULONG_MAX, true);
7724  
7725  	err = ufshcd_hba_enable(hba);
7726  
7727  	/* Establish the link again and restore the device */
7728  	if (!err) {
7729  		ktime_t probe_start = ktime_get();
7730  
7731  		err = ufshcd_device_init(hba, /*init_dev_params=*/false);
7732  		if (!err)
7733  			err = ufshcd_probe_hba(hba, false);
7734  		ufshcd_process_probe_result(hba, probe_start, err);
7735  	}
7736  
7737  	if (err)
7738  		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7739  	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7740  	return err;
7741  }
7742  
7743  /**
7744   * ufshcd_reset_and_restore - reset and re-initialize host/device
7745   * @hba: per-adapter instance
7746   *
7747   * Reset and recover device, host and re-establish link. This
7748   * is helpful to recover the communication in fatal error conditions.
7749   *
7750   * Return: zero on success, non-zero on failure.
7751   */
ufshcd_reset_and_restore(struct ufs_hba * hba)7752  static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7753  {
7754  	u32 saved_err = 0;
7755  	u32 saved_uic_err = 0;
7756  	int err = 0;
7757  	unsigned long flags;
7758  	int retries = MAX_HOST_RESET_RETRIES;
7759  
7760  	spin_lock_irqsave(hba->host->host_lock, flags);
7761  	do {
7762  		/*
7763  		 * This is a fresh start, cache and clear saved error first,
7764  		 * in case new error generated during reset and restore.
7765  		 */
7766  		saved_err |= hba->saved_err;
7767  		saved_uic_err |= hba->saved_uic_err;
7768  		hba->saved_err = 0;
7769  		hba->saved_uic_err = 0;
7770  		hba->force_reset = false;
7771  		hba->ufshcd_state = UFSHCD_STATE_RESET;
7772  		spin_unlock_irqrestore(hba->host->host_lock, flags);
7773  
7774  		/* Reset the attached device */
7775  		ufshcd_device_reset(hba);
7776  
7777  		err = ufshcd_host_reset_and_restore(hba);
7778  
7779  		spin_lock_irqsave(hba->host->host_lock, flags);
7780  		if (err)
7781  			continue;
7782  		/* Do not exit unless operational or dead */
7783  		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7784  		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7785  		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7786  			err = -EAGAIN;
7787  	} while (err && --retries);
7788  
7789  	/*
7790  	 * Inform scsi mid-layer that we did reset and allow to handle
7791  	 * Unit Attention properly.
7792  	 */
7793  	scsi_report_bus_reset(hba->host, 0);
7794  	if (err) {
7795  		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7796  		hba->saved_err |= saved_err;
7797  		hba->saved_uic_err |= saved_uic_err;
7798  	}
7799  	spin_unlock_irqrestore(hba->host->host_lock, flags);
7800  
7801  	return err;
7802  }
7803  
7804  /**
7805   * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7806   * @cmd: SCSI command pointer
7807   *
7808   * Return: SUCCESS or FAILED.
7809   */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)7810  static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7811  {
7812  	int err = SUCCESS;
7813  	unsigned long flags;
7814  	struct ufs_hba *hba;
7815  
7816  	hba = shost_priv(cmd->device->host);
7817  
7818  	/*
7819  	 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7820  	 * stuck in this function waiting for flush_work(&hba->eh_work). And
7821  	 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7822  	 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7823  	 */
7824  	if (hba->pm_op_in_progress) {
7825  		if (ufshcd_link_recovery(hba))
7826  			err = FAILED;
7827  
7828  		return err;
7829  	}
7830  
7831  	spin_lock_irqsave(hba->host->host_lock, flags);
7832  	hba->force_reset = true;
7833  	ufshcd_schedule_eh_work(hba);
7834  	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7835  	spin_unlock_irqrestore(hba->host->host_lock, flags);
7836  
7837  	flush_work(&hba->eh_work);
7838  
7839  	spin_lock_irqsave(hba->host->host_lock, flags);
7840  	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7841  		err = FAILED;
7842  	spin_unlock_irqrestore(hba->host->host_lock, flags);
7843  
7844  	return err;
7845  }
7846  
7847  /**
7848   * ufshcd_get_max_icc_level - calculate the ICC level
7849   * @sup_curr_uA: max. current supported by the regulator
7850   * @start_scan: row at the desc table to start scan from
7851   * @buff: power descriptor buffer
7852   *
7853   * Return: calculated max ICC level for specific regulator.
7854   */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,const char * buff)7855  static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7856  				    const char *buff)
7857  {
7858  	int i;
7859  	int curr_uA;
7860  	u16 data;
7861  	u16 unit;
7862  
7863  	for (i = start_scan; i >= 0; i--) {
7864  		data = get_unaligned_be16(&buff[2 * i]);
7865  		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7866  						ATTR_ICC_LVL_UNIT_OFFSET;
7867  		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7868  		switch (unit) {
7869  		case UFSHCD_NANO_AMP:
7870  			curr_uA = curr_uA / 1000;
7871  			break;
7872  		case UFSHCD_MILI_AMP:
7873  			curr_uA = curr_uA * 1000;
7874  			break;
7875  		case UFSHCD_AMP:
7876  			curr_uA = curr_uA * 1000 * 1000;
7877  			break;
7878  		case UFSHCD_MICRO_AMP:
7879  		default:
7880  			break;
7881  		}
7882  		if (sup_curr_uA >= curr_uA)
7883  			break;
7884  	}
7885  	if (i < 0) {
7886  		i = 0;
7887  		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7888  	}
7889  
7890  	return (u32)i;
7891  }
7892  
7893  /**
7894   * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7895   * In case regulators are not initialized we'll return 0
7896   * @hba: per-adapter instance
7897   * @desc_buf: power descriptor buffer to extract ICC levels from.
7898   *
7899   * Return: calculated ICC level.
7900   */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,const u8 * desc_buf)7901  static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7902  						const u8 *desc_buf)
7903  {
7904  	u32 icc_level = 0;
7905  
7906  	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7907  						!hba->vreg_info.vccq2) {
7908  		/*
7909  		 * Using dev_dbg to avoid messages during runtime PM to avoid
7910  		 * never-ending cycles of messages written back to storage by
7911  		 * user space causing runtime resume, causing more messages and
7912  		 * so on.
7913  		 */
7914  		dev_dbg(hba->dev,
7915  			"%s: Regulator capability was not set, actvIccLevel=%d",
7916  							__func__, icc_level);
7917  		goto out;
7918  	}
7919  
7920  	if (hba->vreg_info.vcc->max_uA)
7921  		icc_level = ufshcd_get_max_icc_level(
7922  				hba->vreg_info.vcc->max_uA,
7923  				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7924  				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7925  
7926  	if (hba->vreg_info.vccq->max_uA)
7927  		icc_level = ufshcd_get_max_icc_level(
7928  				hba->vreg_info.vccq->max_uA,
7929  				icc_level,
7930  				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7931  
7932  	if (hba->vreg_info.vccq2->max_uA)
7933  		icc_level = ufshcd_get_max_icc_level(
7934  				hba->vreg_info.vccq2->max_uA,
7935  				icc_level,
7936  				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7937  out:
7938  	return icc_level;
7939  }
7940  
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)7941  static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7942  {
7943  	int ret;
7944  	u8 *desc_buf;
7945  	u32 icc_level;
7946  
7947  	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7948  	if (!desc_buf)
7949  		return;
7950  
7951  	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7952  				     desc_buf, QUERY_DESC_MAX_SIZE);
7953  	if (ret) {
7954  		dev_err(hba->dev,
7955  			"%s: Failed reading power descriptor ret = %d",
7956  			__func__, ret);
7957  		goto out;
7958  	}
7959  
7960  	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7961  	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7962  
7963  	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7964  		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7965  
7966  	if (ret)
7967  		dev_err(hba->dev,
7968  			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7969  			__func__, icc_level, ret);
7970  
7971  out:
7972  	kfree(desc_buf);
7973  }
7974  
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)7975  static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7976  {
7977  	struct Scsi_Host *shost = sdev->host;
7978  
7979  	scsi_autopm_get_device(sdev);
7980  	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7981  	if (sdev->rpm_autosuspend)
7982  		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7983  						 shost->rpm_autosuspend_delay);
7984  	scsi_autopm_put_device(sdev);
7985  }
7986  
7987  /**
7988   * ufshcd_scsi_add_wlus - Adds required W-LUs
7989   * @hba: per-adapter instance
7990   *
7991   * UFS device specification requires the UFS devices to support 4 well known
7992   * logical units:
7993   *	"REPORT_LUNS" (address: 01h)
7994   *	"UFS Device" (address: 50h)
7995   *	"RPMB" (address: 44h)
7996   *	"BOOT" (address: 30h)
7997   * UFS device's power management needs to be controlled by "POWER CONDITION"
7998   * field of SSU (START STOP UNIT) command. But this "power condition" field
7999   * will take effect only when its sent to "UFS device" well known logical unit
8000   * hence we require the scsi_device instance to represent this logical unit in
8001   * order for the UFS host driver to send the SSU command for power management.
8002   *
8003   * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
8004   * Block) LU so user space process can control this LU. User space may also
8005   * want to have access to BOOT LU.
8006   *
8007   * This function adds scsi device instances for each of all well known LUs
8008   * (except "REPORT LUNS" LU).
8009   *
8010   * Return: zero on success (all required W-LUs are added successfully),
8011   * non-zero error value on failure (if failed to add any of the required W-LU).
8012   */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)8013  static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8014  {
8015  	int ret = 0;
8016  	struct scsi_device *sdev_boot, *sdev_rpmb;
8017  
8018  	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8019  		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8020  	if (IS_ERR(hba->ufs_device_wlun)) {
8021  		ret = PTR_ERR(hba->ufs_device_wlun);
8022  		hba->ufs_device_wlun = NULL;
8023  		goto out;
8024  	}
8025  	scsi_device_put(hba->ufs_device_wlun);
8026  
8027  	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8028  		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8029  	if (IS_ERR(sdev_rpmb)) {
8030  		ret = PTR_ERR(sdev_rpmb);
8031  		goto remove_ufs_device_wlun;
8032  	}
8033  	ufshcd_blk_pm_runtime_init(sdev_rpmb);
8034  	scsi_device_put(sdev_rpmb);
8035  
8036  	sdev_boot = __scsi_add_device(hba->host, 0, 0,
8037  		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8038  	if (IS_ERR(sdev_boot)) {
8039  		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8040  	} else {
8041  		ufshcd_blk_pm_runtime_init(sdev_boot);
8042  		scsi_device_put(sdev_boot);
8043  	}
8044  	goto out;
8045  
8046  remove_ufs_device_wlun:
8047  	scsi_remove_device(hba->ufs_device_wlun);
8048  out:
8049  	return ret;
8050  }
8051  
ufshcd_wb_probe(struct ufs_hba * hba,const u8 * desc_buf)8052  static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8053  {
8054  	struct ufs_dev_info *dev_info = &hba->dev_info;
8055  	u8 lun;
8056  	u32 d_lu_wb_buf_alloc;
8057  	u32 ext_ufs_feature;
8058  
8059  	if (!ufshcd_is_wb_allowed(hba))
8060  		return;
8061  
8062  	/*
8063  	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8064  	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8065  	 * enabled
8066  	 */
8067  	if (!(dev_info->wspecversion >= 0x310 ||
8068  	      dev_info->wspecversion == 0x220 ||
8069  	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8070  		goto wb_disabled;
8071  
8072  	ext_ufs_feature = get_unaligned_be32(desc_buf +
8073  					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8074  
8075  	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8076  		goto wb_disabled;
8077  
8078  	/*
8079  	 * WB may be supported but not configured while provisioning. The spec
8080  	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8081  	 * buffer configured.
8082  	 */
8083  	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8084  
8085  	dev_info->b_presrv_uspc_en =
8086  		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8087  
8088  	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8089  		if (!get_unaligned_be32(desc_buf +
8090  				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8091  			goto wb_disabled;
8092  	} else {
8093  		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8094  			d_lu_wb_buf_alloc = 0;
8095  			ufshcd_read_unit_desc_param(hba,
8096  					lun,
8097  					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8098  					(u8 *)&d_lu_wb_buf_alloc,
8099  					sizeof(d_lu_wb_buf_alloc));
8100  			if (d_lu_wb_buf_alloc) {
8101  				dev_info->wb_dedicated_lu = lun;
8102  				break;
8103  			}
8104  		}
8105  
8106  		if (!d_lu_wb_buf_alloc)
8107  			goto wb_disabled;
8108  	}
8109  
8110  	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8111  		goto wb_disabled;
8112  
8113  	return;
8114  
8115  wb_disabled:
8116  	hba->caps &= ~UFSHCD_CAP_WB_EN;
8117  }
8118  
ufshcd_temp_notif_probe(struct ufs_hba * hba,const u8 * desc_buf)8119  static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8120  {
8121  	struct ufs_dev_info *dev_info = &hba->dev_info;
8122  	u32 ext_ufs_feature;
8123  	u8 mask = 0;
8124  
8125  	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8126  		return;
8127  
8128  	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8129  
8130  	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8131  		mask |= MASK_EE_TOO_LOW_TEMP;
8132  
8133  	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8134  		mask |= MASK_EE_TOO_HIGH_TEMP;
8135  
8136  	if (mask) {
8137  		ufshcd_enable_ee(hba, mask);
8138  		ufs_hwmon_probe(hba, mask);
8139  	}
8140  }
8141  
ufshcd_set_rtt(struct ufs_hba * hba)8142  static void ufshcd_set_rtt(struct ufs_hba *hba)
8143  {
8144  	struct ufs_dev_info *dev_info = &hba->dev_info;
8145  	u32 rtt = 0;
8146  	u32 dev_rtt = 0;
8147  	int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ?
8148  			   hba->vops->max_num_rtt : hba->nortt;
8149  
8150  	/* RTT override makes sense only for UFS-4.0 and above */
8151  	if (dev_info->wspecversion < 0x400)
8152  		return;
8153  
8154  	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8155  				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) {
8156  		dev_err(hba->dev, "failed reading bMaxNumOfRTT\n");
8157  		return;
8158  	}
8159  
8160  	/* do not override if it was already written */
8161  	if (dev_rtt != DEFAULT_MAX_NUM_RTT)
8162  		return;
8163  
8164  	rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap);
8165  
8166  	if (rtt == dev_rtt)
8167  		return;
8168  
8169  	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8170  				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt))
8171  		dev_err(hba->dev, "failed writing bMaxNumOfRTT\n");
8172  }
8173  
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,const struct ufs_dev_quirk * fixups)8174  void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8175  			     const struct ufs_dev_quirk *fixups)
8176  {
8177  	const struct ufs_dev_quirk *f;
8178  	struct ufs_dev_info *dev_info = &hba->dev_info;
8179  
8180  	if (!fixups)
8181  		return;
8182  
8183  	for (f = fixups; f->quirk; f++) {
8184  		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8185  		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8186  		     ((dev_info->model &&
8187  		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8188  		      !strcmp(f->model, UFS_ANY_MODEL)))
8189  			hba->dev_quirks |= f->quirk;
8190  	}
8191  }
8192  EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8193  
ufs_fixup_device_setup(struct ufs_hba * hba)8194  static void ufs_fixup_device_setup(struct ufs_hba *hba)
8195  {
8196  	/* fix by general quirk table */
8197  	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8198  
8199  	/* allow vendors to fix quirks */
8200  	ufshcd_vops_fixup_dev_quirks(hba);
8201  }
8202  
ufshcd_update_rtc(struct ufs_hba * hba)8203  static void ufshcd_update_rtc(struct ufs_hba *hba)
8204  {
8205  	struct timespec64 ts64;
8206  	int err;
8207  	u32 val;
8208  
8209  	ktime_get_real_ts64(&ts64);
8210  
8211  	if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8212  		dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8213  		return;
8214  	}
8215  
8216  	/*
8217  	 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8218  	 * 2146 is required, it is recommended to choose the relative RTC mode.
8219  	 */
8220  	val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8221  
8222  	/* Skip update RTC if RPM state is not RPM_ACTIVE */
8223  	if (ufshcd_rpm_get_if_active(hba) <= 0)
8224  		return;
8225  
8226  	err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8227  				0, 0, &val);
8228  	ufshcd_rpm_put(hba);
8229  
8230  	if (err)
8231  		dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8232  	else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8233  		hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8234  }
8235  
ufshcd_rtc_work(struct work_struct * work)8236  static void ufshcd_rtc_work(struct work_struct *work)
8237  {
8238  	struct ufs_hba *hba;
8239  
8240  	hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8241  
8242  	 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8243  	if (!ufshcd_is_ufs_dev_busy(hba) &&
8244  	    hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL &&
8245  	    !hba->clk_gating.active_reqs)
8246  		ufshcd_update_rtc(hba);
8247  
8248  	if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8249  		schedule_delayed_work(&hba->ufs_rtc_update_work,
8250  				      msecs_to_jiffies(hba->dev_info.rtc_update_period));
8251  }
8252  
ufs_init_rtc(struct ufs_hba * hba,u8 * desc_buf)8253  static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8254  {
8255  	u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8256  	struct ufs_dev_info *dev_info = &hba->dev_info;
8257  
8258  	if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8259  		dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8260  
8261  		/*
8262  		 * The concept of measuring time in Linux as the number of seconds elapsed since
8263  		 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8264  		 * 2010 00:00, here we need to adjust ABS baseline.
8265  		 */
8266  		dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8267  							mktime64(1970, 1, 1, 0, 0, 0);
8268  	} else {
8269  		dev_info->rtc_type = UFS_RTC_RELATIVE;
8270  		dev_info->rtc_time_baseline = 0;
8271  	}
8272  
8273  	/*
8274  	 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8275  	 * how to calculate the specific update period for each time unit. And we disable periodic
8276  	 * RTC update work, let user configure by sysfs node according to specific circumstance.
8277  	 */
8278  	dev_info->rtc_update_period = 0;
8279  }
8280  
ufs_get_device_desc(struct ufs_hba * hba)8281  static int ufs_get_device_desc(struct ufs_hba *hba)
8282  {
8283  	int err;
8284  	u8 model_index;
8285  	u8 *desc_buf;
8286  	struct ufs_dev_info *dev_info = &hba->dev_info;
8287  
8288  	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8289  	if (!desc_buf) {
8290  		err = -ENOMEM;
8291  		goto out;
8292  	}
8293  
8294  	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8295  				     QUERY_DESC_MAX_SIZE);
8296  	if (err) {
8297  		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8298  			__func__, err);
8299  		goto out;
8300  	}
8301  
8302  	/*
8303  	 * getting vendor (manufacturerID) and Bank Index in big endian
8304  	 * format
8305  	 */
8306  	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8307  				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8308  
8309  	/* getting Specification Version in big endian format */
8310  	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8311  				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8312  	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8313  
8314  	dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP];
8315  
8316  	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8317  
8318  	err = ufshcd_read_string_desc(hba, model_index,
8319  				      &dev_info->model, SD_ASCII_STD);
8320  	if (err < 0) {
8321  		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8322  			__func__, err);
8323  		goto out;
8324  	}
8325  
8326  	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8327  		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8328  
8329  	ufs_fixup_device_setup(hba);
8330  
8331  	ufshcd_wb_probe(hba, desc_buf);
8332  
8333  	ufshcd_temp_notif_probe(hba, desc_buf);
8334  
8335  	if (dev_info->wspecversion >= 0x410) {
8336  		hba->critical_health_count = 0;
8337  		ufshcd_enable_ee(hba, MASK_EE_HEALTH_CRITICAL);
8338  	}
8339  
8340  	ufs_init_rtc(hba, desc_buf);
8341  
8342  	/*
8343  	 * ufshcd_read_string_desc returns size of the string
8344  	 * reset the error value
8345  	 */
8346  	err = 0;
8347  
8348  out:
8349  	kfree(desc_buf);
8350  	return err;
8351  }
8352  
ufs_put_device_desc(struct ufs_hba * hba)8353  static void ufs_put_device_desc(struct ufs_hba *hba)
8354  {
8355  	struct ufs_dev_info *dev_info = &hba->dev_info;
8356  
8357  	kfree(dev_info->model);
8358  	dev_info->model = NULL;
8359  }
8360  
8361  /**
8362   * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8363   * less than device PA_TACTIVATE time.
8364   * @hba: per-adapter instance
8365   *
8366   * Some UFS devices require host PA_TACTIVATE to be lower than device
8367   * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8368   * for such devices.
8369   *
8370   * Return: zero on success, non-zero error value on failure.
8371   */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)8372  static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8373  {
8374  	int ret = 0;
8375  	u32 granularity, peer_granularity;
8376  	u32 pa_tactivate, peer_pa_tactivate;
8377  	u32 pa_tactivate_us, peer_pa_tactivate_us;
8378  	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8379  
8380  	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8381  				  &granularity);
8382  	if (ret)
8383  		goto out;
8384  
8385  	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8386  				  &peer_granularity);
8387  	if (ret)
8388  		goto out;
8389  
8390  	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8391  	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8392  		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8393  			__func__, granularity);
8394  		return -EINVAL;
8395  	}
8396  
8397  	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8398  	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8399  		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8400  			__func__, peer_granularity);
8401  		return -EINVAL;
8402  	}
8403  
8404  	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8405  	if (ret)
8406  		goto out;
8407  
8408  	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8409  				  &peer_pa_tactivate);
8410  	if (ret)
8411  		goto out;
8412  
8413  	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8414  	peer_pa_tactivate_us = peer_pa_tactivate *
8415  			     gran_to_us_table[peer_granularity - 1];
8416  
8417  	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8418  		u32 new_peer_pa_tactivate;
8419  
8420  		new_peer_pa_tactivate = pa_tactivate_us /
8421  				      gran_to_us_table[peer_granularity - 1];
8422  		new_peer_pa_tactivate++;
8423  		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8424  					  new_peer_pa_tactivate);
8425  	}
8426  
8427  out:
8428  	return ret;
8429  }
8430  
ufshcd_tune_unipro_params(struct ufs_hba * hba)8431  static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8432  {
8433  	ufshcd_vops_apply_dev_quirks(hba);
8434  
8435  	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8436  		/* set 1ms timeout for PA_TACTIVATE */
8437  		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8438  
8439  	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8440  		ufshcd_quirk_tune_host_pa_tactivate(hba);
8441  }
8442  
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)8443  static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8444  {
8445  	hba->ufs_stats.hibern8_exit_cnt = 0;
8446  	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8447  	hba->req_abort_count = 0;
8448  }
8449  
ufshcd_device_geo_params_init(struct ufs_hba * hba)8450  static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8451  {
8452  	int err;
8453  	u8 *desc_buf;
8454  
8455  	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8456  	if (!desc_buf) {
8457  		err = -ENOMEM;
8458  		goto out;
8459  	}
8460  
8461  	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8462  				     desc_buf, QUERY_DESC_MAX_SIZE);
8463  	if (err) {
8464  		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8465  				__func__, err);
8466  		goto out;
8467  	}
8468  
8469  	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8470  		hba->dev_info.max_lu_supported = 32;
8471  	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8472  		hba->dev_info.max_lu_supported = 8;
8473  
8474  out:
8475  	kfree(desc_buf);
8476  	return err;
8477  }
8478  
8479  struct ufs_ref_clk {
8480  	unsigned long freq_hz;
8481  	enum ufs_ref_clk_freq val;
8482  };
8483  
8484  static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8485  	{19200000, REF_CLK_FREQ_19_2_MHZ},
8486  	{26000000, REF_CLK_FREQ_26_MHZ},
8487  	{38400000, REF_CLK_FREQ_38_4_MHZ},
8488  	{52000000, REF_CLK_FREQ_52_MHZ},
8489  	{0, REF_CLK_FREQ_INVAL},
8490  };
8491  
8492  static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)8493  ufs_get_bref_clk_from_hz(unsigned long freq)
8494  {
8495  	int i;
8496  
8497  	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8498  		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8499  			return ufs_ref_clk_freqs[i].val;
8500  
8501  	return REF_CLK_FREQ_INVAL;
8502  }
8503  
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)8504  void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8505  {
8506  	unsigned long freq;
8507  
8508  	freq = clk_get_rate(refclk);
8509  
8510  	hba->dev_ref_clk_freq =
8511  		ufs_get_bref_clk_from_hz(freq);
8512  
8513  	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8514  		dev_err(hba->dev,
8515  		"invalid ref_clk setting = %ld\n", freq);
8516  }
8517  
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)8518  static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8519  {
8520  	int err;
8521  	u32 ref_clk;
8522  	u32 freq = hba->dev_ref_clk_freq;
8523  
8524  	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8525  			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8526  
8527  	if (err) {
8528  		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8529  			err);
8530  		goto out;
8531  	}
8532  
8533  	if (ref_clk == freq)
8534  		goto out; /* nothing to update */
8535  
8536  	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8537  			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8538  
8539  	if (err) {
8540  		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8541  			ufs_ref_clk_freqs[freq].freq_hz);
8542  		goto out;
8543  	}
8544  
8545  	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8546  			ufs_ref_clk_freqs[freq].freq_hz);
8547  
8548  out:
8549  	return err;
8550  }
8551  
ufshcd_device_params_init(struct ufs_hba * hba)8552  static int ufshcd_device_params_init(struct ufs_hba *hba)
8553  {
8554  	bool flag;
8555  	int ret;
8556  
8557  	/* Init UFS geometry descriptor related parameters */
8558  	ret = ufshcd_device_geo_params_init(hba);
8559  	if (ret)
8560  		goto out;
8561  
8562  	/* Check and apply UFS device quirks */
8563  	ret = ufs_get_device_desc(hba);
8564  	if (ret) {
8565  		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8566  			__func__, ret);
8567  		goto out;
8568  	}
8569  
8570  	ufshcd_set_rtt(hba);
8571  
8572  	ufshcd_get_ref_clk_gating_wait(hba);
8573  
8574  	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8575  			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8576  		hba->dev_info.f_power_on_wp_en = flag;
8577  
8578  	/* Probe maximum power mode co-supported by both UFS host and device */
8579  	if (ufshcd_get_max_pwr_mode(hba))
8580  		dev_err(hba->dev,
8581  			"%s: Failed getting max supported power mode\n",
8582  			__func__);
8583  out:
8584  	return ret;
8585  }
8586  
ufshcd_set_timestamp_attr(struct ufs_hba * hba)8587  static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8588  {
8589  	int err;
8590  	struct ufs_query_req *request = NULL;
8591  	struct ufs_query_res *response = NULL;
8592  	struct ufs_dev_info *dev_info = &hba->dev_info;
8593  	struct utp_upiu_query_v4_0 *upiu_data;
8594  
8595  	if (dev_info->wspecversion < 0x400)
8596  		return;
8597  
8598  	ufshcd_dev_man_lock(hba);
8599  
8600  	ufshcd_init_query(hba, &request, &response,
8601  			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8602  			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8603  
8604  	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8605  
8606  	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8607  
8608  	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8609  
8610  	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8611  
8612  	if (err)
8613  		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8614  			__func__, err);
8615  
8616  	ufshcd_dev_man_unlock(hba);
8617  }
8618  
8619  /**
8620   * ufshcd_add_lus - probe and add UFS logical units
8621   * @hba: per-adapter instance
8622   *
8623   * Return: 0 upon success; < 0 upon failure.
8624   */
ufshcd_add_lus(struct ufs_hba * hba)8625  static int ufshcd_add_lus(struct ufs_hba *hba)
8626  {
8627  	int ret;
8628  
8629  	/* Add required well known logical units to scsi mid layer */
8630  	ret = ufshcd_scsi_add_wlus(hba);
8631  	if (ret)
8632  		goto out;
8633  
8634  	/* Initialize devfreq after UFS device is detected */
8635  	if (ufshcd_is_clkscaling_supported(hba)) {
8636  		memcpy(&hba->clk_scaling.saved_pwr_info,
8637  			&hba->pwr_info,
8638  			sizeof(struct ufs_pa_layer_attr));
8639  		hba->clk_scaling.is_allowed = true;
8640  
8641  		ret = ufshcd_devfreq_init(hba);
8642  		if (ret)
8643  			goto out;
8644  
8645  		hba->clk_scaling.is_enabled = true;
8646  		ufshcd_init_clk_scaling_sysfs(hba);
8647  	}
8648  
8649  	/*
8650  	 * The RTC update code accesses the hba->ufs_device_wlun->sdev_gendev
8651  	 * pointer and hence must only be started after the WLUN pointer has
8652  	 * been initialized by ufshcd_scsi_add_wlus().
8653  	 */
8654  	schedule_delayed_work(&hba->ufs_rtc_update_work,
8655  			      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8656  
8657  	ufs_bsg_probe(hba);
8658  	scsi_scan_host(hba->host);
8659  
8660  out:
8661  	return ret;
8662  }
8663  
8664  /* SDB - Single Doorbell */
ufshcd_release_sdb_queue(struct ufs_hba * hba,int nutrs)8665  static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8666  {
8667  	size_t ucdl_size, utrdl_size;
8668  
8669  	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8670  	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8671  			   hba->ucdl_dma_addr);
8672  
8673  	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8674  	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8675  			   hba->utrdl_dma_addr);
8676  
8677  	devm_kfree(hba->dev, hba->lrb);
8678  }
8679  
ufshcd_alloc_mcq(struct ufs_hba * hba)8680  static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8681  {
8682  	int ret;
8683  	int old_nutrs = hba->nutrs;
8684  
8685  	ret = ufshcd_mcq_decide_queue_depth(hba);
8686  	if (ret < 0)
8687  		return ret;
8688  
8689  	hba->nutrs = ret;
8690  	ret = ufshcd_mcq_init(hba);
8691  	if (ret)
8692  		goto err;
8693  
8694  	/*
8695  	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8696  	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8697  	 */
8698  	if (hba->nutrs != old_nutrs) {
8699  		ufshcd_release_sdb_queue(hba, old_nutrs);
8700  		ret = ufshcd_memory_alloc(hba);
8701  		if (ret)
8702  			goto err;
8703  		ufshcd_host_memory_configure(hba);
8704  	}
8705  
8706  	ret = ufshcd_mcq_memory_alloc(hba);
8707  	if (ret)
8708  		goto err;
8709  
8710  	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8711  	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8712  
8713  	return 0;
8714  err:
8715  	hba->nutrs = old_nutrs;
8716  	return ret;
8717  }
8718  
ufshcd_config_mcq(struct ufs_hba * hba)8719  static void ufshcd_config_mcq(struct ufs_hba *hba)
8720  {
8721  	int ret;
8722  	u32 intrs;
8723  
8724  	ret = ufshcd_mcq_vops_config_esi(hba);
8725  	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8726  
8727  	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8728  	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8729  		intrs &= ~MCQ_CQ_EVENT_STATUS;
8730  	ufshcd_enable_intr(hba, intrs);
8731  	ufshcd_mcq_make_queues_operational(hba);
8732  	ufshcd_mcq_config_mac(hba, hba->nutrs);
8733  
8734  	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8735  		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8736  		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8737  		 hba->nutrs);
8738  }
8739  
ufshcd_post_device_init(struct ufs_hba * hba)8740  static int ufshcd_post_device_init(struct ufs_hba *hba)
8741  {
8742  	int ret;
8743  
8744  	ufshcd_tune_unipro_params(hba);
8745  
8746  	/* UFS device is also active now */
8747  	ufshcd_set_ufs_dev_active(hba);
8748  	ufshcd_force_reset_auto_bkops(hba);
8749  
8750  	ufshcd_set_timestamp_attr(hba);
8751  
8752  	if (!hba->max_pwr_info.is_valid)
8753  		return 0;
8754  
8755  	/*
8756  	 * Set the right value to bRefClkFreq before attempting to
8757  	 * switch to HS gears.
8758  	 */
8759  	if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8760  		ufshcd_set_dev_ref_clk(hba);
8761  	/* Gear up to HS gear. */
8762  	ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8763  	if (ret) {
8764  		dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8765  			__func__, ret);
8766  		return ret;
8767  	}
8768  
8769  	return 0;
8770  }
8771  
ufshcd_device_init(struct ufs_hba * hba,bool init_dev_params)8772  static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8773  {
8774  	int ret;
8775  
8776  	WARN_ON_ONCE(!hba->scsi_host_added);
8777  
8778  	hba->ufshcd_state = UFSHCD_STATE_RESET;
8779  
8780  	ret = ufshcd_link_startup(hba);
8781  	if (ret)
8782  		return ret;
8783  
8784  	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8785  		return ret;
8786  
8787  	/* Debug counters initialization */
8788  	ufshcd_clear_dbg_ufs_stats(hba);
8789  
8790  	/* UniPro link is active now */
8791  	ufshcd_set_link_active(hba);
8792  
8793  	/* Reconfigure MCQ upon reset */
8794  	if (hba->mcq_enabled && !init_dev_params) {
8795  		ufshcd_config_mcq(hba);
8796  		ufshcd_mcq_enable(hba);
8797  	}
8798  
8799  	/* Verify device initialization by sending NOP OUT UPIU */
8800  	ret = ufshcd_verify_dev_init(hba);
8801  	if (ret)
8802  		return ret;
8803  
8804  	/* Initiate UFS initialization, and waiting until completion */
8805  	ret = ufshcd_complete_dev_init(hba);
8806  	if (ret)
8807  		return ret;
8808  
8809  	/*
8810  	 * Initialize UFS device parameters used by driver, these
8811  	 * parameters are associated with UFS descriptors.
8812  	 */
8813  	if (init_dev_params) {
8814  		ret = ufshcd_device_params_init(hba);
8815  		if (ret)
8816  			return ret;
8817  		if (is_mcq_supported(hba) &&
8818  		    hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
8819  			ufshcd_config_mcq(hba);
8820  			ufshcd_mcq_enable(hba);
8821  		}
8822  	}
8823  
8824  	return ufshcd_post_device_init(hba);
8825  }
8826  
8827  /**
8828   * ufshcd_probe_hba - probe hba to detect device and initialize it
8829   * @hba: per-adapter instance
8830   * @init_dev_params: whether or not to call ufshcd_device_params_init().
8831   *
8832   * Execute link-startup and verify device initialization
8833   *
8834   * Return: 0 upon success; < 0 upon failure.
8835   */
ufshcd_probe_hba(struct ufs_hba * hba,bool init_dev_params)8836  static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8837  {
8838  	int ret;
8839  
8840  	if (!hba->pm_op_in_progress &&
8841  	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8842  		/* Reset the device and controller before doing reinit */
8843  		ufshcd_device_reset(hba);
8844  		ufs_put_device_desc(hba);
8845  		ufshcd_hba_stop(hba);
8846  		ret = ufshcd_hba_enable(hba);
8847  		if (ret) {
8848  			dev_err(hba->dev, "Host controller enable failed\n");
8849  			ufshcd_print_evt_hist(hba);
8850  			ufshcd_print_host_state(hba);
8851  			return ret;
8852  		}
8853  
8854  		/* Reinit the device */
8855  		ret = ufshcd_device_init(hba, init_dev_params);
8856  		if (ret)
8857  			return ret;
8858  	}
8859  
8860  	ufshcd_print_pwr_info(hba);
8861  
8862  	/*
8863  	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8864  	 * and for removable UFS card as well, hence always set the parameter.
8865  	 * Note: Error handler may issue the device reset hence resetting
8866  	 * bActiveICCLevel as well so it is always safe to set this here.
8867  	 */
8868  	ufshcd_set_active_icc_lvl(hba);
8869  
8870  	/* Enable UFS Write Booster if supported */
8871  	ufshcd_configure_wb(hba);
8872  
8873  	if (hba->ee_usr_mask)
8874  		ufshcd_write_ee_control(hba);
8875  	ufshcd_configure_auto_hibern8(hba);
8876  
8877  	return 0;
8878  }
8879  
8880  /**
8881   * ufshcd_async_scan - asynchronous execution for probing hba
8882   * @data: data pointer to pass to this function
8883   * @cookie: cookie data
8884   */
ufshcd_async_scan(void * data,async_cookie_t cookie)8885  static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8886  {
8887  	struct ufs_hba *hba = (struct ufs_hba *)data;
8888  	ktime_t probe_start;
8889  	int ret;
8890  
8891  	down(&hba->host_sem);
8892  	/* Initialize hba, detect and initialize UFS device */
8893  	probe_start = ktime_get();
8894  	ret = ufshcd_probe_hba(hba, true);
8895  	ufshcd_process_probe_result(hba, probe_start, ret);
8896  	up(&hba->host_sem);
8897  	if (ret)
8898  		goto out;
8899  
8900  	/* Probe and add UFS logical units  */
8901  	ret = ufshcd_add_lus(hba);
8902  
8903  out:
8904  	pm_runtime_put_sync(hba->dev);
8905  
8906  	if (ret)
8907  		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8908  }
8909  
ufshcd_eh_timed_out(struct scsi_cmnd * scmd)8910  static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8911  {
8912  	struct ufs_hba *hba = shost_priv(scmd->device->host);
8913  
8914  	if (!hba->system_suspending) {
8915  		/* Activate the error handler in the SCSI core. */
8916  		return SCSI_EH_NOT_HANDLED;
8917  	}
8918  
8919  	/*
8920  	 * If we get here we know that no TMFs are outstanding and also that
8921  	 * the only pending command is a START STOP UNIT command. Handle the
8922  	 * timeout of that command directly to prevent a deadlock between
8923  	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8924  	 */
8925  	ufshcd_link_recovery(hba);
8926  	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8927  		 __func__, hba->outstanding_tasks);
8928  
8929  	return scsi_host_busy(hba->host) ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8930  }
8931  
8932  static const struct attribute_group *ufshcd_driver_groups[] = {
8933  	&ufs_sysfs_unit_descriptor_group,
8934  	&ufs_sysfs_lun_attributes_group,
8935  	NULL,
8936  };
8937  
8938  static struct ufs_hba_variant_params ufs_hba_vps = {
8939  	.hba_enable_delay_us		= 1000,
8940  	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8941  	.devfreq_profile.polling_ms	= 100,
8942  	.devfreq_profile.target		= ufshcd_devfreq_target,
8943  	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8944  	.ondemand_data.upthreshold	= 70,
8945  	.ondemand_data.downdifferential	= 5,
8946  };
8947  
8948  static const struct scsi_host_template ufshcd_driver_template = {
8949  	.module			= THIS_MODULE,
8950  	.name			= UFSHCD,
8951  	.proc_name		= UFSHCD,
8952  	.map_queues		= ufshcd_map_queues,
8953  	.queuecommand		= ufshcd_queuecommand,
8954  	.mq_poll		= ufshcd_poll,
8955  	.sdev_init		= ufshcd_sdev_init,
8956  	.sdev_configure		= ufshcd_sdev_configure,
8957  	.sdev_destroy		= ufshcd_sdev_destroy,
8958  	.change_queue_depth	= ufshcd_change_queue_depth,
8959  	.eh_abort_handler	= ufshcd_abort,
8960  	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8961  	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8962  	.eh_timed_out		= ufshcd_eh_timed_out,
8963  	.this_id		= -1,
8964  	.sg_tablesize		= SG_ALL,
8965  	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8966  	.max_sectors		= SZ_1M / SECTOR_SIZE,
8967  	.max_host_blocked	= 1,
8968  	.track_queue_depth	= 1,
8969  	.skip_settle_delay	= 1,
8970  	.sdev_groups		= ufshcd_driver_groups,
8971  };
8972  
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)8973  static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8974  				   int ua)
8975  {
8976  	int ret;
8977  
8978  	if (!vreg)
8979  		return 0;
8980  
8981  	/*
8982  	 * "set_load" operation shall be required on those regulators
8983  	 * which specifically configured current limitation. Otherwise
8984  	 * zero max_uA may cause unexpected behavior when regulator is
8985  	 * enabled or set as high power mode.
8986  	 */
8987  	if (!vreg->max_uA)
8988  		return 0;
8989  
8990  	ret = regulator_set_load(vreg->reg, ua);
8991  	if (ret < 0) {
8992  		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8993  				__func__, vreg->name, ua, ret);
8994  	}
8995  
8996  	return ret;
8997  }
8998  
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)8999  static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9000  					 struct ufs_vreg *vreg)
9001  {
9002  	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9003  }
9004  
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9005  static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9006  					 struct ufs_vreg *vreg)
9007  {
9008  	if (!vreg)
9009  		return 0;
9010  
9011  	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9012  }
9013  
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)9014  static int ufshcd_config_vreg(struct device *dev,
9015  		struct ufs_vreg *vreg, bool on)
9016  {
9017  	if (regulator_count_voltages(vreg->reg) <= 0)
9018  		return 0;
9019  
9020  	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9021  }
9022  
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)9023  static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9024  {
9025  	int ret = 0;
9026  
9027  	if (!vreg || vreg->enabled)
9028  		goto out;
9029  
9030  	ret = ufshcd_config_vreg(dev, vreg, true);
9031  	if (!ret)
9032  		ret = regulator_enable(vreg->reg);
9033  
9034  	if (!ret)
9035  		vreg->enabled = true;
9036  	else
9037  		dev_err(dev, "%s: %s enable failed, err=%d\n",
9038  				__func__, vreg->name, ret);
9039  out:
9040  	return ret;
9041  }
9042  
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)9043  static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9044  {
9045  	int ret = 0;
9046  
9047  	if (!vreg || !vreg->enabled || vreg->always_on)
9048  		goto out;
9049  
9050  	ret = regulator_disable(vreg->reg);
9051  
9052  	if (!ret) {
9053  		/* ignore errors on applying disable config */
9054  		ufshcd_config_vreg(dev, vreg, false);
9055  		vreg->enabled = false;
9056  	} else {
9057  		dev_err(dev, "%s: %s disable failed, err=%d\n",
9058  				__func__, vreg->name, ret);
9059  	}
9060  out:
9061  	return ret;
9062  }
9063  
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)9064  static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9065  {
9066  	int ret = 0;
9067  	struct device *dev = hba->dev;
9068  	struct ufs_vreg_info *info = &hba->vreg_info;
9069  
9070  	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9071  	if (ret)
9072  		goto out;
9073  
9074  	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9075  	if (ret)
9076  		goto out;
9077  
9078  	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9079  
9080  out:
9081  	if (ret) {
9082  		ufshcd_toggle_vreg(dev, info->vccq2, false);
9083  		ufshcd_toggle_vreg(dev, info->vccq, false);
9084  		ufshcd_toggle_vreg(dev, info->vcc, false);
9085  	}
9086  	return ret;
9087  }
9088  
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)9089  static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9090  {
9091  	struct ufs_vreg_info *info = &hba->vreg_info;
9092  
9093  	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9094  }
9095  
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)9096  int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9097  {
9098  	int ret = 0;
9099  
9100  	if (!vreg)
9101  		goto out;
9102  
9103  	vreg->reg = devm_regulator_get(dev, vreg->name);
9104  	if (IS_ERR(vreg->reg)) {
9105  		ret = PTR_ERR(vreg->reg);
9106  		dev_err(dev, "%s: %s get failed, err=%d\n",
9107  				__func__, vreg->name, ret);
9108  	}
9109  out:
9110  	return ret;
9111  }
9112  EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9113  
ufshcd_init_vreg(struct ufs_hba * hba)9114  static int ufshcd_init_vreg(struct ufs_hba *hba)
9115  {
9116  	int ret = 0;
9117  	struct device *dev = hba->dev;
9118  	struct ufs_vreg_info *info = &hba->vreg_info;
9119  
9120  	ret = ufshcd_get_vreg(dev, info->vcc);
9121  	if (ret)
9122  		goto out;
9123  
9124  	ret = ufshcd_get_vreg(dev, info->vccq);
9125  	if (!ret)
9126  		ret = ufshcd_get_vreg(dev, info->vccq2);
9127  out:
9128  	return ret;
9129  }
9130  
ufshcd_init_hba_vreg(struct ufs_hba * hba)9131  static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9132  {
9133  	struct ufs_vreg_info *info = &hba->vreg_info;
9134  
9135  	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9136  }
9137  
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)9138  static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9139  {
9140  	int ret = 0;
9141  	struct ufs_clk_info *clki;
9142  	struct list_head *head = &hba->clk_list_head;
9143  	ktime_t start = ktime_get();
9144  	bool clk_state_changed = false;
9145  
9146  	if (list_empty(head))
9147  		goto out;
9148  
9149  	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9150  	if (ret)
9151  		return ret;
9152  
9153  	list_for_each_entry(clki, head, list) {
9154  		if (!IS_ERR_OR_NULL(clki->clk)) {
9155  			/*
9156  			 * Don't disable clocks which are needed
9157  			 * to keep the link active.
9158  			 */
9159  			if (ufshcd_is_link_active(hba) &&
9160  			    clki->keep_link_active)
9161  				continue;
9162  
9163  			clk_state_changed = on ^ clki->enabled;
9164  			if (on && !clki->enabled) {
9165  				ret = clk_prepare_enable(clki->clk);
9166  				if (ret) {
9167  					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9168  						__func__, clki->name, ret);
9169  					goto out;
9170  				}
9171  			} else if (!on && clki->enabled) {
9172  				clk_disable_unprepare(clki->clk);
9173  			}
9174  			clki->enabled = on;
9175  			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9176  					clki->name, on ? "en" : "dis");
9177  		}
9178  	}
9179  
9180  	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9181  	if (ret)
9182  		return ret;
9183  
9184  	if (!ufshcd_is_clkscaling_supported(hba))
9185  		ufshcd_pm_qos_update(hba, on);
9186  out:
9187  	if (ret) {
9188  		list_for_each_entry(clki, head, list) {
9189  			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9190  				clk_disable_unprepare(clki->clk);
9191  		}
9192  	} else if (!ret && on && hba->clk_gating.is_initialized) {
9193  		scoped_guard(spinlock_irqsave, &hba->clk_gating.lock)
9194  			hba->clk_gating.state = CLKS_ON;
9195  		trace_ufshcd_clk_gating(hba,
9196  					hba->clk_gating.state);
9197  	}
9198  
9199  	if (clk_state_changed)
9200  		trace_ufshcd_profile_clk_gating(hba,
9201  			(on ? "on" : "off"),
9202  			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9203  	return ret;
9204  }
9205  
ufshcd_parse_ref_clk_property(struct ufs_hba * hba)9206  static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9207  {
9208  	u32 freq;
9209  	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9210  
9211  	if (ret) {
9212  		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9213  		return REF_CLK_FREQ_INVAL;
9214  	}
9215  
9216  	return ufs_get_bref_clk_from_hz(freq);
9217  }
9218  
ufshcd_init_clocks(struct ufs_hba * hba)9219  static int ufshcd_init_clocks(struct ufs_hba *hba)
9220  {
9221  	int ret = 0;
9222  	struct ufs_clk_info *clki;
9223  	struct device *dev = hba->dev;
9224  	struct list_head *head = &hba->clk_list_head;
9225  
9226  	if (list_empty(head))
9227  		goto out;
9228  
9229  	list_for_each_entry(clki, head, list) {
9230  		if (!clki->name)
9231  			continue;
9232  
9233  		clki->clk = devm_clk_get(dev, clki->name);
9234  		if (IS_ERR(clki->clk)) {
9235  			ret = PTR_ERR(clki->clk);
9236  			dev_err(dev, "%s: %s clk get failed, %d\n",
9237  					__func__, clki->name, ret);
9238  			goto out;
9239  		}
9240  
9241  		/*
9242  		 * Parse device ref clk freq as per device tree "ref_clk".
9243  		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9244  		 * in ufshcd_alloc_host().
9245  		 */
9246  		if (!strcmp(clki->name, "ref_clk"))
9247  			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9248  
9249  		if (clki->max_freq) {
9250  			ret = clk_set_rate(clki->clk, clki->max_freq);
9251  			if (ret) {
9252  				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9253  					__func__, clki->name,
9254  					clki->max_freq, ret);
9255  				goto out;
9256  			}
9257  			clki->curr_freq = clki->max_freq;
9258  		}
9259  		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9260  				clki->name, clk_get_rate(clki->clk));
9261  	}
9262  
9263  	/* Set Max. frequency for all clocks */
9264  	if (hba->use_pm_opp) {
9265  		ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9266  		if (ret) {
9267  			dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9268  				ret);
9269  			goto out;
9270  		}
9271  	}
9272  
9273  out:
9274  	return ret;
9275  }
9276  
ufshcd_variant_hba_init(struct ufs_hba * hba)9277  static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9278  {
9279  	int err = 0;
9280  
9281  	if (!hba->vops)
9282  		goto out;
9283  
9284  	err = ufshcd_vops_init(hba);
9285  	if (err)
9286  		dev_err_probe(hba->dev, err,
9287  			      "%s: variant %s init failed with err %d\n",
9288  			      __func__, ufshcd_get_var_name(hba), err);
9289  out:
9290  	return err;
9291  }
9292  
ufshcd_variant_hba_exit(struct ufs_hba * hba)9293  static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9294  {
9295  	if (!hba->vops)
9296  		return;
9297  
9298  	ufshcd_vops_exit(hba);
9299  }
9300  
ufshcd_hba_init(struct ufs_hba * hba)9301  static int ufshcd_hba_init(struct ufs_hba *hba)
9302  {
9303  	int err;
9304  
9305  	/*
9306  	 * Handle host controller power separately from the UFS device power
9307  	 * rails as it will help controlling the UFS host controller power
9308  	 * collapse easily which is different than UFS device power collapse.
9309  	 * Also, enable the host controller power before we go ahead with rest
9310  	 * of the initialization here.
9311  	 */
9312  	err = ufshcd_init_hba_vreg(hba);
9313  	if (err)
9314  		goto out;
9315  
9316  	err = ufshcd_setup_hba_vreg(hba, true);
9317  	if (err)
9318  		goto out;
9319  
9320  	err = ufshcd_init_clocks(hba);
9321  	if (err)
9322  		goto out_disable_hba_vreg;
9323  
9324  	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9325  		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9326  
9327  	err = ufshcd_setup_clocks(hba, true);
9328  	if (err)
9329  		goto out_disable_hba_vreg;
9330  
9331  	err = ufshcd_init_vreg(hba);
9332  	if (err)
9333  		goto out_disable_clks;
9334  
9335  	err = ufshcd_setup_vreg(hba, true);
9336  	if (err)
9337  		goto out_disable_clks;
9338  
9339  	err = ufshcd_variant_hba_init(hba);
9340  	if (err)
9341  		goto out_disable_vreg;
9342  
9343  	ufs_debugfs_hba_init(hba);
9344  	ufs_fault_inject_hba_init(hba);
9345  
9346  	hba->is_powered = true;
9347  	goto out;
9348  
9349  out_disable_vreg:
9350  	ufshcd_setup_vreg(hba, false);
9351  out_disable_clks:
9352  	ufshcd_setup_clocks(hba, false);
9353  out_disable_hba_vreg:
9354  	ufshcd_setup_hba_vreg(hba, false);
9355  out:
9356  	return err;
9357  }
9358  
ufshcd_hba_exit(struct ufs_hba * hba)9359  static void ufshcd_hba_exit(struct ufs_hba *hba)
9360  {
9361  	if (hba->is_powered) {
9362  		ufshcd_pm_qos_exit(hba);
9363  		ufshcd_exit_clk_scaling(hba);
9364  		ufshcd_exit_clk_gating(hba);
9365  		if (hba->eh_wq)
9366  			destroy_workqueue(hba->eh_wq);
9367  		ufs_debugfs_hba_exit(hba);
9368  		ufshcd_variant_hba_exit(hba);
9369  		ufshcd_setup_vreg(hba, false);
9370  		ufshcd_setup_clocks(hba, false);
9371  		ufshcd_setup_hba_vreg(hba, false);
9372  		hba->is_powered = false;
9373  		ufs_put_device_desc(hba);
9374  	}
9375  }
9376  
ufshcd_execute_start_stop(struct scsi_device * sdev,enum ufs_dev_pwr_mode pwr_mode,struct scsi_sense_hdr * sshdr)9377  static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9378  				     enum ufs_dev_pwr_mode pwr_mode,
9379  				     struct scsi_sense_hdr *sshdr)
9380  {
9381  	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9382  	struct scsi_failure failure_defs[] = {
9383  		{
9384  			.allowed = 2,
9385  			.result = SCMD_FAILURE_RESULT_ANY,
9386  		},
9387  	};
9388  	struct scsi_failures failures = {
9389  		.failure_definitions = failure_defs,
9390  	};
9391  	const struct scsi_exec_args args = {
9392  		.failures = &failures,
9393  		.sshdr = sshdr,
9394  		.req_flags = BLK_MQ_REQ_PM,
9395  		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9396  	};
9397  
9398  	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9399  			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9400  			&args);
9401  }
9402  
9403  /**
9404   * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9405   *			     power mode
9406   * @hba: per adapter instance
9407   * @pwr_mode: device power mode to set
9408   *
9409   * Return: 0 if requested power mode is set successfully;
9410   *         < 0 if failed to set the requested power mode.
9411   */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)9412  static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9413  				     enum ufs_dev_pwr_mode pwr_mode)
9414  {
9415  	struct scsi_sense_hdr sshdr;
9416  	struct scsi_device *sdp;
9417  	unsigned long flags;
9418  	int ret;
9419  
9420  	spin_lock_irqsave(hba->host->host_lock, flags);
9421  	sdp = hba->ufs_device_wlun;
9422  	if (sdp && scsi_device_online(sdp))
9423  		ret = scsi_device_get(sdp);
9424  	else
9425  		ret = -ENODEV;
9426  	spin_unlock_irqrestore(hba->host->host_lock, flags);
9427  
9428  	if (ret)
9429  		return ret;
9430  
9431  	/*
9432  	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9433  	 * handling, which would wait for host to be resumed. Since we know
9434  	 * we are functional while we are here, skip host resume in error
9435  	 * handling context.
9436  	 */
9437  	hba->host->eh_noresume = 1;
9438  
9439  	/*
9440  	 * Current function would be generally called from the power management
9441  	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9442  	 * already suspended childs.
9443  	 */
9444  	ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9445  	if (ret) {
9446  		sdev_printk(KERN_WARNING, sdp,
9447  			    "START_STOP failed for power mode: %d, result %x\n",
9448  			    pwr_mode, ret);
9449  		if (ret > 0) {
9450  			if (scsi_sense_valid(&sshdr))
9451  				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9452  			ret = -EIO;
9453  		}
9454  	} else {
9455  		hba->curr_dev_pwr_mode = pwr_mode;
9456  	}
9457  
9458  	scsi_device_put(sdp);
9459  	hba->host->eh_noresume = 0;
9460  	return ret;
9461  }
9462  
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,bool check_for_bkops)9463  static int ufshcd_link_state_transition(struct ufs_hba *hba,
9464  					enum uic_link_state req_link_state,
9465  					bool check_for_bkops)
9466  {
9467  	int ret = 0;
9468  
9469  	if (req_link_state == hba->uic_link_state)
9470  		return 0;
9471  
9472  	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9473  		ret = ufshcd_uic_hibern8_enter(hba);
9474  		if (!ret) {
9475  			ufshcd_set_link_hibern8(hba);
9476  		} else {
9477  			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9478  					__func__, ret);
9479  			goto out;
9480  		}
9481  	}
9482  	/*
9483  	 * If autobkops is enabled, link can't be turned off because
9484  	 * turning off the link would also turn off the device, except in the
9485  	 * case of DeepSleep where the device is expected to remain powered.
9486  	 */
9487  	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9488  		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9489  		/*
9490  		 * Let's make sure that link is in low power mode, we are doing
9491  		 * this currently by putting the link in Hibern8. Otherway to
9492  		 * put the link in low power mode is to send the DME end point
9493  		 * to device and then send the DME reset command to local
9494  		 * unipro. But putting the link in hibern8 is much faster.
9495  		 *
9496  		 * Note also that putting the link in Hibern8 is a requirement
9497  		 * for entering DeepSleep.
9498  		 */
9499  		ret = ufshcd_uic_hibern8_enter(hba);
9500  		if (ret) {
9501  			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9502  					__func__, ret);
9503  			goto out;
9504  		}
9505  		/*
9506  		 * Change controller state to "reset state" which
9507  		 * should also put the link in off/reset state
9508  		 */
9509  		ufshcd_hba_stop(hba);
9510  		/*
9511  		 * TODO: Check if we need any delay to make sure that
9512  		 * controller is reset
9513  		 */
9514  		ufshcd_set_link_off(hba);
9515  	}
9516  
9517  out:
9518  	return ret;
9519  }
9520  
ufshcd_vreg_set_lpm(struct ufs_hba * hba)9521  static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9522  {
9523  	bool vcc_off = false;
9524  
9525  	/*
9526  	 * It seems some UFS devices may keep drawing more than sleep current
9527  	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9528  	 * To avoid this situation, add 2ms delay before putting these UFS
9529  	 * rails in LPM mode.
9530  	 */
9531  	if (!ufshcd_is_link_active(hba) &&
9532  	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9533  		usleep_range(2000, 2100);
9534  
9535  	/*
9536  	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9537  	 * power.
9538  	 *
9539  	 * If UFS device and link is in OFF state, all power supplies (VCC,
9540  	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9541  	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9542  	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9543  	 *
9544  	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9545  	 * in low power state which would save some power.
9546  	 *
9547  	 * If Write Booster is enabled and the device needs to flush the WB
9548  	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9549  	 */
9550  	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9551  	    !hba->dev_info.is_lu_power_on_wp) {
9552  		ufshcd_setup_vreg(hba, false);
9553  		vcc_off = true;
9554  	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9555  		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9556  		vcc_off = true;
9557  		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9558  			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9559  			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9560  		}
9561  	}
9562  
9563  	/*
9564  	 * Some UFS devices require delay after VCC power rail is turned-off.
9565  	 */
9566  	if (vcc_off && hba->vreg_info.vcc &&
9567  		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9568  		usleep_range(5000, 5100);
9569  }
9570  
9571  #ifdef CONFIG_PM
ufshcd_vreg_set_hpm(struct ufs_hba * hba)9572  static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9573  {
9574  	int ret = 0;
9575  
9576  	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9577  	    !hba->dev_info.is_lu_power_on_wp) {
9578  		ret = ufshcd_setup_vreg(hba, true);
9579  	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9580  		if (!ufshcd_is_link_active(hba)) {
9581  			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9582  			if (ret)
9583  				goto vcc_disable;
9584  			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9585  			if (ret)
9586  				goto vccq_lpm;
9587  		}
9588  		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9589  	}
9590  	goto out;
9591  
9592  vccq_lpm:
9593  	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9594  vcc_disable:
9595  	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9596  out:
9597  	return ret;
9598  }
9599  #endif /* CONFIG_PM */
9600  
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)9601  static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9602  {
9603  	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9604  		ufshcd_setup_hba_vreg(hba, false);
9605  }
9606  
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)9607  static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9608  {
9609  	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9610  		ufshcd_setup_hba_vreg(hba, true);
9611  }
9612  
__ufshcd_wl_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)9613  static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9614  {
9615  	int ret = 0;
9616  	bool check_for_bkops;
9617  	enum ufs_pm_level pm_lvl;
9618  	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9619  	enum uic_link_state req_link_state;
9620  
9621  	hba->pm_op_in_progress = true;
9622  	if (pm_op != UFS_SHUTDOWN_PM) {
9623  		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9624  			 hba->rpm_lvl : hba->spm_lvl;
9625  		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9626  		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9627  	} else {
9628  		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9629  		req_link_state = UIC_LINK_OFF_STATE;
9630  	}
9631  
9632  	/*
9633  	 * If we can't transition into any of the low power modes
9634  	 * just gate the clocks.
9635  	 */
9636  	ufshcd_hold(hba);
9637  	hba->clk_gating.is_suspended = true;
9638  
9639  	if (ufshcd_is_clkscaling_supported(hba))
9640  		ufshcd_clk_scaling_suspend(hba, true);
9641  
9642  	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9643  			req_link_state == UIC_LINK_ACTIVE_STATE) {
9644  		goto vops_suspend;
9645  	}
9646  
9647  	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9648  	    (req_link_state == hba->uic_link_state))
9649  		goto enable_scaling;
9650  
9651  	/* UFS device & link must be active before we enter in this function */
9652  	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9653  		/*  Wait err handler finish or trigger err recovery */
9654  		if (!ufshcd_eh_in_progress(hba))
9655  			ufshcd_force_error_recovery(hba);
9656  		ret = -EBUSY;
9657  		goto enable_scaling;
9658  	}
9659  
9660  	if (pm_op == UFS_RUNTIME_PM) {
9661  		if (ufshcd_can_autobkops_during_suspend(hba)) {
9662  			/*
9663  			 * The device is idle with no requests in the queue,
9664  			 * allow background operations if bkops status shows
9665  			 * that performance might be impacted.
9666  			 */
9667  			ret = ufshcd_bkops_ctrl(hba);
9668  			if (ret) {
9669  				/*
9670  				 * If return err in suspend flow, IO will hang.
9671  				 * Trigger error handler and break suspend for
9672  				 * error recovery.
9673  				 */
9674  				ufshcd_force_error_recovery(hba);
9675  				ret = -EBUSY;
9676  				goto enable_scaling;
9677  			}
9678  		} else {
9679  			/* make sure that auto bkops is disabled */
9680  			ufshcd_disable_auto_bkops(hba);
9681  		}
9682  		/*
9683  		 * If device needs to do BKOP or WB buffer flush during
9684  		 * Hibern8, keep device power mode as "active power mode"
9685  		 * and VCC supply.
9686  		 */
9687  		hba->dev_info.b_rpm_dev_flush_capable =
9688  			hba->auto_bkops_enabled ||
9689  			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9690  			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9691  			ufshcd_is_auto_hibern8_enabled(hba))) &&
9692  			ufshcd_wb_need_flush(hba));
9693  	}
9694  
9695  	flush_work(&hba->eeh_work);
9696  
9697  	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9698  	if (ret)
9699  		goto enable_scaling;
9700  
9701  	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9702  		if (pm_op != UFS_RUNTIME_PM)
9703  			/* ensure that bkops is disabled */
9704  			ufshcd_disable_auto_bkops(hba);
9705  
9706  		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9707  			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9708  			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9709  				/*
9710  				 * If return err in suspend flow, IO will hang.
9711  				 * Trigger error handler and break suspend for
9712  				 * error recovery.
9713  				 */
9714  				ufshcd_force_error_recovery(hba);
9715  				ret = -EBUSY;
9716  			}
9717  			if (ret)
9718  				goto enable_scaling;
9719  		}
9720  	}
9721  
9722  	/*
9723  	 * In the case of DeepSleep, the device is expected to remain powered
9724  	 * with the link off, so do not check for bkops.
9725  	 */
9726  	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9727  	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9728  	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9729  		/*
9730  		 * If return err in suspend flow, IO will hang.
9731  		 * Trigger error handler and break suspend for
9732  		 * error recovery.
9733  		 */
9734  		ufshcd_force_error_recovery(hba);
9735  		ret = -EBUSY;
9736  	}
9737  	if (ret)
9738  		goto set_dev_active;
9739  
9740  vops_suspend:
9741  	/*
9742  	 * Call vendor specific suspend callback. As these callbacks may access
9743  	 * vendor specific host controller register space call them before the
9744  	 * host clocks are ON.
9745  	 */
9746  	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9747  	if (ret)
9748  		goto set_link_active;
9749  
9750  	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9751  	goto out;
9752  
9753  set_link_active:
9754  	/*
9755  	 * Device hardware reset is required to exit DeepSleep. Also, for
9756  	 * DeepSleep, the link is off so host reset and restore will be done
9757  	 * further below.
9758  	 */
9759  	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9760  		ufshcd_device_reset(hba);
9761  		WARN_ON(!ufshcd_is_link_off(hba));
9762  	}
9763  	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9764  		ufshcd_set_link_active(hba);
9765  	else if (ufshcd_is_link_off(hba))
9766  		ufshcd_host_reset_and_restore(hba);
9767  set_dev_active:
9768  	/* Can also get here needing to exit DeepSleep */
9769  	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9770  		ufshcd_device_reset(hba);
9771  		ufshcd_host_reset_and_restore(hba);
9772  	}
9773  	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9774  		ufshcd_disable_auto_bkops(hba);
9775  enable_scaling:
9776  	if (ufshcd_is_clkscaling_supported(hba))
9777  		ufshcd_clk_scaling_suspend(hba, false);
9778  
9779  	hba->dev_info.b_rpm_dev_flush_capable = false;
9780  out:
9781  	if (hba->dev_info.b_rpm_dev_flush_capable) {
9782  		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9783  			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9784  	}
9785  
9786  	if (ret) {
9787  		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9788  		hba->clk_gating.is_suspended = false;
9789  		ufshcd_release(hba);
9790  	}
9791  	hba->pm_op_in_progress = false;
9792  	return ret;
9793  }
9794  
9795  #ifdef CONFIG_PM
__ufshcd_wl_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)9796  static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9797  {
9798  	int ret;
9799  	enum uic_link_state old_link_state = hba->uic_link_state;
9800  
9801  	hba->pm_op_in_progress = true;
9802  
9803  	/*
9804  	 * Call vendor specific resume callback. As these callbacks may access
9805  	 * vendor specific host controller register space call them when the
9806  	 * host clocks are ON.
9807  	 */
9808  	ret = ufshcd_vops_resume(hba, pm_op);
9809  	if (ret)
9810  		goto out;
9811  
9812  	/* For DeepSleep, the only supported option is to have the link off */
9813  	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9814  
9815  	if (ufshcd_is_link_hibern8(hba)) {
9816  		ret = ufshcd_uic_hibern8_exit(hba);
9817  		if (!ret) {
9818  			ufshcd_set_link_active(hba);
9819  		} else {
9820  			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9821  					__func__, ret);
9822  			goto vendor_suspend;
9823  		}
9824  	} else if (ufshcd_is_link_off(hba)) {
9825  		/*
9826  		 * A full initialization of the host and the device is
9827  		 * required since the link was put to off during suspend.
9828  		 * Note, in the case of DeepSleep, the device will exit
9829  		 * DeepSleep due to device reset.
9830  		 */
9831  		ret = ufshcd_reset_and_restore(hba);
9832  		/*
9833  		 * ufshcd_reset_and_restore() should have already
9834  		 * set the link state as active
9835  		 */
9836  		if (ret || !ufshcd_is_link_active(hba))
9837  			goto vendor_suspend;
9838  	}
9839  
9840  	if (!ufshcd_is_ufs_dev_active(hba)) {
9841  		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9842  		if (ret)
9843  			goto set_old_link_state;
9844  		ufshcd_set_timestamp_attr(hba);
9845  		schedule_delayed_work(&hba->ufs_rtc_update_work,
9846  				      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
9847  	}
9848  
9849  	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9850  		ufshcd_enable_auto_bkops(hba);
9851  	else
9852  		/*
9853  		 * If BKOPs operations are urgently needed at this moment then
9854  		 * keep auto-bkops enabled or else disable it.
9855  		 */
9856  		ufshcd_bkops_ctrl(hba);
9857  
9858  	if (hba->ee_usr_mask)
9859  		ufshcd_write_ee_control(hba);
9860  
9861  	if (ufshcd_is_clkscaling_supported(hba))
9862  		ufshcd_clk_scaling_suspend(hba, false);
9863  
9864  	if (hba->dev_info.b_rpm_dev_flush_capable) {
9865  		hba->dev_info.b_rpm_dev_flush_capable = false;
9866  		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9867  	}
9868  
9869  	ufshcd_configure_auto_hibern8(hba);
9870  
9871  	goto out;
9872  
9873  set_old_link_state:
9874  	ufshcd_link_state_transition(hba, old_link_state, 0);
9875  vendor_suspend:
9876  	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9877  	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9878  out:
9879  	if (ret)
9880  		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9881  	hba->clk_gating.is_suspended = false;
9882  	ufshcd_release(hba);
9883  	hba->pm_op_in_progress = false;
9884  	return ret;
9885  }
9886  
ufshcd_wl_runtime_suspend(struct device * dev)9887  static int ufshcd_wl_runtime_suspend(struct device *dev)
9888  {
9889  	struct scsi_device *sdev = to_scsi_device(dev);
9890  	struct ufs_hba *hba;
9891  	int ret;
9892  	ktime_t start = ktime_get();
9893  
9894  	hba = shost_priv(sdev->host);
9895  
9896  	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9897  	if (ret)
9898  		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9899  
9900  	trace_ufshcd_wl_runtime_suspend(hba, ret,
9901  		ktime_to_us(ktime_sub(ktime_get(), start)),
9902  		hba->curr_dev_pwr_mode, hba->uic_link_state);
9903  
9904  	return ret;
9905  }
9906  
ufshcd_wl_runtime_resume(struct device * dev)9907  static int ufshcd_wl_runtime_resume(struct device *dev)
9908  {
9909  	struct scsi_device *sdev = to_scsi_device(dev);
9910  	struct ufs_hba *hba;
9911  	int ret = 0;
9912  	ktime_t start = ktime_get();
9913  
9914  	hba = shost_priv(sdev->host);
9915  
9916  	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9917  	if (ret)
9918  		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9919  
9920  	trace_ufshcd_wl_runtime_resume(hba, ret,
9921  		ktime_to_us(ktime_sub(ktime_get(), start)),
9922  		hba->curr_dev_pwr_mode, hba->uic_link_state);
9923  
9924  	return ret;
9925  }
9926  #endif
9927  
9928  #ifdef CONFIG_PM_SLEEP
ufshcd_wl_suspend(struct device * dev)9929  static int ufshcd_wl_suspend(struct device *dev)
9930  {
9931  	struct scsi_device *sdev = to_scsi_device(dev);
9932  	struct ufs_hba *hba;
9933  	int ret = 0;
9934  	ktime_t start = ktime_get();
9935  
9936  	hba = shost_priv(sdev->host);
9937  	down(&hba->host_sem);
9938  	hba->system_suspending = true;
9939  
9940  	if (pm_runtime_suspended(dev))
9941  		goto out;
9942  
9943  	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9944  	if (ret) {
9945  		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9946  		up(&hba->host_sem);
9947  	}
9948  
9949  out:
9950  	if (!ret)
9951  		hba->is_sys_suspended = true;
9952  	trace_ufshcd_wl_suspend(hba, ret,
9953  		ktime_to_us(ktime_sub(ktime_get(), start)),
9954  		hba->curr_dev_pwr_mode, hba->uic_link_state);
9955  
9956  	return ret;
9957  }
9958  
ufshcd_wl_resume(struct device * dev)9959  static int ufshcd_wl_resume(struct device *dev)
9960  {
9961  	struct scsi_device *sdev = to_scsi_device(dev);
9962  	struct ufs_hba *hba;
9963  	int ret = 0;
9964  	ktime_t start = ktime_get();
9965  
9966  	hba = shost_priv(sdev->host);
9967  
9968  	if (pm_runtime_suspended(dev))
9969  		goto out;
9970  
9971  	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9972  	if (ret)
9973  		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9974  out:
9975  	trace_ufshcd_wl_resume(hba, ret,
9976  		ktime_to_us(ktime_sub(ktime_get(), start)),
9977  		hba->curr_dev_pwr_mode, hba->uic_link_state);
9978  	if (!ret)
9979  		hba->is_sys_suspended = false;
9980  	hba->system_suspending = false;
9981  	up(&hba->host_sem);
9982  	return ret;
9983  }
9984  #endif
9985  
9986  /**
9987   * ufshcd_suspend - helper function for suspend operations
9988   * @hba: per adapter instance
9989   *
9990   * This function will put disable irqs, turn off clocks
9991   * and set vreg and hba-vreg in lpm mode.
9992   *
9993   * Return: 0 upon success; < 0 upon failure.
9994   */
ufshcd_suspend(struct ufs_hba * hba)9995  static int ufshcd_suspend(struct ufs_hba *hba)
9996  {
9997  	int ret;
9998  
9999  	if (!hba->is_powered)
10000  		return 0;
10001  	/*
10002  	 * Disable the host irq as host controller as there won't be any
10003  	 * host controller transaction expected till resume.
10004  	 */
10005  	ufshcd_disable_irq(hba);
10006  	ret = ufshcd_setup_clocks(hba, false);
10007  	if (ret) {
10008  		ufshcd_enable_irq(hba);
10009  		return ret;
10010  	}
10011  	if (ufshcd_is_clkgating_allowed(hba)) {
10012  		hba->clk_gating.state = CLKS_OFF;
10013  		trace_ufshcd_clk_gating(hba,
10014  					hba->clk_gating.state);
10015  	}
10016  
10017  	ufshcd_vreg_set_lpm(hba);
10018  	/* Put the host controller in low power mode if possible */
10019  	ufshcd_hba_vreg_set_lpm(hba);
10020  	ufshcd_pm_qos_update(hba, false);
10021  	return ret;
10022  }
10023  
10024  #ifdef CONFIG_PM
10025  /**
10026   * ufshcd_resume - helper function for resume operations
10027   * @hba: per adapter instance
10028   *
10029   * This function basically turns on the regulators, clocks and
10030   * irqs of the hba.
10031   *
10032   * Return: 0 for success and non-zero for failure.
10033   */
ufshcd_resume(struct ufs_hba * hba)10034  static int ufshcd_resume(struct ufs_hba *hba)
10035  {
10036  	int ret;
10037  
10038  	if (!hba->is_powered)
10039  		return 0;
10040  
10041  	ufshcd_hba_vreg_set_hpm(hba);
10042  	ret = ufshcd_vreg_set_hpm(hba);
10043  	if (ret)
10044  		goto out;
10045  
10046  	/* Make sure clocks are enabled before accessing controller */
10047  	ret = ufshcd_setup_clocks(hba, true);
10048  	if (ret)
10049  		goto disable_vreg;
10050  
10051  	/* enable the host irq as host controller would be active soon */
10052  	ufshcd_enable_irq(hba);
10053  
10054  	goto out;
10055  
10056  disable_vreg:
10057  	ufshcd_vreg_set_lpm(hba);
10058  out:
10059  	if (ret)
10060  		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10061  	return ret;
10062  }
10063  #endif /* CONFIG_PM */
10064  
10065  #ifdef CONFIG_PM_SLEEP
10066  /**
10067   * ufshcd_system_suspend - system suspend callback
10068   * @dev: Device associated with the UFS controller.
10069   *
10070   * Executed before putting the system into a sleep state in which the contents
10071   * of main memory are preserved.
10072   *
10073   * Return: 0 for success and non-zero for failure.
10074   */
ufshcd_system_suspend(struct device * dev)10075  int ufshcd_system_suspend(struct device *dev)
10076  {
10077  	struct ufs_hba *hba = dev_get_drvdata(dev);
10078  	int ret = 0;
10079  	ktime_t start = ktime_get();
10080  
10081  	if (pm_runtime_suspended(hba->dev))
10082  		goto out;
10083  
10084  	ret = ufshcd_suspend(hba);
10085  out:
10086  	trace_ufshcd_system_suspend(hba, ret,
10087  		ktime_to_us(ktime_sub(ktime_get(), start)),
10088  		hba->curr_dev_pwr_mode, hba->uic_link_state);
10089  	return ret;
10090  }
10091  EXPORT_SYMBOL(ufshcd_system_suspend);
10092  
10093  /**
10094   * ufshcd_system_resume - system resume callback
10095   * @dev: Device associated with the UFS controller.
10096   *
10097   * Executed after waking the system up from a sleep state in which the contents
10098   * of main memory were preserved.
10099   *
10100   * Return: 0 for success and non-zero for failure.
10101   */
ufshcd_system_resume(struct device * dev)10102  int ufshcd_system_resume(struct device *dev)
10103  {
10104  	struct ufs_hba *hba = dev_get_drvdata(dev);
10105  	ktime_t start = ktime_get();
10106  	int ret = 0;
10107  
10108  	if (pm_runtime_suspended(hba->dev))
10109  		goto out;
10110  
10111  	ret = ufshcd_resume(hba);
10112  
10113  out:
10114  	trace_ufshcd_system_resume(hba, ret,
10115  		ktime_to_us(ktime_sub(ktime_get(), start)),
10116  		hba->curr_dev_pwr_mode, hba->uic_link_state);
10117  
10118  	return ret;
10119  }
10120  EXPORT_SYMBOL(ufshcd_system_resume);
10121  #endif /* CONFIG_PM_SLEEP */
10122  
10123  #ifdef CONFIG_PM
10124  /**
10125   * ufshcd_runtime_suspend - runtime suspend callback
10126   * @dev: Device associated with the UFS controller.
10127   *
10128   * Check the description of ufshcd_suspend() function for more details.
10129   *
10130   * Return: 0 for success and non-zero for failure.
10131   */
ufshcd_runtime_suspend(struct device * dev)10132  int ufshcd_runtime_suspend(struct device *dev)
10133  {
10134  	struct ufs_hba *hba = dev_get_drvdata(dev);
10135  	int ret;
10136  	ktime_t start = ktime_get();
10137  
10138  	ret = ufshcd_suspend(hba);
10139  
10140  	trace_ufshcd_runtime_suspend(hba, ret,
10141  		ktime_to_us(ktime_sub(ktime_get(), start)),
10142  		hba->curr_dev_pwr_mode, hba->uic_link_state);
10143  	return ret;
10144  }
10145  EXPORT_SYMBOL(ufshcd_runtime_suspend);
10146  
10147  /**
10148   * ufshcd_runtime_resume - runtime resume routine
10149   * @dev: Device associated with the UFS controller.
10150   *
10151   * This function basically brings controller
10152   * to active state. Following operations are done in this function:
10153   *
10154   * 1. Turn on all the controller related clocks
10155   * 2. Turn ON VCC rail
10156   *
10157   * Return: 0 upon success; < 0 upon failure.
10158   */
ufshcd_runtime_resume(struct device * dev)10159  int ufshcd_runtime_resume(struct device *dev)
10160  {
10161  	struct ufs_hba *hba = dev_get_drvdata(dev);
10162  	int ret;
10163  	ktime_t start = ktime_get();
10164  
10165  	ret = ufshcd_resume(hba);
10166  
10167  	trace_ufshcd_runtime_resume(hba, ret,
10168  		ktime_to_us(ktime_sub(ktime_get(), start)),
10169  		hba->curr_dev_pwr_mode, hba->uic_link_state);
10170  	return ret;
10171  }
10172  EXPORT_SYMBOL(ufshcd_runtime_resume);
10173  #endif /* CONFIG_PM */
10174  
ufshcd_wl_shutdown(struct device * dev)10175  static void ufshcd_wl_shutdown(struct device *dev)
10176  {
10177  	struct scsi_device *sdev = to_scsi_device(dev);
10178  	struct ufs_hba *hba = shost_priv(sdev->host);
10179  
10180  	down(&hba->host_sem);
10181  	hba->shutting_down = true;
10182  	up(&hba->host_sem);
10183  
10184  	/* Turn on everything while shutting down */
10185  	ufshcd_rpm_get_sync(hba);
10186  	scsi_device_quiesce(sdev);
10187  	shost_for_each_device(sdev, hba->host) {
10188  		if (sdev == hba->ufs_device_wlun)
10189  			continue;
10190  		mutex_lock(&sdev->state_mutex);
10191  		scsi_device_set_state(sdev, SDEV_OFFLINE);
10192  		mutex_unlock(&sdev->state_mutex);
10193  	}
10194  	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10195  
10196  	/*
10197  	 * Next, turn off the UFS controller and the UFS regulators. Disable
10198  	 * clocks.
10199  	 */
10200  	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10201  		ufshcd_suspend(hba);
10202  
10203  	hba->is_powered = false;
10204  }
10205  
10206  /**
10207   * ufshcd_remove - de-allocate SCSI host and host memory space
10208   *		data structure memory
10209   * @hba: per adapter instance
10210   */
ufshcd_remove(struct ufs_hba * hba)10211  void ufshcd_remove(struct ufs_hba *hba)
10212  {
10213  	if (hba->ufs_device_wlun)
10214  		ufshcd_rpm_get_sync(hba);
10215  	ufs_hwmon_remove(hba);
10216  	ufs_bsg_remove(hba);
10217  	ufs_sysfs_remove_nodes(hba->dev);
10218  	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10219  	blk_mq_destroy_queue(hba->tmf_queue);
10220  	blk_put_queue(hba->tmf_queue);
10221  	blk_mq_free_tag_set(&hba->tmf_tag_set);
10222  	if (hba->scsi_host_added)
10223  		scsi_remove_host(hba->host);
10224  	/* disable interrupts */
10225  	ufshcd_disable_intr(hba, hba->intr_mask);
10226  	ufshcd_hba_stop(hba);
10227  	ufshcd_hba_exit(hba);
10228  }
10229  EXPORT_SYMBOL_GPL(ufshcd_remove);
10230  
10231  #ifdef CONFIG_PM_SLEEP
ufshcd_system_freeze(struct device * dev)10232  int ufshcd_system_freeze(struct device *dev)
10233  {
10234  
10235  	return ufshcd_system_suspend(dev);
10236  
10237  }
10238  EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10239  
ufshcd_system_restore(struct device * dev)10240  int ufshcd_system_restore(struct device *dev)
10241  {
10242  
10243  	struct ufs_hba *hba = dev_get_drvdata(dev);
10244  	int ret;
10245  
10246  	ret = ufshcd_system_resume(dev);
10247  	if (ret)
10248  		return ret;
10249  
10250  	/* Configure UTRL and UTMRL base address registers */
10251  	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10252  			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10253  	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10254  			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10255  	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10256  			REG_UTP_TASK_REQ_LIST_BASE_L);
10257  	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10258  			REG_UTP_TASK_REQ_LIST_BASE_H);
10259  	/*
10260  	 * Make sure that UTRL and UTMRL base address registers
10261  	 * are updated with the latest queue addresses. Only after
10262  	 * updating these addresses, we can queue the new commands.
10263  	 */
10264  	ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10265  
10266  	return 0;
10267  
10268  }
10269  EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10270  
ufshcd_system_thaw(struct device * dev)10271  int ufshcd_system_thaw(struct device *dev)
10272  {
10273  	return ufshcd_system_resume(dev);
10274  }
10275  EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10276  #endif /* CONFIG_PM_SLEEP  */
10277  
10278  /**
10279   * ufshcd_set_dma_mask - Set dma mask based on the controller
10280   *			 addressing capability
10281   * @hba: per adapter instance
10282   *
10283   * Return: 0 for success, non-zero for failure.
10284   */
ufshcd_set_dma_mask(struct ufs_hba * hba)10285  static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10286  {
10287  	if (hba->vops && hba->vops->set_dma_mask)
10288  		return hba->vops->set_dma_mask(hba);
10289  	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10290  		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10291  			return 0;
10292  	}
10293  	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10294  }
10295  
10296  /**
10297   * ufshcd_devres_release - devres cleanup handler, invoked during release of
10298   *			   hba->dev
10299   * @host: pointer to SCSI host
10300   */
ufshcd_devres_release(void * host)10301  static void ufshcd_devres_release(void *host)
10302  {
10303  	scsi_host_put(host);
10304  }
10305  
10306  /**
10307   * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10308   * @dev: pointer to device handle
10309   * @hba_handle: driver private handle
10310   *
10311   * Return: 0 on success, non-zero value on failure.
10312   *
10313   * NOTE: There is no corresponding ufshcd_dealloc_host() because this function
10314   * keeps track of its allocations using devres and deallocates everything on
10315   * device removal automatically.
10316   */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)10317  int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10318  {
10319  	struct Scsi_Host *host;
10320  	struct ufs_hba *hba;
10321  	int err = 0;
10322  
10323  	if (!dev) {
10324  		dev_err(dev,
10325  		"Invalid memory reference for dev is NULL\n");
10326  		err = -ENODEV;
10327  		goto out_error;
10328  	}
10329  
10330  	host = scsi_host_alloc(&ufshcd_driver_template,
10331  				sizeof(struct ufs_hba));
10332  	if (!host) {
10333  		dev_err(dev, "scsi_host_alloc failed\n");
10334  		err = -ENOMEM;
10335  		goto out_error;
10336  	}
10337  
10338  	err = devm_add_action_or_reset(dev, ufshcd_devres_release,
10339  				       host);
10340  	if (err)
10341  		return dev_err_probe(dev, err,
10342  				     "failed to add ufshcd dealloc action\n");
10343  
10344  	host->nr_maps = HCTX_TYPE_POLL + 1;
10345  	hba = shost_priv(host);
10346  	hba->host = host;
10347  	hba->dev = dev;
10348  	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10349  	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10350  	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10351  	INIT_LIST_HEAD(&hba->clk_list_head);
10352  	spin_lock_init(&hba->outstanding_lock);
10353  
10354  	*hba_handle = hba;
10355  
10356  out_error:
10357  	return err;
10358  }
10359  EXPORT_SYMBOL(ufshcd_alloc_host);
10360  
10361  /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)10362  static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10363  				     const struct blk_mq_queue_data *qd)
10364  {
10365  	WARN_ON_ONCE(true);
10366  	return BLK_STS_NOTSUPP;
10367  }
10368  
10369  static const struct blk_mq_ops ufshcd_tmf_ops = {
10370  	.queue_rq = ufshcd_queue_tmf,
10371  };
10372  
ufshcd_add_scsi_host(struct ufs_hba * hba)10373  static int ufshcd_add_scsi_host(struct ufs_hba *hba)
10374  {
10375  	int err;
10376  
10377  	if (is_mcq_supported(hba)) {
10378  		ufshcd_mcq_enable(hba);
10379  		err = ufshcd_alloc_mcq(hba);
10380  		if (!err) {
10381  			ufshcd_config_mcq(hba);
10382  		} else {
10383  			/* Continue with SDB mode */
10384  			ufshcd_mcq_disable(hba);
10385  			use_mcq_mode = false;
10386  			dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
10387  				err);
10388  		}
10389  	}
10390  	if (!is_mcq_supported(hba) && !hba->lsdb_sup) {
10391  		dev_err(hba->dev,
10392  			"%s: failed to initialize (legacy doorbell mode not supported)\n",
10393  			__func__);
10394  		return -EINVAL;
10395  	}
10396  
10397  	err = scsi_add_host(hba->host, hba->dev);
10398  	if (err) {
10399  		dev_err(hba->dev, "scsi_add_host failed\n");
10400  		return err;
10401  	}
10402  	hba->scsi_host_added = true;
10403  
10404  	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10405  		.nr_hw_queues	= 1,
10406  		.queue_depth	= hba->nutmrs,
10407  		.ops		= &ufshcd_tmf_ops,
10408  	};
10409  	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10410  	if (err < 0)
10411  		goto remove_scsi_host;
10412  	hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10413  	if (IS_ERR(hba->tmf_queue)) {
10414  		err = PTR_ERR(hba->tmf_queue);
10415  		goto free_tmf_tag_set;
10416  	}
10417  	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10418  				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10419  	if (!hba->tmf_rqs) {
10420  		err = -ENOMEM;
10421  		goto free_tmf_queue;
10422  	}
10423  
10424  	return 0;
10425  
10426  free_tmf_queue:
10427  	blk_mq_destroy_queue(hba->tmf_queue);
10428  	blk_put_queue(hba->tmf_queue);
10429  
10430  free_tmf_tag_set:
10431  	blk_mq_free_tag_set(&hba->tmf_tag_set);
10432  
10433  remove_scsi_host:
10434  	if (hba->scsi_host_added)
10435  		scsi_remove_host(hba->host);
10436  
10437  	return err;
10438  }
10439  
10440  /**
10441   * ufshcd_init - Driver initialization routine
10442   * @hba: per-adapter instance
10443   * @mmio_base: base register address
10444   * @irq: Interrupt line of device
10445   *
10446   * Return: 0 on success, non-zero value on failure.
10447   */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)10448  int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10449  {
10450  	int err;
10451  	struct Scsi_Host *host = hba->host;
10452  	struct device *dev = hba->dev;
10453  
10454  	/*
10455  	 * dev_set_drvdata() must be called before any callbacks are registered
10456  	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10457  	 * sysfs).
10458  	 */
10459  	dev_set_drvdata(dev, hba);
10460  
10461  	if (!mmio_base) {
10462  		dev_err(hba->dev,
10463  		"Invalid memory reference for mmio_base is NULL\n");
10464  		err = -ENODEV;
10465  		goto out_error;
10466  	}
10467  
10468  	hba->mmio_base = mmio_base;
10469  	hba->irq = irq;
10470  	hba->vps = &ufs_hba_vps;
10471  
10472  	/*
10473  	 * Initialize clk_gating.lock early since it is being used in
10474  	 * ufshcd_setup_clocks()
10475  	 */
10476  	spin_lock_init(&hba->clk_gating.lock);
10477  
10478  	/*
10479  	 * Set the default power management level for runtime and system PM.
10480  	 * Host controller drivers can override them in their
10481  	 * 'ufs_hba_variant_ops::init' callback.
10482  	 *
10483  	 * Default power saving mode is to keep UFS link in Hibern8 state
10484  	 * and UFS device in sleep state.
10485  	 */
10486  	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10487  						UFS_SLEEP_PWR_MODE,
10488  						UIC_LINK_HIBERN8_STATE);
10489  	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10490  						UFS_SLEEP_PWR_MODE,
10491  						UIC_LINK_HIBERN8_STATE);
10492  
10493  	err = ufshcd_hba_init(hba);
10494  	if (err)
10495  		goto out_error;
10496  
10497  	/* Read capabilities registers */
10498  	err = ufshcd_hba_capabilities(hba);
10499  	if (err)
10500  		goto out_disable;
10501  
10502  	/* Get UFS version supported by the controller */
10503  	hba->ufs_version = ufshcd_get_ufs_version(hba);
10504  
10505  	/* Get Interrupt bit mask per version */
10506  	hba->intr_mask = ufshcd_get_intr_mask(hba);
10507  
10508  	err = ufshcd_set_dma_mask(hba);
10509  	if (err) {
10510  		dev_err(hba->dev, "set dma mask failed\n");
10511  		goto out_disable;
10512  	}
10513  
10514  	/* Allocate memory for host memory space */
10515  	err = ufshcd_memory_alloc(hba);
10516  	if (err) {
10517  		dev_err(hba->dev, "Memory allocation failed\n");
10518  		goto out_disable;
10519  	}
10520  
10521  	/* Configure LRB */
10522  	ufshcd_host_memory_configure(hba);
10523  
10524  	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10525  	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10526  	host->max_id = UFSHCD_MAX_ID;
10527  	host->max_lun = UFS_MAX_LUNS;
10528  	host->max_channel = UFSHCD_MAX_CHANNEL;
10529  	host->unique_id = host->host_no;
10530  	host->max_cmd_len = UFS_CDB_SIZE;
10531  	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10532  
10533  	/* Use default RPM delay if host not set */
10534  	if (host->rpm_autosuspend_delay == 0)
10535  		host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10536  
10537  	hba->max_pwr_info.is_valid = false;
10538  
10539  	/* Initialize work queues */
10540  	hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM,
10541  					     hba->host->host_no);
10542  	if (!hba->eh_wq) {
10543  		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10544  			__func__);
10545  		err = -ENOMEM;
10546  		goto out_disable;
10547  	}
10548  	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10549  	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10550  
10551  	sema_init(&hba->host_sem, 1);
10552  
10553  	/* Initialize UIC command mutex */
10554  	mutex_init(&hba->uic_cmd_mutex);
10555  
10556  	/* Initialize mutex for device management commands */
10557  	mutex_init(&hba->dev_cmd.lock);
10558  
10559  	/* Initialize mutex for exception event control */
10560  	mutex_init(&hba->ee_ctrl_mutex);
10561  
10562  	mutex_init(&hba->wb_mutex);
10563  	init_rwsem(&hba->clk_scaling_lock);
10564  
10565  	ufshcd_init_clk_gating(hba);
10566  
10567  	ufshcd_init_clk_scaling(hba);
10568  
10569  	/*
10570  	 * In order to avoid any spurious interrupt immediately after
10571  	 * registering UFS controller interrupt handler, clear any pending UFS
10572  	 * interrupt status and disable all the UFS interrupts.
10573  	 */
10574  	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10575  		      REG_INTERRUPT_STATUS);
10576  	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10577  	/*
10578  	 * Make sure that UFS interrupts are disabled and any pending interrupt
10579  	 * status is cleared before registering UFS interrupt handler.
10580  	 */
10581  	ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10582  
10583  	/* IRQ registration */
10584  	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10585  	if (err) {
10586  		dev_err(hba->dev, "request irq failed\n");
10587  		goto out_disable;
10588  	} else {
10589  		hba->is_irq_enabled = true;
10590  	}
10591  
10592  	/* Reset the attached device */
10593  	ufshcd_device_reset(hba);
10594  
10595  	ufshcd_init_crypto(hba);
10596  
10597  	/* Host controller enable */
10598  	err = ufshcd_hba_enable(hba);
10599  	if (err) {
10600  		dev_err(hba->dev, "Host controller enable failed\n");
10601  		ufshcd_print_evt_hist(hba);
10602  		ufshcd_print_host_state(hba);
10603  		goto out_disable;
10604  	}
10605  
10606  	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10607  	INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10608  
10609  	/* Set the default auto-hiberate idle timer value to 150 ms */
10610  	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10611  		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10612  			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10613  	}
10614  
10615  	/* Hold auto suspend until async scan completes */
10616  	pm_runtime_get_sync(dev);
10617  
10618  	/*
10619  	 * We are assuming that device wasn't put in sleep/power-down
10620  	 * state exclusively during the boot stage before kernel.
10621  	 * This assumption helps avoid doing link startup twice during
10622  	 * ufshcd_probe_hba().
10623  	 */
10624  	ufshcd_set_ufs_dev_active(hba);
10625  
10626  	/* Initialize hba, detect and initialize UFS device */
10627  	ktime_t probe_start = ktime_get();
10628  
10629  	hba->ufshcd_state = UFSHCD_STATE_RESET;
10630  
10631  	err = ufshcd_link_startup(hba);
10632  	if (err)
10633  		goto out_disable;
10634  
10635  	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
10636  		goto initialized;
10637  
10638  	/* Debug counters initialization */
10639  	ufshcd_clear_dbg_ufs_stats(hba);
10640  
10641  	/* UniPro link is active now */
10642  	ufshcd_set_link_active(hba);
10643  
10644  	/* Verify device initialization by sending NOP OUT UPIU */
10645  	err = ufshcd_verify_dev_init(hba);
10646  	if (err)
10647  		goto out_disable;
10648  
10649  	/* Initiate UFS initialization, and waiting until completion */
10650  	err = ufshcd_complete_dev_init(hba);
10651  	if (err)
10652  		goto out_disable;
10653  
10654  	err = ufshcd_device_params_init(hba);
10655  	if (err)
10656  		goto out_disable;
10657  
10658  	err = ufshcd_post_device_init(hba);
10659  
10660  initialized:
10661  	ufshcd_process_probe_result(hba, probe_start, err);
10662  	if (err)
10663  		goto out_disable;
10664  
10665  	err = ufshcd_add_scsi_host(hba);
10666  	if (err)
10667  		goto out_disable;
10668  
10669  	async_schedule(ufshcd_async_scan, hba);
10670  	ufs_sysfs_add_nodes(hba->dev);
10671  
10672  	device_enable_async_suspend(dev);
10673  	ufshcd_pm_qos_init(hba);
10674  	return 0;
10675  
10676  out_disable:
10677  	hba->is_irq_enabled = false;
10678  	ufshcd_hba_exit(hba);
10679  out_error:
10680  	return err;
10681  }
10682  EXPORT_SYMBOL_GPL(ufshcd_init);
10683  
ufshcd_resume_complete(struct device * dev)10684  void ufshcd_resume_complete(struct device *dev)
10685  {
10686  	struct ufs_hba *hba = dev_get_drvdata(dev);
10687  
10688  	if (hba->complete_put) {
10689  		ufshcd_rpm_put(hba);
10690  		hba->complete_put = false;
10691  	}
10692  }
10693  EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10694  
ufshcd_rpm_ok_for_spm(struct ufs_hba * hba)10695  static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10696  {
10697  	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10698  	enum ufs_dev_pwr_mode dev_pwr_mode;
10699  	enum uic_link_state link_state;
10700  	unsigned long flags;
10701  	bool res;
10702  
10703  	spin_lock_irqsave(&dev->power.lock, flags);
10704  	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10705  	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10706  	res = pm_runtime_suspended(dev) &&
10707  	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10708  	      hba->uic_link_state == link_state &&
10709  	      !hba->dev_info.b_rpm_dev_flush_capable;
10710  	spin_unlock_irqrestore(&dev->power.lock, flags);
10711  
10712  	return res;
10713  }
10714  
__ufshcd_suspend_prepare(struct device * dev,bool rpm_ok_for_spm)10715  int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10716  {
10717  	struct ufs_hba *hba = dev_get_drvdata(dev);
10718  	int ret;
10719  
10720  	/*
10721  	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10722  	 * are same. And it doesn't wake up the device for system-suspend
10723  	 * if it's runtime suspended. But ufs doesn't follow that.
10724  	 * Refer ufshcd_resume_complete()
10725  	 */
10726  	if (hba->ufs_device_wlun) {
10727  		/* Prevent runtime suspend */
10728  		ufshcd_rpm_get_noresume(hba);
10729  		/*
10730  		 * Check if already runtime suspended in same state as system
10731  		 * suspend would be.
10732  		 */
10733  		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10734  			/* RPM state is not ok for SPM, so runtime resume */
10735  			ret = ufshcd_rpm_resume(hba);
10736  			if (ret < 0 && ret != -EACCES) {
10737  				ufshcd_rpm_put(hba);
10738  				return ret;
10739  			}
10740  		}
10741  		hba->complete_put = true;
10742  	}
10743  	return 0;
10744  }
10745  EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10746  
ufshcd_suspend_prepare(struct device * dev)10747  int ufshcd_suspend_prepare(struct device *dev)
10748  {
10749  	return __ufshcd_suspend_prepare(dev, true);
10750  }
10751  EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10752  
10753  #ifdef CONFIG_PM_SLEEP
ufshcd_wl_poweroff(struct device * dev)10754  static int ufshcd_wl_poweroff(struct device *dev)
10755  {
10756  	struct scsi_device *sdev = to_scsi_device(dev);
10757  	struct ufs_hba *hba = shost_priv(sdev->host);
10758  
10759  	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10760  	return 0;
10761  }
10762  #endif
10763  
ufshcd_wl_probe(struct device * dev)10764  static int ufshcd_wl_probe(struct device *dev)
10765  {
10766  	struct scsi_device *sdev = to_scsi_device(dev);
10767  
10768  	if (!is_device_wlun(sdev))
10769  		return -ENODEV;
10770  
10771  	blk_pm_runtime_init(sdev->request_queue, dev);
10772  	pm_runtime_set_autosuspend_delay(dev, 0);
10773  	pm_runtime_allow(dev);
10774  
10775  	return  0;
10776  }
10777  
ufshcd_wl_remove(struct device * dev)10778  static int ufshcd_wl_remove(struct device *dev)
10779  {
10780  	pm_runtime_forbid(dev);
10781  	return 0;
10782  }
10783  
10784  static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10785  #ifdef CONFIG_PM_SLEEP
10786  	.suspend = ufshcd_wl_suspend,
10787  	.resume = ufshcd_wl_resume,
10788  	.freeze = ufshcd_wl_suspend,
10789  	.thaw = ufshcd_wl_resume,
10790  	.poweroff = ufshcd_wl_poweroff,
10791  	.restore = ufshcd_wl_resume,
10792  #endif
10793  	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10794  };
10795  
ufshcd_check_header_layout(void)10796  static void ufshcd_check_header_layout(void)
10797  {
10798  	/*
10799  	 * gcc compilers before version 10 cannot do constant-folding for
10800  	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10801  	 * before.
10802  	 */
10803  	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10804  		return;
10805  
10806  	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10807  				.cci = 3})[0] != 3);
10808  
10809  	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10810  				.ehs_length = 2})[1] != 2);
10811  
10812  	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10813  				.enable_crypto = 1})[2]
10814  		     != 0x80);
10815  
10816  	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10817  					.command_type = 5,
10818  					.data_direction = 3,
10819  					.interrupt = 1,
10820  				})[3]) != ((5 << 4) | (3 << 1) | 1));
10821  
10822  	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10823  				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10824  		cpu_to_le32(0xdeadbeef));
10825  
10826  	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10827  				.ocs = 4})[8] != 4);
10828  
10829  	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10830  				.cds = 5})[9] != 5);
10831  
10832  	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10833  				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10834  		cpu_to_le32(0xbadcafe));
10835  
10836  	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10837  			     .iid = 0xf })[4] != 0xf0);
10838  
10839  	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10840  			     .command_set_type = 0xf })[4] != 0xf);
10841  }
10842  
10843  /*
10844   * ufs_dev_wlun_template - describes ufs device wlun
10845   * ufs-device wlun - used to send pm commands
10846   * All luns are consumers of ufs-device wlun.
10847   *
10848   * Currently, no sd driver is present for wluns.
10849   * Hence the no specific pm operations are performed.
10850   * With ufs design, SSU should be sent to ufs-device wlun.
10851   * Hence register a scsi driver for ufs wluns only.
10852   */
10853  static struct scsi_driver ufs_dev_wlun_template = {
10854  	.gendrv = {
10855  		.name = "ufs_device_wlun",
10856  		.probe = ufshcd_wl_probe,
10857  		.remove = ufshcd_wl_remove,
10858  		.pm = &ufshcd_wl_pm_ops,
10859  		.shutdown = ufshcd_wl_shutdown,
10860  	},
10861  };
10862  
ufshcd_core_init(void)10863  static int __init ufshcd_core_init(void)
10864  {
10865  	int ret;
10866  
10867  	ufshcd_check_header_layout();
10868  
10869  	ufs_debugfs_init();
10870  
10871  	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10872  	if (ret)
10873  		ufs_debugfs_exit();
10874  	return ret;
10875  }
10876  
ufshcd_core_exit(void)10877  static void __exit ufshcd_core_exit(void)
10878  {
10879  	ufs_debugfs_exit();
10880  	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10881  }
10882  
10883  module_init(ufshcd_core_init);
10884  module_exit(ufshcd_core_exit);
10885  
10886  MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10887  MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10888  MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10889  MODULE_SOFTDEP("pre: governor_simpleondemand");
10890  MODULE_LICENSE("GPL");
10891