1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Universal Flash Storage Host controller driver Core
4 * Copyright (C) 2011-2013 Samsung India Software Operations
5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6 *
7 * Authors:
8 * Santosh Yaraganavi <santosh.sy@samsung.com>
9 * Vinayak Holikatti <h.vinayak@samsung.com>
10 */
11
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <linux/unaligned.h>
40
41 #define CREATE_TRACE_POINTS
42 #include "ufs_trace.h"
43
44 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\
45 UTP_TASK_REQ_COMPL |\
46 UFSHCD_ERROR_MASK)
47
48 #define UFSHCD_ENABLE_MCQ_INTRS (UTP_TASK_REQ_COMPL |\
49 UFSHCD_ERROR_MASK |\
50 MCQ_CQ_EVENT_STATUS)
51
52
53 /* UIC command timeout, unit: ms */
54 enum {
55 UIC_CMD_TIMEOUT_DEFAULT = 500,
56 UIC_CMD_TIMEOUT_MAX = 5000,
57 };
58 /* NOP OUT retries waiting for NOP IN response */
59 #define NOP_OUT_RETRIES 10
60 /* Timeout after 50 msecs if NOP OUT hangs without response */
61 #define NOP_OUT_TIMEOUT 50 /* msecs */
62
63 /* Query request retries */
64 #define QUERY_REQ_RETRIES 3
65 /* Query request timeout */
66 enum {
67 QUERY_REQ_TIMEOUT_MIN = 1,
68 QUERY_REQ_TIMEOUT_DEFAULT = 1500,
69 QUERY_REQ_TIMEOUT_MAX = 30000
70 };
71
72 /* Advanced RPMB request timeout */
73 #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */
74
75 /* Task management command timeout */
76 #define TM_CMD_TIMEOUT 100 /* msecs */
77
78 /* maximum number of retries for a general UIC command */
79 #define UFS_UIC_COMMAND_RETRIES 3
80
81 /* maximum number of link-startup retries */
82 #define DME_LINKSTARTUP_RETRIES 3
83
84 /* maximum number of reset retries before giving up */
85 #define MAX_HOST_RESET_RETRIES 5
86
87 /* Maximum number of error handler retries before giving up */
88 #define MAX_ERR_HANDLER_RETRIES 5
89
90 /* Expose the flag value from utp_upiu_query.value */
91 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
92
93 /* Interrupt aggregation default timeout, unit: 40us */
94 #define INT_AGGR_DEF_TO 0x02
95
96 /* default delay of autosuspend: 2000 ms */
97 #define RPM_AUTOSUSPEND_DELAY_MS 2000
98
99 /* Default delay of RPM device flush delayed work */
100 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
101
102 /* Default value of wait time before gating device ref clock */
103 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
104
105 /* Polling time to wait for fDeviceInit */
106 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
107
108 /* Default RTC update every 10 seconds */
109 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
110
111 /* bMaxNumOfRTT is equal to two after device manufacturing */
112 #define DEFAULT_MAX_NUM_RTT 2
113
114 /* UFSHC 4.0 compliant HC support this mode. */
115 static bool use_mcq_mode = true;
116
is_mcq_supported(struct ufs_hba * hba)117 static bool is_mcq_supported(struct ufs_hba *hba)
118 {
119 return hba->mcq_sup && use_mcq_mode;
120 }
121
122 module_param(use_mcq_mode, bool, 0644);
123 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
124
125 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT;
126
uic_cmd_timeout_set(const char * val,const struct kernel_param * kp)127 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp)
128 {
129 return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT,
130 UIC_CMD_TIMEOUT_MAX);
131 }
132
133 static const struct kernel_param_ops uic_cmd_timeout_ops = {
134 .set = uic_cmd_timeout_set,
135 .get = param_get_uint,
136 };
137
138 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644);
139 MODULE_PARM_DESC(uic_cmd_timeout,
140 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 5 seconds inclusively");
141
142 static unsigned int dev_cmd_timeout = QUERY_REQ_TIMEOUT_DEFAULT;
143
dev_cmd_timeout_set(const char * val,const struct kernel_param * kp)144 static int dev_cmd_timeout_set(const char *val, const struct kernel_param *kp)
145 {
146 return param_set_uint_minmax(val, kp, QUERY_REQ_TIMEOUT_MIN,
147 QUERY_REQ_TIMEOUT_MAX);
148 }
149
150 static const struct kernel_param_ops dev_cmd_timeout_ops = {
151 .set = dev_cmd_timeout_set,
152 .get = param_get_uint,
153 };
154
155 module_param_cb(dev_cmd_timeout, &dev_cmd_timeout_ops, &dev_cmd_timeout, 0644);
156 MODULE_PARM_DESC(dev_cmd_timeout,
157 "UFS Device command timeout in milliseconds. Defaults to 1.5s. Supported values range from 1ms to 30 seconds inclusively");
158
159 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \
160 ({ \
161 int _ret; \
162 if (_on) \
163 _ret = ufshcd_enable_vreg(_dev, _vreg); \
164 else \
165 _ret = ufshcd_disable_vreg(_dev, _vreg); \
166 _ret; \
167 })
168
169 #define ufshcd_hex_dump(prefix_str, buf, len) do { \
170 size_t __len = (len); \
171 print_hex_dump(KERN_ERR, prefix_str, \
172 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
173 16, 4, buf, __len, false); \
174 } while (0)
175
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)176 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
177 const char *prefix)
178 {
179 u32 *regs;
180 size_t pos;
181
182 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
183 return -EINVAL;
184
185 regs = kzalloc(len, GFP_ATOMIC);
186 if (!regs)
187 return -ENOMEM;
188
189 for (pos = 0; pos < len; pos += 4) {
190 if (offset == 0 &&
191 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
192 pos <= REG_UIC_ERROR_CODE_DME)
193 continue;
194 regs[pos / 4] = ufshcd_readl(hba, offset + pos);
195 }
196
197 ufshcd_hex_dump(prefix, regs, len);
198 kfree(regs);
199
200 return 0;
201 }
202 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
203
204 enum {
205 UFSHCD_MAX_CHANNEL = 0,
206 UFSHCD_MAX_ID = 1,
207 };
208
209 static const char *const ufshcd_state_name[] = {
210 [UFSHCD_STATE_RESET] = "reset",
211 [UFSHCD_STATE_OPERATIONAL] = "operational",
212 [UFSHCD_STATE_ERROR] = "error",
213 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal",
214 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal",
215 };
216
217 /* UFSHCD error handling flags */
218 enum {
219 UFSHCD_EH_IN_PROGRESS = (1 << 0),
220 };
221
222 /* UFSHCD UIC layer error flags */
223 enum {
224 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
225 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
226 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
227 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
228 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
229 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
230 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
231 };
232
233 #define ufshcd_set_eh_in_progress(h) \
234 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
235 #define ufshcd_eh_in_progress(h) \
236 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
237 #define ufshcd_clear_eh_in_progress(h) \
238 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
239
240 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
241 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
242 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
243 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
244 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
245 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
246 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
247 /*
248 * For DeepSleep, the link is first put in hibern8 and then off.
249 * Leaving the link in hibern8 is not supported.
250 */
251 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
252 };
253
254 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)255 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
256 {
257 return ufs_pm_lvl_states[lvl].dev_state;
258 }
259
260 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)261 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
262 {
263 return ufs_pm_lvl_states[lvl].link_state;
264 }
265
266 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)267 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
268 enum uic_link_state link_state)
269 {
270 enum ufs_pm_level lvl;
271
272 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
273 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
274 (ufs_pm_lvl_states[lvl].link_state == link_state))
275 return lvl;
276 }
277
278 /* if no match found, return the level 0 */
279 return UFS_PM_LVL_0;
280 }
281
ufshcd_has_pending_tasks(struct ufs_hba * hba)282 static bool ufshcd_has_pending_tasks(struct ufs_hba *hba)
283 {
284 return hba->outstanding_tasks || hba->active_uic_cmd ||
285 hba->uic_async_done;
286 }
287
ufshcd_is_ufs_dev_busy(struct ufs_hba * hba)288 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
289 {
290 return scsi_host_busy(hba->host) || ufshcd_has_pending_tasks(hba);
291 }
292
293 static const struct ufs_dev_quirk ufs_fixups[] = {
294 /* UFS cards deviations table */
295 { .wmanufacturerid = UFS_VENDOR_MICRON,
296 .model = UFS_ANY_MODEL,
297 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
298 { .wmanufacturerid = UFS_VENDOR_SAMSUNG,
299 .model = UFS_ANY_MODEL,
300 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
301 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
302 UFS_DEVICE_QUIRK_PA_HIBER8TIME |
303 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
304 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
305 .model = UFS_ANY_MODEL,
306 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
307 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
308 .model = "hB8aL1" /*H28U62301AMR*/,
309 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
310 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
311 .model = UFS_ANY_MODEL,
312 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
313 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
314 .model = "THGLF2G9C8KBADG",
315 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
316 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
317 .model = "THGLF2G9D8KBADG",
318 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
319 {}
320 };
321
322 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
323 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
324 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
325 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
326 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
327 static void ufshcd_hba_exit(struct ufs_hba *hba);
328 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params);
329 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
330 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
331 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
332 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
333 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
334 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
335 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
336 bool scale_up);
337 static irqreturn_t ufshcd_intr(int irq, void *__hba);
338 static int ufshcd_change_power_mode(struct ufs_hba *hba,
339 struct ufs_pa_layer_attr *pwr_mode);
340 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
341 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
342 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
343 struct ufs_vreg *vreg);
344 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
345 bool enable);
346 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
347 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
348
ufshcd_enable_irq(struct ufs_hba * hba)349 void ufshcd_enable_irq(struct ufs_hba *hba)
350 {
351 if (!hba->is_irq_enabled) {
352 enable_irq(hba->irq);
353 hba->is_irq_enabled = true;
354 }
355 }
356 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
357
ufshcd_disable_irq(struct ufs_hba * hba)358 void ufshcd_disable_irq(struct ufs_hba *hba)
359 {
360 if (hba->is_irq_enabled) {
361 disable_irq(hba->irq);
362 hba->is_irq_enabled = false;
363 }
364 }
365 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
366
367 /**
368 * ufshcd_enable_intr - enable interrupts
369 * @hba: per adapter instance
370 * @intrs: interrupt bits
371 */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)372 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
373 {
374 u32 old_val = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
375 u32 new_val = old_val | intrs;
376
377 if (new_val != old_val)
378 ufshcd_writel(hba, new_val, REG_INTERRUPT_ENABLE);
379 }
380
381 /**
382 * ufshcd_disable_intr - disable interrupts
383 * @hba: per adapter instance
384 * @intrs: interrupt bits
385 */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)386 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
387 {
388 u32 old_val = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
389 u32 new_val = old_val & ~intrs;
390
391 if (new_val != old_val)
392 ufshcd_writel(hba, new_val, REG_INTERRUPT_ENABLE);
393 }
394
ufshcd_configure_wb(struct ufs_hba * hba)395 static void ufshcd_configure_wb(struct ufs_hba *hba)
396 {
397 if (!ufshcd_is_wb_allowed(hba))
398 return;
399
400 ufshcd_wb_toggle(hba, true);
401
402 ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
403
404 if (ufshcd_is_wb_buf_flush_allowed(hba))
405 ufshcd_wb_toggle_buf_flush(hba, true);
406 }
407
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)408 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
409 enum ufs_trace_str_t str_t)
410 {
411 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
412 struct utp_upiu_header *header;
413
414 if (!trace_ufshcd_upiu_enabled())
415 return;
416
417 if (str_t == UFS_CMD_SEND)
418 header = &rq->header;
419 else
420 header = &hba->lrb[tag].ucd_rsp_ptr->header;
421
422 trace_ufshcd_upiu(hba, str_t, header, &rq->sc.cdb,
423 UFS_TSF_CDB);
424 }
425
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,enum ufs_trace_str_t str_t,struct utp_upiu_req * rq_rsp)426 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
427 enum ufs_trace_str_t str_t,
428 struct utp_upiu_req *rq_rsp)
429 {
430 if (!trace_ufshcd_upiu_enabled())
431 return;
432
433 trace_ufshcd_upiu(hba, str_t, &rq_rsp->header,
434 &rq_rsp->qr, UFS_TSF_OSF);
435 }
436
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)437 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
438 enum ufs_trace_str_t str_t)
439 {
440 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
441
442 if (!trace_ufshcd_upiu_enabled())
443 return;
444
445 if (str_t == UFS_TM_SEND)
446 trace_ufshcd_upiu(hba, str_t,
447 &descp->upiu_req.req_header,
448 &descp->upiu_req.input_param1,
449 UFS_TSF_TM_INPUT);
450 else
451 trace_ufshcd_upiu(hba, str_t,
452 &descp->upiu_rsp.rsp_header,
453 &descp->upiu_rsp.output_param1,
454 UFS_TSF_TM_OUTPUT);
455 }
456
ufshcd_add_uic_command_trace(struct ufs_hba * hba,const struct uic_command * ucmd,enum ufs_trace_str_t str_t)457 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
458 const struct uic_command *ucmd,
459 enum ufs_trace_str_t str_t)
460 {
461 u32 cmd;
462
463 if (!trace_ufshcd_uic_command_enabled())
464 return;
465
466 if (str_t == UFS_CMD_SEND)
467 cmd = ucmd->command;
468 else
469 cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
470
471 trace_ufshcd_uic_command(hba, str_t, cmd,
472 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
473 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
474 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
475 }
476
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)477 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
478 enum ufs_trace_str_t str_t)
479 {
480 u64 lba = 0;
481 u8 opcode = 0, group_id = 0;
482 u32 doorbell = 0;
483 u32 intr;
484 u32 hwq_id = 0;
485 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
486 struct scsi_cmnd *cmd = lrbp->cmd;
487 struct request *rq = scsi_cmd_to_rq(cmd);
488 int transfer_len = -1;
489
490 if (!cmd)
491 return;
492
493 /* trace UPIU also */
494 ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
495 if (!trace_ufshcd_command_enabled())
496 return;
497
498 opcode = cmd->cmnd[0];
499
500 if (opcode == READ_10 || opcode == WRITE_10) {
501 /*
502 * Currently we only fully trace read(10) and write(10) commands
503 */
504 transfer_len =
505 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
506 lba = scsi_get_lba(cmd);
507 if (opcode == WRITE_10)
508 group_id = lrbp->cmd->cmnd[6];
509 } else if (opcode == UNMAP) {
510 /*
511 * The number of Bytes to be unmapped beginning with the lba.
512 */
513 transfer_len = blk_rq_bytes(rq);
514 lba = scsi_get_lba(cmd);
515 }
516
517 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
518
519 if (hba->mcq_enabled) {
520 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
521
522 hwq_id = hwq->id;
523 } else {
524 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
525 }
526 trace_ufshcd_command(cmd->device, hba, str_t, tag, doorbell, hwq_id,
527 transfer_len, intr, lba, opcode, group_id);
528 }
529
ufshcd_print_clk_freqs(struct ufs_hba * hba)530 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
531 {
532 struct ufs_clk_info *clki;
533 struct list_head *head = &hba->clk_list_head;
534
535 if (list_empty(head))
536 return;
537
538 list_for_each_entry(clki, head, list) {
539 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
540 clki->max_freq)
541 dev_err(hba->dev, "clk: %s, rate: %u\n",
542 clki->name, clki->curr_freq);
543 }
544 }
545
ufshcd_print_evt(struct ufs_hba * hba,u32 id,const char * err_name)546 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
547 const char *err_name)
548 {
549 int i;
550 bool found = false;
551 const struct ufs_event_hist *e;
552
553 if (id >= UFS_EVT_CNT)
554 return;
555
556 e = &hba->ufs_stats.event[id];
557
558 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
559 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
560
561 if (e->tstamp[p] == 0)
562 continue;
563 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
564 e->val[p], div_u64(e->tstamp[p], 1000));
565 found = true;
566 }
567
568 if (!found)
569 dev_err(hba->dev, "No record of %s\n", err_name);
570 else
571 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
572 }
573
ufshcd_print_evt_hist(struct ufs_hba * hba)574 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
575 {
576 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
577
578 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
579 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
580 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
581 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
582 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
583 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
584 "auto_hibern8_err");
585 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
586 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
587 "link_startup_fail");
588 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
589 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
590 "suspend_fail");
591 ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
592 ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
593 "wlun suspend_fail");
594 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
595 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
596 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
597
598 ufshcd_vops_dbg_register_dump(hba);
599 }
600
601 static
ufshcd_print_tr(struct ufs_hba * hba,int tag,bool pr_prdt)602 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
603 {
604 const struct ufshcd_lrb *lrbp;
605 int prdt_length;
606
607 lrbp = &hba->lrb[tag];
608
609 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
610 tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
611 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
612 tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
613 dev_err(hba->dev,
614 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
615 tag, (u64)lrbp->utrd_dma_addr);
616
617 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
618 sizeof(struct utp_transfer_req_desc));
619 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
620 (u64)lrbp->ucd_req_dma_addr);
621 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
622 sizeof(struct utp_upiu_req));
623 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
624 (u64)lrbp->ucd_rsp_dma_addr);
625 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
626 sizeof(struct utp_upiu_rsp));
627
628 prdt_length = le16_to_cpu(
629 lrbp->utr_descriptor_ptr->prd_table_length);
630 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
631 prdt_length /= ufshcd_sg_entry_size(hba);
632
633 dev_err(hba->dev,
634 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n",
635 tag, prdt_length,
636 (u64)lrbp->ucd_prdt_dma_addr);
637
638 if (pr_prdt)
639 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
640 ufshcd_sg_entry_size(hba) * prdt_length);
641 }
642
ufshcd_print_tr_iter(struct request * req,void * priv)643 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
644 {
645 struct scsi_device *sdev = req->q->queuedata;
646 struct Scsi_Host *shost = sdev->host;
647 struct ufs_hba *hba = shost_priv(shost);
648
649 ufshcd_print_tr(hba, req->tag, *(bool *)priv);
650
651 return true;
652 }
653
654 /**
655 * ufshcd_print_trs_all - print trs for all started requests.
656 * @hba: per-adapter instance.
657 * @pr_prdt: need to print prdt or not.
658 */
ufshcd_print_trs_all(struct ufs_hba * hba,bool pr_prdt)659 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
660 {
661 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
662 }
663
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)664 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
665 {
666 int tag;
667
668 for_each_set_bit(tag, &bitmap, hba->nutmrs) {
669 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
670
671 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
672 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
673 }
674 }
675
ufshcd_print_host_state(struct ufs_hba * hba)676 static void ufshcd_print_host_state(struct ufs_hba *hba)
677 {
678 const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
679
680 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
681 dev_err(hba->dev, "%d outstanding reqs, tasks=0x%lx\n",
682 scsi_host_busy(hba->host), hba->outstanding_tasks);
683 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
684 hba->saved_err, hba->saved_uic_err);
685 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
686 hba->curr_dev_pwr_mode, hba->uic_link_state);
687 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
688 hba->pm_op_in_progress, hba->is_sys_suspended);
689 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
690 hba->auto_bkops_enabled, hba->host->host_self_blocked);
691 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
692 dev_err(hba->dev,
693 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
694 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
695 hba->ufs_stats.hibern8_exit_cnt);
696 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
697 hba->eh_flags, hba->req_abort_count);
698 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
699 hba->ufs_version, hba->capabilities, hba->caps);
700 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
701 hba->dev_quirks);
702 if (sdev_ufs)
703 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
704 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
705
706 ufshcd_print_clk_freqs(hba);
707 }
708
709 /**
710 * ufshcd_print_pwr_info - print power params as saved in hba
711 * power info
712 * @hba: per-adapter instance
713 */
ufshcd_print_pwr_info(struct ufs_hba * hba)714 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
715 {
716 static const char * const names[] = {
717 "INVALID MODE",
718 "FAST MODE",
719 "SLOW_MODE",
720 "INVALID MODE",
721 "FASTAUTO_MODE",
722 "SLOWAUTO_MODE",
723 "INVALID MODE",
724 };
725
726 /*
727 * Using dev_dbg to avoid messages during runtime PM to avoid
728 * never-ending cycles of messages written back to storage by user space
729 * causing runtime resume, causing more messages and so on.
730 */
731 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
732 __func__,
733 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
734 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
735 names[hba->pwr_info.pwr_rx],
736 names[hba->pwr_info.pwr_tx],
737 hba->pwr_info.hs_rate);
738 }
739
ufshcd_device_reset(struct ufs_hba * hba)740 static void ufshcd_device_reset(struct ufs_hba *hba)
741 {
742 int err;
743
744 err = ufshcd_vops_device_reset(hba);
745
746 if (!err) {
747 ufshcd_set_ufs_dev_active(hba);
748 if (ufshcd_is_wb_allowed(hba)) {
749 hba->dev_info.wb_enabled = false;
750 hba->dev_info.wb_buf_flush_enabled = false;
751 }
752 if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
753 hba->dev_info.rtc_time_baseline = 0;
754 }
755 if (err != -EOPNOTSUPP)
756 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
757 }
758
ufshcd_delay_us(unsigned long us,unsigned long tolerance)759 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
760 {
761 if (!us)
762 return;
763
764 if (us < 10)
765 udelay(us);
766 else
767 usleep_range(us, us + tolerance);
768 }
769 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
770
771 /**
772 * ufshcd_wait_for_register - wait for register value to change
773 * @hba: per-adapter interface
774 * @reg: mmio register offset
775 * @mask: mask to apply to the read register value
776 * @val: value to wait for
777 * @interval_us: polling interval in microseconds
778 * @timeout_ms: timeout in milliseconds
779 *
780 * Return: -ETIMEDOUT on error, zero on success.
781 */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)782 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
783 u32 val, unsigned long interval_us,
784 unsigned long timeout_ms)
785 {
786 u32 v;
787
788 val &= mask; /* ignore bits that we don't intend to wait on */
789
790 return read_poll_timeout(ufshcd_readl, v, (v & mask) == val,
791 interval_us, timeout_ms * 1000, false, hba, reg);
792 }
793
794 /**
795 * ufshcd_get_intr_mask - Get the interrupt bit mask
796 * @hba: Pointer to adapter instance
797 *
798 * Return: interrupt bit mask per version
799 */
ufshcd_get_intr_mask(struct ufs_hba * hba)800 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
801 {
802 if (hba->ufs_version <= ufshci_version(2, 0))
803 return INTERRUPT_MASK_ALL_VER_11;
804
805 return INTERRUPT_MASK_ALL_VER_21;
806 }
807
808 /**
809 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
810 * @hba: Pointer to adapter instance
811 *
812 * Return: UFSHCI version supported by the controller
813 */
ufshcd_get_ufs_version(struct ufs_hba * hba)814 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
815 {
816 u32 ufshci_ver;
817
818 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
819 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
820 else
821 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
822
823 /*
824 * UFSHCI v1.x uses a different version scheme, in order
825 * to allow the use of comparisons with the ufshci_version
826 * function, we convert it to the same scheme as ufs 2.0+.
827 */
828 if (ufshci_ver & 0x00010000)
829 return ufshci_version(1, ufshci_ver & 0x00000100);
830
831 return ufshci_ver;
832 }
833
834 /**
835 * ufshcd_is_device_present - Check if any device connected to
836 * the host controller
837 * @hba: pointer to adapter instance
838 *
839 * Return: true if device present, false if no device detected
840 */
ufshcd_is_device_present(struct ufs_hba * hba)841 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
842 {
843 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
844 }
845
846 /**
847 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
848 * @lrbp: pointer to local command reference block
849 * @cqe: pointer to the completion queue entry
850 *
851 * This function is used to get the OCS field from UTRD
852 *
853 * Return: the OCS field in the UTRD.
854 */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp,struct cq_entry * cqe)855 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
856 struct cq_entry *cqe)
857 {
858 if (cqe)
859 return le32_to_cpu(cqe->status) & MASK_OCS;
860
861 return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
862 }
863
864 /**
865 * ufshcd_utrl_clear() - Clear requests from the controller request list.
866 * @hba: per adapter instance
867 * @mask: mask with one bit set for each request to be cleared
868 */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 mask)869 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
870 {
871 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
872 mask = ~mask;
873 /*
874 * From the UFSHCI specification: "UTP Transfer Request List CLear
875 * Register (UTRLCLR): This field is bit significant. Each bit
876 * corresponds to a slot in the UTP Transfer Request List, where bit 0
877 * corresponds to request slot 0. A bit in this field is set to ‘0’
878 * by host software to indicate to the host controller that a transfer
879 * request slot is cleared. The host controller
880 * shall free up any resources associated to the request slot
881 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
882 * host software indicates no change to request slots by setting the
883 * associated bits in this field to ‘1’. Bits in this field shall only
884 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
885 */
886 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
887 }
888
889 /**
890 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
891 * @hba: per adapter instance
892 * @pos: position of the bit to be cleared
893 */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)894 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
895 {
896 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
897 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
898 else
899 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
900 }
901
902 /**
903 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
904 * @reg: Register value of host controller status
905 *
906 * Return: 0 on success; a positive value if failed.
907 */
ufshcd_get_lists_status(u32 reg)908 static inline int ufshcd_get_lists_status(u32 reg)
909 {
910 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
911 }
912
913 /**
914 * ufshcd_get_uic_cmd_result - Get the UIC command result
915 * @hba: Pointer to adapter instance
916 *
917 * This function gets the result of UIC command completion
918 *
919 * Return: 0 on success; non-zero value on error.
920 */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)921 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
922 {
923 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
924 MASK_UIC_COMMAND_RESULT;
925 }
926
927 /**
928 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
929 * @hba: Pointer to adapter instance
930 *
931 * This function gets UIC command argument3
932 *
933 * Return: 0 on success; non-zero value on error.
934 */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)935 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
936 {
937 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
938 }
939
940 /**
941 * ufshcd_get_req_rsp - returns the TR response transaction type
942 * @ucd_rsp_ptr: pointer to response UPIU
943 *
944 * Return: UPIU type.
945 */
946 static inline enum upiu_response_transaction
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)947 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
948 {
949 return ucd_rsp_ptr->header.transaction_code;
950 }
951
952 /**
953 * ufshcd_is_exception_event - Check if the device raised an exception event
954 * @ucd_rsp_ptr: pointer to response UPIU
955 *
956 * The function checks if the device raised an exception event indicated in
957 * the Device Information field of response UPIU.
958 *
959 * Return: true if exception is raised, false otherwise.
960 */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)961 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
962 {
963 return ucd_rsp_ptr->header.device_information & 1;
964 }
965
966 /**
967 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
968 * @hba: per adapter instance
969 */
970 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)971 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
972 {
973 ufshcd_writel(hba, INT_AGGR_ENABLE |
974 INT_AGGR_COUNTER_AND_TIMER_RESET,
975 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
976 }
977
978 /**
979 * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
980 * @hba: per adapter instance
981 * @cnt: Interrupt aggregation counter threshold
982 * @tmout: Interrupt aggregation timeout value
983 */
984 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)985 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
986 {
987 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
988 INT_AGGR_COUNTER_THLD_VAL(cnt) |
989 INT_AGGR_TIMEOUT_VAL(tmout),
990 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
991 }
992
993 /**
994 * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
995 * @hba: per adapter instance
996 */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)997 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
998 {
999 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
1000 }
1001
1002 /**
1003 * ufshcd_enable_run_stop_reg - Enable run-stop registers,
1004 * When run-stop registers are set to 1, it indicates the
1005 * host controller that it can process the requests
1006 * @hba: per adapter instance
1007 */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)1008 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
1009 {
1010 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
1011 REG_UTP_TASK_REQ_LIST_RUN_STOP);
1012 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
1013 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
1014 }
1015
1016 /**
1017 * ufshcd_hba_start - Start controller initialization sequence
1018 * @hba: per adapter instance
1019 */
ufshcd_hba_start(struct ufs_hba * hba)1020 static inline void ufshcd_hba_start(struct ufs_hba *hba)
1021 {
1022 u32 val = CONTROLLER_ENABLE;
1023
1024 if (ufshcd_crypto_enable(hba))
1025 val |= CRYPTO_GENERAL_ENABLE;
1026
1027 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
1028 }
1029
1030 /**
1031 * ufshcd_is_hba_active - Get controller state
1032 * @hba: per adapter instance
1033 *
1034 * Return: true if and only if the controller is active.
1035 */
ufshcd_is_hba_active(struct ufs_hba * hba)1036 bool ufshcd_is_hba_active(struct ufs_hba *hba)
1037 {
1038 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
1039 }
1040 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
1041
1042 /**
1043 * ufshcd_pm_qos_init - initialize PM QoS request
1044 * @hba: per adapter instance
1045 */
ufshcd_pm_qos_init(struct ufs_hba * hba)1046 void ufshcd_pm_qos_init(struct ufs_hba *hba)
1047 {
1048
1049 if (hba->pm_qos_enabled)
1050 return;
1051
1052 cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1053
1054 if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1055 hba->pm_qos_enabled = true;
1056 }
1057
1058 /**
1059 * ufshcd_pm_qos_exit - remove request from PM QoS
1060 * @hba: per adapter instance
1061 */
ufshcd_pm_qos_exit(struct ufs_hba * hba)1062 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1063 {
1064 if (!hba->pm_qos_enabled)
1065 return;
1066
1067 cpu_latency_qos_remove_request(&hba->pm_qos_req);
1068 hba->pm_qos_enabled = false;
1069 }
1070
1071 /**
1072 * ufshcd_pm_qos_update - update PM QoS request
1073 * @hba: per adapter instance
1074 * @on: If True, vote for perf PM QoS mode otherwise power save mode
1075 */
ufshcd_pm_qos_update(struct ufs_hba * hba,bool on)1076 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1077 {
1078 if (!hba->pm_qos_enabled)
1079 return;
1080
1081 cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1082 }
1083
1084 /**
1085 * ufshcd_set_clk_freq - set UFS controller clock frequencies
1086 * @hba: per adapter instance
1087 * @scale_up: If True, set max possible frequency othewise set low frequency
1088 *
1089 * Return: 0 if successful; < 0 upon failure.
1090 */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)1091 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1092 {
1093 int ret = 0;
1094 struct ufs_clk_info *clki;
1095 struct list_head *head = &hba->clk_list_head;
1096
1097 if (list_empty(head))
1098 goto out;
1099
1100 list_for_each_entry(clki, head, list) {
1101 if (!IS_ERR_OR_NULL(clki->clk)) {
1102 if (scale_up && clki->max_freq) {
1103 if (clki->curr_freq == clki->max_freq)
1104 continue;
1105
1106 ret = clk_set_rate(clki->clk, clki->max_freq);
1107 if (ret) {
1108 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1109 __func__, clki->name,
1110 clki->max_freq, ret);
1111 break;
1112 }
1113 trace_ufshcd_clk_scaling(hba,
1114 "scaled up", clki->name,
1115 clki->curr_freq,
1116 clki->max_freq);
1117
1118 clki->curr_freq = clki->max_freq;
1119
1120 } else if (!scale_up && clki->min_freq) {
1121 if (clki->curr_freq == clki->min_freq)
1122 continue;
1123
1124 ret = clk_set_rate(clki->clk, clki->min_freq);
1125 if (ret) {
1126 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1127 __func__, clki->name,
1128 clki->min_freq, ret);
1129 break;
1130 }
1131 trace_ufshcd_clk_scaling(hba,
1132 "scaled down", clki->name,
1133 clki->curr_freq,
1134 clki->min_freq);
1135 clki->curr_freq = clki->min_freq;
1136 }
1137 }
1138 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1139 clki->name, clk_get_rate(clki->clk));
1140 }
1141
1142 out:
1143 return ret;
1144 }
1145
ufshcd_opp_config_clks(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)1146 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1147 struct dev_pm_opp *opp, void *data,
1148 bool scaling_down)
1149 {
1150 struct ufs_hba *hba = dev_get_drvdata(dev);
1151 struct list_head *head = &hba->clk_list_head;
1152 struct ufs_clk_info *clki;
1153 unsigned long freq;
1154 u8 idx = 0;
1155 int ret;
1156
1157 list_for_each_entry(clki, head, list) {
1158 if (!IS_ERR_OR_NULL(clki->clk)) {
1159 freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1160
1161 /* Do not set rate for clocks having frequency as 0 */
1162 if (!freq)
1163 continue;
1164
1165 ret = clk_set_rate(clki->clk, freq);
1166 if (ret) {
1167 dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1168 __func__, clki->name, freq, ret);
1169 return ret;
1170 }
1171
1172 trace_ufshcd_clk_scaling(hba,
1173 (scaling_down ? "scaled down" : "scaled up"),
1174 clki->name, hba->clk_scaling.target_freq, freq);
1175 }
1176 }
1177
1178 return 0;
1179 }
1180 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1181
ufshcd_opp_set_rate(struct ufs_hba * hba,unsigned long freq)1182 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1183 {
1184 struct dev_pm_opp *opp;
1185 int ret;
1186
1187 opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1188 &freq, 0);
1189 if (IS_ERR(opp))
1190 return PTR_ERR(opp);
1191
1192 ret = dev_pm_opp_set_opp(hba->dev, opp);
1193 dev_pm_opp_put(opp);
1194
1195 return ret;
1196 }
1197
1198 /**
1199 * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1200 * @hba: per adapter instance
1201 * @freq: frequency to scale
1202 * @scale_up: True if scaling up and false if scaling down
1203 *
1204 * Return: 0 if successful; < 0 upon failure.
1205 */
ufshcd_scale_clks(struct ufs_hba * hba,unsigned long freq,bool scale_up)1206 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1207 bool scale_up)
1208 {
1209 int ret = 0;
1210 ktime_t start = ktime_get();
1211
1212 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, PRE_CHANGE);
1213 if (ret)
1214 goto out;
1215
1216 if (hba->use_pm_opp)
1217 ret = ufshcd_opp_set_rate(hba, freq);
1218 else
1219 ret = ufshcd_set_clk_freq(hba, scale_up);
1220 if (ret)
1221 goto out;
1222
1223 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, POST_CHANGE);
1224 if (ret) {
1225 if (hba->use_pm_opp)
1226 ufshcd_opp_set_rate(hba,
1227 hba->devfreq->previous_freq);
1228 else
1229 ufshcd_set_clk_freq(hba, !scale_up);
1230 goto out;
1231 }
1232
1233 ufshcd_pm_qos_update(hba, scale_up);
1234
1235 out:
1236 trace_ufshcd_profile_clk_scaling(hba,
1237 (scale_up ? "up" : "down"),
1238 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1239 return ret;
1240 }
1241
1242 /**
1243 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1244 * @hba: per adapter instance
1245 * @freq: frequency to scale
1246 * @scale_up: True if scaling up and false if scaling down
1247 *
1248 * Return: true if scaling is required, false otherwise.
1249 */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,unsigned long freq,bool scale_up)1250 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1251 unsigned long freq, bool scale_up)
1252 {
1253 struct ufs_clk_info *clki;
1254 struct list_head *head = &hba->clk_list_head;
1255
1256 if (list_empty(head))
1257 return false;
1258
1259 if (hba->use_pm_opp)
1260 return freq != hba->clk_scaling.target_freq;
1261
1262 list_for_each_entry(clki, head, list) {
1263 if (!IS_ERR_OR_NULL(clki->clk)) {
1264 if (scale_up && clki->max_freq) {
1265 if (clki->curr_freq == clki->max_freq)
1266 continue;
1267 return true;
1268 } else if (!scale_up && clki->min_freq) {
1269 if (clki->curr_freq == clki->min_freq)
1270 continue;
1271 return true;
1272 }
1273 }
1274 }
1275
1276 return false;
1277 }
1278
1279 /*
1280 * Determine the number of pending commands by counting the bits in the SCSI
1281 * device budget maps. This approach has been selected because a bit is set in
1282 * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1283 * flag. The host_self_blocked flag can be modified by calling
1284 * scsi_block_requests() or scsi_unblock_requests().
1285 */
ufshcd_pending_cmds(struct ufs_hba * hba)1286 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1287 {
1288 const struct scsi_device *sdev;
1289 unsigned long flags;
1290 u32 pending = 0;
1291
1292 spin_lock_irqsave(hba->host->host_lock, flags);
1293 __shost_for_each_device(sdev, hba->host)
1294 pending += sbitmap_weight(&sdev->budget_map);
1295 spin_unlock_irqrestore(hba->host->host_lock, flags);
1296
1297 return pending;
1298 }
1299
1300 /*
1301 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1302 * has expired.
1303 *
1304 * Return: 0 upon success; -EBUSY upon timeout.
1305 */
ufshcd_wait_for_pending_cmds(struct ufs_hba * hba,u64 wait_timeout_us)1306 static int ufshcd_wait_for_pending_cmds(struct ufs_hba *hba,
1307 u64 wait_timeout_us)
1308 {
1309 int ret = 0;
1310 u32 tm_doorbell;
1311 u32 tr_pending;
1312 bool timeout = false, do_last_check = false;
1313 ktime_t start;
1314
1315 ufshcd_hold(hba);
1316 /*
1317 * Wait for all the outstanding tasks/transfer requests.
1318 * Verify by checking the doorbell registers are clear.
1319 */
1320 start = ktime_get();
1321 do {
1322 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1323 ret = -EBUSY;
1324 goto out;
1325 }
1326
1327 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1328 tr_pending = ufshcd_pending_cmds(hba);
1329 if (!tm_doorbell && !tr_pending) {
1330 timeout = false;
1331 break;
1332 } else if (do_last_check) {
1333 break;
1334 }
1335
1336 io_schedule_timeout(msecs_to_jiffies(20));
1337 if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1338 wait_timeout_us) {
1339 timeout = true;
1340 /*
1341 * We might have scheduled out for long time so make
1342 * sure to check if doorbells are cleared by this time
1343 * or not.
1344 */
1345 do_last_check = true;
1346 }
1347 } while (tm_doorbell || tr_pending);
1348
1349 if (timeout) {
1350 dev_err(hba->dev,
1351 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1352 __func__, tm_doorbell, tr_pending);
1353 ret = -EBUSY;
1354 }
1355 out:
1356 ufshcd_release(hba);
1357 return ret;
1358 }
1359
1360 /**
1361 * ufshcd_scale_gear - scale up/down UFS gear
1362 * @hba: per adapter instance
1363 * @target_gear: target gear to scale to
1364 * @scale_up: True for scaling up gear and false for scaling down
1365 *
1366 * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1367 * non-zero for any other errors.
1368 */
ufshcd_scale_gear(struct ufs_hba * hba,u32 target_gear,bool scale_up)1369 static int ufshcd_scale_gear(struct ufs_hba *hba, u32 target_gear, bool scale_up)
1370 {
1371 int ret = 0;
1372 struct ufs_pa_layer_attr new_pwr_info;
1373
1374 if (target_gear) {
1375 new_pwr_info = hba->pwr_info;
1376 new_pwr_info.gear_tx = target_gear;
1377 new_pwr_info.gear_rx = target_gear;
1378
1379 goto config_pwr_mode;
1380 }
1381
1382 /* Legacy gear scaling, in case vops_freq_to_gear_speed() is not implemented */
1383 if (scale_up) {
1384 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1385 sizeof(struct ufs_pa_layer_attr));
1386 } else {
1387 memcpy(&new_pwr_info, &hba->pwr_info,
1388 sizeof(struct ufs_pa_layer_attr));
1389
1390 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1391 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1392 /* save the current power mode */
1393 memcpy(&hba->clk_scaling.saved_pwr_info,
1394 &hba->pwr_info,
1395 sizeof(struct ufs_pa_layer_attr));
1396
1397 /* scale down gear */
1398 new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1399 new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1400 }
1401 }
1402
1403 config_pwr_mode:
1404 /* check if the power mode needs to be changed or not? */
1405 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1406 if (ret)
1407 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1408 __func__, ret,
1409 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1410 new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1411
1412 return ret;
1413 }
1414
1415 /*
1416 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1417 * has expired.
1418 *
1419 * Return: 0 upon success; -EBUSY upon timeout.
1420 */
ufshcd_clock_scaling_prepare(struct ufs_hba * hba,u64 timeout_us)1421 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1422 {
1423 int ret = 0;
1424 /*
1425 * make sure that there are no outstanding requests when
1426 * clock scaling is in progress
1427 */
1428 mutex_lock(&hba->host->scan_mutex);
1429 blk_mq_quiesce_tagset(&hba->host->tag_set);
1430 mutex_lock(&hba->wb_mutex);
1431 down_write(&hba->clk_scaling_lock);
1432
1433 if (!hba->clk_scaling.is_allowed ||
1434 ufshcd_wait_for_pending_cmds(hba, timeout_us)) {
1435 ret = -EBUSY;
1436 up_write(&hba->clk_scaling_lock);
1437 mutex_unlock(&hba->wb_mutex);
1438 blk_mq_unquiesce_tagset(&hba->host->tag_set);
1439 mutex_unlock(&hba->host->scan_mutex);
1440 goto out;
1441 }
1442
1443 /* let's not get into low power until clock scaling is completed */
1444 ufshcd_hold(hba);
1445
1446 out:
1447 return ret;
1448 }
1449
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,int err)1450 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err)
1451 {
1452 up_write(&hba->clk_scaling_lock);
1453
1454 /* Enable Write Booster if current gear requires it else disable it */
1455 if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1456 ufshcd_wb_toggle(hba, hba->pwr_info.gear_rx >= hba->clk_scaling.wb_gear);
1457
1458 mutex_unlock(&hba->wb_mutex);
1459
1460 blk_mq_unquiesce_tagset(&hba->host->tag_set);
1461 mutex_unlock(&hba->host->scan_mutex);
1462 ufshcd_release(hba);
1463 }
1464
1465 /**
1466 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1467 * @hba: per adapter instance
1468 * @freq: frequency to scale
1469 * @scale_up: True for scaling up and false for scalin down
1470 *
1471 * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1472 * for any other errors.
1473 */
ufshcd_devfreq_scale(struct ufs_hba * hba,unsigned long freq,bool scale_up)1474 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1475 bool scale_up)
1476 {
1477 u32 old_gear = hba->pwr_info.gear_rx;
1478 u32 new_gear = 0;
1479 int ret = 0;
1480
1481 new_gear = ufshcd_vops_freq_to_gear_speed(hba, freq);
1482
1483 ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1484 if (ret)
1485 return ret;
1486
1487 /* scale down the gear before scaling down clocks */
1488 if (!scale_up) {
1489 ret = ufshcd_scale_gear(hba, new_gear, false);
1490 if (ret)
1491 goto out_unprepare;
1492 }
1493
1494 ret = ufshcd_scale_clks(hba, freq, scale_up);
1495 if (ret) {
1496 if (!scale_up)
1497 ufshcd_scale_gear(hba, old_gear, true);
1498 goto out_unprepare;
1499 }
1500
1501 /* scale up the gear after scaling up clocks */
1502 if (scale_up) {
1503 ret = ufshcd_scale_gear(hba, new_gear, true);
1504 if (ret) {
1505 ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1506 false);
1507 goto out_unprepare;
1508 }
1509 }
1510
1511 out_unprepare:
1512 ufshcd_clock_scaling_unprepare(hba, ret);
1513 return ret;
1514 }
1515
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1516 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1517 {
1518 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1519 clk_scaling.suspend_work);
1520
1521 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1522 {
1523 if (hba->clk_scaling.active_reqs ||
1524 hba->clk_scaling.is_suspended)
1525 return;
1526
1527 hba->clk_scaling.is_suspended = true;
1528 hba->clk_scaling.window_start_t = 0;
1529 }
1530
1531 devfreq_suspend_device(hba->devfreq);
1532 }
1533
ufshcd_clk_scaling_resume_work(struct work_struct * work)1534 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1535 {
1536 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1537 clk_scaling.resume_work);
1538
1539 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1540 {
1541 if (!hba->clk_scaling.is_suspended)
1542 return;
1543 hba->clk_scaling.is_suspended = false;
1544 }
1545
1546 devfreq_resume_device(hba->devfreq);
1547 }
1548
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1549 static int ufshcd_devfreq_target(struct device *dev,
1550 unsigned long *freq, u32 flags)
1551 {
1552 int ret = 0;
1553 struct ufs_hba *hba = dev_get_drvdata(dev);
1554 ktime_t start;
1555 bool scale_up = false, sched_clk_scaling_suspend_work = false;
1556 struct list_head *clk_list = &hba->clk_list_head;
1557 struct ufs_clk_info *clki;
1558
1559 if (!ufshcd_is_clkscaling_supported(hba))
1560 return -EINVAL;
1561
1562 if (hba->use_pm_opp) {
1563 struct dev_pm_opp *opp;
1564
1565 /* Get the recommended frequency from OPP framework */
1566 opp = devfreq_recommended_opp(dev, freq, flags);
1567 if (IS_ERR(opp))
1568 return PTR_ERR(opp);
1569
1570 dev_pm_opp_put(opp);
1571 } else {
1572 /* Override with the closest supported frequency */
1573 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1574 list);
1575 *freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1576 }
1577
1578 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1579 {
1580 if (ufshcd_eh_in_progress(hba))
1581 return 0;
1582
1583 /* Skip scaling clock when clock scaling is suspended */
1584 if (hba->clk_scaling.is_suspended) {
1585 dev_warn(hba->dev, "clock scaling is suspended, skip");
1586 return 0;
1587 }
1588
1589 if (!hba->clk_scaling.active_reqs)
1590 sched_clk_scaling_suspend_work = true;
1591
1592 if (list_empty(clk_list))
1593 goto out;
1594
1595 /* Decide based on the target or rounded-off frequency and update */
1596 if (hba->use_pm_opp)
1597 scale_up = *freq > hba->clk_scaling.target_freq;
1598 else
1599 scale_up = *freq == clki->max_freq;
1600
1601 if (!hba->use_pm_opp && !scale_up)
1602 *freq = clki->min_freq;
1603
1604 /* Update the frequency */
1605 if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1606 ret = 0;
1607 goto out; /* no state change required */
1608 }
1609 }
1610
1611 start = ktime_get();
1612 ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1613 if (!ret)
1614 hba->clk_scaling.target_freq = *freq;
1615
1616 trace_ufshcd_profile_clk_scaling(hba,
1617 (scale_up ? "up" : "down"),
1618 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1619
1620 out:
1621 if (sched_clk_scaling_suspend_work &&
1622 (!scale_up || hba->clk_scaling.suspend_on_no_request))
1623 queue_work(hba->clk_scaling.workq,
1624 &hba->clk_scaling.suspend_work);
1625
1626 return ret;
1627 }
1628
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1629 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1630 struct devfreq_dev_status *stat)
1631 {
1632 struct ufs_hba *hba = dev_get_drvdata(dev);
1633 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1634 ktime_t curr_t;
1635
1636 if (!ufshcd_is_clkscaling_supported(hba))
1637 return -EINVAL;
1638
1639 memset(stat, 0, sizeof(*stat));
1640
1641 guard(spinlock_irqsave)(&hba->clk_scaling.lock);
1642
1643 curr_t = ktime_get();
1644 if (!scaling->window_start_t)
1645 goto start_window;
1646
1647 /*
1648 * If current frequency is 0, then the ondemand governor considers
1649 * there's no initial frequency set. And it always requests to set
1650 * to max. frequency.
1651 */
1652 if (hba->use_pm_opp) {
1653 stat->current_frequency = hba->clk_scaling.target_freq;
1654 } else {
1655 struct list_head *clk_list = &hba->clk_list_head;
1656 struct ufs_clk_info *clki;
1657
1658 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1659 stat->current_frequency = clki->curr_freq;
1660 }
1661
1662 if (scaling->is_busy_started)
1663 scaling->tot_busy_t += ktime_us_delta(curr_t,
1664 scaling->busy_start_t);
1665 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1666 stat->busy_time = scaling->tot_busy_t;
1667 start_window:
1668 scaling->window_start_t = curr_t;
1669 scaling->tot_busy_t = 0;
1670
1671 if (scaling->active_reqs) {
1672 scaling->busy_start_t = curr_t;
1673 scaling->is_busy_started = true;
1674 } else {
1675 scaling->busy_start_t = 0;
1676 scaling->is_busy_started = false;
1677 }
1678
1679 return 0;
1680 }
1681
ufshcd_devfreq_init(struct ufs_hba * hba)1682 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1683 {
1684 struct list_head *clk_list = &hba->clk_list_head;
1685 struct ufs_clk_info *clki;
1686 struct devfreq *devfreq;
1687 int ret;
1688
1689 /* Skip devfreq if we don't have any clocks in the list */
1690 if (list_empty(clk_list))
1691 return 0;
1692
1693 if (!hba->use_pm_opp) {
1694 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1695 dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1696 dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1697 }
1698
1699 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1700 &hba->vps->ondemand_data);
1701 devfreq = devfreq_add_device(hba->dev,
1702 &hba->vps->devfreq_profile,
1703 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1704 &hba->vps->ondemand_data);
1705 if (IS_ERR(devfreq)) {
1706 ret = PTR_ERR(devfreq);
1707 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1708
1709 if (!hba->use_pm_opp) {
1710 dev_pm_opp_remove(hba->dev, clki->min_freq);
1711 dev_pm_opp_remove(hba->dev, clki->max_freq);
1712 }
1713 return ret;
1714 }
1715
1716 hba->devfreq = devfreq;
1717
1718 return 0;
1719 }
1720
ufshcd_devfreq_remove(struct ufs_hba * hba)1721 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1722 {
1723 struct list_head *clk_list = &hba->clk_list_head;
1724
1725 if (!hba->devfreq)
1726 return;
1727
1728 devfreq_remove_device(hba->devfreq);
1729 hba->devfreq = NULL;
1730
1731 if (!hba->use_pm_opp) {
1732 struct ufs_clk_info *clki;
1733
1734 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1735 dev_pm_opp_remove(hba->dev, clki->min_freq);
1736 dev_pm_opp_remove(hba->dev, clki->max_freq);
1737 }
1738 }
1739
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1740 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1741 {
1742 bool suspend = false;
1743
1744 cancel_work_sync(&hba->clk_scaling.suspend_work);
1745 cancel_work_sync(&hba->clk_scaling.resume_work);
1746
1747 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1748 {
1749 if (!hba->clk_scaling.is_suspended) {
1750 suspend = true;
1751 hba->clk_scaling.is_suspended = true;
1752 hba->clk_scaling.window_start_t = 0;
1753 }
1754 }
1755
1756 if (suspend)
1757 devfreq_suspend_device(hba->devfreq);
1758 }
1759
ufshcd_resume_clkscaling(struct ufs_hba * hba)1760 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1761 {
1762 bool resume = false;
1763
1764 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1765 {
1766 if (hba->clk_scaling.is_suspended) {
1767 resume = true;
1768 hba->clk_scaling.is_suspended = false;
1769 }
1770 }
1771
1772 if (resume)
1773 devfreq_resume_device(hba->devfreq);
1774 }
1775
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1776 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1777 struct device_attribute *attr, char *buf)
1778 {
1779 struct ufs_hba *hba = dev_get_drvdata(dev);
1780
1781 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1782 }
1783
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1784 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1785 struct device_attribute *attr, const char *buf, size_t count)
1786 {
1787 struct ufs_hba *hba = dev_get_drvdata(dev);
1788 struct ufs_clk_info *clki;
1789 unsigned long freq;
1790 u32 value;
1791 int err = 0;
1792
1793 if (kstrtou32(buf, 0, &value))
1794 return -EINVAL;
1795
1796 down(&hba->host_sem);
1797 if (!ufshcd_is_user_access_allowed(hba)) {
1798 err = -EBUSY;
1799 goto out;
1800 }
1801
1802 value = !!value;
1803 if (value == hba->clk_scaling.is_enabled)
1804 goto out;
1805
1806 ufshcd_rpm_get_sync(hba);
1807 ufshcd_hold(hba);
1808
1809 hba->clk_scaling.is_enabled = value;
1810
1811 if (value) {
1812 ufshcd_resume_clkscaling(hba);
1813 goto out_rel;
1814 }
1815
1816 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1817 freq = clki->max_freq;
1818
1819 ufshcd_suspend_clkscaling(hba);
1820
1821 if (!ufshcd_is_devfreq_scaling_required(hba, freq, true))
1822 goto out_rel;
1823
1824 err = ufshcd_devfreq_scale(hba, freq, true);
1825 if (err)
1826 dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1827 __func__, err);
1828 else
1829 hba->clk_scaling.target_freq = freq;
1830
1831 out_rel:
1832 ufshcd_release(hba);
1833 ufshcd_rpm_put_sync(hba);
1834 out:
1835 up(&hba->host_sem);
1836 return err ? err : count;
1837 }
1838
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1839 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1840 {
1841 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1842 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1843 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1844 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1845 hba->clk_scaling.enable_attr.attr.mode = 0644;
1846 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1847 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1848 }
1849
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1850 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1851 {
1852 if (hba->clk_scaling.enable_attr.attr.name)
1853 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1854 }
1855
ufshcd_init_clk_scaling(struct ufs_hba * hba)1856 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1857 {
1858 if (!ufshcd_is_clkscaling_supported(hba))
1859 return;
1860
1861 if (!hba->clk_scaling.min_gear)
1862 hba->clk_scaling.min_gear = UFS_HS_G1;
1863
1864 if (!hba->clk_scaling.wb_gear)
1865 /* Use intermediate gear speed HS_G3 as the default wb_gear */
1866 hba->clk_scaling.wb_gear = UFS_HS_G3;
1867
1868 INIT_WORK(&hba->clk_scaling.suspend_work,
1869 ufshcd_clk_scaling_suspend_work);
1870 INIT_WORK(&hba->clk_scaling.resume_work,
1871 ufshcd_clk_scaling_resume_work);
1872
1873 spin_lock_init(&hba->clk_scaling.lock);
1874
1875 hba->clk_scaling.workq = alloc_ordered_workqueue(
1876 "ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no);
1877
1878 hba->clk_scaling.is_initialized = true;
1879 }
1880
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1881 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1882 {
1883 if (!hba->clk_scaling.is_initialized)
1884 return;
1885
1886 ufshcd_remove_clk_scaling_sysfs(hba);
1887 destroy_workqueue(hba->clk_scaling.workq);
1888 ufshcd_devfreq_remove(hba);
1889 hba->clk_scaling.is_initialized = false;
1890 }
1891
ufshcd_ungate_work(struct work_struct * work)1892 static void ufshcd_ungate_work(struct work_struct *work)
1893 {
1894 int ret;
1895 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1896 clk_gating.ungate_work);
1897
1898 cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1899
1900 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
1901 if (hba->clk_gating.state == CLKS_ON)
1902 return;
1903 }
1904
1905 ufshcd_hba_vreg_set_hpm(hba);
1906 ufshcd_setup_clocks(hba, true);
1907
1908 ufshcd_enable_irq(hba);
1909
1910 /* Exit from hibern8 */
1911 if (ufshcd_can_hibern8_during_gating(hba)) {
1912 /* Prevent gating in this path */
1913 hba->clk_gating.is_suspended = true;
1914 if (ufshcd_is_link_hibern8(hba)) {
1915 ret = ufshcd_uic_hibern8_exit(hba);
1916 if (ret)
1917 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1918 __func__, ret);
1919 else
1920 ufshcd_set_link_active(hba);
1921 }
1922 hba->clk_gating.is_suspended = false;
1923 }
1924 }
1925
1926 /**
1927 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1928 * Also, exit from hibern8 mode and set the link as active.
1929 * @hba: per adapter instance
1930 */
ufshcd_hold(struct ufs_hba * hba)1931 void ufshcd_hold(struct ufs_hba *hba)
1932 {
1933 bool flush_result;
1934 unsigned long flags;
1935
1936 if (!ufshcd_is_clkgating_allowed(hba) ||
1937 !hba->clk_gating.is_initialized)
1938 return;
1939 spin_lock_irqsave(&hba->clk_gating.lock, flags);
1940 hba->clk_gating.active_reqs++;
1941
1942 start:
1943 switch (hba->clk_gating.state) {
1944 case CLKS_ON:
1945 /*
1946 * Wait for the ungate work to complete if in progress.
1947 * Though the clocks may be in ON state, the link could
1948 * still be in hibner8 state if hibern8 is allowed
1949 * during clock gating.
1950 * Make sure we exit hibern8 state also in addition to
1951 * clocks being ON.
1952 */
1953 if (ufshcd_can_hibern8_during_gating(hba) &&
1954 ufshcd_is_link_hibern8(hba)) {
1955 spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1956 flush_result = flush_work(&hba->clk_gating.ungate_work);
1957 if (hba->clk_gating.is_suspended && !flush_result)
1958 return;
1959 spin_lock_irqsave(&hba->clk_gating.lock, flags);
1960 goto start;
1961 }
1962 break;
1963 case REQ_CLKS_OFF:
1964 if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1965 hba->clk_gating.state = CLKS_ON;
1966 trace_ufshcd_clk_gating(hba,
1967 hba->clk_gating.state);
1968 break;
1969 }
1970 /*
1971 * If we are here, it means gating work is either done or
1972 * currently running. Hence, fall through to cancel gating
1973 * work and to enable clocks.
1974 */
1975 fallthrough;
1976 case CLKS_OFF:
1977 hba->clk_gating.state = REQ_CLKS_ON;
1978 trace_ufshcd_clk_gating(hba,
1979 hba->clk_gating.state);
1980 queue_work(hba->clk_gating.clk_gating_workq,
1981 &hba->clk_gating.ungate_work);
1982 /*
1983 * fall through to check if we should wait for this
1984 * work to be done or not.
1985 */
1986 fallthrough;
1987 case REQ_CLKS_ON:
1988 spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1989 flush_work(&hba->clk_gating.ungate_work);
1990 /* Make sure state is CLKS_ON before returning */
1991 spin_lock_irqsave(&hba->clk_gating.lock, flags);
1992 goto start;
1993 default:
1994 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1995 __func__, hba->clk_gating.state);
1996 break;
1997 }
1998 spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1999 }
2000 EXPORT_SYMBOL_GPL(ufshcd_hold);
2001
ufshcd_gate_work(struct work_struct * work)2002 static void ufshcd_gate_work(struct work_struct *work)
2003 {
2004 struct ufs_hba *hba = container_of(work, struct ufs_hba,
2005 clk_gating.gate_work.work);
2006 int ret;
2007
2008 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
2009 /*
2010 * In case you are here to cancel this work the gating state
2011 * would be marked as REQ_CLKS_ON. In this case save time by
2012 * skipping the gating work and exit after changing the clock
2013 * state to CLKS_ON.
2014 */
2015 if (hba->clk_gating.is_suspended ||
2016 hba->clk_gating.state != REQ_CLKS_OFF) {
2017 hba->clk_gating.state = CLKS_ON;
2018 trace_ufshcd_clk_gating(hba,
2019 hba->clk_gating.state);
2020 return;
2021 }
2022
2023 if (hba->clk_gating.active_reqs)
2024 return;
2025 }
2026
2027 scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2028 if (ufshcd_is_ufs_dev_busy(hba) ||
2029 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2030 return;
2031 }
2032
2033 /* put the link into hibern8 mode before turning off clocks */
2034 if (ufshcd_can_hibern8_during_gating(hba)) {
2035 ret = ufshcd_uic_hibern8_enter(hba);
2036 if (ret) {
2037 hba->clk_gating.state = CLKS_ON;
2038 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
2039 __func__, ret);
2040 trace_ufshcd_clk_gating(hba,
2041 hba->clk_gating.state);
2042 return;
2043 }
2044 ufshcd_set_link_hibern8(hba);
2045 }
2046
2047 ufshcd_disable_irq(hba);
2048
2049 ufshcd_setup_clocks(hba, false);
2050
2051 /* Put the host controller in low power mode if possible */
2052 ufshcd_hba_vreg_set_lpm(hba);
2053 /*
2054 * In case you are here to cancel this work the gating state
2055 * would be marked as REQ_CLKS_ON. In this case keep the state
2056 * as REQ_CLKS_ON which would anyway imply that clocks are off
2057 * and a request to turn them on is pending. By doing this way,
2058 * we keep the state machine in tact and this would ultimately
2059 * prevent from doing cancel work multiple times when there are
2060 * new requests arriving before the current cancel work is done.
2061 */
2062 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2063 if (hba->clk_gating.state == REQ_CLKS_OFF) {
2064 hba->clk_gating.state = CLKS_OFF;
2065 trace_ufshcd_clk_gating(hba,
2066 hba->clk_gating.state);
2067 }
2068 }
2069
__ufshcd_release(struct ufs_hba * hba)2070 static void __ufshcd_release(struct ufs_hba *hba)
2071 {
2072 lockdep_assert_held(&hba->clk_gating.lock);
2073
2074 if (!ufshcd_is_clkgating_allowed(hba))
2075 return;
2076
2077 hba->clk_gating.active_reqs--;
2078
2079 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2080 !hba->clk_gating.is_initialized ||
2081 hba->clk_gating.state == CLKS_OFF)
2082 return;
2083
2084 scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2085 if (ufshcd_has_pending_tasks(hba) ||
2086 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2087 return;
2088 }
2089
2090 hba->clk_gating.state = REQ_CLKS_OFF;
2091 trace_ufshcd_clk_gating(hba, hba->clk_gating.state);
2092 queue_delayed_work(hba->clk_gating.clk_gating_workq,
2093 &hba->clk_gating.gate_work,
2094 msecs_to_jiffies(hba->clk_gating.delay_ms));
2095 }
2096
ufshcd_release(struct ufs_hba * hba)2097 void ufshcd_release(struct ufs_hba *hba)
2098 {
2099 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2100 __ufshcd_release(hba);
2101 }
2102 EXPORT_SYMBOL_GPL(ufshcd_release);
2103
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)2104 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2105 struct device_attribute *attr, char *buf)
2106 {
2107 struct ufs_hba *hba = dev_get_drvdata(dev);
2108
2109 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2110 }
2111
ufshcd_clkgate_delay_set(struct device * dev,unsigned long value)2112 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2113 {
2114 struct ufs_hba *hba = dev_get_drvdata(dev);
2115
2116 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2117 hba->clk_gating.delay_ms = value;
2118 }
2119 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2120
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2121 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2122 struct device_attribute *attr, const char *buf, size_t count)
2123 {
2124 unsigned long value;
2125
2126 if (kstrtoul(buf, 0, &value))
2127 return -EINVAL;
2128
2129 ufshcd_clkgate_delay_set(dev, value);
2130 return count;
2131 }
2132
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)2133 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2134 struct device_attribute *attr, char *buf)
2135 {
2136 struct ufs_hba *hba = dev_get_drvdata(dev);
2137
2138 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2139 }
2140
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2141 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2142 struct device_attribute *attr, const char *buf, size_t count)
2143 {
2144 struct ufs_hba *hba = dev_get_drvdata(dev);
2145 u32 value;
2146
2147 if (kstrtou32(buf, 0, &value))
2148 return -EINVAL;
2149
2150 value = !!value;
2151
2152 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2153
2154 if (value == hba->clk_gating.is_enabled)
2155 return count;
2156
2157 if (value)
2158 __ufshcd_release(hba);
2159 else
2160 hba->clk_gating.active_reqs++;
2161
2162 hba->clk_gating.is_enabled = value;
2163
2164 return count;
2165 }
2166
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)2167 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2168 {
2169 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2170 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2171 sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2172 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2173 hba->clk_gating.delay_attr.attr.mode = 0644;
2174 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2175 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2176
2177 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2178 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2179 sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2180 hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2181 hba->clk_gating.enable_attr.attr.mode = 0644;
2182 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2183 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2184 }
2185
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)2186 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2187 {
2188 if (hba->clk_gating.delay_attr.attr.name)
2189 device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2190 if (hba->clk_gating.enable_attr.attr.name)
2191 device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2192 }
2193
ufshcd_init_clk_gating(struct ufs_hba * hba)2194 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2195 {
2196 if (!ufshcd_is_clkgating_allowed(hba))
2197 return;
2198
2199 hba->clk_gating.state = CLKS_ON;
2200
2201 hba->clk_gating.delay_ms = 150;
2202 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2203 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2204
2205 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(
2206 "ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI,
2207 hba->host->host_no);
2208
2209 ufshcd_init_clk_gating_sysfs(hba);
2210
2211 hba->clk_gating.is_enabled = true;
2212 hba->clk_gating.is_initialized = true;
2213 }
2214
ufshcd_exit_clk_gating(struct ufs_hba * hba)2215 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2216 {
2217 if (!hba->clk_gating.is_initialized)
2218 return;
2219
2220 ufshcd_remove_clk_gating_sysfs(hba);
2221
2222 /* Ungate the clock if necessary. */
2223 ufshcd_hold(hba);
2224 hba->clk_gating.is_initialized = false;
2225 ufshcd_release(hba);
2226
2227 destroy_workqueue(hba->clk_gating.clk_gating_workq);
2228 }
2229
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)2230 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2231 {
2232 bool queue_resume_work = false;
2233 ktime_t curr_t = ktime_get();
2234
2235 if (!ufshcd_is_clkscaling_supported(hba))
2236 return;
2237
2238 guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2239
2240 if (!hba->clk_scaling.active_reqs++)
2241 queue_resume_work = true;
2242
2243 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress)
2244 return;
2245
2246 if (queue_resume_work)
2247 queue_work(hba->clk_scaling.workq,
2248 &hba->clk_scaling.resume_work);
2249
2250 if (!hba->clk_scaling.window_start_t) {
2251 hba->clk_scaling.window_start_t = curr_t;
2252 hba->clk_scaling.tot_busy_t = 0;
2253 hba->clk_scaling.is_busy_started = false;
2254 }
2255
2256 if (!hba->clk_scaling.is_busy_started) {
2257 hba->clk_scaling.busy_start_t = curr_t;
2258 hba->clk_scaling.is_busy_started = true;
2259 }
2260 }
2261
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)2262 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2263 {
2264 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2265
2266 if (!ufshcd_is_clkscaling_supported(hba))
2267 return;
2268
2269 guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2270
2271 hba->clk_scaling.active_reqs--;
2272 if (!scaling->active_reqs && scaling->is_busy_started) {
2273 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2274 scaling->busy_start_t));
2275 scaling->busy_start_t = 0;
2276 scaling->is_busy_started = false;
2277 }
2278 }
2279
ufshcd_monitor_opcode2dir(u8 opcode)2280 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2281 {
2282 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2283 return READ;
2284 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2285 return WRITE;
2286 else
2287 return -EINVAL;
2288 }
2289
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2290 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2291 struct ufshcd_lrb *lrbp)
2292 {
2293 const struct ufs_hba_monitor *m = &hba->monitor;
2294
2295 return (m->enabled && lrbp && lrbp->cmd &&
2296 (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2297 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2298 }
2299
ufshcd_start_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2300 static void ufshcd_start_monitor(struct ufs_hba *hba,
2301 const struct ufshcd_lrb *lrbp)
2302 {
2303 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2304 unsigned long flags;
2305
2306 spin_lock_irqsave(hba->host->host_lock, flags);
2307 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2308 hba->monitor.busy_start_ts[dir] = ktime_get();
2309 spin_unlock_irqrestore(hba->host->host_lock, flags);
2310 }
2311
ufshcd_update_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2312 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2313 {
2314 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2315 unsigned long flags;
2316
2317 spin_lock_irqsave(hba->host->host_lock, flags);
2318 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2319 const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2320 struct ufs_hba_monitor *m = &hba->monitor;
2321 ktime_t now, inc, lat;
2322
2323 now = lrbp->compl_time_stamp;
2324 inc = ktime_sub(now, m->busy_start_ts[dir]);
2325 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2326 m->nr_sec_rw[dir] += blk_rq_sectors(req);
2327
2328 /* Update latencies */
2329 m->nr_req[dir]++;
2330 lat = ktime_sub(now, lrbp->issue_time_stamp);
2331 m->lat_sum[dir] += lat;
2332 if (m->lat_max[dir] < lat || !m->lat_max[dir])
2333 m->lat_max[dir] = lat;
2334 if (m->lat_min[dir] > lat || !m->lat_min[dir])
2335 m->lat_min[dir] = lat;
2336
2337 m->nr_queued[dir]--;
2338 /* Push forward the busy start of monitor */
2339 m->busy_start_ts[dir] = now;
2340 }
2341 spin_unlock_irqrestore(hba->host->host_lock, flags);
2342 }
2343
2344 /**
2345 * ufshcd_send_command - Send SCSI or device management commands
2346 * @hba: per adapter instance
2347 * @task_tag: Task tag of the command
2348 * @hwq: pointer to hardware queue instance
2349 */
2350 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag,struct ufs_hw_queue * hwq)2351 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2352 struct ufs_hw_queue *hwq)
2353 {
2354 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2355 unsigned long flags;
2356
2357 lrbp->issue_time_stamp = ktime_get();
2358 lrbp->issue_time_stamp_local_clock = local_clock();
2359 lrbp->compl_time_stamp = ktime_set(0, 0);
2360 lrbp->compl_time_stamp_local_clock = 0;
2361 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2362 if (lrbp->cmd)
2363 ufshcd_clk_scaling_start_busy(hba);
2364 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2365 ufshcd_start_monitor(hba, lrbp);
2366
2367 if (hba->mcq_enabled) {
2368 int utrd_size = sizeof(struct utp_transfer_req_desc);
2369 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2370 struct utp_transfer_req_desc *dest;
2371
2372 spin_lock(&hwq->sq_lock);
2373 dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2374 memcpy(dest, src, utrd_size);
2375 ufshcd_inc_sq_tail(hwq);
2376 spin_unlock(&hwq->sq_lock);
2377 } else {
2378 spin_lock_irqsave(&hba->outstanding_lock, flags);
2379 if (hba->vops && hba->vops->setup_xfer_req)
2380 hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2381 !!lrbp->cmd);
2382 __set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2383 ufshcd_writel(hba, 1 << lrbp->task_tag,
2384 REG_UTP_TRANSFER_REQ_DOOR_BELL);
2385 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2386 }
2387 }
2388
2389 /**
2390 * ufshcd_copy_sense_data - Copy sense data in case of check condition
2391 * @lrbp: pointer to local reference block
2392 */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)2393 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2394 {
2395 u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2396 u16 resp_len;
2397 int len;
2398
2399 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2400 if (sense_buffer && resp_len) {
2401 int len_to_copy;
2402
2403 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2404 len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2405
2406 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2407 len_to_copy);
2408 }
2409 }
2410
2411 /**
2412 * ufshcd_copy_query_response() - Copy the Query Response and the data
2413 * descriptor
2414 * @hba: per adapter instance
2415 * @lrbp: pointer to local reference block
2416 *
2417 * Return: 0 upon success; < 0 upon failure.
2418 */
2419 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2420 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2421 {
2422 struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2423
2424 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2425
2426 /* Get the descriptor */
2427 if (hba->dev_cmd.query.descriptor &&
2428 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2429 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2430 GENERAL_UPIU_REQUEST_SIZE;
2431 u16 resp_len;
2432 u16 buf_len;
2433
2434 /* data segment length */
2435 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2436 .data_segment_length);
2437 buf_len = be16_to_cpu(
2438 hba->dev_cmd.query.request.upiu_req.length);
2439 if (likely(buf_len >= resp_len)) {
2440 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2441 } else {
2442 dev_warn(hba->dev,
2443 "%s: rsp size %d is bigger than buffer size %d",
2444 __func__, resp_len, buf_len);
2445 return -EINVAL;
2446 }
2447 }
2448
2449 return 0;
2450 }
2451
2452 /**
2453 * ufshcd_hba_capabilities - Read controller capabilities
2454 * @hba: per adapter instance
2455 *
2456 * Return: 0 on success, negative on error.
2457 */
ufshcd_hba_capabilities(struct ufs_hba * hba)2458 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2459 {
2460 int err;
2461
2462 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2463
2464 /* nutrs and nutmrs are 0 based values */
2465 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1;
2466 hba->nutmrs =
2467 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2468 hba->reserved_slot = hba->nutrs - 1;
2469
2470 hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1;
2471
2472 /* Read crypto capabilities */
2473 err = ufshcd_hba_init_crypto_capabilities(hba);
2474 if (err) {
2475 dev_err(hba->dev, "crypto setup failed\n");
2476 return err;
2477 }
2478
2479 /*
2480 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2481 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2482 * means we can simply read values regardless of version.
2483 */
2484 hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2485 /*
2486 * 0h: legacy single doorbell support is available
2487 * 1h: indicate that legacy single doorbell support has been removed
2488 */
2489 if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP))
2490 hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2491 else
2492 hba->lsdb_sup = true;
2493
2494 hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2495
2496 return 0;
2497 }
2498
2499 /**
2500 * ufshcd_ready_for_uic_cmd - Check if controller is ready
2501 * to accept UIC commands
2502 * @hba: per adapter instance
2503 *
2504 * Return: true on success, else false.
2505 */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2506 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2507 {
2508 u32 val;
2509 int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2510 500, uic_cmd_timeout * 1000, false, hba,
2511 REG_CONTROLLER_STATUS);
2512 return ret == 0;
2513 }
2514
2515 /**
2516 * ufshcd_get_upmcrs - Get the power mode change request status
2517 * @hba: Pointer to adapter instance
2518 *
2519 * This function gets the UPMCRS field of HCS register
2520 *
2521 * Return: value of UPMCRS field.
2522 */
ufshcd_get_upmcrs(struct ufs_hba * hba)2523 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2524 {
2525 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2526 }
2527
2528 /**
2529 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2530 * @hba: per adapter instance
2531 * @uic_cmd: UIC command
2532 */
2533 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2534 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2535 {
2536 lockdep_assert_held(&hba->uic_cmd_mutex);
2537
2538 WARN_ON(hba->active_uic_cmd);
2539
2540 hba->active_uic_cmd = uic_cmd;
2541
2542 /* Write Args */
2543 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2544 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2545 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2546
2547 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2548
2549 /* Write UIC Cmd */
2550 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2551 REG_UIC_COMMAND);
2552 }
2553
2554 /**
2555 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2556 * @hba: per adapter instance
2557 * @uic_cmd: UIC command
2558 *
2559 * Return: 0 only if success.
2560 */
2561 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2562 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2563 {
2564 int ret;
2565 unsigned long flags;
2566
2567 lockdep_assert_held(&hba->uic_cmd_mutex);
2568
2569 if (wait_for_completion_timeout(&uic_cmd->done,
2570 msecs_to_jiffies(uic_cmd_timeout))) {
2571 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2572 } else {
2573 ret = -ETIMEDOUT;
2574 dev_err(hba->dev,
2575 "uic cmd 0x%x with arg3 0x%x completion timeout\n",
2576 uic_cmd->command, uic_cmd->argument3);
2577
2578 if (!uic_cmd->cmd_active) {
2579 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2580 __func__);
2581 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2582 }
2583 }
2584
2585 spin_lock_irqsave(hba->host->host_lock, flags);
2586 hba->active_uic_cmd = NULL;
2587 spin_unlock_irqrestore(hba->host->host_lock, flags);
2588
2589 return ret;
2590 }
2591
2592 /**
2593 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2594 * @hba: per adapter instance
2595 * @uic_cmd: UIC command
2596 *
2597 * Return: 0 if successful; < 0 upon failure.
2598 */
2599 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2600 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2601 {
2602 lockdep_assert_held(&hba->uic_cmd_mutex);
2603
2604 if (!ufshcd_ready_for_uic_cmd(hba)) {
2605 dev_err(hba->dev,
2606 "Controller not ready to accept UIC commands\n");
2607 return -EIO;
2608 }
2609
2610 init_completion(&uic_cmd->done);
2611
2612 uic_cmd->cmd_active = 1;
2613 ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2614
2615 return 0;
2616 }
2617
2618 /**
2619 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2620 * @hba: per adapter instance
2621 * @uic_cmd: UIC command
2622 *
2623 * Return: 0 only if success.
2624 */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2625 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2626 {
2627 unsigned long flags;
2628 int ret;
2629
2630 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2631 return 0;
2632
2633 ufshcd_hold(hba);
2634 mutex_lock(&hba->uic_cmd_mutex);
2635 ufshcd_add_delay_before_dme_cmd(hba);
2636
2637 spin_lock_irqsave(hba->host->host_lock, flags);
2638 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
2639 spin_unlock_irqrestore(hba->host->host_lock, flags);
2640
2641 ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2642 if (!ret)
2643 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2644
2645 mutex_unlock(&hba->uic_cmd_mutex);
2646
2647 ufshcd_release(hba);
2648 return ret;
2649 }
2650
2651 /**
2652 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2653 * @hba: per-adapter instance
2654 * @lrbp: pointer to local reference block
2655 * @sg_entries: The number of sg lists actually used
2656 * @sg_list: Pointer to SG list
2657 */
ufshcd_sgl_to_prdt(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int sg_entries,struct scatterlist * sg_list)2658 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2659 struct scatterlist *sg_list)
2660 {
2661 struct ufshcd_sg_entry *prd;
2662 struct scatterlist *sg;
2663 int i;
2664
2665 if (sg_entries) {
2666
2667 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2668 lrbp->utr_descriptor_ptr->prd_table_length =
2669 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2670 else
2671 lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2672
2673 prd = lrbp->ucd_prdt_ptr;
2674
2675 for_each_sg(sg_list, sg, sg_entries, i) {
2676 const unsigned int len = sg_dma_len(sg);
2677
2678 /*
2679 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2680 * based value that indicates the length, in bytes, of
2681 * the data block. A maximum of length of 256KB may
2682 * exist for any entry. Bits 1:0 of this field shall be
2683 * 11b to indicate Dword granularity. A value of '3'
2684 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2685 */
2686 WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2687 prd->size = cpu_to_le32(len - 1);
2688 prd->addr = cpu_to_le64(sg->dma_address);
2689 prd->reserved = 0;
2690 prd = (void *)prd + ufshcd_sg_entry_size(hba);
2691 }
2692 } else {
2693 lrbp->utr_descriptor_ptr->prd_table_length = 0;
2694 }
2695 }
2696
2697 /**
2698 * ufshcd_map_sg - Map scatter-gather list to prdt
2699 * @hba: per adapter instance
2700 * @lrbp: pointer to local reference block
2701 *
2702 * Return: 0 in case of success, non-zero value in case of failure.
2703 */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2704 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2705 {
2706 struct scsi_cmnd *cmd = lrbp->cmd;
2707 int sg_segments = scsi_dma_map(cmd);
2708
2709 if (sg_segments < 0)
2710 return sg_segments;
2711
2712 ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2713
2714 return ufshcd_crypto_fill_prdt(hba, lrbp);
2715 }
2716
2717 /**
2718 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2719 * descriptor according to request
2720 * @hba: per adapter instance
2721 * @lrbp: pointer to local reference block
2722 * @upiu_flags: flags required in the header
2723 * @cmd_dir: requests data direction
2724 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2725 */
2726 static void
ufshcd_prepare_req_desc_hdr(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir,int ehs_length)2727 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2728 u8 *upiu_flags, enum dma_data_direction cmd_dir,
2729 int ehs_length)
2730 {
2731 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2732 struct request_desc_header *h = &req_desc->header;
2733 enum utp_data_direction data_direction;
2734
2735 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2736
2737 *h = (typeof(*h)){ };
2738
2739 if (cmd_dir == DMA_FROM_DEVICE) {
2740 data_direction = UTP_DEVICE_TO_HOST;
2741 *upiu_flags = UPIU_CMD_FLAGS_READ;
2742 } else if (cmd_dir == DMA_TO_DEVICE) {
2743 data_direction = UTP_HOST_TO_DEVICE;
2744 *upiu_flags = UPIU_CMD_FLAGS_WRITE;
2745 } else {
2746 data_direction = UTP_NO_DATA_TRANSFER;
2747 *upiu_flags = UPIU_CMD_FLAGS_NONE;
2748 }
2749
2750 h->command_type = lrbp->command_type;
2751 h->data_direction = data_direction;
2752 h->ehs_length = ehs_length;
2753
2754 if (lrbp->intr_cmd)
2755 h->interrupt = 1;
2756
2757 /* Prepare crypto related dwords */
2758 ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2759
2760 /*
2761 * assigning invalid value for command status. Controller
2762 * updates OCS on command completion, with the command
2763 * status
2764 */
2765 h->ocs = OCS_INVALID_COMMAND_STATUS;
2766
2767 req_desc->prd_table_length = 0;
2768 }
2769
2770 /**
2771 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2772 * for scsi commands
2773 * @lrbp: local reference block pointer
2774 * @upiu_flags: flags
2775 */
2776 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2777 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2778 {
2779 struct scsi_cmnd *cmd = lrbp->cmd;
2780 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2781 unsigned short cdb_len;
2782
2783 ucd_req_ptr->header = (struct utp_upiu_header){
2784 .transaction_code = UPIU_TRANSACTION_COMMAND,
2785 .flags = upiu_flags,
2786 .lun = lrbp->lun,
2787 .task_tag = lrbp->task_tag,
2788 .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2789 };
2790
2791 WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2792
2793 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2794
2795 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2796 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2797
2798 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2799 }
2800
2801 /**
2802 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2803 * @hba: UFS hba
2804 * @lrbp: local reference block pointer
2805 * @upiu_flags: flags
2806 */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2807 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2808 struct ufshcd_lrb *lrbp, u8 upiu_flags)
2809 {
2810 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2811 struct ufs_query *query = &hba->dev_cmd.query;
2812 u16 len = be16_to_cpu(query->request.upiu_req.length);
2813
2814 /* Query request header */
2815 ucd_req_ptr->header = (struct utp_upiu_header){
2816 .transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2817 .flags = upiu_flags,
2818 .lun = lrbp->lun,
2819 .task_tag = lrbp->task_tag,
2820 .query_function = query->request.query_func,
2821 /* Data segment length only need for WRITE_DESC */
2822 .data_segment_length =
2823 query->request.upiu_req.opcode ==
2824 UPIU_QUERY_OPCODE_WRITE_DESC ?
2825 cpu_to_be16(len) :
2826 0,
2827 };
2828
2829 /* Copy the Query Request buffer as is */
2830 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2831 QUERY_OSF_SIZE);
2832
2833 /* Copy the Descriptor */
2834 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2835 memcpy(ucd_req_ptr + 1, query->descriptor, len);
2836 }
2837
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2838 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2839 {
2840 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2841
2842 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2843
2844 ucd_req_ptr->header = (struct utp_upiu_header){
2845 .transaction_code = UPIU_TRANSACTION_NOP_OUT,
2846 .task_tag = lrbp->task_tag,
2847 };
2848 }
2849
2850 /**
2851 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2852 * for Device Management Purposes
2853 * @hba: per adapter instance
2854 * @lrbp: pointer to local reference block
2855 *
2856 * Return: 0 upon success; < 0 upon failure.
2857 */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2858 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2859 struct ufshcd_lrb *lrbp)
2860 {
2861 u8 upiu_flags;
2862 int ret = 0;
2863
2864 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2865
2866 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2867 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2868 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2869 ufshcd_prepare_utp_nop_upiu(lrbp);
2870 else
2871 ret = -EINVAL;
2872
2873 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2874
2875 return ret;
2876 }
2877
2878 /**
2879 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2880 * for SCSI Purposes
2881 * @hba: per adapter instance
2882 * @lrbp: pointer to local reference block
2883 */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2884 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2885 {
2886 struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2887 unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2888 u8 upiu_flags;
2889
2890 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2891 if (ioprio_class == IOPRIO_CLASS_RT)
2892 upiu_flags |= UPIU_CMD_FLAGS_CP;
2893 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2894 }
2895
__ufshcd_setup_cmd(struct ufshcd_lrb * lrbp,struct scsi_cmnd * cmd,u8 lun,int tag)2896 static void __ufshcd_setup_cmd(struct ufshcd_lrb *lrbp, struct scsi_cmnd *cmd, u8 lun, int tag)
2897 {
2898 memset(lrbp->ucd_req_ptr, 0, sizeof(*lrbp->ucd_req_ptr));
2899
2900 lrbp->cmd = cmd;
2901 lrbp->task_tag = tag;
2902 lrbp->lun = lun;
2903 ufshcd_prepare_lrbp_crypto(cmd ? scsi_cmd_to_rq(cmd) : NULL, lrbp);
2904 }
2905
ufshcd_setup_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct scsi_cmnd * cmd,u8 lun,int tag)2906 static void ufshcd_setup_scsi_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2907 struct scsi_cmnd *cmd, u8 lun, int tag)
2908 {
2909 __ufshcd_setup_cmd(lrbp, cmd, lun, tag);
2910 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2911 lrbp->req_abort_skip = false;
2912
2913 ufshcd_comp_scsi_upiu(hba, lrbp);
2914 }
2915
2916 /**
2917 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2918 * @upiu_wlun_id: UPIU W-LUN id
2919 *
2920 * Return: SCSI W-LUN id.
2921 */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2922 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2923 {
2924 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2925 }
2926
is_device_wlun(struct scsi_device * sdev)2927 static inline bool is_device_wlun(struct scsi_device *sdev)
2928 {
2929 return sdev->lun ==
2930 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2931 }
2932
2933 /*
2934 * Associate the UFS controller queue with the default and poll HCTX types.
2935 * Initialize the mq_map[] arrays.
2936 */
ufshcd_map_queues(struct Scsi_Host * shost)2937 static void ufshcd_map_queues(struct Scsi_Host *shost)
2938 {
2939 struct ufs_hba *hba = shost_priv(shost);
2940 int i, queue_offset = 0;
2941
2942 if (!is_mcq_supported(hba)) {
2943 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2944 hba->nr_queues[HCTX_TYPE_READ] = 0;
2945 hba->nr_queues[HCTX_TYPE_POLL] = 1;
2946 hba->nr_hw_queues = 1;
2947 }
2948
2949 for (i = 0; i < shost->nr_maps; i++) {
2950 struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2951
2952 map->nr_queues = hba->nr_queues[i];
2953 if (!map->nr_queues)
2954 continue;
2955 map->queue_offset = queue_offset;
2956 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2957 map->queue_offset = 0;
2958
2959 blk_mq_map_queues(map);
2960 queue_offset += map->nr_queues;
2961 }
2962 }
2963
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2964 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2965 {
2966 struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2967 i * ufshcd_get_ucd_size(hba);
2968 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2969 dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2970 i * ufshcd_get_ucd_size(hba);
2971 u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset);
2972 u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset);
2973
2974 lrb->utr_descriptor_ptr = utrdlp + i;
2975 lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2976 i * sizeof(struct utp_transfer_req_desc);
2977 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2978 lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2979 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2980 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2981 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2982 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2983 }
2984
2985 /**
2986 * ufshcd_queuecommand - main entry point for SCSI requests
2987 * @host: SCSI host pointer
2988 * @cmd: command from SCSI Midlayer
2989 *
2990 * Return: 0 for success, non-zero in case of failure.
2991 */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2992 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2993 {
2994 struct ufs_hba *hba = shost_priv(host);
2995 int tag = scsi_cmd_to_rq(cmd)->tag;
2996 struct ufshcd_lrb *lrbp;
2997 int err = 0;
2998 struct ufs_hw_queue *hwq = NULL;
2999
3000 switch (hba->ufshcd_state) {
3001 case UFSHCD_STATE_OPERATIONAL:
3002 break;
3003 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
3004 /*
3005 * SCSI error handler can call ->queuecommand() while UFS error
3006 * handler is in progress. Error interrupts could change the
3007 * state from UFSHCD_STATE_RESET to
3008 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
3009 * being issued in that case.
3010 */
3011 if (ufshcd_eh_in_progress(hba)) {
3012 err = SCSI_MLQUEUE_HOST_BUSY;
3013 goto out;
3014 }
3015 break;
3016 case UFSHCD_STATE_EH_SCHEDULED_FATAL:
3017 /*
3018 * pm_runtime_get_sync() is used at error handling preparation
3019 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
3020 * PM ops, it can never be finished if we let SCSI layer keep
3021 * retrying it, which gets err handler stuck forever. Neither
3022 * can we let the scsi cmd pass through, because UFS is in bad
3023 * state, the scsi cmd may eventually time out, which will get
3024 * err handler blocked for too long. So, just fail the scsi cmd
3025 * sent from PM ops, err handler can recover PM error anyways.
3026 */
3027 if (hba->pm_op_in_progress) {
3028 hba->force_reset = true;
3029 set_host_byte(cmd, DID_BAD_TARGET);
3030 scsi_done(cmd);
3031 goto out;
3032 }
3033 fallthrough;
3034 case UFSHCD_STATE_RESET:
3035 err = SCSI_MLQUEUE_HOST_BUSY;
3036 goto out;
3037 case UFSHCD_STATE_ERROR:
3038 set_host_byte(cmd, DID_ERROR);
3039 scsi_done(cmd);
3040 goto out;
3041 }
3042
3043 hba->req_abort_count = 0;
3044
3045 ufshcd_hold(hba);
3046
3047 lrbp = &hba->lrb[tag];
3048
3049 ufshcd_setup_scsi_cmd(hba, lrbp, cmd, ufshcd_scsi_to_upiu_lun(cmd->device->lun), tag);
3050
3051 err = ufshcd_map_sg(hba, lrbp);
3052 if (err) {
3053 ufshcd_release(hba);
3054 goto out;
3055 }
3056
3057 if (hba->mcq_enabled)
3058 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3059
3060 ufshcd_send_command(hba, tag, hwq);
3061
3062 out:
3063 if (ufs_trigger_eh(hba)) {
3064 unsigned long flags;
3065
3066 spin_lock_irqsave(hba->host->host_lock, flags);
3067 ufshcd_schedule_eh_work(hba);
3068 spin_unlock_irqrestore(hba->host->host_lock, flags);
3069 }
3070
3071 return err;
3072 }
3073
ufshcd_setup_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,u8 lun,int tag)3074 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3075 enum dev_cmd_type cmd_type, u8 lun, int tag)
3076 {
3077 __ufshcd_setup_cmd(lrbp, NULL, lun, tag);
3078 lrbp->intr_cmd = true; /* No interrupt aggregation */
3079 hba->dev_cmd.type = cmd_type;
3080 }
3081
3082 /*
3083 * Return: 0 upon success; < 0 upon failure.
3084 */
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)3085 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3086 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3087 {
3088 ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
3089
3090 return ufshcd_compose_devman_upiu(hba, lrbp);
3091 }
3092
3093 /*
3094 * Check with the block layer if the command is inflight
3095 * @cmd: command to check.
3096 *
3097 * Return: true if command is inflight; false if not.
3098 */
ufshcd_cmd_inflight(struct scsi_cmnd * cmd)3099 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3100 {
3101 return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3102 }
3103
3104 /*
3105 * Clear the pending command in the controller and wait until
3106 * the controller confirms that the command has been cleared.
3107 * @hba: per adapter instance
3108 * @task_tag: The tag number of the command to be cleared.
3109 */
ufshcd_clear_cmd(struct ufs_hba * hba,u32 task_tag)3110 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3111 {
3112 u32 mask;
3113 int err;
3114
3115 if (hba->mcq_enabled) {
3116 /*
3117 * MCQ mode. Clean up the MCQ resources similar to
3118 * what the ufshcd_utrl_clear() does for SDB mode.
3119 */
3120 err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3121 if (err) {
3122 dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3123 __func__, task_tag, err);
3124 return err;
3125 }
3126 return 0;
3127 }
3128
3129 mask = 1U << task_tag;
3130
3131 /* clear outstanding transaction before retry */
3132 ufshcd_utrl_clear(hba, mask);
3133
3134 /*
3135 * wait for h/w to clear corresponding bit in door-bell.
3136 * max. wait is 1 sec.
3137 */
3138 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3139 mask, ~mask, 1000, 1000);
3140 }
3141
3142 /**
3143 * ufshcd_dev_cmd_completion() - handles device management command responses
3144 * @hba: per adapter instance
3145 * @lrbp: pointer to local reference block
3146 *
3147 * Return: 0 upon success; < 0 upon failure.
3148 */
3149 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)3150 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3151 {
3152 enum upiu_response_transaction resp;
3153 int err = 0;
3154
3155 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3156 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3157
3158 switch (resp) {
3159 case UPIU_TRANSACTION_NOP_IN:
3160 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3161 err = -EINVAL;
3162 dev_err(hba->dev, "%s: unexpected response %x\n",
3163 __func__, resp);
3164 }
3165 break;
3166 case UPIU_TRANSACTION_QUERY_RSP: {
3167 u8 response = lrbp->ucd_rsp_ptr->header.response;
3168
3169 if (response == 0) {
3170 err = ufshcd_copy_query_response(hba, lrbp);
3171 } else {
3172 err = -EINVAL;
3173 dev_err(hba->dev, "%s: unexpected response in Query RSP: %x\n",
3174 __func__, response);
3175 }
3176 break;
3177 }
3178 case UPIU_TRANSACTION_REJECT_UPIU:
3179 /* TODO: handle Reject UPIU Response */
3180 err = -EPERM;
3181 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3182 __func__);
3183 break;
3184 case UPIU_TRANSACTION_RESPONSE:
3185 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3186 err = -EINVAL;
3187 dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3188 }
3189 break;
3190 default:
3191 err = -EINVAL;
3192 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3193 __func__, resp);
3194 break;
3195 }
3196
3197 WARN_ONCE(err > 0, "Incorrect return value %d > 0\n", err);
3198 return err;
3199 }
3200
3201 /*
3202 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3203 * < 0 if another error occurred.
3204 */
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)3205 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3206 struct ufshcd_lrb *lrbp, int max_timeout)
3207 {
3208 unsigned long time_left = msecs_to_jiffies(max_timeout);
3209 unsigned long flags;
3210 bool pending;
3211 int err;
3212
3213 retry:
3214 time_left = wait_for_completion_timeout(&hba->dev_cmd.complete,
3215 time_left);
3216
3217 if (likely(time_left)) {
3218 err = ufshcd_get_tr_ocs(lrbp, NULL);
3219 if (!err)
3220 err = ufshcd_dev_cmd_completion(hba, lrbp);
3221 } else {
3222 err = -ETIMEDOUT;
3223 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3224 __func__, lrbp->task_tag);
3225
3226 /* MCQ mode */
3227 if (hba->mcq_enabled) {
3228 /* successfully cleared the command, retry if needed */
3229 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3230 err = -EAGAIN;
3231 return err;
3232 }
3233
3234 /* SDB mode */
3235 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3236 /* successfully cleared the command, retry if needed */
3237 err = -EAGAIN;
3238 /*
3239 * Since clearing the command succeeded we also need to
3240 * clear the task tag bit from the outstanding_reqs
3241 * variable.
3242 */
3243 spin_lock_irqsave(&hba->outstanding_lock, flags);
3244 pending = test_bit(lrbp->task_tag,
3245 &hba->outstanding_reqs);
3246 if (pending)
3247 __clear_bit(lrbp->task_tag,
3248 &hba->outstanding_reqs);
3249 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3250
3251 if (!pending) {
3252 /*
3253 * The completion handler ran while we tried to
3254 * clear the command.
3255 */
3256 time_left = 1;
3257 goto retry;
3258 }
3259 } else {
3260 dev_err(hba->dev, "%s: failed to clear tag %d\n",
3261 __func__, lrbp->task_tag);
3262
3263 spin_lock_irqsave(&hba->outstanding_lock, flags);
3264 pending = test_bit(lrbp->task_tag,
3265 &hba->outstanding_reqs);
3266 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3267
3268 if (!pending) {
3269 /*
3270 * The completion handler ran while we tried to
3271 * clear the command.
3272 */
3273 time_left = 1;
3274 goto retry;
3275 }
3276 }
3277 }
3278
3279 return err;
3280 }
3281
ufshcd_dev_man_lock(struct ufs_hba * hba)3282 static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3283 {
3284 ufshcd_hold(hba);
3285 mutex_lock(&hba->dev_cmd.lock);
3286 down_read(&hba->clk_scaling_lock);
3287 }
3288
ufshcd_dev_man_unlock(struct ufs_hba * hba)3289 static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3290 {
3291 up_read(&hba->clk_scaling_lock);
3292 mutex_unlock(&hba->dev_cmd.lock);
3293 ufshcd_release(hba);
3294 }
3295
3296 /*
3297 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3298 * < 0 if another error occurred.
3299 */
ufshcd_issue_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,const u32 tag,int timeout)3300 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3301 const u32 tag, int timeout)
3302 {
3303 int err;
3304
3305 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3306 ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3307 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3308
3309 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3310 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3311
3312 return err;
3313 }
3314
3315 /**
3316 * ufshcd_exec_dev_cmd - API for sending device management requests
3317 * @hba: UFS hba
3318 * @cmd_type: specifies the type (NOP, Query...)
3319 * @timeout: timeout in milliseconds
3320 *
3321 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3322 * < 0 if another error occurred.
3323 *
3324 * NOTE: Since there is only one available tag for device management commands,
3325 * it is expected you hold the hba->dev_cmd.lock mutex.
3326 */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)3327 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3328 enum dev_cmd_type cmd_type, int timeout)
3329 {
3330 const u32 tag = hba->reserved_slot;
3331 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
3332 int err;
3333
3334 /* Protects use of hba->reserved_slot. */
3335 lockdep_assert_held(&hba->dev_cmd.lock);
3336
3337 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3338 if (unlikely(err))
3339 return err;
3340
3341 return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout);
3342 }
3343
3344 /**
3345 * ufshcd_init_query() - init the query response and request parameters
3346 * @hba: per-adapter instance
3347 * @request: address of the request pointer to be initialized
3348 * @response: address of the response pointer to be initialized
3349 * @opcode: operation to perform
3350 * @idn: flag idn to access
3351 * @index: LU number to access
3352 * @selector: query/flag/descriptor further identification
3353 */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)3354 static inline void ufshcd_init_query(struct ufs_hba *hba,
3355 struct ufs_query_req **request, struct ufs_query_res **response,
3356 enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3357 {
3358 *request = &hba->dev_cmd.query.request;
3359 *response = &hba->dev_cmd.query.response;
3360 memset(*request, 0, sizeof(struct ufs_query_req));
3361 memset(*response, 0, sizeof(struct ufs_query_res));
3362 (*request)->upiu_req.opcode = opcode;
3363 (*request)->upiu_req.idn = idn;
3364 (*request)->upiu_req.index = index;
3365 (*request)->upiu_req.selector = selector;
3366 }
3367
3368 /*
3369 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3370 * < 0 if another error occurred.
3371 */
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3372 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3373 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3374 {
3375 int ret;
3376 int retries;
3377
3378 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3379 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3380 if (ret)
3381 dev_dbg(hba->dev,
3382 "%s: failed with error %d, retries %d\n",
3383 __func__, ret, retries);
3384 else
3385 break;
3386 }
3387
3388 if (ret)
3389 dev_err(hba->dev,
3390 "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3391 __func__, opcode, idn, ret, retries);
3392 return ret;
3393 }
3394
3395 /**
3396 * ufshcd_query_flag() - API function for sending flag query requests
3397 * @hba: per-adapter instance
3398 * @opcode: flag query to perform
3399 * @idn: flag idn to access
3400 * @index: flag index to access
3401 * @flag_res: the flag value after the query request completes
3402 *
3403 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3404 * < 0 if another error occurred.
3405 */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3406 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3407 enum flag_idn idn, u8 index, bool *flag_res)
3408 {
3409 struct ufs_query_req *request = NULL;
3410 struct ufs_query_res *response = NULL;
3411 int err, selector = 0;
3412 int timeout = dev_cmd_timeout;
3413
3414 BUG_ON(!hba);
3415
3416 ufshcd_dev_man_lock(hba);
3417
3418 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3419 selector);
3420
3421 switch (opcode) {
3422 case UPIU_QUERY_OPCODE_SET_FLAG:
3423 case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3424 case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3425 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3426 break;
3427 case UPIU_QUERY_OPCODE_READ_FLAG:
3428 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3429 if (!flag_res) {
3430 /* No dummy reads */
3431 dev_err(hba->dev, "%s: Invalid argument for read request\n",
3432 __func__);
3433 err = -EINVAL;
3434 goto out_unlock;
3435 }
3436 break;
3437 default:
3438 dev_err(hba->dev,
3439 "%s: Expected query flag opcode but got = %d\n",
3440 __func__, opcode);
3441 err = -EINVAL;
3442 goto out_unlock;
3443 }
3444
3445 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3446
3447 if (err) {
3448 dev_err(hba->dev,
3449 "%s: Sending flag query for idn %d failed, err = %d\n",
3450 __func__, idn, err);
3451 goto out_unlock;
3452 }
3453
3454 if (flag_res)
3455 *flag_res = (be32_to_cpu(response->upiu_res.value) &
3456 MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3457
3458 out_unlock:
3459 ufshcd_dev_man_unlock(hba);
3460 return err;
3461 }
3462
3463 /**
3464 * ufshcd_query_attr - API function for sending attribute requests
3465 * @hba: per-adapter instance
3466 * @opcode: attribute opcode
3467 * @idn: attribute idn to access
3468 * @index: index field
3469 * @selector: selector field
3470 * @attr_val: the attribute value after the query request completes
3471 *
3472 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3473 * < 0 if another error occurred.
3474 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3475 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3476 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3477 {
3478 struct ufs_query_req *request = NULL;
3479 struct ufs_query_res *response = NULL;
3480 int err;
3481
3482 BUG_ON(!hba);
3483
3484 if (!attr_val) {
3485 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3486 __func__, opcode);
3487 return -EINVAL;
3488 }
3489
3490 ufshcd_dev_man_lock(hba);
3491
3492 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3493 selector);
3494
3495 switch (opcode) {
3496 case UPIU_QUERY_OPCODE_WRITE_ATTR:
3497 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3498 request->upiu_req.value = cpu_to_be32(*attr_val);
3499 break;
3500 case UPIU_QUERY_OPCODE_READ_ATTR:
3501 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3502 break;
3503 default:
3504 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3505 __func__, opcode);
3506 err = -EINVAL;
3507 goto out_unlock;
3508 }
3509
3510 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
3511
3512 if (err) {
3513 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3514 __func__, opcode, idn, index, err);
3515 goto out_unlock;
3516 }
3517
3518 *attr_val = be32_to_cpu(response->upiu_res.value);
3519
3520 out_unlock:
3521 ufshcd_dev_man_unlock(hba);
3522 return err;
3523 }
3524
3525 /**
3526 * ufshcd_query_attr_retry() - API function for sending query
3527 * attribute with retries
3528 * @hba: per-adapter instance
3529 * @opcode: attribute opcode
3530 * @idn: attribute idn to access
3531 * @index: index field
3532 * @selector: selector field
3533 * @attr_val: the attribute value after the query request
3534 * completes
3535 *
3536 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3537 * < 0 if another error occurred.
3538 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3539 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3540 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3541 u32 *attr_val)
3542 {
3543 int ret = 0;
3544 u32 retries;
3545
3546 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3547 ret = ufshcd_query_attr(hba, opcode, idn, index,
3548 selector, attr_val);
3549 if (ret)
3550 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3551 __func__, ret, retries);
3552 else
3553 break;
3554 }
3555
3556 if (ret)
3557 dev_err(hba->dev,
3558 "%s: query attribute, idn %d, failed with error %d after %d retries\n",
3559 __func__, idn, ret, QUERY_REQ_RETRIES);
3560 return ret;
3561 }
3562
3563 /*
3564 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3565 * < 0 if another error occurred.
3566 */
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3567 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3568 enum query_opcode opcode, enum desc_idn idn, u8 index,
3569 u8 selector, u8 *desc_buf, int *buf_len)
3570 {
3571 struct ufs_query_req *request = NULL;
3572 struct ufs_query_res *response = NULL;
3573 int err;
3574
3575 BUG_ON(!hba);
3576
3577 if (!desc_buf) {
3578 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3579 __func__, opcode);
3580 return -EINVAL;
3581 }
3582
3583 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3584 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3585 __func__, *buf_len);
3586 return -EINVAL;
3587 }
3588
3589 ufshcd_dev_man_lock(hba);
3590
3591 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3592 selector);
3593 hba->dev_cmd.query.descriptor = desc_buf;
3594 request->upiu_req.length = cpu_to_be16(*buf_len);
3595
3596 switch (opcode) {
3597 case UPIU_QUERY_OPCODE_WRITE_DESC:
3598 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3599 break;
3600 case UPIU_QUERY_OPCODE_READ_DESC:
3601 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3602 break;
3603 default:
3604 dev_err(hba->dev,
3605 "%s: Expected query descriptor opcode but got = 0x%.2x\n",
3606 __func__, opcode);
3607 err = -EINVAL;
3608 goto out_unlock;
3609 }
3610
3611 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
3612
3613 if (err) {
3614 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3615 __func__, opcode, idn, index, err);
3616 goto out_unlock;
3617 }
3618
3619 *buf_len = be16_to_cpu(response->upiu_res.length);
3620
3621 out_unlock:
3622 hba->dev_cmd.query.descriptor = NULL;
3623 ufshcd_dev_man_unlock(hba);
3624 return err;
3625 }
3626
3627 /**
3628 * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3629 * @hba: per-adapter instance
3630 * @opcode: attribute opcode
3631 * @idn: attribute idn to access
3632 * @index: index field
3633 * @selector: selector field
3634 * @desc_buf: the buffer that contains the descriptor
3635 * @buf_len: length parameter passed to the device
3636 *
3637 * The buf_len parameter will contain, on return, the length parameter
3638 * received on the response.
3639 *
3640 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3641 * < 0 if another error occurred.
3642 */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3643 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3644 enum query_opcode opcode,
3645 enum desc_idn idn, u8 index,
3646 u8 selector,
3647 u8 *desc_buf, int *buf_len)
3648 {
3649 int err;
3650 int retries;
3651
3652 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3653 err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3654 selector, desc_buf, buf_len);
3655 if (!err || err == -EINVAL)
3656 break;
3657 }
3658
3659 return err;
3660 }
3661
3662 /**
3663 * ufshcd_read_desc_param - read the specified descriptor parameter
3664 * @hba: Pointer to adapter instance
3665 * @desc_id: descriptor idn value
3666 * @desc_index: descriptor index
3667 * @param_offset: offset of the parameter to read
3668 * @param_read_buf: pointer to buffer where parameter would be read
3669 * @param_size: sizeof(param_read_buf)
3670 *
3671 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3672 * < 0 if another error occurred.
3673 */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3674 int ufshcd_read_desc_param(struct ufs_hba *hba,
3675 enum desc_idn desc_id,
3676 int desc_index,
3677 u8 param_offset,
3678 u8 *param_read_buf,
3679 u8 param_size)
3680 {
3681 int ret;
3682 u8 *desc_buf;
3683 int buff_len = QUERY_DESC_MAX_SIZE;
3684 bool is_kmalloc = true;
3685
3686 /* Safety check */
3687 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3688 return -EINVAL;
3689
3690 /* Check whether we need temp memory */
3691 if (param_offset != 0 || param_size < buff_len) {
3692 desc_buf = kzalloc(buff_len, GFP_KERNEL);
3693 if (!desc_buf)
3694 return -ENOMEM;
3695 } else {
3696 desc_buf = param_read_buf;
3697 is_kmalloc = false;
3698 }
3699
3700 /* Request for full descriptor */
3701 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3702 desc_id, desc_index, 0,
3703 desc_buf, &buff_len);
3704 if (ret) {
3705 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3706 __func__, desc_id, desc_index, param_offset, ret);
3707 goto out;
3708 }
3709
3710 /* Update descriptor length */
3711 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3712
3713 if (param_offset >= buff_len) {
3714 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3715 __func__, param_offset, desc_id, buff_len);
3716 ret = -EINVAL;
3717 goto out;
3718 }
3719
3720 /* Sanity check */
3721 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3722 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3723 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3724 ret = -EINVAL;
3725 goto out;
3726 }
3727
3728 if (is_kmalloc) {
3729 /* Make sure we don't copy more data than available */
3730 if (param_offset >= buff_len)
3731 ret = -EINVAL;
3732 else
3733 memcpy(param_read_buf, &desc_buf[param_offset],
3734 min_t(u32, param_size, buff_len - param_offset));
3735 }
3736 out:
3737 if (is_kmalloc)
3738 kfree(desc_buf);
3739 return ret;
3740 }
3741
3742 /**
3743 * struct uc_string_id - unicode string
3744 *
3745 * @len: size of this descriptor inclusive
3746 * @type: descriptor type
3747 * @uc: unicode string character
3748 */
3749 struct uc_string_id {
3750 u8 len;
3751 u8 type;
3752 wchar_t uc[];
3753 } __packed;
3754
3755 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3756 static inline char ufshcd_remove_non_printable(u8 ch)
3757 {
3758 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3759 }
3760
3761 /**
3762 * ufshcd_read_string_desc - read string descriptor
3763 * @hba: pointer to adapter instance
3764 * @desc_index: descriptor index
3765 * @buf: pointer to buffer where descriptor would be read,
3766 * the caller should free the memory.
3767 * @ascii: if true convert from unicode to ascii characters
3768 * null terminated string.
3769 *
3770 * Return:
3771 * * string size on success.
3772 * * -ENOMEM: on allocation failure
3773 * * -EINVAL: on a wrong parameter
3774 */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3775 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3776 u8 **buf, bool ascii)
3777 {
3778 struct uc_string_id *uc_str;
3779 u8 *str;
3780 int ret;
3781
3782 if (!buf)
3783 return -EINVAL;
3784
3785 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3786 if (!uc_str)
3787 return -ENOMEM;
3788
3789 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3790 (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3791 if (ret < 0) {
3792 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3793 QUERY_REQ_RETRIES, ret);
3794 str = NULL;
3795 goto out;
3796 }
3797
3798 if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3799 dev_dbg(hba->dev, "String Desc is of zero length\n");
3800 str = NULL;
3801 ret = 0;
3802 goto out;
3803 }
3804
3805 if (ascii) {
3806 ssize_t ascii_len;
3807 int i;
3808 /* remove header and divide by 2 to move from UTF16 to UTF8 */
3809 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3810 str = kzalloc(ascii_len, GFP_KERNEL);
3811 if (!str) {
3812 ret = -ENOMEM;
3813 goto out;
3814 }
3815
3816 /*
3817 * the descriptor contains string in UTF16 format
3818 * we need to convert to utf-8 so it can be displayed
3819 */
3820 ret = utf16s_to_utf8s(uc_str->uc,
3821 uc_str->len - QUERY_DESC_HDR_SIZE,
3822 UTF16_BIG_ENDIAN, str, ascii_len - 1);
3823
3824 /* replace non-printable or non-ASCII characters with spaces */
3825 for (i = 0; i < ret; i++)
3826 str[i] = ufshcd_remove_non_printable(str[i]);
3827
3828 str[ret++] = '\0';
3829
3830 } else {
3831 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3832 if (!str) {
3833 ret = -ENOMEM;
3834 goto out;
3835 }
3836 ret = uc_str->len;
3837 }
3838 out:
3839 *buf = str;
3840 kfree(uc_str);
3841 return ret;
3842 }
3843
3844 /**
3845 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3846 * @hba: Pointer to adapter instance
3847 * @lun: lun id
3848 * @param_offset: offset of the parameter to read
3849 * @param_read_buf: pointer to buffer where parameter would be read
3850 * @param_size: sizeof(param_read_buf)
3851 *
3852 * Return: 0 in case of success; < 0 upon failure.
3853 */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3854 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3855 int lun,
3856 enum unit_desc_param param_offset,
3857 u8 *param_read_buf,
3858 u32 param_size)
3859 {
3860 /*
3861 * Unit descriptors are only available for general purpose LUs (LUN id
3862 * from 0 to 7) and RPMB Well known LU.
3863 */
3864 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3865 return -EOPNOTSUPP;
3866
3867 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3868 param_offset, param_read_buf, param_size);
3869 }
3870
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3871 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3872 {
3873 int err = 0;
3874 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3875
3876 if (hba->dev_info.wspecversion >= 0x300) {
3877 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3878 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3879 &gating_wait);
3880 if (err)
3881 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3882 err, gating_wait);
3883
3884 if (gating_wait == 0) {
3885 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3886 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3887 gating_wait);
3888 }
3889
3890 hba->dev_info.clk_gating_wait_us = gating_wait;
3891 }
3892
3893 return err;
3894 }
3895
3896 /**
3897 * ufshcd_memory_alloc - allocate memory for host memory space data structures
3898 * @hba: per adapter instance
3899 *
3900 * 1. Allocate DMA memory for Command Descriptor array
3901 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3902 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3903 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3904 * (UTMRDL)
3905 * 4. Allocate memory for local reference block(lrb).
3906 *
3907 * Return: 0 for success, non-zero in case of failure.
3908 */
ufshcd_memory_alloc(struct ufs_hba * hba)3909 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3910 {
3911 size_t utmrdl_size, utrdl_size, ucdl_size;
3912
3913 /* Allocate memory for UTP command descriptors */
3914 ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3915 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3916 ucdl_size,
3917 &hba->ucdl_dma_addr,
3918 GFP_KERNEL);
3919
3920 /*
3921 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3922 */
3923 if (!hba->ucdl_base_addr ||
3924 WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3925 dev_err(hba->dev,
3926 "Command Descriptor Memory allocation failed\n");
3927 goto out;
3928 }
3929
3930 /*
3931 * Allocate memory for UTP Transfer descriptors
3932 * UFSHCI requires 1KB alignment of UTRD
3933 */
3934 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3935 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3936 utrdl_size,
3937 &hba->utrdl_dma_addr,
3938 GFP_KERNEL);
3939 if (!hba->utrdl_base_addr ||
3940 WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3941 dev_err(hba->dev,
3942 "Transfer Descriptor Memory allocation failed\n");
3943 goto out;
3944 }
3945
3946 /*
3947 * Skip utmrdl allocation; it may have been
3948 * allocated during first pass and not released during
3949 * MCQ memory allocation.
3950 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3951 */
3952 if (hba->utmrdl_base_addr)
3953 goto skip_utmrdl;
3954 /*
3955 * Allocate memory for UTP Task Management descriptors
3956 * UFSHCI requires 1KB alignment of UTMRD
3957 */
3958 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3959 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3960 utmrdl_size,
3961 &hba->utmrdl_dma_addr,
3962 GFP_KERNEL);
3963 if (!hba->utmrdl_base_addr ||
3964 WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3965 dev_err(hba->dev,
3966 "Task Management Descriptor Memory allocation failed\n");
3967 goto out;
3968 }
3969
3970 skip_utmrdl:
3971 /* Allocate memory for local reference block */
3972 hba->lrb = devm_kcalloc(hba->dev,
3973 hba->nutrs, sizeof(struct ufshcd_lrb),
3974 GFP_KERNEL);
3975 if (!hba->lrb) {
3976 dev_err(hba->dev, "LRB Memory allocation failed\n");
3977 goto out;
3978 }
3979 return 0;
3980 out:
3981 return -ENOMEM;
3982 }
3983
3984 /**
3985 * ufshcd_host_memory_configure - configure local reference block with
3986 * memory offsets
3987 * @hba: per adapter instance
3988 *
3989 * Configure Host memory space
3990 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3991 * address.
3992 * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3993 * and PRDT offset.
3994 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3995 * into local reference block.
3996 */
ufshcd_host_memory_configure(struct ufs_hba * hba)3997 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3998 {
3999 struct utp_transfer_req_desc *utrdlp;
4000 dma_addr_t cmd_desc_dma_addr;
4001 dma_addr_t cmd_desc_element_addr;
4002 u16 response_offset;
4003 u16 prdt_offset;
4004 int cmd_desc_size;
4005 int i;
4006
4007 utrdlp = hba->utrdl_base_addr;
4008
4009 response_offset =
4010 offsetof(struct utp_transfer_cmd_desc, response_upiu);
4011 prdt_offset =
4012 offsetof(struct utp_transfer_cmd_desc, prd_table);
4013
4014 cmd_desc_size = ufshcd_get_ucd_size(hba);
4015 cmd_desc_dma_addr = hba->ucdl_dma_addr;
4016
4017 for (i = 0; i < hba->nutrs; i++) {
4018 /* Configure UTRD with command descriptor base address */
4019 cmd_desc_element_addr =
4020 (cmd_desc_dma_addr + (cmd_desc_size * i));
4021 utrdlp[i].command_desc_base_addr =
4022 cpu_to_le64(cmd_desc_element_addr);
4023
4024 /* Response upiu and prdt offset should be in double words */
4025 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
4026 utrdlp[i].response_upiu_offset =
4027 cpu_to_le16(response_offset);
4028 utrdlp[i].prd_table_offset =
4029 cpu_to_le16(prdt_offset);
4030 utrdlp[i].response_upiu_length =
4031 cpu_to_le16(ALIGNED_UPIU_SIZE);
4032 } else {
4033 utrdlp[i].response_upiu_offset =
4034 cpu_to_le16(response_offset >> 2);
4035 utrdlp[i].prd_table_offset =
4036 cpu_to_le16(prdt_offset >> 2);
4037 utrdlp[i].response_upiu_length =
4038 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
4039 }
4040
4041 ufshcd_init_lrb(hba, &hba->lrb[i], i);
4042 }
4043 }
4044
4045 /**
4046 * ufshcd_dme_link_startup - Notify Unipro to perform link startup
4047 * @hba: per adapter instance
4048 *
4049 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
4050 * in order to initialize the Unipro link startup procedure.
4051 * Once the Unipro links are up, the device connected to the controller
4052 * is detected.
4053 *
4054 * Return: 0 on success, non-zero value on failure.
4055 */
ufshcd_dme_link_startup(struct ufs_hba * hba)4056 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
4057 {
4058 struct uic_command uic_cmd = {
4059 .command = UIC_CMD_DME_LINK_STARTUP,
4060 };
4061 int ret;
4062
4063 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4064 if (ret)
4065 dev_dbg(hba->dev,
4066 "dme-link-startup: error code %d\n", ret);
4067 return ret;
4068 }
4069 /**
4070 * ufshcd_dme_reset - UIC command for DME_RESET
4071 * @hba: per adapter instance
4072 *
4073 * DME_RESET command is issued in order to reset UniPro stack.
4074 * This function now deals with cold reset.
4075 *
4076 * Return: 0 on success, non-zero value on failure.
4077 */
ufshcd_dme_reset(struct ufs_hba * hba)4078 int ufshcd_dme_reset(struct ufs_hba *hba)
4079 {
4080 struct uic_command uic_cmd = {
4081 .command = UIC_CMD_DME_RESET,
4082 };
4083 int ret;
4084
4085 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4086 if (ret)
4087 dev_err(hba->dev,
4088 "dme-reset: error code %d\n", ret);
4089
4090 return ret;
4091 }
4092 EXPORT_SYMBOL_GPL(ufshcd_dme_reset);
4093
ufshcd_dme_configure_adapt(struct ufs_hba * hba,int agreed_gear,int adapt_val)4094 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4095 int agreed_gear,
4096 int adapt_val)
4097 {
4098 int ret;
4099
4100 if (agreed_gear < UFS_HS_G4)
4101 adapt_val = PA_NO_ADAPT;
4102
4103 ret = ufshcd_dme_set(hba,
4104 UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4105 adapt_val);
4106 return ret;
4107 }
4108 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4109
4110 /**
4111 * ufshcd_dme_enable - UIC command for DME_ENABLE
4112 * @hba: per adapter instance
4113 *
4114 * DME_ENABLE command is issued in order to enable UniPro stack.
4115 *
4116 * Return: 0 on success, non-zero value on failure.
4117 */
ufshcd_dme_enable(struct ufs_hba * hba)4118 int ufshcd_dme_enable(struct ufs_hba *hba)
4119 {
4120 struct uic_command uic_cmd = {
4121 .command = UIC_CMD_DME_ENABLE,
4122 };
4123 int ret;
4124
4125 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4126 if (ret)
4127 dev_err(hba->dev,
4128 "dme-enable: error code %d\n", ret);
4129
4130 return ret;
4131 }
4132 EXPORT_SYMBOL_GPL(ufshcd_dme_enable);
4133
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)4134 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4135 {
4136 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000
4137 unsigned long min_sleep_time_us;
4138
4139 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4140 return;
4141
4142 /*
4143 * last_dme_cmd_tstamp will be 0 only for 1st call to
4144 * this function
4145 */
4146 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4147 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4148 } else {
4149 unsigned long delta =
4150 (unsigned long) ktime_to_us(
4151 ktime_sub(ktime_get(),
4152 hba->last_dme_cmd_tstamp));
4153
4154 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4155 min_sleep_time_us =
4156 MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4157 else
4158 min_sleep_time_us = 0; /* no more delay required */
4159 }
4160
4161 if (min_sleep_time_us > 0) {
4162 /* allow sleep for extra 50us if needed */
4163 usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4164 }
4165
4166 /* update the last_dme_cmd_tstamp */
4167 hba->last_dme_cmd_tstamp = ktime_get();
4168 }
4169
4170 /**
4171 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4172 * @hba: per adapter instance
4173 * @attr_sel: uic command argument1
4174 * @attr_set: attribute set type as uic command argument2
4175 * @mib_val: setting value as uic command argument3
4176 * @peer: indicate whether peer or local
4177 *
4178 * Return: 0 on success, non-zero value on failure.
4179 */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)4180 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4181 u8 attr_set, u32 mib_val, u8 peer)
4182 {
4183 struct uic_command uic_cmd = {
4184 .command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET,
4185 .argument1 = attr_sel,
4186 .argument2 = UIC_ARG_ATTR_TYPE(attr_set),
4187 .argument3 = mib_val,
4188 };
4189 static const char *const action[] = {
4190 "dme-set",
4191 "dme-peer-set"
4192 };
4193 const char *set = action[!!peer];
4194 int ret;
4195 int retries = UFS_UIC_COMMAND_RETRIES;
4196
4197 do {
4198 /* for peer attributes we retry upon failure */
4199 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4200 if (ret)
4201 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4202 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4203 } while (ret && peer && --retries);
4204
4205 if (ret)
4206 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4207 set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4208 UFS_UIC_COMMAND_RETRIES - retries);
4209
4210 return ret;
4211 }
4212 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4213
4214 /**
4215 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4216 * @hba: per adapter instance
4217 * @attr_sel: uic command argument1
4218 * @mib_val: the value of the attribute as returned by the UIC command
4219 * @peer: indicate whether peer or local
4220 *
4221 * Return: 0 on success, non-zero value on failure.
4222 */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)4223 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4224 u32 *mib_val, u8 peer)
4225 {
4226 struct uic_command uic_cmd = {
4227 .command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET,
4228 .argument1 = attr_sel,
4229 };
4230 static const char *const action[] = {
4231 "dme-get",
4232 "dme-peer-get"
4233 };
4234 const char *get = action[!!peer];
4235 int ret;
4236 int retries = UFS_UIC_COMMAND_RETRIES;
4237 struct ufs_pa_layer_attr orig_pwr_info;
4238 struct ufs_pa_layer_attr temp_pwr_info;
4239 bool pwr_mode_change = false;
4240
4241 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4242 orig_pwr_info = hba->pwr_info;
4243 temp_pwr_info = orig_pwr_info;
4244
4245 if (orig_pwr_info.pwr_tx == FAST_MODE ||
4246 orig_pwr_info.pwr_rx == FAST_MODE) {
4247 temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4248 temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4249 pwr_mode_change = true;
4250 } else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4251 orig_pwr_info.pwr_rx == SLOW_MODE) {
4252 temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4253 temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4254 pwr_mode_change = true;
4255 }
4256 if (pwr_mode_change) {
4257 ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4258 if (ret)
4259 goto out;
4260 }
4261 }
4262
4263 do {
4264 /* for peer attributes we retry upon failure */
4265 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4266 if (ret)
4267 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4268 get, UIC_GET_ATTR_ID(attr_sel), ret);
4269 } while (ret && peer && --retries);
4270
4271 if (ret)
4272 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4273 get, UIC_GET_ATTR_ID(attr_sel),
4274 UFS_UIC_COMMAND_RETRIES - retries);
4275
4276 if (mib_val && !ret)
4277 *mib_val = uic_cmd.argument3;
4278
4279 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4280 && pwr_mode_change)
4281 ufshcd_change_power_mode(hba, &orig_pwr_info);
4282 out:
4283 return ret;
4284 }
4285 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4286
4287 /**
4288 * ufshcd_dme_rmw - get modify set a DME attribute
4289 * @hba: per adapter instance
4290 * @mask: indicates which bits to clear from the value that has been read
4291 * @val: actual value to write
4292 * @attr: dme attribute
4293 */
ufshcd_dme_rmw(struct ufs_hba * hba,u32 mask,u32 val,u32 attr)4294 int ufshcd_dme_rmw(struct ufs_hba *hba, u32 mask,
4295 u32 val, u32 attr)
4296 {
4297 u32 cfg = 0;
4298 int err;
4299
4300 err = ufshcd_dme_get(hba, UIC_ARG_MIB(attr), &cfg);
4301 if (err)
4302 return err;
4303
4304 cfg &= ~mask;
4305 cfg |= (val & mask);
4306
4307 return ufshcd_dme_set(hba, UIC_ARG_MIB(attr), cfg);
4308 }
4309 EXPORT_SYMBOL_GPL(ufshcd_dme_rmw);
4310
4311 /**
4312 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4313 * state) and waits for it to take effect.
4314 *
4315 * @hba: per adapter instance
4316 * @cmd: UIC command to execute
4317 *
4318 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4319 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4320 * and device UniPro link and hence it's final completion would be indicated by
4321 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4322 * addition to normal UIC command completion Status (UCCS). This function only
4323 * returns after the relevant status bits indicate the completion.
4324 *
4325 * Return: 0 on success, non-zero value on failure.
4326 */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)4327 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4328 {
4329 DECLARE_COMPLETION_ONSTACK(uic_async_done);
4330 unsigned long flags;
4331 u8 status;
4332 int ret;
4333
4334 mutex_lock(&hba->uic_cmd_mutex);
4335 ufshcd_add_delay_before_dme_cmd(hba);
4336
4337 spin_lock_irqsave(hba->host->host_lock, flags);
4338 if (ufshcd_is_link_broken(hba)) {
4339 ret = -ENOLINK;
4340 goto out_unlock;
4341 }
4342 hba->uic_async_done = &uic_async_done;
4343 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4344 spin_unlock_irqrestore(hba->host->host_lock, flags);
4345 ret = __ufshcd_send_uic_cmd(hba, cmd);
4346 if (ret) {
4347 dev_err(hba->dev,
4348 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4349 cmd->command, cmd->argument3, ret);
4350 goto out;
4351 }
4352
4353 if (!wait_for_completion_timeout(hba->uic_async_done,
4354 msecs_to_jiffies(uic_cmd_timeout))) {
4355 dev_err(hba->dev,
4356 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4357 cmd->command, cmd->argument3);
4358
4359 if (!cmd->cmd_active) {
4360 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4361 __func__);
4362 goto check_upmcrs;
4363 }
4364
4365 ret = -ETIMEDOUT;
4366 goto out;
4367 }
4368
4369 check_upmcrs:
4370 status = ufshcd_get_upmcrs(hba);
4371 if (status != PWR_LOCAL) {
4372 dev_err(hba->dev,
4373 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4374 cmd->command, status);
4375 ret = (status != PWR_OK) ? status : -1;
4376 }
4377 out:
4378 if (ret) {
4379 ufshcd_print_host_state(hba);
4380 ufshcd_print_pwr_info(hba);
4381 ufshcd_print_evt_hist(hba);
4382 }
4383
4384 spin_lock_irqsave(hba->host->host_lock, flags);
4385 hba->active_uic_cmd = NULL;
4386 hba->uic_async_done = NULL;
4387 if (ret && !hba->pm_op_in_progress) {
4388 ufshcd_set_link_broken(hba);
4389 ufshcd_schedule_eh_work(hba);
4390 }
4391 out_unlock:
4392 spin_unlock_irqrestore(hba->host->host_lock, flags);
4393 mutex_unlock(&hba->uic_cmd_mutex);
4394
4395 /*
4396 * If the h8 exit fails during the runtime resume process, it becomes
4397 * stuck and cannot be recovered through the error handler. To fix
4398 * this, use link recovery instead of the error handler.
4399 */
4400 if (ret && hba->pm_op_in_progress)
4401 ret = ufshcd_link_recovery(hba);
4402
4403 return ret;
4404 }
4405
4406 /**
4407 * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result
4408 * @hba: per adapter instance
4409 * @uic_cmd: UIC command
4410 *
4411 * Return: 0 only if success.
4412 */
ufshcd_send_bsg_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)4413 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
4414 {
4415 int ret;
4416
4417 if (uic_cmd->argument1 != UIC_ARG_MIB(PA_PWRMODE) ||
4418 uic_cmd->command != UIC_CMD_DME_SET)
4419 return ufshcd_send_uic_cmd(hba, uic_cmd);
4420
4421 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
4422 return 0;
4423
4424 ufshcd_hold(hba);
4425 ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd);
4426 ufshcd_release(hba);
4427
4428 return ret;
4429 }
4430
4431 /**
4432 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4433 * using DME_SET primitives.
4434 * @hba: per adapter instance
4435 * @mode: powr mode value
4436 *
4437 * Return: 0 on success, non-zero value on failure.
4438 */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4439 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4440 {
4441 struct uic_command uic_cmd = {
4442 .command = UIC_CMD_DME_SET,
4443 .argument1 = UIC_ARG_MIB(PA_PWRMODE),
4444 .argument3 = mode,
4445 };
4446 int ret;
4447
4448 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4449 ret = ufshcd_dme_set(hba,
4450 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4451 if (ret) {
4452 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4453 __func__, ret);
4454 goto out;
4455 }
4456 }
4457
4458 ufshcd_hold(hba);
4459 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4460 ufshcd_release(hba);
4461
4462 out:
4463 return ret;
4464 }
4465 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4466
ufshcd_link_recovery(struct ufs_hba * hba)4467 int ufshcd_link_recovery(struct ufs_hba *hba)
4468 {
4469 int ret;
4470 unsigned long flags;
4471
4472 spin_lock_irqsave(hba->host->host_lock, flags);
4473 hba->ufshcd_state = UFSHCD_STATE_RESET;
4474 ufshcd_set_eh_in_progress(hba);
4475 spin_unlock_irqrestore(hba->host->host_lock, flags);
4476
4477 /* Reset the attached device */
4478 ufshcd_device_reset(hba);
4479
4480 ret = ufshcd_host_reset_and_restore(hba);
4481
4482 spin_lock_irqsave(hba->host->host_lock, flags);
4483 if (ret)
4484 hba->ufshcd_state = UFSHCD_STATE_ERROR;
4485 ufshcd_clear_eh_in_progress(hba);
4486 spin_unlock_irqrestore(hba->host->host_lock, flags);
4487
4488 if (ret)
4489 dev_err(hba->dev, "%s: link recovery failed, err %d",
4490 __func__, ret);
4491
4492 return ret;
4493 }
4494 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4495
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4496 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4497 {
4498 struct uic_command uic_cmd = {
4499 .command = UIC_CMD_DME_HIBER_ENTER,
4500 };
4501 ktime_t start = ktime_get();
4502 int ret;
4503
4504 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4505
4506 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4507 trace_ufshcd_profile_hibern8(hba, "enter",
4508 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4509
4510 if (ret)
4511 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4512 __func__, ret);
4513 else
4514 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4515 POST_CHANGE);
4516
4517 return ret;
4518 }
4519 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4520
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4521 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4522 {
4523 struct uic_command uic_cmd = {
4524 .command = UIC_CMD_DME_HIBER_EXIT,
4525 };
4526 int ret;
4527 ktime_t start = ktime_get();
4528
4529 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4530
4531 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4532 trace_ufshcd_profile_hibern8(hba, "exit",
4533 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4534
4535 if (ret) {
4536 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4537 __func__, ret);
4538 } else {
4539 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4540 POST_CHANGE);
4541 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4542 hba->ufs_stats.hibern8_exit_cnt++;
4543 }
4544
4545 return ret;
4546 }
4547 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4548
ufshcd_configure_auto_hibern8(struct ufs_hba * hba)4549 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4550 {
4551 if (!ufshcd_is_auto_hibern8_supported(hba))
4552 return;
4553
4554 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4555 }
4556
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4557 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4558 {
4559 const u32 cur_ahit = READ_ONCE(hba->ahit);
4560
4561 if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4562 return;
4563
4564 WRITE_ONCE(hba->ahit, ahit);
4565 if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4566 ufshcd_rpm_get_sync(hba);
4567 ufshcd_hold(hba);
4568 ufshcd_configure_auto_hibern8(hba);
4569 ufshcd_release(hba);
4570 ufshcd_rpm_put_sync(hba);
4571 }
4572 }
4573 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4574
4575 /**
4576 * ufshcd_init_pwr_info - setting the POR (power on reset)
4577 * values in hba power info
4578 * @hba: per-adapter instance
4579 */
ufshcd_init_pwr_info(struct ufs_hba * hba)4580 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4581 {
4582 hba->pwr_info.gear_rx = UFS_PWM_G1;
4583 hba->pwr_info.gear_tx = UFS_PWM_G1;
4584 hba->pwr_info.lane_rx = UFS_LANE_1;
4585 hba->pwr_info.lane_tx = UFS_LANE_1;
4586 hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4587 hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4588 hba->pwr_info.hs_rate = 0;
4589 }
4590
4591 /**
4592 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4593 * @hba: per-adapter instance
4594 *
4595 * Return: 0 upon success; < 0 upon failure.
4596 */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4597 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4598 {
4599 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4600
4601 if (hba->max_pwr_info.is_valid)
4602 return 0;
4603
4604 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4605 pwr_info->pwr_tx = FASTAUTO_MODE;
4606 pwr_info->pwr_rx = FASTAUTO_MODE;
4607 } else {
4608 pwr_info->pwr_tx = FAST_MODE;
4609 pwr_info->pwr_rx = FAST_MODE;
4610 }
4611 pwr_info->hs_rate = PA_HS_MODE_B;
4612
4613 /* Get the connected lane count */
4614 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4615 &pwr_info->lane_rx);
4616 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4617 &pwr_info->lane_tx);
4618
4619 if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4620 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4621 __func__,
4622 pwr_info->lane_rx,
4623 pwr_info->lane_tx);
4624 return -EINVAL;
4625 }
4626
4627 if (pwr_info->lane_rx != pwr_info->lane_tx) {
4628 dev_err(hba->dev, "%s: asymmetric connected lanes. rx=%d, tx=%d\n",
4629 __func__,
4630 pwr_info->lane_rx,
4631 pwr_info->lane_tx);
4632 return -EINVAL;
4633 }
4634
4635 /*
4636 * First, get the maximum gears of HS speed.
4637 * If a zero value, it means there is no HSGEAR capability.
4638 * Then, get the maximum gears of PWM speed.
4639 */
4640 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4641 if (!pwr_info->gear_rx) {
4642 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4643 &pwr_info->gear_rx);
4644 if (!pwr_info->gear_rx) {
4645 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4646 __func__, pwr_info->gear_rx);
4647 return -EINVAL;
4648 }
4649 pwr_info->pwr_rx = SLOW_MODE;
4650 }
4651
4652 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4653 &pwr_info->gear_tx);
4654 if (!pwr_info->gear_tx) {
4655 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4656 &pwr_info->gear_tx);
4657 if (!pwr_info->gear_tx) {
4658 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4659 __func__, pwr_info->gear_tx);
4660 return -EINVAL;
4661 }
4662 pwr_info->pwr_tx = SLOW_MODE;
4663 }
4664
4665 hba->max_pwr_info.is_valid = true;
4666 return 0;
4667 }
4668
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4669 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4670 struct ufs_pa_layer_attr *pwr_mode)
4671 {
4672 int ret;
4673
4674 /* if already configured to the requested pwr_mode */
4675 if (!hba->force_pmc &&
4676 pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4677 pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4678 pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4679 pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4680 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4681 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4682 pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4683 dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4684 return 0;
4685 }
4686
4687 /*
4688 * Configure attributes for power mode change with below.
4689 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4690 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4691 * - PA_HSSERIES
4692 */
4693 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4694 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4695 pwr_mode->lane_rx);
4696 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4697 pwr_mode->pwr_rx == FAST_MODE)
4698 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4699 else
4700 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4701
4702 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4703 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4704 pwr_mode->lane_tx);
4705 if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4706 pwr_mode->pwr_tx == FAST_MODE)
4707 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4708 else
4709 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4710
4711 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4712 pwr_mode->pwr_tx == FASTAUTO_MODE ||
4713 pwr_mode->pwr_rx == FAST_MODE ||
4714 pwr_mode->pwr_tx == FAST_MODE)
4715 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4716 pwr_mode->hs_rate);
4717
4718 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4719 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4720 DL_FC0ProtectionTimeOutVal_Default);
4721 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4722 DL_TC0ReplayTimeOutVal_Default);
4723 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4724 DL_AFC0ReqTimeOutVal_Default);
4725 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4726 DL_FC1ProtectionTimeOutVal_Default);
4727 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4728 DL_TC1ReplayTimeOutVal_Default);
4729 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4730 DL_AFC1ReqTimeOutVal_Default);
4731
4732 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4733 DL_FC0ProtectionTimeOutVal_Default);
4734 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4735 DL_TC0ReplayTimeOutVal_Default);
4736 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4737 DL_AFC0ReqTimeOutVal_Default);
4738 }
4739
4740 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4741 | pwr_mode->pwr_tx);
4742
4743 if (ret) {
4744 dev_err(hba->dev,
4745 "%s: power mode change failed %d\n", __func__, ret);
4746 } else {
4747 memcpy(&hba->pwr_info, pwr_mode,
4748 sizeof(struct ufs_pa_layer_attr));
4749 }
4750
4751 return ret;
4752 }
4753
4754 /**
4755 * ufshcd_config_pwr_mode - configure a new power mode
4756 * @hba: per-adapter instance
4757 * @desired_pwr_mode: desired power configuration
4758 *
4759 * Return: 0 upon success; < 0 upon failure.
4760 */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4761 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4762 struct ufs_pa_layer_attr *desired_pwr_mode)
4763 {
4764 struct ufs_pa_layer_attr final_params = { 0 };
4765 int ret;
4766
4767 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4768 desired_pwr_mode, &final_params);
4769
4770 if (ret)
4771 memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4772
4773 ret = ufshcd_change_power_mode(hba, &final_params);
4774
4775 if (!ret)
4776 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4777 &final_params);
4778
4779 return ret;
4780 }
4781 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4782
4783 /**
4784 * ufshcd_complete_dev_init() - checks device readiness
4785 * @hba: per-adapter instance
4786 *
4787 * Set fDeviceInit flag and poll until device toggles it.
4788 *
4789 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
4790 * < 0 if another error occurred.
4791 */
ufshcd_complete_dev_init(struct ufs_hba * hba)4792 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4793 {
4794 int err;
4795 bool flag_res = true;
4796 ktime_t timeout;
4797
4798 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4799 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4800 if (err) {
4801 dev_err(hba->dev,
4802 "%s: setting fDeviceInit flag failed with error %d\n",
4803 __func__, err);
4804 goto out;
4805 }
4806
4807 /* Poll fDeviceInit flag to be cleared */
4808 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4809 do {
4810 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4811 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4812 if (!flag_res)
4813 break;
4814 usleep_range(500, 1000);
4815 } while (ktime_before(ktime_get(), timeout));
4816
4817 if (err) {
4818 dev_err(hba->dev,
4819 "%s: reading fDeviceInit flag failed with error %d\n",
4820 __func__, err);
4821 } else if (flag_res) {
4822 dev_err(hba->dev,
4823 "%s: fDeviceInit was not cleared by the device\n",
4824 __func__);
4825 err = -EBUSY;
4826 }
4827 out:
4828 return err;
4829 }
4830
4831 /**
4832 * ufshcd_make_hba_operational - Make UFS controller operational
4833 * @hba: per adapter instance
4834 *
4835 * To bring UFS host controller to operational state,
4836 * 1. Enable required interrupts
4837 * 2. Configure interrupt aggregation
4838 * 3. Program UTRL and UTMRL base address
4839 * 4. Configure run-stop-registers
4840 *
4841 * Return: 0 if successful; < 0 upon failure.
4842 */
ufshcd_make_hba_operational(struct ufs_hba * hba)4843 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4844 {
4845 int err = 0;
4846 u32 reg;
4847
4848 /* Enable required interrupts */
4849 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4850
4851 /* Configure interrupt aggregation */
4852 if (ufshcd_is_intr_aggr_allowed(hba))
4853 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4854 else
4855 ufshcd_disable_intr_aggr(hba);
4856
4857 /* Configure UTRL and UTMRL base address registers */
4858 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4859 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4860 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4861 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4862 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4863 REG_UTP_TASK_REQ_LIST_BASE_L);
4864 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4865 REG_UTP_TASK_REQ_LIST_BASE_H);
4866
4867 /*
4868 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4869 */
4870 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4871 if (!(ufshcd_get_lists_status(reg))) {
4872 ufshcd_enable_run_stop_reg(hba);
4873 } else {
4874 dev_err(hba->dev,
4875 "Host controller not ready to process requests");
4876 err = -EIO;
4877 }
4878
4879 return err;
4880 }
4881 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4882
4883 /**
4884 * ufshcd_hba_stop - Send controller to reset state
4885 * @hba: per adapter instance
4886 */
ufshcd_hba_stop(struct ufs_hba * hba)4887 void ufshcd_hba_stop(struct ufs_hba *hba)
4888 {
4889 int err;
4890
4891 ufshcd_disable_irq(hba);
4892 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE);
4893 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4894 CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4895 10, 1);
4896 ufshcd_enable_irq(hba);
4897 if (err)
4898 dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4899 }
4900 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4901
4902 /**
4903 * ufshcd_hba_execute_hce - initialize the controller
4904 * @hba: per adapter instance
4905 *
4906 * The controller resets itself and controller firmware initialization
4907 * sequence kicks off. When controller is ready it will set
4908 * the Host Controller Enable bit to 1.
4909 *
4910 * Return: 0 on success, non-zero value on failure.
4911 */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4912 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4913 {
4914 int retry;
4915
4916 for (retry = 3; retry > 0; retry--) {
4917 if (ufshcd_is_hba_active(hba))
4918 /* change controller state to "reset state" */
4919 ufshcd_hba_stop(hba);
4920
4921 /* UniPro link is disabled at this point */
4922 ufshcd_set_link_off(hba);
4923
4924 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4925
4926 /* start controller initialization sequence */
4927 ufshcd_hba_start(hba);
4928
4929 /*
4930 * To initialize a UFS host controller HCE bit must be set to 1.
4931 * During initialization the HCE bit value changes from 1->0->1.
4932 * When the host controller completes initialization sequence
4933 * it sets the value of HCE bit to 1. The same HCE bit is read back
4934 * to check if the controller has completed initialization sequence.
4935 * So without this delay the value HCE = 1, set in the previous
4936 * instruction might be read back.
4937 * This delay can be changed based on the controller.
4938 */
4939 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4940
4941 /* wait for the host controller to complete initialization */
4942 if (!ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE,
4943 CONTROLLER_ENABLE, 1000, 50))
4944 break;
4945
4946 dev_err(hba->dev, "Enabling the controller failed\n");
4947 }
4948
4949 if (!retry)
4950 return -EIO;
4951
4952 /* enable UIC related interrupts */
4953 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4954
4955 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4956
4957 return 0;
4958 }
4959
ufshcd_hba_enable(struct ufs_hba * hba)4960 int ufshcd_hba_enable(struct ufs_hba *hba)
4961 {
4962 int ret;
4963
4964 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4965 ufshcd_set_link_off(hba);
4966 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4967
4968 /* enable UIC related interrupts */
4969 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4970 ret = ufshcd_dme_reset(hba);
4971 if (ret) {
4972 dev_err(hba->dev, "DME_RESET failed\n");
4973 return ret;
4974 }
4975
4976 ret = ufshcd_dme_enable(hba);
4977 if (ret) {
4978 dev_err(hba->dev, "Enabling DME failed\n");
4979 return ret;
4980 }
4981
4982 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4983 } else {
4984 ret = ufshcd_hba_execute_hce(hba);
4985 }
4986
4987 return ret;
4988 }
4989 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4990
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4991 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4992 {
4993 int tx_lanes = 0, i, err = 0;
4994
4995 if (!peer)
4996 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4997 &tx_lanes);
4998 else
4999 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
5000 &tx_lanes);
5001 for (i = 0; i < tx_lanes; i++) {
5002 if (!peer)
5003 err = ufshcd_dme_set(hba,
5004 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
5005 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
5006 0);
5007 else
5008 err = ufshcd_dme_peer_set(hba,
5009 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
5010 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
5011 0);
5012 if (err) {
5013 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
5014 __func__, peer, i, err);
5015 break;
5016 }
5017 }
5018
5019 return err;
5020 }
5021
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)5022 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
5023 {
5024 return ufshcd_disable_tx_lcc(hba, true);
5025 }
5026
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)5027 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
5028 {
5029 struct ufs_event_hist *e;
5030
5031 if (id >= UFS_EVT_CNT)
5032 return;
5033
5034 e = &hba->ufs_stats.event[id];
5035 e->val[e->pos] = val;
5036 e->tstamp[e->pos] = local_clock();
5037 e->cnt += 1;
5038 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
5039
5040 ufshcd_vops_event_notify(hba, id, &val);
5041 }
5042 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
5043
5044 /**
5045 * ufshcd_link_startup - Initialize unipro link startup
5046 * @hba: per adapter instance
5047 *
5048 * Return: 0 for success, non-zero in case of failure.
5049 */
ufshcd_link_startup(struct ufs_hba * hba)5050 static int ufshcd_link_startup(struct ufs_hba *hba)
5051 {
5052 int ret;
5053 int retries = DME_LINKSTARTUP_RETRIES;
5054 bool link_startup_again = false;
5055
5056 /*
5057 * If UFS device isn't active then we will have to issue link startup
5058 * 2 times to make sure the device state move to active.
5059 */
5060 if (!ufshcd_is_ufs_dev_active(hba))
5061 link_startup_again = true;
5062
5063 link_startup:
5064 do {
5065 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
5066
5067 ret = ufshcd_dme_link_startup(hba);
5068
5069 /* check if device is detected by inter-connect layer */
5070 if (!ret && !ufshcd_is_device_present(hba)) {
5071 ufshcd_update_evt_hist(hba,
5072 UFS_EVT_LINK_STARTUP_FAIL,
5073 0);
5074 dev_err(hba->dev, "%s: Device not present\n", __func__);
5075 ret = -ENXIO;
5076 goto out;
5077 }
5078
5079 /*
5080 * DME link lost indication is only received when link is up,
5081 * but we can't be sure if the link is up until link startup
5082 * succeeds. So reset the local Uni-Pro and try again.
5083 */
5084 if (ret && retries && ufshcd_hba_enable(hba)) {
5085 ufshcd_update_evt_hist(hba,
5086 UFS_EVT_LINK_STARTUP_FAIL,
5087 (u32)ret);
5088 goto out;
5089 }
5090 } while (ret && retries--);
5091
5092 if (ret) {
5093 /* failed to get the link up... retire */
5094 ufshcd_update_evt_hist(hba,
5095 UFS_EVT_LINK_STARTUP_FAIL,
5096 (u32)ret);
5097 goto out;
5098 }
5099
5100 if (link_startup_again) {
5101 link_startup_again = false;
5102 retries = DME_LINKSTARTUP_RETRIES;
5103 goto link_startup;
5104 }
5105
5106 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5107 ufshcd_init_pwr_info(hba);
5108 ufshcd_print_pwr_info(hba);
5109
5110 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5111 ret = ufshcd_disable_device_tx_lcc(hba);
5112 if (ret)
5113 goto out;
5114 }
5115
5116 /* Include any host controller configuration via UIC commands */
5117 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5118 if (ret)
5119 goto out;
5120
5121 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5122 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5123 ret = ufshcd_make_hba_operational(hba);
5124 out:
5125 if (ret) {
5126 dev_err(hba->dev, "link startup failed %d\n", ret);
5127 ufshcd_print_host_state(hba);
5128 ufshcd_print_pwr_info(hba);
5129 ufshcd_print_evt_hist(hba);
5130 }
5131 return ret;
5132 }
5133
5134 /**
5135 * ufshcd_verify_dev_init() - Verify device initialization
5136 * @hba: per-adapter instance
5137 *
5138 * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5139 * device Transport Protocol (UTP) layer is ready after a reset.
5140 * If the UTP layer at the device side is not initialized, it may
5141 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5142 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5143 *
5144 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
5145 * < 0 if another error occurred.
5146 */
ufshcd_verify_dev_init(struct ufs_hba * hba)5147 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5148 {
5149 int err = 0;
5150 int retries;
5151
5152 ufshcd_dev_man_lock(hba);
5153
5154 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5155 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5156 hba->nop_out_timeout);
5157
5158 if (!err || err == -ETIMEDOUT)
5159 break;
5160
5161 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5162 }
5163
5164 ufshcd_dev_man_unlock(hba);
5165
5166 if (err)
5167 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5168 return err;
5169 }
5170
5171 /**
5172 * ufshcd_setup_links - associate link b/w device wlun and other luns
5173 * @sdev: pointer to SCSI device
5174 * @hba: pointer to ufs hba
5175 */
ufshcd_setup_links(struct ufs_hba * hba,struct scsi_device * sdev)5176 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5177 {
5178 struct device_link *link;
5179
5180 /*
5181 * Device wlun is the supplier & rest of the luns are consumers.
5182 * This ensures that device wlun suspends after all other luns.
5183 */
5184 if (hba->ufs_device_wlun) {
5185 link = device_link_add(&sdev->sdev_gendev,
5186 &hba->ufs_device_wlun->sdev_gendev,
5187 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5188 if (!link) {
5189 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5190 dev_name(&hba->ufs_device_wlun->sdev_gendev));
5191 return;
5192 }
5193 hba->luns_avail--;
5194 /* Ignore REPORT_LUN wlun probing */
5195 if (hba->luns_avail == 1) {
5196 ufshcd_rpm_put(hba);
5197 return;
5198 }
5199 } else {
5200 /*
5201 * Device wlun is probed. The assumption is that WLUNs are
5202 * scanned before other LUNs.
5203 */
5204 hba->luns_avail--;
5205 }
5206 }
5207
5208 /**
5209 * ufshcd_lu_init - Initialize the relevant parameters of the LU
5210 * @hba: per-adapter instance
5211 * @sdev: pointer to SCSI device
5212 */
ufshcd_lu_init(struct ufs_hba * hba,struct scsi_device * sdev)5213 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5214 {
5215 int len = QUERY_DESC_MAX_SIZE;
5216 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5217 u8 lun_qdepth = hba->nutrs;
5218 u8 *desc_buf;
5219 int ret;
5220
5221 desc_buf = kzalloc(len, GFP_KERNEL);
5222 if (!desc_buf)
5223 goto set_qdepth;
5224
5225 ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5226 if (ret < 0) {
5227 if (ret == -EOPNOTSUPP)
5228 /* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5229 lun_qdepth = 1;
5230 kfree(desc_buf);
5231 goto set_qdepth;
5232 }
5233
5234 if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5235 /*
5236 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5237 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5238 */
5239 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5240 }
5241 /*
5242 * According to UFS device specification, the write protection mode is only supported by
5243 * normal LU, not supported by WLUN.
5244 */
5245 if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5246 !hba->dev_info.is_lu_power_on_wp &&
5247 desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5248 hba->dev_info.is_lu_power_on_wp = true;
5249
5250 /* In case of RPMB LU, check if advanced RPMB mode is enabled */
5251 if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5252 desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5253 hba->dev_info.b_advanced_rpmb_en = true;
5254
5255
5256 kfree(desc_buf);
5257 set_qdepth:
5258 /*
5259 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5260 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5261 */
5262 dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5263 scsi_change_queue_depth(sdev, lun_qdepth);
5264 }
5265
5266 /**
5267 * ufshcd_sdev_init - handle initial SCSI device configurations
5268 * @sdev: pointer to SCSI device
5269 *
5270 * Return: success.
5271 */
ufshcd_sdev_init(struct scsi_device * sdev)5272 static int ufshcd_sdev_init(struct scsi_device *sdev)
5273 {
5274 struct ufs_hba *hba;
5275
5276 hba = shost_priv(sdev->host);
5277
5278 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5279 sdev->use_10_for_ms = 1;
5280
5281 /* DBD field should be set to 1 in mode sense(10) */
5282 sdev->set_dbd_for_ms = 1;
5283
5284 /* allow SCSI layer to restart the device in case of errors */
5285 sdev->allow_restart = 1;
5286
5287 /* REPORT SUPPORTED OPERATION CODES is not supported */
5288 sdev->no_report_opcodes = 1;
5289
5290 /* WRITE_SAME command is not supported */
5291 sdev->no_write_same = 1;
5292
5293 ufshcd_lu_init(hba, sdev);
5294
5295 ufshcd_setup_links(hba, sdev);
5296
5297 return 0;
5298 }
5299
5300 /**
5301 * ufshcd_change_queue_depth - change queue depth
5302 * @sdev: pointer to SCSI device
5303 * @depth: required depth to set
5304 *
5305 * Change queue depth and make sure the max. limits are not crossed.
5306 *
5307 * Return: new queue depth.
5308 */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)5309 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5310 {
5311 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5312 }
5313
5314 /**
5315 * ufshcd_sdev_configure - adjust SCSI device configurations
5316 * @sdev: pointer to SCSI device
5317 * @lim: queue limits
5318 *
5319 * Return: 0 (success).
5320 */
ufshcd_sdev_configure(struct scsi_device * sdev,struct queue_limits * lim)5321 static int ufshcd_sdev_configure(struct scsi_device *sdev,
5322 struct queue_limits *lim)
5323 {
5324 struct ufs_hba *hba = shost_priv(sdev->host);
5325 struct request_queue *q = sdev->request_queue;
5326
5327 lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1;
5328
5329 /*
5330 * Block runtime-pm until all consumers are added.
5331 * Refer ufshcd_setup_links().
5332 */
5333 if (is_device_wlun(sdev))
5334 pm_runtime_get_noresume(&sdev->sdev_gendev);
5335 else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5336 sdev->rpm_autosuspend = 1;
5337 /*
5338 * Do not print messages during runtime PM to avoid never-ending cycles
5339 * of messages written back to storage by user space causing runtime
5340 * resume, causing more messages and so on.
5341 */
5342 sdev->silence_suspend = 1;
5343
5344 if (hba->vops && hba->vops->config_scsi_dev)
5345 hba->vops->config_scsi_dev(sdev);
5346
5347 ufshcd_crypto_register(hba, q);
5348
5349 return 0;
5350 }
5351
5352 /**
5353 * ufshcd_sdev_destroy - remove SCSI device configurations
5354 * @sdev: pointer to SCSI device
5355 */
ufshcd_sdev_destroy(struct scsi_device * sdev)5356 static void ufshcd_sdev_destroy(struct scsi_device *sdev)
5357 {
5358 struct ufs_hba *hba;
5359 unsigned long flags;
5360
5361 hba = shost_priv(sdev->host);
5362
5363 /* Drop the reference as it won't be needed anymore */
5364 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5365 spin_lock_irqsave(hba->host->host_lock, flags);
5366 hba->ufs_device_wlun = NULL;
5367 spin_unlock_irqrestore(hba->host->host_lock, flags);
5368 } else if (hba->ufs_device_wlun) {
5369 struct device *supplier = NULL;
5370
5371 /* Ensure UFS Device WLUN exists and does not disappear */
5372 spin_lock_irqsave(hba->host->host_lock, flags);
5373 if (hba->ufs_device_wlun) {
5374 supplier = &hba->ufs_device_wlun->sdev_gendev;
5375 get_device(supplier);
5376 }
5377 spin_unlock_irqrestore(hba->host->host_lock, flags);
5378
5379 if (supplier) {
5380 /*
5381 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5382 * device will not have been registered but can still
5383 * have a device link holding a reference to the device.
5384 */
5385 device_link_remove(&sdev->sdev_gendev, supplier);
5386 put_device(supplier);
5387 }
5388 }
5389 }
5390
5391 /**
5392 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5393 * @lrbp: pointer to local reference block of completed command
5394 * @scsi_status: SCSI command status
5395 *
5396 * Return: value base on SCSI command status.
5397 */
5398 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)5399 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5400 {
5401 int result = 0;
5402
5403 switch (scsi_status) {
5404 case SAM_STAT_CHECK_CONDITION:
5405 ufshcd_copy_sense_data(lrbp);
5406 fallthrough;
5407 case SAM_STAT_GOOD:
5408 result |= DID_OK << 16 | scsi_status;
5409 break;
5410 case SAM_STAT_TASK_SET_FULL:
5411 case SAM_STAT_BUSY:
5412 case SAM_STAT_TASK_ABORTED:
5413 ufshcd_copy_sense_data(lrbp);
5414 result |= scsi_status;
5415 break;
5416 default:
5417 result |= DID_ERROR << 16;
5418 break;
5419 } /* end of switch */
5420
5421 return result;
5422 }
5423
5424 /**
5425 * ufshcd_transfer_rsp_status - Get overall status of the response
5426 * @hba: per adapter instance
5427 * @lrbp: pointer to local reference block of completed command
5428 * @cqe: pointer to the completion queue entry
5429 *
5430 * Return: result of the command to notify SCSI midlayer.
5431 */
5432 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct cq_entry * cqe)5433 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5434 struct cq_entry *cqe)
5435 {
5436 int result = 0;
5437 int scsi_status;
5438 enum utp_ocs ocs;
5439 u8 upiu_flags;
5440 u32 resid;
5441
5442 upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5443 resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5444 /*
5445 * Test !overflow instead of underflow to support UFS devices that do
5446 * not set either flag.
5447 */
5448 if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5449 scsi_set_resid(lrbp->cmd, resid);
5450
5451 /* overall command status of utrd */
5452 ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5453
5454 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5455 if (lrbp->ucd_rsp_ptr->header.response ||
5456 lrbp->ucd_rsp_ptr->header.status)
5457 ocs = OCS_SUCCESS;
5458 }
5459
5460 switch (ocs) {
5461 case OCS_SUCCESS:
5462 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5463 switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5464 case UPIU_TRANSACTION_RESPONSE:
5465 /*
5466 * get the result based on SCSI status response
5467 * to notify the SCSI midlayer of the command status
5468 */
5469 scsi_status = lrbp->ucd_rsp_ptr->header.status;
5470 result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5471
5472 /*
5473 * Currently we are only supporting BKOPs exception
5474 * events hence we can ignore BKOPs exception event
5475 * during power management callbacks. BKOPs exception
5476 * event is not expected to be raised in runtime suspend
5477 * callback as it allows the urgent bkops.
5478 * During system suspend, we are anyway forcefully
5479 * disabling the bkops and if urgent bkops is needed
5480 * it will be enabled on system resume. Long term
5481 * solution could be to abort the system suspend if
5482 * UFS device needs urgent BKOPs.
5483 */
5484 if (!hba->pm_op_in_progress &&
5485 !ufshcd_eh_in_progress(hba) &&
5486 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5487 /* Flushed in suspend */
5488 schedule_work(&hba->eeh_work);
5489 break;
5490 case UPIU_TRANSACTION_REJECT_UPIU:
5491 /* TODO: handle Reject UPIU Response */
5492 result = DID_ERROR << 16;
5493 dev_err(hba->dev,
5494 "Reject UPIU not fully implemented\n");
5495 break;
5496 default:
5497 dev_err(hba->dev,
5498 "Unexpected request response code = %x\n",
5499 result);
5500 result = DID_ERROR << 16;
5501 break;
5502 }
5503 break;
5504 case OCS_ABORTED:
5505 case OCS_INVALID_COMMAND_STATUS:
5506 result |= DID_REQUEUE << 16;
5507 dev_warn(hba->dev,
5508 "OCS %s from controller for tag %d\n",
5509 (ocs == OCS_ABORTED ? "aborted" : "invalid"),
5510 lrbp->task_tag);
5511 break;
5512 case OCS_INVALID_CMD_TABLE_ATTR:
5513 case OCS_INVALID_PRDT_ATTR:
5514 case OCS_MISMATCH_DATA_BUF_SIZE:
5515 case OCS_MISMATCH_RESP_UPIU_SIZE:
5516 case OCS_PEER_COMM_FAILURE:
5517 case OCS_FATAL_ERROR:
5518 case OCS_DEVICE_FATAL_ERROR:
5519 case OCS_INVALID_CRYPTO_CONFIG:
5520 case OCS_GENERAL_CRYPTO_ERROR:
5521 default:
5522 result |= DID_ERROR << 16;
5523 dev_err(hba->dev,
5524 "OCS error from controller = %x for tag %d\n",
5525 ocs, lrbp->task_tag);
5526 ufshcd_print_evt_hist(hba);
5527 ufshcd_print_host_state(hba);
5528 break;
5529 } /* end of switch */
5530
5531 if ((host_byte(result) != DID_OK) &&
5532 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5533 ufshcd_print_tr(hba, lrbp->task_tag, true);
5534 return result;
5535 }
5536
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5537 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5538 u32 intr_mask)
5539 {
5540 if (!ufshcd_is_auto_hibern8_supported(hba) ||
5541 !ufshcd_is_auto_hibern8_enabled(hba))
5542 return false;
5543
5544 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5545 return false;
5546
5547 if (hba->active_uic_cmd &&
5548 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5549 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5550 return false;
5551
5552 return true;
5553 }
5554
5555 /**
5556 * ufshcd_uic_cmd_compl - handle completion of uic command
5557 * @hba: per adapter instance
5558 * @intr_status: interrupt status generated by the controller
5559 *
5560 * Return:
5561 * IRQ_HANDLED - If interrupt is valid
5562 * IRQ_NONE - If invalid interrupt
5563 */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5564 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5565 {
5566 irqreturn_t retval = IRQ_NONE;
5567 struct uic_command *cmd;
5568
5569 guard(spinlock_irqsave)(hba->host->host_lock);
5570 cmd = hba->active_uic_cmd;
5571 if (!cmd)
5572 goto unlock;
5573
5574 if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5575 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5576
5577 if (intr_status & UIC_COMMAND_COMPL) {
5578 cmd->argument2 |= ufshcd_get_uic_cmd_result(hba);
5579 cmd->argument3 = ufshcd_get_dme_attr_val(hba);
5580 if (!hba->uic_async_done)
5581 cmd->cmd_active = 0;
5582 complete(&cmd->done);
5583 retval = IRQ_HANDLED;
5584 }
5585
5586 if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) {
5587 cmd->cmd_active = 0;
5588 complete(hba->uic_async_done);
5589 retval = IRQ_HANDLED;
5590 }
5591
5592 if (retval == IRQ_HANDLED)
5593 ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP);
5594
5595 unlock:
5596 return retval;
5597 }
5598
5599 /* Release the resources allocated for processing a SCSI command. */
ufshcd_release_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5600 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5601 struct ufshcd_lrb *lrbp)
5602 {
5603 struct scsi_cmnd *cmd = lrbp->cmd;
5604
5605 scsi_dma_unmap(cmd);
5606 ufshcd_crypto_clear_prdt(hba, lrbp);
5607 ufshcd_release(hba);
5608 ufshcd_clk_scaling_update_busy(hba);
5609 }
5610
5611 /**
5612 * ufshcd_compl_one_cqe - handle a completion queue entry
5613 * @hba: per adapter instance
5614 * @task_tag: the task tag of the request to be completed
5615 * @cqe: pointer to the completion queue entry
5616 */
ufshcd_compl_one_cqe(struct ufs_hba * hba,int task_tag,struct cq_entry * cqe)5617 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5618 struct cq_entry *cqe)
5619 {
5620 struct ufshcd_lrb *lrbp;
5621 struct scsi_cmnd *cmd;
5622 enum utp_ocs ocs;
5623
5624 lrbp = &hba->lrb[task_tag];
5625 lrbp->compl_time_stamp = ktime_get();
5626 lrbp->compl_time_stamp_local_clock = local_clock();
5627 cmd = lrbp->cmd;
5628 if (cmd) {
5629 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5630 ufshcd_update_monitor(hba, lrbp);
5631 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5632 cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5633 ufshcd_release_scsi_cmd(hba, lrbp);
5634 /* Do not touch lrbp after scsi done */
5635 scsi_done(cmd);
5636 } else {
5637 if (cqe) {
5638 ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5639 lrbp->utr_descriptor_ptr->header.ocs = ocs;
5640 }
5641 complete(&hba->dev_cmd.complete);
5642 }
5643 }
5644
5645 /**
5646 * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5647 * @hba: per adapter instance
5648 * @completed_reqs: bitmask that indicates which requests to complete
5649 */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)5650 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5651 unsigned long completed_reqs)
5652 {
5653 int tag;
5654
5655 for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5656 ufshcd_compl_one_cqe(hba, tag, NULL);
5657 }
5658
5659 /* Any value that is not an existing queue number is fine for this constant. */
5660 enum {
5661 UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5662 };
5663
ufshcd_clear_polled(struct ufs_hba * hba,unsigned long * completed_reqs)5664 static void ufshcd_clear_polled(struct ufs_hba *hba,
5665 unsigned long *completed_reqs)
5666 {
5667 int tag;
5668
5669 for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5670 struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5671
5672 if (!cmd)
5673 continue;
5674 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5675 __clear_bit(tag, completed_reqs);
5676 }
5677 }
5678
5679 /*
5680 * Return: > 0 if one or more commands have been completed or 0 if no
5681 * requests have been completed.
5682 */
ufshcd_poll(struct Scsi_Host * shost,unsigned int queue_num)5683 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5684 {
5685 struct ufs_hba *hba = shost_priv(shost);
5686 unsigned long completed_reqs, flags;
5687 u32 tr_doorbell;
5688 struct ufs_hw_queue *hwq;
5689
5690 if (hba->mcq_enabled) {
5691 hwq = &hba->uhq[queue_num];
5692
5693 return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5694 }
5695
5696 spin_lock_irqsave(&hba->outstanding_lock, flags);
5697 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5698 completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5699 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5700 "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5701 hba->outstanding_reqs);
5702 if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5703 /* Do not complete polled requests from interrupt context. */
5704 ufshcd_clear_polled(hba, &completed_reqs);
5705 }
5706 hba->outstanding_reqs &= ~completed_reqs;
5707 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5708
5709 if (completed_reqs)
5710 __ufshcd_transfer_req_compl(hba, completed_reqs);
5711
5712 return completed_reqs != 0;
5713 }
5714
5715 /**
5716 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5717 * invoked from the error handler context or ufshcd_host_reset_and_restore()
5718 * to complete the pending transfers and free the resources associated with
5719 * the scsi command.
5720 *
5721 * @hba: per adapter instance
5722 * @force_compl: This flag is set to true when invoked
5723 * from ufshcd_host_reset_and_restore() in which case it requires special
5724 * handling because the host controller has been reset by ufshcd_hba_stop().
5725 */
ufshcd_mcq_compl_pending_transfer(struct ufs_hba * hba,bool force_compl)5726 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5727 bool force_compl)
5728 {
5729 struct ufs_hw_queue *hwq;
5730 struct ufshcd_lrb *lrbp;
5731 struct scsi_cmnd *cmd;
5732 unsigned long flags;
5733 int tag;
5734
5735 for (tag = 0; tag < hba->nutrs; tag++) {
5736 lrbp = &hba->lrb[tag];
5737 cmd = lrbp->cmd;
5738 if (!ufshcd_cmd_inflight(cmd) ||
5739 test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5740 continue;
5741
5742 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
5743 if (!hwq)
5744 continue;
5745
5746 if (force_compl) {
5747 ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5748 /*
5749 * For those cmds of which the cqes are not present
5750 * in the cq, complete them explicitly.
5751 */
5752 spin_lock_irqsave(&hwq->cq_lock, flags);
5753 if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5754 set_host_byte(cmd, DID_REQUEUE);
5755 ufshcd_release_scsi_cmd(hba, lrbp);
5756 scsi_done(cmd);
5757 }
5758 spin_unlock_irqrestore(&hwq->cq_lock, flags);
5759 } else {
5760 ufshcd_mcq_poll_cqe_lock(hba, hwq);
5761 }
5762 }
5763 }
5764
5765 /**
5766 * ufshcd_transfer_req_compl - handle SCSI and query command completion
5767 * @hba: per adapter instance
5768 *
5769 * Return:
5770 * IRQ_HANDLED - If interrupt is valid
5771 * IRQ_NONE - If invalid interrupt
5772 */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5773 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5774 {
5775 /* Resetting interrupt aggregation counters first and reading the
5776 * DOOR_BELL afterward allows us to handle all the completed requests.
5777 * In order to prevent other interrupts starvation the DB is read once
5778 * after reset. The down side of this solution is the possibility of
5779 * false interrupt if device completes another request after resetting
5780 * aggregation and before reading the DB.
5781 */
5782 if (ufshcd_is_intr_aggr_allowed(hba) &&
5783 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5784 ufshcd_reset_intr_aggr(hba);
5785
5786 if (ufs_fail_completion(hba))
5787 return IRQ_HANDLED;
5788
5789 /*
5790 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5791 * do not want polling to trigger spurious interrupt complaints.
5792 */
5793 ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5794
5795 return IRQ_HANDLED;
5796 }
5797
__ufshcd_write_ee_control(struct ufs_hba * hba,u32 ee_ctrl_mask)5798 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5799 {
5800 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5801 QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5802 &ee_ctrl_mask);
5803 }
5804
ufshcd_write_ee_control(struct ufs_hba * hba)5805 int ufshcd_write_ee_control(struct ufs_hba *hba)
5806 {
5807 int err;
5808
5809 mutex_lock(&hba->ee_ctrl_mutex);
5810 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5811 mutex_unlock(&hba->ee_ctrl_mutex);
5812 if (err)
5813 dev_err(hba->dev, "%s: failed to write ee control %d\n",
5814 __func__, err);
5815 return err;
5816 }
5817
ufshcd_update_ee_control(struct ufs_hba * hba,u16 * mask,const u16 * other_mask,u16 set,u16 clr)5818 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5819 const u16 *other_mask, u16 set, u16 clr)
5820 {
5821 u16 new_mask, ee_ctrl_mask;
5822 int err = 0;
5823
5824 mutex_lock(&hba->ee_ctrl_mutex);
5825 new_mask = (*mask & ~clr) | set;
5826 ee_ctrl_mask = new_mask | *other_mask;
5827 if (ee_ctrl_mask != hba->ee_ctrl_mask)
5828 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5829 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5830 if (!err) {
5831 hba->ee_ctrl_mask = ee_ctrl_mask;
5832 *mask = new_mask;
5833 }
5834 mutex_unlock(&hba->ee_ctrl_mutex);
5835 return err;
5836 }
5837
5838 /**
5839 * ufshcd_disable_ee - disable exception event
5840 * @hba: per-adapter instance
5841 * @mask: exception event to disable
5842 *
5843 * Disables exception event in the device so that the EVENT_ALERT
5844 * bit is not set.
5845 *
5846 * Return: zero on success, non-zero error value on failure.
5847 */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5848 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5849 {
5850 return ufshcd_update_ee_drv_mask(hba, 0, mask);
5851 }
5852
5853 /**
5854 * ufshcd_enable_ee - enable exception event
5855 * @hba: per-adapter instance
5856 * @mask: exception event to enable
5857 *
5858 * Enable corresponding exception event in the device to allow
5859 * device to alert host in critical scenarios.
5860 *
5861 * Return: zero on success, non-zero error value on failure.
5862 */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5863 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5864 {
5865 return ufshcd_update_ee_drv_mask(hba, mask, 0);
5866 }
5867
5868 /**
5869 * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5870 * @hba: per-adapter instance
5871 *
5872 * Allow device to manage background operations on its own. Enabling
5873 * this might lead to inconsistent latencies during normal data transfers
5874 * as the device is allowed to manage its own way of handling background
5875 * operations.
5876 *
5877 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
5878 * < 0 if another error occurred.
5879 */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5880 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5881 {
5882 int err = 0;
5883
5884 if (hba->auto_bkops_enabled)
5885 goto out;
5886
5887 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5888 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5889 if (err) {
5890 dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5891 __func__, err);
5892 goto out;
5893 }
5894
5895 hba->auto_bkops_enabled = true;
5896 trace_ufshcd_auto_bkops_state(hba, "Enabled");
5897
5898 /* No need of URGENT_BKOPS exception from the device */
5899 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5900 if (err)
5901 dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5902 __func__, err);
5903 out:
5904 return err;
5905 }
5906
5907 /**
5908 * ufshcd_disable_auto_bkops - block device in doing background operations
5909 * @hba: per-adapter instance
5910 *
5911 * Disabling background operations improves command response latency but
5912 * has drawback of device moving into critical state where the device is
5913 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5914 * host is idle so that BKOPS are managed effectively without any negative
5915 * impacts.
5916 *
5917 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
5918 * < 0 if another error occurred.
5919 */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5920 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5921 {
5922 int err = 0;
5923
5924 if (!hba->auto_bkops_enabled)
5925 goto out;
5926
5927 /*
5928 * If host assisted BKOPs is to be enabled, make sure
5929 * urgent bkops exception is allowed.
5930 */
5931 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5932 if (err) {
5933 dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5934 __func__, err);
5935 goto out;
5936 }
5937
5938 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5939 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5940 if (err) {
5941 dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5942 __func__, err);
5943 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5944 goto out;
5945 }
5946
5947 hba->auto_bkops_enabled = false;
5948 trace_ufshcd_auto_bkops_state(hba, "Disabled");
5949 hba->is_urgent_bkops_lvl_checked = false;
5950 out:
5951 return err;
5952 }
5953
5954 /**
5955 * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5956 * @hba: per adapter instance
5957 *
5958 * After a device reset the device may toggle the BKOPS_EN flag
5959 * to default value. The s/w tracking variables should be updated
5960 * as well. This function would change the auto-bkops state based on
5961 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5962 */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5963 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5964 {
5965 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5966 hba->auto_bkops_enabled = false;
5967 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5968 ufshcd_enable_auto_bkops(hba);
5969 } else {
5970 hba->auto_bkops_enabled = true;
5971 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5972 ufshcd_disable_auto_bkops(hba);
5973 }
5974 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5975 hba->is_urgent_bkops_lvl_checked = false;
5976 }
5977
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5978 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5979 {
5980 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5981 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5982 }
5983
5984 /**
5985 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5986 * @hba: per-adapter instance
5987 *
5988 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5989 * flag in the device to permit background operations if the device
5990 * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl",
5991 * disable otherwise.
5992 *
5993 * Return: 0 for success, non-zero in case of failure.
5994 *
5995 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5996 * to know whether auto bkops is enabled or disabled after this function
5997 * returns control to it.
5998 */
ufshcd_bkops_ctrl(struct ufs_hba * hba)5999 static int ufshcd_bkops_ctrl(struct ufs_hba *hba)
6000 {
6001 enum bkops_status status = hba->urgent_bkops_lvl;
6002 u32 curr_status = 0;
6003 int err;
6004
6005 err = ufshcd_get_bkops_status(hba, &curr_status);
6006 if (err) {
6007 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
6008 __func__, err);
6009 goto out;
6010 } else if (curr_status > BKOPS_STATUS_MAX) {
6011 dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
6012 __func__, curr_status);
6013 err = -EINVAL;
6014 goto out;
6015 }
6016
6017 if (curr_status >= status)
6018 err = ufshcd_enable_auto_bkops(hba);
6019 else
6020 err = ufshcd_disable_auto_bkops(hba);
6021 out:
6022 return err;
6023 }
6024
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)6025 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
6026 {
6027 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6028 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
6029 }
6030
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)6031 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
6032 {
6033 int err;
6034 u32 curr_status = 0;
6035
6036 if (hba->is_urgent_bkops_lvl_checked)
6037 goto enable_auto_bkops;
6038
6039 err = ufshcd_get_bkops_status(hba, &curr_status);
6040 if (err) {
6041 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
6042 __func__, err);
6043 goto out;
6044 }
6045
6046 /*
6047 * We are seeing that some devices are raising the urgent bkops
6048 * exception events even when BKOPS status doesn't indicate performace
6049 * impacted or critical. Handle these device by determining their urgent
6050 * bkops status at runtime.
6051 */
6052 if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
6053 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
6054 __func__, curr_status);
6055 /* update the current status as the urgent bkops level */
6056 hba->urgent_bkops_lvl = curr_status;
6057 hba->is_urgent_bkops_lvl_checked = true;
6058 }
6059
6060 enable_auto_bkops:
6061 err = ufshcd_enable_auto_bkops(hba);
6062 out:
6063 if (err < 0)
6064 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
6065 __func__, err);
6066 }
6067
6068 /*
6069 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
6070 * < 0 if another error occurred.
6071 */
ufshcd_read_device_lvl_exception_id(struct ufs_hba * hba,u64 * exception_id)6072 int ufshcd_read_device_lvl_exception_id(struct ufs_hba *hba, u64 *exception_id)
6073 {
6074 struct utp_upiu_query_v4_0 *upiu_resp;
6075 struct ufs_query_req *request = NULL;
6076 struct ufs_query_res *response = NULL;
6077 int err;
6078
6079 if (hba->dev_info.wspecversion < 0x410)
6080 return -EOPNOTSUPP;
6081
6082 ufshcd_hold(hba);
6083 mutex_lock(&hba->dev_cmd.lock);
6084
6085 ufshcd_init_query(hba, &request, &response,
6086 UPIU_QUERY_OPCODE_READ_ATTR,
6087 QUERY_ATTR_IDN_DEV_LVL_EXCEPTION_ID, 0, 0);
6088
6089 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
6090
6091 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
6092
6093 if (err) {
6094 dev_err(hba->dev, "%s: failed to read device level exception %d\n",
6095 __func__, err);
6096 goto out;
6097 }
6098
6099 upiu_resp = (struct utp_upiu_query_v4_0 *)response;
6100 *exception_id = get_unaligned_be64(&upiu_resp->osf3);
6101 out:
6102 mutex_unlock(&hba->dev_cmd.lock);
6103 ufshcd_release(hba);
6104
6105 return err;
6106 }
6107
__ufshcd_wb_toggle(struct ufs_hba * hba,bool set,enum flag_idn idn)6108 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
6109 {
6110 u8 index;
6111 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
6112 UPIU_QUERY_OPCODE_CLEAR_FLAG;
6113
6114 index = ufshcd_wb_get_query_index(hba);
6115 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
6116 }
6117
ufshcd_wb_toggle(struct ufs_hba * hba,bool enable)6118 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
6119 {
6120 int ret;
6121
6122 if (!ufshcd_is_wb_allowed(hba) ||
6123 hba->dev_info.wb_enabled == enable)
6124 return 0;
6125
6126 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
6127 if (ret) {
6128 dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
6129 __func__, enable ? "enabling" : "disabling", ret);
6130 return ret;
6131 }
6132
6133 hba->dev_info.wb_enabled = enable;
6134 dev_dbg(hba->dev, "%s: Write Booster %s\n",
6135 __func__, enable ? "enabled" : "disabled");
6136
6137 return ret;
6138 }
6139
ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba * hba,bool enable)6140 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6141 bool enable)
6142 {
6143 int ret;
6144
6145 ret = __ufshcd_wb_toggle(hba, enable,
6146 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6147 if (ret) {
6148 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6149 __func__, enable ? "enabling" : "disabling", ret);
6150 return;
6151 }
6152 dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6153 __func__, enable ? "enabled" : "disabled");
6154 }
6155
ufshcd_wb_toggle_buf_flush(struct ufs_hba * hba,bool enable)6156 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6157 {
6158 int ret;
6159
6160 if (!ufshcd_is_wb_allowed(hba) ||
6161 hba->dev_info.wb_buf_flush_enabled == enable)
6162 return 0;
6163
6164 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6165 if (ret) {
6166 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6167 __func__, enable ? "enabling" : "disabling", ret);
6168 return ret;
6169 }
6170
6171 hba->dev_info.wb_buf_flush_enabled = enable;
6172 dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6173 __func__, enable ? "enabled" : "disabled");
6174
6175 return ret;
6176 }
6177
ufshcd_wb_set_resize_en(struct ufs_hba * hba,enum wb_resize_en en_mode)6178 int ufshcd_wb_set_resize_en(struct ufs_hba *hba, enum wb_resize_en en_mode)
6179 {
6180 int ret;
6181 u8 index;
6182
6183 index = ufshcd_wb_get_query_index(hba);
6184 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
6185 QUERY_ATTR_IDN_WB_BUF_RESIZE_EN, index, 0, &en_mode);
6186 if (ret)
6187 dev_err(hba->dev, "%s: Enable WB buf resize operation failed %d\n",
6188 __func__, ret);
6189
6190 return ret;
6191 }
6192
ufshcd_wb_curr_buff_threshold_check(struct ufs_hba * hba,u32 avail_buf)6193 static bool ufshcd_wb_curr_buff_threshold_check(struct ufs_hba *hba,
6194 u32 avail_buf)
6195 {
6196 u32 cur_buf;
6197 int ret;
6198 u8 index;
6199
6200 index = ufshcd_wb_get_query_index(hba);
6201 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6202 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6203 index, 0, &cur_buf);
6204 if (ret) {
6205 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6206 __func__, ret);
6207 return false;
6208 }
6209
6210 if (!cur_buf) {
6211 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6212 cur_buf);
6213 return false;
6214 }
6215 /* Let it continue to flush when available buffer exceeds threshold */
6216 return avail_buf < hba->vps->wb_flush_threshold;
6217 }
6218
ufshcd_wb_force_disable(struct ufs_hba * hba)6219 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6220 {
6221 if (ufshcd_is_wb_buf_flush_allowed(hba))
6222 ufshcd_wb_toggle_buf_flush(hba, false);
6223
6224 ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6225 ufshcd_wb_toggle(hba, false);
6226 hba->caps &= ~UFSHCD_CAP_WB_EN;
6227
6228 dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6229 }
6230
ufshcd_is_wb_buf_lifetime_available(struct ufs_hba * hba)6231 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6232 {
6233 u32 lifetime;
6234 int ret;
6235 u8 index;
6236
6237 index = ufshcd_wb_get_query_index(hba);
6238 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6239 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6240 index, 0, &lifetime);
6241 if (ret) {
6242 dev_err(hba->dev,
6243 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6244 __func__, ret);
6245 return false;
6246 }
6247
6248 if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6249 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6250 __func__, lifetime);
6251 return false;
6252 }
6253
6254 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6255 __func__, lifetime);
6256
6257 return true;
6258 }
6259
ufshcd_wb_need_flush(struct ufs_hba * hba)6260 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6261 {
6262 int ret;
6263 u32 avail_buf;
6264 u8 index;
6265
6266 if (!ufshcd_is_wb_allowed(hba))
6267 return false;
6268
6269 if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6270 ufshcd_wb_force_disable(hba);
6271 return false;
6272 }
6273
6274 /*
6275 * With user-space reduction enabled, it's enough to enable flush
6276 * by checking only the available buffer. The threshold
6277 * defined here is > 90% full.
6278 * With user-space preserved enabled, the current-buffer
6279 * should be checked too because the wb buffer size can reduce
6280 * when disk tends to be full. This info is provided by current
6281 * buffer (dCurrentWriteBoosterBufferSize).
6282 */
6283 index = ufshcd_wb_get_query_index(hba);
6284 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6285 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6286 index, 0, &avail_buf);
6287 if (ret) {
6288 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6289 __func__, ret);
6290 return false;
6291 }
6292
6293 if (!hba->dev_info.b_presrv_uspc_en)
6294 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6295
6296 return ufshcd_wb_curr_buff_threshold_check(hba, avail_buf);
6297 }
6298
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)6299 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6300 {
6301 struct ufs_hba *hba = container_of(to_delayed_work(work),
6302 struct ufs_hba,
6303 rpm_dev_flush_recheck_work);
6304 /*
6305 * To prevent unnecessary VCC power drain after device finishes
6306 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6307 * after a certain delay to recheck the threshold by next runtime
6308 * suspend.
6309 */
6310 ufshcd_rpm_get_sync(hba);
6311 ufshcd_rpm_put_sync(hba);
6312 }
6313
6314 /**
6315 * ufshcd_exception_event_handler - handle exceptions raised by device
6316 * @work: pointer to work data
6317 *
6318 * Read bExceptionEventStatus attribute from the device and handle the
6319 * exception event accordingly.
6320 */
ufshcd_exception_event_handler(struct work_struct * work)6321 static void ufshcd_exception_event_handler(struct work_struct *work)
6322 {
6323 struct ufs_hba *hba;
6324 int err;
6325 u32 status = 0;
6326 hba = container_of(work, struct ufs_hba, eeh_work);
6327
6328 err = ufshcd_get_ee_status(hba, &status);
6329 if (err) {
6330 dev_err(hba->dev, "%s: failed to get exception status %d\n",
6331 __func__, err);
6332 return;
6333 }
6334
6335 trace_ufshcd_exception_event(hba, status);
6336
6337 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6338 ufshcd_bkops_exception_event_handler(hba);
6339
6340 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6341 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
6342
6343 if (status & hba->ee_drv_mask & MASK_EE_HEALTH_CRITICAL) {
6344 hba->critical_health_count++;
6345 sysfs_notify(&hba->dev->kobj, NULL, "critical_health");
6346 }
6347
6348 if (status & hba->ee_drv_mask & MASK_EE_DEV_LVL_EXCEPTION) {
6349 atomic_inc(&hba->dev_lvl_exception_count);
6350 sysfs_notify(&hba->dev->kobj, NULL, "device_lvl_exception_count");
6351 }
6352
6353 ufs_debugfs_exception_event(hba, status);
6354 }
6355
6356 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba,bool force_compl)6357 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6358 {
6359 if (hba->mcq_enabled)
6360 ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6361 else
6362 ufshcd_transfer_req_compl(hba);
6363
6364 ufshcd_tmc_handler(hba);
6365 }
6366
6367 /**
6368 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6369 * to recover from the DL NAC errors or not.
6370 * @hba: per-adapter instance
6371 *
6372 * Return: true if error handling is required, false otherwise.
6373 */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)6374 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6375 {
6376 unsigned long flags;
6377 bool err_handling = true;
6378
6379 spin_lock_irqsave(hba->host->host_lock, flags);
6380 /*
6381 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6382 * device fatal error and/or DL NAC & REPLAY timeout errors.
6383 */
6384 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6385 goto out;
6386
6387 if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6388 ((hba->saved_err & UIC_ERROR) &&
6389 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6390 goto out;
6391
6392 if ((hba->saved_err & UIC_ERROR) &&
6393 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6394 int err;
6395 /*
6396 * wait for 50ms to see if we can get any other errors or not.
6397 */
6398 spin_unlock_irqrestore(hba->host->host_lock, flags);
6399 msleep(50);
6400 spin_lock_irqsave(hba->host->host_lock, flags);
6401
6402 /*
6403 * now check if we have got any other severe errors other than
6404 * DL NAC error?
6405 */
6406 if ((hba->saved_err & INT_FATAL_ERRORS) ||
6407 ((hba->saved_err & UIC_ERROR) &&
6408 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6409 goto out;
6410
6411 /*
6412 * As DL NAC is the only error received so far, send out NOP
6413 * command to confirm if link is still active or not.
6414 * - If we don't get any response then do error recovery.
6415 * - If we get response then clear the DL NAC error bit.
6416 */
6417
6418 spin_unlock_irqrestore(hba->host->host_lock, flags);
6419 err = ufshcd_verify_dev_init(hba);
6420 spin_lock_irqsave(hba->host->host_lock, flags);
6421
6422 if (err)
6423 goto out;
6424
6425 /* Link seems to be alive hence ignore the DL NAC errors */
6426 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6427 hba->saved_err &= ~UIC_ERROR;
6428 /* clear NAC error */
6429 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6430 if (!hba->saved_uic_err)
6431 err_handling = false;
6432 }
6433 out:
6434 spin_unlock_irqrestore(hba->host->host_lock, flags);
6435 return err_handling;
6436 }
6437
6438 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)6439 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6440 {
6441 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6442 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6443 }
6444
ufshcd_schedule_eh_work(struct ufs_hba * hba)6445 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6446 {
6447 lockdep_assert_held(hba->host->host_lock);
6448
6449 /* handle fatal errors only when link is not in error state */
6450 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6451 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6452 ufshcd_is_saved_err_fatal(hba))
6453 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6454 else
6455 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6456 queue_work(hba->eh_wq, &hba->eh_work);
6457 }
6458 }
6459
ufshcd_force_error_recovery(struct ufs_hba * hba)6460 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6461 {
6462 spin_lock_irq(hba->host->host_lock);
6463 hba->force_reset = true;
6464 ufshcd_schedule_eh_work(hba);
6465 spin_unlock_irq(hba->host->host_lock);
6466 }
6467
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)6468 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6469 {
6470 mutex_lock(&hba->wb_mutex);
6471 down_write(&hba->clk_scaling_lock);
6472 hba->clk_scaling.is_allowed = allow;
6473 up_write(&hba->clk_scaling_lock);
6474 mutex_unlock(&hba->wb_mutex);
6475 }
6476
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)6477 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6478 {
6479 if (suspend) {
6480 if (hba->clk_scaling.is_enabled)
6481 ufshcd_suspend_clkscaling(hba);
6482 ufshcd_clk_scaling_allow(hba, false);
6483 } else {
6484 ufshcd_clk_scaling_allow(hba, true);
6485 if (hba->clk_scaling.is_enabled)
6486 ufshcd_resume_clkscaling(hba);
6487 }
6488 }
6489
ufshcd_err_handling_prepare(struct ufs_hba * hba)6490 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6491 {
6492 ufshcd_rpm_get_sync(hba);
6493 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6494 hba->is_sys_suspended) {
6495 enum ufs_pm_op pm_op;
6496
6497 /*
6498 * Don't assume anything of resume, if
6499 * resume fails, irq and clocks can be OFF, and powers
6500 * can be OFF or in LPM.
6501 */
6502 ufshcd_setup_hba_vreg(hba, true);
6503 ufshcd_enable_irq(hba);
6504 ufshcd_setup_vreg(hba, true);
6505 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6506 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6507 ufshcd_hold(hba);
6508 if (!ufshcd_is_clkgating_allowed(hba))
6509 ufshcd_setup_clocks(hba, true);
6510 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6511 ufshcd_vops_resume(hba, pm_op);
6512 } else {
6513 ufshcd_hold(hba);
6514 if (ufshcd_is_clkscaling_supported(hba) &&
6515 hba->clk_scaling.is_enabled)
6516 ufshcd_suspend_clkscaling(hba);
6517 ufshcd_clk_scaling_allow(hba, false);
6518 }
6519 /* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6520 blk_mq_quiesce_tagset(&hba->host->tag_set);
6521 cancel_work_sync(&hba->eeh_work);
6522 }
6523
ufshcd_err_handling_unprepare(struct ufs_hba * hba)6524 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6525 {
6526 blk_mq_unquiesce_tagset(&hba->host->tag_set);
6527 ufshcd_release(hba);
6528 if (ufshcd_is_clkscaling_supported(hba))
6529 ufshcd_clk_scaling_suspend(hba, false);
6530 ufshcd_rpm_put(hba);
6531 }
6532
ufshcd_err_handling_should_stop(struct ufs_hba * hba)6533 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6534 {
6535 return (!hba->is_powered || hba->shutting_down ||
6536 !hba->ufs_device_wlun ||
6537 hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6538 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6539 ufshcd_is_link_broken(hba))));
6540 }
6541
6542 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)6543 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6544 {
6545 struct Scsi_Host *shost = hba->host;
6546 struct scsi_device *sdev;
6547 struct request_queue *q;
6548 int ret;
6549
6550 hba->is_sys_suspended = false;
6551 /*
6552 * Set RPM status of wlun device to RPM_ACTIVE,
6553 * this also clears its runtime error.
6554 */
6555 ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6556
6557 /* hba device might have a runtime error otherwise */
6558 if (ret)
6559 ret = pm_runtime_set_active(hba->dev);
6560 /*
6561 * If wlun device had runtime error, we also need to resume those
6562 * consumer scsi devices in case any of them has failed to be
6563 * resumed due to supplier runtime resume failure. This is to unblock
6564 * blk_queue_enter in case there are bios waiting inside it.
6565 */
6566 if (!ret) {
6567 shost_for_each_device(sdev, shost) {
6568 q = sdev->request_queue;
6569 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6570 q->rpm_status == RPM_SUSPENDING))
6571 pm_request_resume(q->dev);
6572 }
6573 }
6574 }
6575 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)6576 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6577 {
6578 }
6579 #endif
6580
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)6581 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6582 {
6583 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6584 u32 mode;
6585
6586 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6587
6588 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6589 return true;
6590
6591 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6592 return true;
6593
6594 return false;
6595 }
6596
ufshcd_abort_one(struct request * rq,void * priv)6597 static bool ufshcd_abort_one(struct request *rq, void *priv)
6598 {
6599 int *ret = priv;
6600 u32 tag = rq->tag;
6601 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6602 struct scsi_device *sdev = cmd->device;
6603 struct Scsi_Host *shost = sdev->host;
6604 struct ufs_hba *hba = shost_priv(shost);
6605
6606 *ret = ufshcd_try_to_abort_task(hba, tag);
6607 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6608 hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6609 *ret ? "failed" : "succeeded");
6610
6611 return *ret == 0;
6612 }
6613
6614 /**
6615 * ufshcd_abort_all - Abort all pending commands.
6616 * @hba: Host bus adapter pointer.
6617 *
6618 * Return: true if and only if the host controller needs to be reset.
6619 */
ufshcd_abort_all(struct ufs_hba * hba)6620 static bool ufshcd_abort_all(struct ufs_hba *hba)
6621 {
6622 int tag, ret = 0;
6623
6624 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6625 if (ret)
6626 goto out;
6627
6628 /* Clear pending task management requests */
6629 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6630 ret = ufshcd_clear_tm_cmd(hba, tag);
6631 if (ret)
6632 goto out;
6633 }
6634
6635 out:
6636 /* Complete the requests that are cleared by s/w */
6637 ufshcd_complete_requests(hba, false);
6638
6639 return ret != 0;
6640 }
6641
6642 /**
6643 * ufshcd_err_handler - handle UFS errors that require s/w attention
6644 * @work: pointer to work structure
6645 */
ufshcd_err_handler(struct work_struct * work)6646 static void ufshcd_err_handler(struct work_struct *work)
6647 {
6648 int retries = MAX_ERR_HANDLER_RETRIES;
6649 struct ufs_hba *hba;
6650 unsigned long flags;
6651 bool needs_restore;
6652 bool needs_reset;
6653 int pmc_err;
6654
6655 hba = container_of(work, struct ufs_hba, eh_work);
6656
6657 dev_info(hba->dev,
6658 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = 0x%x; saved_uic_err = 0x%x; force_reset = %d%s\n",
6659 __func__, ufshcd_state_name[hba->ufshcd_state],
6660 hba->is_powered, hba->shutting_down, hba->saved_err,
6661 hba->saved_uic_err, hba->force_reset,
6662 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6663
6664 down(&hba->host_sem);
6665 spin_lock_irqsave(hba->host->host_lock, flags);
6666 if (ufshcd_err_handling_should_stop(hba)) {
6667 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6668 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6669 spin_unlock_irqrestore(hba->host->host_lock, flags);
6670 up(&hba->host_sem);
6671 return;
6672 }
6673 spin_unlock_irqrestore(hba->host->host_lock, flags);
6674
6675 ufshcd_err_handling_prepare(hba);
6676
6677 spin_lock_irqsave(hba->host->host_lock, flags);
6678 ufshcd_set_eh_in_progress(hba);
6679 spin_unlock_irqrestore(hba->host->host_lock, flags);
6680
6681 /* Complete requests that have door-bell cleared by h/w */
6682 ufshcd_complete_requests(hba, false);
6683 spin_lock_irqsave(hba->host->host_lock, flags);
6684 again:
6685 needs_restore = false;
6686 needs_reset = false;
6687
6688 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6689 hba->ufshcd_state = UFSHCD_STATE_RESET;
6690 /*
6691 * A full reset and restore might have happened after preparation
6692 * is finished, double check whether we should stop.
6693 */
6694 if (ufshcd_err_handling_should_stop(hba))
6695 goto skip_err_handling;
6696
6697 if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6698 !hba->force_reset) {
6699 bool ret;
6700
6701 spin_unlock_irqrestore(hba->host->host_lock, flags);
6702 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6703 ret = ufshcd_quirk_dl_nac_errors(hba);
6704 spin_lock_irqsave(hba->host->host_lock, flags);
6705 if (!ret && ufshcd_err_handling_should_stop(hba))
6706 goto skip_err_handling;
6707 }
6708
6709 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6710 (hba->saved_uic_err &&
6711 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6712 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6713
6714 spin_unlock_irqrestore(hba->host->host_lock, flags);
6715 ufshcd_print_host_state(hba);
6716 ufshcd_print_pwr_info(hba);
6717 ufshcd_print_evt_hist(hba);
6718 ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6719 ufshcd_print_trs_all(hba, pr_prdt);
6720 spin_lock_irqsave(hba->host->host_lock, flags);
6721 }
6722
6723 /*
6724 * if host reset is required then skip clearing the pending
6725 * transfers forcefully because they will get cleared during
6726 * host reset and restore
6727 */
6728 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6729 ufshcd_is_saved_err_fatal(hba) ||
6730 ((hba->saved_err & UIC_ERROR) &&
6731 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6732 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6733 needs_reset = true;
6734 goto do_reset;
6735 }
6736
6737 /*
6738 * If LINERESET was caught, UFS might have been put to PWM mode,
6739 * check if power mode restore is needed.
6740 */
6741 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6742 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6743 if (!hba->saved_uic_err)
6744 hba->saved_err &= ~UIC_ERROR;
6745 spin_unlock_irqrestore(hba->host->host_lock, flags);
6746 if (ufshcd_is_pwr_mode_restore_needed(hba))
6747 needs_restore = true;
6748 spin_lock_irqsave(hba->host->host_lock, flags);
6749 if (!hba->saved_err && !needs_restore)
6750 goto skip_err_handling;
6751 }
6752
6753 hba->silence_err_logs = true;
6754 /* release lock as clear command might sleep */
6755 spin_unlock_irqrestore(hba->host->host_lock, flags);
6756
6757 needs_reset = ufshcd_abort_all(hba);
6758
6759 spin_lock_irqsave(hba->host->host_lock, flags);
6760 hba->silence_err_logs = false;
6761 if (needs_reset)
6762 goto do_reset;
6763
6764 /*
6765 * After all reqs and tasks are cleared from doorbell,
6766 * now it is safe to retore power mode.
6767 */
6768 if (needs_restore) {
6769 spin_unlock_irqrestore(hba->host->host_lock, flags);
6770 /*
6771 * Hold the scaling lock just in case dev cmds
6772 * are sent via bsg and/or sysfs.
6773 */
6774 down_write(&hba->clk_scaling_lock);
6775 hba->force_pmc = true;
6776 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6777 if (pmc_err) {
6778 needs_reset = true;
6779 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6780 __func__, pmc_err);
6781 }
6782 hba->force_pmc = false;
6783 ufshcd_print_pwr_info(hba);
6784 up_write(&hba->clk_scaling_lock);
6785 spin_lock_irqsave(hba->host->host_lock, flags);
6786 }
6787
6788 do_reset:
6789 /* Fatal errors need reset */
6790 if (needs_reset) {
6791 int err;
6792
6793 hba->force_reset = false;
6794 spin_unlock_irqrestore(hba->host->host_lock, flags);
6795 err = ufshcd_reset_and_restore(hba);
6796 if (err)
6797 dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6798 __func__, err);
6799 else
6800 ufshcd_recover_pm_error(hba);
6801 spin_lock_irqsave(hba->host->host_lock, flags);
6802 }
6803
6804 skip_err_handling:
6805 if (!needs_reset) {
6806 if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6807 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6808 if (hba->saved_err || hba->saved_uic_err)
6809 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6810 __func__, hba->saved_err, hba->saved_uic_err);
6811 }
6812 /* Exit in an operational state or dead */
6813 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6814 hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6815 if (--retries)
6816 goto again;
6817 hba->ufshcd_state = UFSHCD_STATE_ERROR;
6818 }
6819 ufshcd_clear_eh_in_progress(hba);
6820 spin_unlock_irqrestore(hba->host->host_lock, flags);
6821 ufshcd_err_handling_unprepare(hba);
6822 up(&hba->host_sem);
6823
6824 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6825 ufshcd_state_name[hba->ufshcd_state]);
6826 }
6827
6828 /**
6829 * ufshcd_update_uic_error - check and set fatal UIC error flags.
6830 * @hba: per-adapter instance
6831 *
6832 * Return:
6833 * IRQ_HANDLED - If interrupt is valid
6834 * IRQ_NONE - If invalid interrupt
6835 */
ufshcd_update_uic_error(struct ufs_hba * hba)6836 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6837 {
6838 u32 reg;
6839 irqreturn_t retval = IRQ_NONE;
6840
6841 /* PHY layer error */
6842 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6843 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6844 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6845 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6846 /*
6847 * To know whether this error is fatal or not, DB timeout
6848 * must be checked but this error is handled separately.
6849 */
6850 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6851 dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6852 __func__);
6853
6854 /* Got a LINERESET indication. */
6855 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6856 struct uic_command *cmd = NULL;
6857
6858 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6859 if (hba->uic_async_done && hba->active_uic_cmd)
6860 cmd = hba->active_uic_cmd;
6861 /*
6862 * Ignore the LINERESET during power mode change
6863 * operation via DME_SET command.
6864 */
6865 if (cmd && (cmd->command == UIC_CMD_DME_SET))
6866 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6867 }
6868 retval |= IRQ_HANDLED;
6869 }
6870
6871 /* PA_INIT_ERROR is fatal and needs UIC reset */
6872 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6873 if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6874 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6875 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6876
6877 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6878 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6879 else if (hba->dev_quirks &
6880 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6881 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6882 hba->uic_error |=
6883 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6884 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6885 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6886 }
6887 retval |= IRQ_HANDLED;
6888 }
6889
6890 /* UIC NL/TL/DME errors needs software retry */
6891 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6892 if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6893 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6894 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6895 hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6896 retval |= IRQ_HANDLED;
6897 }
6898
6899 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6900 if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6901 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6902 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6903 hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6904 retval |= IRQ_HANDLED;
6905 }
6906
6907 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6908 if ((reg & UIC_DME_ERROR) &&
6909 (reg & UIC_DME_ERROR_CODE_MASK)) {
6910 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6911 hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6912 retval |= IRQ_HANDLED;
6913 }
6914
6915 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6916 __func__, hba->uic_error);
6917 return retval;
6918 }
6919
6920 /**
6921 * ufshcd_check_errors - Check for errors that need s/w attention
6922 * @hba: per-adapter instance
6923 * @intr_status: interrupt status generated by the controller
6924 *
6925 * Return:
6926 * IRQ_HANDLED - If interrupt is valid
6927 * IRQ_NONE - If invalid interrupt
6928 */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)6929 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6930 {
6931 bool queue_eh_work = false;
6932 irqreturn_t retval = IRQ_NONE;
6933
6934 guard(spinlock_irqsave)(hba->host->host_lock);
6935 hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6936
6937 if (hba->errors & INT_FATAL_ERRORS) {
6938 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6939 hba->errors);
6940 queue_eh_work = true;
6941 }
6942
6943 if (hba->errors & UIC_ERROR) {
6944 hba->uic_error = 0;
6945 retval = ufshcd_update_uic_error(hba);
6946 if (hba->uic_error)
6947 queue_eh_work = true;
6948 }
6949
6950 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6951 dev_err(hba->dev,
6952 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6953 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6954 "Enter" : "Exit",
6955 hba->errors, ufshcd_get_upmcrs(hba));
6956 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6957 hba->errors);
6958 ufshcd_set_link_broken(hba);
6959 queue_eh_work = true;
6960 }
6961
6962 if (queue_eh_work) {
6963 /*
6964 * update the transfer error masks to sticky bits, let's do this
6965 * irrespective of current ufshcd_state.
6966 */
6967 hba->saved_err |= hba->errors;
6968 hba->saved_uic_err |= hba->uic_error;
6969
6970 /* dump controller state before resetting */
6971 if ((hba->saved_err &
6972 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6973 (hba->saved_uic_err &&
6974 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6975 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6976 __func__, hba->saved_err,
6977 hba->saved_uic_err);
6978 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6979 "host_regs: ");
6980 ufshcd_print_pwr_info(hba);
6981 }
6982 ufshcd_schedule_eh_work(hba);
6983 retval |= IRQ_HANDLED;
6984 }
6985 /*
6986 * if (!queue_eh_work) -
6987 * Other errors are either non-fatal where host recovers
6988 * itself without s/w intervention or errors that will be
6989 * handled by the SCSI core layer.
6990 */
6991 hba->errors = 0;
6992 hba->uic_error = 0;
6993
6994 return retval;
6995 }
6996
6997 /**
6998 * ufshcd_tmc_handler - handle task management function completion
6999 * @hba: per adapter instance
7000 *
7001 * Return:
7002 * IRQ_HANDLED - If interrupt is valid
7003 * IRQ_NONE - If invalid interrupt
7004 */
ufshcd_tmc_handler(struct ufs_hba * hba)7005 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
7006 {
7007 unsigned long flags, pending, issued;
7008 irqreturn_t ret = IRQ_NONE;
7009 int tag;
7010
7011 spin_lock_irqsave(hba->host->host_lock, flags);
7012 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
7013 issued = hba->outstanding_tasks & ~pending;
7014 for_each_set_bit(tag, &issued, hba->nutmrs) {
7015 struct request *req = hba->tmf_rqs[tag];
7016 struct completion *c = req->end_io_data;
7017
7018 complete(c);
7019 ret = IRQ_HANDLED;
7020 }
7021 spin_unlock_irqrestore(hba->host->host_lock, flags);
7022
7023 return ret;
7024 }
7025
7026 /**
7027 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
7028 * @hba: per adapter instance
7029 *
7030 * Return: IRQ_HANDLED if interrupt is handled.
7031 */
ufshcd_handle_mcq_cq_events(struct ufs_hba * hba)7032 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
7033 {
7034 struct ufs_hw_queue *hwq;
7035 unsigned long outstanding_cqs;
7036 unsigned int nr_queues;
7037 int i, ret;
7038 u32 events;
7039
7040 ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
7041 if (ret)
7042 outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
7043
7044 /* Exclude the poll queues */
7045 nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
7046 for_each_set_bit(i, &outstanding_cqs, nr_queues) {
7047 hwq = &hba->uhq[i];
7048
7049 events = ufshcd_mcq_read_cqis(hba, i);
7050 if (events)
7051 ufshcd_mcq_write_cqis(hba, events, i);
7052
7053 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
7054 ufshcd_mcq_poll_cqe_lock(hba, hwq);
7055 }
7056
7057 return IRQ_HANDLED;
7058 }
7059
7060 /**
7061 * ufshcd_sl_intr - Interrupt service routine
7062 * @hba: per adapter instance
7063 * @intr_status: contains interrupts generated by the controller
7064 *
7065 * Return:
7066 * IRQ_HANDLED - If interrupt is valid
7067 * IRQ_NONE - If invalid interrupt
7068 */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)7069 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
7070 {
7071 irqreturn_t retval = IRQ_NONE;
7072
7073 if (intr_status & UFSHCD_UIC_MASK)
7074 retval |= ufshcd_uic_cmd_compl(hba, intr_status);
7075
7076 if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
7077 retval |= ufshcd_check_errors(hba, intr_status);
7078
7079 if (intr_status & UTP_TASK_REQ_COMPL)
7080 retval |= ufshcd_tmc_handler(hba);
7081
7082 if (intr_status & UTP_TRANSFER_REQ_COMPL)
7083 retval |= ufshcd_transfer_req_compl(hba);
7084
7085 if (intr_status & MCQ_CQ_EVENT_STATUS)
7086 retval |= ufshcd_handle_mcq_cq_events(hba);
7087
7088 return retval;
7089 }
7090
7091 /**
7092 * ufshcd_threaded_intr - Threaded interrupt service routine
7093 * @irq: irq number
7094 * @__hba: pointer to adapter instance
7095 *
7096 * Return:
7097 * IRQ_HANDLED - If interrupt is valid
7098 * IRQ_NONE - If invalid interrupt
7099 */
ufshcd_threaded_intr(int irq,void * __hba)7100 static irqreturn_t ufshcd_threaded_intr(int irq, void *__hba)
7101 {
7102 u32 last_intr_status, intr_status, enabled_intr_status = 0;
7103 irqreturn_t retval = IRQ_NONE;
7104 struct ufs_hba *hba = __hba;
7105 int retries = hba->nutrs;
7106
7107 last_intr_status = intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7108
7109 /*
7110 * There could be max of hba->nutrs reqs in flight and in worst case
7111 * if the reqs get finished 1 by 1 after the interrupt status is
7112 * read, make sure we handle them by checking the interrupt status
7113 * again in a loop until we process all of the reqs before returning.
7114 */
7115 while (intr_status && retries--) {
7116 enabled_intr_status =
7117 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7118 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7119 if (enabled_intr_status)
7120 retval |= ufshcd_sl_intr(hba, enabled_intr_status);
7121
7122 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7123 }
7124
7125 if (enabled_intr_status && retval == IRQ_NONE &&
7126 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
7127 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
7128 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
7129 __func__,
7130 intr_status,
7131 last_intr_status,
7132 enabled_intr_status);
7133 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
7134 }
7135
7136 return retval;
7137 }
7138
7139 /**
7140 * ufshcd_intr - Main interrupt service routine
7141 * @irq: irq number
7142 * @__hba: pointer to adapter instance
7143 *
7144 * Return:
7145 * IRQ_HANDLED - If interrupt is valid
7146 * IRQ_WAKE_THREAD - If handling is moved to threaded handled
7147 * IRQ_NONE - If invalid interrupt
7148 */
ufshcd_intr(int irq,void * __hba)7149 static irqreturn_t ufshcd_intr(int irq, void *__hba)
7150 {
7151 struct ufs_hba *hba = __hba;
7152 u32 intr_status, enabled_intr_status;
7153
7154 /* Move interrupt handling to thread when MCQ & ESI are not enabled */
7155 if (!hba->mcq_enabled || !hba->mcq_esi_enabled)
7156 return IRQ_WAKE_THREAD;
7157
7158 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7159 enabled_intr_status = intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7160
7161 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7162
7163 /* Directly handle interrupts since MCQ ESI handlers does the hard job */
7164 return ufshcd_sl_intr(hba, enabled_intr_status);
7165 }
7166
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)7167 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
7168 {
7169 int err = 0;
7170 u32 mask = 1 << tag;
7171
7172 if (!test_bit(tag, &hba->outstanding_tasks))
7173 goto out;
7174
7175 ufshcd_utmrl_clear(hba, tag);
7176
7177 /* poll for max. 1 sec to clear door bell register by h/w */
7178 err = ufshcd_wait_for_register(hba,
7179 REG_UTP_TASK_REQ_DOOR_BELL,
7180 mask, 0, 1000, 1000);
7181
7182 dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7183 tag, err < 0 ? "failed" : "succeeded");
7184
7185 out:
7186 return err;
7187 }
7188
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)7189 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7190 struct utp_task_req_desc *treq, u8 tm_function)
7191 {
7192 struct request_queue *q = hba->tmf_queue;
7193 struct Scsi_Host *host = hba->host;
7194 DECLARE_COMPLETION_ONSTACK(wait);
7195 struct request *req;
7196 unsigned long flags;
7197 int task_tag, err;
7198
7199 /*
7200 * blk_mq_alloc_request() is used here only to get a free tag.
7201 */
7202 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7203 if (IS_ERR(req))
7204 return PTR_ERR(req);
7205
7206 req->end_io_data = &wait;
7207 ufshcd_hold(hba);
7208
7209 spin_lock_irqsave(host->host_lock, flags);
7210
7211 task_tag = req->tag;
7212 hba->tmf_rqs[req->tag] = req;
7213 treq->upiu_req.req_header.task_tag = task_tag;
7214
7215 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7216 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7217
7218 __set_bit(task_tag, &hba->outstanding_tasks);
7219
7220 spin_unlock_irqrestore(host->host_lock, flags);
7221
7222 /* send command to the controller */
7223 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7224
7225 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7226
7227 /* wait until the task management command is completed */
7228 err = wait_for_completion_io_timeout(&wait,
7229 msecs_to_jiffies(TM_CMD_TIMEOUT));
7230 if (!err) {
7231 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7232 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7233 __func__, tm_function);
7234 if (ufshcd_clear_tm_cmd(hba, task_tag))
7235 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7236 __func__, task_tag);
7237 err = -ETIMEDOUT;
7238 } else {
7239 err = 0;
7240 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7241
7242 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7243 }
7244
7245 spin_lock_irqsave(hba->host->host_lock, flags);
7246 hba->tmf_rqs[req->tag] = NULL;
7247 __clear_bit(task_tag, &hba->outstanding_tasks);
7248 spin_unlock_irqrestore(hba->host->host_lock, flags);
7249
7250 ufshcd_release(hba);
7251 blk_mq_free_request(req);
7252
7253 return err;
7254 }
7255
7256 /**
7257 * ufshcd_issue_tm_cmd - issues task management commands to controller
7258 * @hba: per adapter instance
7259 * @lun_id: LUN ID to which TM command is sent
7260 * @task_id: task ID to which the TM command is applicable
7261 * @tm_function: task management function opcode
7262 * @tm_response: task management service response return value
7263 *
7264 * Return: non-zero value on error, zero on success.
7265 */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)7266 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7267 u8 tm_function, u8 *tm_response)
7268 {
7269 struct utp_task_req_desc treq = { };
7270 enum utp_ocs ocs_value;
7271 int err;
7272
7273 /* Configure task request descriptor */
7274 treq.header.interrupt = 1;
7275 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7276
7277 /* Configure task request UPIU */
7278 treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7279 treq.upiu_req.req_header.lun = lun_id;
7280 treq.upiu_req.req_header.tm_function = tm_function;
7281
7282 /*
7283 * The host shall provide the same value for LUN field in the basic
7284 * header and for Input Parameter.
7285 */
7286 treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7287 treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7288
7289 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7290 if (err == -ETIMEDOUT)
7291 return err;
7292
7293 ocs_value = treq.header.ocs & MASK_OCS;
7294 if (ocs_value != OCS_SUCCESS)
7295 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7296 __func__, ocs_value);
7297 else if (tm_response)
7298 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7299 MASK_TM_SERVICE_RESP;
7300 return err;
7301 }
7302
7303 /**
7304 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7305 * @hba: per-adapter instance
7306 * @req_upiu: upiu request
7307 * @rsp_upiu: upiu reply
7308 * @desc_buff: pointer to descriptor buffer, NULL if NA
7309 * @buff_len: descriptor size, 0 if NA
7310 * @cmd_type: specifies the type (NOP, Query...)
7311 * @desc_op: descriptor operation
7312 *
7313 * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7314 * Therefore, it "rides" the device management infrastructure: uses its tag and
7315 * tasks work queues.
7316 *
7317 * Since there is only one available tag for device management commands,
7318 * the caller is expected to hold the hba->dev_cmd.lock mutex.
7319 *
7320 * Return: 0 upon success; < 0 upon failure.
7321 */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)7322 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7323 struct utp_upiu_req *req_upiu,
7324 struct utp_upiu_req *rsp_upiu,
7325 u8 *desc_buff, int *buff_len,
7326 enum dev_cmd_type cmd_type,
7327 enum query_opcode desc_op)
7328 {
7329 const u32 tag = hba->reserved_slot;
7330 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7331 int err = 0;
7332 u8 upiu_flags;
7333
7334 /* Protects use of hba->reserved_slot. */
7335 lockdep_assert_held(&hba->dev_cmd.lock);
7336
7337 ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
7338
7339 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7340
7341 /* update the task tag in the request upiu */
7342 req_upiu->header.task_tag = tag;
7343
7344 /* just copy the upiu request as it is */
7345 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7346 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7347 /* The Data Segment Area is optional depending upon the query
7348 * function value. for WRITE DESCRIPTOR, the data segment
7349 * follows right after the tsf.
7350 */
7351 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7352 *buff_len = 0;
7353 }
7354
7355 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7356
7357 /*
7358 * ignore the returning value here - ufshcd_check_query_response is
7359 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7360 * read the response directly ignoring all errors.
7361 */
7362 ufshcd_issue_dev_cmd(hba, lrbp, tag, dev_cmd_timeout);
7363
7364 /* just copy the upiu response as it is */
7365 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7366 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7367 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7368 u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7369 .data_segment_length);
7370
7371 if (*buff_len >= resp_len) {
7372 memcpy(desc_buff, descp, resp_len);
7373 *buff_len = resp_len;
7374 } else {
7375 dev_warn(hba->dev,
7376 "%s: rsp size %d is bigger than buffer size %d",
7377 __func__, resp_len, *buff_len);
7378 *buff_len = 0;
7379 err = -EINVAL;
7380 }
7381 }
7382
7383 return err;
7384 }
7385
7386 /**
7387 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7388 * @hba: per-adapter instance
7389 * @req_upiu: upiu request
7390 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands
7391 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target
7392 * @desc_buff: pointer to descriptor buffer, NULL if NA
7393 * @buff_len: descriptor size, 0 if NA
7394 * @desc_op: descriptor operation
7395 *
7396 * Supports UTP Transfer requests (nop and query), and UTP Task
7397 * Management requests.
7398 * It is up to the caller to fill the upiu conent properly, as it will
7399 * be copied without any further input validations.
7400 *
7401 * Return: 0 upon success; < 0 upon failure.
7402 */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,enum upiu_request_transaction msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)7403 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7404 struct utp_upiu_req *req_upiu,
7405 struct utp_upiu_req *rsp_upiu,
7406 enum upiu_request_transaction msgcode,
7407 u8 *desc_buff, int *buff_len,
7408 enum query_opcode desc_op)
7409 {
7410 int err;
7411 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7412 struct utp_task_req_desc treq = { };
7413 enum utp_ocs ocs_value;
7414 u8 tm_f = req_upiu->header.tm_function;
7415
7416 switch (msgcode) {
7417 case UPIU_TRANSACTION_NOP_OUT:
7418 cmd_type = DEV_CMD_TYPE_NOP;
7419 fallthrough;
7420 case UPIU_TRANSACTION_QUERY_REQ:
7421 ufshcd_dev_man_lock(hba);
7422 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7423 desc_buff, buff_len,
7424 cmd_type, desc_op);
7425 ufshcd_dev_man_unlock(hba);
7426
7427 break;
7428 case UPIU_TRANSACTION_TASK_REQ:
7429 treq.header.interrupt = 1;
7430 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7431
7432 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7433
7434 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7435 if (err == -ETIMEDOUT)
7436 break;
7437
7438 ocs_value = treq.header.ocs & MASK_OCS;
7439 if (ocs_value != OCS_SUCCESS) {
7440 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7441 ocs_value);
7442 break;
7443 }
7444
7445 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7446
7447 break;
7448 default:
7449 err = -EINVAL;
7450
7451 break;
7452 }
7453
7454 return err;
7455 }
7456
7457 /**
7458 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7459 * @hba: per adapter instance
7460 * @req_upiu: upiu request
7461 * @rsp_upiu: upiu reply
7462 * @req_ehs: EHS field which contains Advanced RPMB Request Message
7463 * @rsp_ehs: EHS field which returns Advanced RPMB Response Message
7464 * @sg_cnt: The number of sg lists actually used
7465 * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7466 * @dir: DMA direction
7467 *
7468 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
7469 * < 0 if another error occurred.
7470 */
ufshcd_advanced_rpmb_req_handler(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,struct ufs_ehs * req_ehs,struct ufs_ehs * rsp_ehs,int sg_cnt,struct scatterlist * sg_list,enum dma_data_direction dir)7471 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7472 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7473 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7474 enum dma_data_direction dir)
7475 {
7476 const u32 tag = hba->reserved_slot;
7477 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7478 int err = 0;
7479 int result;
7480 u8 upiu_flags;
7481 u8 *ehs_data;
7482 u16 ehs_len;
7483 int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7484
7485 /* Protects use of hba->reserved_slot. */
7486 ufshcd_dev_man_lock(hba);
7487
7488 ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag);
7489
7490 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7491
7492 /* update the task tag */
7493 req_upiu->header.task_tag = tag;
7494
7495 /* copy the UPIU(contains CDB) request as it is */
7496 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7497 /* Copy EHS, starting with byte32, immediately after the CDB package */
7498 memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7499
7500 if (dir != DMA_NONE && sg_list)
7501 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7502
7503 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7504
7505 err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7506
7507 if (!err) {
7508 /* Just copy the upiu response as it is */
7509 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7510 /* Get the response UPIU result */
7511 result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7512 lrbp->ucd_rsp_ptr->header.status;
7513
7514 ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7515 /*
7516 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7517 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7518 * Message is 02h
7519 */
7520 if (ehs_len == 2 && rsp_ehs) {
7521 /*
7522 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7523 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7524 */
7525 ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7526 memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7527 }
7528 }
7529
7530 ufshcd_dev_man_unlock(hba);
7531
7532 return err ? : result;
7533 }
7534
7535 /**
7536 * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7537 * @cmd: SCSI command pointer
7538 *
7539 * Return: SUCCESS or FAILED.
7540 */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)7541 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7542 {
7543 unsigned long flags, pending_reqs = 0, not_cleared = 0;
7544 struct Scsi_Host *host;
7545 struct ufs_hba *hba;
7546 struct ufs_hw_queue *hwq;
7547 struct ufshcd_lrb *lrbp;
7548 u32 pos, not_cleared_mask = 0;
7549 int err;
7550 u8 resp = 0xF, lun;
7551
7552 host = cmd->device->host;
7553 hba = shost_priv(host);
7554
7555 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7556 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7557 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7558 if (!err)
7559 err = resp;
7560 goto out;
7561 }
7562
7563 if (hba->mcq_enabled) {
7564 for (pos = 0; pos < hba->nutrs; pos++) {
7565 lrbp = &hba->lrb[pos];
7566 if (ufshcd_cmd_inflight(lrbp->cmd) &&
7567 lrbp->lun == lun) {
7568 ufshcd_clear_cmd(hba, pos);
7569 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7570 ufshcd_mcq_poll_cqe_lock(hba, hwq);
7571 }
7572 }
7573 err = 0;
7574 goto out;
7575 }
7576
7577 /* clear the commands that were pending for corresponding LUN */
7578 spin_lock_irqsave(&hba->outstanding_lock, flags);
7579 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7580 if (hba->lrb[pos].lun == lun)
7581 __set_bit(pos, &pending_reqs);
7582 hba->outstanding_reqs &= ~pending_reqs;
7583 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7584
7585 for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7586 if (ufshcd_clear_cmd(hba, pos) < 0) {
7587 spin_lock_irqsave(&hba->outstanding_lock, flags);
7588 not_cleared = 1U << pos &
7589 ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7590 hba->outstanding_reqs |= not_cleared;
7591 not_cleared_mask |= not_cleared;
7592 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7593
7594 dev_err(hba->dev, "%s: failed to clear request %d\n",
7595 __func__, pos);
7596 }
7597 }
7598 __ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7599
7600 out:
7601 hba->req_abort_count = 0;
7602 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7603 if (!err) {
7604 err = SUCCESS;
7605 } else {
7606 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7607 err = FAILED;
7608 }
7609 return err;
7610 }
7611
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)7612 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7613 {
7614 struct ufshcd_lrb *lrbp;
7615 int tag;
7616
7617 for_each_set_bit(tag, &bitmap, hba->nutrs) {
7618 lrbp = &hba->lrb[tag];
7619 lrbp->req_abort_skip = true;
7620 }
7621 }
7622
7623 /**
7624 * ufshcd_try_to_abort_task - abort a specific task
7625 * @hba: Pointer to adapter instance
7626 * @tag: Task tag/index to be aborted
7627 *
7628 * Abort the pending command in device by sending UFS_ABORT_TASK task management
7629 * command, and in host controller by clearing the door-bell register. There can
7630 * be race between controller sending the command to the device while abort is
7631 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7632 * really issued and then try to abort it.
7633 *
7634 * Return: zero on success, non-zero on failure.
7635 */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)7636 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7637 {
7638 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7639 int err;
7640 int poll_cnt;
7641 u8 resp = 0xF;
7642
7643 for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7644 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7645 UFS_QUERY_TASK, &resp);
7646 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7647 /* cmd pending in the device */
7648 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7649 __func__, tag);
7650 break;
7651 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7652 /*
7653 * cmd not pending in the device, check if it is
7654 * in transition.
7655 */
7656 dev_info(
7657 hba->dev,
7658 "%s: cmd with tag %d not pending in the device.\n",
7659 __func__, tag);
7660 if (!ufshcd_cmd_inflight(lrbp->cmd)) {
7661 dev_info(hba->dev,
7662 "%s: cmd with tag=%d completed.\n",
7663 __func__, tag);
7664 return 0;
7665 }
7666 usleep_range(100, 200);
7667 } else {
7668 dev_err(hba->dev,
7669 "%s: no response from device. tag = %d, err %d\n",
7670 __func__, tag, err);
7671 return err ? : resp;
7672 }
7673 }
7674
7675 if (!poll_cnt)
7676 return -EBUSY;
7677
7678 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7679 UFS_ABORT_TASK, &resp);
7680 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7681 if (!err) {
7682 err = resp; /* service response error */
7683 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7684 __func__, tag, err);
7685 }
7686 return err;
7687 }
7688
7689 err = ufshcd_clear_cmd(hba, tag);
7690 if (err)
7691 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7692 __func__, tag, err);
7693
7694 return err;
7695 }
7696
7697 /**
7698 * ufshcd_abort - scsi host template eh_abort_handler callback
7699 * @cmd: SCSI command pointer
7700 *
7701 * Return: SUCCESS or FAILED.
7702 */
ufshcd_abort(struct scsi_cmnd * cmd)7703 static int ufshcd_abort(struct scsi_cmnd *cmd)
7704 {
7705 struct Scsi_Host *host = cmd->device->host;
7706 struct ufs_hba *hba = shost_priv(host);
7707 int tag = scsi_cmd_to_rq(cmd)->tag;
7708 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7709 unsigned long flags;
7710 int err = FAILED;
7711 bool outstanding;
7712 u32 reg;
7713
7714 ufshcd_hold(hba);
7715
7716 if (!hba->mcq_enabled) {
7717 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7718 if (!test_bit(tag, &hba->outstanding_reqs)) {
7719 /* If command is already aborted/completed, return FAILED. */
7720 dev_err(hba->dev,
7721 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7722 __func__, tag, hba->outstanding_reqs, reg);
7723 goto release;
7724 }
7725 }
7726
7727 /* Print Transfer Request of aborted task */
7728 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7729
7730 /*
7731 * Print detailed info about aborted request.
7732 * As more than one request might get aborted at the same time,
7733 * print full information only for the first aborted request in order
7734 * to reduce repeated printouts. For other aborted requests only print
7735 * basic details.
7736 */
7737 scsi_print_command(cmd);
7738 if (!hba->req_abort_count) {
7739 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7740 ufshcd_print_evt_hist(hba);
7741 ufshcd_print_host_state(hba);
7742 ufshcd_print_pwr_info(hba);
7743 ufshcd_print_tr(hba, tag, true);
7744 } else {
7745 ufshcd_print_tr(hba, tag, false);
7746 }
7747 hba->req_abort_count++;
7748
7749 if (!hba->mcq_enabled && !(reg & (1 << tag))) {
7750 /* only execute this code in single doorbell mode */
7751 dev_err(hba->dev,
7752 "%s: cmd was completed, but without a notifying intr, tag = %d",
7753 __func__, tag);
7754 __ufshcd_transfer_req_compl(hba, 1UL << tag);
7755 goto release;
7756 }
7757
7758 /*
7759 * Task abort to the device W-LUN is illegal. When this command
7760 * will fail, due to spec violation, scsi err handling next step
7761 * will be to send LU reset which, again, is a spec violation.
7762 * To avoid these unnecessary/illegal steps, first we clean up
7763 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7764 * then queue the eh_work and bail.
7765 */
7766 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7767 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7768
7769 spin_lock_irqsave(host->host_lock, flags);
7770 hba->force_reset = true;
7771 ufshcd_schedule_eh_work(hba);
7772 spin_unlock_irqrestore(host->host_lock, flags);
7773 goto release;
7774 }
7775
7776 if (hba->mcq_enabled) {
7777 /* MCQ mode. Branch off to handle abort for mcq mode */
7778 err = ufshcd_mcq_abort(cmd);
7779 goto release;
7780 }
7781
7782 /* Skip task abort in case previous aborts failed and report failure */
7783 if (lrbp->req_abort_skip) {
7784 dev_err(hba->dev, "%s: skipping abort\n", __func__);
7785 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7786 goto release;
7787 }
7788
7789 err = ufshcd_try_to_abort_task(hba, tag);
7790 if (err) {
7791 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7792 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7793 err = FAILED;
7794 goto release;
7795 }
7796
7797 /*
7798 * Clear the corresponding bit from outstanding_reqs since the command
7799 * has been aborted successfully.
7800 */
7801 spin_lock_irqsave(&hba->outstanding_lock, flags);
7802 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7803 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7804
7805 if (outstanding)
7806 ufshcd_release_scsi_cmd(hba, lrbp);
7807
7808 err = SUCCESS;
7809
7810 release:
7811 /* Matches the ufshcd_hold() call at the start of this function. */
7812 ufshcd_release(hba);
7813 return err;
7814 }
7815
7816 /**
7817 * ufshcd_process_probe_result - Process the ufshcd_probe_hba() result.
7818 * @hba: UFS host controller instance.
7819 * @probe_start: time when the ufshcd_probe_hba() call started.
7820 * @ret: ufshcd_probe_hba() return value.
7821 */
ufshcd_process_probe_result(struct ufs_hba * hba,ktime_t probe_start,int ret)7822 static void ufshcd_process_probe_result(struct ufs_hba *hba,
7823 ktime_t probe_start, int ret)
7824 {
7825 unsigned long flags;
7826
7827 spin_lock_irqsave(hba->host->host_lock, flags);
7828 if (ret)
7829 hba->ufshcd_state = UFSHCD_STATE_ERROR;
7830 else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7831 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7832 spin_unlock_irqrestore(hba->host->host_lock, flags);
7833
7834 trace_ufshcd_init(hba, ret,
7835 ktime_to_us(ktime_sub(ktime_get(), probe_start)),
7836 hba->curr_dev_pwr_mode, hba->uic_link_state);
7837 }
7838
7839 /**
7840 * ufshcd_host_reset_and_restore - reset and restore host controller
7841 * @hba: per-adapter instance
7842 *
7843 * Note that host controller reset may issue DME_RESET to
7844 * local and remote (device) Uni-Pro stack and the attributes
7845 * are reset to default state.
7846 *
7847 * Return: zero on success, non-zero on failure.
7848 */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7849 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7850 {
7851 int err;
7852
7853 /*
7854 * Stop the host controller and complete the requests
7855 * cleared by h/w
7856 */
7857 ufshcd_hba_stop(hba);
7858 hba->silence_err_logs = true;
7859 ufshcd_complete_requests(hba, true);
7860 hba->silence_err_logs = false;
7861
7862 /* scale up clocks to max frequency before full reinitialization */
7863 if (ufshcd_is_clkscaling_supported(hba))
7864 ufshcd_scale_clks(hba, ULONG_MAX, true);
7865
7866 err = ufshcd_hba_enable(hba);
7867
7868 /* Establish the link again and restore the device */
7869 if (!err) {
7870 ktime_t probe_start = ktime_get();
7871
7872 err = ufshcd_device_init(hba, /*init_dev_params=*/false);
7873 if (!err)
7874 err = ufshcd_probe_hba(hba, false);
7875 ufshcd_process_probe_result(hba, probe_start, err);
7876 }
7877
7878 if (err)
7879 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7880 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7881 return err;
7882 }
7883
7884 /**
7885 * ufshcd_reset_and_restore - reset and re-initialize host/device
7886 * @hba: per-adapter instance
7887 *
7888 * Reset and recover device, host and re-establish link. This
7889 * is helpful to recover the communication in fatal error conditions.
7890 *
7891 * Return: zero on success, non-zero on failure.
7892 */
ufshcd_reset_and_restore(struct ufs_hba * hba)7893 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7894 {
7895 u32 saved_err = 0;
7896 u32 saved_uic_err = 0;
7897 int err = 0;
7898 unsigned long flags;
7899 int retries = MAX_HOST_RESET_RETRIES;
7900
7901 spin_lock_irqsave(hba->host->host_lock, flags);
7902 do {
7903 /*
7904 * This is a fresh start, cache and clear saved error first,
7905 * in case new error generated during reset and restore.
7906 */
7907 saved_err |= hba->saved_err;
7908 saved_uic_err |= hba->saved_uic_err;
7909 hba->saved_err = 0;
7910 hba->saved_uic_err = 0;
7911 hba->force_reset = false;
7912 hba->ufshcd_state = UFSHCD_STATE_RESET;
7913 spin_unlock_irqrestore(hba->host->host_lock, flags);
7914
7915 /* Reset the attached device */
7916 ufshcd_device_reset(hba);
7917
7918 err = ufshcd_host_reset_and_restore(hba);
7919
7920 spin_lock_irqsave(hba->host->host_lock, flags);
7921 if (err)
7922 continue;
7923 /* Do not exit unless operational or dead */
7924 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7925 hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7926 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7927 err = -EAGAIN;
7928 } while (err && --retries);
7929
7930 /*
7931 * Inform scsi mid-layer that we did reset and allow to handle
7932 * Unit Attention properly.
7933 */
7934 scsi_report_bus_reset(hba->host, 0);
7935 if (err) {
7936 hba->ufshcd_state = UFSHCD_STATE_ERROR;
7937 hba->saved_err |= saved_err;
7938 hba->saved_uic_err |= saved_uic_err;
7939 }
7940 spin_unlock_irqrestore(hba->host->host_lock, flags);
7941
7942 return err;
7943 }
7944
7945 /**
7946 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7947 * @cmd: SCSI command pointer
7948 *
7949 * Return: SUCCESS or FAILED.
7950 */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)7951 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7952 {
7953 int err = SUCCESS;
7954 unsigned long flags;
7955 struct ufs_hba *hba;
7956
7957 hba = shost_priv(cmd->device->host);
7958
7959 /*
7960 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7961 * stuck in this function waiting for flush_work(&hba->eh_work). And
7962 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7963 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7964 */
7965 if (hba->pm_op_in_progress) {
7966 if (ufshcd_link_recovery(hba))
7967 err = FAILED;
7968
7969 return err;
7970 }
7971
7972 spin_lock_irqsave(hba->host->host_lock, flags);
7973 hba->force_reset = true;
7974 ufshcd_schedule_eh_work(hba);
7975 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7976 spin_unlock_irqrestore(hba->host->host_lock, flags);
7977
7978 flush_work(&hba->eh_work);
7979
7980 spin_lock_irqsave(hba->host->host_lock, flags);
7981 if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7982 err = FAILED;
7983 spin_unlock_irqrestore(hba->host->host_lock, flags);
7984
7985 return err;
7986 }
7987
7988 /**
7989 * ufshcd_get_max_icc_level - calculate the ICC level
7990 * @sup_curr_uA: max. current supported by the regulator
7991 * @start_scan: row at the desc table to start scan from
7992 * @buff: power descriptor buffer
7993 *
7994 * Return: calculated max ICC level for specific regulator.
7995 */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,const char * buff)7996 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7997 const char *buff)
7998 {
7999 int i;
8000 int curr_uA;
8001 u16 data;
8002 u16 unit;
8003
8004 for (i = start_scan; i >= 0; i--) {
8005 data = get_unaligned_be16(&buff[2 * i]);
8006 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
8007 ATTR_ICC_LVL_UNIT_OFFSET;
8008 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
8009 switch (unit) {
8010 case UFSHCD_NANO_AMP:
8011 curr_uA = curr_uA / 1000;
8012 break;
8013 case UFSHCD_MILI_AMP:
8014 curr_uA = curr_uA * 1000;
8015 break;
8016 case UFSHCD_AMP:
8017 curr_uA = curr_uA * 1000 * 1000;
8018 break;
8019 case UFSHCD_MICRO_AMP:
8020 default:
8021 break;
8022 }
8023 if (sup_curr_uA >= curr_uA)
8024 break;
8025 }
8026 if (i < 0) {
8027 i = 0;
8028 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
8029 }
8030
8031 return (u32)i;
8032 }
8033
8034 /**
8035 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
8036 * In case regulators are not initialized we'll return 0
8037 * @hba: per-adapter instance
8038 * @desc_buf: power descriptor buffer to extract ICC levels from.
8039 *
8040 * Return: calculated ICC level.
8041 */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,const u8 * desc_buf)8042 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
8043 const u8 *desc_buf)
8044 {
8045 u32 icc_level = 0;
8046
8047 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
8048 !hba->vreg_info.vccq2) {
8049 /*
8050 * Using dev_dbg to avoid messages during runtime PM to avoid
8051 * never-ending cycles of messages written back to storage by
8052 * user space causing runtime resume, causing more messages and
8053 * so on.
8054 */
8055 dev_dbg(hba->dev,
8056 "%s: Regulator capability was not set, actvIccLevel=%d",
8057 __func__, icc_level);
8058 goto out;
8059 }
8060
8061 if (hba->vreg_info.vcc->max_uA)
8062 icc_level = ufshcd_get_max_icc_level(
8063 hba->vreg_info.vcc->max_uA,
8064 POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
8065 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
8066
8067 if (hba->vreg_info.vccq->max_uA)
8068 icc_level = ufshcd_get_max_icc_level(
8069 hba->vreg_info.vccq->max_uA,
8070 icc_level,
8071 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
8072
8073 if (hba->vreg_info.vccq2->max_uA)
8074 icc_level = ufshcd_get_max_icc_level(
8075 hba->vreg_info.vccq2->max_uA,
8076 icc_level,
8077 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
8078 out:
8079 return icc_level;
8080 }
8081
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)8082 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
8083 {
8084 int ret;
8085 u8 *desc_buf;
8086 u32 icc_level;
8087
8088 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8089 if (!desc_buf)
8090 return;
8091
8092 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
8093 desc_buf, QUERY_DESC_MAX_SIZE);
8094 if (ret) {
8095 dev_err(hba->dev,
8096 "%s: Failed reading power descriptor ret = %d",
8097 __func__, ret);
8098 goto out;
8099 }
8100
8101 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
8102 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
8103
8104 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8105 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
8106
8107 if (ret)
8108 dev_err(hba->dev,
8109 "%s: Failed configuring bActiveICCLevel = %d ret = %d",
8110 __func__, icc_level, ret);
8111
8112 out:
8113 kfree(desc_buf);
8114 }
8115
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)8116 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
8117 {
8118 struct Scsi_Host *shost = sdev->host;
8119
8120 scsi_autopm_get_device(sdev);
8121 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
8122 if (sdev->rpm_autosuspend)
8123 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
8124 shost->rpm_autosuspend_delay);
8125 scsi_autopm_put_device(sdev);
8126 }
8127
8128 /**
8129 * ufshcd_scsi_add_wlus - Adds required W-LUs
8130 * @hba: per-adapter instance
8131 *
8132 * UFS device specification requires the UFS devices to support 4 well known
8133 * logical units:
8134 * "REPORT_LUNS" (address: 01h)
8135 * "UFS Device" (address: 50h)
8136 * "RPMB" (address: 44h)
8137 * "BOOT" (address: 30h)
8138 * UFS device's power management needs to be controlled by "POWER CONDITION"
8139 * field of SSU (START STOP UNIT) command. But this "power condition" field
8140 * will take effect only when its sent to "UFS device" well known logical unit
8141 * hence we require the scsi_device instance to represent this logical unit in
8142 * order for the UFS host driver to send the SSU command for power management.
8143 *
8144 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
8145 * Block) LU so user space process can control this LU. User space may also
8146 * want to have access to BOOT LU.
8147 *
8148 * This function adds scsi device instances for each of all well known LUs
8149 * (except "REPORT LUNS" LU).
8150 *
8151 * Return: zero on success (all required W-LUs are added successfully),
8152 * non-zero error value on failure (if failed to add any of the required W-LU).
8153 */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)8154 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8155 {
8156 int ret = 0;
8157 struct scsi_device *sdev_boot, *sdev_rpmb;
8158
8159 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8160 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8161 if (IS_ERR(hba->ufs_device_wlun)) {
8162 ret = PTR_ERR(hba->ufs_device_wlun);
8163 hba->ufs_device_wlun = NULL;
8164 goto out;
8165 }
8166 scsi_device_put(hba->ufs_device_wlun);
8167
8168 sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8169 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8170 if (IS_ERR(sdev_rpmb)) {
8171 ret = PTR_ERR(sdev_rpmb);
8172 goto remove_ufs_device_wlun;
8173 }
8174 ufshcd_blk_pm_runtime_init(sdev_rpmb);
8175 scsi_device_put(sdev_rpmb);
8176
8177 sdev_boot = __scsi_add_device(hba->host, 0, 0,
8178 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8179 if (IS_ERR(sdev_boot)) {
8180 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8181 } else {
8182 ufshcd_blk_pm_runtime_init(sdev_boot);
8183 scsi_device_put(sdev_boot);
8184 }
8185 goto out;
8186
8187 remove_ufs_device_wlun:
8188 scsi_remove_device(hba->ufs_device_wlun);
8189 out:
8190 return ret;
8191 }
8192
ufshcd_wb_probe(struct ufs_hba * hba,const u8 * desc_buf)8193 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8194 {
8195 struct ufs_dev_info *dev_info = &hba->dev_info;
8196 u8 lun;
8197 u32 d_lu_wb_buf_alloc;
8198 u32 ext_ufs_feature;
8199
8200 if (!ufshcd_is_wb_allowed(hba))
8201 return;
8202
8203 /*
8204 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8205 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8206 * enabled
8207 */
8208 if (!(dev_info->wspecversion >= 0x310 ||
8209 dev_info->wspecversion == 0x220 ||
8210 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8211 goto wb_disabled;
8212
8213 ext_ufs_feature = get_unaligned_be32(desc_buf +
8214 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8215
8216 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8217 goto wb_disabled;
8218
8219 /*
8220 * WB may be supported but not configured while provisioning. The spec
8221 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8222 * buffer configured.
8223 */
8224 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8225
8226 dev_info->ext_wb_sup = get_unaligned_be16(desc_buf +
8227 DEVICE_DESC_PARAM_EXT_WB_SUP);
8228
8229 dev_info->b_presrv_uspc_en =
8230 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8231
8232 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8233 if (!get_unaligned_be32(desc_buf +
8234 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8235 goto wb_disabled;
8236 } else {
8237 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8238 d_lu_wb_buf_alloc = 0;
8239 ufshcd_read_unit_desc_param(hba,
8240 lun,
8241 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8242 (u8 *)&d_lu_wb_buf_alloc,
8243 sizeof(d_lu_wb_buf_alloc));
8244 if (d_lu_wb_buf_alloc) {
8245 dev_info->wb_dedicated_lu = lun;
8246 break;
8247 }
8248 }
8249
8250 if (!d_lu_wb_buf_alloc)
8251 goto wb_disabled;
8252 }
8253
8254 if (!ufshcd_is_wb_buf_lifetime_available(hba))
8255 goto wb_disabled;
8256
8257 return;
8258
8259 wb_disabled:
8260 hba->caps &= ~UFSHCD_CAP_WB_EN;
8261 }
8262
ufshcd_temp_notif_probe(struct ufs_hba * hba,const u8 * desc_buf)8263 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8264 {
8265 struct ufs_dev_info *dev_info = &hba->dev_info;
8266 u32 ext_ufs_feature;
8267 u8 mask = 0;
8268
8269 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8270 return;
8271
8272 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8273
8274 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8275 mask |= MASK_EE_TOO_LOW_TEMP;
8276
8277 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8278 mask |= MASK_EE_TOO_HIGH_TEMP;
8279
8280 if (mask) {
8281 ufshcd_enable_ee(hba, mask);
8282 ufs_hwmon_probe(hba, mask);
8283 }
8284 }
8285
ufshcd_device_lvl_exception_probe(struct ufs_hba * hba,u8 * desc_buf)8286 static void ufshcd_device_lvl_exception_probe(struct ufs_hba *hba, u8 *desc_buf)
8287 {
8288 u32 ext_ufs_feature;
8289
8290 if (hba->dev_info.wspecversion < 0x410)
8291 return;
8292
8293 ext_ufs_feature = get_unaligned_be32(desc_buf +
8294 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8295 if (!(ext_ufs_feature & UFS_DEV_LVL_EXCEPTION_SUP))
8296 return;
8297
8298 atomic_set(&hba->dev_lvl_exception_count, 0);
8299 ufshcd_enable_ee(hba, MASK_EE_DEV_LVL_EXCEPTION);
8300 }
8301
ufshcd_set_rtt(struct ufs_hba * hba)8302 static void ufshcd_set_rtt(struct ufs_hba *hba)
8303 {
8304 struct ufs_dev_info *dev_info = &hba->dev_info;
8305 u32 rtt = 0;
8306 u32 dev_rtt = 0;
8307 int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ?
8308 hba->vops->max_num_rtt : hba->nortt;
8309
8310 /* RTT override makes sense only for UFS-4.0 and above */
8311 if (dev_info->wspecversion < 0x400)
8312 return;
8313
8314 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8315 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) {
8316 dev_err(hba->dev, "failed reading bMaxNumOfRTT\n");
8317 return;
8318 }
8319
8320 /* do not override if it was already written */
8321 if (dev_rtt != DEFAULT_MAX_NUM_RTT)
8322 return;
8323
8324 rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap);
8325
8326 if (rtt == dev_rtt)
8327 return;
8328
8329 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8330 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt))
8331 dev_err(hba->dev, "failed writing bMaxNumOfRTT\n");
8332 }
8333
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,const struct ufs_dev_quirk * fixups)8334 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8335 const struct ufs_dev_quirk *fixups)
8336 {
8337 const struct ufs_dev_quirk *f;
8338 struct ufs_dev_info *dev_info = &hba->dev_info;
8339
8340 if (!fixups)
8341 return;
8342
8343 for (f = fixups; f->quirk; f++) {
8344 if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8345 f->wmanufacturerid == UFS_ANY_VENDOR) &&
8346 ((dev_info->model &&
8347 STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8348 !strcmp(f->model, UFS_ANY_MODEL)))
8349 hba->dev_quirks |= f->quirk;
8350 }
8351 }
8352 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8353
ufs_fixup_device_setup(struct ufs_hba * hba)8354 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8355 {
8356 /* fix by general quirk table */
8357 ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8358
8359 /* allow vendors to fix quirks */
8360 ufshcd_vops_fixup_dev_quirks(hba);
8361 }
8362
ufshcd_update_rtc(struct ufs_hba * hba)8363 static void ufshcd_update_rtc(struct ufs_hba *hba)
8364 {
8365 struct timespec64 ts64;
8366 int err;
8367 u32 val;
8368
8369 ktime_get_real_ts64(&ts64);
8370
8371 if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8372 dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8373 return;
8374 }
8375
8376 /*
8377 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8378 * 2146 is required, it is recommended to choose the relative RTC mode.
8379 */
8380 val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8381
8382 /* Skip update RTC if RPM state is not RPM_ACTIVE */
8383 if (ufshcd_rpm_get_if_active(hba) <= 0)
8384 return;
8385
8386 err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8387 0, 0, &val);
8388 ufshcd_rpm_put(hba);
8389
8390 if (err)
8391 dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8392 else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8393 hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8394 }
8395
ufshcd_rtc_work(struct work_struct * work)8396 static void ufshcd_rtc_work(struct work_struct *work)
8397 {
8398 struct ufs_hba *hba;
8399
8400 hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8401
8402 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8403 if (!ufshcd_is_ufs_dev_busy(hba) &&
8404 hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL &&
8405 !hba->clk_gating.active_reqs)
8406 ufshcd_update_rtc(hba);
8407
8408 if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8409 schedule_delayed_work(&hba->ufs_rtc_update_work,
8410 msecs_to_jiffies(hba->dev_info.rtc_update_period));
8411 }
8412
ufs_init_rtc(struct ufs_hba * hba,u8 * desc_buf)8413 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8414 {
8415 u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8416 struct ufs_dev_info *dev_info = &hba->dev_info;
8417
8418 if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8419 dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8420
8421 /*
8422 * The concept of measuring time in Linux as the number of seconds elapsed since
8423 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8424 * 2010 00:00, here we need to adjust ABS baseline.
8425 */
8426 dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8427 mktime64(1970, 1, 1, 0, 0, 0);
8428 } else {
8429 dev_info->rtc_type = UFS_RTC_RELATIVE;
8430 dev_info->rtc_time_baseline = 0;
8431 }
8432
8433 /*
8434 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8435 * how to calculate the specific update period for each time unit. And we disable periodic
8436 * RTC update work, let user configure by sysfs node according to specific circumstance.
8437 */
8438 dev_info->rtc_update_period = 0;
8439 }
8440
ufs_get_device_desc(struct ufs_hba * hba)8441 static int ufs_get_device_desc(struct ufs_hba *hba)
8442 {
8443 int err;
8444 u8 model_index;
8445 u8 *desc_buf;
8446 struct ufs_dev_info *dev_info = &hba->dev_info;
8447
8448 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8449 if (!desc_buf) {
8450 err = -ENOMEM;
8451 goto out;
8452 }
8453
8454 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8455 QUERY_DESC_MAX_SIZE);
8456 if (err) {
8457 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8458 __func__, err);
8459 goto out;
8460 }
8461
8462 /*
8463 * getting vendor (manufacturerID) and Bank Index in big endian
8464 * format
8465 */
8466 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8467 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8468
8469 /* getting Specification Version in big endian format */
8470 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8471 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8472 dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8473
8474 dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP];
8475
8476 dev_info->hid_sup = get_unaligned_be32(desc_buf +
8477 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP) &
8478 UFS_DEV_HID_SUPPORT;
8479
8480 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8481
8482 err = ufshcd_read_string_desc(hba, model_index,
8483 &dev_info->model, SD_ASCII_STD);
8484 if (err < 0) {
8485 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8486 __func__, err);
8487 goto out;
8488 }
8489
8490 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8491 desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8492
8493 ufs_fixup_device_setup(hba);
8494
8495 ufshcd_wb_probe(hba, desc_buf);
8496
8497 ufshcd_temp_notif_probe(hba, desc_buf);
8498
8499 if (dev_info->wspecversion >= 0x410) {
8500 hba->critical_health_count = 0;
8501 ufshcd_enable_ee(hba, MASK_EE_HEALTH_CRITICAL);
8502 }
8503
8504 ufs_init_rtc(hba, desc_buf);
8505
8506 ufshcd_device_lvl_exception_probe(hba, desc_buf);
8507
8508 /*
8509 * ufshcd_read_string_desc returns size of the string
8510 * reset the error value
8511 */
8512 err = 0;
8513
8514 out:
8515 kfree(desc_buf);
8516 return err;
8517 }
8518
ufs_put_device_desc(struct ufs_hba * hba)8519 static void ufs_put_device_desc(struct ufs_hba *hba)
8520 {
8521 struct ufs_dev_info *dev_info = &hba->dev_info;
8522
8523 kfree(dev_info->model);
8524 dev_info->model = NULL;
8525 }
8526
8527 /**
8528 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8529 * less than device PA_TACTIVATE time.
8530 * @hba: per-adapter instance
8531 *
8532 * Some UFS devices require host PA_TACTIVATE to be lower than device
8533 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8534 * for such devices.
8535 *
8536 * Return: zero on success, non-zero error value on failure.
8537 */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)8538 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8539 {
8540 int ret = 0;
8541 u32 granularity, peer_granularity;
8542 u32 pa_tactivate, peer_pa_tactivate;
8543 u32 pa_tactivate_us, peer_pa_tactivate_us;
8544 static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8545
8546 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8547 &granularity);
8548 if (ret)
8549 goto out;
8550
8551 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8552 &peer_granularity);
8553 if (ret)
8554 goto out;
8555
8556 if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8557 (granularity > PA_GRANULARITY_MAX_VAL)) {
8558 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8559 __func__, granularity);
8560 return -EINVAL;
8561 }
8562
8563 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8564 (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8565 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8566 __func__, peer_granularity);
8567 return -EINVAL;
8568 }
8569
8570 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8571 if (ret)
8572 goto out;
8573
8574 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8575 &peer_pa_tactivate);
8576 if (ret)
8577 goto out;
8578
8579 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8580 peer_pa_tactivate_us = peer_pa_tactivate *
8581 gran_to_us_table[peer_granularity - 1];
8582
8583 if (pa_tactivate_us >= peer_pa_tactivate_us) {
8584 u32 new_peer_pa_tactivate;
8585
8586 new_peer_pa_tactivate = pa_tactivate_us /
8587 gran_to_us_table[peer_granularity - 1];
8588 new_peer_pa_tactivate++;
8589 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8590 new_peer_pa_tactivate);
8591 }
8592
8593 out:
8594 return ret;
8595 }
8596
8597 /**
8598 * ufshcd_quirk_override_pa_h8time - Ensures proper adjustment of PA_HIBERN8TIME.
8599 * @hba: per-adapter instance
8600 *
8601 * Some UFS devices require specific adjustments to the PA_HIBERN8TIME parameter
8602 * to ensure proper hibernation timing. This function retrieves the current
8603 * PA_HIBERN8TIME value and increments it by 100us.
8604 */
ufshcd_quirk_override_pa_h8time(struct ufs_hba * hba)8605 static void ufshcd_quirk_override_pa_h8time(struct ufs_hba *hba)
8606 {
8607 u32 pa_h8time;
8608 int ret;
8609
8610 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_HIBERN8TIME), &pa_h8time);
8611 if (ret) {
8612 dev_err(hba->dev, "Failed to get PA_HIBERN8TIME: %d\n", ret);
8613 return;
8614 }
8615
8616 /* Increment by 1 to increase hibernation time by 100 µs */
8617 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), pa_h8time + 1);
8618 if (ret)
8619 dev_err(hba->dev, "Failed updating PA_HIBERN8TIME: %d\n", ret);
8620 }
8621
ufshcd_tune_unipro_params(struct ufs_hba * hba)8622 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8623 {
8624 ufshcd_vops_apply_dev_quirks(hba);
8625
8626 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8627 /* set 1ms timeout for PA_TACTIVATE */
8628 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8629
8630 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8631 ufshcd_quirk_tune_host_pa_tactivate(hba);
8632
8633 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_HIBER8TIME)
8634 ufshcd_quirk_override_pa_h8time(hba);
8635 }
8636
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)8637 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8638 {
8639 hba->ufs_stats.hibern8_exit_cnt = 0;
8640 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8641 hba->req_abort_count = 0;
8642 }
8643
ufshcd_device_geo_params_init(struct ufs_hba * hba)8644 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8645 {
8646 int err;
8647 u8 *desc_buf;
8648
8649 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8650 if (!desc_buf) {
8651 err = -ENOMEM;
8652 goto out;
8653 }
8654
8655 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8656 desc_buf, QUERY_DESC_MAX_SIZE);
8657 if (err) {
8658 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8659 __func__, err);
8660 goto out;
8661 }
8662
8663 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8664 hba->dev_info.max_lu_supported = 32;
8665 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8666 hba->dev_info.max_lu_supported = 8;
8667
8668 out:
8669 kfree(desc_buf);
8670 return err;
8671 }
8672
8673 struct ufs_ref_clk {
8674 unsigned long freq_hz;
8675 enum ufs_ref_clk_freq val;
8676 };
8677
8678 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8679 {19200000, REF_CLK_FREQ_19_2_MHZ},
8680 {26000000, REF_CLK_FREQ_26_MHZ},
8681 {38400000, REF_CLK_FREQ_38_4_MHZ},
8682 {52000000, REF_CLK_FREQ_52_MHZ},
8683 {0, REF_CLK_FREQ_INVAL},
8684 };
8685
8686 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)8687 ufs_get_bref_clk_from_hz(unsigned long freq)
8688 {
8689 int i;
8690
8691 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8692 if (ufs_ref_clk_freqs[i].freq_hz == freq)
8693 return ufs_ref_clk_freqs[i].val;
8694
8695 return REF_CLK_FREQ_INVAL;
8696 }
8697
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)8698 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8699 {
8700 unsigned long freq;
8701
8702 freq = clk_get_rate(refclk);
8703
8704 hba->dev_ref_clk_freq =
8705 ufs_get_bref_clk_from_hz(freq);
8706
8707 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8708 dev_err(hba->dev,
8709 "invalid ref_clk setting = %ld\n", freq);
8710 }
8711
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)8712 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8713 {
8714 int err;
8715 u32 ref_clk;
8716 u32 freq = hba->dev_ref_clk_freq;
8717
8718 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8719 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8720
8721 if (err) {
8722 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8723 err);
8724 goto out;
8725 }
8726
8727 if (ref_clk == freq)
8728 goto out; /* nothing to update */
8729
8730 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8731 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8732
8733 if (err) {
8734 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8735 ufs_ref_clk_freqs[freq].freq_hz);
8736 goto out;
8737 }
8738
8739 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8740 ufs_ref_clk_freqs[freq].freq_hz);
8741
8742 out:
8743 return err;
8744 }
8745
ufshcd_device_params_init(struct ufs_hba * hba)8746 static int ufshcd_device_params_init(struct ufs_hba *hba)
8747 {
8748 bool flag;
8749 int ret;
8750
8751 /* Init UFS geometry descriptor related parameters */
8752 ret = ufshcd_device_geo_params_init(hba);
8753 if (ret)
8754 goto out;
8755
8756 /* Check and apply UFS device quirks */
8757 ret = ufs_get_device_desc(hba);
8758 if (ret) {
8759 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8760 __func__, ret);
8761 goto out;
8762 }
8763
8764 ufshcd_set_rtt(hba);
8765
8766 ufshcd_get_ref_clk_gating_wait(hba);
8767
8768 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8769 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8770 hba->dev_info.f_power_on_wp_en = flag;
8771
8772 /* Probe maximum power mode co-supported by both UFS host and device */
8773 if (ufshcd_get_max_pwr_mode(hba))
8774 dev_err(hba->dev,
8775 "%s: Failed getting max supported power mode\n",
8776 __func__);
8777 out:
8778 return ret;
8779 }
8780
ufshcd_set_timestamp_attr(struct ufs_hba * hba)8781 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8782 {
8783 int err;
8784 struct ufs_query_req *request = NULL;
8785 struct ufs_query_res *response = NULL;
8786 struct ufs_dev_info *dev_info = &hba->dev_info;
8787 struct utp_upiu_query_v4_0 *upiu_data;
8788
8789 if (dev_info->wspecversion < 0x400)
8790 return;
8791
8792 ufshcd_dev_man_lock(hba);
8793
8794 ufshcd_init_query(hba, &request, &response,
8795 UPIU_QUERY_OPCODE_WRITE_ATTR,
8796 QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8797
8798 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8799
8800 upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8801
8802 put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8803
8804 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
8805
8806 if (err)
8807 dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8808 __func__, err);
8809
8810 ufshcd_dev_man_unlock(hba);
8811 }
8812
8813 /**
8814 * ufshcd_add_lus - probe and add UFS logical units
8815 * @hba: per-adapter instance
8816 *
8817 * Return: 0 upon success; < 0 upon failure.
8818 */
ufshcd_add_lus(struct ufs_hba * hba)8819 static int ufshcd_add_lus(struct ufs_hba *hba)
8820 {
8821 int ret;
8822
8823 /* Add required well known logical units to scsi mid layer */
8824 ret = ufshcd_scsi_add_wlus(hba);
8825 if (ret)
8826 goto out;
8827
8828 /* Initialize devfreq after UFS device is detected */
8829 if (ufshcd_is_clkscaling_supported(hba)) {
8830 memcpy(&hba->clk_scaling.saved_pwr_info,
8831 &hba->pwr_info,
8832 sizeof(struct ufs_pa_layer_attr));
8833 hba->clk_scaling.is_allowed = true;
8834
8835 ret = ufshcd_devfreq_init(hba);
8836 if (ret)
8837 goto out;
8838
8839 hba->clk_scaling.is_enabled = true;
8840 ufshcd_init_clk_scaling_sysfs(hba);
8841 }
8842
8843 /*
8844 * The RTC update code accesses the hba->ufs_device_wlun->sdev_gendev
8845 * pointer and hence must only be started after the WLUN pointer has
8846 * been initialized by ufshcd_scsi_add_wlus().
8847 */
8848 schedule_delayed_work(&hba->ufs_rtc_update_work,
8849 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8850
8851 ufs_bsg_probe(hba);
8852 scsi_scan_host(hba->host);
8853
8854 out:
8855 return ret;
8856 }
8857
8858 /* SDB - Single Doorbell */
ufshcd_release_sdb_queue(struct ufs_hba * hba,int nutrs)8859 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8860 {
8861 size_t ucdl_size, utrdl_size;
8862
8863 ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8864 dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8865 hba->ucdl_dma_addr);
8866
8867 utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8868 dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8869 hba->utrdl_dma_addr);
8870
8871 devm_kfree(hba->dev, hba->lrb);
8872 }
8873
ufshcd_alloc_mcq(struct ufs_hba * hba)8874 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8875 {
8876 int ret;
8877 int old_nutrs = hba->nutrs;
8878
8879 ret = ufshcd_mcq_decide_queue_depth(hba);
8880 if (ret < 0)
8881 return ret;
8882
8883 hba->nutrs = ret;
8884 ret = ufshcd_mcq_init(hba);
8885 if (ret)
8886 goto err;
8887
8888 /*
8889 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8890 * Number of supported tags in MCQ mode may be larger than SDB mode.
8891 */
8892 if (hba->nutrs != old_nutrs) {
8893 ufshcd_release_sdb_queue(hba, old_nutrs);
8894 ret = ufshcd_memory_alloc(hba);
8895 if (ret)
8896 goto err;
8897 ufshcd_host_memory_configure(hba);
8898 }
8899
8900 ret = ufshcd_mcq_memory_alloc(hba);
8901 if (ret)
8902 goto err;
8903
8904 hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8905 hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8906
8907 return 0;
8908 err:
8909 hba->nutrs = old_nutrs;
8910 return ret;
8911 }
8912
ufshcd_config_mcq(struct ufs_hba * hba)8913 static void ufshcd_config_mcq(struct ufs_hba *hba)
8914 {
8915 int ret;
8916 u32 intrs;
8917
8918 ret = ufshcd_mcq_vops_config_esi(hba);
8919 hba->mcq_esi_enabled = !ret;
8920 dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8921
8922 intrs = UFSHCD_ENABLE_MCQ_INTRS;
8923 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8924 intrs &= ~MCQ_CQ_EVENT_STATUS;
8925 ufshcd_enable_intr(hba, intrs);
8926 ufshcd_mcq_make_queues_operational(hba);
8927 ufshcd_mcq_config_mac(hba, hba->nutrs);
8928
8929 dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8930 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8931 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8932 hba->nutrs);
8933 }
8934
ufshcd_post_device_init(struct ufs_hba * hba)8935 static int ufshcd_post_device_init(struct ufs_hba *hba)
8936 {
8937 int ret;
8938
8939 ufshcd_tune_unipro_params(hba);
8940
8941 /* UFS device is also active now */
8942 ufshcd_set_ufs_dev_active(hba);
8943 ufshcd_force_reset_auto_bkops(hba);
8944
8945 ufshcd_set_timestamp_attr(hba);
8946
8947 if (!hba->max_pwr_info.is_valid)
8948 return 0;
8949
8950 /*
8951 * Set the right value to bRefClkFreq before attempting to
8952 * switch to HS gears.
8953 */
8954 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8955 ufshcd_set_dev_ref_clk(hba);
8956 /* Gear up to HS gear. */
8957 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8958 if (ret) {
8959 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8960 __func__, ret);
8961 return ret;
8962 }
8963
8964 return 0;
8965 }
8966
ufshcd_device_init(struct ufs_hba * hba,bool init_dev_params)8967 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8968 {
8969 int ret;
8970
8971 WARN_ON_ONCE(!hba->scsi_host_added);
8972
8973 hba->ufshcd_state = UFSHCD_STATE_RESET;
8974
8975 ret = ufshcd_link_startup(hba);
8976 if (ret)
8977 return ret;
8978
8979 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8980 return ret;
8981
8982 /* Debug counters initialization */
8983 ufshcd_clear_dbg_ufs_stats(hba);
8984
8985 /* UniPro link is active now */
8986 ufshcd_set_link_active(hba);
8987
8988 /* Reconfigure MCQ upon reset */
8989 if (hba->mcq_enabled && !init_dev_params) {
8990 ufshcd_config_mcq(hba);
8991 ufshcd_mcq_enable(hba);
8992 }
8993
8994 /* Verify device initialization by sending NOP OUT UPIU */
8995 ret = ufshcd_verify_dev_init(hba);
8996 if (ret)
8997 return ret;
8998
8999 /* Initiate UFS initialization, and waiting until completion */
9000 ret = ufshcd_complete_dev_init(hba);
9001 if (ret)
9002 return ret;
9003
9004 /*
9005 * Initialize UFS device parameters used by driver, these
9006 * parameters are associated with UFS descriptors.
9007 */
9008 if (init_dev_params) {
9009 ret = ufshcd_device_params_init(hba);
9010 if (ret)
9011 return ret;
9012 if (is_mcq_supported(hba) &&
9013 hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
9014 ufshcd_config_mcq(hba);
9015 ufshcd_mcq_enable(hba);
9016 }
9017 }
9018
9019 return ufshcd_post_device_init(hba);
9020 }
9021
9022 /**
9023 * ufshcd_probe_hba - probe hba to detect device and initialize it
9024 * @hba: per-adapter instance
9025 * @init_dev_params: whether or not to call ufshcd_device_params_init().
9026 *
9027 * Execute link-startup and verify device initialization
9028 *
9029 * Return: 0 upon success; < 0 upon failure.
9030 */
ufshcd_probe_hba(struct ufs_hba * hba,bool init_dev_params)9031 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
9032 {
9033 int ret;
9034
9035 if (!hba->pm_op_in_progress &&
9036 (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
9037 /* Reset the device and controller before doing reinit */
9038 ufshcd_device_reset(hba);
9039 ufs_put_device_desc(hba);
9040 ufshcd_hba_stop(hba);
9041 ret = ufshcd_hba_enable(hba);
9042 if (ret) {
9043 dev_err(hba->dev, "Host controller enable failed\n");
9044 ufshcd_print_evt_hist(hba);
9045 ufshcd_print_host_state(hba);
9046 return ret;
9047 }
9048
9049 /* Reinit the device */
9050 ret = ufshcd_device_init(hba, init_dev_params);
9051 if (ret)
9052 return ret;
9053 }
9054
9055 ufshcd_print_pwr_info(hba);
9056
9057 /*
9058 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
9059 * and for removable UFS card as well, hence always set the parameter.
9060 * Note: Error handler may issue the device reset hence resetting
9061 * bActiveICCLevel as well so it is always safe to set this here.
9062 */
9063 ufshcd_set_active_icc_lvl(hba);
9064
9065 /* Enable UFS Write Booster if supported */
9066 ufshcd_configure_wb(hba);
9067
9068 if (hba->ee_usr_mask)
9069 ufshcd_write_ee_control(hba);
9070 ufshcd_configure_auto_hibern8(hba);
9071
9072 return 0;
9073 }
9074
9075 /**
9076 * ufshcd_async_scan - asynchronous execution for probing hba
9077 * @data: data pointer to pass to this function
9078 * @cookie: cookie data
9079 */
ufshcd_async_scan(void * data,async_cookie_t cookie)9080 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
9081 {
9082 struct ufs_hba *hba = (struct ufs_hba *)data;
9083 ktime_t probe_start;
9084 int ret;
9085
9086 down(&hba->host_sem);
9087 /* Initialize hba, detect and initialize UFS device */
9088 probe_start = ktime_get();
9089 ret = ufshcd_probe_hba(hba, true);
9090 ufshcd_process_probe_result(hba, probe_start, ret);
9091 up(&hba->host_sem);
9092 if (ret)
9093 goto out;
9094
9095 /* Probe and add UFS logical units */
9096 ret = ufshcd_add_lus(hba);
9097
9098 out:
9099 pm_runtime_put_sync(hba->dev);
9100
9101 if (ret)
9102 dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
9103 }
9104
ufshcd_eh_timed_out(struct scsi_cmnd * scmd)9105 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
9106 {
9107 struct ufs_hba *hba = shost_priv(scmd->device->host);
9108
9109 if (!hba->system_suspending) {
9110 /* Activate the error handler in the SCSI core. */
9111 return SCSI_EH_NOT_HANDLED;
9112 }
9113
9114 /*
9115 * If we get here we know that no TMFs are outstanding and also that
9116 * the only pending command is a START STOP UNIT command. Handle the
9117 * timeout of that command directly to prevent a deadlock between
9118 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
9119 */
9120 ufshcd_link_recovery(hba);
9121 dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
9122 __func__, hba->outstanding_tasks);
9123
9124 return scsi_host_busy(hba->host) ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
9125 }
9126
9127 static const struct attribute_group *ufshcd_driver_groups[] = {
9128 &ufs_sysfs_unit_descriptor_group,
9129 &ufs_sysfs_lun_attributes_group,
9130 NULL,
9131 };
9132
9133 static struct ufs_hba_variant_params ufs_hba_vps = {
9134 .hba_enable_delay_us = 1000,
9135 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40),
9136 .devfreq_profile.polling_ms = 100,
9137 .devfreq_profile.target = ufshcd_devfreq_target,
9138 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status,
9139 .ondemand_data.upthreshold = 70,
9140 .ondemand_data.downdifferential = 5,
9141 };
9142
9143 static const struct scsi_host_template ufshcd_driver_template = {
9144 .module = THIS_MODULE,
9145 .name = UFSHCD,
9146 .proc_name = UFSHCD,
9147 .map_queues = ufshcd_map_queues,
9148 .queuecommand = ufshcd_queuecommand,
9149 .mq_poll = ufshcd_poll,
9150 .sdev_init = ufshcd_sdev_init,
9151 .sdev_configure = ufshcd_sdev_configure,
9152 .sdev_destroy = ufshcd_sdev_destroy,
9153 .change_queue_depth = ufshcd_change_queue_depth,
9154 .eh_abort_handler = ufshcd_abort,
9155 .eh_device_reset_handler = ufshcd_eh_device_reset_handler,
9156 .eh_host_reset_handler = ufshcd_eh_host_reset_handler,
9157 .eh_timed_out = ufshcd_eh_timed_out,
9158 .this_id = -1,
9159 .sg_tablesize = SG_ALL,
9160 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX,
9161 .max_sectors = SZ_1M / SECTOR_SIZE,
9162 .max_host_blocked = 1,
9163 .track_queue_depth = 1,
9164 .skip_settle_delay = 1,
9165 .sdev_groups = ufshcd_driver_groups,
9166 };
9167
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)9168 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
9169 int ua)
9170 {
9171 int ret;
9172
9173 if (!vreg)
9174 return 0;
9175
9176 /*
9177 * "set_load" operation shall be required on those regulators
9178 * which specifically configured current limitation. Otherwise
9179 * zero max_uA may cause unexpected behavior when regulator is
9180 * enabled or set as high power mode.
9181 */
9182 if (!vreg->max_uA)
9183 return 0;
9184
9185 ret = regulator_set_load(vreg->reg, ua);
9186 if (ret < 0) {
9187 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9188 __func__, vreg->name, ua, ret);
9189 }
9190
9191 return ret;
9192 }
9193
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9194 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9195 struct ufs_vreg *vreg)
9196 {
9197 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9198 }
9199
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9200 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9201 struct ufs_vreg *vreg)
9202 {
9203 if (!vreg)
9204 return 0;
9205
9206 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9207 }
9208
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)9209 static int ufshcd_config_vreg(struct device *dev,
9210 struct ufs_vreg *vreg, bool on)
9211 {
9212 if (regulator_count_voltages(vreg->reg) <= 0)
9213 return 0;
9214
9215 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9216 }
9217
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)9218 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9219 {
9220 int ret = 0;
9221
9222 if (!vreg || vreg->enabled)
9223 goto out;
9224
9225 ret = ufshcd_config_vreg(dev, vreg, true);
9226 if (!ret)
9227 ret = regulator_enable(vreg->reg);
9228
9229 if (!ret)
9230 vreg->enabled = true;
9231 else
9232 dev_err(dev, "%s: %s enable failed, err=%d\n",
9233 __func__, vreg->name, ret);
9234 out:
9235 return ret;
9236 }
9237
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)9238 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9239 {
9240 int ret = 0;
9241
9242 if (!vreg || !vreg->enabled || vreg->always_on)
9243 goto out;
9244
9245 ret = regulator_disable(vreg->reg);
9246
9247 if (!ret) {
9248 /* ignore errors on applying disable config */
9249 ufshcd_config_vreg(dev, vreg, false);
9250 vreg->enabled = false;
9251 } else {
9252 dev_err(dev, "%s: %s disable failed, err=%d\n",
9253 __func__, vreg->name, ret);
9254 }
9255 out:
9256 return ret;
9257 }
9258
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)9259 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9260 {
9261 int ret = 0;
9262 struct device *dev = hba->dev;
9263 struct ufs_vreg_info *info = &hba->vreg_info;
9264
9265 ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9266 if (ret)
9267 goto out;
9268
9269 ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9270 if (ret)
9271 goto out;
9272
9273 ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9274
9275 out:
9276 if (ret) {
9277 ufshcd_toggle_vreg(dev, info->vccq2, false);
9278 ufshcd_toggle_vreg(dev, info->vccq, false);
9279 ufshcd_toggle_vreg(dev, info->vcc, false);
9280 }
9281 return ret;
9282 }
9283
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)9284 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9285 {
9286 struct ufs_vreg_info *info = &hba->vreg_info;
9287
9288 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9289 }
9290
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)9291 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9292 {
9293 int ret = 0;
9294
9295 if (!vreg)
9296 goto out;
9297
9298 vreg->reg = devm_regulator_get(dev, vreg->name);
9299 if (IS_ERR(vreg->reg)) {
9300 ret = PTR_ERR(vreg->reg);
9301 dev_err(dev, "%s: %s get failed, err=%d\n",
9302 __func__, vreg->name, ret);
9303 }
9304 out:
9305 return ret;
9306 }
9307 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9308
ufshcd_init_vreg(struct ufs_hba * hba)9309 static int ufshcd_init_vreg(struct ufs_hba *hba)
9310 {
9311 int ret = 0;
9312 struct device *dev = hba->dev;
9313 struct ufs_vreg_info *info = &hba->vreg_info;
9314
9315 ret = ufshcd_get_vreg(dev, info->vcc);
9316 if (ret)
9317 goto out;
9318
9319 ret = ufshcd_get_vreg(dev, info->vccq);
9320 if (!ret)
9321 ret = ufshcd_get_vreg(dev, info->vccq2);
9322 out:
9323 return ret;
9324 }
9325
ufshcd_init_hba_vreg(struct ufs_hba * hba)9326 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9327 {
9328 struct ufs_vreg_info *info = &hba->vreg_info;
9329
9330 return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9331 }
9332
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)9333 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9334 {
9335 int ret = 0;
9336 struct ufs_clk_info *clki;
9337 struct list_head *head = &hba->clk_list_head;
9338 ktime_t start = ktime_get();
9339 bool clk_state_changed = false;
9340
9341 if (list_empty(head))
9342 goto out;
9343
9344 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9345 if (ret)
9346 return ret;
9347
9348 list_for_each_entry(clki, head, list) {
9349 if (!IS_ERR_OR_NULL(clki->clk)) {
9350 /*
9351 * Don't disable clocks which are needed
9352 * to keep the link active.
9353 */
9354 if (ufshcd_is_link_active(hba) &&
9355 clki->keep_link_active)
9356 continue;
9357
9358 clk_state_changed = on ^ clki->enabled;
9359 if (on && !clki->enabled) {
9360 ret = clk_prepare_enable(clki->clk);
9361 if (ret) {
9362 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9363 __func__, clki->name, ret);
9364 goto out;
9365 }
9366 } else if (!on && clki->enabled) {
9367 clk_disable_unprepare(clki->clk);
9368 }
9369 clki->enabled = on;
9370 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9371 clki->name, on ? "en" : "dis");
9372 }
9373 }
9374
9375 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9376 if (ret)
9377 return ret;
9378
9379 if (!ufshcd_is_clkscaling_supported(hba))
9380 ufshcd_pm_qos_update(hba, on);
9381 out:
9382 if (ret) {
9383 list_for_each_entry(clki, head, list) {
9384 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9385 clk_disable_unprepare(clki->clk);
9386 }
9387 } else if (!ret && on && hba->clk_gating.is_initialized) {
9388 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock)
9389 hba->clk_gating.state = CLKS_ON;
9390 trace_ufshcd_clk_gating(hba,
9391 hba->clk_gating.state);
9392 }
9393
9394 if (clk_state_changed)
9395 trace_ufshcd_profile_clk_gating(hba,
9396 (on ? "on" : "off"),
9397 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9398 return ret;
9399 }
9400
ufshcd_parse_ref_clk_property(struct ufs_hba * hba)9401 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9402 {
9403 u32 freq;
9404 int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9405
9406 if (ret) {
9407 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9408 return REF_CLK_FREQ_INVAL;
9409 }
9410
9411 return ufs_get_bref_clk_from_hz(freq);
9412 }
9413
ufshcd_init_clocks(struct ufs_hba * hba)9414 static int ufshcd_init_clocks(struct ufs_hba *hba)
9415 {
9416 int ret = 0;
9417 struct ufs_clk_info *clki;
9418 struct device *dev = hba->dev;
9419 struct list_head *head = &hba->clk_list_head;
9420
9421 if (list_empty(head))
9422 goto out;
9423
9424 list_for_each_entry(clki, head, list) {
9425 if (!clki->name)
9426 continue;
9427
9428 clki->clk = devm_clk_get(dev, clki->name);
9429 if (IS_ERR(clki->clk)) {
9430 ret = PTR_ERR(clki->clk);
9431 dev_err(dev, "%s: %s clk get failed, %d\n",
9432 __func__, clki->name, ret);
9433 goto out;
9434 }
9435
9436 /*
9437 * Parse device ref clk freq as per device tree "ref_clk".
9438 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9439 * in ufshcd_alloc_host().
9440 */
9441 if (!strcmp(clki->name, "ref_clk"))
9442 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9443
9444 if (clki->max_freq) {
9445 ret = clk_set_rate(clki->clk, clki->max_freq);
9446 if (ret) {
9447 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9448 __func__, clki->name,
9449 clki->max_freq, ret);
9450 goto out;
9451 }
9452 clki->curr_freq = clki->max_freq;
9453 }
9454 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9455 clki->name, clk_get_rate(clki->clk));
9456 }
9457
9458 /* Set Max. frequency for all clocks */
9459 if (hba->use_pm_opp) {
9460 ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9461 if (ret) {
9462 dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9463 ret);
9464 goto out;
9465 }
9466 }
9467
9468 out:
9469 return ret;
9470 }
9471
ufshcd_variant_hba_init(struct ufs_hba * hba)9472 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9473 {
9474 int err = 0;
9475
9476 if (!hba->vops)
9477 goto out;
9478
9479 err = ufshcd_vops_init(hba);
9480 if (err)
9481 dev_err_probe(hba->dev, err,
9482 "%s: variant %s init failed with err %d\n",
9483 __func__, ufshcd_get_var_name(hba), err);
9484 out:
9485 return err;
9486 }
9487
ufshcd_variant_hba_exit(struct ufs_hba * hba)9488 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9489 {
9490 if (!hba->vops)
9491 return;
9492
9493 ufshcd_vops_exit(hba);
9494 }
9495
ufshcd_hba_init(struct ufs_hba * hba)9496 static int ufshcd_hba_init(struct ufs_hba *hba)
9497 {
9498 int err;
9499
9500 /*
9501 * Handle host controller power separately from the UFS device power
9502 * rails as it will help controlling the UFS host controller power
9503 * collapse easily which is different than UFS device power collapse.
9504 * Also, enable the host controller power before we go ahead with rest
9505 * of the initialization here.
9506 */
9507 err = ufshcd_init_hba_vreg(hba);
9508 if (err)
9509 goto out;
9510
9511 err = ufshcd_setup_hba_vreg(hba, true);
9512 if (err)
9513 goto out;
9514
9515 err = ufshcd_init_clocks(hba);
9516 if (err)
9517 goto out_disable_hba_vreg;
9518
9519 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9520 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9521
9522 err = ufshcd_setup_clocks(hba, true);
9523 if (err)
9524 goto out_disable_hba_vreg;
9525
9526 err = ufshcd_init_vreg(hba);
9527 if (err)
9528 goto out_disable_clks;
9529
9530 err = ufshcd_setup_vreg(hba, true);
9531 if (err)
9532 goto out_disable_clks;
9533
9534 err = ufshcd_variant_hba_init(hba);
9535 if (err)
9536 goto out_disable_vreg;
9537
9538 ufs_debugfs_hba_init(hba);
9539 ufs_fault_inject_hba_init(hba);
9540
9541 hba->is_powered = true;
9542 goto out;
9543
9544 out_disable_vreg:
9545 ufshcd_setup_vreg(hba, false);
9546 out_disable_clks:
9547 ufshcd_setup_clocks(hba, false);
9548 out_disable_hba_vreg:
9549 ufshcd_setup_hba_vreg(hba, false);
9550 out:
9551 return err;
9552 }
9553
ufshcd_hba_exit(struct ufs_hba * hba)9554 static void ufshcd_hba_exit(struct ufs_hba *hba)
9555 {
9556 if (hba->is_powered) {
9557 ufshcd_pm_qos_exit(hba);
9558 ufshcd_exit_clk_scaling(hba);
9559 ufshcd_exit_clk_gating(hba);
9560 if (hba->eh_wq)
9561 destroy_workqueue(hba->eh_wq);
9562 ufs_debugfs_hba_exit(hba);
9563 ufshcd_variant_hba_exit(hba);
9564 ufshcd_setup_vreg(hba, false);
9565 ufshcd_setup_clocks(hba, false);
9566 ufshcd_setup_hba_vreg(hba, false);
9567 hba->is_powered = false;
9568 ufs_put_device_desc(hba);
9569 }
9570 }
9571
ufshcd_execute_start_stop(struct scsi_device * sdev,enum ufs_dev_pwr_mode pwr_mode,struct scsi_sense_hdr * sshdr)9572 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9573 enum ufs_dev_pwr_mode pwr_mode,
9574 struct scsi_sense_hdr *sshdr)
9575 {
9576 const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9577 struct scsi_failure failure_defs[] = {
9578 {
9579 .allowed = 2,
9580 .result = SCMD_FAILURE_RESULT_ANY,
9581 },
9582 };
9583 struct scsi_failures failures = {
9584 .failure_definitions = failure_defs,
9585 };
9586 const struct scsi_exec_args args = {
9587 .failures = &failures,
9588 .sshdr = sshdr,
9589 .req_flags = BLK_MQ_REQ_PM,
9590 .scmd_flags = SCMD_FAIL_IF_RECOVERING,
9591 };
9592
9593 return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9594 /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9595 &args);
9596 }
9597
9598 /**
9599 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9600 * power mode
9601 * @hba: per adapter instance
9602 * @pwr_mode: device power mode to set
9603 *
9604 * Return: 0 if requested power mode is set successfully;
9605 * < 0 if failed to set the requested power mode.
9606 */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)9607 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9608 enum ufs_dev_pwr_mode pwr_mode)
9609 {
9610 struct scsi_sense_hdr sshdr;
9611 struct scsi_device *sdp;
9612 unsigned long flags;
9613 int ret;
9614
9615 spin_lock_irqsave(hba->host->host_lock, flags);
9616 sdp = hba->ufs_device_wlun;
9617 if (sdp && scsi_device_online(sdp))
9618 ret = scsi_device_get(sdp);
9619 else
9620 ret = -ENODEV;
9621 spin_unlock_irqrestore(hba->host->host_lock, flags);
9622
9623 if (ret)
9624 return ret;
9625
9626 /*
9627 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9628 * handling, which would wait for host to be resumed. Since we know
9629 * we are functional while we are here, skip host resume in error
9630 * handling context.
9631 */
9632 hba->host->eh_noresume = 1;
9633
9634 /*
9635 * Current function would be generally called from the power management
9636 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9637 * already suspended childs.
9638 */
9639 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9640 if (ret) {
9641 sdev_printk(KERN_WARNING, sdp,
9642 "START_STOP failed for power mode: %d, result %x\n",
9643 pwr_mode, ret);
9644 if (ret > 0) {
9645 if (scsi_sense_valid(&sshdr))
9646 scsi_print_sense_hdr(sdp, NULL, &sshdr);
9647 ret = -EIO;
9648 }
9649 } else {
9650 hba->curr_dev_pwr_mode = pwr_mode;
9651 }
9652
9653 scsi_device_put(sdp);
9654 hba->host->eh_noresume = 0;
9655 return ret;
9656 }
9657
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,bool check_for_bkops)9658 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9659 enum uic_link_state req_link_state,
9660 bool check_for_bkops)
9661 {
9662 int ret = 0;
9663
9664 if (req_link_state == hba->uic_link_state)
9665 return 0;
9666
9667 if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9668 ret = ufshcd_uic_hibern8_enter(hba);
9669 if (!ret) {
9670 ufshcd_set_link_hibern8(hba);
9671 } else {
9672 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9673 __func__, ret);
9674 goto out;
9675 }
9676 }
9677 /*
9678 * If autobkops is enabled, link can't be turned off because
9679 * turning off the link would also turn off the device, except in the
9680 * case of DeepSleep where the device is expected to remain powered.
9681 */
9682 else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9683 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9684 /*
9685 * Let's make sure that link is in low power mode, we are doing
9686 * this currently by putting the link in Hibern8. Otherway to
9687 * put the link in low power mode is to send the DME end point
9688 * to device and then send the DME reset command to local
9689 * unipro. But putting the link in hibern8 is much faster.
9690 *
9691 * Note also that putting the link in Hibern8 is a requirement
9692 * for entering DeepSleep.
9693 */
9694 ret = ufshcd_uic_hibern8_enter(hba);
9695 if (ret) {
9696 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9697 __func__, ret);
9698 goto out;
9699 }
9700 /*
9701 * Change controller state to "reset state" which
9702 * should also put the link in off/reset state
9703 */
9704 ufshcd_hba_stop(hba);
9705 /*
9706 * TODO: Check if we need any delay to make sure that
9707 * controller is reset
9708 */
9709 ufshcd_set_link_off(hba);
9710 }
9711
9712 out:
9713 return ret;
9714 }
9715
ufshcd_vreg_set_lpm(struct ufs_hba * hba)9716 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9717 {
9718 bool vcc_off = false;
9719
9720 /*
9721 * It seems some UFS devices may keep drawing more than sleep current
9722 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9723 * To avoid this situation, add 2ms delay before putting these UFS
9724 * rails in LPM mode.
9725 */
9726 if (!ufshcd_is_link_active(hba) &&
9727 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9728 usleep_range(2000, 2100);
9729
9730 /*
9731 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9732 * power.
9733 *
9734 * If UFS device and link is in OFF state, all power supplies (VCC,
9735 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9736 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9737 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9738 *
9739 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9740 * in low power state which would save some power.
9741 *
9742 * If Write Booster is enabled and the device needs to flush the WB
9743 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9744 */
9745 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9746 !hba->dev_info.is_lu_power_on_wp) {
9747 ufshcd_setup_vreg(hba, false);
9748 vcc_off = true;
9749 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9750 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9751 vcc_off = true;
9752 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9753 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9754 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9755 }
9756 }
9757
9758 /*
9759 * Some UFS devices require delay after VCC power rail is turned-off.
9760 */
9761 if (vcc_off && hba->vreg_info.vcc &&
9762 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9763 usleep_range(5000, 5100);
9764 }
9765
9766 #ifdef CONFIG_PM
ufshcd_vreg_set_hpm(struct ufs_hba * hba)9767 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9768 {
9769 int ret = 0;
9770
9771 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9772 !hba->dev_info.is_lu_power_on_wp) {
9773 ret = ufshcd_setup_vreg(hba, true);
9774 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9775 if (!ufshcd_is_link_active(hba)) {
9776 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9777 if (ret)
9778 goto vcc_disable;
9779 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9780 if (ret)
9781 goto vccq_lpm;
9782 }
9783 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9784 }
9785 goto out;
9786
9787 vccq_lpm:
9788 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9789 vcc_disable:
9790 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9791 out:
9792 return ret;
9793 }
9794 #endif /* CONFIG_PM */
9795
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)9796 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9797 {
9798 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9799 ufshcd_setup_hba_vreg(hba, false);
9800 }
9801
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)9802 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9803 {
9804 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9805 ufshcd_setup_hba_vreg(hba, true);
9806 }
9807
__ufshcd_wl_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)9808 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9809 {
9810 int ret = 0;
9811 bool check_for_bkops;
9812 enum ufs_pm_level pm_lvl;
9813 enum ufs_dev_pwr_mode req_dev_pwr_mode;
9814 enum uic_link_state req_link_state;
9815
9816 hba->pm_op_in_progress = true;
9817 if (pm_op != UFS_SHUTDOWN_PM) {
9818 pm_lvl = pm_op == UFS_RUNTIME_PM ?
9819 hba->rpm_lvl : hba->spm_lvl;
9820 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9821 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9822 } else {
9823 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9824 req_link_state = UIC_LINK_OFF_STATE;
9825 }
9826
9827 /*
9828 * If we can't transition into any of the low power modes
9829 * just gate the clocks.
9830 */
9831 ufshcd_hold(hba);
9832 hba->clk_gating.is_suspended = true;
9833
9834 if (ufshcd_is_clkscaling_supported(hba))
9835 ufshcd_clk_scaling_suspend(hba, true);
9836
9837 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9838 req_link_state == UIC_LINK_ACTIVE_STATE) {
9839 goto vops_suspend;
9840 }
9841
9842 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9843 (req_link_state == hba->uic_link_state))
9844 goto enable_scaling;
9845
9846 /* UFS device & link must be active before we enter in this function */
9847 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9848 /* Wait err handler finish or trigger err recovery */
9849 if (!ufshcd_eh_in_progress(hba))
9850 ufshcd_force_error_recovery(hba);
9851 ret = -EBUSY;
9852 goto enable_scaling;
9853 }
9854
9855 if (pm_op == UFS_RUNTIME_PM) {
9856 if (ufshcd_can_autobkops_during_suspend(hba)) {
9857 /*
9858 * The device is idle with no requests in the queue,
9859 * allow background operations if bkops status shows
9860 * that performance might be impacted.
9861 */
9862 ret = ufshcd_bkops_ctrl(hba);
9863 if (ret) {
9864 /*
9865 * If return err in suspend flow, IO will hang.
9866 * Trigger error handler and break suspend for
9867 * error recovery.
9868 */
9869 ufshcd_force_error_recovery(hba);
9870 ret = -EBUSY;
9871 goto enable_scaling;
9872 }
9873 } else {
9874 /* make sure that auto bkops is disabled */
9875 ufshcd_disable_auto_bkops(hba);
9876 }
9877 /*
9878 * If device needs to do BKOP or WB buffer flush during
9879 * Hibern8, keep device power mode as "active power mode"
9880 * and VCC supply.
9881 */
9882 hba->dev_info.b_rpm_dev_flush_capable =
9883 hba->auto_bkops_enabled ||
9884 (((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9885 ((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9886 ufshcd_is_auto_hibern8_enabled(hba))) &&
9887 ufshcd_wb_need_flush(hba));
9888 }
9889
9890 flush_work(&hba->eeh_work);
9891
9892 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9893 if (ret)
9894 goto enable_scaling;
9895
9896 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9897 if (pm_op != UFS_RUNTIME_PM)
9898 /* ensure that bkops is disabled */
9899 ufshcd_disable_auto_bkops(hba);
9900
9901 if (!hba->dev_info.b_rpm_dev_flush_capable) {
9902 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9903 if (ret && pm_op != UFS_SHUTDOWN_PM) {
9904 /*
9905 * If return err in suspend flow, IO will hang.
9906 * Trigger error handler and break suspend for
9907 * error recovery.
9908 */
9909 ufshcd_force_error_recovery(hba);
9910 ret = -EBUSY;
9911 }
9912 if (ret)
9913 goto enable_scaling;
9914 }
9915 }
9916
9917 /*
9918 * In the case of DeepSleep, the device is expected to remain powered
9919 * with the link off, so do not check for bkops.
9920 */
9921 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9922 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9923 if (ret && pm_op != UFS_SHUTDOWN_PM) {
9924 /*
9925 * If return err in suspend flow, IO will hang.
9926 * Trigger error handler and break suspend for
9927 * error recovery.
9928 */
9929 ufshcd_force_error_recovery(hba);
9930 ret = -EBUSY;
9931 }
9932 if (ret)
9933 goto set_dev_active;
9934
9935 vops_suspend:
9936 /*
9937 * Call vendor specific suspend callback. As these callbacks may access
9938 * vendor specific host controller register space call them before the
9939 * host clocks are ON.
9940 */
9941 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9942 if (ret)
9943 goto set_link_active;
9944
9945 cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9946 goto out;
9947
9948 set_link_active:
9949 /*
9950 * Device hardware reset is required to exit DeepSleep. Also, for
9951 * DeepSleep, the link is off so host reset and restore will be done
9952 * further below.
9953 */
9954 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9955 ufshcd_device_reset(hba);
9956 WARN_ON(!ufshcd_is_link_off(hba));
9957 }
9958 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9959 ufshcd_set_link_active(hba);
9960 else if (ufshcd_is_link_off(hba))
9961 ufshcd_host_reset_and_restore(hba);
9962 set_dev_active:
9963 /* Can also get here needing to exit DeepSleep */
9964 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9965 ufshcd_device_reset(hba);
9966 ufshcd_host_reset_and_restore(hba);
9967 }
9968 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9969 ufshcd_disable_auto_bkops(hba);
9970 enable_scaling:
9971 if (ufshcd_is_clkscaling_supported(hba))
9972 ufshcd_clk_scaling_suspend(hba, false);
9973
9974 hba->dev_info.b_rpm_dev_flush_capable = false;
9975 out:
9976 if (hba->dev_info.b_rpm_dev_flush_capable) {
9977 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9978 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9979 }
9980
9981 if (ret) {
9982 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9983 hba->clk_gating.is_suspended = false;
9984 ufshcd_release(hba);
9985 }
9986 hba->pm_op_in_progress = false;
9987 return ret;
9988 }
9989
9990 #ifdef CONFIG_PM
__ufshcd_wl_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)9991 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9992 {
9993 int ret;
9994 enum uic_link_state old_link_state = hba->uic_link_state;
9995
9996 hba->pm_op_in_progress = true;
9997
9998 /*
9999 * Call vendor specific resume callback. As these callbacks may access
10000 * vendor specific host controller register space call them when the
10001 * host clocks are ON.
10002 */
10003 ret = ufshcd_vops_resume(hba, pm_op);
10004 if (ret)
10005 goto out;
10006
10007 /* For DeepSleep, the only supported option is to have the link off */
10008 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
10009
10010 if (ufshcd_is_link_hibern8(hba)) {
10011 ret = ufshcd_uic_hibern8_exit(hba);
10012 if (!ret) {
10013 ufshcd_set_link_active(hba);
10014 } else {
10015 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
10016 __func__, ret);
10017 goto vendor_suspend;
10018 }
10019 } else if (ufshcd_is_link_off(hba)) {
10020 /*
10021 * A full initialization of the host and the device is
10022 * required since the link was put to off during suspend.
10023 * Note, in the case of DeepSleep, the device will exit
10024 * DeepSleep due to device reset.
10025 */
10026 ret = ufshcd_reset_and_restore(hba);
10027 /*
10028 * ufshcd_reset_and_restore() should have already
10029 * set the link state as active
10030 */
10031 if (ret || !ufshcd_is_link_active(hba))
10032 goto vendor_suspend;
10033 }
10034
10035 if (!ufshcd_is_ufs_dev_active(hba)) {
10036 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
10037 if (ret)
10038 goto set_old_link_state;
10039 ufshcd_set_timestamp_attr(hba);
10040 schedule_delayed_work(&hba->ufs_rtc_update_work,
10041 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
10042 }
10043
10044 if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
10045 ufshcd_enable_auto_bkops(hba);
10046 else
10047 /*
10048 * If BKOPs operations are urgently needed at this moment then
10049 * keep auto-bkops enabled or else disable it.
10050 */
10051 ufshcd_bkops_ctrl(hba);
10052
10053 if (hba->ee_usr_mask)
10054 ufshcd_write_ee_control(hba);
10055
10056 if (ufshcd_is_clkscaling_supported(hba))
10057 ufshcd_clk_scaling_suspend(hba, false);
10058
10059 if (hba->dev_info.b_rpm_dev_flush_capable) {
10060 hba->dev_info.b_rpm_dev_flush_capable = false;
10061 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
10062 }
10063
10064 ufshcd_configure_auto_hibern8(hba);
10065
10066 goto out;
10067
10068 set_old_link_state:
10069 ufshcd_link_state_transition(hba, old_link_state, 0);
10070 vendor_suspend:
10071 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
10072 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
10073 out:
10074 if (ret)
10075 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
10076 hba->clk_gating.is_suspended = false;
10077 ufshcd_release(hba);
10078 hba->pm_op_in_progress = false;
10079 return ret;
10080 }
10081
ufshcd_wl_runtime_suspend(struct device * dev)10082 static int ufshcd_wl_runtime_suspend(struct device *dev)
10083 {
10084 struct scsi_device *sdev = to_scsi_device(dev);
10085 struct ufs_hba *hba;
10086 int ret;
10087 ktime_t start = ktime_get();
10088
10089 hba = shost_priv(sdev->host);
10090
10091 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
10092 if (ret)
10093 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10094
10095 trace_ufshcd_wl_runtime_suspend(hba, ret,
10096 ktime_to_us(ktime_sub(ktime_get(), start)),
10097 hba->curr_dev_pwr_mode, hba->uic_link_state);
10098
10099 return ret;
10100 }
10101
ufshcd_wl_runtime_resume(struct device * dev)10102 static int ufshcd_wl_runtime_resume(struct device *dev)
10103 {
10104 struct scsi_device *sdev = to_scsi_device(dev);
10105 struct ufs_hba *hba;
10106 int ret = 0;
10107 ktime_t start = ktime_get();
10108
10109 hba = shost_priv(sdev->host);
10110
10111 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
10112 if (ret)
10113 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10114
10115 trace_ufshcd_wl_runtime_resume(hba, ret,
10116 ktime_to_us(ktime_sub(ktime_get(), start)),
10117 hba->curr_dev_pwr_mode, hba->uic_link_state);
10118
10119 return ret;
10120 }
10121 #endif
10122
10123 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_suspend(struct device * dev)10124 static int ufshcd_wl_suspend(struct device *dev)
10125 {
10126 struct scsi_device *sdev = to_scsi_device(dev);
10127 struct ufs_hba *hba;
10128 int ret = 0;
10129 ktime_t start = ktime_get();
10130
10131 hba = shost_priv(sdev->host);
10132 down(&hba->host_sem);
10133 hba->system_suspending = true;
10134
10135 if (pm_runtime_suspended(dev))
10136 goto out;
10137
10138 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
10139 if (ret) {
10140 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10141 up(&hba->host_sem);
10142 }
10143
10144 out:
10145 if (!ret)
10146 hba->is_sys_suspended = true;
10147 trace_ufshcd_wl_suspend(hba, ret,
10148 ktime_to_us(ktime_sub(ktime_get(), start)),
10149 hba->curr_dev_pwr_mode, hba->uic_link_state);
10150
10151 return ret;
10152 }
10153
ufshcd_wl_resume(struct device * dev)10154 static int ufshcd_wl_resume(struct device *dev)
10155 {
10156 struct scsi_device *sdev = to_scsi_device(dev);
10157 struct ufs_hba *hba;
10158 int ret = 0;
10159 ktime_t start = ktime_get();
10160
10161 hba = shost_priv(sdev->host);
10162
10163 if (pm_runtime_suspended(dev))
10164 goto out;
10165
10166 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
10167 if (ret)
10168 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10169 out:
10170 trace_ufshcd_wl_resume(hba, ret,
10171 ktime_to_us(ktime_sub(ktime_get(), start)),
10172 hba->curr_dev_pwr_mode, hba->uic_link_state);
10173 if (!ret)
10174 hba->is_sys_suspended = false;
10175 hba->system_suspending = false;
10176 up(&hba->host_sem);
10177 return ret;
10178 }
10179 #endif
10180
10181 /**
10182 * ufshcd_suspend - helper function for suspend operations
10183 * @hba: per adapter instance
10184 *
10185 * This function will put disable irqs, turn off clocks
10186 * and set vreg and hba-vreg in lpm mode.
10187 *
10188 * Return: 0 upon success; < 0 upon failure.
10189 */
ufshcd_suspend(struct ufs_hba * hba)10190 static int ufshcd_suspend(struct ufs_hba *hba)
10191 {
10192 int ret;
10193
10194 if (!hba->is_powered)
10195 return 0;
10196 /*
10197 * Disable the host irq as host controller as there won't be any
10198 * host controller transaction expected till resume.
10199 */
10200 ufshcd_disable_irq(hba);
10201 ret = ufshcd_setup_clocks(hba, false);
10202 if (ret) {
10203 ufshcd_enable_irq(hba);
10204 return ret;
10205 }
10206 if (ufshcd_is_clkgating_allowed(hba)) {
10207 hba->clk_gating.state = CLKS_OFF;
10208 trace_ufshcd_clk_gating(hba,
10209 hba->clk_gating.state);
10210 }
10211
10212 ufshcd_vreg_set_lpm(hba);
10213 /* Put the host controller in low power mode if possible */
10214 ufshcd_hba_vreg_set_lpm(hba);
10215 ufshcd_pm_qos_update(hba, false);
10216 return ret;
10217 }
10218
10219 #ifdef CONFIG_PM
10220 /**
10221 * ufshcd_resume - helper function for resume operations
10222 * @hba: per adapter instance
10223 *
10224 * This function basically turns on the regulators, clocks and
10225 * irqs of the hba.
10226 *
10227 * Return: 0 for success and non-zero for failure.
10228 */
ufshcd_resume(struct ufs_hba * hba)10229 static int ufshcd_resume(struct ufs_hba *hba)
10230 {
10231 int ret;
10232
10233 if (!hba->is_powered)
10234 return 0;
10235
10236 ufshcd_hba_vreg_set_hpm(hba);
10237 ret = ufshcd_vreg_set_hpm(hba);
10238 if (ret)
10239 goto out;
10240
10241 /* Make sure clocks are enabled before accessing controller */
10242 ret = ufshcd_setup_clocks(hba, true);
10243 if (ret)
10244 goto disable_vreg;
10245
10246 /* enable the host irq as host controller would be active soon */
10247 ufshcd_enable_irq(hba);
10248
10249 goto out;
10250
10251 disable_vreg:
10252 ufshcd_vreg_set_lpm(hba);
10253 out:
10254 if (ret)
10255 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10256 return ret;
10257 }
10258 #endif /* CONFIG_PM */
10259
10260 #ifdef CONFIG_PM_SLEEP
10261 /**
10262 * ufshcd_system_suspend - system suspend callback
10263 * @dev: Device associated with the UFS controller.
10264 *
10265 * Executed before putting the system into a sleep state in which the contents
10266 * of main memory are preserved.
10267 *
10268 * Return: 0 for success and non-zero for failure.
10269 */
ufshcd_system_suspend(struct device * dev)10270 int ufshcd_system_suspend(struct device *dev)
10271 {
10272 struct ufs_hba *hba = dev_get_drvdata(dev);
10273 int ret = 0;
10274 ktime_t start = ktime_get();
10275
10276 if (pm_runtime_suspended(hba->dev))
10277 goto out;
10278
10279 ret = ufshcd_suspend(hba);
10280 out:
10281 trace_ufshcd_system_suspend(hba, ret,
10282 ktime_to_us(ktime_sub(ktime_get(), start)),
10283 hba->curr_dev_pwr_mode, hba->uic_link_state);
10284 return ret;
10285 }
10286 EXPORT_SYMBOL(ufshcd_system_suspend);
10287
10288 /**
10289 * ufshcd_system_resume - system resume callback
10290 * @dev: Device associated with the UFS controller.
10291 *
10292 * Executed after waking the system up from a sleep state in which the contents
10293 * of main memory were preserved.
10294 *
10295 * Return: 0 for success and non-zero for failure.
10296 */
ufshcd_system_resume(struct device * dev)10297 int ufshcd_system_resume(struct device *dev)
10298 {
10299 struct ufs_hba *hba = dev_get_drvdata(dev);
10300 ktime_t start = ktime_get();
10301 int ret = 0;
10302
10303 if (pm_runtime_suspended(hba->dev))
10304 goto out;
10305
10306 ret = ufshcd_resume(hba);
10307
10308 out:
10309 trace_ufshcd_system_resume(hba, ret,
10310 ktime_to_us(ktime_sub(ktime_get(), start)),
10311 hba->curr_dev_pwr_mode, hba->uic_link_state);
10312
10313 return ret;
10314 }
10315 EXPORT_SYMBOL(ufshcd_system_resume);
10316 #endif /* CONFIG_PM_SLEEP */
10317
10318 #ifdef CONFIG_PM
10319 /**
10320 * ufshcd_runtime_suspend - runtime suspend callback
10321 * @dev: Device associated with the UFS controller.
10322 *
10323 * Check the description of ufshcd_suspend() function for more details.
10324 *
10325 * Return: 0 for success and non-zero for failure.
10326 */
ufshcd_runtime_suspend(struct device * dev)10327 int ufshcd_runtime_suspend(struct device *dev)
10328 {
10329 struct ufs_hba *hba = dev_get_drvdata(dev);
10330 int ret;
10331 ktime_t start = ktime_get();
10332
10333 ret = ufshcd_suspend(hba);
10334
10335 trace_ufshcd_runtime_suspend(hba, ret,
10336 ktime_to_us(ktime_sub(ktime_get(), start)),
10337 hba->curr_dev_pwr_mode, hba->uic_link_state);
10338 return ret;
10339 }
10340 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10341
10342 /**
10343 * ufshcd_runtime_resume - runtime resume routine
10344 * @dev: Device associated with the UFS controller.
10345 *
10346 * This function basically brings controller
10347 * to active state. Following operations are done in this function:
10348 *
10349 * 1. Turn on all the controller related clocks
10350 * 2. Turn ON VCC rail
10351 *
10352 * Return: 0 upon success; < 0 upon failure.
10353 */
ufshcd_runtime_resume(struct device * dev)10354 int ufshcd_runtime_resume(struct device *dev)
10355 {
10356 struct ufs_hba *hba = dev_get_drvdata(dev);
10357 int ret;
10358 ktime_t start = ktime_get();
10359
10360 ret = ufshcd_resume(hba);
10361
10362 trace_ufshcd_runtime_resume(hba, ret,
10363 ktime_to_us(ktime_sub(ktime_get(), start)),
10364 hba->curr_dev_pwr_mode, hba->uic_link_state);
10365 return ret;
10366 }
10367 EXPORT_SYMBOL(ufshcd_runtime_resume);
10368 #endif /* CONFIG_PM */
10369
ufshcd_wl_shutdown(struct device * dev)10370 static void ufshcd_wl_shutdown(struct device *dev)
10371 {
10372 struct scsi_device *sdev = to_scsi_device(dev);
10373 struct ufs_hba *hba = shost_priv(sdev->host);
10374
10375 down(&hba->host_sem);
10376 hba->shutting_down = true;
10377 up(&hba->host_sem);
10378
10379 /* Turn on everything while shutting down */
10380 ufshcd_rpm_get_sync(hba);
10381 scsi_device_quiesce(sdev);
10382 shost_for_each_device(sdev, hba->host) {
10383 if (sdev == hba->ufs_device_wlun)
10384 continue;
10385 mutex_lock(&sdev->state_mutex);
10386 scsi_device_set_state(sdev, SDEV_OFFLINE);
10387 mutex_unlock(&sdev->state_mutex);
10388 }
10389 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10390
10391 /*
10392 * Next, turn off the UFS controller and the UFS regulators. Disable
10393 * clocks.
10394 */
10395 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10396 ufshcd_suspend(hba);
10397
10398 hba->is_powered = false;
10399 }
10400
10401 /**
10402 * ufshcd_remove - de-allocate SCSI host and host memory space
10403 * data structure memory
10404 * @hba: per adapter instance
10405 */
ufshcd_remove(struct ufs_hba * hba)10406 void ufshcd_remove(struct ufs_hba *hba)
10407 {
10408 if (hba->ufs_device_wlun)
10409 ufshcd_rpm_get_sync(hba);
10410 ufs_hwmon_remove(hba);
10411 ufs_bsg_remove(hba);
10412 ufs_sysfs_remove_nodes(hba->dev);
10413 cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10414 blk_mq_destroy_queue(hba->tmf_queue);
10415 blk_put_queue(hba->tmf_queue);
10416 blk_mq_free_tag_set(&hba->tmf_tag_set);
10417 if (hba->scsi_host_added)
10418 scsi_remove_host(hba->host);
10419 /* disable interrupts */
10420 ufshcd_disable_intr(hba, hba->intr_mask);
10421 ufshcd_hba_stop(hba);
10422 ufshcd_hba_exit(hba);
10423 }
10424 EXPORT_SYMBOL_GPL(ufshcd_remove);
10425
10426 #ifdef CONFIG_PM_SLEEP
ufshcd_system_freeze(struct device * dev)10427 int ufshcd_system_freeze(struct device *dev)
10428 {
10429
10430 return ufshcd_system_suspend(dev);
10431
10432 }
10433 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10434
ufshcd_system_restore(struct device * dev)10435 int ufshcd_system_restore(struct device *dev)
10436 {
10437
10438 struct ufs_hba *hba = dev_get_drvdata(dev);
10439 int ret;
10440
10441 ret = ufshcd_system_resume(dev);
10442 if (ret)
10443 return ret;
10444
10445 /* Configure UTRL and UTMRL base address registers */
10446 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10447 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10448 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10449 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10450 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10451 REG_UTP_TASK_REQ_LIST_BASE_L);
10452 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10453 REG_UTP_TASK_REQ_LIST_BASE_H);
10454 /*
10455 * Make sure that UTRL and UTMRL base address registers
10456 * are updated with the latest queue addresses. Only after
10457 * updating these addresses, we can queue the new commands.
10458 */
10459 ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10460
10461 return 0;
10462
10463 }
10464 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10465
ufshcd_system_thaw(struct device * dev)10466 int ufshcd_system_thaw(struct device *dev)
10467 {
10468 return ufshcd_system_resume(dev);
10469 }
10470 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10471 #endif /* CONFIG_PM_SLEEP */
10472
10473 /**
10474 * ufshcd_set_dma_mask - Set dma mask based on the controller
10475 * addressing capability
10476 * @hba: per adapter instance
10477 *
10478 * Return: 0 for success, non-zero for failure.
10479 */
ufshcd_set_dma_mask(struct ufs_hba * hba)10480 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10481 {
10482 if (hba->vops && hba->vops->set_dma_mask)
10483 return hba->vops->set_dma_mask(hba);
10484 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10485 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10486 return 0;
10487 }
10488 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10489 }
10490
10491 /**
10492 * ufshcd_devres_release - devres cleanup handler, invoked during release of
10493 * hba->dev
10494 * @host: pointer to SCSI host
10495 */
ufshcd_devres_release(void * host)10496 static void ufshcd_devres_release(void *host)
10497 {
10498 scsi_host_put(host);
10499 }
10500
10501 /**
10502 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10503 * @dev: pointer to device handle
10504 * @hba_handle: driver private handle
10505 *
10506 * Return: 0 on success, non-zero value on failure.
10507 *
10508 * NOTE: There is no corresponding ufshcd_dealloc_host() because this function
10509 * keeps track of its allocations using devres and deallocates everything on
10510 * device removal automatically.
10511 */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)10512 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10513 {
10514 struct Scsi_Host *host;
10515 struct ufs_hba *hba;
10516 int err = 0;
10517
10518 if (!dev) {
10519 dev_err(dev,
10520 "Invalid memory reference for dev is NULL\n");
10521 err = -ENODEV;
10522 goto out_error;
10523 }
10524
10525 host = scsi_host_alloc(&ufshcd_driver_template,
10526 sizeof(struct ufs_hba));
10527 if (!host) {
10528 dev_err(dev, "scsi_host_alloc failed\n");
10529 err = -ENOMEM;
10530 goto out_error;
10531 }
10532
10533 err = devm_add_action_or_reset(dev, ufshcd_devres_release,
10534 host);
10535 if (err)
10536 return err;
10537
10538 host->nr_maps = HCTX_TYPE_POLL + 1;
10539 hba = shost_priv(host);
10540 hba->host = host;
10541 hba->dev = dev;
10542 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10543 hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10544 ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10545 INIT_LIST_HEAD(&hba->clk_list_head);
10546 spin_lock_init(&hba->outstanding_lock);
10547
10548 *hba_handle = hba;
10549
10550 out_error:
10551 return err;
10552 }
10553 EXPORT_SYMBOL(ufshcd_alloc_host);
10554
10555 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)10556 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10557 const struct blk_mq_queue_data *qd)
10558 {
10559 WARN_ON_ONCE(true);
10560 return BLK_STS_NOTSUPP;
10561 }
10562
10563 static const struct blk_mq_ops ufshcd_tmf_ops = {
10564 .queue_rq = ufshcd_queue_tmf,
10565 };
10566
ufshcd_add_scsi_host(struct ufs_hba * hba)10567 static int ufshcd_add_scsi_host(struct ufs_hba *hba)
10568 {
10569 int err;
10570
10571 if (is_mcq_supported(hba)) {
10572 ufshcd_mcq_enable(hba);
10573 err = ufshcd_alloc_mcq(hba);
10574 if (!err) {
10575 ufshcd_config_mcq(hba);
10576 } else {
10577 /* Continue with SDB mode */
10578 ufshcd_mcq_disable(hba);
10579 use_mcq_mode = false;
10580 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
10581 err);
10582 }
10583 }
10584 if (!is_mcq_supported(hba) && !hba->lsdb_sup) {
10585 dev_err(hba->dev,
10586 "%s: failed to initialize (legacy doorbell mode not supported)\n",
10587 __func__);
10588 return -EINVAL;
10589 }
10590
10591 err = scsi_add_host(hba->host, hba->dev);
10592 if (err) {
10593 dev_err(hba->dev, "scsi_add_host failed\n");
10594 return err;
10595 }
10596 hba->scsi_host_added = true;
10597
10598 hba->tmf_tag_set = (struct blk_mq_tag_set) {
10599 .nr_hw_queues = 1,
10600 .queue_depth = hba->nutmrs,
10601 .ops = &ufshcd_tmf_ops,
10602 };
10603 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10604 if (err < 0)
10605 goto remove_scsi_host;
10606 hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10607 if (IS_ERR(hba->tmf_queue)) {
10608 err = PTR_ERR(hba->tmf_queue);
10609 goto free_tmf_tag_set;
10610 }
10611 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10612 sizeof(*hba->tmf_rqs), GFP_KERNEL);
10613 if (!hba->tmf_rqs) {
10614 err = -ENOMEM;
10615 goto free_tmf_queue;
10616 }
10617
10618 return 0;
10619
10620 free_tmf_queue:
10621 blk_mq_destroy_queue(hba->tmf_queue);
10622 blk_put_queue(hba->tmf_queue);
10623
10624 free_tmf_tag_set:
10625 blk_mq_free_tag_set(&hba->tmf_tag_set);
10626
10627 remove_scsi_host:
10628 if (hba->scsi_host_added)
10629 scsi_remove_host(hba->host);
10630
10631 return err;
10632 }
10633
10634 /**
10635 * ufshcd_init - Driver initialization routine
10636 * @hba: per-adapter instance
10637 * @mmio_base: base register address
10638 * @irq: Interrupt line of device
10639 *
10640 * Return: 0 on success, non-zero value on failure.
10641 */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)10642 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10643 {
10644 int err;
10645 struct Scsi_Host *host = hba->host;
10646 struct device *dev = hba->dev;
10647
10648 /*
10649 * dev_set_drvdata() must be called before any callbacks are registered
10650 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10651 * sysfs).
10652 */
10653 dev_set_drvdata(dev, hba);
10654
10655 if (!mmio_base) {
10656 dev_err(hba->dev,
10657 "Invalid memory reference for mmio_base is NULL\n");
10658 err = -ENODEV;
10659 goto out_error;
10660 }
10661
10662 hba->mmio_base = mmio_base;
10663 hba->irq = irq;
10664 hba->vps = &ufs_hba_vps;
10665
10666 /*
10667 * Initialize clk_gating.lock early since it is being used in
10668 * ufshcd_setup_clocks()
10669 */
10670 spin_lock_init(&hba->clk_gating.lock);
10671
10672 /*
10673 * Set the default power management level for runtime and system PM.
10674 * Host controller drivers can override them in their
10675 * 'ufs_hba_variant_ops::init' callback.
10676 *
10677 * Default power saving mode is to keep UFS link in Hibern8 state
10678 * and UFS device in sleep state.
10679 */
10680 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10681 UFS_SLEEP_PWR_MODE,
10682 UIC_LINK_HIBERN8_STATE);
10683 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10684 UFS_SLEEP_PWR_MODE,
10685 UIC_LINK_HIBERN8_STATE);
10686
10687 init_completion(&hba->dev_cmd.complete);
10688
10689 err = ufshcd_hba_init(hba);
10690 if (err)
10691 goto out_error;
10692
10693 /* Read capabilities registers */
10694 err = ufshcd_hba_capabilities(hba);
10695 if (err)
10696 goto out_disable;
10697
10698 /* Get UFS version supported by the controller */
10699 hba->ufs_version = ufshcd_get_ufs_version(hba);
10700
10701 /* Get Interrupt bit mask per version */
10702 hba->intr_mask = ufshcd_get_intr_mask(hba);
10703
10704 err = ufshcd_set_dma_mask(hba);
10705 if (err) {
10706 dev_err(hba->dev, "set dma mask failed\n");
10707 goto out_disable;
10708 }
10709
10710 /* Allocate memory for host memory space */
10711 err = ufshcd_memory_alloc(hba);
10712 if (err) {
10713 dev_err(hba->dev, "Memory allocation failed\n");
10714 goto out_disable;
10715 }
10716
10717 /* Configure LRB */
10718 ufshcd_host_memory_configure(hba);
10719
10720 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10721 host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10722 host->max_id = UFSHCD_MAX_ID;
10723 host->max_lun = UFS_MAX_LUNS;
10724 host->max_channel = UFSHCD_MAX_CHANNEL;
10725 host->unique_id = host->host_no;
10726 host->max_cmd_len = UFS_CDB_SIZE;
10727 host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10728
10729 /* Use default RPM delay if host not set */
10730 if (host->rpm_autosuspend_delay == 0)
10731 host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10732
10733 hba->max_pwr_info.is_valid = false;
10734
10735 /* Initialize work queues */
10736 hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM,
10737 hba->host->host_no);
10738 if (!hba->eh_wq) {
10739 dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10740 __func__);
10741 err = -ENOMEM;
10742 goto out_disable;
10743 }
10744 INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10745 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10746
10747 sema_init(&hba->host_sem, 1);
10748
10749 /* Initialize UIC command mutex */
10750 mutex_init(&hba->uic_cmd_mutex);
10751
10752 /* Initialize mutex for device management commands */
10753 mutex_init(&hba->dev_cmd.lock);
10754
10755 /* Initialize mutex for exception event control */
10756 mutex_init(&hba->ee_ctrl_mutex);
10757
10758 mutex_init(&hba->wb_mutex);
10759 init_rwsem(&hba->clk_scaling_lock);
10760
10761 ufshcd_init_clk_gating(hba);
10762
10763 ufshcd_init_clk_scaling(hba);
10764
10765 /*
10766 * In order to avoid any spurious interrupt immediately after
10767 * registering UFS controller interrupt handler, clear any pending UFS
10768 * interrupt status and disable all the UFS interrupts.
10769 */
10770 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10771 REG_INTERRUPT_STATUS);
10772 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10773 /*
10774 * Make sure that UFS interrupts are disabled and any pending interrupt
10775 * status is cleared before registering UFS interrupt handler.
10776 */
10777 ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10778
10779 /* IRQ registration */
10780 err = devm_request_threaded_irq(dev, irq, ufshcd_intr, ufshcd_threaded_intr,
10781 IRQF_ONESHOT | IRQF_SHARED, UFSHCD, hba);
10782 if (err) {
10783 dev_err(hba->dev, "request irq failed\n");
10784 goto out_disable;
10785 } else {
10786 hba->is_irq_enabled = true;
10787 }
10788
10789 /* Reset the attached device */
10790 ufshcd_device_reset(hba);
10791
10792 ufshcd_init_crypto(hba);
10793
10794 /* Host controller enable */
10795 err = ufshcd_hba_enable(hba);
10796 if (err) {
10797 dev_err(hba->dev, "Host controller enable failed\n");
10798 ufshcd_print_evt_hist(hba);
10799 ufshcd_print_host_state(hba);
10800 goto out_disable;
10801 }
10802
10803 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10804 INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10805
10806 /* Set the default auto-hiberate idle timer value to 150 ms */
10807 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10808 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10809 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10810 }
10811
10812 /* Hold auto suspend until async scan completes */
10813 pm_runtime_get_sync(dev);
10814
10815 /*
10816 * We are assuming that device wasn't put in sleep/power-down
10817 * state exclusively during the boot stage before kernel.
10818 * This assumption helps avoid doing link startup twice during
10819 * ufshcd_probe_hba().
10820 */
10821 ufshcd_set_ufs_dev_active(hba);
10822
10823 /* Initialize hba, detect and initialize UFS device */
10824 ktime_t probe_start = ktime_get();
10825
10826 hba->ufshcd_state = UFSHCD_STATE_RESET;
10827
10828 err = ufshcd_link_startup(hba);
10829 if (err)
10830 goto out_disable;
10831
10832 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
10833 goto initialized;
10834
10835 /* Debug counters initialization */
10836 ufshcd_clear_dbg_ufs_stats(hba);
10837
10838 /* UniPro link is active now */
10839 ufshcd_set_link_active(hba);
10840
10841 /* Verify device initialization by sending NOP OUT UPIU */
10842 err = ufshcd_verify_dev_init(hba);
10843 if (err)
10844 goto out_disable;
10845
10846 /* Initiate UFS initialization, and waiting until completion */
10847 err = ufshcd_complete_dev_init(hba);
10848 if (err)
10849 goto out_disable;
10850
10851 err = ufshcd_device_params_init(hba);
10852 if (err)
10853 goto out_disable;
10854
10855 err = ufshcd_post_device_init(hba);
10856
10857 initialized:
10858 ufshcd_process_probe_result(hba, probe_start, err);
10859 if (err)
10860 goto out_disable;
10861
10862 err = ufshcd_add_scsi_host(hba);
10863 if (err)
10864 goto out_disable;
10865
10866 async_schedule(ufshcd_async_scan, hba);
10867 ufs_sysfs_add_nodes(hba->dev);
10868
10869 device_enable_async_suspend(dev);
10870 ufshcd_pm_qos_init(hba);
10871 return 0;
10872
10873 out_disable:
10874 hba->is_irq_enabled = false;
10875 ufshcd_hba_exit(hba);
10876 out_error:
10877 return err;
10878 }
10879 EXPORT_SYMBOL_GPL(ufshcd_init);
10880
ufshcd_resume_complete(struct device * dev)10881 void ufshcd_resume_complete(struct device *dev)
10882 {
10883 struct ufs_hba *hba = dev_get_drvdata(dev);
10884
10885 if (hba->complete_put) {
10886 ufshcd_rpm_put(hba);
10887 hba->complete_put = false;
10888 }
10889 }
10890 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10891
ufshcd_rpm_ok_for_spm(struct ufs_hba * hba)10892 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10893 {
10894 struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10895 enum ufs_dev_pwr_mode dev_pwr_mode;
10896 enum uic_link_state link_state;
10897 unsigned long flags;
10898 bool res;
10899
10900 spin_lock_irqsave(&dev->power.lock, flags);
10901 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10902 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10903 res = pm_runtime_suspended(dev) &&
10904 hba->curr_dev_pwr_mode == dev_pwr_mode &&
10905 hba->uic_link_state == link_state &&
10906 !hba->dev_info.b_rpm_dev_flush_capable;
10907 spin_unlock_irqrestore(&dev->power.lock, flags);
10908
10909 return res;
10910 }
10911
__ufshcd_suspend_prepare(struct device * dev,bool rpm_ok_for_spm)10912 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10913 {
10914 struct ufs_hba *hba = dev_get_drvdata(dev);
10915 int ret;
10916
10917 /*
10918 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10919 * are same. And it doesn't wake up the device for system-suspend
10920 * if it's runtime suspended. But ufs doesn't follow that.
10921 * Refer ufshcd_resume_complete()
10922 */
10923 if (hba->ufs_device_wlun) {
10924 /* Prevent runtime suspend */
10925 ufshcd_rpm_get_noresume(hba);
10926 /*
10927 * Check if already runtime suspended in same state as system
10928 * suspend would be.
10929 */
10930 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10931 /* RPM state is not ok for SPM, so runtime resume */
10932 ret = ufshcd_rpm_resume(hba);
10933 if (ret < 0 && ret != -EACCES) {
10934 ufshcd_rpm_put(hba);
10935 return ret;
10936 }
10937 }
10938 hba->complete_put = true;
10939 }
10940 return 0;
10941 }
10942 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10943
ufshcd_suspend_prepare(struct device * dev)10944 int ufshcd_suspend_prepare(struct device *dev)
10945 {
10946 return __ufshcd_suspend_prepare(dev, true);
10947 }
10948 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10949
10950 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_poweroff(struct device * dev)10951 static int ufshcd_wl_poweroff(struct device *dev)
10952 {
10953 struct scsi_device *sdev = to_scsi_device(dev);
10954 struct ufs_hba *hba = shost_priv(sdev->host);
10955
10956 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10957 return 0;
10958 }
10959 #endif
10960
ufshcd_wl_probe(struct device * dev)10961 static int ufshcd_wl_probe(struct device *dev)
10962 {
10963 struct scsi_device *sdev = to_scsi_device(dev);
10964
10965 if (!is_device_wlun(sdev))
10966 return -ENODEV;
10967
10968 blk_pm_runtime_init(sdev->request_queue, dev);
10969 pm_runtime_set_autosuspend_delay(dev, 0);
10970 pm_runtime_allow(dev);
10971
10972 return 0;
10973 }
10974
ufshcd_wl_remove(struct device * dev)10975 static int ufshcd_wl_remove(struct device *dev)
10976 {
10977 pm_runtime_forbid(dev);
10978 return 0;
10979 }
10980
10981 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10982 #ifdef CONFIG_PM_SLEEP
10983 .suspend = ufshcd_wl_suspend,
10984 .resume = ufshcd_wl_resume,
10985 .freeze = ufshcd_wl_suspend,
10986 .thaw = ufshcd_wl_resume,
10987 .poweroff = ufshcd_wl_poweroff,
10988 .restore = ufshcd_wl_resume,
10989 #endif
10990 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10991 };
10992
ufshcd_check_header_layout(void)10993 static void ufshcd_check_header_layout(void)
10994 {
10995 /*
10996 * gcc compilers before version 10 cannot do constant-folding for
10997 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10998 * before.
10999 */
11000 if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
11001 return;
11002
11003 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11004 .cci = 3})[0] != 3);
11005
11006 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11007 .ehs_length = 2})[1] != 2);
11008
11009 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11010 .enable_crypto = 1})[2]
11011 != 0x80);
11012
11013 BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
11014 .command_type = 5,
11015 .data_direction = 3,
11016 .interrupt = 1,
11017 })[3]) != ((5 << 4) | (3 << 1) | 1));
11018
11019 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
11020 .dunl = cpu_to_le32(0xdeadbeef)})[1] !=
11021 cpu_to_le32(0xdeadbeef));
11022
11023 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11024 .ocs = 4})[8] != 4);
11025
11026 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11027 .cds = 5})[9] != 5);
11028
11029 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
11030 .dunu = cpu_to_le32(0xbadcafe)})[3] !=
11031 cpu_to_le32(0xbadcafe));
11032
11033 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
11034 .iid = 0xf })[4] != 0xf0);
11035
11036 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
11037 .command_set_type = 0xf })[4] != 0xf);
11038 }
11039
11040 /*
11041 * ufs_dev_wlun_template - describes ufs device wlun
11042 * ufs-device wlun - used to send pm commands
11043 * All luns are consumers of ufs-device wlun.
11044 *
11045 * Currently, no sd driver is present for wluns.
11046 * Hence the no specific pm operations are performed.
11047 * With ufs design, SSU should be sent to ufs-device wlun.
11048 * Hence register a scsi driver for ufs wluns only.
11049 */
11050 static struct scsi_driver ufs_dev_wlun_template = {
11051 .gendrv = {
11052 .name = "ufs_device_wlun",
11053 .probe = ufshcd_wl_probe,
11054 .remove = ufshcd_wl_remove,
11055 .pm = &ufshcd_wl_pm_ops,
11056 .shutdown = ufshcd_wl_shutdown,
11057 },
11058 };
11059
ufshcd_core_init(void)11060 static int __init ufshcd_core_init(void)
11061 {
11062 int ret;
11063
11064 ufshcd_check_header_layout();
11065
11066 ufs_debugfs_init();
11067
11068 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
11069 if (ret)
11070 ufs_debugfs_exit();
11071 return ret;
11072 }
11073
ufshcd_core_exit(void)11074 static void __exit ufshcd_core_exit(void)
11075 {
11076 ufs_debugfs_exit();
11077 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
11078 }
11079
11080 module_init(ufshcd_core_init);
11081 module_exit(ufshcd_core_exit);
11082
11083 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
11084 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
11085 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
11086 MODULE_SOFTDEP("pre: governor_simpleondemand");
11087 MODULE_LICENSE("GPL");
11088