xref: /linux/drivers/ufs/host/ufs-qcom.c (revision 8582976acc8504cec53a7b6fed493435eba8437f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2013-2016, Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/acpi.h>
7 #include <linux/clk.h>
8 #include <linux/cleanup.h>
9 #include <linux/delay.h>
10 #include <linux/devfreq.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/interconnect.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/phy/phy.h>
16 #include <linux/platform_device.h>
17 #include <linux/reset-controller.h>
18 #include <linux/time.h>
19 #include <linux/unaligned.h>
20 #include <linux/units.h>
21 
22 #include <soc/qcom/ice.h>
23 
24 #include <ufs/ufshcd.h>
25 #include <ufs/ufshci.h>
26 #include <ufs/ufs_quirks.h>
27 #include <ufs/unipro.h>
28 #include "ufshcd-pltfrm.h"
29 #include "ufs-qcom.h"
30 
31 #define MCQ_QCFGPTR_MASK	GENMASK(7, 0)
32 #define MCQ_QCFGPTR_UNIT	0x200
33 #define MCQ_SQATTR_OFFSET(c) \
34 	((((c) >> 16) & MCQ_QCFGPTR_MASK) * MCQ_QCFGPTR_UNIT)
35 #define MCQ_QCFG_SIZE	0x40
36 
37 /* De-emphasis for gear-5 */
38 #define DEEMPHASIS_3_5_dB	0x04
39 #define NO_DEEMPHASIS		0x0
40 
41 enum {
42 	TSTBUS_UAWM,
43 	TSTBUS_UARM,
44 	TSTBUS_TXUC,
45 	TSTBUS_RXUC,
46 	TSTBUS_DFC,
47 	TSTBUS_TRLUT,
48 	TSTBUS_TMRLUT,
49 	TSTBUS_OCSC,
50 	TSTBUS_UTP_HCI,
51 	TSTBUS_COMBINED,
52 	TSTBUS_WRAPPER,
53 	TSTBUS_UNIPRO,
54 	TSTBUS_MAX,
55 };
56 
57 #define QCOM_UFS_MAX_GEAR 5
58 #define QCOM_UFS_MAX_LANE 2
59 
60 enum {
61 	MODE_MIN,
62 	MODE_PWM,
63 	MODE_HS_RA,
64 	MODE_HS_RB,
65 	MODE_MAX,
66 };
67 
68 static const struct __ufs_qcom_bw_table {
69 	u32 mem_bw;
70 	u32 cfg_bw;
71 } ufs_qcom_bw_table[MODE_MAX + 1][QCOM_UFS_MAX_GEAR + 1][QCOM_UFS_MAX_LANE + 1] = {
72 	[MODE_MIN][0][0]		   = { 0,		0 }, /* Bandwidth values in KB/s */
73 	[MODE_PWM][UFS_PWM_G1][UFS_LANE_1] = { 922,		1000 },
74 	[MODE_PWM][UFS_PWM_G2][UFS_LANE_1] = { 1844,		1000 },
75 	[MODE_PWM][UFS_PWM_G3][UFS_LANE_1] = { 3688,		1000 },
76 	[MODE_PWM][UFS_PWM_G4][UFS_LANE_1] = { 7376,		1000 },
77 	[MODE_PWM][UFS_PWM_G5][UFS_LANE_1] = { 14752,		1000 },
78 	[MODE_PWM][UFS_PWM_G1][UFS_LANE_2] = { 1844,		1000 },
79 	[MODE_PWM][UFS_PWM_G2][UFS_LANE_2] = { 3688,		1000 },
80 	[MODE_PWM][UFS_PWM_G3][UFS_LANE_2] = { 7376,		1000 },
81 	[MODE_PWM][UFS_PWM_G4][UFS_LANE_2] = { 14752,		1000 },
82 	[MODE_PWM][UFS_PWM_G5][UFS_LANE_2] = { 29504,		1000 },
83 	[MODE_HS_RA][UFS_HS_G1][UFS_LANE_1] = { 127796,		1000 },
84 	[MODE_HS_RA][UFS_HS_G2][UFS_LANE_1] = { 255591,		1000 },
85 	[MODE_HS_RA][UFS_HS_G3][UFS_LANE_1] = { 1492582,	102400 },
86 	[MODE_HS_RA][UFS_HS_G4][UFS_LANE_1] = { 2915200,	204800 },
87 	[MODE_HS_RA][UFS_HS_G5][UFS_LANE_1] = { 5836800,	409600 },
88 	[MODE_HS_RA][UFS_HS_G1][UFS_LANE_2] = { 255591,		1000 },
89 	[MODE_HS_RA][UFS_HS_G2][UFS_LANE_2] = { 511181,		1000 },
90 	[MODE_HS_RA][UFS_HS_G3][UFS_LANE_2] = { 1492582,	204800 },
91 	[MODE_HS_RA][UFS_HS_G4][UFS_LANE_2] = { 2915200,	409600 },
92 	[MODE_HS_RA][UFS_HS_G5][UFS_LANE_2] = { 5836800,	819200 },
93 	[MODE_HS_RB][UFS_HS_G1][UFS_LANE_1] = { 149422,		1000 },
94 	[MODE_HS_RB][UFS_HS_G2][UFS_LANE_1] = { 298189,		1000 },
95 	[MODE_HS_RB][UFS_HS_G3][UFS_LANE_1] = { 1492582,	102400 },
96 	[MODE_HS_RB][UFS_HS_G4][UFS_LANE_1] = { 2915200,	204800 },
97 	[MODE_HS_RB][UFS_HS_G5][UFS_LANE_1] = { 5836800,	409600 },
98 	[MODE_HS_RB][UFS_HS_G1][UFS_LANE_2] = { 298189,		1000 },
99 	[MODE_HS_RB][UFS_HS_G2][UFS_LANE_2] = { 596378,		1000 },
100 	[MODE_HS_RB][UFS_HS_G3][UFS_LANE_2] = { 1492582,	204800 },
101 	[MODE_HS_RB][UFS_HS_G4][UFS_LANE_2] = { 2915200,	409600 },
102 	[MODE_HS_RB][UFS_HS_G5][UFS_LANE_2] = { 5836800,	819200 },
103 	[MODE_MAX][0][0]		    = { 7643136,	819200 },
104 };
105 
106 static const struct {
107 	int nminor;
108 	char *prefix;
109 } testbus_info[TSTBUS_MAX] = {
110 	[TSTBUS_UAWM]     = {32, "TSTBUS_UAWM"},
111 	[TSTBUS_UARM]     = {32, "TSTBUS_UARM"},
112 	[TSTBUS_TXUC]     = {32, "TSTBUS_TXUC"},
113 	[TSTBUS_RXUC]     = {32, "TSTBUS_RXUC"},
114 	[TSTBUS_DFC]      = {32, "TSTBUS_DFC"},
115 	[TSTBUS_TRLUT]    = {32, "TSTBUS_TRLUT"},
116 	[TSTBUS_TMRLUT]   = {32, "TSTBUS_TMRLUT"},
117 	[TSTBUS_OCSC]     = {32, "TSTBUS_OCSC"},
118 	[TSTBUS_UTP_HCI]  = {32, "TSTBUS_UTP_HCI"},
119 	[TSTBUS_COMBINED] = {32, "TSTBUS_COMBINED"},
120 	[TSTBUS_WRAPPER]  = {32, "TSTBUS_WRAPPER"},
121 	[TSTBUS_UNIPRO]   = {256, "TSTBUS_UNIPRO"},
122 };
123 
124 static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host);
125 static unsigned long ufs_qcom_opp_freq_to_clk_freq(struct ufs_hba *hba,
126 						   unsigned long freq, char *name);
127 static int ufs_qcom_set_core_clk_ctrl(struct ufs_hba *hba, bool is_scale_up, unsigned long freq);
128 
rcdev_to_ufs_host(struct reset_controller_dev * rcd)129 static struct ufs_qcom_host *rcdev_to_ufs_host(struct reset_controller_dev *rcd)
130 {
131 	return container_of(rcd, struct ufs_qcom_host, rcdev);
132 }
133 
134 #ifdef CONFIG_SCSI_UFS_CRYPTO
135 /**
136  * ufs_qcom_config_ice_allocator() - ICE core allocator configuration
137  *
138  * @host: pointer to qcom specific variant structure.
139  */
ufs_qcom_config_ice_allocator(struct ufs_qcom_host * host)140 static void ufs_qcom_config_ice_allocator(struct ufs_qcom_host *host)
141 {
142 	struct ufs_hba *hba = host->hba;
143 	static const uint8_t val[4] = { NUM_RX_R1W0, NUM_TX_R0W1, NUM_RX_R1W1, NUM_TX_R1W1 };
144 	u32 config;
145 
146 	if (!(host->caps & UFS_QCOM_CAP_ICE_CONFIG) ||
147 			!(host->hba->caps & UFSHCD_CAP_CRYPTO))
148 		return;
149 
150 	config = get_unaligned_le32(val);
151 
152 	ufshcd_writel(hba, ICE_ALLOCATOR_TYPE, REG_UFS_MEM_ICE_CONFIG);
153 	ufshcd_writel(hba, config, REG_UFS_MEM_ICE_NUM_CORE);
154 }
155 
ufs_qcom_ice_enable(struct ufs_qcom_host * host)156 static inline void ufs_qcom_ice_enable(struct ufs_qcom_host *host)
157 {
158 	if (host->hba->caps & UFSHCD_CAP_CRYPTO)
159 		qcom_ice_enable(host->ice);
160 }
161 
162 static const struct blk_crypto_ll_ops ufs_qcom_crypto_ops; /* forward decl */
163 
ufs_qcom_ice_init(struct ufs_qcom_host * host)164 static int ufs_qcom_ice_init(struct ufs_qcom_host *host)
165 {
166 	struct ufs_hba *hba = host->hba;
167 	struct blk_crypto_profile *profile = &hba->crypto_profile;
168 	struct device *dev = hba->dev;
169 	struct qcom_ice *ice;
170 	union ufs_crypto_capabilities caps;
171 	union ufs_crypto_cap_entry cap;
172 	int err;
173 	int i;
174 
175 	ice = devm_of_qcom_ice_get(dev);
176 	if (ice == ERR_PTR(-EOPNOTSUPP)) {
177 		dev_warn(dev, "Disabling inline encryption support\n");
178 		ice = NULL;
179 	}
180 
181 	if (IS_ERR_OR_NULL(ice))
182 		return PTR_ERR_OR_ZERO(ice);
183 
184 	host->ice = ice;
185 
186 	/* Initialize the blk_crypto_profile */
187 
188 	caps.reg_val = cpu_to_le32(ufshcd_readl(hba, REG_UFS_CCAP));
189 
190 	/* The number of keyslots supported is (CFGC+1) */
191 	err = devm_blk_crypto_profile_init(dev, profile, caps.config_count + 1);
192 	if (err)
193 		return err;
194 
195 	profile->ll_ops = ufs_qcom_crypto_ops;
196 	profile->max_dun_bytes_supported = 8;
197 	profile->key_types_supported = qcom_ice_get_supported_key_type(ice);
198 	profile->dev = dev;
199 
200 	/*
201 	 * Currently this driver only supports AES-256-XTS.  All known versions
202 	 * of ICE support it, but to be safe make sure it is really declared in
203 	 * the crypto capability registers.  The crypto capability registers
204 	 * also give the supported data unit size(s).
205 	 */
206 	for (i = 0; i < caps.num_crypto_cap; i++) {
207 		cap.reg_val = cpu_to_le32(ufshcd_readl(hba,
208 						       REG_UFS_CRYPTOCAP +
209 						       i * sizeof(__le32)));
210 		if (cap.algorithm_id == UFS_CRYPTO_ALG_AES_XTS &&
211 		    cap.key_size == UFS_CRYPTO_KEY_SIZE_256)
212 			profile->modes_supported[BLK_ENCRYPTION_MODE_AES_256_XTS] |=
213 				cap.sdus_mask * 512;
214 	}
215 
216 	hba->caps |= UFSHCD_CAP_CRYPTO;
217 	hba->quirks |= UFSHCD_QUIRK_CUSTOM_CRYPTO_PROFILE;
218 	return 0;
219 }
220 
ufs_qcom_ice_resume(struct ufs_qcom_host * host)221 static inline int ufs_qcom_ice_resume(struct ufs_qcom_host *host)
222 {
223 	if (host->hba->caps & UFSHCD_CAP_CRYPTO)
224 		return qcom_ice_resume(host->ice);
225 
226 	return 0;
227 }
228 
ufs_qcom_ice_suspend(struct ufs_qcom_host * host)229 static inline int ufs_qcom_ice_suspend(struct ufs_qcom_host *host)
230 {
231 	if (host->hba->caps & UFSHCD_CAP_CRYPTO)
232 		return qcom_ice_suspend(host->ice);
233 
234 	return 0;
235 }
236 
ufs_qcom_ice_keyslot_program(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)237 static int ufs_qcom_ice_keyslot_program(struct blk_crypto_profile *profile,
238 					const struct blk_crypto_key *key,
239 					unsigned int slot)
240 {
241 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
242 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
243 	int err;
244 
245 	ufshcd_hold(hba);
246 	err = qcom_ice_program_key(host->ice, slot, key);
247 	ufshcd_release(hba);
248 	return err;
249 }
250 
ufs_qcom_ice_keyslot_evict(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)251 static int ufs_qcom_ice_keyslot_evict(struct blk_crypto_profile *profile,
252 				      const struct blk_crypto_key *key,
253 				      unsigned int slot)
254 {
255 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
256 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
257 	int err;
258 
259 	ufshcd_hold(hba);
260 	err = qcom_ice_evict_key(host->ice, slot);
261 	ufshcd_release(hba);
262 	return err;
263 }
264 
ufs_qcom_ice_derive_sw_secret(struct blk_crypto_profile * profile,const u8 * eph_key,size_t eph_key_size,u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])265 static int ufs_qcom_ice_derive_sw_secret(struct blk_crypto_profile *profile,
266 					 const u8 *eph_key, size_t eph_key_size,
267 					 u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])
268 {
269 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
270 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
271 
272 	return qcom_ice_derive_sw_secret(host->ice, eph_key, eph_key_size,
273 					 sw_secret);
274 }
275 
ufs_qcom_ice_import_key(struct blk_crypto_profile * profile,const u8 * raw_key,size_t raw_key_size,u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])276 static int ufs_qcom_ice_import_key(struct blk_crypto_profile *profile,
277 				   const u8 *raw_key, size_t raw_key_size,
278 				   u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])
279 {
280 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
281 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
282 
283 	return qcom_ice_import_key(host->ice, raw_key, raw_key_size, lt_key);
284 }
285 
ufs_qcom_ice_generate_key(struct blk_crypto_profile * profile,u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])286 static int ufs_qcom_ice_generate_key(struct blk_crypto_profile *profile,
287 				     u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])
288 {
289 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
290 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
291 
292 	return qcom_ice_generate_key(host->ice, lt_key);
293 }
294 
ufs_qcom_ice_prepare_key(struct blk_crypto_profile * profile,const u8 * lt_key,size_t lt_key_size,u8 eph_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])295 static int ufs_qcom_ice_prepare_key(struct blk_crypto_profile *profile,
296 				    const u8 *lt_key, size_t lt_key_size,
297 				    u8 eph_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])
298 {
299 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
300 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
301 
302 	return qcom_ice_prepare_key(host->ice, lt_key, lt_key_size, eph_key);
303 }
304 
305 static const struct blk_crypto_ll_ops ufs_qcom_crypto_ops = {
306 	.keyslot_program	= ufs_qcom_ice_keyslot_program,
307 	.keyslot_evict		= ufs_qcom_ice_keyslot_evict,
308 	.derive_sw_secret	= ufs_qcom_ice_derive_sw_secret,
309 	.import_key		= ufs_qcom_ice_import_key,
310 	.generate_key		= ufs_qcom_ice_generate_key,
311 	.prepare_key		= ufs_qcom_ice_prepare_key,
312 };
313 
314 #else
315 
ufs_qcom_ice_enable(struct ufs_qcom_host * host)316 static inline void ufs_qcom_ice_enable(struct ufs_qcom_host *host)
317 {
318 }
319 
ufs_qcom_ice_init(struct ufs_qcom_host * host)320 static int ufs_qcom_ice_init(struct ufs_qcom_host *host)
321 {
322 	return 0;
323 }
324 
ufs_qcom_ice_resume(struct ufs_qcom_host * host)325 static inline int ufs_qcom_ice_resume(struct ufs_qcom_host *host)
326 {
327 	return 0;
328 }
329 
ufs_qcom_ice_suspend(struct ufs_qcom_host * host)330 static inline int ufs_qcom_ice_suspend(struct ufs_qcom_host *host)
331 {
332 	return 0;
333 }
334 
ufs_qcom_config_ice_allocator(struct ufs_qcom_host * host)335 static void ufs_qcom_config_ice_allocator(struct ufs_qcom_host *host)
336 {
337 }
338 
339 #endif
340 
ufs_qcom_disable_lane_clks(struct ufs_qcom_host * host)341 static void ufs_qcom_disable_lane_clks(struct ufs_qcom_host *host)
342 {
343 	if (!host->is_lane_clks_enabled)
344 		return;
345 
346 	clk_bulk_disable_unprepare(host->num_clks, host->clks);
347 
348 	host->is_lane_clks_enabled = false;
349 }
350 
ufs_qcom_enable_lane_clks(struct ufs_qcom_host * host)351 static int ufs_qcom_enable_lane_clks(struct ufs_qcom_host *host)
352 {
353 	int err;
354 
355 	err = clk_bulk_prepare_enable(host->num_clks, host->clks);
356 	if (err)
357 		return err;
358 
359 	host->is_lane_clks_enabled = true;
360 
361 	return 0;
362 }
363 
ufs_qcom_init_lane_clks(struct ufs_qcom_host * host)364 static int ufs_qcom_init_lane_clks(struct ufs_qcom_host *host)
365 {
366 	int err;
367 	struct device *dev = host->hba->dev;
368 
369 	if (has_acpi_companion(dev))
370 		return 0;
371 
372 	err = devm_clk_bulk_get_all(dev, &host->clks);
373 	if (err <= 0)
374 		return err;
375 
376 	host->num_clks = err;
377 
378 	return 0;
379 }
380 
ufs_qcom_check_hibern8(struct ufs_hba * hba)381 static int ufs_qcom_check_hibern8(struct ufs_hba *hba)
382 {
383 	int err;
384 	u32 tx_fsm_val;
385 	unsigned long timeout = jiffies + msecs_to_jiffies(HBRN8_POLL_TOUT_MS);
386 
387 	do {
388 		err = ufshcd_dme_get(hba,
389 				UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE,
390 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
391 				&tx_fsm_val);
392 		if (err || tx_fsm_val == TX_FSM_HIBERN8)
393 			break;
394 
395 		/* sleep for max. 200us */
396 		usleep_range(100, 200);
397 	} while (time_before(jiffies, timeout));
398 
399 	/*
400 	 * we might have scheduled out for long during polling so
401 	 * check the state again.
402 	 */
403 	if (time_after(jiffies, timeout))
404 		err = ufshcd_dme_get(hba,
405 				UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE,
406 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
407 				&tx_fsm_val);
408 
409 	if (err) {
410 		dev_err(hba->dev, "%s: unable to get TX_FSM_STATE, err %d\n",
411 				__func__, err);
412 	} else if (tx_fsm_val != TX_FSM_HIBERN8) {
413 		err = tx_fsm_val;
414 		dev_err(hba->dev, "%s: invalid TX_FSM_STATE = %d\n",
415 				__func__, err);
416 	}
417 
418 	return err;
419 }
420 
ufs_qcom_select_unipro_mode(struct ufs_qcom_host * host)421 static void ufs_qcom_select_unipro_mode(struct ufs_qcom_host *host)
422 {
423 	ufshcd_rmwl(host->hba, QUNIPRO_SEL, QUNIPRO_SEL, REG_UFS_CFG1);
424 
425 	if (host->hw_ver.major >= 0x05)
426 		ufshcd_rmwl(host->hba, QUNIPRO_G4_SEL, 0, REG_UFS_CFG0);
427 }
428 
429 /*
430  * ufs_qcom_host_reset - reset host controller and PHY
431  */
ufs_qcom_host_reset(struct ufs_hba * hba)432 static int ufs_qcom_host_reset(struct ufs_hba *hba)
433 {
434 	int ret;
435 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
436 	bool reenable_intr;
437 
438 	if (!host->core_reset)
439 		return 0;
440 
441 	reenable_intr = hba->is_irq_enabled;
442 	ufshcd_disable_irq(hba);
443 
444 	ret = reset_control_assert(host->core_reset);
445 	if (ret) {
446 		dev_err(hba->dev, "%s: core_reset assert failed, err = %d\n",
447 				 __func__, ret);
448 		return ret;
449 	}
450 
451 	/*
452 	 * The hardware requirement for delay between assert/deassert
453 	 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
454 	 * ~125us (4/32768). To be on the safe side add 200us delay.
455 	 */
456 	usleep_range(200, 210);
457 
458 	ret = reset_control_deassert(host->core_reset);
459 	if (ret) {
460 		dev_err(hba->dev, "%s: core_reset deassert failed, err = %d\n",
461 				 __func__, ret);
462 		return ret;
463 	}
464 
465 	usleep_range(1000, 1100);
466 
467 	if (reenable_intr)
468 		ufshcd_enable_irq(hba);
469 
470 	return 0;
471 }
472 
ufs_qcom_get_hs_gear(struct ufs_hba * hba)473 static u32 ufs_qcom_get_hs_gear(struct ufs_hba *hba)
474 {
475 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
476 
477 	if (host->hw_ver.major >= 0x4)
478 		return UFS_QCOM_MAX_GEAR(ufshcd_readl(hba, REG_UFS_PARAM0));
479 
480 	/* Default is HS-G3 */
481 	return UFS_HS_G3;
482 }
483 
ufs_qcom_power_up_sequence(struct ufs_hba * hba)484 static int ufs_qcom_power_up_sequence(struct ufs_hba *hba)
485 {
486 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
487 	struct ufs_host_params *host_params = &host->host_params;
488 	struct phy *phy = host->generic_phy;
489 	enum phy_mode mode;
490 	int ret;
491 
492 	/*
493 	 * HW ver 5 can only support up to HS-G5 Rate-A due to HW limitations.
494 	 * If the HS-G5 PHY gear is used, update host_params->hs_rate to Rate-A,
495 	 * so that the subsequent power mode change shall stick to Rate-A.
496 	 */
497 	if (host->hw_ver.major == 0x5) {
498 		if (host->phy_gear == UFS_HS_G5)
499 			host_params->hs_rate = PA_HS_MODE_A;
500 		else
501 			host_params->hs_rate = PA_HS_MODE_B;
502 	}
503 
504 	mode = host_params->hs_rate == PA_HS_MODE_B ? PHY_MODE_UFS_HS_B : PHY_MODE_UFS_HS_A;
505 
506 	/* Reset UFS Host Controller and PHY */
507 	ret = ufs_qcom_host_reset(hba);
508 	if (ret)
509 		return ret;
510 
511 	if (phy->power_count)
512 		phy_power_off(phy);
513 
514 
515 	/* phy initialization - calibrate the phy */
516 	ret = phy_init(phy);
517 	if (ret) {
518 		dev_err(hba->dev, "%s: phy init failed, ret = %d\n",
519 			__func__, ret);
520 		return ret;
521 	}
522 
523 	ret = phy_set_mode_ext(phy, mode, host->phy_gear);
524 	if (ret)
525 		goto out_disable_phy;
526 
527 	/* power on phy - start serdes and phy's power and clocks */
528 	ret = phy_power_on(phy);
529 	if (ret) {
530 		dev_err(hba->dev, "%s: phy power on failed, ret = %d\n",
531 			__func__, ret);
532 		goto out_disable_phy;
533 	}
534 
535 	ret = phy_calibrate(phy);
536 	if (ret) {
537 		dev_err(hba->dev, "Failed to calibrate PHY: %d\n", ret);
538 		goto out_disable_phy;
539 	}
540 
541 	ufs_qcom_select_unipro_mode(host);
542 
543 	return 0;
544 
545 out_disable_phy:
546 	phy_exit(phy);
547 
548 	return ret;
549 }
550 
551 /*
552  * The UTP controller has a number of internal clock gating cells (CGCs).
553  * Internal hardware sub-modules within the UTP controller control the CGCs.
554  * Hardware CGCs disable the clock to inactivate UTP sub-modules not involved
555  * in a specific operation, UTP controller CGCs are by default disabled and
556  * this function enables them (after every UFS link startup) to save some power
557  * leakage.
558  */
ufs_qcom_enable_hw_clk_gating(struct ufs_hba * hba)559 static void ufs_qcom_enable_hw_clk_gating(struct ufs_hba *hba)
560 {
561 	int err;
562 
563 	/* Enable UTP internal clock gating */
564 	ufshcd_rmwl(hba, REG_UFS_CFG2_CGC_EN_ALL, REG_UFS_CFG2_CGC_EN_ALL,
565 		    REG_UFS_CFG2);
566 
567 	/* Ensure that HW clock gating is enabled before next operations */
568 	ufshcd_readl(hba, REG_UFS_CFG2);
569 
570 	/* Enable Unipro internal clock gating */
571 	err = ufshcd_dme_rmw(hba, DL_VS_CLK_CFG_MASK,
572 			     DL_VS_CLK_CFG_MASK, DL_VS_CLK_CFG);
573 	if (err)
574 		goto out;
575 
576 	err = ufshcd_dme_rmw(hba, PA_VS_CLK_CFG_REG_MASK,
577 			     PA_VS_CLK_CFG_REG_MASK, PA_VS_CLK_CFG_REG);
578 	if (err)
579 		goto out;
580 
581 	err = ufshcd_dme_rmw(hba, DME_VS_CORE_CLK_CTRL_DME_HW_CGC_EN,
582 			     DME_VS_CORE_CLK_CTRL_DME_HW_CGC_EN,
583 			     DME_VS_CORE_CLK_CTRL);
584 out:
585 	if (err)
586 		dev_err(hba->dev, "hw clk gating enabled failed\n");
587 }
588 
ufs_qcom_hce_enable_notify(struct ufs_hba * hba,enum ufs_notify_change_status status)589 static int ufs_qcom_hce_enable_notify(struct ufs_hba *hba,
590 				      enum ufs_notify_change_status status)
591 {
592 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
593 	int err;
594 
595 	switch (status) {
596 	case PRE_CHANGE:
597 		err = ufs_qcom_power_up_sequence(hba);
598 		if (err)
599 			return err;
600 
601 		/*
602 		 * The PHY PLL output is the source of tx/rx lane symbol
603 		 * clocks, hence, enable the lane clocks only after PHY
604 		 * is initialized.
605 		 */
606 		err = ufs_qcom_enable_lane_clks(host);
607 		break;
608 	case POST_CHANGE:
609 		/* check if UFS PHY moved from DISABLED to HIBERN8 */
610 		err = ufs_qcom_check_hibern8(hba);
611 		ufs_qcom_enable_hw_clk_gating(hba);
612 		ufs_qcom_ice_enable(host);
613 		ufs_qcom_config_ice_allocator(host);
614 		break;
615 	default:
616 		dev_err(hba->dev, "%s: invalid status %d\n", __func__, status);
617 		err = -EINVAL;
618 		break;
619 	}
620 	return err;
621 }
622 
623 /**
624  * ufs_qcom_cfg_timers - Configure ufs qcom cfg timers
625  *
626  * @hba: host controller instance
627  * @is_pre_scale_up: flag to check if pre scale up condition.
628  * @freq: target opp freq
629  * Return: zero for success and non-zero in case of a failure.
630  */
ufs_qcom_cfg_timers(struct ufs_hba * hba,bool is_pre_scale_up,unsigned long freq)631 static int ufs_qcom_cfg_timers(struct ufs_hba *hba, bool is_pre_scale_up, unsigned long freq)
632 {
633 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
634 	struct ufs_clk_info *clki;
635 	unsigned long clk_freq = 0;
636 	u32 core_clk_cycles_per_us;
637 
638 	/*
639 	 * UTP controller uses SYS1CLK_1US_REG register for Interrupt
640 	 * Aggregation logic.
641 	 * It is mandatory to write SYS1CLK_1US_REG register on UFS host
642 	 * controller V4.0.0 onwards.
643 	 */
644 	if (host->hw_ver.major < 4 && !ufshcd_is_intr_aggr_allowed(hba))
645 		return 0;
646 
647 	if (hba->use_pm_opp && freq != ULONG_MAX) {
648 		clk_freq = ufs_qcom_opp_freq_to_clk_freq(hba, freq, "core_clk");
649 		if (clk_freq)
650 			goto cfg_timers;
651 	}
652 
653 	list_for_each_entry(clki, &hba->clk_list_head, list) {
654 		if (!strcmp(clki->name, "core_clk")) {
655 			if (freq == ULONG_MAX) {
656 				clk_freq = clki->max_freq;
657 				break;
658 			}
659 
660 			if (is_pre_scale_up)
661 				clk_freq = clki->max_freq;
662 			else
663 				clk_freq = clk_get_rate(clki->clk);
664 			break;
665 		}
666 
667 	}
668 
669 cfg_timers:
670 	/* If frequency is smaller than 1MHz, set to 1MHz */
671 	if (clk_freq < DEFAULT_CLK_RATE_HZ)
672 		clk_freq = DEFAULT_CLK_RATE_HZ;
673 
674 	core_clk_cycles_per_us = clk_freq / USEC_PER_SEC;
675 	if (ufshcd_readl(hba, REG_UFS_SYS1CLK_1US) != core_clk_cycles_per_us) {
676 		ufshcd_writel(hba, core_clk_cycles_per_us, REG_UFS_SYS1CLK_1US);
677 		/*
678 		 * make sure above write gets applied before we return from
679 		 * this function.
680 		 */
681 		ufshcd_readl(hba, REG_UFS_SYS1CLK_1US);
682 	}
683 
684 	return 0;
685 }
686 
ufs_qcom_link_startup_notify(struct ufs_hba * hba,enum ufs_notify_change_status status)687 static int ufs_qcom_link_startup_notify(struct ufs_hba *hba,
688 					enum ufs_notify_change_status status)
689 {
690 	int err = 0;
691 
692 	switch (status) {
693 	case PRE_CHANGE:
694 		if (ufs_qcom_cfg_timers(hba, false, ULONG_MAX)) {
695 			dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n",
696 				__func__);
697 			return -EINVAL;
698 		}
699 
700 		err = ufs_qcom_set_core_clk_ctrl(hba, true, ULONG_MAX);
701 		if (err)
702 			dev_err(hba->dev, "cfg core clk ctrl failed\n");
703 		/*
704 		 * Some UFS devices (and may be host) have issues if LCC is
705 		 * enabled. So we are setting PA_Local_TX_LCC_Enable to 0
706 		 * before link startup which will make sure that both host
707 		 * and device TX LCC are disabled once link startup is
708 		 * completed.
709 		 */
710 		err = ufshcd_disable_host_tx_lcc(hba);
711 
712 		break;
713 	default:
714 		break;
715 	}
716 
717 	return err;
718 }
719 
ufs_qcom_device_reset_ctrl(struct ufs_hba * hba,bool asserted)720 static void ufs_qcom_device_reset_ctrl(struct ufs_hba *hba, bool asserted)
721 {
722 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
723 
724 	/* reset gpio is optional */
725 	if (!host->device_reset)
726 		return;
727 
728 	gpiod_set_value_cansleep(host->device_reset, asserted);
729 }
730 
ufs_qcom_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op,enum ufs_notify_change_status status)731 static int ufs_qcom_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op,
732 	enum ufs_notify_change_status status)
733 {
734 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
735 
736 	if (status == PRE_CHANGE)
737 		return 0;
738 
739 	if (!ufs_qcom_is_link_active(hba))
740 		ufs_qcom_disable_lane_clks(host);
741 
742 
743 	/* reset the connected UFS device during power down */
744 	if (ufs_qcom_is_link_off(hba) && host->device_reset)
745 		ufs_qcom_device_reset_ctrl(hba, true);
746 
747 	return ufs_qcom_ice_suspend(host);
748 }
749 
ufs_qcom_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)750 static int ufs_qcom_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
751 {
752 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
753 	int err;
754 
755 	err = ufs_qcom_enable_lane_clks(host);
756 	if (err)
757 		return err;
758 
759 	return ufs_qcom_ice_resume(host);
760 }
761 
ufs_qcom_dev_ref_clk_ctrl(struct ufs_qcom_host * host,bool enable)762 static void ufs_qcom_dev_ref_clk_ctrl(struct ufs_qcom_host *host, bool enable)
763 {
764 	if (host->dev_ref_clk_ctrl_mmio &&
765 	    (enable ^ host->is_dev_ref_clk_enabled)) {
766 		u32 temp = readl_relaxed(host->dev_ref_clk_ctrl_mmio);
767 
768 		if (enable)
769 			temp |= host->dev_ref_clk_en_mask;
770 		else
771 			temp &= ~host->dev_ref_clk_en_mask;
772 
773 		/*
774 		 * If we are here to disable this clock it might be immediately
775 		 * after entering into hibern8 in which case we need to make
776 		 * sure that device ref_clk is active for specific time after
777 		 * hibern8 enter.
778 		 */
779 		if (!enable) {
780 			unsigned long gating_wait;
781 
782 			gating_wait = host->hba->dev_info.clk_gating_wait_us;
783 			if (!gating_wait) {
784 				udelay(1);
785 			} else {
786 				/*
787 				 * bRefClkGatingWaitTime defines the minimum
788 				 * time for which the reference clock is
789 				 * required by device during transition from
790 				 * HS-MODE to LS-MODE or HIBERN8 state. Give it
791 				 * more delay to be on the safe side.
792 				 */
793 				gating_wait += 10;
794 				usleep_range(gating_wait, gating_wait + 10);
795 			}
796 		}
797 
798 		writel_relaxed(temp, host->dev_ref_clk_ctrl_mmio);
799 
800 		/*
801 		 * Make sure the write to ref_clk reaches the destination and
802 		 * not stored in a Write Buffer (WB).
803 		 */
804 		readl(host->dev_ref_clk_ctrl_mmio);
805 
806 		/*
807 		 * If we call hibern8 exit after this, we need to make sure that
808 		 * device ref_clk is stable for at least 1us before the hibern8
809 		 * exit command.
810 		 */
811 		if (enable)
812 			udelay(1);
813 
814 		host->is_dev_ref_clk_enabled = enable;
815 	}
816 }
817 
ufs_qcom_icc_set_bw(struct ufs_qcom_host * host,u32 mem_bw,u32 cfg_bw)818 static int ufs_qcom_icc_set_bw(struct ufs_qcom_host *host, u32 mem_bw, u32 cfg_bw)
819 {
820 	struct device *dev = host->hba->dev;
821 	int ret;
822 
823 	ret = icc_set_bw(host->icc_ddr, 0, mem_bw);
824 	if (ret < 0) {
825 		dev_err(dev, "failed to set bandwidth request: %d\n", ret);
826 		return ret;
827 	}
828 
829 	ret = icc_set_bw(host->icc_cpu, 0, cfg_bw);
830 	if (ret < 0) {
831 		dev_err(dev, "failed to set bandwidth request: %d\n", ret);
832 		return ret;
833 	}
834 
835 	return 0;
836 }
837 
ufs_qcom_get_bw_table(struct ufs_qcom_host * host)838 static struct __ufs_qcom_bw_table ufs_qcom_get_bw_table(struct ufs_qcom_host *host)
839 {
840 	struct ufs_pa_layer_attr *p = &host->dev_req_params;
841 	int gear = max_t(u32, p->gear_rx, p->gear_tx);
842 	int lane = max_t(u32, p->lane_rx, p->lane_tx);
843 
844 	if (WARN_ONCE(gear > QCOM_UFS_MAX_GEAR,
845 		      "ICC scaling for UFS Gear (%d) not supported. Using Gear (%d) bandwidth\n",
846 		      gear, QCOM_UFS_MAX_GEAR))
847 		gear = QCOM_UFS_MAX_GEAR;
848 
849 	if (WARN_ONCE(lane > QCOM_UFS_MAX_LANE,
850 		      "ICC scaling for UFS Lane (%d) not supported. Using Lane (%d) bandwidth\n",
851 		      lane, QCOM_UFS_MAX_LANE))
852 		lane = QCOM_UFS_MAX_LANE;
853 
854 	if (ufshcd_is_hs_mode(p)) {
855 		if (p->hs_rate == PA_HS_MODE_B)
856 			return ufs_qcom_bw_table[MODE_HS_RB][gear][lane];
857 		else
858 			return ufs_qcom_bw_table[MODE_HS_RA][gear][lane];
859 	} else {
860 		return ufs_qcom_bw_table[MODE_PWM][gear][lane];
861 	}
862 }
863 
ufs_qcom_icc_update_bw(struct ufs_qcom_host * host)864 static int ufs_qcom_icc_update_bw(struct ufs_qcom_host *host)
865 {
866 	struct __ufs_qcom_bw_table bw_table;
867 
868 	bw_table = ufs_qcom_get_bw_table(host);
869 
870 	return ufs_qcom_icc_set_bw(host, bw_table.mem_bw, bw_table.cfg_bw);
871 }
872 
ufs_qcom_set_tx_hs_equalizer(struct ufs_hba * hba,u32 gear,u32 tx_lanes)873 static void ufs_qcom_set_tx_hs_equalizer(struct ufs_hba *hba, u32 gear, u32 tx_lanes)
874 {
875 	u32 equalizer_val;
876 	int ret, i;
877 
878 	/* Determine the equalizer value based on the gear */
879 	equalizer_val = (gear == 5) ? DEEMPHASIS_3_5_dB : NO_DEEMPHASIS;
880 
881 	for (i = 0; i < tx_lanes; i++) {
882 		ret = ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_HS_EQUALIZER, i),
883 				     equalizer_val);
884 		if (ret)
885 			dev_err(hba->dev, "%s: failed equalizer lane %d\n",
886 				__func__, i);
887 	}
888 }
889 
ufs_qcom_pwr_change_notify(struct ufs_hba * hba,enum ufs_notify_change_status status,const struct ufs_pa_layer_attr * dev_max_params,struct ufs_pa_layer_attr * dev_req_params)890 static int ufs_qcom_pwr_change_notify(struct ufs_hba *hba,
891 				enum ufs_notify_change_status status,
892 				const struct ufs_pa_layer_attr *dev_max_params,
893 				struct ufs_pa_layer_attr *dev_req_params)
894 {
895 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
896 	struct ufs_host_params *host_params = &host->host_params;
897 	int ret = 0;
898 
899 	if (!dev_req_params) {
900 		pr_err("%s: incoming dev_req_params is NULL\n", __func__);
901 		return -EINVAL;
902 	}
903 
904 	switch (status) {
905 	case PRE_CHANGE:
906 		ret = ufshcd_negotiate_pwr_params(host_params, dev_max_params, dev_req_params);
907 		if (ret) {
908 			dev_err(hba->dev, "%s: failed to determine capabilities\n",
909 					__func__);
910 			return ret;
911 		}
912 
913 		/*
914 		 * During UFS driver probe, always update the PHY gear to match the negotiated
915 		 * gear, so that, if quirk UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is enabled,
916 		 * the second init can program the optimal PHY settings. This allows one to start
917 		 * the first init with either the minimum or the maximum support gear.
918 		 */
919 		if (hba->ufshcd_state == UFSHCD_STATE_RESET) {
920 			/*
921 			 * Skip REINIT if the negotiated gear matches with the
922 			 * initial phy_gear. Otherwise, update the phy_gear to
923 			 * program the optimal gear setting during REINIT.
924 			 */
925 			if (host->phy_gear == dev_req_params->gear_tx)
926 				hba->quirks &= ~UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH;
927 			else
928 				host->phy_gear = dev_req_params->gear_tx;
929 		}
930 
931 		/* enable the device ref clock before changing to HS mode */
932 		if (!ufshcd_is_hs_mode(&hba->pwr_info) &&
933 			ufshcd_is_hs_mode(dev_req_params))
934 			ufs_qcom_dev_ref_clk_ctrl(host, true);
935 
936 		if (host->hw_ver.major >= 0x4) {
937 			ufshcd_dme_configure_adapt(hba,
938 						dev_req_params->gear_tx,
939 						PA_INITIAL_ADAPT);
940 		}
941 
942 		if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TX_DEEMPHASIS_TUNING)
943 			ufs_qcom_set_tx_hs_equalizer(hba,
944 					dev_req_params->gear_tx, dev_req_params->lane_tx);
945 
946 		break;
947 	case POST_CHANGE:
948 		/* cache the power mode parameters to use internally */
949 		memcpy(&host->dev_req_params,
950 				dev_req_params, sizeof(*dev_req_params));
951 
952 		ufs_qcom_icc_update_bw(host);
953 
954 		/* disable the device ref clock if entered PWM mode */
955 		if (ufshcd_is_hs_mode(&hba->pwr_info) &&
956 			!ufshcd_is_hs_mode(dev_req_params))
957 			ufs_qcom_dev_ref_clk_ctrl(host, false);
958 		break;
959 	default:
960 		ret = -EINVAL;
961 		break;
962 	}
963 
964 	return ret;
965 }
966 
ufs_qcom_quirk_host_pa_saveconfigtime(struct ufs_hba * hba)967 static int ufs_qcom_quirk_host_pa_saveconfigtime(struct ufs_hba *hba)
968 {
969 	int err;
970 	u32 pa_vs_config_reg1;
971 
972 	err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1),
973 			     &pa_vs_config_reg1);
974 	if (err)
975 		return err;
976 
977 	/* Allow extension of MSB bits of PA_SaveConfigTime attribute */
978 	return ufshcd_dme_set(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1),
979 			    (pa_vs_config_reg1 | (1 << 12)));
980 }
981 
ufs_qcom_override_pa_tx_hsg1_sync_len(struct ufs_hba * hba)982 static void ufs_qcom_override_pa_tx_hsg1_sync_len(struct ufs_hba *hba)
983 {
984 	int err;
985 
986 	err = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TX_HSG1_SYNC_LENGTH),
987 				  PA_TX_HSG1_SYNC_LENGTH_VAL);
988 	if (err)
989 		dev_err(hba->dev, "Failed (%d) set PA_TX_HSG1_SYNC_LENGTH\n", err);
990 }
991 
ufs_qcom_apply_dev_quirks(struct ufs_hba * hba)992 static int ufs_qcom_apply_dev_quirks(struct ufs_hba *hba)
993 {
994 	int err = 0;
995 
996 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME)
997 		err = ufs_qcom_quirk_host_pa_saveconfigtime(hba);
998 
999 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TX_HSG1_SYNC_LENGTH)
1000 		ufs_qcom_override_pa_tx_hsg1_sync_len(hba);
1001 
1002 	return err;
1003 }
1004 
1005 /* UFS device-specific quirks */
1006 static struct ufs_dev_quirk ufs_qcom_dev_fixups[] = {
1007 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
1008 	  .model = UFS_ANY_MODEL,
1009 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
1010 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
1011 	  .model = UFS_ANY_MODEL,
1012 	  .quirk = UFS_DEVICE_QUIRK_DELAY_AFTER_LPM },
1013 	{ .wmanufacturerid = UFS_VENDOR_WDC,
1014 	  .model = UFS_ANY_MODEL,
1015 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE },
1016 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
1017 	  .model = UFS_ANY_MODEL,
1018 	  .quirk = UFS_DEVICE_QUIRK_PA_TX_HSG1_SYNC_LENGTH |
1019 		   UFS_DEVICE_QUIRK_PA_TX_DEEMPHASIS_TUNING },
1020 	{}
1021 };
1022 
ufs_qcom_fixup_dev_quirks(struct ufs_hba * hba)1023 static void ufs_qcom_fixup_dev_quirks(struct ufs_hba *hba)
1024 {
1025 	ufshcd_fixup_dev_quirks(hba, ufs_qcom_dev_fixups);
1026 }
1027 
ufs_qcom_get_ufs_hci_version(struct ufs_hba * hba)1028 static u32 ufs_qcom_get_ufs_hci_version(struct ufs_hba *hba)
1029 {
1030 	return ufshci_version(2, 0);
1031 }
1032 
1033 /**
1034  * ufs_qcom_advertise_quirks - advertise the known QCOM UFS controller quirks
1035  * @hba: host controller instance
1036  *
1037  * QCOM UFS host controller might have some non standard behaviours (quirks)
1038  * than what is specified by UFSHCI specification. Advertise all such
1039  * quirks to standard UFS host controller driver so standard takes them into
1040  * account.
1041  */
ufs_qcom_advertise_quirks(struct ufs_hba * hba)1042 static void ufs_qcom_advertise_quirks(struct ufs_hba *hba)
1043 {
1044 	const struct ufs_qcom_drvdata *drvdata = of_device_get_match_data(hba->dev);
1045 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1046 
1047 	if (host->hw_ver.major == 0x2)
1048 		hba->quirks |= UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION;
1049 
1050 	if (host->hw_ver.major > 0x3)
1051 		hba->quirks |= UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH;
1052 
1053 	if (drvdata && drvdata->quirks)
1054 		hba->quirks |= drvdata->quirks;
1055 }
1056 
ufs_qcom_set_phy_gear(struct ufs_qcom_host * host)1057 static void ufs_qcom_set_phy_gear(struct ufs_qcom_host *host)
1058 {
1059 	struct ufs_host_params *host_params = &host->host_params;
1060 	u32 val, dev_major;
1061 
1062 	/*
1063 	 * Default to powering up the PHY to the max gear possible, which is
1064 	 * backwards compatible with lower gears but not optimal from
1065 	 * a power usage point of view. After device negotiation, if the
1066 	 * gear is lower a reinit will be performed to program the PHY
1067 	 * to the ideal gear for this combo of controller and device.
1068 	 */
1069 	host->phy_gear = host_params->hs_tx_gear;
1070 
1071 	if (host->hw_ver.major < 0x4) {
1072 		/*
1073 		 * These controllers only have one PHY init sequence,
1074 		 * let's power up the PHY using that (the minimum supported
1075 		 * gear, UFS_HS_G2).
1076 		 */
1077 		host->phy_gear = UFS_HS_G2;
1078 	} else if (host->hw_ver.major >= 0x5) {
1079 		val = ufshcd_readl(host->hba, REG_UFS_DEBUG_SPARE_CFG);
1080 		dev_major = FIELD_GET(UFS_DEV_VER_MAJOR_MASK, val);
1081 
1082 		/*
1083 		 * Since the UFS device version is populated, let's remove the
1084 		 * REINIT quirk as the negotiated gear won't change during boot.
1085 		 * So there is no need to do reinit.
1086 		 */
1087 		if (dev_major != 0x0)
1088 			host->hba->quirks &= ~UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH;
1089 
1090 		/*
1091 		 * For UFS 3.1 device and older, power up the PHY using HS-G4
1092 		 * PHY gear to save power.
1093 		 */
1094 		if (dev_major > 0x0 && dev_major < 0x4)
1095 			host->phy_gear = UFS_HS_G4;
1096 	}
1097 }
1098 
ufs_qcom_set_host_params(struct ufs_hba * hba)1099 static void ufs_qcom_set_host_params(struct ufs_hba *hba)
1100 {
1101 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1102 	struct ufs_host_params *host_params = &host->host_params;
1103 
1104 	ufshcd_init_host_params(host_params);
1105 
1106 	/* This driver only supports symmetic gear setting i.e., hs_tx_gear == hs_rx_gear */
1107 	host_params->hs_tx_gear = host_params->hs_rx_gear = ufs_qcom_get_hs_gear(hba);
1108 }
1109 
ufs_qcom_set_host_caps(struct ufs_hba * hba)1110 static void ufs_qcom_set_host_caps(struct ufs_hba *hba)
1111 {
1112 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1113 
1114 	if (host->hw_ver.major >= 0x5)
1115 		host->caps |= UFS_QCOM_CAP_ICE_CONFIG;
1116 }
1117 
ufs_qcom_set_caps(struct ufs_hba * hba)1118 static void ufs_qcom_set_caps(struct ufs_hba *hba)
1119 {
1120 	hba->caps |= UFSHCD_CAP_CLK_GATING | UFSHCD_CAP_HIBERN8_WITH_CLK_GATING;
1121 	hba->caps |= UFSHCD_CAP_CLK_SCALING | UFSHCD_CAP_WB_WITH_CLK_SCALING;
1122 	hba->caps |= UFSHCD_CAP_AUTO_BKOPS_SUSPEND;
1123 	hba->caps |= UFSHCD_CAP_WB_EN;
1124 	hba->caps |= UFSHCD_CAP_AGGR_POWER_COLLAPSE;
1125 	hba->caps |= UFSHCD_CAP_RPM_AUTOSUSPEND;
1126 
1127 	ufs_qcom_set_host_caps(hba);
1128 }
1129 
1130 /**
1131  * ufs_qcom_setup_clocks - enables/disable clocks
1132  * @hba: host controller instance
1133  * @on: If true, enable clocks else disable them.
1134  * @status: PRE_CHANGE or POST_CHANGE notify
1135  *
1136  * There are certain clocks which comes from the PHY so it needs
1137  * to be managed together along with controller clocks which also
1138  * provides a better power saving. Hence keep phy_power_off/on calls
1139  * in ufs_qcom_setup_clocks, so that PHY's regulators & clks can be
1140  * turned on/off along with UFS's clocks.
1141  *
1142  * Return: 0 on success, non-zero on failure.
1143  */
ufs_qcom_setup_clocks(struct ufs_hba * hba,bool on,enum ufs_notify_change_status status)1144 static int ufs_qcom_setup_clocks(struct ufs_hba *hba, bool on,
1145 				 enum ufs_notify_change_status status)
1146 {
1147 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1148 	struct phy *phy;
1149 	int err;
1150 
1151 	/*
1152 	 * In case ufs_qcom_init() is not yet done, simply ignore.
1153 	 * This ufs_qcom_setup_clocks() shall be called from
1154 	 * ufs_qcom_init() after init is done.
1155 	 */
1156 	if (!host)
1157 		return 0;
1158 
1159 	phy = host->generic_phy;
1160 
1161 	switch (status) {
1162 	case PRE_CHANGE:
1163 		if (on) {
1164 			ufs_qcom_icc_update_bw(host);
1165 		} else {
1166 			if (!ufs_qcom_is_link_active(hba)) {
1167 				/* disable device ref_clk */
1168 				ufs_qcom_dev_ref_clk_ctrl(host, false);
1169 			}
1170 
1171 			err = phy_power_off(phy);
1172 			if (err) {
1173 				dev_err(hba->dev, "phy power off failed, ret=%d\n", err);
1174 				return err;
1175 			}
1176 		}
1177 		break;
1178 	case POST_CHANGE:
1179 		if (on) {
1180 			err = phy_power_on(phy);
1181 			if (err) {
1182 				dev_err(hba->dev, "phy power on failed, ret = %d\n", err);
1183 				return err;
1184 			}
1185 
1186 			/* enable the device ref clock for HS mode*/
1187 			if (ufshcd_is_hs_mode(&hba->pwr_info))
1188 				ufs_qcom_dev_ref_clk_ctrl(host, true);
1189 		} else {
1190 			ufs_qcom_icc_set_bw(host, ufs_qcom_bw_table[MODE_MIN][0][0].mem_bw,
1191 					    ufs_qcom_bw_table[MODE_MIN][0][0].cfg_bw);
1192 		}
1193 		break;
1194 	}
1195 
1196 	return 0;
1197 }
1198 
1199 static int
ufs_qcom_reset_assert(struct reset_controller_dev * rcdev,unsigned long id)1200 ufs_qcom_reset_assert(struct reset_controller_dev *rcdev, unsigned long id)
1201 {
1202 	struct ufs_qcom_host *host = rcdev_to_ufs_host(rcdev);
1203 
1204 	ufs_qcom_assert_reset(host->hba);
1205 	/* provide 1ms delay to let the reset pulse propagate. */
1206 	usleep_range(1000, 1100);
1207 	return 0;
1208 }
1209 
1210 static int
ufs_qcom_reset_deassert(struct reset_controller_dev * rcdev,unsigned long id)1211 ufs_qcom_reset_deassert(struct reset_controller_dev *rcdev, unsigned long id)
1212 {
1213 	struct ufs_qcom_host *host = rcdev_to_ufs_host(rcdev);
1214 
1215 	ufs_qcom_deassert_reset(host->hba);
1216 
1217 	/*
1218 	 * after reset deassertion, phy will need all ref clocks,
1219 	 * voltage, current to settle down before starting serdes.
1220 	 */
1221 	usleep_range(1000, 1100);
1222 	return 0;
1223 }
1224 
1225 static const struct reset_control_ops ufs_qcom_reset_ops = {
1226 	.assert = ufs_qcom_reset_assert,
1227 	.deassert = ufs_qcom_reset_deassert,
1228 };
1229 
ufs_qcom_icc_init(struct ufs_qcom_host * host)1230 static int ufs_qcom_icc_init(struct ufs_qcom_host *host)
1231 {
1232 	struct device *dev = host->hba->dev;
1233 	int ret;
1234 
1235 	host->icc_ddr = devm_of_icc_get(dev, "ufs-ddr");
1236 	if (IS_ERR(host->icc_ddr))
1237 		return dev_err_probe(dev, PTR_ERR(host->icc_ddr),
1238 				    "failed to acquire interconnect path\n");
1239 
1240 	host->icc_cpu = devm_of_icc_get(dev, "cpu-ufs");
1241 	if (IS_ERR(host->icc_cpu))
1242 		return dev_err_probe(dev, PTR_ERR(host->icc_cpu),
1243 				    "failed to acquire interconnect path\n");
1244 
1245 	/*
1246 	 * Set Maximum bandwidth vote before initializing the UFS controller and
1247 	 * device. Ideally, a minimal interconnect vote would suffice for the
1248 	 * initialization, but a max vote would allow faster initialization.
1249 	 */
1250 	ret = ufs_qcom_icc_set_bw(host, ufs_qcom_bw_table[MODE_MAX][0][0].mem_bw,
1251 				  ufs_qcom_bw_table[MODE_MAX][0][0].cfg_bw);
1252 	if (ret < 0)
1253 		return dev_err_probe(dev, ret, "failed to set bandwidth request\n");
1254 
1255 	return 0;
1256 }
1257 
1258 /**
1259  * ufs_qcom_init - bind phy with controller
1260  * @hba: host controller instance
1261  *
1262  * Binds PHY with controller and powers up PHY enabling clocks
1263  * and regulators.
1264  *
1265  * Return: -EPROBE_DEFER if binding fails, returns negative error
1266  * on phy power up failure and returns zero on success.
1267  */
ufs_qcom_init(struct ufs_hba * hba)1268 static int ufs_qcom_init(struct ufs_hba *hba)
1269 {
1270 	int err;
1271 	struct device *dev = hba->dev;
1272 	struct ufs_qcom_host *host;
1273 	struct ufs_clk_info *clki;
1274 	const struct ufs_qcom_drvdata *drvdata = of_device_get_match_data(hba->dev);
1275 
1276 	host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
1277 	if (!host)
1278 		return -ENOMEM;
1279 
1280 	/* Make a two way bind between the qcom host and the hba */
1281 	host->hba = hba;
1282 	ufshcd_set_variant(hba, host);
1283 
1284 	/* Setup the optional reset control of HCI */
1285 	host->core_reset = devm_reset_control_get_optional(hba->dev, "rst");
1286 	if (IS_ERR(host->core_reset)) {
1287 		err = dev_err_probe(dev, PTR_ERR(host->core_reset),
1288 				    "Failed to get reset control\n");
1289 		goto out_variant_clear;
1290 	}
1291 
1292 	/* Fire up the reset controller. Failure here is non-fatal. */
1293 	host->rcdev.of_node = dev->of_node;
1294 	host->rcdev.ops = &ufs_qcom_reset_ops;
1295 	host->rcdev.owner = dev->driver->owner;
1296 	host->rcdev.nr_resets = 1;
1297 	err = devm_reset_controller_register(dev, &host->rcdev);
1298 	if (err)
1299 		dev_warn(dev, "Failed to register reset controller\n");
1300 
1301 	if (!has_acpi_companion(dev)) {
1302 		host->generic_phy = devm_phy_get(dev, "ufsphy");
1303 		if (IS_ERR(host->generic_phy)) {
1304 			err = dev_err_probe(dev, PTR_ERR(host->generic_phy), "Failed to get PHY\n");
1305 			goto out_variant_clear;
1306 		}
1307 	}
1308 
1309 	err = ufs_qcom_icc_init(host);
1310 	if (err)
1311 		goto out_variant_clear;
1312 
1313 	host->device_reset = devm_gpiod_get_optional(dev, "reset",
1314 						     GPIOD_OUT_HIGH);
1315 	if (IS_ERR(host->device_reset)) {
1316 		err = dev_err_probe(dev, PTR_ERR(host->device_reset),
1317 				    "Failed to acquire device reset gpio\n");
1318 		goto out_variant_clear;
1319 	}
1320 
1321 	ufs_qcom_get_controller_revision(hba, &host->hw_ver.major,
1322 		&host->hw_ver.minor, &host->hw_ver.step);
1323 
1324 	host->dev_ref_clk_ctrl_mmio = hba->mmio_base + REG_UFS_CFG1;
1325 	host->dev_ref_clk_en_mask = BIT(26);
1326 
1327 	list_for_each_entry(clki, &hba->clk_list_head, list) {
1328 		if (!strcmp(clki->name, "core_clk_unipro"))
1329 			clki->keep_link_active = true;
1330 	}
1331 
1332 	err = ufs_qcom_init_lane_clks(host);
1333 	if (err)
1334 		goto out_variant_clear;
1335 
1336 	ufs_qcom_set_caps(hba);
1337 	ufs_qcom_advertise_quirks(hba);
1338 	ufs_qcom_set_host_params(hba);
1339 	ufs_qcom_set_phy_gear(host);
1340 
1341 	err = ufs_qcom_ice_init(host);
1342 	if (err)
1343 		goto out_variant_clear;
1344 
1345 	ufs_qcom_setup_clocks(hba, true, POST_CHANGE);
1346 
1347 	ufs_qcom_get_default_testbus_cfg(host);
1348 	err = ufs_qcom_testbus_config(host);
1349 	if (err)
1350 		/* Failure is non-fatal */
1351 		dev_warn(dev, "%s: failed to configure the testbus %d\n",
1352 				__func__, err);
1353 
1354 	if (drvdata && drvdata->no_phy_retention)
1355 		hba->spm_lvl = UFS_PM_LVL_5;
1356 
1357 	return 0;
1358 
1359 out_variant_clear:
1360 	ufshcd_set_variant(hba, NULL);
1361 
1362 	return err;
1363 }
1364 
ufs_qcom_exit(struct ufs_hba * hba)1365 static void ufs_qcom_exit(struct ufs_hba *hba)
1366 {
1367 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1368 
1369 	ufs_qcom_disable_lane_clks(host);
1370 	phy_power_off(host->generic_phy);
1371 	phy_exit(host->generic_phy);
1372 }
1373 
1374 /**
1375  * ufs_qcom_set_clk_40ns_cycles - Configure 40ns clk cycles
1376  *
1377  * @hba: host controller instance
1378  * @cycles_in_1us: No of cycles in 1us to be configured
1379  *
1380  * Returns error if dme get/set configuration for 40ns fails
1381  * and returns zero on success.
1382  */
ufs_qcom_set_clk_40ns_cycles(struct ufs_hba * hba,u32 cycles_in_1us)1383 static int ufs_qcom_set_clk_40ns_cycles(struct ufs_hba *hba,
1384 					u32 cycles_in_1us)
1385 {
1386 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1387 	u32 cycles_in_40ns;
1388 	u32 reg;
1389 	int err;
1390 
1391 	/*
1392 	 * UFS host controller V4.0.0 onwards needs to program
1393 	 * PA_VS_CORE_CLK_40NS_CYCLES attribute per programmed
1394 	 * frequency of unipro core clk of UFS host controller.
1395 	 */
1396 	if (host->hw_ver.major < 4)
1397 		return 0;
1398 
1399 	/*
1400 	 * Generic formulae for cycles_in_40ns = (freq_unipro/25) is not
1401 	 * applicable for all frequencies. For ex: ceil(37.5 MHz/25) will
1402 	 * be 2 and ceil(403 MHZ/25) will be 17 whereas Hardware
1403 	 * specification expect to be 16. Hence use exact hardware spec
1404 	 * mandated value for cycles_in_40ns instead of calculating using
1405 	 * generic formulae.
1406 	 */
1407 	switch (cycles_in_1us) {
1408 	case UNIPRO_CORE_CLK_FREQ_403_MHZ:
1409 		cycles_in_40ns = 16;
1410 		break;
1411 	case UNIPRO_CORE_CLK_FREQ_300_MHZ:
1412 		cycles_in_40ns = 12;
1413 		break;
1414 	case UNIPRO_CORE_CLK_FREQ_201_5_MHZ:
1415 		cycles_in_40ns = 8;
1416 		break;
1417 	case UNIPRO_CORE_CLK_FREQ_150_MHZ:
1418 		cycles_in_40ns = 6;
1419 		break;
1420 	case UNIPRO_CORE_CLK_FREQ_100_MHZ:
1421 		cycles_in_40ns = 4;
1422 		break;
1423 	case  UNIPRO_CORE_CLK_FREQ_75_MHZ:
1424 		cycles_in_40ns = 3;
1425 		break;
1426 	case UNIPRO_CORE_CLK_FREQ_37_5_MHZ:
1427 		cycles_in_40ns = 2;
1428 		break;
1429 	default:
1430 		dev_err(hba->dev, "UNIPRO clk freq %u MHz not supported\n",
1431 				cycles_in_1us);
1432 		return -EINVAL;
1433 	}
1434 
1435 	err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_VS_CORE_CLK_40NS_CYCLES), &reg);
1436 	if (err)
1437 		return err;
1438 
1439 	reg &= ~PA_VS_CORE_CLK_40NS_CYCLES_MASK;
1440 	reg |= cycles_in_40ns;
1441 
1442 	return ufshcd_dme_set(hba, UIC_ARG_MIB(PA_VS_CORE_CLK_40NS_CYCLES), reg);
1443 }
1444 
ufs_qcom_set_core_clk_ctrl(struct ufs_hba * hba,bool is_scale_up,unsigned long freq)1445 static int ufs_qcom_set_core_clk_ctrl(struct ufs_hba *hba, bool is_scale_up, unsigned long freq)
1446 {
1447 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1448 	struct list_head *head = &hba->clk_list_head;
1449 	struct ufs_clk_info *clki;
1450 	u32 cycles_in_1us = 0;
1451 	u32 core_clk_ctrl_reg;
1452 	unsigned long clk_freq;
1453 	int err;
1454 
1455 	if (hba->use_pm_opp && freq != ULONG_MAX) {
1456 		clk_freq = ufs_qcom_opp_freq_to_clk_freq(hba, freq, "core_clk_unipro");
1457 		if (clk_freq) {
1458 			cycles_in_1us = ceil(clk_freq, HZ_PER_MHZ);
1459 			goto set_core_clk_ctrl;
1460 		}
1461 	}
1462 
1463 	list_for_each_entry(clki, head, list) {
1464 		if (!IS_ERR_OR_NULL(clki->clk) &&
1465 		    !strcmp(clki->name, "core_clk_unipro")) {
1466 			if (!clki->max_freq) {
1467 				cycles_in_1us = 150; /* default for backwards compatibility */
1468 				break;
1469 			}
1470 
1471 			if (freq == ULONG_MAX) {
1472 				cycles_in_1us = ceil(clki->max_freq, HZ_PER_MHZ);
1473 				break;
1474 			}
1475 
1476 			if (is_scale_up)
1477 				cycles_in_1us = ceil(clki->max_freq, HZ_PER_MHZ);
1478 			else
1479 				cycles_in_1us = ceil(clk_get_rate(clki->clk), HZ_PER_MHZ);
1480 			break;
1481 		}
1482 	}
1483 
1484 set_core_clk_ctrl:
1485 	err = ufshcd_dme_get(hba,
1486 			    UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
1487 			    &core_clk_ctrl_reg);
1488 	if (err)
1489 		return err;
1490 
1491 	/* Bit mask is different for UFS host controller V4.0.0 onwards */
1492 	if (host->hw_ver.major >= 4) {
1493 		if (!FIELD_FIT(CLK_1US_CYCLES_MASK_V4, cycles_in_1us))
1494 			return -ERANGE;
1495 		core_clk_ctrl_reg &= ~CLK_1US_CYCLES_MASK_V4;
1496 		core_clk_ctrl_reg |= FIELD_PREP(CLK_1US_CYCLES_MASK_V4, cycles_in_1us);
1497 	} else {
1498 		if (!FIELD_FIT(CLK_1US_CYCLES_MASK, cycles_in_1us))
1499 			return -ERANGE;
1500 		core_clk_ctrl_reg &= ~CLK_1US_CYCLES_MASK;
1501 		core_clk_ctrl_reg |= FIELD_PREP(CLK_1US_CYCLES_MASK, cycles_in_1us);
1502 	}
1503 
1504 	/* Clear CORE_CLK_DIV_EN */
1505 	core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT;
1506 
1507 	err = ufshcd_dme_set(hba,
1508 			    UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
1509 			    core_clk_ctrl_reg);
1510 	if (err)
1511 		return err;
1512 
1513 	/* Configure unipro core clk 40ns attribute */
1514 	return ufs_qcom_set_clk_40ns_cycles(hba, cycles_in_1us);
1515 }
1516 
ufs_qcom_clk_scale_up_pre_change(struct ufs_hba * hba,unsigned long freq)1517 static int ufs_qcom_clk_scale_up_pre_change(struct ufs_hba *hba, unsigned long freq)
1518 {
1519 	int ret;
1520 
1521 	ret = ufs_qcom_cfg_timers(hba, true, freq);
1522 	if (ret) {
1523 		dev_err(hba->dev, "%s ufs cfg timer failed\n", __func__);
1524 		return ret;
1525 	}
1526 	/* set unipro core clock attributes and clear clock divider */
1527 	return ufs_qcom_set_core_clk_ctrl(hba, true, freq);
1528 }
1529 
ufs_qcom_clk_scale_up_post_change(struct ufs_hba * hba)1530 static int ufs_qcom_clk_scale_up_post_change(struct ufs_hba *hba)
1531 {
1532 	return 0;
1533 }
1534 
ufs_qcom_clk_scale_down_pre_change(struct ufs_hba * hba)1535 static int ufs_qcom_clk_scale_down_pre_change(struct ufs_hba *hba)
1536 {
1537 	int err;
1538 	u32 core_clk_ctrl_reg;
1539 
1540 	err = ufshcd_dme_get(hba,
1541 			    UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
1542 			    &core_clk_ctrl_reg);
1543 
1544 	/* make sure CORE_CLK_DIV_EN is cleared */
1545 	if (!err &&
1546 	    (core_clk_ctrl_reg & DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT)) {
1547 		core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT;
1548 		err = ufshcd_dme_set(hba,
1549 				    UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
1550 				    core_clk_ctrl_reg);
1551 	}
1552 
1553 	return err;
1554 }
1555 
ufs_qcom_clk_scale_down_post_change(struct ufs_hba * hba,unsigned long freq)1556 static int ufs_qcom_clk_scale_down_post_change(struct ufs_hba *hba, unsigned long freq)
1557 {
1558 	int ret;
1559 
1560 	ret = ufs_qcom_cfg_timers(hba, false, freq);
1561 	if (ret) {
1562 		dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n",	__func__);
1563 		return ret;
1564 	}
1565 	/* set unipro core clock attributes and clear clock divider */
1566 	return ufs_qcom_set_core_clk_ctrl(hba, false, freq);
1567 }
1568 
ufs_qcom_clk_scale_notify(struct ufs_hba * hba,bool scale_up,unsigned long target_freq,enum ufs_notify_change_status status)1569 static int ufs_qcom_clk_scale_notify(struct ufs_hba *hba, bool scale_up,
1570 				     unsigned long target_freq,
1571 				     enum ufs_notify_change_status status)
1572 {
1573 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1574 	int err;
1575 
1576 	/* check the host controller state before sending hibern8 cmd */
1577 	if (!ufshcd_is_hba_active(hba))
1578 		return 0;
1579 
1580 	if (status == PRE_CHANGE) {
1581 		err = ufshcd_uic_hibern8_enter(hba);
1582 		if (err)
1583 			return err;
1584 		if (scale_up)
1585 			err = ufs_qcom_clk_scale_up_pre_change(hba, target_freq);
1586 		else
1587 			err = ufs_qcom_clk_scale_down_pre_change(hba);
1588 
1589 		if (err) {
1590 			ufshcd_uic_hibern8_exit(hba);
1591 			return err;
1592 		}
1593 	} else {
1594 		if (scale_up)
1595 			err = ufs_qcom_clk_scale_up_post_change(hba);
1596 		else
1597 			err = ufs_qcom_clk_scale_down_post_change(hba, target_freq);
1598 
1599 
1600 		if (err) {
1601 			ufshcd_uic_hibern8_exit(hba);
1602 			return err;
1603 		}
1604 
1605 		ufs_qcom_icc_update_bw(host);
1606 		ufshcd_uic_hibern8_exit(hba);
1607 	}
1608 
1609 	return 0;
1610 }
1611 
ufs_qcom_enable_test_bus(struct ufs_qcom_host * host)1612 static void ufs_qcom_enable_test_bus(struct ufs_qcom_host *host)
1613 {
1614 	ufshcd_rmwl(host->hba, UFS_REG_TEST_BUS_EN,
1615 			UFS_REG_TEST_BUS_EN, REG_UFS_CFG1);
1616 	ufshcd_rmwl(host->hba, TEST_BUS_EN, TEST_BUS_EN, REG_UFS_CFG1);
1617 }
1618 
ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host * host)1619 static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host)
1620 {
1621 	/* provide a legal default configuration */
1622 	host->testbus.select_major = TSTBUS_UNIPRO;
1623 	host->testbus.select_minor = 37;
1624 }
1625 
ufs_qcom_testbus_cfg_is_ok(struct ufs_qcom_host * host)1626 static bool ufs_qcom_testbus_cfg_is_ok(struct ufs_qcom_host *host)
1627 {
1628 	if (host->testbus.select_major >= TSTBUS_MAX) {
1629 		dev_err(host->hba->dev,
1630 			"%s: UFS_CFG1[TEST_BUS_SEL} may not equal 0x%05X\n",
1631 			__func__, host->testbus.select_major);
1632 		return false;
1633 	}
1634 
1635 	return true;
1636 }
1637 
ufs_qcom_testbus_config(struct ufs_qcom_host * host)1638 int ufs_qcom_testbus_config(struct ufs_qcom_host *host)
1639 {
1640 	int reg;
1641 	int offset;
1642 	u32 mask = TEST_BUS_SUB_SEL_MASK;
1643 
1644 	if (!host)
1645 		return -EINVAL;
1646 
1647 	if (!ufs_qcom_testbus_cfg_is_ok(host))
1648 		return -EPERM;
1649 
1650 	switch (host->testbus.select_major) {
1651 	case TSTBUS_UAWM:
1652 		reg = UFS_TEST_BUS_CTRL_0;
1653 		offset = 24;
1654 		break;
1655 	case TSTBUS_UARM:
1656 		reg = UFS_TEST_BUS_CTRL_0;
1657 		offset = 16;
1658 		break;
1659 	case TSTBUS_TXUC:
1660 		reg = UFS_TEST_BUS_CTRL_0;
1661 		offset = 8;
1662 		break;
1663 	case TSTBUS_RXUC:
1664 		reg = UFS_TEST_BUS_CTRL_0;
1665 		offset = 0;
1666 		break;
1667 	case TSTBUS_DFC:
1668 		reg = UFS_TEST_BUS_CTRL_1;
1669 		offset = 24;
1670 		break;
1671 	case TSTBUS_TRLUT:
1672 		reg = UFS_TEST_BUS_CTRL_1;
1673 		offset = 16;
1674 		break;
1675 	case TSTBUS_TMRLUT:
1676 		reg = UFS_TEST_BUS_CTRL_1;
1677 		offset = 8;
1678 		break;
1679 	case TSTBUS_OCSC:
1680 		reg = UFS_TEST_BUS_CTRL_1;
1681 		offset = 0;
1682 		break;
1683 	case TSTBUS_WRAPPER:
1684 		reg = UFS_TEST_BUS_CTRL_2;
1685 		offset = 16;
1686 		break;
1687 	case TSTBUS_COMBINED:
1688 		reg = UFS_TEST_BUS_CTRL_2;
1689 		offset = 8;
1690 		break;
1691 	case TSTBUS_UTP_HCI:
1692 		reg = UFS_TEST_BUS_CTRL_2;
1693 		offset = 0;
1694 		break;
1695 	case TSTBUS_UNIPRO:
1696 		reg = UFS_UNIPRO_CFG;
1697 		offset = 20;
1698 		mask = 0xFFF;
1699 		break;
1700 	/*
1701 	 * No need for a default case, since
1702 	 * ufs_qcom_testbus_cfg_is_ok() checks that the configuration
1703 	 * is legal
1704 	 */
1705 	}
1706 	mask <<= offset;
1707 	ufshcd_rmwl(host->hba, TEST_BUS_SEL,
1708 		    (u32)host->testbus.select_major << 19,
1709 		    REG_UFS_CFG1);
1710 	ufshcd_rmwl(host->hba, mask,
1711 		    (u32)host->testbus.select_minor << offset,
1712 		    reg);
1713 	ufs_qcom_enable_test_bus(host);
1714 
1715 	return 0;
1716 }
1717 
ufs_qcom_dump_testbus(struct ufs_hba * hba)1718 static void ufs_qcom_dump_testbus(struct ufs_hba *hba)
1719 {
1720 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1721 	int i, j, nminor = 0, testbus_len = 0;
1722 	u32 *testbus __free(kfree) = NULL;
1723 	char *prefix;
1724 
1725 	testbus = kmalloc_array(256, sizeof(u32), GFP_KERNEL);
1726 	if (!testbus)
1727 		return;
1728 
1729 	for (j = 0; j < TSTBUS_MAX; j++) {
1730 		nminor = testbus_info[j].nminor;
1731 		prefix = testbus_info[j].prefix;
1732 		host->testbus.select_major = j;
1733 		testbus_len = nminor * sizeof(u32);
1734 		for (i = 0; i < nminor; i++) {
1735 			host->testbus.select_minor = i;
1736 			ufs_qcom_testbus_config(host);
1737 			testbus[i] = ufshcd_readl(hba, UFS_TEST_BUS);
1738 		}
1739 		print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
1740 			       16, 4, testbus, testbus_len, false);
1741 	}
1742 }
1743 
ufs_qcom_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix,enum ufshcd_res id)1744 static int ufs_qcom_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
1745 			      const char *prefix, enum ufshcd_res id)
1746 {
1747 	u32 *regs __free(kfree) = NULL;
1748 	size_t pos;
1749 
1750 	if (offset % 4 != 0 || len % 4 != 0)
1751 		return -EINVAL;
1752 
1753 	regs = kzalloc(len, GFP_ATOMIC);
1754 	if (!regs)
1755 		return -ENOMEM;
1756 
1757 	for (pos = 0; pos < len; pos += 4)
1758 		regs[pos / 4] = readl(hba->res[id].base + offset + pos);
1759 
1760 	print_hex_dump(KERN_ERR, prefix,
1761 		       len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,
1762 		       16, 4, regs, len, false);
1763 
1764 	return 0;
1765 }
1766 
ufs_qcom_dump_mcq_hci_regs(struct ufs_hba * hba)1767 static void ufs_qcom_dump_mcq_hci_regs(struct ufs_hba *hba)
1768 {
1769 	struct dump_info {
1770 		size_t offset;
1771 		size_t len;
1772 		const char *prefix;
1773 		enum ufshcd_res id;
1774 	};
1775 
1776 	struct dump_info mcq_dumps[] = {
1777 		{0x0, 256 * 4, "MCQ HCI-0 ", RES_MCQ},
1778 		{0x400, 256 * 4, "MCQ HCI-1 ", RES_MCQ},
1779 		{0x0, 5 * 4, "MCQ VS-0 ", RES_MCQ_VS},
1780 		{0x0, 256 * 4, "MCQ SQD-0 ", RES_MCQ_SQD},
1781 		{0x400, 256 * 4, "MCQ SQD-1 ", RES_MCQ_SQD},
1782 		{0x800, 256 * 4, "MCQ SQD-2 ", RES_MCQ_SQD},
1783 		{0xc00, 256 * 4, "MCQ SQD-3 ", RES_MCQ_SQD},
1784 		{0x1000, 256 * 4, "MCQ SQD-4 ", RES_MCQ_SQD},
1785 		{0x1400, 256 * 4, "MCQ SQD-5 ", RES_MCQ_SQD},
1786 		{0x1800, 256 * 4, "MCQ SQD-6 ", RES_MCQ_SQD},
1787 		{0x1c00, 256 * 4, "MCQ SQD-7 ", RES_MCQ_SQD},
1788 	};
1789 
1790 	for (int i = 0; i < ARRAY_SIZE(mcq_dumps); i++) {
1791 		ufs_qcom_dump_regs(hba, mcq_dumps[i].offset, mcq_dumps[i].len,
1792 				   mcq_dumps[i].prefix, mcq_dumps[i].id);
1793 		cond_resched();
1794 	}
1795 }
1796 
ufs_qcom_dump_dbg_regs(struct ufs_hba * hba)1797 static void ufs_qcom_dump_dbg_regs(struct ufs_hba *hba)
1798 {
1799 	u32 reg;
1800 	struct ufs_qcom_host *host;
1801 
1802 	host = ufshcd_get_variant(hba);
1803 
1804 	dev_err(hba->dev, "HW_H8_ENTER_CNT=%d\n", ufshcd_readl(hba, REG_UFS_HW_H8_ENTER_CNT));
1805 	dev_err(hba->dev, "HW_H8_EXIT_CNT=%d\n", ufshcd_readl(hba, REG_UFS_HW_H8_EXIT_CNT));
1806 
1807 	dev_err(hba->dev, "SW_H8_ENTER_CNT=%d\n", ufshcd_readl(hba, REG_UFS_SW_H8_ENTER_CNT));
1808 	dev_err(hba->dev, "SW_H8_EXIT_CNT=%d\n", ufshcd_readl(hba, REG_UFS_SW_H8_EXIT_CNT));
1809 
1810 	dev_err(hba->dev, "SW_AFTER_HW_H8_ENTER_CNT=%d\n",
1811 			ufshcd_readl(hba, REG_UFS_SW_AFTER_HW_H8_ENTER_CNT));
1812 
1813 	ufshcd_dump_regs(hba, REG_UFS_SYS1CLK_1US, 16 * 4,
1814 			 "HCI Vendor Specific Registers ");
1815 
1816 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_REG_OCSC);
1817 	ufshcd_dump_regs(hba, reg, 44 * 4, "UFS_UFS_DBG_RD_REG_OCSC ");
1818 
1819 	reg = ufshcd_readl(hba, REG_UFS_CFG1);
1820 	reg |= UTP_DBG_RAMS_EN;
1821 	ufshcd_writel(hba, reg, REG_UFS_CFG1);
1822 
1823 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_EDTL_RAM);
1824 	ufshcd_dump_regs(hba, reg, 32 * 4, "UFS_UFS_DBG_RD_EDTL_RAM ");
1825 
1826 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_DESC_RAM);
1827 	ufshcd_dump_regs(hba, reg, 128 * 4, "UFS_UFS_DBG_RD_DESC_RAM ");
1828 
1829 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_PRDT_RAM);
1830 	ufshcd_dump_regs(hba, reg, 64 * 4, "UFS_UFS_DBG_RD_PRDT_RAM ");
1831 
1832 	/* clear bit 17 - UTP_DBG_RAMS_EN */
1833 	ufshcd_rmwl(hba, UTP_DBG_RAMS_EN, 0, REG_UFS_CFG1);
1834 
1835 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UAWM);
1836 	ufshcd_dump_regs(hba, reg, 4 * 4, "UFS_DBG_RD_REG_UAWM ");
1837 
1838 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UARM);
1839 	ufshcd_dump_regs(hba, reg, 4 * 4, "UFS_DBG_RD_REG_UARM ");
1840 
1841 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TXUC);
1842 	ufshcd_dump_regs(hba, reg, 48 * 4, "UFS_DBG_RD_REG_TXUC ");
1843 
1844 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_RXUC);
1845 	ufshcd_dump_regs(hba, reg, 27 * 4, "UFS_DBG_RD_REG_RXUC ");
1846 
1847 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_DFC);
1848 	ufshcd_dump_regs(hba, reg, 19 * 4, "UFS_DBG_RD_REG_DFC ");
1849 
1850 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TRLUT);
1851 	ufshcd_dump_regs(hba, reg, 34 * 4, "UFS_DBG_RD_REG_TRLUT ");
1852 
1853 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TMRLUT);
1854 	ufshcd_dump_regs(hba, reg, 9 * 4, "UFS_DBG_RD_REG_TMRLUT ");
1855 
1856 	if (hba->mcq_enabled) {
1857 		reg = ufs_qcom_get_debug_reg_offset(host, UFS_RD_REG_MCQ);
1858 		ufshcd_dump_regs(hba, reg, 64 * 4, "HCI MCQ Debug Registers ");
1859 	}
1860 
1861 	/* ensure below dumps occur only in task context due to blocking calls. */
1862 	if (in_task()) {
1863 		/* Dump MCQ Host Vendor Specific Registers */
1864 		if (hba->mcq_enabled)
1865 			ufs_qcom_dump_mcq_hci_regs(hba);
1866 
1867 		/* voluntarily yield the CPU as we are dumping too much data */
1868 		ufshcd_dump_regs(hba, UFS_TEST_BUS, 4, "UFS_TEST_BUS ");
1869 		cond_resched();
1870 		ufs_qcom_dump_testbus(hba);
1871 	}
1872 }
1873 
1874 /**
1875  * ufs_qcom_device_reset() - toggle the (optional) device reset line
1876  * @hba: per-adapter instance
1877  *
1878  * Toggles the (optional) reset line to reset the attached device.
1879  */
ufs_qcom_device_reset(struct ufs_hba * hba)1880 static int ufs_qcom_device_reset(struct ufs_hba *hba)
1881 {
1882 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1883 
1884 	/* reset gpio is optional */
1885 	if (!host->device_reset)
1886 		return -EOPNOTSUPP;
1887 
1888 	/*
1889 	 * The UFS device shall detect reset pulses of 1us, sleep for 10us to
1890 	 * be on the safe side.
1891 	 */
1892 	ufs_qcom_device_reset_ctrl(hba, true);
1893 	usleep_range(10, 15);
1894 
1895 	ufs_qcom_device_reset_ctrl(hba, false);
1896 	usleep_range(10, 15);
1897 
1898 	return 0;
1899 }
1900 
1901 #if IS_ENABLED(CONFIG_DEVFREQ_GOV_SIMPLE_ONDEMAND)
ufs_qcom_config_scaling_param(struct ufs_hba * hba,struct devfreq_dev_profile * p,struct devfreq_simple_ondemand_data * d)1902 static void ufs_qcom_config_scaling_param(struct ufs_hba *hba,
1903 					struct devfreq_dev_profile *p,
1904 					struct devfreq_simple_ondemand_data *d)
1905 {
1906 	p->polling_ms = 60;
1907 	p->timer = DEVFREQ_TIMER_DELAYED;
1908 	d->upthreshold = 70;
1909 	d->downdifferential = 5;
1910 
1911 	hba->clk_scaling.suspend_on_no_request = true;
1912 }
1913 #else
ufs_qcom_config_scaling_param(struct ufs_hba * hba,struct devfreq_dev_profile * p,struct devfreq_simple_ondemand_data * data)1914 static void ufs_qcom_config_scaling_param(struct ufs_hba *hba,
1915 		struct devfreq_dev_profile *p,
1916 		struct devfreq_simple_ondemand_data *data)
1917 {
1918 }
1919 #endif
1920 
1921 /* Resources */
1922 static const struct ufshcd_res_info ufs_res_info[RES_MAX] = {
1923 	{.name = "ufs_mem",},
1924 	{.name = "mcq",},
1925 	/* Submission Queue DAO */
1926 	{.name = "mcq_sqd",},
1927 	/* Submission Queue Interrupt Status */
1928 	{.name = "mcq_sqis",},
1929 	/* Completion Queue DAO */
1930 	{.name = "mcq_cqd",},
1931 	/* Completion Queue Interrupt Status */
1932 	{.name = "mcq_cqis",},
1933 	/* MCQ vendor specific */
1934 	{.name = "mcq_vs",},
1935 };
1936 
ufs_qcom_mcq_config_resource(struct ufs_hba * hba)1937 static int ufs_qcom_mcq_config_resource(struct ufs_hba *hba)
1938 {
1939 	struct platform_device *pdev = to_platform_device(hba->dev);
1940 	struct ufshcd_res_info *res;
1941 	struct resource *res_mem, *res_mcq;
1942 	int i, ret;
1943 
1944 	memcpy(hba->res, ufs_res_info, sizeof(ufs_res_info));
1945 
1946 	for (i = 0; i < RES_MAX; i++) {
1947 		res = &hba->res[i];
1948 		res->resource = platform_get_resource_byname(pdev,
1949 							     IORESOURCE_MEM,
1950 							     res->name);
1951 		if (!res->resource) {
1952 			dev_info(hba->dev, "Resource %s not provided\n", res->name);
1953 			if (i == RES_UFS)
1954 				return -ENODEV;
1955 			continue;
1956 		} else if (i == RES_UFS) {
1957 			res_mem = res->resource;
1958 			res->base = hba->mmio_base;
1959 			continue;
1960 		}
1961 
1962 		res->base = devm_ioremap_resource(hba->dev, res->resource);
1963 		if (IS_ERR(res->base)) {
1964 			dev_err(hba->dev, "Failed to map res %s, err=%d\n",
1965 					 res->name, (int)PTR_ERR(res->base));
1966 			ret = PTR_ERR(res->base);
1967 			res->base = NULL;
1968 			return ret;
1969 		}
1970 	}
1971 
1972 	/* MCQ resource provided in DT */
1973 	res = &hba->res[RES_MCQ];
1974 	/* Bail if MCQ resource is provided */
1975 	if (res->base)
1976 		goto out;
1977 
1978 	/* Explicitly allocate MCQ resource from ufs_mem */
1979 	res_mcq = devm_kzalloc(hba->dev, sizeof(*res_mcq), GFP_KERNEL);
1980 	if (!res_mcq)
1981 		return -ENOMEM;
1982 
1983 	res_mcq->start = res_mem->start +
1984 			 MCQ_SQATTR_OFFSET(hba->mcq_capabilities);
1985 	res_mcq->end = res_mcq->start + hba->nr_hw_queues * MCQ_QCFG_SIZE - 1;
1986 	res_mcq->flags = res_mem->flags;
1987 	res_mcq->name = "mcq";
1988 
1989 	ret = insert_resource(&iomem_resource, res_mcq);
1990 	if (ret) {
1991 		dev_err(hba->dev, "Failed to insert MCQ resource, err=%d\n",
1992 			ret);
1993 		return ret;
1994 	}
1995 
1996 	res->base = devm_ioremap_resource(hba->dev, res_mcq);
1997 	if (IS_ERR(res->base)) {
1998 		dev_err(hba->dev, "MCQ registers mapping failed, err=%d\n",
1999 			(int)PTR_ERR(res->base));
2000 		ret = PTR_ERR(res->base);
2001 		goto ioremap_err;
2002 	}
2003 
2004 out:
2005 	hba->mcq_base = res->base;
2006 	return 0;
2007 ioremap_err:
2008 	res->base = NULL;
2009 	remove_resource(res_mcq);
2010 	return ret;
2011 }
2012 
ufs_qcom_op_runtime_config(struct ufs_hba * hba)2013 static int ufs_qcom_op_runtime_config(struct ufs_hba *hba)
2014 {
2015 	struct ufshcd_res_info *mem_res, *sqdao_res;
2016 	struct ufshcd_mcq_opr_info_t *opr;
2017 	int i;
2018 
2019 	mem_res = &hba->res[RES_UFS];
2020 	sqdao_res = &hba->res[RES_MCQ_SQD];
2021 
2022 	if (!mem_res->base || !sqdao_res->base)
2023 		return -EINVAL;
2024 
2025 	for (i = 0; i < OPR_MAX; i++) {
2026 		opr = &hba->mcq_opr[i];
2027 		opr->offset = sqdao_res->resource->start -
2028 			      mem_res->resource->start + 0x40 * i;
2029 		opr->stride = 0x100;
2030 		opr->base = sqdao_res->base + 0x40 * i;
2031 	}
2032 
2033 	return 0;
2034 }
2035 
ufs_qcom_get_hba_mac(struct ufs_hba * hba)2036 static int ufs_qcom_get_hba_mac(struct ufs_hba *hba)
2037 {
2038 	/* Qualcomm HC supports up to 64 */
2039 	return MAX_SUPP_MAC;
2040 }
2041 
ufs_qcom_get_outstanding_cqs(struct ufs_hba * hba,unsigned long * ocqs)2042 static int ufs_qcom_get_outstanding_cqs(struct ufs_hba *hba,
2043 					unsigned long *ocqs)
2044 {
2045 	struct ufshcd_res_info *mcq_vs_res = &hba->res[RES_MCQ_VS];
2046 
2047 	if (!mcq_vs_res->base)
2048 		return -EINVAL;
2049 
2050 	*ocqs = readl(mcq_vs_res->base + UFS_MEM_CQIS_VS);
2051 
2052 	return 0;
2053 }
2054 
ufs_qcom_write_msi_msg(struct msi_desc * desc,struct msi_msg * msg)2055 static void ufs_qcom_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2056 {
2057 	struct device *dev = msi_desc_to_dev(desc);
2058 	struct ufs_hba *hba = dev_get_drvdata(dev);
2059 
2060 	ufshcd_mcq_config_esi(hba, msg);
2061 }
2062 
2063 struct ufs_qcom_irq {
2064 	unsigned int		irq;
2065 	unsigned int		idx;
2066 	struct ufs_hba		*hba;
2067 };
2068 
ufs_qcom_mcq_esi_handler(int irq,void * data)2069 static irqreturn_t ufs_qcom_mcq_esi_handler(int irq, void *data)
2070 {
2071 	struct ufs_qcom_irq *qi = data;
2072 	struct ufs_hba *hba = qi->hba;
2073 	struct ufs_hw_queue *hwq = &hba->uhq[qi->idx];
2074 
2075 	ufshcd_mcq_write_cqis(hba, 0x1, qi->idx);
2076 	ufshcd_mcq_poll_cqe_lock(hba, hwq);
2077 
2078 	return IRQ_HANDLED;
2079 }
2080 
ufs_qcom_irq_free(struct ufs_qcom_irq * uqi)2081 static void ufs_qcom_irq_free(struct ufs_qcom_irq *uqi)
2082 {
2083 	for (struct ufs_qcom_irq *q = uqi; q->irq; q++)
2084 		devm_free_irq(q->hba->dev, q->irq, q->hba);
2085 
2086 	platform_device_msi_free_irqs_all(uqi->hba->dev);
2087 	devm_kfree(uqi->hba->dev, uqi);
2088 }
2089 
DEFINE_FREE(ufs_qcom_irq,struct ufs_qcom_irq *,if (_T)ufs_qcom_irq_free (_T))2090 DEFINE_FREE(ufs_qcom_irq, struct ufs_qcom_irq *, if (_T) ufs_qcom_irq_free(_T))
2091 
2092 static int ufs_qcom_config_esi(struct ufs_hba *hba)
2093 {
2094 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
2095 	int nr_irqs, ret;
2096 
2097 	if (host->esi_enabled)
2098 		return 0;
2099 
2100 	/*
2101 	 * 1. We only handle CQs as of now.
2102 	 * 2. Poll queues do not need ESI.
2103 	 */
2104 	nr_irqs = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
2105 
2106 	struct ufs_qcom_irq *qi __free(ufs_qcom_irq) =
2107 		devm_kcalloc(hba->dev, nr_irqs, sizeof(*qi), GFP_KERNEL);
2108 	if (!qi)
2109 		return -ENOMEM;
2110 	/* Preset so __free() has a pointer to hba in all error paths */
2111 	qi[0].hba = hba;
2112 
2113 	ret = platform_device_msi_init_and_alloc_irqs(hba->dev, nr_irqs,
2114 						      ufs_qcom_write_msi_msg);
2115 	if (ret) {
2116 		dev_err(hba->dev, "Failed to request Platform MSI %d\n", ret);
2117 		return ret;
2118 	}
2119 
2120 	for (int idx = 0; idx < nr_irqs; idx++) {
2121 		qi[idx].irq = msi_get_virq(hba->dev, idx);
2122 		qi[idx].idx = idx;
2123 		qi[idx].hba = hba;
2124 
2125 		ret = devm_request_irq(hba->dev, qi[idx].irq, ufs_qcom_mcq_esi_handler,
2126 				       IRQF_SHARED, "qcom-mcq-esi", qi + idx);
2127 		if (ret) {
2128 			dev_err(hba->dev, "%s: Fail to request IRQ for %d, err = %d\n",
2129 				__func__, qi[idx].irq, ret);
2130 			qi[idx].irq = 0;
2131 			return ret;
2132 		}
2133 	}
2134 
2135 	retain_and_null_ptr(qi);
2136 
2137 	if (host->hw_ver.major >= 6) {
2138 		ufshcd_rmwl(hba, ESI_VEC_MASK, FIELD_PREP(ESI_VEC_MASK, MAX_ESI_VEC - 1),
2139 			    REG_UFS_CFG3);
2140 	}
2141 	ufshcd_mcq_enable_esi(hba);
2142 	host->esi_enabled = true;
2143 	return 0;
2144 }
2145 
ufs_qcom_opp_freq_to_clk_freq(struct ufs_hba * hba,unsigned long freq,char * name)2146 static unsigned long ufs_qcom_opp_freq_to_clk_freq(struct ufs_hba *hba,
2147 						   unsigned long freq, char *name)
2148 {
2149 	struct ufs_clk_info *clki;
2150 	struct dev_pm_opp *opp;
2151 	unsigned long clk_freq;
2152 	int idx = 0;
2153 	bool found = false;
2154 
2155 	opp = dev_pm_opp_find_freq_exact_indexed(hba->dev, freq, 0, true);
2156 	if (IS_ERR(opp)) {
2157 		dev_err(hba->dev, "Failed to find OPP for exact frequency %lu\n", freq);
2158 		return 0;
2159 	}
2160 
2161 	list_for_each_entry(clki, &hba->clk_list_head, list) {
2162 		if (!strcmp(clki->name, name)) {
2163 			found = true;
2164 			break;
2165 		}
2166 
2167 		idx++;
2168 	}
2169 
2170 	if (!found) {
2171 		dev_err(hba->dev, "Failed to find clock '%s' in clk list\n", name);
2172 		dev_pm_opp_put(opp);
2173 		return 0;
2174 	}
2175 
2176 	clk_freq = dev_pm_opp_get_freq_indexed(opp, idx);
2177 
2178 	dev_pm_opp_put(opp);
2179 
2180 	return clk_freq;
2181 }
2182 
ufs_qcom_freq_to_gear_speed(struct ufs_hba * hba,unsigned long freq)2183 static u32 ufs_qcom_freq_to_gear_speed(struct ufs_hba *hba, unsigned long freq)
2184 {
2185 	u32 gear = UFS_HS_DONT_CHANGE;
2186 	unsigned long unipro_freq;
2187 
2188 	if (!hba->use_pm_opp)
2189 		return gear;
2190 
2191 	unipro_freq = ufs_qcom_opp_freq_to_clk_freq(hba, freq, "core_clk_unipro");
2192 	switch (unipro_freq) {
2193 	case 403000000:
2194 		gear = UFS_HS_G5;
2195 		break;
2196 	case 300000000:
2197 		gear = UFS_HS_G4;
2198 		break;
2199 	case 201500000:
2200 		gear = UFS_HS_G3;
2201 		break;
2202 	case 150000000:
2203 	case 100000000:
2204 		gear = UFS_HS_G2;
2205 		break;
2206 	case 75000000:
2207 	case 37500000:
2208 		gear = UFS_HS_G1;
2209 		break;
2210 	default:
2211 		dev_err(hba->dev, "%s: Unsupported clock freq : %lu\n", __func__, freq);
2212 		return UFS_HS_DONT_CHANGE;
2213 	}
2214 
2215 	return min_t(u32, gear, hba->max_pwr_info.info.gear_rx);
2216 }
2217 
2218 /*
2219  * struct ufs_hba_qcom_vops - UFS QCOM specific variant operations
2220  *
2221  * The variant operations configure the necessary controller and PHY
2222  * handshake during initialization.
2223  */
2224 static const struct ufs_hba_variant_ops ufs_hba_qcom_vops = {
2225 	.name                   = "qcom",
2226 	.init                   = ufs_qcom_init,
2227 	.exit                   = ufs_qcom_exit,
2228 	.get_ufs_hci_version	= ufs_qcom_get_ufs_hci_version,
2229 	.clk_scale_notify	= ufs_qcom_clk_scale_notify,
2230 	.setup_clocks           = ufs_qcom_setup_clocks,
2231 	.hce_enable_notify      = ufs_qcom_hce_enable_notify,
2232 	.link_startup_notify    = ufs_qcom_link_startup_notify,
2233 	.pwr_change_notify	= ufs_qcom_pwr_change_notify,
2234 	.apply_dev_quirks	= ufs_qcom_apply_dev_quirks,
2235 	.fixup_dev_quirks       = ufs_qcom_fixup_dev_quirks,
2236 	.suspend		= ufs_qcom_suspend,
2237 	.resume			= ufs_qcom_resume,
2238 	.dbg_register_dump	= ufs_qcom_dump_dbg_regs,
2239 	.device_reset		= ufs_qcom_device_reset,
2240 	.config_scaling_param = ufs_qcom_config_scaling_param,
2241 	.mcq_config_resource	= ufs_qcom_mcq_config_resource,
2242 	.get_hba_mac		= ufs_qcom_get_hba_mac,
2243 	.op_runtime_config	= ufs_qcom_op_runtime_config,
2244 	.get_outstanding_cqs	= ufs_qcom_get_outstanding_cqs,
2245 	.config_esi		= ufs_qcom_config_esi,
2246 	.freq_to_gear_speed	= ufs_qcom_freq_to_gear_speed,
2247 };
2248 
2249 /**
2250  * ufs_qcom_probe - probe routine of the driver
2251  * @pdev: pointer to Platform device handle
2252  *
2253  * Return: zero for success and non-zero for failure.
2254  */
ufs_qcom_probe(struct platform_device * pdev)2255 static int ufs_qcom_probe(struct platform_device *pdev)
2256 {
2257 	int err;
2258 	struct device *dev = &pdev->dev;
2259 
2260 	/* Perform generic probe */
2261 	err = ufshcd_pltfrm_init(pdev, &ufs_hba_qcom_vops);
2262 	if (err)
2263 		return dev_err_probe(dev, err, "ufshcd_pltfrm_init() failed\n");
2264 
2265 	return 0;
2266 }
2267 
2268 /**
2269  * ufs_qcom_remove - set driver_data of the device to NULL
2270  * @pdev: pointer to platform device handle
2271  *
2272  * Always returns 0
2273  */
ufs_qcom_remove(struct platform_device * pdev)2274 static void ufs_qcom_remove(struct platform_device *pdev)
2275 {
2276 	struct ufs_hba *hba =  platform_get_drvdata(pdev);
2277 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
2278 
2279 	ufshcd_pltfrm_remove(pdev);
2280 	if (host->esi_enabled)
2281 		platform_device_msi_free_irqs_all(hba->dev);
2282 }
2283 
2284 static const struct ufs_qcom_drvdata ufs_qcom_sm8550_drvdata = {
2285 	.quirks = UFSHCD_QUIRK_BROKEN_LSDBS_CAP,
2286 	.no_phy_retention = true,
2287 };
2288 
2289 static const struct of_device_id ufs_qcom_of_match[] __maybe_unused = {
2290 	{ .compatible = "qcom,ufshc" },
2291 	{ .compatible = "qcom,sm8550-ufshc", .data = &ufs_qcom_sm8550_drvdata },
2292 	{ .compatible = "qcom,sm8650-ufshc", .data = &ufs_qcom_sm8550_drvdata },
2293 	{},
2294 };
2295 MODULE_DEVICE_TABLE(of, ufs_qcom_of_match);
2296 
2297 #ifdef CONFIG_ACPI
2298 static const struct acpi_device_id ufs_qcom_acpi_match[] = {
2299 	{ "QCOM24A5" },
2300 	{ },
2301 };
2302 MODULE_DEVICE_TABLE(acpi, ufs_qcom_acpi_match);
2303 #endif
2304 
2305 static const struct dev_pm_ops ufs_qcom_pm_ops = {
2306 	SET_RUNTIME_PM_OPS(ufshcd_runtime_suspend, ufshcd_runtime_resume, NULL)
2307 	.prepare	 = ufshcd_suspend_prepare,
2308 	.complete	 = ufshcd_resume_complete,
2309 #ifdef CONFIG_PM_SLEEP
2310 	.suspend         = ufshcd_system_suspend,
2311 	.resume          = ufshcd_system_resume,
2312 	.freeze          = ufshcd_system_freeze,
2313 	.restore         = ufshcd_system_restore,
2314 	.thaw            = ufshcd_system_thaw,
2315 #endif
2316 };
2317 
2318 static struct platform_driver ufs_qcom_pltform = {
2319 	.probe	= ufs_qcom_probe,
2320 	.remove = ufs_qcom_remove,
2321 	.driver	= {
2322 		.name	= "ufshcd-qcom",
2323 		.pm	= &ufs_qcom_pm_ops,
2324 		.of_match_table = of_match_ptr(ufs_qcom_of_match),
2325 		.acpi_match_table = ACPI_PTR(ufs_qcom_acpi_match),
2326 	},
2327 };
2328 module_platform_driver(ufs_qcom_pltform);
2329 
2330 MODULE_DESCRIPTION("Qualcomm UFS host controller driver");
2331 MODULE_LICENSE("GPL v2");
2332