xref: /linux/drivers/ufs/host/ufs-qcom.c (revision 949ea6f3f4c016852406bfdd3374e2ba5d4c30a9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2013-2016, Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/acpi.h>
7 #include <linux/clk.h>
8 #include <linux/cleanup.h>
9 #include <linux/delay.h>
10 #include <linux/devfreq.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/interconnect.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/phy/phy.h>
16 #include <linux/platform_device.h>
17 #include <linux/reset-controller.h>
18 #include <linux/time.h>
19 #include <linux/unaligned.h>
20 #include <linux/units.h>
21 
22 #include <soc/qcom/ice.h>
23 
24 #include <ufs/ufshcd.h>
25 #include <ufs/ufshci.h>
26 #include <ufs/ufs_quirks.h>
27 #include <ufs/unipro.h>
28 #include "ufshcd-pltfrm.h"
29 #include "ufs-qcom.h"
30 
31 #define MCQ_QCFGPTR_MASK	GENMASK(7, 0)
32 #define MCQ_QCFGPTR_UNIT	0x200
33 #define MCQ_SQATTR_OFFSET(c) \
34 	((((c) >> 16) & MCQ_QCFGPTR_MASK) * MCQ_QCFGPTR_UNIT)
35 #define MCQ_QCFG_SIZE	0x40
36 
37 /* De-emphasis for gear-5 */
38 #define DEEMPHASIS_3_5_dB	0x04
39 #define NO_DEEMPHASIS		0x0
40 
41 enum {
42 	TSTBUS_UAWM,
43 	TSTBUS_UARM,
44 	TSTBUS_TXUC,
45 	TSTBUS_RXUC,
46 	TSTBUS_DFC,
47 	TSTBUS_TRLUT,
48 	TSTBUS_TMRLUT,
49 	TSTBUS_OCSC,
50 	TSTBUS_UTP_HCI,
51 	TSTBUS_COMBINED,
52 	TSTBUS_WRAPPER,
53 	TSTBUS_UNIPRO,
54 	TSTBUS_MAX,
55 };
56 
57 #define QCOM_UFS_MAX_GEAR 5
58 #define QCOM_UFS_MAX_LANE 2
59 
60 enum {
61 	MODE_MIN,
62 	MODE_PWM,
63 	MODE_HS_RA,
64 	MODE_HS_RB,
65 	MODE_MAX,
66 };
67 
68 static const struct __ufs_qcom_bw_table {
69 	u32 mem_bw;
70 	u32 cfg_bw;
71 } ufs_qcom_bw_table[MODE_MAX + 1][QCOM_UFS_MAX_GEAR + 1][QCOM_UFS_MAX_LANE + 1] = {
72 	[MODE_MIN][0][0]		   = { 0,		0 }, /* Bandwidth values in KB/s */
73 	[MODE_PWM][UFS_PWM_G1][UFS_LANE_1] = { 922,		1000 },
74 	[MODE_PWM][UFS_PWM_G2][UFS_LANE_1] = { 1844,		1000 },
75 	[MODE_PWM][UFS_PWM_G3][UFS_LANE_1] = { 3688,		1000 },
76 	[MODE_PWM][UFS_PWM_G4][UFS_LANE_1] = { 7376,		1000 },
77 	[MODE_PWM][UFS_PWM_G5][UFS_LANE_1] = { 14752,		1000 },
78 	[MODE_PWM][UFS_PWM_G1][UFS_LANE_2] = { 1844,		1000 },
79 	[MODE_PWM][UFS_PWM_G2][UFS_LANE_2] = { 3688,		1000 },
80 	[MODE_PWM][UFS_PWM_G3][UFS_LANE_2] = { 7376,		1000 },
81 	[MODE_PWM][UFS_PWM_G4][UFS_LANE_2] = { 14752,		1000 },
82 	[MODE_PWM][UFS_PWM_G5][UFS_LANE_2] = { 29504,		1000 },
83 	[MODE_HS_RA][UFS_HS_G1][UFS_LANE_1] = { 127796,		1000 },
84 	[MODE_HS_RA][UFS_HS_G2][UFS_LANE_1] = { 255591,		1000 },
85 	[MODE_HS_RA][UFS_HS_G3][UFS_LANE_1] = { 1492582,	102400 },
86 	[MODE_HS_RA][UFS_HS_G4][UFS_LANE_1] = { 2915200,	204800 },
87 	[MODE_HS_RA][UFS_HS_G5][UFS_LANE_1] = { 5836800,	409600 },
88 	[MODE_HS_RA][UFS_HS_G1][UFS_LANE_2] = { 255591,		1000 },
89 	[MODE_HS_RA][UFS_HS_G2][UFS_LANE_2] = { 511181,		1000 },
90 	[MODE_HS_RA][UFS_HS_G3][UFS_LANE_2] = { 1492582,	204800 },
91 	[MODE_HS_RA][UFS_HS_G4][UFS_LANE_2] = { 2915200,	409600 },
92 	[MODE_HS_RA][UFS_HS_G5][UFS_LANE_2] = { 5836800,	819200 },
93 	[MODE_HS_RB][UFS_HS_G1][UFS_LANE_1] = { 149422,		1000 },
94 	[MODE_HS_RB][UFS_HS_G2][UFS_LANE_1] = { 298189,		1000 },
95 	[MODE_HS_RB][UFS_HS_G3][UFS_LANE_1] = { 1492582,	102400 },
96 	[MODE_HS_RB][UFS_HS_G4][UFS_LANE_1] = { 2915200,	204800 },
97 	[MODE_HS_RB][UFS_HS_G5][UFS_LANE_1] = { 5836800,	409600 },
98 	[MODE_HS_RB][UFS_HS_G1][UFS_LANE_2] = { 298189,		1000 },
99 	[MODE_HS_RB][UFS_HS_G2][UFS_LANE_2] = { 596378,		1000 },
100 	[MODE_HS_RB][UFS_HS_G3][UFS_LANE_2] = { 1492582,	204800 },
101 	[MODE_HS_RB][UFS_HS_G4][UFS_LANE_2] = { 2915200,	409600 },
102 	[MODE_HS_RB][UFS_HS_G5][UFS_LANE_2] = { 5836800,	819200 },
103 	[MODE_MAX][0][0]		    = { 7643136,	819200 },
104 };
105 
106 static const struct {
107 	int nminor;
108 	char *prefix;
109 } testbus_info[TSTBUS_MAX] = {
110 	[TSTBUS_UAWM]     = {32, "TSTBUS_UAWM"},
111 	[TSTBUS_UARM]     = {32, "TSTBUS_UARM"},
112 	[TSTBUS_TXUC]     = {32, "TSTBUS_TXUC"},
113 	[TSTBUS_RXUC]     = {32, "TSTBUS_RXUC"},
114 	[TSTBUS_DFC]      = {32, "TSTBUS_DFC"},
115 	[TSTBUS_TRLUT]    = {32, "TSTBUS_TRLUT"},
116 	[TSTBUS_TMRLUT]   = {32, "TSTBUS_TMRLUT"},
117 	[TSTBUS_OCSC]     = {32, "TSTBUS_OCSC"},
118 	[TSTBUS_UTP_HCI]  = {32, "TSTBUS_UTP_HCI"},
119 	[TSTBUS_COMBINED] = {32, "TSTBUS_COMBINED"},
120 	[TSTBUS_WRAPPER]  = {32, "TSTBUS_WRAPPER"},
121 	[TSTBUS_UNIPRO]   = {256, "TSTBUS_UNIPRO"},
122 };
123 
124 static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host);
125 static unsigned long ufs_qcom_opp_freq_to_clk_freq(struct ufs_hba *hba,
126 						   unsigned long freq, char *name);
127 static int ufs_qcom_set_core_clk_ctrl(struct ufs_hba *hba, bool is_scale_up, unsigned long freq);
128 
rcdev_to_ufs_host(struct reset_controller_dev * rcd)129 static struct ufs_qcom_host *rcdev_to_ufs_host(struct reset_controller_dev *rcd)
130 {
131 	return container_of(rcd, struct ufs_qcom_host, rcdev);
132 }
133 
134 #ifdef CONFIG_SCSI_UFS_CRYPTO
135 /**
136  * ufs_qcom_config_ice_allocator() - ICE core allocator configuration
137  *
138  * @host: pointer to qcom specific variant structure.
139  */
ufs_qcom_config_ice_allocator(struct ufs_qcom_host * host)140 static void ufs_qcom_config_ice_allocator(struct ufs_qcom_host *host)
141 {
142 	struct ufs_hba *hba = host->hba;
143 	static const uint8_t val[4] = { NUM_RX_R1W0, NUM_TX_R0W1, NUM_RX_R1W1, NUM_TX_R1W1 };
144 	u32 config;
145 
146 	if (!(host->caps & UFS_QCOM_CAP_ICE_CONFIG) ||
147 			!(host->hba->caps & UFSHCD_CAP_CRYPTO))
148 		return;
149 
150 	config = get_unaligned_le32(val);
151 
152 	ufshcd_writel(hba, ICE_ALLOCATOR_TYPE, REG_UFS_MEM_ICE_CONFIG);
153 	ufshcd_writel(hba, config, REG_UFS_MEM_ICE_NUM_CORE);
154 }
155 
ufs_qcom_ice_enable(struct ufs_qcom_host * host)156 static inline void ufs_qcom_ice_enable(struct ufs_qcom_host *host)
157 {
158 	if (host->hba->caps & UFSHCD_CAP_CRYPTO)
159 		qcom_ice_enable(host->ice);
160 }
161 
162 static const struct blk_crypto_ll_ops ufs_qcom_crypto_ops; /* forward decl */
163 
ufs_qcom_ice_init(struct ufs_qcom_host * host)164 static int ufs_qcom_ice_init(struct ufs_qcom_host *host)
165 {
166 	struct ufs_hba *hba = host->hba;
167 	struct blk_crypto_profile *profile = &hba->crypto_profile;
168 	struct device *dev = hba->dev;
169 	struct qcom_ice *ice;
170 	union ufs_crypto_capabilities caps;
171 	union ufs_crypto_cap_entry cap;
172 	int err;
173 	int i;
174 
175 	ice = devm_of_qcom_ice_get(dev);
176 	if (ice == ERR_PTR(-EOPNOTSUPP)) {
177 		dev_warn(dev, "Disabling inline encryption support\n");
178 		ice = NULL;
179 	}
180 
181 	if (IS_ERR_OR_NULL(ice))
182 		return PTR_ERR_OR_ZERO(ice);
183 
184 	host->ice = ice;
185 
186 	/* Initialize the blk_crypto_profile */
187 
188 	caps.reg_val = cpu_to_le32(ufshcd_readl(hba, REG_UFS_CCAP));
189 
190 	/* The number of keyslots supported is (CFGC+1) */
191 	err = devm_blk_crypto_profile_init(dev, profile, caps.config_count + 1);
192 	if (err)
193 		return err;
194 
195 	profile->ll_ops = ufs_qcom_crypto_ops;
196 	profile->max_dun_bytes_supported = 8;
197 	profile->key_types_supported = qcom_ice_get_supported_key_type(ice);
198 	profile->dev = dev;
199 
200 	/*
201 	 * Currently this driver only supports AES-256-XTS.  All known versions
202 	 * of ICE support it, but to be safe make sure it is really declared in
203 	 * the crypto capability registers.  The crypto capability registers
204 	 * also give the supported data unit size(s).
205 	 */
206 	for (i = 0; i < caps.num_crypto_cap; i++) {
207 		cap.reg_val = cpu_to_le32(ufshcd_readl(hba,
208 						       REG_UFS_CRYPTOCAP +
209 						       i * sizeof(__le32)));
210 		if (cap.algorithm_id == UFS_CRYPTO_ALG_AES_XTS &&
211 		    cap.key_size == UFS_CRYPTO_KEY_SIZE_256)
212 			profile->modes_supported[BLK_ENCRYPTION_MODE_AES_256_XTS] |=
213 				cap.sdus_mask * 512;
214 	}
215 
216 	hba->caps |= UFSHCD_CAP_CRYPTO;
217 	hba->quirks |= UFSHCD_QUIRK_CUSTOM_CRYPTO_PROFILE;
218 	return 0;
219 }
220 
ufs_qcom_ice_resume(struct ufs_qcom_host * host)221 static inline int ufs_qcom_ice_resume(struct ufs_qcom_host *host)
222 {
223 	if (host->hba->caps & UFSHCD_CAP_CRYPTO)
224 		return qcom_ice_resume(host->ice);
225 
226 	return 0;
227 }
228 
ufs_qcom_ice_suspend(struct ufs_qcom_host * host)229 static inline int ufs_qcom_ice_suspend(struct ufs_qcom_host *host)
230 {
231 	if (host->hba->caps & UFSHCD_CAP_CRYPTO)
232 		return qcom_ice_suspend(host->ice);
233 
234 	return 0;
235 }
236 
ufs_qcom_ice_keyslot_program(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)237 static int ufs_qcom_ice_keyslot_program(struct blk_crypto_profile *profile,
238 					const struct blk_crypto_key *key,
239 					unsigned int slot)
240 {
241 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
242 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
243 	int err;
244 
245 	ufshcd_hold(hba);
246 	err = qcom_ice_program_key(host->ice, slot, key);
247 	ufshcd_release(hba);
248 	return err;
249 }
250 
ufs_qcom_ice_keyslot_evict(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)251 static int ufs_qcom_ice_keyslot_evict(struct blk_crypto_profile *profile,
252 				      const struct blk_crypto_key *key,
253 				      unsigned int slot)
254 {
255 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
256 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
257 	int err;
258 
259 	ufshcd_hold(hba);
260 	err = qcom_ice_evict_key(host->ice, slot);
261 	ufshcd_release(hba);
262 	return err;
263 }
264 
ufs_qcom_ice_derive_sw_secret(struct blk_crypto_profile * profile,const u8 * eph_key,size_t eph_key_size,u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])265 static int ufs_qcom_ice_derive_sw_secret(struct blk_crypto_profile *profile,
266 					 const u8 *eph_key, size_t eph_key_size,
267 					 u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])
268 {
269 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
270 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
271 
272 	return qcom_ice_derive_sw_secret(host->ice, eph_key, eph_key_size,
273 					 sw_secret);
274 }
275 
ufs_qcom_ice_import_key(struct blk_crypto_profile * profile,const u8 * raw_key,size_t raw_key_size,u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])276 static int ufs_qcom_ice_import_key(struct blk_crypto_profile *profile,
277 				   const u8 *raw_key, size_t raw_key_size,
278 				   u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])
279 {
280 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
281 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
282 
283 	return qcom_ice_import_key(host->ice, raw_key, raw_key_size, lt_key);
284 }
285 
ufs_qcom_ice_generate_key(struct blk_crypto_profile * profile,u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])286 static int ufs_qcom_ice_generate_key(struct blk_crypto_profile *profile,
287 				     u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])
288 {
289 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
290 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
291 
292 	return qcom_ice_generate_key(host->ice, lt_key);
293 }
294 
ufs_qcom_ice_prepare_key(struct blk_crypto_profile * profile,const u8 * lt_key,size_t lt_key_size,u8 eph_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])295 static int ufs_qcom_ice_prepare_key(struct blk_crypto_profile *profile,
296 				    const u8 *lt_key, size_t lt_key_size,
297 				    u8 eph_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])
298 {
299 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
300 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
301 
302 	return qcom_ice_prepare_key(host->ice, lt_key, lt_key_size, eph_key);
303 }
304 
305 static const struct blk_crypto_ll_ops ufs_qcom_crypto_ops = {
306 	.keyslot_program	= ufs_qcom_ice_keyslot_program,
307 	.keyslot_evict		= ufs_qcom_ice_keyslot_evict,
308 	.derive_sw_secret	= ufs_qcom_ice_derive_sw_secret,
309 	.import_key		= ufs_qcom_ice_import_key,
310 	.generate_key		= ufs_qcom_ice_generate_key,
311 	.prepare_key		= ufs_qcom_ice_prepare_key,
312 };
313 
314 #else
315 
ufs_qcom_ice_enable(struct ufs_qcom_host * host)316 static inline void ufs_qcom_ice_enable(struct ufs_qcom_host *host)
317 {
318 }
319 
ufs_qcom_ice_init(struct ufs_qcom_host * host)320 static int ufs_qcom_ice_init(struct ufs_qcom_host *host)
321 {
322 	return 0;
323 }
324 
ufs_qcom_ice_resume(struct ufs_qcom_host * host)325 static inline int ufs_qcom_ice_resume(struct ufs_qcom_host *host)
326 {
327 	return 0;
328 }
329 
ufs_qcom_ice_suspend(struct ufs_qcom_host * host)330 static inline int ufs_qcom_ice_suspend(struct ufs_qcom_host *host)
331 {
332 	return 0;
333 }
334 
ufs_qcom_config_ice_allocator(struct ufs_qcom_host * host)335 static void ufs_qcom_config_ice_allocator(struct ufs_qcom_host *host)
336 {
337 }
338 
339 #endif
340 
ufs_qcom_disable_lane_clks(struct ufs_qcom_host * host)341 static void ufs_qcom_disable_lane_clks(struct ufs_qcom_host *host)
342 {
343 	if (!host->is_lane_clks_enabled)
344 		return;
345 
346 	clk_bulk_disable_unprepare(host->num_clks, host->clks);
347 
348 	host->is_lane_clks_enabled = false;
349 }
350 
ufs_qcom_enable_lane_clks(struct ufs_qcom_host * host)351 static int ufs_qcom_enable_lane_clks(struct ufs_qcom_host *host)
352 {
353 	int err;
354 
355 	err = clk_bulk_prepare_enable(host->num_clks, host->clks);
356 	if (err)
357 		return err;
358 
359 	host->is_lane_clks_enabled = true;
360 
361 	return 0;
362 }
363 
ufs_qcom_init_lane_clks(struct ufs_qcom_host * host)364 static int ufs_qcom_init_lane_clks(struct ufs_qcom_host *host)
365 {
366 	int err;
367 	struct device *dev = host->hba->dev;
368 
369 	if (has_acpi_companion(dev))
370 		return 0;
371 
372 	err = devm_clk_bulk_get_all(dev, &host->clks);
373 	if (err <= 0)
374 		return err;
375 
376 	host->num_clks = err;
377 
378 	return 0;
379 }
380 
ufs_qcom_check_hibern8(struct ufs_hba * hba)381 static int ufs_qcom_check_hibern8(struct ufs_hba *hba)
382 {
383 	int err;
384 	u32 tx_fsm_val;
385 	unsigned long timeout = jiffies + msecs_to_jiffies(HBRN8_POLL_TOUT_MS);
386 
387 	do {
388 		err = ufshcd_dme_get(hba,
389 				UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE,
390 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
391 				&tx_fsm_val);
392 		if (err || tx_fsm_val == TX_FSM_HIBERN8)
393 			break;
394 
395 		/* sleep for max. 200us */
396 		usleep_range(100, 200);
397 	} while (time_before(jiffies, timeout));
398 
399 	/*
400 	 * we might have scheduled out for long during polling so
401 	 * check the state again.
402 	 */
403 	if (time_after(jiffies, timeout))
404 		err = ufshcd_dme_get(hba,
405 				UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE,
406 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
407 				&tx_fsm_val);
408 
409 	if (err) {
410 		dev_err(hba->dev, "%s: unable to get TX_FSM_STATE, err %d\n",
411 				__func__, err);
412 	} else if (tx_fsm_val != TX_FSM_HIBERN8) {
413 		err = tx_fsm_val;
414 		dev_err(hba->dev, "%s: invalid TX_FSM_STATE = %d\n",
415 				__func__, err);
416 	}
417 
418 	return err;
419 }
420 
ufs_qcom_select_unipro_mode(struct ufs_qcom_host * host)421 static void ufs_qcom_select_unipro_mode(struct ufs_qcom_host *host)
422 {
423 	ufshcd_rmwl(host->hba, QUNIPRO_SEL, QUNIPRO_SEL, REG_UFS_CFG1);
424 
425 	if (host->hw_ver.major >= 0x05)
426 		ufshcd_rmwl(host->hba, QUNIPRO_G4_SEL, 0, REG_UFS_CFG0);
427 }
428 
429 /*
430  * ufs_qcom_host_reset - reset host controller and PHY
431  */
ufs_qcom_host_reset(struct ufs_hba * hba)432 static int ufs_qcom_host_reset(struct ufs_hba *hba)
433 {
434 	int ret;
435 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
436 	bool reenable_intr;
437 
438 	if (!host->core_reset)
439 		return 0;
440 
441 	reenable_intr = hba->is_irq_enabled;
442 	ufshcd_disable_irq(hba);
443 
444 	ret = reset_control_assert(host->core_reset);
445 	if (ret) {
446 		dev_err(hba->dev, "%s: core_reset assert failed, err = %d\n",
447 				 __func__, ret);
448 		return ret;
449 	}
450 
451 	/*
452 	 * The hardware requirement for delay between assert/deassert
453 	 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
454 	 * ~125us (4/32768). To be on the safe side add 200us delay.
455 	 */
456 	usleep_range(200, 210);
457 
458 	ret = reset_control_deassert(host->core_reset);
459 	if (ret) {
460 		dev_err(hba->dev, "%s: core_reset deassert failed, err = %d\n",
461 				 __func__, ret);
462 		return ret;
463 	}
464 
465 	usleep_range(1000, 1100);
466 
467 	if (reenable_intr)
468 		ufshcd_enable_irq(hba);
469 
470 	return 0;
471 }
472 
ufs_qcom_get_hs_gear(struct ufs_hba * hba)473 static u32 ufs_qcom_get_hs_gear(struct ufs_hba *hba)
474 {
475 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
476 
477 	if (host->hw_ver.major >= 0x4)
478 		return UFS_QCOM_MAX_GEAR(ufshcd_readl(hba, REG_UFS_PARAM0));
479 
480 	/* Default is HS-G3 */
481 	return UFS_HS_G3;
482 }
483 
ufs_qcom_power_up_sequence(struct ufs_hba * hba)484 static int ufs_qcom_power_up_sequence(struct ufs_hba *hba)
485 {
486 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
487 	struct ufs_host_params *host_params = &host->host_params;
488 	struct phy *phy = host->generic_phy;
489 	enum phy_mode mode;
490 	int ret;
491 
492 	/*
493 	 * HW ver 5 can only support up to HS-G5 Rate-A due to HW limitations.
494 	 * If the HS-G5 PHY gear is used, update host_params->hs_rate to Rate-A,
495 	 * so that the subsequent power mode change shall stick to Rate-A.
496 	 */
497 	if (host->hw_ver.major == 0x5) {
498 		if (host->phy_gear == UFS_HS_G5)
499 			host_params->hs_rate = PA_HS_MODE_A;
500 		else
501 			host_params->hs_rate = PA_HS_MODE_B;
502 	}
503 
504 	mode = host_params->hs_rate == PA_HS_MODE_B ? PHY_MODE_UFS_HS_B : PHY_MODE_UFS_HS_A;
505 
506 	/* Reset UFS Host Controller and PHY */
507 	ret = ufs_qcom_host_reset(hba);
508 	if (ret)
509 		return ret;
510 
511 	if (phy->power_count)
512 		phy_power_off(phy);
513 
514 
515 	/* phy initialization - calibrate the phy */
516 	ret = phy_init(phy);
517 	if (ret) {
518 		dev_err(hba->dev, "%s: phy init failed, ret = %d\n",
519 			__func__, ret);
520 		return ret;
521 	}
522 
523 	ret = phy_set_mode_ext(phy, mode, host->phy_gear);
524 	if (ret)
525 		goto out_disable_phy;
526 
527 	/* power on phy - start serdes and phy's power and clocks */
528 	ret = phy_power_on(phy);
529 	if (ret) {
530 		dev_err(hba->dev, "%s: phy power on failed, ret = %d\n",
531 			__func__, ret);
532 		goto out_disable_phy;
533 	}
534 
535 	ufs_qcom_select_unipro_mode(host);
536 
537 	return 0;
538 
539 out_disable_phy:
540 	phy_exit(phy);
541 
542 	return ret;
543 }
544 
545 /*
546  * The UTP controller has a number of internal clock gating cells (CGCs).
547  * Internal hardware sub-modules within the UTP controller control the CGCs.
548  * Hardware CGCs disable the clock to inactivate UTP sub-modules not involved
549  * in a specific operation, UTP controller CGCs are by default disabled and
550  * this function enables them (after every UFS link startup) to save some power
551  * leakage.
552  */
ufs_qcom_enable_hw_clk_gating(struct ufs_hba * hba)553 static void ufs_qcom_enable_hw_clk_gating(struct ufs_hba *hba)
554 {
555 	ufshcd_rmwl(hba, REG_UFS_CFG2_CGC_EN_ALL, REG_UFS_CFG2_CGC_EN_ALL,
556 		    REG_UFS_CFG2);
557 
558 	/* Ensure that HW clock gating is enabled before next operations */
559 	ufshcd_readl(hba, REG_UFS_CFG2);
560 }
561 
ufs_qcom_hce_enable_notify(struct ufs_hba * hba,enum ufs_notify_change_status status)562 static int ufs_qcom_hce_enable_notify(struct ufs_hba *hba,
563 				      enum ufs_notify_change_status status)
564 {
565 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
566 	int err;
567 
568 	switch (status) {
569 	case PRE_CHANGE:
570 		err = ufs_qcom_power_up_sequence(hba);
571 		if (err)
572 			return err;
573 
574 		/*
575 		 * The PHY PLL output is the source of tx/rx lane symbol
576 		 * clocks, hence, enable the lane clocks only after PHY
577 		 * is initialized.
578 		 */
579 		err = ufs_qcom_enable_lane_clks(host);
580 		break;
581 	case POST_CHANGE:
582 		/* check if UFS PHY moved from DISABLED to HIBERN8 */
583 		err = ufs_qcom_check_hibern8(hba);
584 		ufs_qcom_enable_hw_clk_gating(hba);
585 		ufs_qcom_ice_enable(host);
586 		ufs_qcom_config_ice_allocator(host);
587 		break;
588 	default:
589 		dev_err(hba->dev, "%s: invalid status %d\n", __func__, status);
590 		err = -EINVAL;
591 		break;
592 	}
593 	return err;
594 }
595 
596 /**
597  * ufs_qcom_cfg_timers - Configure ufs qcom cfg timers
598  *
599  * @hba: host controller instance
600  * @is_pre_scale_up: flag to check if pre scale up condition.
601  * @freq: target opp freq
602  * Return: zero for success and non-zero in case of a failure.
603  */
ufs_qcom_cfg_timers(struct ufs_hba * hba,bool is_pre_scale_up,unsigned long freq)604 static int ufs_qcom_cfg_timers(struct ufs_hba *hba, bool is_pre_scale_up, unsigned long freq)
605 {
606 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
607 	struct ufs_clk_info *clki;
608 	unsigned long clk_freq = 0;
609 	u32 core_clk_cycles_per_us;
610 
611 	/*
612 	 * UTP controller uses SYS1CLK_1US_REG register for Interrupt
613 	 * Aggregation logic.
614 	 * It is mandatory to write SYS1CLK_1US_REG register on UFS host
615 	 * controller V4.0.0 onwards.
616 	 */
617 	if (host->hw_ver.major < 4 && !ufshcd_is_intr_aggr_allowed(hba))
618 		return 0;
619 
620 	if (hba->use_pm_opp && freq != ULONG_MAX) {
621 		clk_freq = ufs_qcom_opp_freq_to_clk_freq(hba, freq, "core_clk");
622 		if (clk_freq)
623 			goto cfg_timers;
624 	}
625 
626 	list_for_each_entry(clki, &hba->clk_list_head, list) {
627 		if (!strcmp(clki->name, "core_clk")) {
628 			if (freq == ULONG_MAX) {
629 				clk_freq = clki->max_freq;
630 				break;
631 			}
632 
633 			if (is_pre_scale_up)
634 				clk_freq = clki->max_freq;
635 			else
636 				clk_freq = clk_get_rate(clki->clk);
637 			break;
638 		}
639 
640 	}
641 
642 cfg_timers:
643 	/* If frequency is smaller than 1MHz, set to 1MHz */
644 	if (clk_freq < DEFAULT_CLK_RATE_HZ)
645 		clk_freq = DEFAULT_CLK_RATE_HZ;
646 
647 	core_clk_cycles_per_us = clk_freq / USEC_PER_SEC;
648 	if (ufshcd_readl(hba, REG_UFS_SYS1CLK_1US) != core_clk_cycles_per_us) {
649 		ufshcd_writel(hba, core_clk_cycles_per_us, REG_UFS_SYS1CLK_1US);
650 		/*
651 		 * make sure above write gets applied before we return from
652 		 * this function.
653 		 */
654 		ufshcd_readl(hba, REG_UFS_SYS1CLK_1US);
655 	}
656 
657 	return 0;
658 }
659 
ufs_qcom_link_startup_notify(struct ufs_hba * hba,enum ufs_notify_change_status status)660 static int ufs_qcom_link_startup_notify(struct ufs_hba *hba,
661 					enum ufs_notify_change_status status)
662 {
663 	int err = 0;
664 
665 	switch (status) {
666 	case PRE_CHANGE:
667 		if (ufs_qcom_cfg_timers(hba, false, ULONG_MAX)) {
668 			dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n",
669 				__func__);
670 			return -EINVAL;
671 		}
672 
673 		err = ufs_qcom_set_core_clk_ctrl(hba, true, ULONG_MAX);
674 		if (err)
675 			dev_err(hba->dev, "cfg core clk ctrl failed\n");
676 		/*
677 		 * Some UFS devices (and may be host) have issues if LCC is
678 		 * enabled. So we are setting PA_Local_TX_LCC_Enable to 0
679 		 * before link startup which will make sure that both host
680 		 * and device TX LCC are disabled once link startup is
681 		 * completed.
682 		 */
683 		err = ufshcd_disable_host_tx_lcc(hba);
684 
685 		break;
686 	default:
687 		break;
688 	}
689 
690 	return err;
691 }
692 
ufs_qcom_device_reset_ctrl(struct ufs_hba * hba,bool asserted)693 static void ufs_qcom_device_reset_ctrl(struct ufs_hba *hba, bool asserted)
694 {
695 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
696 
697 	/* reset gpio is optional */
698 	if (!host->device_reset)
699 		return;
700 
701 	gpiod_set_value_cansleep(host->device_reset, asserted);
702 }
703 
ufs_qcom_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op,enum ufs_notify_change_status status)704 static int ufs_qcom_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op,
705 	enum ufs_notify_change_status status)
706 {
707 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
708 	struct phy *phy = host->generic_phy;
709 
710 	if (status == PRE_CHANGE)
711 		return 0;
712 
713 	if (ufs_qcom_is_link_off(hba)) {
714 		/*
715 		 * Disable the tx/rx lane symbol clocks before PHY is
716 		 * powered down as the PLL source should be disabled
717 		 * after downstream clocks are disabled.
718 		 */
719 		ufs_qcom_disable_lane_clks(host);
720 		phy_power_off(phy);
721 
722 		/* reset the connected UFS device during power down */
723 		ufs_qcom_device_reset_ctrl(hba, true);
724 
725 	} else if (!ufs_qcom_is_link_active(hba)) {
726 		ufs_qcom_disable_lane_clks(host);
727 	}
728 
729 	return ufs_qcom_ice_suspend(host);
730 }
731 
ufs_qcom_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)732 static int ufs_qcom_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
733 {
734 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
735 	struct phy *phy = host->generic_phy;
736 	int err;
737 
738 	if (ufs_qcom_is_link_off(hba)) {
739 		err = phy_power_on(phy);
740 		if (err) {
741 			dev_err(hba->dev, "%s: failed PHY power on: %d\n",
742 				__func__, err);
743 			return err;
744 		}
745 
746 		err = ufs_qcom_enable_lane_clks(host);
747 		if (err)
748 			return err;
749 
750 	} else if (!ufs_qcom_is_link_active(hba)) {
751 		err = ufs_qcom_enable_lane_clks(host);
752 		if (err)
753 			return err;
754 	}
755 
756 	return ufs_qcom_ice_resume(host);
757 }
758 
ufs_qcom_dev_ref_clk_ctrl(struct ufs_qcom_host * host,bool enable)759 static void ufs_qcom_dev_ref_clk_ctrl(struct ufs_qcom_host *host, bool enable)
760 {
761 	if (host->dev_ref_clk_ctrl_mmio &&
762 	    (enable ^ host->is_dev_ref_clk_enabled)) {
763 		u32 temp = readl_relaxed(host->dev_ref_clk_ctrl_mmio);
764 
765 		if (enable)
766 			temp |= host->dev_ref_clk_en_mask;
767 		else
768 			temp &= ~host->dev_ref_clk_en_mask;
769 
770 		/*
771 		 * If we are here to disable this clock it might be immediately
772 		 * after entering into hibern8 in which case we need to make
773 		 * sure that device ref_clk is active for specific time after
774 		 * hibern8 enter.
775 		 */
776 		if (!enable) {
777 			unsigned long gating_wait;
778 
779 			gating_wait = host->hba->dev_info.clk_gating_wait_us;
780 			if (!gating_wait) {
781 				udelay(1);
782 			} else {
783 				/*
784 				 * bRefClkGatingWaitTime defines the minimum
785 				 * time for which the reference clock is
786 				 * required by device during transition from
787 				 * HS-MODE to LS-MODE or HIBERN8 state. Give it
788 				 * more delay to be on the safe side.
789 				 */
790 				gating_wait += 10;
791 				usleep_range(gating_wait, gating_wait + 10);
792 			}
793 		}
794 
795 		writel_relaxed(temp, host->dev_ref_clk_ctrl_mmio);
796 
797 		/*
798 		 * Make sure the write to ref_clk reaches the destination and
799 		 * not stored in a Write Buffer (WB).
800 		 */
801 		readl(host->dev_ref_clk_ctrl_mmio);
802 
803 		/*
804 		 * If we call hibern8 exit after this, we need to make sure that
805 		 * device ref_clk is stable for at least 1us before the hibern8
806 		 * exit command.
807 		 */
808 		if (enable)
809 			udelay(1);
810 
811 		host->is_dev_ref_clk_enabled = enable;
812 	}
813 }
814 
ufs_qcom_icc_set_bw(struct ufs_qcom_host * host,u32 mem_bw,u32 cfg_bw)815 static int ufs_qcom_icc_set_bw(struct ufs_qcom_host *host, u32 mem_bw, u32 cfg_bw)
816 {
817 	struct device *dev = host->hba->dev;
818 	int ret;
819 
820 	ret = icc_set_bw(host->icc_ddr, 0, mem_bw);
821 	if (ret < 0) {
822 		dev_err(dev, "failed to set bandwidth request: %d\n", ret);
823 		return ret;
824 	}
825 
826 	ret = icc_set_bw(host->icc_cpu, 0, cfg_bw);
827 	if (ret < 0) {
828 		dev_err(dev, "failed to set bandwidth request: %d\n", ret);
829 		return ret;
830 	}
831 
832 	return 0;
833 }
834 
ufs_qcom_get_bw_table(struct ufs_qcom_host * host)835 static struct __ufs_qcom_bw_table ufs_qcom_get_bw_table(struct ufs_qcom_host *host)
836 {
837 	struct ufs_pa_layer_attr *p = &host->dev_req_params;
838 	int gear = max_t(u32, p->gear_rx, p->gear_tx);
839 	int lane = max_t(u32, p->lane_rx, p->lane_tx);
840 
841 	if (WARN_ONCE(gear > QCOM_UFS_MAX_GEAR,
842 		      "ICC scaling for UFS Gear (%d) not supported. Using Gear (%d) bandwidth\n",
843 		      gear, QCOM_UFS_MAX_GEAR))
844 		gear = QCOM_UFS_MAX_GEAR;
845 
846 	if (WARN_ONCE(lane > QCOM_UFS_MAX_LANE,
847 		      "ICC scaling for UFS Lane (%d) not supported. Using Lane (%d) bandwidth\n",
848 		      lane, QCOM_UFS_MAX_LANE))
849 		lane = QCOM_UFS_MAX_LANE;
850 
851 	if (ufshcd_is_hs_mode(p)) {
852 		if (p->hs_rate == PA_HS_MODE_B)
853 			return ufs_qcom_bw_table[MODE_HS_RB][gear][lane];
854 		else
855 			return ufs_qcom_bw_table[MODE_HS_RA][gear][lane];
856 	} else {
857 		return ufs_qcom_bw_table[MODE_PWM][gear][lane];
858 	}
859 }
860 
ufs_qcom_icc_update_bw(struct ufs_qcom_host * host)861 static int ufs_qcom_icc_update_bw(struct ufs_qcom_host *host)
862 {
863 	struct __ufs_qcom_bw_table bw_table;
864 
865 	bw_table = ufs_qcom_get_bw_table(host);
866 
867 	return ufs_qcom_icc_set_bw(host, bw_table.mem_bw, bw_table.cfg_bw);
868 }
869 
ufs_qcom_set_tx_hs_equalizer(struct ufs_hba * hba,u32 gear,u32 tx_lanes)870 static void ufs_qcom_set_tx_hs_equalizer(struct ufs_hba *hba, u32 gear, u32 tx_lanes)
871 {
872 	u32 equalizer_val;
873 	int ret, i;
874 
875 	/* Determine the equalizer value based on the gear */
876 	equalizer_val = (gear == 5) ? DEEMPHASIS_3_5_dB : NO_DEEMPHASIS;
877 
878 	for (i = 0; i < tx_lanes; i++) {
879 		ret = ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_HS_EQUALIZER, i),
880 				     equalizer_val);
881 		if (ret)
882 			dev_err(hba->dev, "%s: failed equalizer lane %d\n",
883 				__func__, i);
884 	}
885 }
886 
ufs_qcom_pwr_change_notify(struct ufs_hba * hba,enum ufs_notify_change_status status,const struct ufs_pa_layer_attr * dev_max_params,struct ufs_pa_layer_attr * dev_req_params)887 static int ufs_qcom_pwr_change_notify(struct ufs_hba *hba,
888 				enum ufs_notify_change_status status,
889 				const struct ufs_pa_layer_attr *dev_max_params,
890 				struct ufs_pa_layer_attr *dev_req_params)
891 {
892 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
893 	struct ufs_host_params *host_params = &host->host_params;
894 	int ret = 0;
895 
896 	if (!dev_req_params) {
897 		pr_err("%s: incoming dev_req_params is NULL\n", __func__);
898 		return -EINVAL;
899 	}
900 
901 	switch (status) {
902 	case PRE_CHANGE:
903 		ret = ufshcd_negotiate_pwr_params(host_params, dev_max_params, dev_req_params);
904 		if (ret) {
905 			dev_err(hba->dev, "%s: failed to determine capabilities\n",
906 					__func__);
907 			return ret;
908 		}
909 
910 		/*
911 		 * During UFS driver probe, always update the PHY gear to match the negotiated
912 		 * gear, so that, if quirk UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is enabled,
913 		 * the second init can program the optimal PHY settings. This allows one to start
914 		 * the first init with either the minimum or the maximum support gear.
915 		 */
916 		if (hba->ufshcd_state == UFSHCD_STATE_RESET) {
917 			/*
918 			 * Skip REINIT if the negotiated gear matches with the
919 			 * initial phy_gear. Otherwise, update the phy_gear to
920 			 * program the optimal gear setting during REINIT.
921 			 */
922 			if (host->phy_gear == dev_req_params->gear_tx)
923 				hba->quirks &= ~UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH;
924 			else
925 				host->phy_gear = dev_req_params->gear_tx;
926 		}
927 
928 		/* enable the device ref clock before changing to HS mode */
929 		if (!ufshcd_is_hs_mode(&hba->pwr_info) &&
930 			ufshcd_is_hs_mode(dev_req_params))
931 			ufs_qcom_dev_ref_clk_ctrl(host, true);
932 
933 		if (host->hw_ver.major >= 0x4) {
934 			ufshcd_dme_configure_adapt(hba,
935 						dev_req_params->gear_tx,
936 						PA_INITIAL_ADAPT);
937 		}
938 
939 		if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TX_DEEMPHASIS_TUNING)
940 			ufs_qcom_set_tx_hs_equalizer(hba,
941 					dev_req_params->gear_tx, dev_req_params->lane_tx);
942 
943 		break;
944 	case POST_CHANGE:
945 		/* cache the power mode parameters to use internally */
946 		memcpy(&host->dev_req_params,
947 				dev_req_params, sizeof(*dev_req_params));
948 
949 		ufs_qcom_icc_update_bw(host);
950 
951 		/* disable the device ref clock if entered PWM mode */
952 		if (ufshcd_is_hs_mode(&hba->pwr_info) &&
953 			!ufshcd_is_hs_mode(dev_req_params))
954 			ufs_qcom_dev_ref_clk_ctrl(host, false);
955 		break;
956 	default:
957 		ret = -EINVAL;
958 		break;
959 	}
960 
961 	return ret;
962 }
963 
ufs_qcom_quirk_host_pa_saveconfigtime(struct ufs_hba * hba)964 static int ufs_qcom_quirk_host_pa_saveconfigtime(struct ufs_hba *hba)
965 {
966 	int err;
967 	u32 pa_vs_config_reg1;
968 
969 	err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1),
970 			     &pa_vs_config_reg1);
971 	if (err)
972 		return err;
973 
974 	/* Allow extension of MSB bits of PA_SaveConfigTime attribute */
975 	return ufshcd_dme_set(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1),
976 			    (pa_vs_config_reg1 | (1 << 12)));
977 }
978 
ufs_qcom_override_pa_tx_hsg1_sync_len(struct ufs_hba * hba)979 static void ufs_qcom_override_pa_tx_hsg1_sync_len(struct ufs_hba *hba)
980 {
981 	int err;
982 
983 	err = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TX_HSG1_SYNC_LENGTH),
984 				  PA_TX_HSG1_SYNC_LENGTH_VAL);
985 	if (err)
986 		dev_err(hba->dev, "Failed (%d) set PA_TX_HSG1_SYNC_LENGTH\n", err);
987 }
988 
ufs_qcom_apply_dev_quirks(struct ufs_hba * hba)989 static int ufs_qcom_apply_dev_quirks(struct ufs_hba *hba)
990 {
991 	int err = 0;
992 
993 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME)
994 		err = ufs_qcom_quirk_host_pa_saveconfigtime(hba);
995 
996 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TX_HSG1_SYNC_LENGTH)
997 		ufs_qcom_override_pa_tx_hsg1_sync_len(hba);
998 
999 	return err;
1000 }
1001 
1002 /* UFS device-specific quirks */
1003 static struct ufs_dev_quirk ufs_qcom_dev_fixups[] = {
1004 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
1005 	  .model = UFS_ANY_MODEL,
1006 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
1007 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
1008 	  .model = UFS_ANY_MODEL,
1009 	  .quirk = UFS_DEVICE_QUIRK_DELAY_AFTER_LPM },
1010 	{ .wmanufacturerid = UFS_VENDOR_WDC,
1011 	  .model = UFS_ANY_MODEL,
1012 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE },
1013 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
1014 	  .model = UFS_ANY_MODEL,
1015 	  .quirk = UFS_DEVICE_QUIRK_PA_TX_HSG1_SYNC_LENGTH |
1016 		   UFS_DEVICE_QUIRK_PA_TX_DEEMPHASIS_TUNING },
1017 	{}
1018 };
1019 
ufs_qcom_fixup_dev_quirks(struct ufs_hba * hba)1020 static void ufs_qcom_fixup_dev_quirks(struct ufs_hba *hba)
1021 {
1022 	ufshcd_fixup_dev_quirks(hba, ufs_qcom_dev_fixups);
1023 }
1024 
ufs_qcom_get_ufs_hci_version(struct ufs_hba * hba)1025 static u32 ufs_qcom_get_ufs_hci_version(struct ufs_hba *hba)
1026 {
1027 	return ufshci_version(2, 0);
1028 }
1029 
1030 /**
1031  * ufs_qcom_advertise_quirks - advertise the known QCOM UFS controller quirks
1032  * @hba: host controller instance
1033  *
1034  * QCOM UFS host controller might have some non standard behaviours (quirks)
1035  * than what is specified by UFSHCI specification. Advertise all such
1036  * quirks to standard UFS host controller driver so standard takes them into
1037  * account.
1038  */
ufs_qcom_advertise_quirks(struct ufs_hba * hba)1039 static void ufs_qcom_advertise_quirks(struct ufs_hba *hba)
1040 {
1041 	const struct ufs_qcom_drvdata *drvdata = of_device_get_match_data(hba->dev);
1042 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1043 
1044 	if (host->hw_ver.major == 0x2)
1045 		hba->quirks |= UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION;
1046 
1047 	if (host->hw_ver.major > 0x3)
1048 		hba->quirks |= UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH;
1049 
1050 	if (drvdata && drvdata->quirks)
1051 		hba->quirks |= drvdata->quirks;
1052 }
1053 
ufs_qcom_set_phy_gear(struct ufs_qcom_host * host)1054 static void ufs_qcom_set_phy_gear(struct ufs_qcom_host *host)
1055 {
1056 	struct ufs_host_params *host_params = &host->host_params;
1057 	u32 val, dev_major;
1058 
1059 	/*
1060 	 * Default to powering up the PHY to the max gear possible, which is
1061 	 * backwards compatible with lower gears but not optimal from
1062 	 * a power usage point of view. After device negotiation, if the
1063 	 * gear is lower a reinit will be performed to program the PHY
1064 	 * to the ideal gear for this combo of controller and device.
1065 	 */
1066 	host->phy_gear = host_params->hs_tx_gear;
1067 
1068 	if (host->hw_ver.major < 0x4) {
1069 		/*
1070 		 * These controllers only have one PHY init sequence,
1071 		 * let's power up the PHY using that (the minimum supported
1072 		 * gear, UFS_HS_G2).
1073 		 */
1074 		host->phy_gear = UFS_HS_G2;
1075 	} else if (host->hw_ver.major >= 0x5) {
1076 		val = ufshcd_readl(host->hba, REG_UFS_DEBUG_SPARE_CFG);
1077 		dev_major = FIELD_GET(UFS_DEV_VER_MAJOR_MASK, val);
1078 
1079 		/*
1080 		 * Since the UFS device version is populated, let's remove the
1081 		 * REINIT quirk as the negotiated gear won't change during boot.
1082 		 * So there is no need to do reinit.
1083 		 */
1084 		if (dev_major != 0x0)
1085 			host->hba->quirks &= ~UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH;
1086 
1087 		/*
1088 		 * For UFS 3.1 device and older, power up the PHY using HS-G4
1089 		 * PHY gear to save power.
1090 		 */
1091 		if (dev_major > 0x0 && dev_major < 0x4)
1092 			host->phy_gear = UFS_HS_G4;
1093 	}
1094 }
1095 
ufs_qcom_set_host_params(struct ufs_hba * hba)1096 static void ufs_qcom_set_host_params(struct ufs_hba *hba)
1097 {
1098 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1099 	struct ufs_host_params *host_params = &host->host_params;
1100 
1101 	ufshcd_init_host_params(host_params);
1102 
1103 	/* This driver only supports symmetic gear setting i.e., hs_tx_gear == hs_rx_gear */
1104 	host_params->hs_tx_gear = host_params->hs_rx_gear = ufs_qcom_get_hs_gear(hba);
1105 }
1106 
ufs_qcom_set_host_caps(struct ufs_hba * hba)1107 static void ufs_qcom_set_host_caps(struct ufs_hba *hba)
1108 {
1109 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1110 
1111 	if (host->hw_ver.major >= 0x5)
1112 		host->caps |= UFS_QCOM_CAP_ICE_CONFIG;
1113 }
1114 
ufs_qcom_set_caps(struct ufs_hba * hba)1115 static void ufs_qcom_set_caps(struct ufs_hba *hba)
1116 {
1117 	hba->caps |= UFSHCD_CAP_CLK_GATING | UFSHCD_CAP_HIBERN8_WITH_CLK_GATING;
1118 	hba->caps |= UFSHCD_CAP_CLK_SCALING | UFSHCD_CAP_WB_WITH_CLK_SCALING;
1119 	hba->caps |= UFSHCD_CAP_AUTO_BKOPS_SUSPEND;
1120 	hba->caps |= UFSHCD_CAP_WB_EN;
1121 	hba->caps |= UFSHCD_CAP_AGGR_POWER_COLLAPSE;
1122 	hba->caps |= UFSHCD_CAP_RPM_AUTOSUSPEND;
1123 
1124 	ufs_qcom_set_host_caps(hba);
1125 }
1126 
1127 /**
1128  * ufs_qcom_setup_clocks - enables/disable clocks
1129  * @hba: host controller instance
1130  * @on: If true, enable clocks else disable them.
1131  * @status: PRE_CHANGE or POST_CHANGE notify
1132  *
1133  * Return: 0 on success, non-zero on failure.
1134  */
ufs_qcom_setup_clocks(struct ufs_hba * hba,bool on,enum ufs_notify_change_status status)1135 static int ufs_qcom_setup_clocks(struct ufs_hba *hba, bool on,
1136 				 enum ufs_notify_change_status status)
1137 {
1138 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1139 
1140 	/*
1141 	 * In case ufs_qcom_init() is not yet done, simply ignore.
1142 	 * This ufs_qcom_setup_clocks() shall be called from
1143 	 * ufs_qcom_init() after init is done.
1144 	 */
1145 	if (!host)
1146 		return 0;
1147 
1148 	switch (status) {
1149 	case PRE_CHANGE:
1150 		if (on) {
1151 			ufs_qcom_icc_update_bw(host);
1152 		} else {
1153 			if (!ufs_qcom_is_link_active(hba)) {
1154 				/* disable device ref_clk */
1155 				ufs_qcom_dev_ref_clk_ctrl(host, false);
1156 			}
1157 		}
1158 		break;
1159 	case POST_CHANGE:
1160 		if (on) {
1161 			/* enable the device ref clock for HS mode*/
1162 			if (ufshcd_is_hs_mode(&hba->pwr_info))
1163 				ufs_qcom_dev_ref_clk_ctrl(host, true);
1164 		} else {
1165 			ufs_qcom_icc_set_bw(host, ufs_qcom_bw_table[MODE_MIN][0][0].mem_bw,
1166 					    ufs_qcom_bw_table[MODE_MIN][0][0].cfg_bw);
1167 		}
1168 		break;
1169 	}
1170 
1171 	return 0;
1172 }
1173 
1174 static int
ufs_qcom_reset_assert(struct reset_controller_dev * rcdev,unsigned long id)1175 ufs_qcom_reset_assert(struct reset_controller_dev *rcdev, unsigned long id)
1176 {
1177 	struct ufs_qcom_host *host = rcdev_to_ufs_host(rcdev);
1178 
1179 	ufs_qcom_assert_reset(host->hba);
1180 	/* provide 1ms delay to let the reset pulse propagate. */
1181 	usleep_range(1000, 1100);
1182 	return 0;
1183 }
1184 
1185 static int
ufs_qcom_reset_deassert(struct reset_controller_dev * rcdev,unsigned long id)1186 ufs_qcom_reset_deassert(struct reset_controller_dev *rcdev, unsigned long id)
1187 {
1188 	struct ufs_qcom_host *host = rcdev_to_ufs_host(rcdev);
1189 
1190 	ufs_qcom_deassert_reset(host->hba);
1191 
1192 	/*
1193 	 * after reset deassertion, phy will need all ref clocks,
1194 	 * voltage, current to settle down before starting serdes.
1195 	 */
1196 	usleep_range(1000, 1100);
1197 	return 0;
1198 }
1199 
1200 static const struct reset_control_ops ufs_qcom_reset_ops = {
1201 	.assert = ufs_qcom_reset_assert,
1202 	.deassert = ufs_qcom_reset_deassert,
1203 };
1204 
ufs_qcom_icc_init(struct ufs_qcom_host * host)1205 static int ufs_qcom_icc_init(struct ufs_qcom_host *host)
1206 {
1207 	struct device *dev = host->hba->dev;
1208 	int ret;
1209 
1210 	host->icc_ddr = devm_of_icc_get(dev, "ufs-ddr");
1211 	if (IS_ERR(host->icc_ddr))
1212 		return dev_err_probe(dev, PTR_ERR(host->icc_ddr),
1213 				    "failed to acquire interconnect path\n");
1214 
1215 	host->icc_cpu = devm_of_icc_get(dev, "cpu-ufs");
1216 	if (IS_ERR(host->icc_cpu))
1217 		return dev_err_probe(dev, PTR_ERR(host->icc_cpu),
1218 				    "failed to acquire interconnect path\n");
1219 
1220 	/*
1221 	 * Set Maximum bandwidth vote before initializing the UFS controller and
1222 	 * device. Ideally, a minimal interconnect vote would suffice for the
1223 	 * initialization, but a max vote would allow faster initialization.
1224 	 */
1225 	ret = ufs_qcom_icc_set_bw(host, ufs_qcom_bw_table[MODE_MAX][0][0].mem_bw,
1226 				  ufs_qcom_bw_table[MODE_MAX][0][0].cfg_bw);
1227 	if (ret < 0)
1228 		return dev_err_probe(dev, ret, "failed to set bandwidth request\n");
1229 
1230 	return 0;
1231 }
1232 
1233 /**
1234  * ufs_qcom_init - bind phy with controller
1235  * @hba: host controller instance
1236  *
1237  * Binds PHY with controller and powers up PHY enabling clocks
1238  * and regulators.
1239  *
1240  * Return: -EPROBE_DEFER if binding fails, returns negative error
1241  * on phy power up failure and returns zero on success.
1242  */
ufs_qcom_init(struct ufs_hba * hba)1243 static int ufs_qcom_init(struct ufs_hba *hba)
1244 {
1245 	int err;
1246 	struct device *dev = hba->dev;
1247 	struct ufs_qcom_host *host;
1248 	struct ufs_clk_info *clki;
1249 	const struct ufs_qcom_drvdata *drvdata = of_device_get_match_data(hba->dev);
1250 
1251 	host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
1252 	if (!host)
1253 		return -ENOMEM;
1254 
1255 	/* Make a two way bind between the qcom host and the hba */
1256 	host->hba = hba;
1257 	ufshcd_set_variant(hba, host);
1258 
1259 	/* Setup the optional reset control of HCI */
1260 	host->core_reset = devm_reset_control_get_optional(hba->dev, "rst");
1261 	if (IS_ERR(host->core_reset)) {
1262 		err = dev_err_probe(dev, PTR_ERR(host->core_reset),
1263 				    "Failed to get reset control\n");
1264 		goto out_variant_clear;
1265 	}
1266 
1267 	/* Fire up the reset controller. Failure here is non-fatal. */
1268 	host->rcdev.of_node = dev->of_node;
1269 	host->rcdev.ops = &ufs_qcom_reset_ops;
1270 	host->rcdev.owner = dev->driver->owner;
1271 	host->rcdev.nr_resets = 1;
1272 	err = devm_reset_controller_register(dev, &host->rcdev);
1273 	if (err)
1274 		dev_warn(dev, "Failed to register reset controller\n");
1275 
1276 	if (!has_acpi_companion(dev)) {
1277 		host->generic_phy = devm_phy_get(dev, "ufsphy");
1278 		if (IS_ERR(host->generic_phy)) {
1279 			err = dev_err_probe(dev, PTR_ERR(host->generic_phy), "Failed to get PHY\n");
1280 			goto out_variant_clear;
1281 		}
1282 	}
1283 
1284 	err = ufs_qcom_icc_init(host);
1285 	if (err)
1286 		goto out_variant_clear;
1287 
1288 	host->device_reset = devm_gpiod_get_optional(dev, "reset",
1289 						     GPIOD_OUT_HIGH);
1290 	if (IS_ERR(host->device_reset)) {
1291 		err = dev_err_probe(dev, PTR_ERR(host->device_reset),
1292 				    "Failed to acquire device reset gpio\n");
1293 		goto out_variant_clear;
1294 	}
1295 
1296 	ufs_qcom_get_controller_revision(hba, &host->hw_ver.major,
1297 		&host->hw_ver.minor, &host->hw_ver.step);
1298 
1299 	host->dev_ref_clk_ctrl_mmio = hba->mmio_base + REG_UFS_CFG1;
1300 	host->dev_ref_clk_en_mask = BIT(26);
1301 
1302 	list_for_each_entry(clki, &hba->clk_list_head, list) {
1303 		if (!strcmp(clki->name, "core_clk_unipro"))
1304 			clki->keep_link_active = true;
1305 	}
1306 
1307 	err = ufs_qcom_init_lane_clks(host);
1308 	if (err)
1309 		goto out_variant_clear;
1310 
1311 	ufs_qcom_set_caps(hba);
1312 	ufs_qcom_advertise_quirks(hba);
1313 	ufs_qcom_set_host_params(hba);
1314 	ufs_qcom_set_phy_gear(host);
1315 
1316 	err = ufs_qcom_ice_init(host);
1317 	if (err)
1318 		goto out_variant_clear;
1319 
1320 	ufs_qcom_setup_clocks(hba, true, POST_CHANGE);
1321 
1322 	ufs_qcom_get_default_testbus_cfg(host);
1323 	err = ufs_qcom_testbus_config(host);
1324 	if (err)
1325 		/* Failure is non-fatal */
1326 		dev_warn(dev, "%s: failed to configure the testbus %d\n",
1327 				__func__, err);
1328 
1329 	if (drvdata && drvdata->no_phy_retention)
1330 		hba->spm_lvl = UFS_PM_LVL_5;
1331 
1332 	return 0;
1333 
1334 out_variant_clear:
1335 	ufshcd_set_variant(hba, NULL);
1336 
1337 	return err;
1338 }
1339 
ufs_qcom_exit(struct ufs_hba * hba)1340 static void ufs_qcom_exit(struct ufs_hba *hba)
1341 {
1342 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1343 
1344 	ufs_qcom_disable_lane_clks(host);
1345 	phy_power_off(host->generic_phy);
1346 	phy_exit(host->generic_phy);
1347 }
1348 
1349 /**
1350  * ufs_qcom_set_clk_40ns_cycles - Configure 40ns clk cycles
1351  *
1352  * @hba: host controller instance
1353  * @cycles_in_1us: No of cycles in 1us to be configured
1354  *
1355  * Returns error if dme get/set configuration for 40ns fails
1356  * and returns zero on success.
1357  */
ufs_qcom_set_clk_40ns_cycles(struct ufs_hba * hba,u32 cycles_in_1us)1358 static int ufs_qcom_set_clk_40ns_cycles(struct ufs_hba *hba,
1359 					u32 cycles_in_1us)
1360 {
1361 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1362 	u32 cycles_in_40ns;
1363 	u32 reg;
1364 	int err;
1365 
1366 	/*
1367 	 * UFS host controller V4.0.0 onwards needs to program
1368 	 * PA_VS_CORE_CLK_40NS_CYCLES attribute per programmed
1369 	 * frequency of unipro core clk of UFS host controller.
1370 	 */
1371 	if (host->hw_ver.major < 4)
1372 		return 0;
1373 
1374 	/*
1375 	 * Generic formulae for cycles_in_40ns = (freq_unipro/25) is not
1376 	 * applicable for all frequencies. For ex: ceil(37.5 MHz/25) will
1377 	 * be 2 and ceil(403 MHZ/25) will be 17 whereas Hardware
1378 	 * specification expect to be 16. Hence use exact hardware spec
1379 	 * mandated value for cycles_in_40ns instead of calculating using
1380 	 * generic formulae.
1381 	 */
1382 	switch (cycles_in_1us) {
1383 	case UNIPRO_CORE_CLK_FREQ_403_MHZ:
1384 		cycles_in_40ns = 16;
1385 		break;
1386 	case UNIPRO_CORE_CLK_FREQ_300_MHZ:
1387 		cycles_in_40ns = 12;
1388 		break;
1389 	case UNIPRO_CORE_CLK_FREQ_201_5_MHZ:
1390 		cycles_in_40ns = 8;
1391 		break;
1392 	case UNIPRO_CORE_CLK_FREQ_150_MHZ:
1393 		cycles_in_40ns = 6;
1394 		break;
1395 	case UNIPRO_CORE_CLK_FREQ_100_MHZ:
1396 		cycles_in_40ns = 4;
1397 		break;
1398 	case  UNIPRO_CORE_CLK_FREQ_75_MHZ:
1399 		cycles_in_40ns = 3;
1400 		break;
1401 	case UNIPRO_CORE_CLK_FREQ_37_5_MHZ:
1402 		cycles_in_40ns = 2;
1403 		break;
1404 	default:
1405 		dev_err(hba->dev, "UNIPRO clk freq %u MHz not supported\n",
1406 				cycles_in_1us);
1407 		return -EINVAL;
1408 	}
1409 
1410 	err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_VS_CORE_CLK_40NS_CYCLES), &reg);
1411 	if (err)
1412 		return err;
1413 
1414 	reg &= ~PA_VS_CORE_CLK_40NS_CYCLES_MASK;
1415 	reg |= cycles_in_40ns;
1416 
1417 	return ufshcd_dme_set(hba, UIC_ARG_MIB(PA_VS_CORE_CLK_40NS_CYCLES), reg);
1418 }
1419 
ufs_qcom_set_core_clk_ctrl(struct ufs_hba * hba,bool is_scale_up,unsigned long freq)1420 static int ufs_qcom_set_core_clk_ctrl(struct ufs_hba *hba, bool is_scale_up, unsigned long freq)
1421 {
1422 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1423 	struct list_head *head = &hba->clk_list_head;
1424 	struct ufs_clk_info *clki;
1425 	u32 cycles_in_1us = 0;
1426 	u32 core_clk_ctrl_reg;
1427 	unsigned long clk_freq;
1428 	int err;
1429 
1430 	if (hba->use_pm_opp && freq != ULONG_MAX) {
1431 		clk_freq = ufs_qcom_opp_freq_to_clk_freq(hba, freq, "core_clk_unipro");
1432 		if (clk_freq) {
1433 			cycles_in_1us = ceil(clk_freq, HZ_PER_MHZ);
1434 			goto set_core_clk_ctrl;
1435 		}
1436 	}
1437 
1438 	list_for_each_entry(clki, head, list) {
1439 		if (!IS_ERR_OR_NULL(clki->clk) &&
1440 		    !strcmp(clki->name, "core_clk_unipro")) {
1441 			if (!clki->max_freq) {
1442 				cycles_in_1us = 150; /* default for backwards compatibility */
1443 				break;
1444 			}
1445 
1446 			if (freq == ULONG_MAX) {
1447 				cycles_in_1us = ceil(clki->max_freq, HZ_PER_MHZ);
1448 				break;
1449 			}
1450 
1451 			if (is_scale_up)
1452 				cycles_in_1us = ceil(clki->max_freq, HZ_PER_MHZ);
1453 			else
1454 				cycles_in_1us = ceil(clk_get_rate(clki->clk), HZ_PER_MHZ);
1455 			break;
1456 		}
1457 	}
1458 
1459 set_core_clk_ctrl:
1460 	err = ufshcd_dme_get(hba,
1461 			    UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
1462 			    &core_clk_ctrl_reg);
1463 	if (err)
1464 		return err;
1465 
1466 	/* Bit mask is different for UFS host controller V4.0.0 onwards */
1467 	if (host->hw_ver.major >= 4) {
1468 		if (!FIELD_FIT(CLK_1US_CYCLES_MASK_V4, cycles_in_1us))
1469 			return -ERANGE;
1470 		core_clk_ctrl_reg &= ~CLK_1US_CYCLES_MASK_V4;
1471 		core_clk_ctrl_reg |= FIELD_PREP(CLK_1US_CYCLES_MASK_V4, cycles_in_1us);
1472 	} else {
1473 		if (!FIELD_FIT(CLK_1US_CYCLES_MASK, cycles_in_1us))
1474 			return -ERANGE;
1475 		core_clk_ctrl_reg &= ~CLK_1US_CYCLES_MASK;
1476 		core_clk_ctrl_reg |= FIELD_PREP(CLK_1US_CYCLES_MASK, cycles_in_1us);
1477 	}
1478 
1479 	/* Clear CORE_CLK_DIV_EN */
1480 	core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT;
1481 
1482 	err = ufshcd_dme_set(hba,
1483 			    UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
1484 			    core_clk_ctrl_reg);
1485 	if (err)
1486 		return err;
1487 
1488 	/* Configure unipro core clk 40ns attribute */
1489 	return ufs_qcom_set_clk_40ns_cycles(hba, cycles_in_1us);
1490 }
1491 
ufs_qcom_clk_scale_up_pre_change(struct ufs_hba * hba,unsigned long freq)1492 static int ufs_qcom_clk_scale_up_pre_change(struct ufs_hba *hba, unsigned long freq)
1493 {
1494 	int ret;
1495 
1496 	ret = ufs_qcom_cfg_timers(hba, true, freq);
1497 	if (ret) {
1498 		dev_err(hba->dev, "%s ufs cfg timer failed\n", __func__);
1499 		return ret;
1500 	}
1501 	/* set unipro core clock attributes and clear clock divider */
1502 	return ufs_qcom_set_core_clk_ctrl(hba, true, freq);
1503 }
1504 
ufs_qcom_clk_scale_up_post_change(struct ufs_hba * hba)1505 static int ufs_qcom_clk_scale_up_post_change(struct ufs_hba *hba)
1506 {
1507 	return 0;
1508 }
1509 
ufs_qcom_clk_scale_down_pre_change(struct ufs_hba * hba)1510 static int ufs_qcom_clk_scale_down_pre_change(struct ufs_hba *hba)
1511 {
1512 	int err;
1513 	u32 core_clk_ctrl_reg;
1514 
1515 	err = ufshcd_dme_get(hba,
1516 			    UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
1517 			    &core_clk_ctrl_reg);
1518 
1519 	/* make sure CORE_CLK_DIV_EN is cleared */
1520 	if (!err &&
1521 	    (core_clk_ctrl_reg & DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT)) {
1522 		core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT;
1523 		err = ufshcd_dme_set(hba,
1524 				    UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
1525 				    core_clk_ctrl_reg);
1526 	}
1527 
1528 	return err;
1529 }
1530 
ufs_qcom_clk_scale_down_post_change(struct ufs_hba * hba,unsigned long freq)1531 static int ufs_qcom_clk_scale_down_post_change(struct ufs_hba *hba, unsigned long freq)
1532 {
1533 	int ret;
1534 
1535 	ret = ufs_qcom_cfg_timers(hba, false, freq);
1536 	if (ret) {
1537 		dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n",	__func__);
1538 		return ret;
1539 	}
1540 	/* set unipro core clock attributes and clear clock divider */
1541 	return ufs_qcom_set_core_clk_ctrl(hba, false, freq);
1542 }
1543 
ufs_qcom_clk_scale_notify(struct ufs_hba * hba,bool scale_up,unsigned long target_freq,enum ufs_notify_change_status status)1544 static int ufs_qcom_clk_scale_notify(struct ufs_hba *hba, bool scale_up,
1545 				     unsigned long target_freq,
1546 				     enum ufs_notify_change_status status)
1547 {
1548 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1549 	int err;
1550 
1551 	/* check the host controller state before sending hibern8 cmd */
1552 	if (!ufshcd_is_hba_active(hba))
1553 		return 0;
1554 
1555 	if (status == PRE_CHANGE) {
1556 		err = ufshcd_uic_hibern8_enter(hba);
1557 		if (err)
1558 			return err;
1559 		if (scale_up)
1560 			err = ufs_qcom_clk_scale_up_pre_change(hba, target_freq);
1561 		else
1562 			err = ufs_qcom_clk_scale_down_pre_change(hba);
1563 
1564 		if (err) {
1565 			ufshcd_uic_hibern8_exit(hba);
1566 			return err;
1567 		}
1568 	} else {
1569 		if (scale_up)
1570 			err = ufs_qcom_clk_scale_up_post_change(hba);
1571 		else
1572 			err = ufs_qcom_clk_scale_down_post_change(hba, target_freq);
1573 
1574 
1575 		if (err) {
1576 			ufshcd_uic_hibern8_exit(hba);
1577 			return err;
1578 		}
1579 
1580 		ufs_qcom_icc_update_bw(host);
1581 		ufshcd_uic_hibern8_exit(hba);
1582 	}
1583 
1584 	return 0;
1585 }
1586 
ufs_qcom_enable_test_bus(struct ufs_qcom_host * host)1587 static void ufs_qcom_enable_test_bus(struct ufs_qcom_host *host)
1588 {
1589 	ufshcd_rmwl(host->hba, UFS_REG_TEST_BUS_EN,
1590 			UFS_REG_TEST_BUS_EN, REG_UFS_CFG1);
1591 	ufshcd_rmwl(host->hba, TEST_BUS_EN, TEST_BUS_EN, REG_UFS_CFG1);
1592 }
1593 
ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host * host)1594 static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host)
1595 {
1596 	/* provide a legal default configuration */
1597 	host->testbus.select_major = TSTBUS_UNIPRO;
1598 	host->testbus.select_minor = 37;
1599 }
1600 
ufs_qcom_testbus_cfg_is_ok(struct ufs_qcom_host * host)1601 static bool ufs_qcom_testbus_cfg_is_ok(struct ufs_qcom_host *host)
1602 {
1603 	if (host->testbus.select_major >= TSTBUS_MAX) {
1604 		dev_err(host->hba->dev,
1605 			"%s: UFS_CFG1[TEST_BUS_SEL} may not equal 0x%05X\n",
1606 			__func__, host->testbus.select_major);
1607 		return false;
1608 	}
1609 
1610 	return true;
1611 }
1612 
ufs_qcom_testbus_config(struct ufs_qcom_host * host)1613 int ufs_qcom_testbus_config(struct ufs_qcom_host *host)
1614 {
1615 	int reg;
1616 	int offset;
1617 	u32 mask = TEST_BUS_SUB_SEL_MASK;
1618 
1619 	if (!host)
1620 		return -EINVAL;
1621 
1622 	if (!ufs_qcom_testbus_cfg_is_ok(host))
1623 		return -EPERM;
1624 
1625 	switch (host->testbus.select_major) {
1626 	case TSTBUS_UAWM:
1627 		reg = UFS_TEST_BUS_CTRL_0;
1628 		offset = 24;
1629 		break;
1630 	case TSTBUS_UARM:
1631 		reg = UFS_TEST_BUS_CTRL_0;
1632 		offset = 16;
1633 		break;
1634 	case TSTBUS_TXUC:
1635 		reg = UFS_TEST_BUS_CTRL_0;
1636 		offset = 8;
1637 		break;
1638 	case TSTBUS_RXUC:
1639 		reg = UFS_TEST_BUS_CTRL_0;
1640 		offset = 0;
1641 		break;
1642 	case TSTBUS_DFC:
1643 		reg = UFS_TEST_BUS_CTRL_1;
1644 		offset = 24;
1645 		break;
1646 	case TSTBUS_TRLUT:
1647 		reg = UFS_TEST_BUS_CTRL_1;
1648 		offset = 16;
1649 		break;
1650 	case TSTBUS_TMRLUT:
1651 		reg = UFS_TEST_BUS_CTRL_1;
1652 		offset = 8;
1653 		break;
1654 	case TSTBUS_OCSC:
1655 		reg = UFS_TEST_BUS_CTRL_1;
1656 		offset = 0;
1657 		break;
1658 	case TSTBUS_WRAPPER:
1659 		reg = UFS_TEST_BUS_CTRL_2;
1660 		offset = 16;
1661 		break;
1662 	case TSTBUS_COMBINED:
1663 		reg = UFS_TEST_BUS_CTRL_2;
1664 		offset = 8;
1665 		break;
1666 	case TSTBUS_UTP_HCI:
1667 		reg = UFS_TEST_BUS_CTRL_2;
1668 		offset = 0;
1669 		break;
1670 	case TSTBUS_UNIPRO:
1671 		reg = UFS_UNIPRO_CFG;
1672 		offset = 20;
1673 		mask = 0xFFF;
1674 		break;
1675 	/*
1676 	 * No need for a default case, since
1677 	 * ufs_qcom_testbus_cfg_is_ok() checks that the configuration
1678 	 * is legal
1679 	 */
1680 	}
1681 	mask <<= offset;
1682 	ufshcd_rmwl(host->hba, TEST_BUS_SEL,
1683 		    (u32)host->testbus.select_major << 19,
1684 		    REG_UFS_CFG1);
1685 	ufshcd_rmwl(host->hba, mask,
1686 		    (u32)host->testbus.select_minor << offset,
1687 		    reg);
1688 	ufs_qcom_enable_test_bus(host);
1689 
1690 	return 0;
1691 }
1692 
ufs_qcom_dump_testbus(struct ufs_hba * hba)1693 static void ufs_qcom_dump_testbus(struct ufs_hba *hba)
1694 {
1695 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1696 	int i, j, nminor = 0, testbus_len = 0;
1697 	u32 *testbus __free(kfree) = NULL;
1698 	char *prefix;
1699 
1700 	testbus = kmalloc_array(256, sizeof(u32), GFP_KERNEL);
1701 	if (!testbus)
1702 		return;
1703 
1704 	for (j = 0; j < TSTBUS_MAX; j++) {
1705 		nminor = testbus_info[j].nminor;
1706 		prefix = testbus_info[j].prefix;
1707 		host->testbus.select_major = j;
1708 		testbus_len = nminor * sizeof(u32);
1709 		for (i = 0; i < nminor; i++) {
1710 			host->testbus.select_minor = i;
1711 			ufs_qcom_testbus_config(host);
1712 			testbus[i] = ufshcd_readl(hba, UFS_TEST_BUS);
1713 		}
1714 		print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
1715 			       16, 4, testbus, testbus_len, false);
1716 	}
1717 }
1718 
ufs_qcom_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix,enum ufshcd_res id)1719 static int ufs_qcom_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
1720 			      const char *prefix, enum ufshcd_res id)
1721 {
1722 	u32 *regs __free(kfree) = NULL;
1723 	size_t pos;
1724 
1725 	if (offset % 4 != 0 || len % 4 != 0)
1726 		return -EINVAL;
1727 
1728 	regs = kzalloc(len, GFP_ATOMIC);
1729 	if (!regs)
1730 		return -ENOMEM;
1731 
1732 	for (pos = 0; pos < len; pos += 4)
1733 		regs[pos / 4] = readl(hba->res[id].base + offset + pos);
1734 
1735 	print_hex_dump(KERN_ERR, prefix,
1736 		       len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,
1737 		       16, 4, regs, len, false);
1738 
1739 	return 0;
1740 }
1741 
ufs_qcom_dump_mcq_hci_regs(struct ufs_hba * hba)1742 static void ufs_qcom_dump_mcq_hci_regs(struct ufs_hba *hba)
1743 {
1744 	struct dump_info {
1745 		size_t offset;
1746 		size_t len;
1747 		const char *prefix;
1748 		enum ufshcd_res id;
1749 	};
1750 
1751 	struct dump_info mcq_dumps[] = {
1752 		{0x0, 256 * 4, "MCQ HCI-0 ", RES_MCQ},
1753 		{0x400, 256 * 4, "MCQ HCI-1 ", RES_MCQ},
1754 		{0x0, 5 * 4, "MCQ VS-0 ", RES_MCQ_VS},
1755 		{0x0, 256 * 4, "MCQ SQD-0 ", RES_MCQ_SQD},
1756 		{0x400, 256 * 4, "MCQ SQD-1 ", RES_MCQ_SQD},
1757 		{0x800, 256 * 4, "MCQ SQD-2 ", RES_MCQ_SQD},
1758 		{0xc00, 256 * 4, "MCQ SQD-3 ", RES_MCQ_SQD},
1759 		{0x1000, 256 * 4, "MCQ SQD-4 ", RES_MCQ_SQD},
1760 		{0x1400, 256 * 4, "MCQ SQD-5 ", RES_MCQ_SQD},
1761 		{0x1800, 256 * 4, "MCQ SQD-6 ", RES_MCQ_SQD},
1762 		{0x1c00, 256 * 4, "MCQ SQD-7 ", RES_MCQ_SQD},
1763 	};
1764 
1765 	for (int i = 0; i < ARRAY_SIZE(mcq_dumps); i++) {
1766 		ufs_qcom_dump_regs(hba, mcq_dumps[i].offset, mcq_dumps[i].len,
1767 				   mcq_dumps[i].prefix, mcq_dumps[i].id);
1768 		cond_resched();
1769 	}
1770 }
1771 
ufs_qcom_dump_dbg_regs(struct ufs_hba * hba)1772 static void ufs_qcom_dump_dbg_regs(struct ufs_hba *hba)
1773 {
1774 	u32 reg;
1775 	struct ufs_qcom_host *host;
1776 
1777 	host = ufshcd_get_variant(hba);
1778 
1779 	dev_err(hba->dev, "HW_H8_ENTER_CNT=%d\n", ufshcd_readl(hba, REG_UFS_HW_H8_ENTER_CNT));
1780 	dev_err(hba->dev, "HW_H8_EXIT_CNT=%d\n", ufshcd_readl(hba, REG_UFS_HW_H8_EXIT_CNT));
1781 
1782 	dev_err(hba->dev, "SW_H8_ENTER_CNT=%d\n", ufshcd_readl(hba, REG_UFS_SW_H8_ENTER_CNT));
1783 	dev_err(hba->dev, "SW_H8_EXIT_CNT=%d\n", ufshcd_readl(hba, REG_UFS_SW_H8_EXIT_CNT));
1784 
1785 	dev_err(hba->dev, "SW_AFTER_HW_H8_ENTER_CNT=%d\n",
1786 			ufshcd_readl(hba, REG_UFS_SW_AFTER_HW_H8_ENTER_CNT));
1787 
1788 	ufshcd_dump_regs(hba, REG_UFS_SYS1CLK_1US, 16 * 4,
1789 			 "HCI Vendor Specific Registers ");
1790 
1791 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_REG_OCSC);
1792 	ufshcd_dump_regs(hba, reg, 44 * 4, "UFS_UFS_DBG_RD_REG_OCSC ");
1793 
1794 	reg = ufshcd_readl(hba, REG_UFS_CFG1);
1795 	reg |= UTP_DBG_RAMS_EN;
1796 	ufshcd_writel(hba, reg, REG_UFS_CFG1);
1797 
1798 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_EDTL_RAM);
1799 	ufshcd_dump_regs(hba, reg, 32 * 4, "UFS_UFS_DBG_RD_EDTL_RAM ");
1800 
1801 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_DESC_RAM);
1802 	ufshcd_dump_regs(hba, reg, 128 * 4, "UFS_UFS_DBG_RD_DESC_RAM ");
1803 
1804 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_PRDT_RAM);
1805 	ufshcd_dump_regs(hba, reg, 64 * 4, "UFS_UFS_DBG_RD_PRDT_RAM ");
1806 
1807 	/* clear bit 17 - UTP_DBG_RAMS_EN */
1808 	ufshcd_rmwl(hba, UTP_DBG_RAMS_EN, 0, REG_UFS_CFG1);
1809 
1810 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UAWM);
1811 	ufshcd_dump_regs(hba, reg, 4 * 4, "UFS_DBG_RD_REG_UAWM ");
1812 
1813 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UARM);
1814 	ufshcd_dump_regs(hba, reg, 4 * 4, "UFS_DBG_RD_REG_UARM ");
1815 
1816 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TXUC);
1817 	ufshcd_dump_regs(hba, reg, 48 * 4, "UFS_DBG_RD_REG_TXUC ");
1818 
1819 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_RXUC);
1820 	ufshcd_dump_regs(hba, reg, 27 * 4, "UFS_DBG_RD_REG_RXUC ");
1821 
1822 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_DFC);
1823 	ufshcd_dump_regs(hba, reg, 19 * 4, "UFS_DBG_RD_REG_DFC ");
1824 
1825 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TRLUT);
1826 	ufshcd_dump_regs(hba, reg, 34 * 4, "UFS_DBG_RD_REG_TRLUT ");
1827 
1828 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TMRLUT);
1829 	ufshcd_dump_regs(hba, reg, 9 * 4, "UFS_DBG_RD_REG_TMRLUT ");
1830 
1831 	if (hba->mcq_enabled) {
1832 		reg = ufs_qcom_get_debug_reg_offset(host, UFS_RD_REG_MCQ);
1833 		ufshcd_dump_regs(hba, reg, 64 * 4, "HCI MCQ Debug Registers ");
1834 	}
1835 
1836 	/* ensure below dumps occur only in task context due to blocking calls. */
1837 	if (in_task()) {
1838 		/* Dump MCQ Host Vendor Specific Registers */
1839 		if (hba->mcq_enabled)
1840 			ufs_qcom_dump_mcq_hci_regs(hba);
1841 
1842 		/* voluntarily yield the CPU as we are dumping too much data */
1843 		ufshcd_dump_regs(hba, UFS_TEST_BUS, 4, "UFS_TEST_BUS ");
1844 		cond_resched();
1845 		ufs_qcom_dump_testbus(hba);
1846 	}
1847 }
1848 
1849 /**
1850  * ufs_qcom_device_reset() - toggle the (optional) device reset line
1851  * @hba: per-adapter instance
1852  *
1853  * Toggles the (optional) reset line to reset the attached device.
1854  */
ufs_qcom_device_reset(struct ufs_hba * hba)1855 static int ufs_qcom_device_reset(struct ufs_hba *hba)
1856 {
1857 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1858 
1859 	/* reset gpio is optional */
1860 	if (!host->device_reset)
1861 		return -EOPNOTSUPP;
1862 
1863 	/*
1864 	 * The UFS device shall detect reset pulses of 1us, sleep for 10us to
1865 	 * be on the safe side.
1866 	 */
1867 	ufs_qcom_device_reset_ctrl(hba, true);
1868 	usleep_range(10, 15);
1869 
1870 	ufs_qcom_device_reset_ctrl(hba, false);
1871 	usleep_range(10, 15);
1872 
1873 	return 0;
1874 }
1875 
1876 #if IS_ENABLED(CONFIG_DEVFREQ_GOV_SIMPLE_ONDEMAND)
ufs_qcom_config_scaling_param(struct ufs_hba * hba,struct devfreq_dev_profile * p,struct devfreq_simple_ondemand_data * d)1877 static void ufs_qcom_config_scaling_param(struct ufs_hba *hba,
1878 					struct devfreq_dev_profile *p,
1879 					struct devfreq_simple_ondemand_data *d)
1880 {
1881 	p->polling_ms = 60;
1882 	p->timer = DEVFREQ_TIMER_DELAYED;
1883 	d->upthreshold = 70;
1884 	d->downdifferential = 5;
1885 
1886 	hba->clk_scaling.suspend_on_no_request = true;
1887 }
1888 #else
ufs_qcom_config_scaling_param(struct ufs_hba * hba,struct devfreq_dev_profile * p,struct devfreq_simple_ondemand_data * data)1889 static void ufs_qcom_config_scaling_param(struct ufs_hba *hba,
1890 		struct devfreq_dev_profile *p,
1891 		struct devfreq_simple_ondemand_data *data)
1892 {
1893 }
1894 #endif
1895 
1896 /* Resources */
1897 static const struct ufshcd_res_info ufs_res_info[RES_MAX] = {
1898 	{.name = "ufs_mem",},
1899 	{.name = "mcq",},
1900 	/* Submission Queue DAO */
1901 	{.name = "mcq_sqd",},
1902 	/* Submission Queue Interrupt Status */
1903 	{.name = "mcq_sqis",},
1904 	/* Completion Queue DAO */
1905 	{.name = "mcq_cqd",},
1906 	/* Completion Queue Interrupt Status */
1907 	{.name = "mcq_cqis",},
1908 	/* MCQ vendor specific */
1909 	{.name = "mcq_vs",},
1910 };
1911 
ufs_qcom_mcq_config_resource(struct ufs_hba * hba)1912 static int ufs_qcom_mcq_config_resource(struct ufs_hba *hba)
1913 {
1914 	struct platform_device *pdev = to_platform_device(hba->dev);
1915 	struct ufshcd_res_info *res;
1916 	struct resource *res_mem, *res_mcq;
1917 	int i, ret;
1918 
1919 	memcpy(hba->res, ufs_res_info, sizeof(ufs_res_info));
1920 
1921 	for (i = 0; i < RES_MAX; i++) {
1922 		res = &hba->res[i];
1923 		res->resource = platform_get_resource_byname(pdev,
1924 							     IORESOURCE_MEM,
1925 							     res->name);
1926 		if (!res->resource) {
1927 			dev_info(hba->dev, "Resource %s not provided\n", res->name);
1928 			if (i == RES_UFS)
1929 				return -ENODEV;
1930 			continue;
1931 		} else if (i == RES_UFS) {
1932 			res_mem = res->resource;
1933 			res->base = hba->mmio_base;
1934 			continue;
1935 		}
1936 
1937 		res->base = devm_ioremap_resource(hba->dev, res->resource);
1938 		if (IS_ERR(res->base)) {
1939 			dev_err(hba->dev, "Failed to map res %s, err=%d\n",
1940 					 res->name, (int)PTR_ERR(res->base));
1941 			ret = PTR_ERR(res->base);
1942 			res->base = NULL;
1943 			return ret;
1944 		}
1945 	}
1946 
1947 	/* MCQ resource provided in DT */
1948 	res = &hba->res[RES_MCQ];
1949 	/* Bail if MCQ resource is provided */
1950 	if (res->base)
1951 		goto out;
1952 
1953 	/* Explicitly allocate MCQ resource from ufs_mem */
1954 	res_mcq = devm_kzalloc(hba->dev, sizeof(*res_mcq), GFP_KERNEL);
1955 	if (!res_mcq)
1956 		return -ENOMEM;
1957 
1958 	res_mcq->start = res_mem->start +
1959 			 MCQ_SQATTR_OFFSET(hba->mcq_capabilities);
1960 	res_mcq->end = res_mcq->start + hba->nr_hw_queues * MCQ_QCFG_SIZE - 1;
1961 	res_mcq->flags = res_mem->flags;
1962 	res_mcq->name = "mcq";
1963 
1964 	ret = insert_resource(&iomem_resource, res_mcq);
1965 	if (ret) {
1966 		dev_err(hba->dev, "Failed to insert MCQ resource, err=%d\n",
1967 			ret);
1968 		return ret;
1969 	}
1970 
1971 	res->base = devm_ioremap_resource(hba->dev, res_mcq);
1972 	if (IS_ERR(res->base)) {
1973 		dev_err(hba->dev, "MCQ registers mapping failed, err=%d\n",
1974 			(int)PTR_ERR(res->base));
1975 		ret = PTR_ERR(res->base);
1976 		goto ioremap_err;
1977 	}
1978 
1979 out:
1980 	hba->mcq_base = res->base;
1981 	return 0;
1982 ioremap_err:
1983 	res->base = NULL;
1984 	remove_resource(res_mcq);
1985 	return ret;
1986 }
1987 
ufs_qcom_op_runtime_config(struct ufs_hba * hba)1988 static int ufs_qcom_op_runtime_config(struct ufs_hba *hba)
1989 {
1990 	struct ufshcd_res_info *mem_res, *sqdao_res;
1991 	struct ufshcd_mcq_opr_info_t *opr;
1992 	int i;
1993 
1994 	mem_res = &hba->res[RES_UFS];
1995 	sqdao_res = &hba->res[RES_MCQ_SQD];
1996 
1997 	if (!mem_res->base || !sqdao_res->base)
1998 		return -EINVAL;
1999 
2000 	for (i = 0; i < OPR_MAX; i++) {
2001 		opr = &hba->mcq_opr[i];
2002 		opr->offset = sqdao_res->resource->start -
2003 			      mem_res->resource->start + 0x40 * i;
2004 		opr->stride = 0x100;
2005 		opr->base = sqdao_res->base + 0x40 * i;
2006 	}
2007 
2008 	return 0;
2009 }
2010 
ufs_qcom_get_hba_mac(struct ufs_hba * hba)2011 static int ufs_qcom_get_hba_mac(struct ufs_hba *hba)
2012 {
2013 	/* Qualcomm HC supports up to 64 */
2014 	return MAX_SUPP_MAC;
2015 }
2016 
ufs_qcom_get_outstanding_cqs(struct ufs_hba * hba,unsigned long * ocqs)2017 static int ufs_qcom_get_outstanding_cqs(struct ufs_hba *hba,
2018 					unsigned long *ocqs)
2019 {
2020 	struct ufshcd_res_info *mcq_vs_res = &hba->res[RES_MCQ_VS];
2021 
2022 	if (!mcq_vs_res->base)
2023 		return -EINVAL;
2024 
2025 	*ocqs = readl(mcq_vs_res->base + UFS_MEM_CQIS_VS);
2026 
2027 	return 0;
2028 }
2029 
ufs_qcom_write_msi_msg(struct msi_desc * desc,struct msi_msg * msg)2030 static void ufs_qcom_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2031 {
2032 	struct device *dev = msi_desc_to_dev(desc);
2033 	struct ufs_hba *hba = dev_get_drvdata(dev);
2034 
2035 	ufshcd_mcq_config_esi(hba, msg);
2036 }
2037 
2038 struct ufs_qcom_irq {
2039 	unsigned int		irq;
2040 	unsigned int		idx;
2041 	struct ufs_hba		*hba;
2042 };
2043 
ufs_qcom_mcq_esi_handler(int irq,void * data)2044 static irqreturn_t ufs_qcom_mcq_esi_handler(int irq, void *data)
2045 {
2046 	struct ufs_qcom_irq *qi = data;
2047 	struct ufs_hba *hba = qi->hba;
2048 	struct ufs_hw_queue *hwq = &hba->uhq[qi->idx];
2049 
2050 	ufshcd_mcq_write_cqis(hba, 0x1, qi->idx);
2051 	ufshcd_mcq_poll_cqe_lock(hba, hwq);
2052 
2053 	return IRQ_HANDLED;
2054 }
2055 
ufs_qcom_irq_free(struct ufs_qcom_irq * uqi)2056 static void ufs_qcom_irq_free(struct ufs_qcom_irq *uqi)
2057 {
2058 	for (struct ufs_qcom_irq *q = uqi; q->irq; q++)
2059 		devm_free_irq(q->hba->dev, q->irq, q->hba);
2060 
2061 	platform_device_msi_free_irqs_all(uqi->hba->dev);
2062 	devm_kfree(uqi->hba->dev, uqi);
2063 }
2064 
DEFINE_FREE(ufs_qcom_irq,struct ufs_qcom_irq *,if (_T)ufs_qcom_irq_free (_T))2065 DEFINE_FREE(ufs_qcom_irq, struct ufs_qcom_irq *, if (_T) ufs_qcom_irq_free(_T))
2066 
2067 static int ufs_qcom_config_esi(struct ufs_hba *hba)
2068 {
2069 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
2070 	int nr_irqs, ret;
2071 
2072 	if (host->esi_enabled)
2073 		return 0;
2074 
2075 	/*
2076 	 * 1. We only handle CQs as of now.
2077 	 * 2. Poll queues do not need ESI.
2078 	 */
2079 	nr_irqs = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
2080 
2081 	struct ufs_qcom_irq *qi __free(ufs_qcom_irq) =
2082 		devm_kcalloc(hba->dev, nr_irqs, sizeof(*qi), GFP_KERNEL);
2083 	if (!qi)
2084 		return -ENOMEM;
2085 	/* Preset so __free() has a pointer to hba in all error paths */
2086 	qi[0].hba = hba;
2087 
2088 	ret = platform_device_msi_init_and_alloc_irqs(hba->dev, nr_irqs,
2089 						      ufs_qcom_write_msi_msg);
2090 	if (ret) {
2091 		dev_err(hba->dev, "Failed to request Platform MSI %d\n", ret);
2092 		return ret;
2093 	}
2094 
2095 	for (int idx = 0; idx < nr_irqs; idx++) {
2096 		qi[idx].irq = msi_get_virq(hba->dev, idx);
2097 		qi[idx].idx = idx;
2098 		qi[idx].hba = hba;
2099 
2100 		ret = devm_request_irq(hba->dev, qi[idx].irq, ufs_qcom_mcq_esi_handler,
2101 				       IRQF_SHARED, "qcom-mcq-esi", qi + idx);
2102 		if (ret) {
2103 			dev_err(hba->dev, "%s: Fail to request IRQ for %d, err = %d\n",
2104 				__func__, qi[idx].irq, ret);
2105 			qi[idx].irq = 0;
2106 			return ret;
2107 		}
2108 	}
2109 
2110 	retain_and_null_ptr(qi);
2111 
2112 	if (host->hw_ver.major == 6 && host->hw_ver.minor == 0 &&
2113 	    host->hw_ver.step == 0) {
2114 		ufshcd_rmwl(hba, ESI_VEC_MASK, FIELD_PREP(ESI_VEC_MASK, MAX_ESI_VEC - 1),
2115 			    REG_UFS_CFG3);
2116 	}
2117 	ufshcd_mcq_enable_esi(hba);
2118 	host->esi_enabled = true;
2119 	return 0;
2120 }
2121 
ufs_qcom_opp_freq_to_clk_freq(struct ufs_hba * hba,unsigned long freq,char * name)2122 static unsigned long ufs_qcom_opp_freq_to_clk_freq(struct ufs_hba *hba,
2123 						   unsigned long freq, char *name)
2124 {
2125 	struct ufs_clk_info *clki;
2126 	struct dev_pm_opp *opp;
2127 	unsigned long clk_freq;
2128 	int idx = 0;
2129 	bool found = false;
2130 
2131 	opp = dev_pm_opp_find_freq_exact_indexed(hba->dev, freq, 0, true);
2132 	if (IS_ERR(opp)) {
2133 		dev_err(hba->dev, "Failed to find OPP for exact frequency %lu\n", freq);
2134 		return 0;
2135 	}
2136 
2137 	list_for_each_entry(clki, &hba->clk_list_head, list) {
2138 		if (!strcmp(clki->name, name)) {
2139 			found = true;
2140 			break;
2141 		}
2142 
2143 		idx++;
2144 	}
2145 
2146 	if (!found) {
2147 		dev_err(hba->dev, "Failed to find clock '%s' in clk list\n", name);
2148 		dev_pm_opp_put(opp);
2149 		return 0;
2150 	}
2151 
2152 	clk_freq = dev_pm_opp_get_freq_indexed(opp, idx);
2153 
2154 	dev_pm_opp_put(opp);
2155 
2156 	return clk_freq;
2157 }
2158 
ufs_qcom_freq_to_gear_speed(struct ufs_hba * hba,unsigned long freq)2159 static u32 ufs_qcom_freq_to_gear_speed(struct ufs_hba *hba, unsigned long freq)
2160 {
2161 	u32 gear = UFS_HS_DONT_CHANGE;
2162 	unsigned long unipro_freq;
2163 
2164 	if (!hba->use_pm_opp)
2165 		return gear;
2166 
2167 	unipro_freq = ufs_qcom_opp_freq_to_clk_freq(hba, freq, "core_clk_unipro");
2168 	switch (unipro_freq) {
2169 	case 403000000:
2170 		gear = UFS_HS_G5;
2171 		break;
2172 	case 300000000:
2173 		gear = UFS_HS_G4;
2174 		break;
2175 	case 201500000:
2176 		gear = UFS_HS_G3;
2177 		break;
2178 	case 150000000:
2179 	case 100000000:
2180 		gear = UFS_HS_G2;
2181 		break;
2182 	case 75000000:
2183 	case 37500000:
2184 		gear = UFS_HS_G1;
2185 		break;
2186 	default:
2187 		dev_err(hba->dev, "%s: Unsupported clock freq : %lu\n", __func__, freq);
2188 		return UFS_HS_DONT_CHANGE;
2189 	}
2190 
2191 	return min_t(u32, gear, hba->max_pwr_info.info.gear_rx);
2192 }
2193 
2194 /*
2195  * struct ufs_hba_qcom_vops - UFS QCOM specific variant operations
2196  *
2197  * The variant operations configure the necessary controller and PHY
2198  * handshake during initialization.
2199  */
2200 static const struct ufs_hba_variant_ops ufs_hba_qcom_vops = {
2201 	.name                   = "qcom",
2202 	.init                   = ufs_qcom_init,
2203 	.exit                   = ufs_qcom_exit,
2204 	.get_ufs_hci_version	= ufs_qcom_get_ufs_hci_version,
2205 	.clk_scale_notify	= ufs_qcom_clk_scale_notify,
2206 	.setup_clocks           = ufs_qcom_setup_clocks,
2207 	.hce_enable_notify      = ufs_qcom_hce_enable_notify,
2208 	.link_startup_notify    = ufs_qcom_link_startup_notify,
2209 	.pwr_change_notify	= ufs_qcom_pwr_change_notify,
2210 	.apply_dev_quirks	= ufs_qcom_apply_dev_quirks,
2211 	.fixup_dev_quirks       = ufs_qcom_fixup_dev_quirks,
2212 	.suspend		= ufs_qcom_suspend,
2213 	.resume			= ufs_qcom_resume,
2214 	.dbg_register_dump	= ufs_qcom_dump_dbg_regs,
2215 	.device_reset		= ufs_qcom_device_reset,
2216 	.config_scaling_param = ufs_qcom_config_scaling_param,
2217 	.mcq_config_resource	= ufs_qcom_mcq_config_resource,
2218 	.get_hba_mac		= ufs_qcom_get_hba_mac,
2219 	.op_runtime_config	= ufs_qcom_op_runtime_config,
2220 	.get_outstanding_cqs	= ufs_qcom_get_outstanding_cqs,
2221 	.config_esi		= ufs_qcom_config_esi,
2222 	.freq_to_gear_speed	= ufs_qcom_freq_to_gear_speed,
2223 };
2224 
2225 /**
2226  * ufs_qcom_probe - probe routine of the driver
2227  * @pdev: pointer to Platform device handle
2228  *
2229  * Return: zero for success and non-zero for failure.
2230  */
ufs_qcom_probe(struct platform_device * pdev)2231 static int ufs_qcom_probe(struct platform_device *pdev)
2232 {
2233 	int err;
2234 	struct device *dev = &pdev->dev;
2235 
2236 	/* Perform generic probe */
2237 	err = ufshcd_pltfrm_init(pdev, &ufs_hba_qcom_vops);
2238 	if (err)
2239 		return dev_err_probe(dev, err, "ufshcd_pltfrm_init() failed\n");
2240 
2241 	return 0;
2242 }
2243 
2244 /**
2245  * ufs_qcom_remove - set driver_data of the device to NULL
2246  * @pdev: pointer to platform device handle
2247  *
2248  * Always returns 0
2249  */
ufs_qcom_remove(struct platform_device * pdev)2250 static void ufs_qcom_remove(struct platform_device *pdev)
2251 {
2252 	struct ufs_hba *hba =  platform_get_drvdata(pdev);
2253 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
2254 
2255 	ufshcd_pltfrm_remove(pdev);
2256 	if (host->esi_enabled)
2257 		platform_device_msi_free_irqs_all(hba->dev);
2258 }
2259 
2260 static const struct ufs_qcom_drvdata ufs_qcom_sm8550_drvdata = {
2261 	.quirks = UFSHCD_QUIRK_BROKEN_LSDBS_CAP,
2262 	.no_phy_retention = true,
2263 };
2264 
2265 static const struct of_device_id ufs_qcom_of_match[] __maybe_unused = {
2266 	{ .compatible = "qcom,ufshc" },
2267 	{ .compatible = "qcom,sm8550-ufshc", .data = &ufs_qcom_sm8550_drvdata },
2268 	{ .compatible = "qcom,sm8650-ufshc", .data = &ufs_qcom_sm8550_drvdata },
2269 	{},
2270 };
2271 MODULE_DEVICE_TABLE(of, ufs_qcom_of_match);
2272 
2273 #ifdef CONFIG_ACPI
2274 static const struct acpi_device_id ufs_qcom_acpi_match[] = {
2275 	{ "QCOM24A5" },
2276 	{ },
2277 };
2278 MODULE_DEVICE_TABLE(acpi, ufs_qcom_acpi_match);
2279 #endif
2280 
2281 static const struct dev_pm_ops ufs_qcom_pm_ops = {
2282 	SET_RUNTIME_PM_OPS(ufshcd_runtime_suspend, ufshcd_runtime_resume, NULL)
2283 	.prepare	 = ufshcd_suspend_prepare,
2284 	.complete	 = ufshcd_resume_complete,
2285 #ifdef CONFIG_PM_SLEEP
2286 	.suspend         = ufshcd_system_suspend,
2287 	.resume          = ufshcd_system_resume,
2288 	.freeze          = ufshcd_system_freeze,
2289 	.restore         = ufshcd_system_restore,
2290 	.thaw            = ufshcd_system_thaw,
2291 #endif
2292 };
2293 
2294 static struct platform_driver ufs_qcom_pltform = {
2295 	.probe	= ufs_qcom_probe,
2296 	.remove = ufs_qcom_remove,
2297 	.driver	= {
2298 		.name	= "ufshcd-qcom",
2299 		.pm	= &ufs_qcom_pm_ops,
2300 		.of_match_table = of_match_ptr(ufs_qcom_of_match),
2301 		.acpi_match_table = ACPI_PTR(ufs_qcom_acpi_match),
2302 	},
2303 };
2304 module_platform_driver(ufs_qcom_pltform);
2305 
2306 MODULE_DESCRIPTION("Qualcomm UFS host controller driver");
2307 MODULE_LICENSE("GPL v2");
2308