xref: /linux/net/ipv4/udp.c (revision 3cf0a98fea776adb09087e521fe150c295a4b031)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip.h>
104 #include <net/ip_tunnels.h>
105 #include <net/route.h>
106 #include <net/checksum.h>
107 #include <net/gso.h>
108 #include <net/xfrm.h>
109 #include <trace/events/udp.h>
110 #include <linux/static_key.h>
111 #include <linux/btf_ids.h>
112 #include <trace/events/skb.h>
113 #include <net/busy_poll.h>
114 #include "udp_impl.h"
115 #include <net/sock_reuseport.h>
116 #include <net/addrconf.h>
117 #include <net/udp_tunnel.h>
118 #include <net/gro.h>
119 #if IS_ENABLED(CONFIG_IPV6)
120 #include <net/ipv6_stubs.h>
121 #endif
122 
123 struct udp_table udp_table __read_mostly;
124 EXPORT_SYMBOL(udp_table);
125 
126 long sysctl_udp_mem[3] __read_mostly;
127 EXPORT_SYMBOL(sysctl_udp_mem);
128 
129 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
130 EXPORT_SYMBOL(udp_memory_allocated);
131 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
132 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
133 
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
136 
udp_get_table_prot(struct sock * sk)137 static struct udp_table *udp_get_table_prot(struct sock *sk)
138 {
139 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
140 }
141 
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,unsigned int log)142 static int udp_lib_lport_inuse(struct net *net, __u16 num,
143 			       const struct udp_hslot *hslot,
144 			       unsigned long *bitmap,
145 			       struct sock *sk, unsigned int log)
146 {
147 	struct sock *sk2;
148 	kuid_t uid = sock_i_uid(sk);
149 
150 	sk_for_each(sk2, &hslot->head) {
151 		if (net_eq(sock_net(sk2), net) &&
152 		    sk2 != sk &&
153 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
154 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
155 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
156 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
157 		    inet_rcv_saddr_equal(sk, sk2, true)) {
158 			if (sk2->sk_reuseport && sk->sk_reuseport &&
159 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
160 			    uid_eq(uid, sock_i_uid(sk2))) {
161 				if (!bitmap)
162 					return 0;
163 			} else {
164 				if (!bitmap)
165 					return 1;
166 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
167 					  bitmap);
168 			}
169 		}
170 	}
171 	return 0;
172 }
173 
174 /*
175  * Note: we still hold spinlock of primary hash chain, so no other writer
176  * can insert/delete a socket with local_port == num
177  */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk)178 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
179 				struct udp_hslot *hslot2,
180 				struct sock *sk)
181 {
182 	struct sock *sk2;
183 	kuid_t uid = sock_i_uid(sk);
184 	int res = 0;
185 
186 	spin_lock(&hslot2->lock);
187 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
188 		if (net_eq(sock_net(sk2), net) &&
189 		    sk2 != sk &&
190 		    (udp_sk(sk2)->udp_port_hash == num) &&
191 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
192 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
193 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
194 		    inet_rcv_saddr_equal(sk, sk2, true)) {
195 			if (sk2->sk_reuseport && sk->sk_reuseport &&
196 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
197 			    uid_eq(uid, sock_i_uid(sk2))) {
198 				res = 0;
199 			} else {
200 				res = 1;
201 			}
202 			break;
203 		}
204 	}
205 	spin_unlock(&hslot2->lock);
206 	return res;
207 }
208 
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot)209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
210 {
211 	struct net *net = sock_net(sk);
212 	kuid_t uid = sock_i_uid(sk);
213 	struct sock *sk2;
214 
215 	sk_for_each(sk2, &hslot->head) {
216 		if (net_eq(sock_net(sk2), net) &&
217 		    sk2 != sk &&
218 		    sk2->sk_family == sk->sk_family &&
219 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
220 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
221 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
222 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
223 		    inet_rcv_saddr_equal(sk, sk2, false)) {
224 			return reuseport_add_sock(sk, sk2,
225 						  inet_rcv_saddr_any(sk));
226 		}
227 	}
228 
229 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
230 }
231 
232 /**
233  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
234  *
235  *  @sk:          socket struct in question
236  *  @snum:        port number to look up
237  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
238  *                   with NULL address
239  */
udp_lib_get_port(struct sock * sk,unsigned short snum,unsigned int hash2_nulladdr)240 int udp_lib_get_port(struct sock *sk, unsigned short snum,
241 		     unsigned int hash2_nulladdr)
242 {
243 	struct udp_table *udptable = udp_get_table_prot(sk);
244 	struct udp_hslot *hslot, *hslot2;
245 	struct net *net = sock_net(sk);
246 	int error = -EADDRINUSE;
247 
248 	if (!snum) {
249 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
250 		unsigned short first, last;
251 		int low, high, remaining;
252 		unsigned int rand;
253 
254 		inet_sk_get_local_port_range(sk, &low, &high);
255 		remaining = (high - low) + 1;
256 
257 		rand = get_random_u32();
258 		first = reciprocal_scale(rand, remaining) + low;
259 		/*
260 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
261 		 */
262 		rand = (rand | 1) * (udptable->mask + 1);
263 		last = first + udptable->mask + 1;
264 		do {
265 			hslot = udp_hashslot(udptable, net, first);
266 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
267 			spin_lock_bh(&hslot->lock);
268 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
269 					    udptable->log);
270 
271 			snum = first;
272 			/*
273 			 * Iterate on all possible values of snum for this hash.
274 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
275 			 * give us randomization and full range coverage.
276 			 */
277 			do {
278 				if (low <= snum && snum <= high &&
279 				    !test_bit(snum >> udptable->log, bitmap) &&
280 				    !inet_is_local_reserved_port(net, snum))
281 					goto found;
282 				snum += rand;
283 			} while (snum != first);
284 			spin_unlock_bh(&hslot->lock);
285 			cond_resched();
286 		} while (++first != last);
287 		goto fail;
288 	} else {
289 		hslot = udp_hashslot(udptable, net, snum);
290 		spin_lock_bh(&hslot->lock);
291 		if (hslot->count > 10) {
292 			int exist;
293 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
294 
295 			slot2          &= udptable->mask;
296 			hash2_nulladdr &= udptable->mask;
297 
298 			hslot2 = udp_hashslot2(udptable, slot2);
299 			if (hslot->count < hslot2->count)
300 				goto scan_primary_hash;
301 
302 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
303 			if (!exist && (hash2_nulladdr != slot2)) {
304 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
305 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
306 							     sk);
307 			}
308 			if (exist)
309 				goto fail_unlock;
310 			else
311 				goto found;
312 		}
313 scan_primary_hash:
314 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
315 			goto fail_unlock;
316 	}
317 found:
318 	inet_sk(sk)->inet_num = snum;
319 	udp_sk(sk)->udp_port_hash = snum;
320 	udp_sk(sk)->udp_portaddr_hash ^= snum;
321 	if (sk_unhashed(sk)) {
322 		if (sk->sk_reuseport &&
323 		    udp_reuseport_add_sock(sk, hslot)) {
324 			inet_sk(sk)->inet_num = 0;
325 			udp_sk(sk)->udp_port_hash = 0;
326 			udp_sk(sk)->udp_portaddr_hash ^= snum;
327 			goto fail_unlock;
328 		}
329 
330 		sock_set_flag(sk, SOCK_RCU_FREE);
331 
332 		sk_add_node_rcu(sk, &hslot->head);
333 		hslot->count++;
334 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
335 
336 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
337 		spin_lock(&hslot2->lock);
338 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
339 		    sk->sk_family == AF_INET6)
340 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		else
343 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
344 					   &hslot2->head);
345 		hslot2->count++;
346 		spin_unlock(&hslot2->lock);
347 	}
348 
349 	error = 0;
350 fail_unlock:
351 	spin_unlock_bh(&hslot->lock);
352 fail:
353 	return error;
354 }
355 EXPORT_SYMBOL(udp_lib_get_port);
356 
udp_v4_get_port(struct sock * sk,unsigned short snum)357 int udp_v4_get_port(struct sock *sk, unsigned short snum)
358 {
359 	unsigned int hash2_nulladdr =
360 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
361 	unsigned int hash2_partial =
362 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
363 
364 	/* precompute partial secondary hash */
365 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
366 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
367 }
368 
compute_score(struct sock * sk,const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif,int sdif)369 static int compute_score(struct sock *sk, const struct net *net,
370 			 __be32 saddr, __be16 sport,
371 			 __be32 daddr, unsigned short hnum,
372 			 int dif, int sdif)
373 {
374 	int score;
375 	struct inet_sock *inet;
376 	bool dev_match;
377 
378 	if (!net_eq(sock_net(sk), net) ||
379 	    udp_sk(sk)->udp_port_hash != hnum ||
380 	    ipv6_only_sock(sk))
381 		return -1;
382 
383 	if (sk->sk_rcv_saddr != daddr)
384 		return -1;
385 
386 	score = (sk->sk_family == PF_INET) ? 2 : 1;
387 
388 	inet = inet_sk(sk);
389 	if (inet->inet_daddr) {
390 		if (inet->inet_daddr != saddr)
391 			return -1;
392 		score += 4;
393 	}
394 
395 	if (inet->inet_dport) {
396 		if (inet->inet_dport != sport)
397 			return -1;
398 		score += 4;
399 	}
400 
401 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
402 					dif, sdif);
403 	if (!dev_match)
404 		return -1;
405 	if (sk->sk_bound_dev_if)
406 		score += 4;
407 
408 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
409 		score++;
410 	return score;
411 }
412 
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)413 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
414 		const __be32 faddr, const __be16 fport)
415 {
416 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
417 
418 	return __inet_ehashfn(laddr, lport, faddr, fport,
419 			      udp_ehash_secret + net_hash_mix(net));
420 }
421 EXPORT_SYMBOL(udp_ehashfn);
422 
423 /**
424  * udp4_lib_lookup1() - Simplified lookup using primary hash (destination port)
425  * @net:	Network namespace
426  * @saddr:	Source address, network order
427  * @sport:	Source port, network order
428  * @daddr:	Destination address, network order
429  * @hnum:	Destination port, host order
430  * @dif:	Destination interface index
431  * @sdif:	Destination bridge port index, if relevant
432  * @udptable:	Set of UDP hash tables
433  *
434  * Simplified lookup to be used as fallback if no sockets are found due to a
435  * potential race between (receive) address change, and lookup happening before
436  * the rehash operation. This function ignores SO_REUSEPORT groups while scoring
437  * result sockets, because if we have one, we don't need the fallback at all.
438  *
439  * Called under rcu_read_lock().
440  *
441  * Return: socket with highest matching score if any, NULL if none
442  */
udp4_lib_lookup1(const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,const struct udp_table * udptable)443 static struct sock *udp4_lib_lookup1(const struct net *net,
444 				     __be32 saddr, __be16 sport,
445 				     __be32 daddr, unsigned int hnum,
446 				     int dif, int sdif,
447 				     const struct udp_table *udptable)
448 {
449 	unsigned int slot = udp_hashfn(net, hnum, udptable->mask);
450 	struct udp_hslot *hslot = &udptable->hash[slot];
451 	struct sock *sk, *result = NULL;
452 	int score, badness = 0;
453 
454 	sk_for_each_rcu(sk, &hslot->head) {
455 		score = compute_score(sk, net,
456 				      saddr, sport, daddr, hnum, dif, sdif);
457 		if (score > badness) {
458 			result = sk;
459 			badness = score;
460 		}
461 	}
462 
463 	return result;
464 }
465 
466 /* called with rcu_read_lock() */
udp4_lib_lookup2(const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_hslot * hslot2,struct sk_buff * skb)467 static struct sock *udp4_lib_lookup2(const struct net *net,
468 				     __be32 saddr, __be16 sport,
469 				     __be32 daddr, unsigned int hnum,
470 				     int dif, int sdif,
471 				     struct udp_hslot *hslot2,
472 				     struct sk_buff *skb)
473 {
474 	struct sock *sk, *result;
475 	int score, badness;
476 	bool need_rescore;
477 
478 	result = NULL;
479 	badness = 0;
480 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
481 		need_rescore = false;
482 rescore:
483 		score = compute_score(need_rescore ? result : sk, net, saddr,
484 				      sport, daddr, hnum, dif, sdif);
485 		if (score > badness) {
486 			badness = score;
487 
488 			if (need_rescore)
489 				continue;
490 
491 			if (sk->sk_state == TCP_ESTABLISHED) {
492 				result = sk;
493 				continue;
494 			}
495 
496 			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
497 						       saddr, sport, daddr, hnum, udp_ehashfn);
498 			if (!result) {
499 				result = sk;
500 				continue;
501 			}
502 
503 			/* Fall back to scoring if group has connections */
504 			if (!reuseport_has_conns(sk))
505 				return result;
506 
507 			/* Reuseport logic returned an error, keep original score. */
508 			if (IS_ERR(result))
509 				continue;
510 
511 			/* compute_score is too long of a function to be
512 			 * inlined, and calling it again here yields
513 			 * measureable overhead for some
514 			 * workloads. Work around it by jumping
515 			 * backwards to rescore 'result'.
516 			 */
517 			need_rescore = true;
518 			goto rescore;
519 		}
520 	}
521 	return result;
522 }
523 
524 #if IS_ENABLED(CONFIG_BASE_SMALL)
udp4_lib_lookup4(const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_table * udptable)525 static struct sock *udp4_lib_lookup4(const struct net *net,
526 				     __be32 saddr, __be16 sport,
527 				     __be32 daddr, unsigned int hnum,
528 				     int dif, int sdif,
529 				     struct udp_table *udptable)
530 {
531 	return NULL;
532 }
533 
udp_rehash4(struct udp_table * udptable,struct sock * sk,u16 newhash4)534 static void udp_rehash4(struct udp_table *udptable, struct sock *sk,
535 			u16 newhash4)
536 {
537 }
538 
udp_unhash4(struct udp_table * udptable,struct sock * sk)539 static void udp_unhash4(struct udp_table *udptable, struct sock *sk)
540 {
541 }
542 #else /* !CONFIG_BASE_SMALL */
udp4_lib_lookup4(const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_table * udptable)543 static struct sock *udp4_lib_lookup4(const struct net *net,
544 				     __be32 saddr, __be16 sport,
545 				     __be32 daddr, unsigned int hnum,
546 				     int dif, int sdif,
547 				     struct udp_table *udptable)
548 {
549 	const __portpair ports = INET_COMBINED_PORTS(sport, hnum);
550 	const struct hlist_nulls_node *node;
551 	struct udp_hslot *hslot4;
552 	unsigned int hash4, slot;
553 	struct udp_sock *up;
554 	struct sock *sk;
555 
556 	hash4 = udp_ehashfn(net, daddr, hnum, saddr, sport);
557 	slot = hash4 & udptable->mask;
558 	hslot4 = &udptable->hash4[slot];
559 	INET_ADDR_COOKIE(acookie, saddr, daddr);
560 
561 begin:
562 	/* SLAB_TYPESAFE_BY_RCU not used, so we don't need to touch sk_refcnt */
563 	udp_lrpa_for_each_entry_rcu(up, node, &hslot4->nulls_head) {
564 		sk = (struct sock *)up;
565 		if (inet_match(net, sk, acookie, ports, dif, sdif))
566 			return sk;
567 	}
568 
569 	/* if the nulls value we got at the end of this lookup is not the
570 	 * expected one, we must restart lookup. We probably met an item that
571 	 * was moved to another chain due to rehash.
572 	 */
573 	if (get_nulls_value(node) != slot)
574 		goto begin;
575 
576 	return NULL;
577 }
578 
579 /* udp_rehash4() only checks hslot4, and hash4_cnt is not processed. */
udp_rehash4(struct udp_table * udptable,struct sock * sk,u16 newhash4)580 static void udp_rehash4(struct udp_table *udptable, struct sock *sk,
581 			u16 newhash4)
582 {
583 	struct udp_hslot *hslot4, *nhslot4;
584 
585 	hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash);
586 	nhslot4 = udp_hashslot4(udptable, newhash4);
587 	udp_sk(sk)->udp_lrpa_hash = newhash4;
588 
589 	if (hslot4 != nhslot4) {
590 		spin_lock_bh(&hslot4->lock);
591 		hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node);
592 		hslot4->count--;
593 		spin_unlock_bh(&hslot4->lock);
594 
595 		spin_lock_bh(&nhslot4->lock);
596 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node,
597 					 &nhslot4->nulls_head);
598 		nhslot4->count++;
599 		spin_unlock_bh(&nhslot4->lock);
600 	}
601 }
602 
udp_unhash4(struct udp_table * udptable,struct sock * sk)603 static void udp_unhash4(struct udp_table *udptable, struct sock *sk)
604 {
605 	struct udp_hslot *hslot2, *hslot4;
606 
607 	if (udp_hashed4(sk)) {
608 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
609 		hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash);
610 
611 		spin_lock(&hslot4->lock);
612 		hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node);
613 		hslot4->count--;
614 		spin_unlock(&hslot4->lock);
615 
616 		spin_lock(&hslot2->lock);
617 		udp_hash4_dec(hslot2);
618 		spin_unlock(&hslot2->lock);
619 	}
620 }
621 
udp_lib_hash4(struct sock * sk,u16 hash)622 void udp_lib_hash4(struct sock *sk, u16 hash)
623 {
624 	struct udp_hslot *hslot, *hslot2, *hslot4;
625 	struct net *net = sock_net(sk);
626 	struct udp_table *udptable;
627 
628 	/* Connected udp socket can re-connect to another remote address, which
629 	 * will be handled by rehash. Thus no need to redo hash4 here.
630 	 */
631 	if (udp_hashed4(sk))
632 		return;
633 
634 	udptable = net->ipv4.udp_table;
635 	hslot = udp_hashslot(udptable, net, udp_sk(sk)->udp_port_hash);
636 	hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
637 	hslot4 = udp_hashslot4(udptable, hash);
638 	udp_sk(sk)->udp_lrpa_hash = hash;
639 
640 	spin_lock_bh(&hslot->lock);
641 	if (rcu_access_pointer(sk->sk_reuseport_cb))
642 		reuseport_detach_sock(sk);
643 
644 	spin_lock(&hslot4->lock);
645 	hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node,
646 				 &hslot4->nulls_head);
647 	hslot4->count++;
648 	spin_unlock(&hslot4->lock);
649 
650 	spin_lock(&hslot2->lock);
651 	udp_hash4_inc(hslot2);
652 	spin_unlock(&hslot2->lock);
653 
654 	spin_unlock_bh(&hslot->lock);
655 }
656 EXPORT_SYMBOL(udp_lib_hash4);
657 
658 /* call with sock lock */
udp4_hash4(struct sock * sk)659 void udp4_hash4(struct sock *sk)
660 {
661 	struct net *net = sock_net(sk);
662 	unsigned int hash;
663 
664 	if (sk_unhashed(sk) || sk->sk_rcv_saddr == htonl(INADDR_ANY))
665 		return;
666 
667 	hash = udp_ehashfn(net, sk->sk_rcv_saddr, sk->sk_num,
668 			   sk->sk_daddr, sk->sk_dport);
669 
670 	udp_lib_hash4(sk, hash);
671 }
672 EXPORT_SYMBOL(udp4_hash4);
673 #endif /* CONFIG_BASE_SMALL */
674 
675 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
676  * harder than this. -DaveM
677  */
__udp4_lib_lookup(const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,int sdif,struct udp_table * udptable,struct sk_buff * skb)678 struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr,
679 		__be16 sport, __be32 daddr, __be16 dport, int dif,
680 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
681 {
682 	unsigned short hnum = ntohs(dport);
683 	struct udp_hslot *hslot2;
684 	struct sock *result, *sk;
685 	unsigned int hash2;
686 
687 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
688 	hslot2 = udp_hashslot2(udptable, hash2);
689 
690 	if (udp_has_hash4(hslot2)) {
691 		result = udp4_lib_lookup4(net, saddr, sport, daddr, hnum,
692 					  dif, sdif, udptable);
693 		if (result) /* udp4_lib_lookup4 return sk or NULL */
694 			return result;
695 	}
696 
697 	/* Lookup connected or non-wildcard socket */
698 	result = udp4_lib_lookup2(net, saddr, sport,
699 				  daddr, hnum, dif, sdif,
700 				  hslot2, skb);
701 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
702 		goto done;
703 
704 	/* Lookup redirect from BPF */
705 	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
706 	    udptable == net->ipv4.udp_table) {
707 		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
708 					       saddr, sport, daddr, hnum, dif,
709 					       udp_ehashfn);
710 		if (sk) {
711 			result = sk;
712 			goto done;
713 		}
714 	}
715 
716 	/* Got non-wildcard socket or error on first lookup */
717 	if (result)
718 		goto done;
719 
720 	/* Lookup wildcard sockets */
721 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
722 	hslot2 = udp_hashslot2(udptable, hash2);
723 
724 	result = udp4_lib_lookup2(net, saddr, sport,
725 				  htonl(INADDR_ANY), hnum, dif, sdif,
726 				  hslot2, skb);
727 	if (!IS_ERR_OR_NULL(result))
728 		goto done;
729 
730 	/* Primary hash (destination port) lookup as fallback for this race:
731 	 *   1. __ip4_datagram_connect() sets sk_rcv_saddr
732 	 *   2. lookup (this function): new sk_rcv_saddr, hashes not updated yet
733 	 *   3. rehash operation updating _secondary and four-tuple_ hashes
734 	 * The primary hash doesn't need an update after 1., so, thanks to this
735 	 * further step, 1. and 3. don't need to be atomic against the lookup.
736 	 */
737 	result = udp4_lib_lookup1(net, saddr, sport, daddr, hnum, dif, sdif,
738 				  udptable);
739 
740 done:
741 	if (IS_ERR(result))
742 		return NULL;
743 	return result;
744 }
745 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
746 
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)747 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
748 						 __be16 sport, __be16 dport,
749 						 struct udp_table *udptable)
750 {
751 	const struct iphdr *iph = ip_hdr(skb);
752 
753 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
754 				 iph->daddr, dport, inet_iif(skb),
755 				 inet_sdif(skb), udptable, skb);
756 }
757 
udp4_lib_lookup_skb(const struct sk_buff * skb,__be16 sport,__be16 dport)758 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
759 				 __be16 sport, __be16 dport)
760 {
761 	const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
762 	const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
763 	struct net *net = dev_net(skb->dev);
764 	int iif, sdif;
765 
766 	inet_get_iif_sdif(skb, &iif, &sdif);
767 
768 	return __udp4_lib_lookup(net, iph->saddr, sport,
769 				 iph->daddr, dport, iif,
770 				 sdif, net->ipv4.udp_table, NULL);
771 }
772 
773 /* Must be called under rcu_read_lock().
774  * Does increment socket refcount.
775  */
776 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
udp4_lib_lookup(const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)777 struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport,
778 			     __be32 daddr, __be16 dport, int dif)
779 {
780 	struct sock *sk;
781 
782 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
783 			       dif, 0, net->ipv4.udp_table, NULL);
784 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
785 		sk = NULL;
786 	return sk;
787 }
788 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
789 #endif
790 
__udp_is_mcast_sock(struct net * net,const struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif,unsigned short hnum)791 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
792 				       __be16 loc_port, __be32 loc_addr,
793 				       __be16 rmt_port, __be32 rmt_addr,
794 				       int dif, int sdif, unsigned short hnum)
795 {
796 	const struct inet_sock *inet = inet_sk(sk);
797 
798 	if (!net_eq(sock_net(sk), net) ||
799 	    udp_sk(sk)->udp_port_hash != hnum ||
800 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
801 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
802 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
803 	    ipv6_only_sock(sk) ||
804 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
805 		return false;
806 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
807 		return false;
808 	return true;
809 }
810 
811 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
812 EXPORT_SYMBOL(udp_encap_needed_key);
813 
814 #if IS_ENABLED(CONFIG_IPV6)
815 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
816 EXPORT_SYMBOL(udpv6_encap_needed_key);
817 #endif
818 
udp_encap_enable(void)819 void udp_encap_enable(void)
820 {
821 	static_branch_inc(&udp_encap_needed_key);
822 }
823 EXPORT_SYMBOL(udp_encap_enable);
824 
udp_encap_disable(void)825 void udp_encap_disable(void)
826 {
827 	static_branch_dec(&udp_encap_needed_key);
828 }
829 EXPORT_SYMBOL(udp_encap_disable);
830 
831 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
832  * through error handlers in encapsulations looking for a match.
833  */
__udp4_lib_err_encap_no_sk(struct sk_buff * skb,u32 info)834 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
835 {
836 	int i;
837 
838 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
839 		int (*handler)(struct sk_buff *skb, u32 info);
840 		const struct ip_tunnel_encap_ops *encap;
841 
842 		encap = rcu_dereference(iptun_encaps[i]);
843 		if (!encap)
844 			continue;
845 		handler = encap->err_handler;
846 		if (handler && !handler(skb, info))
847 			return 0;
848 	}
849 
850 	return -ENOENT;
851 }
852 
853 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
854  * reversing source and destination port: this will match tunnels that force the
855  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
856  * lwtunnels might actually break this assumption by being configured with
857  * different destination ports on endpoints, in this case we won't be able to
858  * trace ICMP messages back to them.
859  *
860  * If this doesn't match any socket, probe tunnels with arbitrary destination
861  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
862  * we've sent packets to won't necessarily match the local destination port.
863  *
864  * Then ask the tunnel implementation to match the error against a valid
865  * association.
866  *
867  * Return an error if we can't find a match, the socket if we need further
868  * processing, zero otherwise.
869  */
__udp4_lib_err_encap(struct net * net,const struct iphdr * iph,struct udphdr * uh,struct udp_table * udptable,struct sock * sk,struct sk_buff * skb,u32 info)870 static struct sock *__udp4_lib_err_encap(struct net *net,
871 					 const struct iphdr *iph,
872 					 struct udphdr *uh,
873 					 struct udp_table *udptable,
874 					 struct sock *sk,
875 					 struct sk_buff *skb, u32 info)
876 {
877 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
878 	int network_offset, transport_offset;
879 	struct udp_sock *up;
880 
881 	network_offset = skb_network_offset(skb);
882 	transport_offset = skb_transport_offset(skb);
883 
884 	/* Network header needs to point to the outer IPv4 header inside ICMP */
885 	skb_reset_network_header(skb);
886 
887 	/* Transport header needs to point to the UDP header */
888 	skb_set_transport_header(skb, iph->ihl << 2);
889 
890 	if (sk) {
891 		up = udp_sk(sk);
892 
893 		lookup = READ_ONCE(up->encap_err_lookup);
894 		if (lookup && lookup(sk, skb))
895 			sk = NULL;
896 
897 		goto out;
898 	}
899 
900 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
901 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
902 			       udptable, NULL);
903 	if (sk) {
904 		up = udp_sk(sk);
905 
906 		lookup = READ_ONCE(up->encap_err_lookup);
907 		if (!lookup || lookup(sk, skb))
908 			sk = NULL;
909 	}
910 
911 out:
912 	if (!sk)
913 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
914 
915 	skb_set_transport_header(skb, transport_offset);
916 	skb_set_network_header(skb, network_offset);
917 
918 	return sk;
919 }
920 
921 /*
922  * This routine is called by the ICMP module when it gets some
923  * sort of error condition.  If err < 0 then the socket should
924  * be closed and the error returned to the user.  If err > 0
925  * it's just the icmp type << 8 | icmp code.
926  * Header points to the ip header of the error packet. We move
927  * on past this. Then (as it used to claim before adjustment)
928  * header points to the first 8 bytes of the udp header.  We need
929  * to find the appropriate port.
930  */
931 
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)932 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
933 {
934 	struct inet_sock *inet;
935 	const struct iphdr *iph = (const struct iphdr *)skb->data;
936 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
937 	const int type = icmp_hdr(skb)->type;
938 	const int code = icmp_hdr(skb)->code;
939 	bool tunnel = false;
940 	struct sock *sk;
941 	int harderr;
942 	int err;
943 	struct net *net = dev_net(skb->dev);
944 
945 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
946 			       iph->saddr, uh->source, skb->dev->ifindex,
947 			       inet_sdif(skb), udptable, NULL);
948 
949 	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
950 		/* No socket for error: try tunnels before discarding */
951 		if (static_branch_unlikely(&udp_encap_needed_key)) {
952 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
953 						  info);
954 			if (!sk)
955 				return 0;
956 		} else
957 			sk = ERR_PTR(-ENOENT);
958 
959 		if (IS_ERR(sk)) {
960 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
961 			return PTR_ERR(sk);
962 		}
963 
964 		tunnel = true;
965 	}
966 
967 	err = 0;
968 	harderr = 0;
969 	inet = inet_sk(sk);
970 
971 	switch (type) {
972 	default:
973 	case ICMP_TIME_EXCEEDED:
974 		err = EHOSTUNREACH;
975 		break;
976 	case ICMP_SOURCE_QUENCH:
977 		goto out;
978 	case ICMP_PARAMETERPROB:
979 		err = EPROTO;
980 		harderr = 1;
981 		break;
982 	case ICMP_DEST_UNREACH:
983 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
984 			ipv4_sk_update_pmtu(skb, sk, info);
985 			if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
986 				err = EMSGSIZE;
987 				harderr = 1;
988 				break;
989 			}
990 			goto out;
991 		}
992 		err = EHOSTUNREACH;
993 		if (code <= NR_ICMP_UNREACH) {
994 			harderr = icmp_err_convert[code].fatal;
995 			err = icmp_err_convert[code].errno;
996 		}
997 		break;
998 	case ICMP_REDIRECT:
999 		ipv4_sk_redirect(skb, sk);
1000 		goto out;
1001 	}
1002 
1003 	/*
1004 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
1005 	 *	4.1.3.3.
1006 	 */
1007 	if (tunnel) {
1008 		/* ...not for tunnels though: we don't have a sending socket */
1009 		if (udp_sk(sk)->encap_err_rcv)
1010 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
1011 						  (u8 *)(uh+1));
1012 		goto out;
1013 	}
1014 	if (!inet_test_bit(RECVERR, sk)) {
1015 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
1016 			goto out;
1017 	} else
1018 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
1019 
1020 	sk->sk_err = err;
1021 	sk_error_report(sk);
1022 out:
1023 	return 0;
1024 }
1025 
udp_err(struct sk_buff * skb,u32 info)1026 int udp_err(struct sk_buff *skb, u32 info)
1027 {
1028 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
1029 }
1030 
1031 /*
1032  * Throw away all pending data and cancel the corking. Socket is locked.
1033  */
udp_flush_pending_frames(struct sock * sk)1034 void udp_flush_pending_frames(struct sock *sk)
1035 {
1036 	struct udp_sock *up = udp_sk(sk);
1037 
1038 	if (up->pending) {
1039 		up->len = 0;
1040 		WRITE_ONCE(up->pending, 0);
1041 		ip_flush_pending_frames(sk);
1042 	}
1043 }
1044 EXPORT_SYMBOL(udp_flush_pending_frames);
1045 
1046 /**
1047  * 	udp4_hwcsum  -  handle outgoing HW checksumming
1048  * 	@skb: 	sk_buff containing the filled-in UDP header
1049  * 	        (checksum field must be zeroed out)
1050  *	@src:	source IP address
1051  *	@dst:	destination IP address
1052  */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)1053 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
1054 {
1055 	struct udphdr *uh = udp_hdr(skb);
1056 	int offset = skb_transport_offset(skb);
1057 	int len = skb->len - offset;
1058 	int hlen = len;
1059 	__wsum csum = 0;
1060 
1061 	if (!skb_has_frag_list(skb)) {
1062 		/*
1063 		 * Only one fragment on the socket.
1064 		 */
1065 		skb->csum_start = skb_transport_header(skb) - skb->head;
1066 		skb->csum_offset = offsetof(struct udphdr, check);
1067 		uh->check = ~csum_tcpudp_magic(src, dst, len,
1068 					       IPPROTO_UDP, 0);
1069 	} else {
1070 		struct sk_buff *frags;
1071 
1072 		/*
1073 		 * HW-checksum won't work as there are two or more
1074 		 * fragments on the socket so that all csums of sk_buffs
1075 		 * should be together
1076 		 */
1077 		skb_walk_frags(skb, frags) {
1078 			csum = csum_add(csum, frags->csum);
1079 			hlen -= frags->len;
1080 		}
1081 
1082 		csum = skb_checksum(skb, offset, hlen, csum);
1083 		skb->ip_summed = CHECKSUM_NONE;
1084 
1085 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
1086 		if (uh->check == 0)
1087 			uh->check = CSUM_MANGLED_0;
1088 	}
1089 }
1090 EXPORT_SYMBOL_GPL(udp4_hwcsum);
1091 
1092 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
1093  * for the simple case like when setting the checksum for a UDP tunnel.
1094  */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)1095 void udp_set_csum(bool nocheck, struct sk_buff *skb,
1096 		  __be32 saddr, __be32 daddr, int len)
1097 {
1098 	struct udphdr *uh = udp_hdr(skb);
1099 
1100 	if (nocheck) {
1101 		uh->check = 0;
1102 	} else if (skb_is_gso(skb)) {
1103 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
1104 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
1105 		uh->check = 0;
1106 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
1107 		if (uh->check == 0)
1108 			uh->check = CSUM_MANGLED_0;
1109 	} else {
1110 		skb->ip_summed = CHECKSUM_PARTIAL;
1111 		skb->csum_start = skb_transport_header(skb) - skb->head;
1112 		skb->csum_offset = offsetof(struct udphdr, check);
1113 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
1114 	}
1115 }
1116 EXPORT_SYMBOL(udp_set_csum);
1117 
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4,struct inet_cork * cork)1118 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
1119 			struct inet_cork *cork)
1120 {
1121 	struct sock *sk = skb->sk;
1122 	struct inet_sock *inet = inet_sk(sk);
1123 	struct udphdr *uh;
1124 	int err;
1125 	int is_udplite = IS_UDPLITE(sk);
1126 	int offset = skb_transport_offset(skb);
1127 	int len = skb->len - offset;
1128 	int datalen = len - sizeof(*uh);
1129 	__wsum csum = 0;
1130 
1131 	/*
1132 	 * Create a UDP header
1133 	 */
1134 	uh = udp_hdr(skb);
1135 	uh->source = inet->inet_sport;
1136 	uh->dest = fl4->fl4_dport;
1137 	uh->len = htons(len);
1138 	uh->check = 0;
1139 
1140 	if (cork->gso_size) {
1141 		const int hlen = skb_network_header_len(skb) +
1142 				 sizeof(struct udphdr);
1143 
1144 		if (hlen + min(datalen, cork->gso_size) > cork->fragsize) {
1145 			kfree_skb(skb);
1146 			return -EMSGSIZE;
1147 		}
1148 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
1149 			kfree_skb(skb);
1150 			return -EINVAL;
1151 		}
1152 		if (sk->sk_no_check_tx) {
1153 			kfree_skb(skb);
1154 			return -EINVAL;
1155 		}
1156 		if (is_udplite || dst_xfrm(skb_dst(skb))) {
1157 			kfree_skb(skb);
1158 			return -EIO;
1159 		}
1160 
1161 		if (datalen > cork->gso_size) {
1162 			skb_shinfo(skb)->gso_size = cork->gso_size;
1163 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
1164 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
1165 								 cork->gso_size);
1166 
1167 			/* Don't checksum the payload, skb will get segmented */
1168 			goto csum_partial;
1169 		}
1170 	}
1171 
1172 	if (is_udplite)  				 /*     UDP-Lite      */
1173 		csum = udplite_csum(skb);
1174 
1175 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
1176 
1177 		skb->ip_summed = CHECKSUM_NONE;
1178 		goto send;
1179 
1180 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
1181 csum_partial:
1182 
1183 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
1184 		goto send;
1185 
1186 	} else
1187 		csum = udp_csum(skb);
1188 
1189 	/* add protocol-dependent pseudo-header */
1190 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
1191 				      sk->sk_protocol, csum);
1192 	if (uh->check == 0)
1193 		uh->check = CSUM_MANGLED_0;
1194 
1195 send:
1196 	err = ip_send_skb(sock_net(sk), skb);
1197 	if (err) {
1198 		if (err == -ENOBUFS &&
1199 		    !inet_test_bit(RECVERR, sk)) {
1200 			UDP_INC_STATS(sock_net(sk),
1201 				      UDP_MIB_SNDBUFERRORS, is_udplite);
1202 			err = 0;
1203 		}
1204 	} else
1205 		UDP_INC_STATS(sock_net(sk),
1206 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
1207 	return err;
1208 }
1209 
1210 /*
1211  * Push out all pending data as one UDP datagram. Socket is locked.
1212  */
udp_push_pending_frames(struct sock * sk)1213 int udp_push_pending_frames(struct sock *sk)
1214 {
1215 	struct udp_sock  *up = udp_sk(sk);
1216 	struct inet_sock *inet = inet_sk(sk);
1217 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1218 	struct sk_buff *skb;
1219 	int err = 0;
1220 
1221 	skb = ip_finish_skb(sk, fl4);
1222 	if (!skb)
1223 		goto out;
1224 
1225 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1226 
1227 out:
1228 	up->len = 0;
1229 	WRITE_ONCE(up->pending, 0);
1230 	return err;
1231 }
1232 EXPORT_SYMBOL(udp_push_pending_frames);
1233 
__udp_cmsg_send(struct cmsghdr * cmsg,u16 * gso_size)1234 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1235 {
1236 	switch (cmsg->cmsg_type) {
1237 	case UDP_SEGMENT:
1238 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1239 			return -EINVAL;
1240 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1241 		return 0;
1242 	default:
1243 		return -EINVAL;
1244 	}
1245 }
1246 
udp_cmsg_send(struct sock * sk,struct msghdr * msg,u16 * gso_size)1247 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1248 {
1249 	struct cmsghdr *cmsg;
1250 	bool need_ip = false;
1251 	int err;
1252 
1253 	for_each_cmsghdr(cmsg, msg) {
1254 		if (!CMSG_OK(msg, cmsg))
1255 			return -EINVAL;
1256 
1257 		if (cmsg->cmsg_level != SOL_UDP) {
1258 			need_ip = true;
1259 			continue;
1260 		}
1261 
1262 		err = __udp_cmsg_send(cmsg, gso_size);
1263 		if (err)
1264 			return err;
1265 	}
1266 
1267 	return need_ip;
1268 }
1269 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1270 
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1271 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1272 {
1273 	struct inet_sock *inet = inet_sk(sk);
1274 	struct udp_sock *up = udp_sk(sk);
1275 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1276 	struct flowi4 fl4_stack;
1277 	struct flowi4 *fl4;
1278 	int ulen = len;
1279 	struct ipcm_cookie ipc;
1280 	struct rtable *rt = NULL;
1281 	int free = 0;
1282 	int connected = 0;
1283 	__be32 daddr, faddr, saddr;
1284 	u8 tos, scope;
1285 	__be16 dport;
1286 	int err, is_udplite = IS_UDPLITE(sk);
1287 	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1288 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1289 	struct sk_buff *skb;
1290 	struct ip_options_data opt_copy;
1291 	int uc_index;
1292 
1293 	if (len > 0xFFFF)
1294 		return -EMSGSIZE;
1295 
1296 	/*
1297 	 *	Check the flags.
1298 	 */
1299 
1300 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1301 		return -EOPNOTSUPP;
1302 
1303 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1304 
1305 	fl4 = &inet->cork.fl.u.ip4;
1306 	if (READ_ONCE(up->pending)) {
1307 		/*
1308 		 * There are pending frames.
1309 		 * The socket lock must be held while it's corked.
1310 		 */
1311 		lock_sock(sk);
1312 		if (likely(up->pending)) {
1313 			if (unlikely(up->pending != AF_INET)) {
1314 				release_sock(sk);
1315 				return -EINVAL;
1316 			}
1317 			goto do_append_data;
1318 		}
1319 		release_sock(sk);
1320 	}
1321 	ulen += sizeof(struct udphdr);
1322 
1323 	/*
1324 	 *	Get and verify the address.
1325 	 */
1326 	if (usin) {
1327 		if (msg->msg_namelen < sizeof(*usin))
1328 			return -EINVAL;
1329 		if (usin->sin_family != AF_INET) {
1330 			if (usin->sin_family != AF_UNSPEC)
1331 				return -EAFNOSUPPORT;
1332 		}
1333 
1334 		daddr = usin->sin_addr.s_addr;
1335 		dport = usin->sin_port;
1336 		if (dport == 0)
1337 			return -EINVAL;
1338 	} else {
1339 		if (sk->sk_state != TCP_ESTABLISHED)
1340 			return -EDESTADDRREQ;
1341 		daddr = inet->inet_daddr;
1342 		dport = inet->inet_dport;
1343 		/* Open fast path for connected socket.
1344 		   Route will not be used, if at least one option is set.
1345 		 */
1346 		connected = 1;
1347 	}
1348 
1349 	ipcm_init_sk(&ipc, inet);
1350 	ipc.gso_size = READ_ONCE(up->gso_size);
1351 
1352 	if (msg->msg_controllen) {
1353 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1354 		if (err > 0) {
1355 			err = ip_cmsg_send(sk, msg, &ipc,
1356 					   sk->sk_family == AF_INET6);
1357 			connected = 0;
1358 		}
1359 		if (unlikely(err < 0)) {
1360 			kfree(ipc.opt);
1361 			return err;
1362 		}
1363 		if (ipc.opt)
1364 			free = 1;
1365 	}
1366 	if (!ipc.opt) {
1367 		struct ip_options_rcu *inet_opt;
1368 
1369 		rcu_read_lock();
1370 		inet_opt = rcu_dereference(inet->inet_opt);
1371 		if (inet_opt) {
1372 			memcpy(&opt_copy, inet_opt,
1373 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1374 			ipc.opt = &opt_copy.opt;
1375 		}
1376 		rcu_read_unlock();
1377 	}
1378 
1379 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1380 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1381 					    (struct sockaddr *)usin,
1382 					    &msg->msg_namelen,
1383 					    &ipc.addr);
1384 		if (err)
1385 			goto out_free;
1386 		if (usin) {
1387 			if (usin->sin_port == 0) {
1388 				/* BPF program set invalid port. Reject it. */
1389 				err = -EINVAL;
1390 				goto out_free;
1391 			}
1392 			daddr = usin->sin_addr.s_addr;
1393 			dport = usin->sin_port;
1394 		}
1395 	}
1396 
1397 	saddr = ipc.addr;
1398 	ipc.addr = faddr = daddr;
1399 
1400 	if (ipc.opt && ipc.opt->opt.srr) {
1401 		if (!daddr) {
1402 			err = -EINVAL;
1403 			goto out_free;
1404 		}
1405 		faddr = ipc.opt->opt.faddr;
1406 		connected = 0;
1407 	}
1408 	tos = get_rttos(&ipc, inet);
1409 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1410 	if (scope == RT_SCOPE_LINK)
1411 		connected = 0;
1412 
1413 	uc_index = READ_ONCE(inet->uc_index);
1414 	if (ipv4_is_multicast(daddr)) {
1415 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1416 			ipc.oif = READ_ONCE(inet->mc_index);
1417 		if (!saddr)
1418 			saddr = READ_ONCE(inet->mc_addr);
1419 		connected = 0;
1420 	} else if (!ipc.oif) {
1421 		ipc.oif = uc_index;
1422 	} else if (ipv4_is_lbcast(daddr) && uc_index) {
1423 		/* oif is set, packet is to local broadcast and
1424 		 * uc_index is set. oif is most likely set
1425 		 * by sk_bound_dev_if. If uc_index != oif check if the
1426 		 * oif is an L3 master and uc_index is an L3 slave.
1427 		 * If so, we want to allow the send using the uc_index.
1428 		 */
1429 		if (ipc.oif != uc_index &&
1430 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1431 							      uc_index)) {
1432 			ipc.oif = uc_index;
1433 		}
1434 	}
1435 
1436 	if (connected)
1437 		rt = dst_rtable(sk_dst_check(sk, 0));
1438 
1439 	if (!rt) {
1440 		struct net *net = sock_net(sk);
1441 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1442 
1443 		fl4 = &fl4_stack;
1444 
1445 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1446 				   sk->sk_protocol, flow_flags, faddr, saddr,
1447 				   dport, inet->inet_sport, sk->sk_uid);
1448 
1449 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1450 		rt = ip_route_output_flow(net, fl4, sk);
1451 		if (IS_ERR(rt)) {
1452 			err = PTR_ERR(rt);
1453 			rt = NULL;
1454 			if (err == -ENETUNREACH)
1455 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1456 			goto out;
1457 		}
1458 
1459 		err = -EACCES;
1460 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1461 		    !sock_flag(sk, SOCK_BROADCAST))
1462 			goto out;
1463 		if (connected)
1464 			sk_dst_set(sk, dst_clone(&rt->dst));
1465 	}
1466 
1467 	if (msg->msg_flags&MSG_CONFIRM)
1468 		goto do_confirm;
1469 back_from_confirm:
1470 
1471 	saddr = fl4->saddr;
1472 	if (!ipc.addr)
1473 		daddr = ipc.addr = fl4->daddr;
1474 
1475 	/* Lockless fast path for the non-corking case. */
1476 	if (!corkreq) {
1477 		struct inet_cork cork;
1478 
1479 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1480 				  sizeof(struct udphdr), &ipc, &rt,
1481 				  &cork, msg->msg_flags);
1482 		err = PTR_ERR(skb);
1483 		if (!IS_ERR_OR_NULL(skb))
1484 			err = udp_send_skb(skb, fl4, &cork);
1485 		goto out;
1486 	}
1487 
1488 	lock_sock(sk);
1489 	if (unlikely(up->pending)) {
1490 		/* The socket is already corked while preparing it. */
1491 		/* ... which is an evident application bug. --ANK */
1492 		release_sock(sk);
1493 
1494 		net_dbg_ratelimited("socket already corked\n");
1495 		err = -EINVAL;
1496 		goto out;
1497 	}
1498 	/*
1499 	 *	Now cork the socket to pend data.
1500 	 */
1501 	fl4 = &inet->cork.fl.u.ip4;
1502 	fl4->daddr = daddr;
1503 	fl4->saddr = saddr;
1504 	fl4->fl4_dport = dport;
1505 	fl4->fl4_sport = inet->inet_sport;
1506 	WRITE_ONCE(up->pending, AF_INET);
1507 
1508 do_append_data:
1509 	up->len += ulen;
1510 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1511 			     sizeof(struct udphdr), &ipc, &rt,
1512 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1513 	if (err)
1514 		udp_flush_pending_frames(sk);
1515 	else if (!corkreq)
1516 		err = udp_push_pending_frames(sk);
1517 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1518 		WRITE_ONCE(up->pending, 0);
1519 	release_sock(sk);
1520 
1521 out:
1522 	ip_rt_put(rt);
1523 out_free:
1524 	if (free)
1525 		kfree(ipc.opt);
1526 	if (!err)
1527 		return len;
1528 	/*
1529 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1530 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1531 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1532 	 * things).  We could add another new stat but at least for now that
1533 	 * seems like overkill.
1534 	 */
1535 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1536 		UDP_INC_STATS(sock_net(sk),
1537 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1538 	}
1539 	return err;
1540 
1541 do_confirm:
1542 	if (msg->msg_flags & MSG_PROBE)
1543 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1544 	if (!(msg->msg_flags&MSG_PROBE) || len)
1545 		goto back_from_confirm;
1546 	err = 0;
1547 	goto out;
1548 }
1549 EXPORT_SYMBOL(udp_sendmsg);
1550 
udp_splice_eof(struct socket * sock)1551 void udp_splice_eof(struct socket *sock)
1552 {
1553 	struct sock *sk = sock->sk;
1554 	struct udp_sock *up = udp_sk(sk);
1555 
1556 	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1557 		return;
1558 
1559 	lock_sock(sk);
1560 	if (up->pending && !udp_test_bit(CORK, sk))
1561 		udp_push_pending_frames(sk);
1562 	release_sock(sk);
1563 }
1564 EXPORT_SYMBOL_GPL(udp_splice_eof);
1565 
1566 #define UDP_SKB_IS_STATELESS 0x80000000
1567 
1568 /* all head states (dst, sk, nf conntrack) except skb extensions are
1569  * cleared by udp_rcv().
1570  *
1571  * We need to preserve secpath, if present, to eventually process
1572  * IP_CMSG_PASSSEC at recvmsg() time.
1573  *
1574  * Other extensions can be cleared.
1575  */
udp_try_make_stateless(struct sk_buff * skb)1576 static bool udp_try_make_stateless(struct sk_buff *skb)
1577 {
1578 	if (!skb_has_extensions(skb))
1579 		return true;
1580 
1581 	if (!secpath_exists(skb)) {
1582 		skb_ext_reset(skb);
1583 		return true;
1584 	}
1585 
1586 	return false;
1587 }
1588 
udp_set_dev_scratch(struct sk_buff * skb)1589 static void udp_set_dev_scratch(struct sk_buff *skb)
1590 {
1591 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1592 
1593 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1594 	scratch->_tsize_state = skb->truesize;
1595 #if BITS_PER_LONG == 64
1596 	scratch->len = skb->len;
1597 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1598 	scratch->is_linear = !skb_is_nonlinear(skb);
1599 #endif
1600 	if (udp_try_make_stateless(skb))
1601 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1602 }
1603 
udp_skb_csum_unnecessary_set(struct sk_buff * skb)1604 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1605 {
1606 	/* We come here after udp_lib_checksum_complete() returned 0.
1607 	 * This means that __skb_checksum_complete() might have
1608 	 * set skb->csum_valid to 1.
1609 	 * On 64bit platforms, we can set csum_unnecessary
1610 	 * to true, but only if the skb is not shared.
1611 	 */
1612 #if BITS_PER_LONG == 64
1613 	if (!skb_shared(skb))
1614 		udp_skb_scratch(skb)->csum_unnecessary = true;
1615 #endif
1616 }
1617 
udp_skb_truesize(struct sk_buff * skb)1618 static int udp_skb_truesize(struct sk_buff *skb)
1619 {
1620 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1621 }
1622 
udp_skb_has_head_state(struct sk_buff * skb)1623 static bool udp_skb_has_head_state(struct sk_buff *skb)
1624 {
1625 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1626 }
1627 
1628 /* fully reclaim rmem/fwd memory allocated for skb */
udp_rmem_release(struct sock * sk,int size,int partial,bool rx_queue_lock_held)1629 static void udp_rmem_release(struct sock *sk, int size, int partial,
1630 			     bool rx_queue_lock_held)
1631 {
1632 	struct udp_sock *up = udp_sk(sk);
1633 	struct sk_buff_head *sk_queue;
1634 	int amt;
1635 
1636 	if (likely(partial)) {
1637 		up->forward_deficit += size;
1638 		size = up->forward_deficit;
1639 		if (size < READ_ONCE(up->forward_threshold) &&
1640 		    !skb_queue_empty(&up->reader_queue))
1641 			return;
1642 	} else {
1643 		size += up->forward_deficit;
1644 	}
1645 	up->forward_deficit = 0;
1646 
1647 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1648 	 * if the called don't held it already
1649 	 */
1650 	sk_queue = &sk->sk_receive_queue;
1651 	if (!rx_queue_lock_held)
1652 		spin_lock(&sk_queue->lock);
1653 
1654 
1655 	sk_forward_alloc_add(sk, size);
1656 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1657 	sk_forward_alloc_add(sk, -amt);
1658 
1659 	if (amt)
1660 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1661 
1662 	atomic_sub(size, &sk->sk_rmem_alloc);
1663 
1664 	/* this can save us from acquiring the rx queue lock on next receive */
1665 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1666 
1667 	if (!rx_queue_lock_held)
1668 		spin_unlock(&sk_queue->lock);
1669 }
1670 
1671 /* Note: called with reader_queue.lock held.
1672  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1673  * This avoids a cache line miss while receive_queue lock is held.
1674  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1675  */
udp_skb_destructor(struct sock * sk,struct sk_buff * skb)1676 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1677 {
1678 	prefetch(&skb->data);
1679 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1680 }
1681 EXPORT_SYMBOL(udp_skb_destructor);
1682 
1683 /* as above, but the caller held the rx queue lock, too */
udp_skb_dtor_locked(struct sock * sk,struct sk_buff * skb)1684 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1685 {
1686 	prefetch(&skb->data);
1687 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1688 }
1689 
1690 /* Idea of busylocks is to let producers grab an extra spinlock
1691  * to relieve pressure on the receive_queue spinlock shared by consumer.
1692  * Under flood, this means that only one producer can be in line
1693  * trying to acquire the receive_queue spinlock.
1694  * These busylock can be allocated on a per cpu manner, instead of a
1695  * per socket one (that would consume a cache line per socket)
1696  */
1697 static int udp_busylocks_log __read_mostly;
1698 static spinlock_t *udp_busylocks __read_mostly;
1699 
busylock_acquire(void * ptr)1700 static spinlock_t *busylock_acquire(void *ptr)
1701 {
1702 	spinlock_t *busy;
1703 
1704 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1705 	spin_lock(busy);
1706 	return busy;
1707 }
1708 
busylock_release(spinlock_t * busy)1709 static void busylock_release(spinlock_t *busy)
1710 {
1711 	if (busy)
1712 		spin_unlock(busy);
1713 }
1714 
udp_rmem_schedule(struct sock * sk,int size)1715 static int udp_rmem_schedule(struct sock *sk, int size)
1716 {
1717 	int delta;
1718 
1719 	delta = size - sk->sk_forward_alloc;
1720 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1721 		return -ENOBUFS;
1722 
1723 	return 0;
1724 }
1725 
__udp_enqueue_schedule_skb(struct sock * sk,struct sk_buff * skb)1726 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1727 {
1728 	struct sk_buff_head *list = &sk->sk_receive_queue;
1729 	int rmem, err = -ENOMEM;
1730 	spinlock_t *busy = NULL;
1731 	int size, rcvbuf;
1732 
1733 	/* Immediately drop when the receive queue is full.
1734 	 * Always allow at least one packet.
1735 	 */
1736 	rmem = atomic_read(&sk->sk_rmem_alloc);
1737 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1738 	if (rmem > rcvbuf)
1739 		goto drop;
1740 
1741 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1742 	 * having linear skbs :
1743 	 * - Reduce memory overhead and thus increase receive queue capacity
1744 	 * - Less cache line misses at copyout() time
1745 	 * - Less work at consume_skb() (less alien page frag freeing)
1746 	 */
1747 	if (rmem > (rcvbuf >> 1)) {
1748 		skb_condense(skb);
1749 
1750 		busy = busylock_acquire(sk);
1751 	}
1752 	size = skb->truesize;
1753 	udp_set_dev_scratch(skb);
1754 
1755 	atomic_add(size, &sk->sk_rmem_alloc);
1756 
1757 	spin_lock(&list->lock);
1758 	err = udp_rmem_schedule(sk, size);
1759 	if (err) {
1760 		spin_unlock(&list->lock);
1761 		goto uncharge_drop;
1762 	}
1763 
1764 	sk_forward_alloc_add(sk, -size);
1765 
1766 	/* no need to setup a destructor, we will explicitly release the
1767 	 * forward allocated memory on dequeue
1768 	 */
1769 	sock_skb_set_dropcount(sk, skb);
1770 
1771 	__skb_queue_tail(list, skb);
1772 	spin_unlock(&list->lock);
1773 
1774 	if (!sock_flag(sk, SOCK_DEAD))
1775 		INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1776 
1777 	busylock_release(busy);
1778 	return 0;
1779 
1780 uncharge_drop:
1781 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1782 
1783 drop:
1784 	atomic_inc(&sk->sk_drops);
1785 	busylock_release(busy);
1786 	return err;
1787 }
1788 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1789 
udp_destruct_common(struct sock * sk)1790 void udp_destruct_common(struct sock *sk)
1791 {
1792 	/* reclaim completely the forward allocated memory */
1793 	struct udp_sock *up = udp_sk(sk);
1794 	unsigned int total = 0;
1795 	struct sk_buff *skb;
1796 
1797 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1798 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1799 		total += skb->truesize;
1800 		kfree_skb(skb);
1801 	}
1802 	udp_rmem_release(sk, total, 0, true);
1803 }
1804 EXPORT_SYMBOL_GPL(udp_destruct_common);
1805 
udp_destruct_sock(struct sock * sk)1806 static void udp_destruct_sock(struct sock *sk)
1807 {
1808 	udp_destruct_common(sk);
1809 	inet_sock_destruct(sk);
1810 }
1811 
udp_init_sock(struct sock * sk)1812 int udp_init_sock(struct sock *sk)
1813 {
1814 	udp_lib_init_sock(sk);
1815 	sk->sk_destruct = udp_destruct_sock;
1816 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1817 	return 0;
1818 }
1819 
skb_consume_udp(struct sock * sk,struct sk_buff * skb,int len)1820 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1821 {
1822 	if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
1823 		sk_peek_offset_bwd(sk, len);
1824 
1825 	if (!skb_unref(skb))
1826 		return;
1827 
1828 	/* In the more common cases we cleared the head states previously,
1829 	 * see __udp_queue_rcv_skb().
1830 	 */
1831 	if (unlikely(udp_skb_has_head_state(skb)))
1832 		skb_release_head_state(skb);
1833 	__consume_stateless_skb(skb);
1834 }
1835 EXPORT_SYMBOL_GPL(skb_consume_udp);
1836 
__first_packet_length(struct sock * sk,struct sk_buff_head * rcvq,int * total)1837 static struct sk_buff *__first_packet_length(struct sock *sk,
1838 					     struct sk_buff_head *rcvq,
1839 					     int *total)
1840 {
1841 	struct sk_buff *skb;
1842 
1843 	while ((skb = skb_peek(rcvq)) != NULL) {
1844 		if (udp_lib_checksum_complete(skb)) {
1845 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1846 					IS_UDPLITE(sk));
1847 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1848 					IS_UDPLITE(sk));
1849 			atomic_inc(&sk->sk_drops);
1850 			__skb_unlink(skb, rcvq);
1851 			*total += skb->truesize;
1852 			kfree_skb(skb);
1853 		} else {
1854 			udp_skb_csum_unnecessary_set(skb);
1855 			break;
1856 		}
1857 	}
1858 	return skb;
1859 }
1860 
1861 /**
1862  *	first_packet_length	- return length of first packet in receive queue
1863  *	@sk: socket
1864  *
1865  *	Drops all bad checksum frames, until a valid one is found.
1866  *	Returns the length of found skb, or -1 if none is found.
1867  */
first_packet_length(struct sock * sk)1868 static int first_packet_length(struct sock *sk)
1869 {
1870 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1871 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1872 	struct sk_buff *skb;
1873 	int total = 0;
1874 	int res;
1875 
1876 	spin_lock_bh(&rcvq->lock);
1877 	skb = __first_packet_length(sk, rcvq, &total);
1878 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1879 		spin_lock(&sk_queue->lock);
1880 		skb_queue_splice_tail_init(sk_queue, rcvq);
1881 		spin_unlock(&sk_queue->lock);
1882 
1883 		skb = __first_packet_length(sk, rcvq, &total);
1884 	}
1885 	res = skb ? skb->len : -1;
1886 	if (total)
1887 		udp_rmem_release(sk, total, 1, false);
1888 	spin_unlock_bh(&rcvq->lock);
1889 	return res;
1890 }
1891 
1892 /*
1893  *	IOCTL requests applicable to the UDP protocol
1894  */
1895 
udp_ioctl(struct sock * sk,int cmd,int * karg)1896 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1897 {
1898 	switch (cmd) {
1899 	case SIOCOUTQ:
1900 	{
1901 		*karg = sk_wmem_alloc_get(sk);
1902 		return 0;
1903 	}
1904 
1905 	case SIOCINQ:
1906 	{
1907 		*karg = max_t(int, 0, first_packet_length(sk));
1908 		return 0;
1909 	}
1910 
1911 	default:
1912 		return -ENOIOCTLCMD;
1913 	}
1914 
1915 	return 0;
1916 }
1917 EXPORT_SYMBOL(udp_ioctl);
1918 
__skb_recv_udp(struct sock * sk,unsigned int flags,int * off,int * err)1919 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1920 			       int *off, int *err)
1921 {
1922 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1923 	struct sk_buff_head *queue;
1924 	struct sk_buff *last;
1925 	long timeo;
1926 	int error;
1927 
1928 	queue = &udp_sk(sk)->reader_queue;
1929 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1930 	do {
1931 		struct sk_buff *skb;
1932 
1933 		error = sock_error(sk);
1934 		if (error)
1935 			break;
1936 
1937 		error = -EAGAIN;
1938 		do {
1939 			spin_lock_bh(&queue->lock);
1940 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1941 							err, &last);
1942 			if (skb) {
1943 				if (!(flags & MSG_PEEK))
1944 					udp_skb_destructor(sk, skb);
1945 				spin_unlock_bh(&queue->lock);
1946 				return skb;
1947 			}
1948 
1949 			if (skb_queue_empty_lockless(sk_queue)) {
1950 				spin_unlock_bh(&queue->lock);
1951 				goto busy_check;
1952 			}
1953 
1954 			/* refill the reader queue and walk it again
1955 			 * keep both queues locked to avoid re-acquiring
1956 			 * the sk_receive_queue lock if fwd memory scheduling
1957 			 * is needed.
1958 			 */
1959 			spin_lock(&sk_queue->lock);
1960 			skb_queue_splice_tail_init(sk_queue, queue);
1961 
1962 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1963 							err, &last);
1964 			if (skb && !(flags & MSG_PEEK))
1965 				udp_skb_dtor_locked(sk, skb);
1966 			spin_unlock(&sk_queue->lock);
1967 			spin_unlock_bh(&queue->lock);
1968 			if (skb)
1969 				return skb;
1970 
1971 busy_check:
1972 			if (!sk_can_busy_loop(sk))
1973 				break;
1974 
1975 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1976 		} while (!skb_queue_empty_lockless(sk_queue));
1977 
1978 		/* sk_queue is empty, reader_queue may contain peeked packets */
1979 	} while (timeo &&
1980 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1981 					      &error, &timeo,
1982 					      (struct sk_buff *)sk_queue));
1983 
1984 	*err = error;
1985 	return NULL;
1986 }
1987 EXPORT_SYMBOL(__skb_recv_udp);
1988 
udp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1989 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1990 {
1991 	struct sk_buff *skb;
1992 	int err;
1993 
1994 try_again:
1995 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1996 	if (!skb)
1997 		return err;
1998 
1999 	if (udp_lib_checksum_complete(skb)) {
2000 		int is_udplite = IS_UDPLITE(sk);
2001 		struct net *net = sock_net(sk);
2002 
2003 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
2004 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
2005 		atomic_inc(&sk->sk_drops);
2006 		kfree_skb(skb);
2007 		goto try_again;
2008 	}
2009 
2010 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
2011 	return recv_actor(sk, skb);
2012 }
2013 EXPORT_SYMBOL(udp_read_skb);
2014 
2015 /*
2016  * 	This should be easy, if there is something there we
2017  * 	return it, otherwise we block.
2018  */
2019 
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2020 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2021 		int *addr_len)
2022 {
2023 	struct inet_sock *inet = inet_sk(sk);
2024 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
2025 	struct sk_buff *skb;
2026 	unsigned int ulen, copied;
2027 	int off, err, peeking = flags & MSG_PEEK;
2028 	int is_udplite = IS_UDPLITE(sk);
2029 	bool checksum_valid = false;
2030 
2031 	if (flags & MSG_ERRQUEUE)
2032 		return ip_recv_error(sk, msg, len, addr_len);
2033 
2034 try_again:
2035 	off = sk_peek_offset(sk, flags);
2036 	skb = __skb_recv_udp(sk, flags, &off, &err);
2037 	if (!skb)
2038 		return err;
2039 
2040 	ulen = udp_skb_len(skb);
2041 	copied = len;
2042 	if (copied > ulen - off)
2043 		copied = ulen - off;
2044 	else if (copied < ulen)
2045 		msg->msg_flags |= MSG_TRUNC;
2046 
2047 	/*
2048 	 * If checksum is needed at all, try to do it while copying the
2049 	 * data.  If the data is truncated, or if we only want a partial
2050 	 * coverage checksum (UDP-Lite), do it before the copy.
2051 	 */
2052 
2053 	if (copied < ulen || peeking ||
2054 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
2055 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
2056 				!__udp_lib_checksum_complete(skb);
2057 		if (!checksum_valid)
2058 			goto csum_copy_err;
2059 	}
2060 
2061 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
2062 		if (udp_skb_is_linear(skb))
2063 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
2064 		else
2065 			err = skb_copy_datagram_msg(skb, off, msg, copied);
2066 	} else {
2067 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
2068 
2069 		if (err == -EINVAL)
2070 			goto csum_copy_err;
2071 	}
2072 
2073 	if (unlikely(err)) {
2074 		if (!peeking) {
2075 			atomic_inc(&sk->sk_drops);
2076 			UDP_INC_STATS(sock_net(sk),
2077 				      UDP_MIB_INERRORS, is_udplite);
2078 		}
2079 		kfree_skb(skb);
2080 		return err;
2081 	}
2082 
2083 	if (!peeking)
2084 		UDP_INC_STATS(sock_net(sk),
2085 			      UDP_MIB_INDATAGRAMS, is_udplite);
2086 
2087 	sock_recv_cmsgs(msg, sk, skb);
2088 
2089 	/* Copy the address. */
2090 	if (sin) {
2091 		sin->sin_family = AF_INET;
2092 		sin->sin_port = udp_hdr(skb)->source;
2093 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
2094 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2095 		*addr_len = sizeof(*sin);
2096 
2097 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
2098 						      (struct sockaddr *)sin,
2099 						      addr_len);
2100 	}
2101 
2102 	if (udp_test_bit(GRO_ENABLED, sk))
2103 		udp_cmsg_recv(msg, sk, skb);
2104 
2105 	if (inet_cmsg_flags(inet))
2106 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
2107 
2108 	err = copied;
2109 	if (flags & MSG_TRUNC)
2110 		err = ulen;
2111 
2112 	skb_consume_udp(sk, skb, peeking ? -err : err);
2113 	return err;
2114 
2115 csum_copy_err:
2116 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
2117 				 udp_skb_destructor)) {
2118 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2119 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2120 	}
2121 	kfree_skb(skb);
2122 
2123 	/* starting over for a new packet, but check if we need to yield */
2124 	cond_resched();
2125 	msg->msg_flags &= ~MSG_TRUNC;
2126 	goto try_again;
2127 }
2128 
udp_pre_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)2129 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
2130 {
2131 	/* This check is replicated from __ip4_datagram_connect() and
2132 	 * intended to prevent BPF program called below from accessing bytes
2133 	 * that are out of the bound specified by user in addr_len.
2134 	 */
2135 	if (addr_len < sizeof(struct sockaddr_in))
2136 		return -EINVAL;
2137 
2138 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
2139 }
2140 EXPORT_SYMBOL(udp_pre_connect);
2141 
udp_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)2142 static int udp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
2143 {
2144 	int res;
2145 
2146 	lock_sock(sk);
2147 	res = __ip4_datagram_connect(sk, uaddr, addr_len);
2148 	if (!res)
2149 		udp4_hash4(sk);
2150 	release_sock(sk);
2151 	return res;
2152 }
2153 
__udp_disconnect(struct sock * sk,int flags)2154 int __udp_disconnect(struct sock *sk, int flags)
2155 {
2156 	struct inet_sock *inet = inet_sk(sk);
2157 	/*
2158 	 *	1003.1g - break association.
2159 	 */
2160 
2161 	sk->sk_state = TCP_CLOSE;
2162 	inet->inet_daddr = 0;
2163 	inet->inet_dport = 0;
2164 	sock_rps_reset_rxhash(sk);
2165 	sk->sk_bound_dev_if = 0;
2166 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
2167 		inet_reset_saddr(sk);
2168 		if (sk->sk_prot->rehash &&
2169 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2170 			sk->sk_prot->rehash(sk);
2171 	}
2172 
2173 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
2174 		sk->sk_prot->unhash(sk);
2175 		inet->inet_sport = 0;
2176 	}
2177 	sk_dst_reset(sk);
2178 	return 0;
2179 }
2180 EXPORT_SYMBOL(__udp_disconnect);
2181 
udp_disconnect(struct sock * sk,int flags)2182 int udp_disconnect(struct sock *sk, int flags)
2183 {
2184 	lock_sock(sk);
2185 	__udp_disconnect(sk, flags);
2186 	release_sock(sk);
2187 	return 0;
2188 }
2189 EXPORT_SYMBOL(udp_disconnect);
2190 
udp_lib_unhash(struct sock * sk)2191 void udp_lib_unhash(struct sock *sk)
2192 {
2193 	if (sk_hashed(sk)) {
2194 		struct udp_table *udptable = udp_get_table_prot(sk);
2195 		struct udp_hslot *hslot, *hslot2;
2196 
2197 		hslot  = udp_hashslot(udptable, sock_net(sk),
2198 				      udp_sk(sk)->udp_port_hash);
2199 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2200 
2201 		spin_lock_bh(&hslot->lock);
2202 		if (rcu_access_pointer(sk->sk_reuseport_cb))
2203 			reuseport_detach_sock(sk);
2204 		if (sk_del_node_init_rcu(sk)) {
2205 			hslot->count--;
2206 			inet_sk(sk)->inet_num = 0;
2207 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2208 
2209 			spin_lock(&hslot2->lock);
2210 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2211 			hslot2->count--;
2212 			spin_unlock(&hslot2->lock);
2213 
2214 			udp_unhash4(udptable, sk);
2215 		}
2216 		spin_unlock_bh(&hslot->lock);
2217 	}
2218 }
2219 EXPORT_SYMBOL(udp_lib_unhash);
2220 
2221 /*
2222  * inet_rcv_saddr was changed, we must rehash secondary hash
2223  */
udp_lib_rehash(struct sock * sk,u16 newhash,u16 newhash4)2224 void udp_lib_rehash(struct sock *sk, u16 newhash, u16 newhash4)
2225 {
2226 	if (sk_hashed(sk)) {
2227 		struct udp_table *udptable = udp_get_table_prot(sk);
2228 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2229 
2230 		hslot = udp_hashslot(udptable, sock_net(sk),
2231 				     udp_sk(sk)->udp_port_hash);
2232 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2233 		nhslot2 = udp_hashslot2(udptable, newhash);
2234 		udp_sk(sk)->udp_portaddr_hash = newhash;
2235 
2236 		if (hslot2 != nhslot2 ||
2237 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2238 			/* we must lock primary chain too */
2239 			spin_lock_bh(&hslot->lock);
2240 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2241 				reuseport_detach_sock(sk);
2242 
2243 			if (hslot2 != nhslot2) {
2244 				spin_lock(&hslot2->lock);
2245 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2246 				hslot2->count--;
2247 				spin_unlock(&hslot2->lock);
2248 
2249 				spin_lock(&nhslot2->lock);
2250 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2251 							 &nhslot2->head);
2252 				nhslot2->count++;
2253 				spin_unlock(&nhslot2->lock);
2254 			}
2255 
2256 			spin_unlock_bh(&hslot->lock);
2257 		}
2258 
2259 		/* Now process hash4 if necessary:
2260 		 * (1) update hslot4;
2261 		 * (2) update hslot2->hash4_cnt.
2262 		 * Note that hslot2/hslot4 should be checked separately, as
2263 		 * either of them may change with the other unchanged.
2264 		 */
2265 		if (udp_hashed4(sk)) {
2266 			spin_lock_bh(&hslot->lock);
2267 
2268 			udp_rehash4(udptable, sk, newhash4);
2269 			if (hslot2 != nhslot2) {
2270 				spin_lock(&hslot2->lock);
2271 				udp_hash4_dec(hslot2);
2272 				spin_unlock(&hslot2->lock);
2273 
2274 				spin_lock(&nhslot2->lock);
2275 				udp_hash4_inc(nhslot2);
2276 				spin_unlock(&nhslot2->lock);
2277 			}
2278 
2279 			spin_unlock_bh(&hslot->lock);
2280 		}
2281 	}
2282 }
2283 EXPORT_SYMBOL(udp_lib_rehash);
2284 
udp_v4_rehash(struct sock * sk)2285 void udp_v4_rehash(struct sock *sk)
2286 {
2287 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2288 					  inet_sk(sk)->inet_rcv_saddr,
2289 					  inet_sk(sk)->inet_num);
2290 	u16 new_hash4 = udp_ehashfn(sock_net(sk),
2291 				    sk->sk_rcv_saddr, sk->sk_num,
2292 				    sk->sk_daddr, sk->sk_dport);
2293 
2294 	udp_lib_rehash(sk, new_hash, new_hash4);
2295 }
2296 
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2297 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2298 {
2299 	int rc;
2300 
2301 	if (inet_sk(sk)->inet_daddr) {
2302 		sock_rps_save_rxhash(sk, skb);
2303 		sk_mark_napi_id(sk, skb);
2304 		sk_incoming_cpu_update(sk);
2305 	} else {
2306 		sk_mark_napi_id_once(sk, skb);
2307 	}
2308 
2309 	rc = __udp_enqueue_schedule_skb(sk, skb);
2310 	if (rc < 0) {
2311 		int is_udplite = IS_UDPLITE(sk);
2312 		int drop_reason;
2313 
2314 		/* Note that an ENOMEM error is charged twice */
2315 		if (rc == -ENOMEM) {
2316 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2317 					is_udplite);
2318 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2319 		} else {
2320 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2321 				      is_udplite);
2322 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2323 		}
2324 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2325 		trace_udp_fail_queue_rcv_skb(rc, sk, skb);
2326 		sk_skb_reason_drop(sk, skb, drop_reason);
2327 		return -1;
2328 	}
2329 
2330 	return 0;
2331 }
2332 
2333 /* returns:
2334  *  -1: error
2335  *   0: success
2336  *  >0: "udp encap" protocol resubmission
2337  *
2338  * Note that in the success and error cases, the skb is assumed to
2339  * have either been requeued or freed.
2340  */
udp_queue_rcv_one_skb(struct sock * sk,struct sk_buff * skb)2341 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2342 {
2343 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2344 	struct udp_sock *up = udp_sk(sk);
2345 	int is_udplite = IS_UDPLITE(sk);
2346 
2347 	/*
2348 	 *	Charge it to the socket, dropping if the queue is full.
2349 	 */
2350 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2351 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2352 		goto drop;
2353 	}
2354 	nf_reset_ct(skb);
2355 
2356 	if (static_branch_unlikely(&udp_encap_needed_key) &&
2357 	    READ_ONCE(up->encap_type)) {
2358 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2359 
2360 		/*
2361 		 * This is an encapsulation socket so pass the skb to
2362 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2363 		 * fall through and pass this up the UDP socket.
2364 		 * up->encap_rcv() returns the following value:
2365 		 * =0 if skb was successfully passed to the encap
2366 		 *    handler or was discarded by it.
2367 		 * >0 if skb should be passed on to UDP.
2368 		 * <0 if skb should be resubmitted as proto -N
2369 		 */
2370 
2371 		/* if we're overly short, let UDP handle it */
2372 		encap_rcv = READ_ONCE(up->encap_rcv);
2373 		if (encap_rcv) {
2374 			int ret;
2375 
2376 			/* Verify checksum before giving to encap */
2377 			if (udp_lib_checksum_complete(skb))
2378 				goto csum_error;
2379 
2380 			ret = encap_rcv(sk, skb);
2381 			if (ret <= 0) {
2382 				__UDP_INC_STATS(sock_net(sk),
2383 						UDP_MIB_INDATAGRAMS,
2384 						is_udplite);
2385 				return -ret;
2386 			}
2387 		}
2388 
2389 		/* FALLTHROUGH -- it's a UDP Packet */
2390 	}
2391 
2392 	/*
2393 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2394 	 */
2395 	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2396 		u16 pcrlen = READ_ONCE(up->pcrlen);
2397 
2398 		/*
2399 		 * MIB statistics other than incrementing the error count are
2400 		 * disabled for the following two types of errors: these depend
2401 		 * on the application settings, not on the functioning of the
2402 		 * protocol stack as such.
2403 		 *
2404 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2405 		 * way ... to ... at least let the receiving application block
2406 		 * delivery of packets with coverage values less than a value
2407 		 * provided by the application."
2408 		 */
2409 		if (pcrlen == 0) {          /* full coverage was set  */
2410 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2411 					    UDP_SKB_CB(skb)->cscov, skb->len);
2412 			goto drop;
2413 		}
2414 		/* The next case involves violating the min. coverage requested
2415 		 * by the receiver. This is subtle: if receiver wants x and x is
2416 		 * greater than the buffersize/MTU then receiver will complain
2417 		 * that it wants x while sender emits packets of smaller size y.
2418 		 * Therefore the above ...()->partial_cov statement is essential.
2419 		 */
2420 		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2421 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2422 					    UDP_SKB_CB(skb)->cscov, pcrlen);
2423 			goto drop;
2424 		}
2425 	}
2426 
2427 	prefetch(&sk->sk_rmem_alloc);
2428 	if (rcu_access_pointer(sk->sk_filter) &&
2429 	    udp_lib_checksum_complete(skb))
2430 			goto csum_error;
2431 
2432 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2433 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2434 		goto drop;
2435 	}
2436 
2437 	udp_csum_pull_header(skb);
2438 
2439 	ipv4_pktinfo_prepare(sk, skb, true);
2440 	return __udp_queue_rcv_skb(sk, skb);
2441 
2442 csum_error:
2443 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2444 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2445 drop:
2446 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2447 	atomic_inc(&sk->sk_drops);
2448 	sk_skb_reason_drop(sk, skb, drop_reason);
2449 	return -1;
2450 }
2451 
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2452 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2453 {
2454 	struct sk_buff *next, *segs;
2455 	int ret;
2456 
2457 	if (likely(!udp_unexpected_gso(sk, skb)))
2458 		return udp_queue_rcv_one_skb(sk, skb);
2459 
2460 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2461 	__skb_push(skb, -skb_mac_offset(skb));
2462 	segs = udp_rcv_segment(sk, skb, true);
2463 	skb_list_walk_safe(segs, skb, next) {
2464 		__skb_pull(skb, skb_transport_offset(skb));
2465 
2466 		udp_post_segment_fix_csum(skb);
2467 		ret = udp_queue_rcv_one_skb(sk, skb);
2468 		if (ret > 0)
2469 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2470 	}
2471 	return 0;
2472 }
2473 
2474 /* For TCP sockets, sk_rx_dst is protected by socket lock
2475  * For UDP, we use xchg() to guard against concurrent changes.
2476  */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)2477 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2478 {
2479 	struct dst_entry *old;
2480 
2481 	if (dst_hold_safe(dst)) {
2482 		old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst)));
2483 		dst_release(old);
2484 		return old != dst;
2485 	}
2486 	return false;
2487 }
2488 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2489 
2490 /*
2491  *	Multicasts and broadcasts go to each listener.
2492  *
2493  *	Note: called only from the BH handler context.
2494  */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)2495 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2496 				    struct udphdr  *uh,
2497 				    __be32 saddr, __be32 daddr,
2498 				    struct udp_table *udptable,
2499 				    int proto)
2500 {
2501 	struct sock *sk, *first = NULL;
2502 	unsigned short hnum = ntohs(uh->dest);
2503 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2504 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2505 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2506 	int dif = skb->dev->ifindex;
2507 	int sdif = inet_sdif(skb);
2508 	struct hlist_node *node;
2509 	struct sk_buff *nskb;
2510 
2511 	if (use_hash2) {
2512 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2513 			    udptable->mask;
2514 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2515 start_lookup:
2516 		hslot = &udptable->hash2[hash2].hslot;
2517 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2518 	}
2519 
2520 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2521 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2522 					 uh->source, saddr, dif, sdif, hnum))
2523 			continue;
2524 
2525 		if (!first) {
2526 			first = sk;
2527 			continue;
2528 		}
2529 		nskb = skb_clone(skb, GFP_ATOMIC);
2530 
2531 		if (unlikely(!nskb)) {
2532 			atomic_inc(&sk->sk_drops);
2533 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2534 					IS_UDPLITE(sk));
2535 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2536 					IS_UDPLITE(sk));
2537 			continue;
2538 		}
2539 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2540 			consume_skb(nskb);
2541 	}
2542 
2543 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2544 	if (use_hash2 && hash2 != hash2_any) {
2545 		hash2 = hash2_any;
2546 		goto start_lookup;
2547 	}
2548 
2549 	if (first) {
2550 		if (udp_queue_rcv_skb(first, skb) > 0)
2551 			consume_skb(skb);
2552 	} else {
2553 		kfree_skb(skb);
2554 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2555 				proto == IPPROTO_UDPLITE);
2556 	}
2557 	return 0;
2558 }
2559 
2560 /* Initialize UDP checksum. If exited with zero value (success),
2561  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2562  * Otherwise, csum completion requires checksumming packet body,
2563  * including udp header and folding it to skb->csum.
2564  */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)2565 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2566 				 int proto)
2567 {
2568 	int err;
2569 
2570 	UDP_SKB_CB(skb)->partial_cov = 0;
2571 	UDP_SKB_CB(skb)->cscov = skb->len;
2572 
2573 	if (proto == IPPROTO_UDPLITE) {
2574 		err = udplite_checksum_init(skb, uh);
2575 		if (err)
2576 			return err;
2577 
2578 		if (UDP_SKB_CB(skb)->partial_cov) {
2579 			skb->csum = inet_compute_pseudo(skb, proto);
2580 			return 0;
2581 		}
2582 	}
2583 
2584 	/* Note, we are only interested in != 0 or == 0, thus the
2585 	 * force to int.
2586 	 */
2587 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2588 							inet_compute_pseudo);
2589 	if (err)
2590 		return err;
2591 
2592 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2593 		/* If SW calculated the value, we know it's bad */
2594 		if (skb->csum_complete_sw)
2595 			return 1;
2596 
2597 		/* HW says the value is bad. Let's validate that.
2598 		 * skb->csum is no longer the full packet checksum,
2599 		 * so don't treat it as such.
2600 		 */
2601 		skb_checksum_complete_unset(skb);
2602 	}
2603 
2604 	return 0;
2605 }
2606 
2607 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2608  * return code conversion for ip layer consumption
2609  */
udp_unicast_rcv_skb(struct sock * sk,struct sk_buff * skb,struct udphdr * uh)2610 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2611 			       struct udphdr *uh)
2612 {
2613 	int ret;
2614 
2615 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2616 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2617 
2618 	ret = udp_queue_rcv_skb(sk, skb);
2619 
2620 	/* a return value > 0 means to resubmit the input, but
2621 	 * it wants the return to be -protocol, or 0
2622 	 */
2623 	if (ret > 0)
2624 		return -ret;
2625 	return 0;
2626 }
2627 
2628 /*
2629  *	All we need to do is get the socket, and then do a checksum.
2630  */
2631 
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)2632 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2633 		   int proto)
2634 {
2635 	struct sock *sk = NULL;
2636 	struct udphdr *uh;
2637 	unsigned short ulen;
2638 	struct rtable *rt = skb_rtable(skb);
2639 	__be32 saddr, daddr;
2640 	struct net *net = dev_net(skb->dev);
2641 	bool refcounted;
2642 	int drop_reason;
2643 
2644 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2645 
2646 	/*
2647 	 *  Validate the packet.
2648 	 */
2649 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2650 		goto drop;		/* No space for header. */
2651 
2652 	uh   = udp_hdr(skb);
2653 	ulen = ntohs(uh->len);
2654 	saddr = ip_hdr(skb)->saddr;
2655 	daddr = ip_hdr(skb)->daddr;
2656 
2657 	if (ulen > skb->len)
2658 		goto short_packet;
2659 
2660 	if (proto == IPPROTO_UDP) {
2661 		/* UDP validates ulen. */
2662 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2663 			goto short_packet;
2664 		uh = udp_hdr(skb);
2665 	}
2666 
2667 	if (udp4_csum_init(skb, uh, proto))
2668 		goto csum_error;
2669 
2670 	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2671 			     &refcounted, udp_ehashfn);
2672 	if (IS_ERR(sk))
2673 		goto no_sk;
2674 
2675 	if (sk) {
2676 		struct dst_entry *dst = skb_dst(skb);
2677 		int ret;
2678 
2679 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2680 			udp_sk_rx_dst_set(sk, dst);
2681 
2682 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2683 		if (refcounted)
2684 			sock_put(sk);
2685 		return ret;
2686 	}
2687 
2688 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2689 		return __udp4_lib_mcast_deliver(net, skb, uh,
2690 						saddr, daddr, udptable, proto);
2691 
2692 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2693 	if (sk)
2694 		return udp_unicast_rcv_skb(sk, skb, uh);
2695 no_sk:
2696 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2697 		goto drop;
2698 	nf_reset_ct(skb);
2699 
2700 	/* No socket. Drop packet silently, if checksum is wrong */
2701 	if (udp_lib_checksum_complete(skb))
2702 		goto csum_error;
2703 
2704 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2705 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2706 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2707 
2708 	/*
2709 	 * Hmm.  We got an UDP packet to a port to which we
2710 	 * don't wanna listen.  Ignore it.
2711 	 */
2712 	sk_skb_reason_drop(sk, skb, drop_reason);
2713 	return 0;
2714 
2715 short_packet:
2716 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2717 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2718 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2719 			    &saddr, ntohs(uh->source),
2720 			    ulen, skb->len,
2721 			    &daddr, ntohs(uh->dest));
2722 	goto drop;
2723 
2724 csum_error:
2725 	/*
2726 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2727 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2728 	 */
2729 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2730 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2731 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2732 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2733 			    ulen);
2734 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2735 drop:
2736 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2737 	sk_skb_reason_drop(sk, skb, drop_reason);
2738 	return 0;
2739 }
2740 
2741 /* We can only early demux multicast if there is a single matching socket.
2742  * If more than one socket found returns NULL
2743  */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2744 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2745 						  __be16 loc_port, __be32 loc_addr,
2746 						  __be16 rmt_port, __be32 rmt_addr,
2747 						  int dif, int sdif)
2748 {
2749 	struct udp_table *udptable = net->ipv4.udp_table;
2750 	unsigned short hnum = ntohs(loc_port);
2751 	struct sock *sk, *result;
2752 	struct udp_hslot *hslot;
2753 	unsigned int slot;
2754 
2755 	slot = udp_hashfn(net, hnum, udptable->mask);
2756 	hslot = &udptable->hash[slot];
2757 
2758 	/* Do not bother scanning a too big list */
2759 	if (hslot->count > 10)
2760 		return NULL;
2761 
2762 	result = NULL;
2763 	sk_for_each_rcu(sk, &hslot->head) {
2764 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2765 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2766 			if (result)
2767 				return NULL;
2768 			result = sk;
2769 		}
2770 	}
2771 
2772 	return result;
2773 }
2774 
2775 /* For unicast we should only early demux connected sockets or we can
2776  * break forwarding setups.  The chains here can be long so only check
2777  * if the first socket is an exact match and if not move on.
2778  */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2779 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2780 					    __be16 loc_port, __be32 loc_addr,
2781 					    __be16 rmt_port, __be32 rmt_addr,
2782 					    int dif, int sdif)
2783 {
2784 	struct udp_table *udptable = net->ipv4.udp_table;
2785 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2786 	unsigned short hnum = ntohs(loc_port);
2787 	struct udp_hslot *hslot2;
2788 	unsigned int hash2;
2789 	__portpair ports;
2790 	struct sock *sk;
2791 
2792 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2793 	hslot2 = udp_hashslot2(udptable, hash2);
2794 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2795 
2796 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2797 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2798 			return sk;
2799 		/* Only check first socket in chain */
2800 		break;
2801 	}
2802 	return NULL;
2803 }
2804 
udp_v4_early_demux(struct sk_buff * skb)2805 int udp_v4_early_demux(struct sk_buff *skb)
2806 {
2807 	struct net *net = dev_net(skb->dev);
2808 	struct in_device *in_dev = NULL;
2809 	const struct iphdr *iph;
2810 	const struct udphdr *uh;
2811 	struct sock *sk = NULL;
2812 	struct dst_entry *dst;
2813 	int dif = skb->dev->ifindex;
2814 	int sdif = inet_sdif(skb);
2815 	int ours;
2816 
2817 	/* validate the packet */
2818 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2819 		return 0;
2820 
2821 	iph = ip_hdr(skb);
2822 	uh = udp_hdr(skb);
2823 
2824 	if (skb->pkt_type == PACKET_MULTICAST) {
2825 		in_dev = __in_dev_get_rcu(skb->dev);
2826 
2827 		if (!in_dev)
2828 			return 0;
2829 
2830 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2831 				       iph->protocol);
2832 		if (!ours)
2833 			return 0;
2834 
2835 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2836 						   uh->source, iph->saddr,
2837 						   dif, sdif);
2838 	} else if (skb->pkt_type == PACKET_HOST) {
2839 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2840 					     uh->source, iph->saddr, dif, sdif);
2841 	}
2842 
2843 	if (!sk)
2844 		return 0;
2845 
2846 	skb->sk = sk;
2847 	DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2848 	skb->destructor = sock_pfree;
2849 	dst = rcu_dereference(sk->sk_rx_dst);
2850 
2851 	if (dst)
2852 		dst = dst_check(dst, 0);
2853 	if (dst) {
2854 		u32 itag = 0;
2855 
2856 		/* set noref for now.
2857 		 * any place which wants to hold dst has to call
2858 		 * dst_hold_safe()
2859 		 */
2860 		skb_dst_set_noref(skb, dst);
2861 
2862 		/* for unconnected multicast sockets we need to validate
2863 		 * the source on each packet
2864 		 */
2865 		if (!inet_sk(sk)->inet_daddr && in_dev)
2866 			return ip_mc_validate_source(skb, iph->daddr,
2867 						     iph->saddr,
2868 						     ip4h_dscp(iph),
2869 						     skb->dev, in_dev, &itag);
2870 	}
2871 	return 0;
2872 }
2873 
udp_rcv(struct sk_buff * skb)2874 int udp_rcv(struct sk_buff *skb)
2875 {
2876 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2877 }
2878 
udp_destroy_sock(struct sock * sk)2879 void udp_destroy_sock(struct sock *sk)
2880 {
2881 	struct udp_sock *up = udp_sk(sk);
2882 	bool slow = lock_sock_fast(sk);
2883 
2884 	/* protects from races with udp_abort() */
2885 	sock_set_flag(sk, SOCK_DEAD);
2886 	udp_flush_pending_frames(sk);
2887 	unlock_sock_fast(sk, slow);
2888 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2889 		if (up->encap_type) {
2890 			void (*encap_destroy)(struct sock *sk);
2891 			encap_destroy = READ_ONCE(up->encap_destroy);
2892 			if (encap_destroy)
2893 				encap_destroy(sk);
2894 		}
2895 		if (udp_test_bit(ENCAP_ENABLED, sk))
2896 			static_branch_dec(&udp_encap_needed_key);
2897 	}
2898 }
2899 
set_xfrm_gro_udp_encap_rcv(__u16 encap_type,unsigned short family,struct sock * sk)2900 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2901 				       struct sock *sk)
2902 {
2903 #ifdef CONFIG_XFRM
2904 	if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2905 		if (family == AF_INET)
2906 			WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv);
2907 		else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2908 			WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv);
2909 	}
2910 #endif
2911 }
2912 
2913 /*
2914  *	Socket option code for UDP
2915  */
udp_lib_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))2916 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2917 		       sockptr_t optval, unsigned int optlen,
2918 		       int (*push_pending_frames)(struct sock *))
2919 {
2920 	struct udp_sock *up = udp_sk(sk);
2921 	int val, valbool;
2922 	int err = 0;
2923 	int is_udplite = IS_UDPLITE(sk);
2924 
2925 	if (level == SOL_SOCKET) {
2926 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2927 
2928 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2929 			sockopt_lock_sock(sk);
2930 			/* paired with READ_ONCE in udp_rmem_release() */
2931 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2932 			sockopt_release_sock(sk);
2933 		}
2934 		return err;
2935 	}
2936 
2937 	if (optlen < sizeof(int))
2938 		return -EINVAL;
2939 
2940 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2941 		return -EFAULT;
2942 
2943 	valbool = val ? 1 : 0;
2944 
2945 	switch (optname) {
2946 	case UDP_CORK:
2947 		if (val != 0) {
2948 			udp_set_bit(CORK, sk);
2949 		} else {
2950 			udp_clear_bit(CORK, sk);
2951 			lock_sock(sk);
2952 			push_pending_frames(sk);
2953 			release_sock(sk);
2954 		}
2955 		break;
2956 
2957 	case UDP_ENCAP:
2958 		switch (val) {
2959 		case 0:
2960 #ifdef CONFIG_XFRM
2961 		case UDP_ENCAP_ESPINUDP:
2962 			set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
2963 #if IS_ENABLED(CONFIG_IPV6)
2964 			if (sk->sk_family == AF_INET6)
2965 				WRITE_ONCE(up->encap_rcv,
2966 					   ipv6_stub->xfrm6_udp_encap_rcv);
2967 			else
2968 #endif
2969 				WRITE_ONCE(up->encap_rcv,
2970 					   xfrm4_udp_encap_rcv);
2971 #endif
2972 			fallthrough;
2973 		case UDP_ENCAP_L2TPINUDP:
2974 			WRITE_ONCE(up->encap_type, val);
2975 			udp_tunnel_encap_enable(sk);
2976 			break;
2977 		default:
2978 			err = -ENOPROTOOPT;
2979 			break;
2980 		}
2981 		break;
2982 
2983 	case UDP_NO_CHECK6_TX:
2984 		udp_set_no_check6_tx(sk, valbool);
2985 		break;
2986 
2987 	case UDP_NO_CHECK6_RX:
2988 		udp_set_no_check6_rx(sk, valbool);
2989 		break;
2990 
2991 	case UDP_SEGMENT:
2992 		if (val < 0 || val > USHRT_MAX)
2993 			return -EINVAL;
2994 		WRITE_ONCE(up->gso_size, val);
2995 		break;
2996 
2997 	case UDP_GRO:
2998 
2999 		/* when enabling GRO, accept the related GSO packet type */
3000 		if (valbool)
3001 			udp_tunnel_encap_enable(sk);
3002 		udp_assign_bit(GRO_ENABLED, sk, valbool);
3003 		udp_assign_bit(ACCEPT_L4, sk, valbool);
3004 		set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
3005 		break;
3006 
3007 	/*
3008 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
3009 	 */
3010 	/* The sender sets actual checksum coverage length via this option.
3011 	 * The case coverage > packet length is handled by send module. */
3012 	case UDPLITE_SEND_CSCOV:
3013 		if (!is_udplite)         /* Disable the option on UDP sockets */
3014 			return -ENOPROTOOPT;
3015 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
3016 			val = 8;
3017 		else if (val > USHRT_MAX)
3018 			val = USHRT_MAX;
3019 		WRITE_ONCE(up->pcslen, val);
3020 		udp_set_bit(UDPLITE_SEND_CC, sk);
3021 		break;
3022 
3023 	/* The receiver specifies a minimum checksum coverage value. To make
3024 	 * sense, this should be set to at least 8 (as done below). If zero is
3025 	 * used, this again means full checksum coverage.                     */
3026 	case UDPLITE_RECV_CSCOV:
3027 		if (!is_udplite)         /* Disable the option on UDP sockets */
3028 			return -ENOPROTOOPT;
3029 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
3030 			val = 8;
3031 		else if (val > USHRT_MAX)
3032 			val = USHRT_MAX;
3033 		WRITE_ONCE(up->pcrlen, val);
3034 		udp_set_bit(UDPLITE_RECV_CC, sk);
3035 		break;
3036 
3037 	default:
3038 		err = -ENOPROTOOPT;
3039 		break;
3040 	}
3041 
3042 	return err;
3043 }
3044 EXPORT_SYMBOL(udp_lib_setsockopt);
3045 
udp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3046 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3047 		   unsigned int optlen)
3048 {
3049 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
3050 		return udp_lib_setsockopt(sk, level, optname,
3051 					  optval, optlen,
3052 					  udp_push_pending_frames);
3053 	return ip_setsockopt(sk, level, optname, optval, optlen);
3054 }
3055 
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3056 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
3057 		       char __user *optval, int __user *optlen)
3058 {
3059 	struct udp_sock *up = udp_sk(sk);
3060 	int val, len;
3061 
3062 	if (get_user(len, optlen))
3063 		return -EFAULT;
3064 
3065 	if (len < 0)
3066 		return -EINVAL;
3067 
3068 	len = min_t(unsigned int, len, sizeof(int));
3069 
3070 	switch (optname) {
3071 	case UDP_CORK:
3072 		val = udp_test_bit(CORK, sk);
3073 		break;
3074 
3075 	case UDP_ENCAP:
3076 		val = READ_ONCE(up->encap_type);
3077 		break;
3078 
3079 	case UDP_NO_CHECK6_TX:
3080 		val = udp_get_no_check6_tx(sk);
3081 		break;
3082 
3083 	case UDP_NO_CHECK6_RX:
3084 		val = udp_get_no_check6_rx(sk);
3085 		break;
3086 
3087 	case UDP_SEGMENT:
3088 		val = READ_ONCE(up->gso_size);
3089 		break;
3090 
3091 	case UDP_GRO:
3092 		val = udp_test_bit(GRO_ENABLED, sk);
3093 		break;
3094 
3095 	/* The following two cannot be changed on UDP sockets, the return is
3096 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
3097 	case UDPLITE_SEND_CSCOV:
3098 		val = READ_ONCE(up->pcslen);
3099 		break;
3100 
3101 	case UDPLITE_RECV_CSCOV:
3102 		val = READ_ONCE(up->pcrlen);
3103 		break;
3104 
3105 	default:
3106 		return -ENOPROTOOPT;
3107 	}
3108 
3109 	if (put_user(len, optlen))
3110 		return -EFAULT;
3111 	if (copy_to_user(optval, &val, len))
3112 		return -EFAULT;
3113 	return 0;
3114 }
3115 EXPORT_SYMBOL(udp_lib_getsockopt);
3116 
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3117 int udp_getsockopt(struct sock *sk, int level, int optname,
3118 		   char __user *optval, int __user *optlen)
3119 {
3120 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
3121 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
3122 	return ip_getsockopt(sk, level, optname, optval, optlen);
3123 }
3124 
3125 /**
3126  * 	udp_poll - wait for a UDP event.
3127  *	@file: - file struct
3128  *	@sock: - socket
3129  *	@wait: - poll table
3130  *
3131  *	This is same as datagram poll, except for the special case of
3132  *	blocking sockets. If application is using a blocking fd
3133  *	and a packet with checksum error is in the queue;
3134  *	then it could get return from select indicating data available
3135  *	but then block when reading it. Add special case code
3136  *	to work around these arguably broken applications.
3137  */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)3138 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
3139 {
3140 	__poll_t mask = datagram_poll(file, sock, wait);
3141 	struct sock *sk = sock->sk;
3142 
3143 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
3144 		mask |= EPOLLIN | EPOLLRDNORM;
3145 
3146 	/* Check for false positives due to checksum errors */
3147 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
3148 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
3149 		mask &= ~(EPOLLIN | EPOLLRDNORM);
3150 
3151 	/* psock ingress_msg queue should not contain any bad checksum frames */
3152 	if (sk_is_readable(sk))
3153 		mask |= EPOLLIN | EPOLLRDNORM;
3154 	return mask;
3155 
3156 }
3157 EXPORT_SYMBOL(udp_poll);
3158 
udp_abort(struct sock * sk,int err)3159 int udp_abort(struct sock *sk, int err)
3160 {
3161 	if (!has_current_bpf_ctx())
3162 		lock_sock(sk);
3163 
3164 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
3165 	 * with close()
3166 	 */
3167 	if (sock_flag(sk, SOCK_DEAD))
3168 		goto out;
3169 
3170 	sk->sk_err = err;
3171 	sk_error_report(sk);
3172 	__udp_disconnect(sk, 0);
3173 
3174 out:
3175 	if (!has_current_bpf_ctx())
3176 		release_sock(sk);
3177 
3178 	return 0;
3179 }
3180 EXPORT_SYMBOL_GPL(udp_abort);
3181 
3182 struct proto udp_prot = {
3183 	.name			= "UDP",
3184 	.owner			= THIS_MODULE,
3185 	.close			= udp_lib_close,
3186 	.pre_connect		= udp_pre_connect,
3187 	.connect		= udp_connect,
3188 	.disconnect		= udp_disconnect,
3189 	.ioctl			= udp_ioctl,
3190 	.init			= udp_init_sock,
3191 	.destroy		= udp_destroy_sock,
3192 	.setsockopt		= udp_setsockopt,
3193 	.getsockopt		= udp_getsockopt,
3194 	.sendmsg		= udp_sendmsg,
3195 	.recvmsg		= udp_recvmsg,
3196 	.splice_eof		= udp_splice_eof,
3197 	.release_cb		= ip4_datagram_release_cb,
3198 	.hash			= udp_lib_hash,
3199 	.unhash			= udp_lib_unhash,
3200 	.rehash			= udp_v4_rehash,
3201 	.get_port		= udp_v4_get_port,
3202 	.put_port		= udp_lib_unhash,
3203 #ifdef CONFIG_BPF_SYSCALL
3204 	.psock_update_sk_prot	= udp_bpf_update_proto,
3205 #endif
3206 	.memory_allocated	= &udp_memory_allocated,
3207 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
3208 
3209 	.sysctl_mem		= sysctl_udp_mem,
3210 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
3211 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
3212 	.obj_size		= sizeof(struct udp_sock),
3213 	.h.udp_table		= NULL,
3214 	.diag_destroy		= udp_abort,
3215 };
3216 EXPORT_SYMBOL(udp_prot);
3217 
3218 /* ------------------------------------------------------------------------ */
3219 #ifdef CONFIG_PROC_FS
3220 
3221 static unsigned short seq_file_family(const struct seq_file *seq);
seq_sk_match(struct seq_file * seq,const struct sock * sk)3222 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
3223 {
3224 	unsigned short family = seq_file_family(seq);
3225 
3226 	/* AF_UNSPEC is used as a match all */
3227 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
3228 		net_eq(sock_net(sk), seq_file_net(seq)));
3229 }
3230 
3231 #ifdef CONFIG_BPF_SYSCALL
3232 static const struct seq_operations bpf_iter_udp_seq_ops;
3233 #endif
udp_get_table_seq(struct seq_file * seq,struct net * net)3234 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
3235 					   struct net *net)
3236 {
3237 	const struct udp_seq_afinfo *afinfo;
3238 
3239 #ifdef CONFIG_BPF_SYSCALL
3240 	if (seq->op == &bpf_iter_udp_seq_ops)
3241 		return net->ipv4.udp_table;
3242 #endif
3243 
3244 	afinfo = pde_data(file_inode(seq->file));
3245 	return afinfo->udp_table ? : net->ipv4.udp_table;
3246 }
3247 
udp_get_first(struct seq_file * seq,int start)3248 static struct sock *udp_get_first(struct seq_file *seq, int start)
3249 {
3250 	struct udp_iter_state *state = seq->private;
3251 	struct net *net = seq_file_net(seq);
3252 	struct udp_table *udptable;
3253 	struct sock *sk;
3254 
3255 	udptable = udp_get_table_seq(seq, net);
3256 
3257 	for (state->bucket = start; state->bucket <= udptable->mask;
3258 	     ++state->bucket) {
3259 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
3260 
3261 		if (hlist_empty(&hslot->head))
3262 			continue;
3263 
3264 		spin_lock_bh(&hslot->lock);
3265 		sk_for_each(sk, &hslot->head) {
3266 			if (seq_sk_match(seq, sk))
3267 				goto found;
3268 		}
3269 		spin_unlock_bh(&hslot->lock);
3270 	}
3271 	sk = NULL;
3272 found:
3273 	return sk;
3274 }
3275 
udp_get_next(struct seq_file * seq,struct sock * sk)3276 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3277 {
3278 	struct udp_iter_state *state = seq->private;
3279 	struct net *net = seq_file_net(seq);
3280 	struct udp_table *udptable;
3281 
3282 	do {
3283 		sk = sk_next(sk);
3284 	} while (sk && !seq_sk_match(seq, sk));
3285 
3286 	if (!sk) {
3287 		udptable = udp_get_table_seq(seq, net);
3288 
3289 		if (state->bucket <= udptable->mask)
3290 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3291 
3292 		return udp_get_first(seq, state->bucket + 1);
3293 	}
3294 	return sk;
3295 }
3296 
udp_get_idx(struct seq_file * seq,loff_t pos)3297 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3298 {
3299 	struct sock *sk = udp_get_first(seq, 0);
3300 
3301 	if (sk)
3302 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3303 			--pos;
3304 	return pos ? NULL : sk;
3305 }
3306 
udp_seq_start(struct seq_file * seq,loff_t * pos)3307 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3308 {
3309 	struct udp_iter_state *state = seq->private;
3310 	state->bucket = MAX_UDP_PORTS;
3311 
3312 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3313 }
3314 EXPORT_SYMBOL(udp_seq_start);
3315 
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)3316 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3317 {
3318 	struct sock *sk;
3319 
3320 	if (v == SEQ_START_TOKEN)
3321 		sk = udp_get_idx(seq, 0);
3322 	else
3323 		sk = udp_get_next(seq, v);
3324 
3325 	++*pos;
3326 	return sk;
3327 }
3328 EXPORT_SYMBOL(udp_seq_next);
3329 
udp_seq_stop(struct seq_file * seq,void * v)3330 void udp_seq_stop(struct seq_file *seq, void *v)
3331 {
3332 	struct udp_iter_state *state = seq->private;
3333 	struct udp_table *udptable;
3334 
3335 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3336 
3337 	if (state->bucket <= udptable->mask)
3338 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3339 }
3340 EXPORT_SYMBOL(udp_seq_stop);
3341 
3342 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)3343 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3344 		int bucket)
3345 {
3346 	struct inet_sock *inet = inet_sk(sp);
3347 	__be32 dest = inet->inet_daddr;
3348 	__be32 src  = inet->inet_rcv_saddr;
3349 	__u16 destp	  = ntohs(inet->inet_dport);
3350 	__u16 srcp	  = ntohs(inet->inet_sport);
3351 
3352 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3353 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3354 		bucket, src, srcp, dest, destp, sp->sk_state,
3355 		sk_wmem_alloc_get(sp),
3356 		udp_rqueue_get(sp),
3357 		0, 0L, 0,
3358 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3359 		0, sock_i_ino(sp),
3360 		refcount_read(&sp->sk_refcnt), sp,
3361 		atomic_read(&sp->sk_drops));
3362 }
3363 
udp4_seq_show(struct seq_file * seq,void * v)3364 int udp4_seq_show(struct seq_file *seq, void *v)
3365 {
3366 	seq_setwidth(seq, 127);
3367 	if (v == SEQ_START_TOKEN)
3368 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3369 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3370 			   "inode ref pointer drops");
3371 	else {
3372 		struct udp_iter_state *state = seq->private;
3373 
3374 		udp4_format_sock(v, seq, state->bucket);
3375 	}
3376 	seq_pad(seq, '\n');
3377 	return 0;
3378 }
3379 
3380 #ifdef CONFIG_BPF_SYSCALL
3381 struct bpf_iter__udp {
3382 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3383 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3384 	uid_t uid __aligned(8);
3385 	int bucket __aligned(8);
3386 };
3387 
3388 struct bpf_udp_iter_state {
3389 	struct udp_iter_state state;
3390 	unsigned int cur_sk;
3391 	unsigned int end_sk;
3392 	unsigned int max_sk;
3393 	int offset;
3394 	struct sock **batch;
3395 	bool st_bucket_done;
3396 };
3397 
3398 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3399 				      unsigned int new_batch_sz);
bpf_iter_udp_batch(struct seq_file * seq)3400 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3401 {
3402 	struct bpf_udp_iter_state *iter = seq->private;
3403 	struct udp_iter_state *state = &iter->state;
3404 	struct net *net = seq_file_net(seq);
3405 	int resume_bucket, resume_offset;
3406 	struct udp_table *udptable;
3407 	unsigned int batch_sks = 0;
3408 	bool resized = false;
3409 	struct sock *sk;
3410 
3411 	resume_bucket = state->bucket;
3412 	resume_offset = iter->offset;
3413 
3414 	/* The current batch is done, so advance the bucket. */
3415 	if (iter->st_bucket_done)
3416 		state->bucket++;
3417 
3418 	udptable = udp_get_table_seq(seq, net);
3419 
3420 again:
3421 	/* New batch for the next bucket.
3422 	 * Iterate over the hash table to find a bucket with sockets matching
3423 	 * the iterator attributes, and return the first matching socket from
3424 	 * the bucket. The remaining matched sockets from the bucket are batched
3425 	 * before releasing the bucket lock. This allows BPF programs that are
3426 	 * called in seq_show to acquire the bucket lock if needed.
3427 	 */
3428 	iter->cur_sk = 0;
3429 	iter->end_sk = 0;
3430 	iter->st_bucket_done = false;
3431 	batch_sks = 0;
3432 
3433 	for (; state->bucket <= udptable->mask; state->bucket++) {
3434 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket].hslot;
3435 
3436 		if (hlist_empty(&hslot2->head))
3437 			continue;
3438 
3439 		iter->offset = 0;
3440 		spin_lock_bh(&hslot2->lock);
3441 		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3442 			if (seq_sk_match(seq, sk)) {
3443 				/* Resume from the last iterated socket at the
3444 				 * offset in the bucket before iterator was stopped.
3445 				 */
3446 				if (state->bucket == resume_bucket &&
3447 				    iter->offset < resume_offset) {
3448 					++iter->offset;
3449 					continue;
3450 				}
3451 				if (iter->end_sk < iter->max_sk) {
3452 					sock_hold(sk);
3453 					iter->batch[iter->end_sk++] = sk;
3454 				}
3455 				batch_sks++;
3456 			}
3457 		}
3458 		spin_unlock_bh(&hslot2->lock);
3459 
3460 		if (iter->end_sk)
3461 			break;
3462 	}
3463 
3464 	/* All done: no batch made. */
3465 	if (!iter->end_sk)
3466 		return NULL;
3467 
3468 	if (iter->end_sk == batch_sks) {
3469 		/* Batching is done for the current bucket; return the first
3470 		 * socket to be iterated from the batch.
3471 		 */
3472 		iter->st_bucket_done = true;
3473 		goto done;
3474 	}
3475 	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3476 		resized = true;
3477 		/* After allocating a larger batch, retry one more time to grab
3478 		 * the whole bucket.
3479 		 */
3480 		goto again;
3481 	}
3482 done:
3483 	return iter->batch[0];
3484 }
3485 
bpf_iter_udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)3486 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3487 {
3488 	struct bpf_udp_iter_state *iter = seq->private;
3489 	struct sock *sk;
3490 
3491 	/* Whenever seq_next() is called, the iter->cur_sk is
3492 	 * done with seq_show(), so unref the iter->cur_sk.
3493 	 */
3494 	if (iter->cur_sk < iter->end_sk) {
3495 		sock_put(iter->batch[iter->cur_sk++]);
3496 		++iter->offset;
3497 	}
3498 
3499 	/* After updating iter->cur_sk, check if there are more sockets
3500 	 * available in the current bucket batch.
3501 	 */
3502 	if (iter->cur_sk < iter->end_sk)
3503 		sk = iter->batch[iter->cur_sk];
3504 	else
3505 		/* Prepare a new batch. */
3506 		sk = bpf_iter_udp_batch(seq);
3507 
3508 	++*pos;
3509 	return sk;
3510 }
3511 
bpf_iter_udp_seq_start(struct seq_file * seq,loff_t * pos)3512 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3513 {
3514 	/* bpf iter does not support lseek, so it always
3515 	 * continue from where it was stop()-ped.
3516 	 */
3517 	if (*pos)
3518 		return bpf_iter_udp_batch(seq);
3519 
3520 	return SEQ_START_TOKEN;
3521 }
3522 
udp_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3523 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3524 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3525 {
3526 	struct bpf_iter__udp ctx;
3527 
3528 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3529 	ctx.meta = meta;
3530 	ctx.udp_sk = udp_sk;
3531 	ctx.uid = uid;
3532 	ctx.bucket = bucket;
3533 	return bpf_iter_run_prog(prog, &ctx);
3534 }
3535 
bpf_iter_udp_seq_show(struct seq_file * seq,void * v)3536 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3537 {
3538 	struct udp_iter_state *state = seq->private;
3539 	struct bpf_iter_meta meta;
3540 	struct bpf_prog *prog;
3541 	struct sock *sk = v;
3542 	uid_t uid;
3543 	int ret;
3544 
3545 	if (v == SEQ_START_TOKEN)
3546 		return 0;
3547 
3548 	lock_sock(sk);
3549 
3550 	if (unlikely(sk_unhashed(sk))) {
3551 		ret = SEQ_SKIP;
3552 		goto unlock;
3553 	}
3554 
3555 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3556 	meta.seq = seq;
3557 	prog = bpf_iter_get_info(&meta, false);
3558 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3559 
3560 unlock:
3561 	release_sock(sk);
3562 	return ret;
3563 }
3564 
bpf_iter_udp_put_batch(struct bpf_udp_iter_state * iter)3565 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3566 {
3567 	while (iter->cur_sk < iter->end_sk)
3568 		sock_put(iter->batch[iter->cur_sk++]);
3569 }
3570 
bpf_iter_udp_seq_stop(struct seq_file * seq,void * v)3571 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3572 {
3573 	struct bpf_udp_iter_state *iter = seq->private;
3574 	struct bpf_iter_meta meta;
3575 	struct bpf_prog *prog;
3576 
3577 	if (!v) {
3578 		meta.seq = seq;
3579 		prog = bpf_iter_get_info(&meta, true);
3580 		if (prog)
3581 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3582 	}
3583 
3584 	if (iter->cur_sk < iter->end_sk) {
3585 		bpf_iter_udp_put_batch(iter);
3586 		iter->st_bucket_done = false;
3587 	}
3588 }
3589 
3590 static const struct seq_operations bpf_iter_udp_seq_ops = {
3591 	.start		= bpf_iter_udp_seq_start,
3592 	.next		= bpf_iter_udp_seq_next,
3593 	.stop		= bpf_iter_udp_seq_stop,
3594 	.show		= bpf_iter_udp_seq_show,
3595 };
3596 #endif
3597 
seq_file_family(const struct seq_file * seq)3598 static unsigned short seq_file_family(const struct seq_file *seq)
3599 {
3600 	const struct udp_seq_afinfo *afinfo;
3601 
3602 #ifdef CONFIG_BPF_SYSCALL
3603 	/* BPF iterator: bpf programs to filter sockets. */
3604 	if (seq->op == &bpf_iter_udp_seq_ops)
3605 		return AF_UNSPEC;
3606 #endif
3607 
3608 	/* Proc fs iterator */
3609 	afinfo = pde_data(file_inode(seq->file));
3610 	return afinfo->family;
3611 }
3612 
3613 const struct seq_operations udp_seq_ops = {
3614 	.start		= udp_seq_start,
3615 	.next		= udp_seq_next,
3616 	.stop		= udp_seq_stop,
3617 	.show		= udp4_seq_show,
3618 };
3619 EXPORT_SYMBOL(udp_seq_ops);
3620 
3621 static struct udp_seq_afinfo udp4_seq_afinfo = {
3622 	.family		= AF_INET,
3623 	.udp_table	= NULL,
3624 };
3625 
udp4_proc_init_net(struct net * net)3626 static int __net_init udp4_proc_init_net(struct net *net)
3627 {
3628 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3629 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3630 		return -ENOMEM;
3631 	return 0;
3632 }
3633 
udp4_proc_exit_net(struct net * net)3634 static void __net_exit udp4_proc_exit_net(struct net *net)
3635 {
3636 	remove_proc_entry("udp", net->proc_net);
3637 }
3638 
3639 static struct pernet_operations udp4_net_ops = {
3640 	.init = udp4_proc_init_net,
3641 	.exit = udp4_proc_exit_net,
3642 };
3643 
udp4_proc_init(void)3644 int __init udp4_proc_init(void)
3645 {
3646 	return register_pernet_subsys(&udp4_net_ops);
3647 }
3648 
udp4_proc_exit(void)3649 void udp4_proc_exit(void)
3650 {
3651 	unregister_pernet_subsys(&udp4_net_ops);
3652 }
3653 #endif /* CONFIG_PROC_FS */
3654 
3655 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)3656 static int __init set_uhash_entries(char *str)
3657 {
3658 	ssize_t ret;
3659 
3660 	if (!str)
3661 		return 0;
3662 
3663 	ret = kstrtoul(str, 0, &uhash_entries);
3664 	if (ret)
3665 		return 0;
3666 
3667 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3668 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3669 	return 1;
3670 }
3671 __setup("uhash_entries=", set_uhash_entries);
3672 
udp_table_init(struct udp_table * table,const char * name)3673 void __init udp_table_init(struct udp_table *table, const char *name)
3674 {
3675 	unsigned int i, slot_size;
3676 
3677 	slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) +
3678 		    udp_hash4_slot_size();
3679 	table->hash = alloc_large_system_hash(name,
3680 					      slot_size,
3681 					      uhash_entries,
3682 					      21, /* one slot per 2 MB */
3683 					      0,
3684 					      &table->log,
3685 					      &table->mask,
3686 					      UDP_HTABLE_SIZE_MIN,
3687 					      UDP_HTABLE_SIZE_MAX);
3688 
3689 	table->hash2 = (void *)(table->hash + (table->mask + 1));
3690 	for (i = 0; i <= table->mask; i++) {
3691 		INIT_HLIST_HEAD(&table->hash[i].head);
3692 		table->hash[i].count = 0;
3693 		spin_lock_init(&table->hash[i].lock);
3694 	}
3695 	for (i = 0; i <= table->mask; i++) {
3696 		INIT_HLIST_HEAD(&table->hash2[i].hslot.head);
3697 		table->hash2[i].hslot.count = 0;
3698 		spin_lock_init(&table->hash2[i].hslot.lock);
3699 	}
3700 	udp_table_hash4_init(table);
3701 }
3702 
udp_flow_hashrnd(void)3703 u32 udp_flow_hashrnd(void)
3704 {
3705 	static u32 hashrnd __read_mostly;
3706 
3707 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3708 
3709 	return hashrnd;
3710 }
3711 EXPORT_SYMBOL(udp_flow_hashrnd);
3712 
udp_sysctl_init(struct net * net)3713 static void __net_init udp_sysctl_init(struct net *net)
3714 {
3715 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3716 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3717 
3718 #ifdef CONFIG_NET_L3_MASTER_DEV
3719 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3720 #endif
3721 }
3722 
udp_pernet_table_alloc(unsigned int hash_entries)3723 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3724 {
3725 	struct udp_table *udptable;
3726 	unsigned int slot_size;
3727 	int i;
3728 
3729 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3730 	if (!udptable)
3731 		goto out;
3732 
3733 	slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) +
3734 		    udp_hash4_slot_size();
3735 	udptable->hash = vmalloc_huge(hash_entries * slot_size,
3736 				      GFP_KERNEL_ACCOUNT);
3737 	if (!udptable->hash)
3738 		goto free_table;
3739 
3740 	udptable->hash2 = (void *)(udptable->hash + hash_entries);
3741 	udptable->mask = hash_entries - 1;
3742 	udptable->log = ilog2(hash_entries);
3743 
3744 	for (i = 0; i < hash_entries; i++) {
3745 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3746 		udptable->hash[i].count = 0;
3747 		spin_lock_init(&udptable->hash[i].lock);
3748 
3749 		INIT_HLIST_HEAD(&udptable->hash2[i].hslot.head);
3750 		udptable->hash2[i].hslot.count = 0;
3751 		spin_lock_init(&udptable->hash2[i].hslot.lock);
3752 	}
3753 	udp_table_hash4_init(udptable);
3754 
3755 	return udptable;
3756 
3757 free_table:
3758 	kfree(udptable);
3759 out:
3760 	return NULL;
3761 }
3762 
udp_pernet_table_free(struct net * net)3763 static void __net_exit udp_pernet_table_free(struct net *net)
3764 {
3765 	struct udp_table *udptable = net->ipv4.udp_table;
3766 
3767 	if (udptable == &udp_table)
3768 		return;
3769 
3770 	kvfree(udptable->hash);
3771 	kfree(udptable);
3772 }
3773 
udp_set_table(struct net * net)3774 static void __net_init udp_set_table(struct net *net)
3775 {
3776 	struct udp_table *udptable;
3777 	unsigned int hash_entries;
3778 	struct net *old_net;
3779 
3780 	if (net_eq(net, &init_net))
3781 		goto fallback;
3782 
3783 	old_net = current->nsproxy->net_ns;
3784 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3785 	if (!hash_entries)
3786 		goto fallback;
3787 
3788 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3789 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3790 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3791 	else
3792 		hash_entries = roundup_pow_of_two(hash_entries);
3793 
3794 	udptable = udp_pernet_table_alloc(hash_entries);
3795 	if (udptable) {
3796 		net->ipv4.udp_table = udptable;
3797 	} else {
3798 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3799 			"for a netns, fallback to the global one\n",
3800 			hash_entries);
3801 fallback:
3802 		net->ipv4.udp_table = &udp_table;
3803 	}
3804 }
3805 
udp_pernet_init(struct net * net)3806 static int __net_init udp_pernet_init(struct net *net)
3807 {
3808 	udp_sysctl_init(net);
3809 	udp_set_table(net);
3810 
3811 	return 0;
3812 }
3813 
udp_pernet_exit(struct net * net)3814 static void __net_exit udp_pernet_exit(struct net *net)
3815 {
3816 	udp_pernet_table_free(net);
3817 }
3818 
3819 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3820 	.init	= udp_pernet_init,
3821 	.exit	= udp_pernet_exit,
3822 };
3823 
3824 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(udp,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3825 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3826 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3827 
3828 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3829 				      unsigned int new_batch_sz)
3830 {
3831 	struct sock **new_batch;
3832 
3833 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3834 				   GFP_USER | __GFP_NOWARN);
3835 	if (!new_batch)
3836 		return -ENOMEM;
3837 
3838 	bpf_iter_udp_put_batch(iter);
3839 	kvfree(iter->batch);
3840 	iter->batch = new_batch;
3841 	iter->max_sk = new_batch_sz;
3842 
3843 	return 0;
3844 }
3845 
3846 #define INIT_BATCH_SZ 16
3847 
bpf_iter_init_udp(void * priv_data,struct bpf_iter_aux_info * aux)3848 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3849 {
3850 	struct bpf_udp_iter_state *iter = priv_data;
3851 	int ret;
3852 
3853 	ret = bpf_iter_init_seq_net(priv_data, aux);
3854 	if (ret)
3855 		return ret;
3856 
3857 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3858 	if (ret)
3859 		bpf_iter_fini_seq_net(priv_data);
3860 
3861 	return ret;
3862 }
3863 
bpf_iter_fini_udp(void * priv_data)3864 static void bpf_iter_fini_udp(void *priv_data)
3865 {
3866 	struct bpf_udp_iter_state *iter = priv_data;
3867 
3868 	bpf_iter_fini_seq_net(priv_data);
3869 	kvfree(iter->batch);
3870 }
3871 
3872 static const struct bpf_iter_seq_info udp_seq_info = {
3873 	.seq_ops		= &bpf_iter_udp_seq_ops,
3874 	.init_seq_private	= bpf_iter_init_udp,
3875 	.fini_seq_private	= bpf_iter_fini_udp,
3876 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3877 };
3878 
3879 static struct bpf_iter_reg udp_reg_info = {
3880 	.target			= "udp",
3881 	.ctx_arg_info_size	= 1,
3882 	.ctx_arg_info		= {
3883 		{ offsetof(struct bpf_iter__udp, udp_sk),
3884 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3885 	},
3886 	.seq_info		= &udp_seq_info,
3887 };
3888 
bpf_iter_register(void)3889 static void __init bpf_iter_register(void)
3890 {
3891 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3892 	if (bpf_iter_reg_target(&udp_reg_info))
3893 		pr_warn("Warning: could not register bpf iterator udp\n");
3894 }
3895 #endif
3896 
udp_init(void)3897 void __init udp_init(void)
3898 {
3899 	unsigned long limit;
3900 	unsigned int i;
3901 
3902 	udp_table_init(&udp_table, "UDP");
3903 	limit = nr_free_buffer_pages() / 8;
3904 	limit = max(limit, 128UL);
3905 	sysctl_udp_mem[0] = limit / 4 * 3;
3906 	sysctl_udp_mem[1] = limit;
3907 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3908 
3909 	/* 16 spinlocks per cpu */
3910 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3911 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3912 				GFP_KERNEL);
3913 	if (!udp_busylocks)
3914 		panic("UDP: failed to alloc udp_busylocks\n");
3915 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3916 		spin_lock_init(udp_busylocks + i);
3917 
3918 	if (register_pernet_subsys(&udp_sysctl_ops))
3919 		panic("UDP: failed to init sysctl parameters.\n");
3920 
3921 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3922 	bpf_iter_register();
3923 #endif
3924 }
3925