xref: /linux/net/ipv4/udp.c (revision 820990d66577de2afeed41f26250ba4fd8a59ca7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapsulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <linux/sock_diag.h>
97 #include <net/tcp_states.h>
98 #include <linux/skbuff.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <net/net_namespace.h>
102 #include <net/icmp.h>
103 #include <net/inet_hashtables.h>
104 #include <net/ip.h>
105 #include <net/ip_tunnels.h>
106 #include <net/route.h>
107 #include <net/checksum.h>
108 #include <net/gso.h>
109 #include <net/xfrm.h>
110 #include <trace/events/udp.h>
111 #include <linux/static_key.h>
112 #include <linux/btf_ids.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 #include <net/udp_tunnel.h>
119 #include <net/gro.h>
120 #if IS_ENABLED(CONFIG_IPV6)
121 #include <net/ipv6_stubs.h>
122 #endif
123 #include <net/rps.h>
124 
125 struct udp_table udp_table __read_mostly;
126 
127 long sysctl_udp_mem[3] __read_mostly;
128 EXPORT_IPV6_MOD(sysctl_udp_mem);
129 
130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
135 
136 static struct udp_table *udp_get_table_prot(struct sock *sk)
137 {
138 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
139 }
140 
141 static int udp_lib_lport_inuse(struct net *net, __u16 num,
142 			       const struct udp_hslot *hslot,
143 			       unsigned long *bitmap,
144 			       struct sock *sk, unsigned int log)
145 {
146 	kuid_t uid = sk_uid(sk);
147 	struct sock *sk2;
148 
149 	sk_for_each(sk2, &hslot->head) {
150 		if (net_eq(sock_net(sk2), net) &&
151 		    sk2 != sk &&
152 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
154 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 		    inet_rcv_saddr_equal(sk, sk2, true)) {
157 			if (sk2->sk_reuseport && sk->sk_reuseport &&
158 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
159 			    uid_eq(uid, sk_uid(sk2))) {
160 				if (!bitmap)
161 					return 0;
162 			} else {
163 				if (!bitmap)
164 					return 1;
165 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
166 					  bitmap);
167 			}
168 		}
169 	}
170 	return 0;
171 }
172 
173 /*
174  * Note: we still hold spinlock of primary hash chain, so no other writer
175  * can insert/delete a socket with local_port == num
176  */
177 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
178 				struct udp_hslot *hslot2,
179 				struct sock *sk)
180 {
181 	kuid_t uid = sk_uid(sk);
182 	struct sock *sk2;
183 	int res = 0;
184 
185 	spin_lock(&hslot2->lock);
186 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
187 		if (net_eq(sock_net(sk2), net) &&
188 		    sk2 != sk &&
189 		    (udp_sk(sk2)->udp_port_hash == num) &&
190 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
191 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
192 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
193 		    inet_rcv_saddr_equal(sk, sk2, true)) {
194 			if (sk2->sk_reuseport && sk->sk_reuseport &&
195 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
196 			    uid_eq(uid, sk_uid(sk2))) {
197 				res = 0;
198 			} else {
199 				res = 1;
200 			}
201 			break;
202 		}
203 	}
204 	spin_unlock(&hslot2->lock);
205 	return res;
206 }
207 
208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
209 {
210 	struct net *net = sock_net(sk);
211 	kuid_t uid = sk_uid(sk);
212 	struct sock *sk2;
213 
214 	sk_for_each(sk2, &hslot->head) {
215 		if (net_eq(sock_net(sk2), net) &&
216 		    sk2 != sk &&
217 		    sk2->sk_family == sk->sk_family &&
218 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221 		    sk2->sk_reuseport && uid_eq(uid, sk_uid(sk2)) &&
222 		    inet_rcv_saddr_equal(sk, sk2, false)) {
223 			return reuseport_add_sock(sk, sk2,
224 						  inet_rcv_saddr_any(sk));
225 		}
226 	}
227 
228 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
229 }
230 
231 /**
232  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233  *
234  *  @sk:          socket struct in question
235  *  @snum:        port number to look up
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 		     unsigned int hash2_nulladdr)
241 {
242 	struct udp_table *udptable = udp_get_table_prot(sk);
243 	struct udp_hslot *hslot, *hslot2;
244 	struct net *net = sock_net(sk);
245 	int error = -EADDRINUSE;
246 
247 	if (!snum) {
248 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
249 		unsigned short first, last;
250 		int low, high, remaining;
251 		unsigned int rand;
252 
253 		inet_sk_get_local_port_range(sk, &low, &high);
254 		remaining = (high - low) + 1;
255 
256 		rand = get_random_u32();
257 		first = reciprocal_scale(rand, remaining) + low;
258 		/*
259 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 		 */
261 		rand = (rand | 1) * (udptable->mask + 1);
262 		last = first + udptable->mask + 1;
263 		do {
264 			hslot = udp_hashslot(udptable, net, first);
265 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 			spin_lock_bh(&hslot->lock);
267 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268 					    udptable->log);
269 
270 			snum = first;
271 			/*
272 			 * Iterate on all possible values of snum for this hash.
273 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 			 * give us randomization and full range coverage.
275 			 */
276 			do {
277 				if (low <= snum && snum <= high &&
278 				    !test_bit(snum >> udptable->log, bitmap) &&
279 				    !inet_is_local_reserved_port(net, snum))
280 					goto found;
281 				snum += rand;
282 			} while (snum != first);
283 			spin_unlock_bh(&hslot->lock);
284 			cond_resched();
285 		} while (++first != last);
286 		goto fail;
287 	} else {
288 		hslot = udp_hashslot(udptable, net, snum);
289 		spin_lock_bh(&hslot->lock);
290 		if (hslot->count > 10) {
291 			int exist;
292 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293 
294 			slot2          &= udptable->mask;
295 			hash2_nulladdr &= udptable->mask;
296 
297 			hslot2 = udp_hashslot2(udptable, slot2);
298 			if (hslot->count < hslot2->count)
299 				goto scan_primary_hash;
300 
301 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 			if (!exist && (hash2_nulladdr != slot2)) {
303 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 							     sk);
306 			}
307 			if (exist)
308 				goto fail_unlock;
309 			else
310 				goto found;
311 		}
312 scan_primary_hash:
313 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314 			goto fail_unlock;
315 	}
316 found:
317 	inet_sk(sk)->inet_num = snum;
318 	udp_sk(sk)->udp_port_hash = snum;
319 	udp_sk(sk)->udp_portaddr_hash ^= snum;
320 	if (sk_unhashed(sk)) {
321 		if (sk->sk_reuseport &&
322 		    udp_reuseport_add_sock(sk, hslot)) {
323 			inet_sk(sk)->inet_num = 0;
324 			udp_sk(sk)->udp_port_hash = 0;
325 			udp_sk(sk)->udp_portaddr_hash ^= snum;
326 			goto fail_unlock;
327 		}
328 
329 		sock_set_flag(sk, SOCK_RCU_FREE);
330 
331 		sk_add_node_rcu(sk, &hslot->head);
332 		hslot->count++;
333 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
334 
335 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
336 		spin_lock(&hslot2->lock);
337 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
338 		    sk->sk_family == AF_INET6)
339 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
340 					   &hslot2->head);
341 		else
342 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
343 					   &hslot2->head);
344 		hslot2->count++;
345 		spin_unlock(&hslot2->lock);
346 	}
347 
348 	error = 0;
349 fail_unlock:
350 	spin_unlock_bh(&hslot->lock);
351 fail:
352 	return error;
353 }
354 EXPORT_IPV6_MOD(udp_lib_get_port);
355 
356 int udp_v4_get_port(struct sock *sk, unsigned short snum)
357 {
358 	unsigned int hash2_nulladdr =
359 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
360 	unsigned int hash2_partial =
361 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
362 
363 	/* precompute partial secondary hash */
364 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
365 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
366 }
367 
368 static int compute_score(struct sock *sk, const struct net *net,
369 			 __be32 saddr, __be16 sport,
370 			 __be32 daddr, unsigned short hnum,
371 			 int dif, int sdif)
372 {
373 	int score;
374 	struct inet_sock *inet;
375 	bool dev_match;
376 
377 	if (!net_eq(sock_net(sk), net) ||
378 	    udp_sk(sk)->udp_port_hash != hnum ||
379 	    ipv6_only_sock(sk))
380 		return -1;
381 
382 	if (sk->sk_rcv_saddr != daddr)
383 		return -1;
384 
385 	score = (sk->sk_family == PF_INET) ? 2 : 1;
386 
387 	inet = inet_sk(sk);
388 	if (inet->inet_daddr) {
389 		if (inet->inet_daddr != saddr)
390 			return -1;
391 		score += 4;
392 	}
393 
394 	if (inet->inet_dport) {
395 		if (inet->inet_dport != sport)
396 			return -1;
397 		score += 4;
398 	}
399 
400 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
401 					dif, sdif);
402 	if (!dev_match)
403 		return -1;
404 	if (sk->sk_bound_dev_if)
405 		score += 4;
406 
407 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
408 		score++;
409 	return score;
410 }
411 
412 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
413 		const __be32 faddr, const __be16 fport)
414 {
415 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
416 
417 	return __inet_ehashfn(laddr, lport, faddr, fport,
418 			      udp_ehash_secret + net_hash_mix(net));
419 }
420 EXPORT_IPV6_MOD(udp_ehashfn);
421 
422 /**
423  * udp4_lib_lookup1() - Simplified lookup using primary hash (destination port)
424  * @net:	Network namespace
425  * @saddr:	Source address, network order
426  * @sport:	Source port, network order
427  * @daddr:	Destination address, network order
428  * @hnum:	Destination port, host order
429  * @dif:	Destination interface index
430  * @sdif:	Destination bridge port index, if relevant
431  * @udptable:	Set of UDP hash tables
432  *
433  * Simplified lookup to be used as fallback if no sockets are found due to a
434  * potential race between (receive) address change, and lookup happening before
435  * the rehash operation. This function ignores SO_REUSEPORT groups while scoring
436  * result sockets, because if we have one, we don't need the fallback at all.
437  *
438  * Called under rcu_read_lock().
439  *
440  * Return: socket with highest matching score if any, NULL if none
441  */
442 static struct sock *udp4_lib_lookup1(const struct net *net,
443 				     __be32 saddr, __be16 sport,
444 				     __be32 daddr, unsigned int hnum,
445 				     int dif, int sdif,
446 				     const struct udp_table *udptable)
447 {
448 	unsigned int slot = udp_hashfn(net, hnum, udptable->mask);
449 	struct udp_hslot *hslot = &udptable->hash[slot];
450 	struct sock *sk, *result = NULL;
451 	int score, badness = 0;
452 
453 	sk_for_each_rcu(sk, &hslot->head) {
454 		score = compute_score(sk, net,
455 				      saddr, sport, daddr, hnum, dif, sdif);
456 		if (score > badness) {
457 			result = sk;
458 			badness = score;
459 		}
460 	}
461 
462 	return result;
463 }
464 
465 /* called with rcu_read_lock() */
466 static struct sock *udp4_lib_lookup2(const struct net *net,
467 				     __be32 saddr, __be16 sport,
468 				     __be32 daddr, unsigned int hnum,
469 				     int dif, int sdif,
470 				     struct udp_hslot *hslot2,
471 				     struct sk_buff *skb)
472 {
473 	struct sock *sk, *result;
474 	int score, badness;
475 	bool need_rescore;
476 
477 	result = NULL;
478 	badness = 0;
479 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
480 		need_rescore = false;
481 rescore:
482 		score = compute_score(need_rescore ? result : sk, net, saddr,
483 				      sport, daddr, hnum, dif, sdif);
484 		if (score > badness) {
485 			badness = score;
486 
487 			if (need_rescore)
488 				continue;
489 
490 			if (sk->sk_state == TCP_ESTABLISHED) {
491 				result = sk;
492 				continue;
493 			}
494 
495 			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
496 						       saddr, sport, daddr, hnum, udp_ehashfn);
497 			if (!result) {
498 				result = sk;
499 				continue;
500 			}
501 
502 			/* Fall back to scoring if group has connections */
503 			if (!reuseport_has_conns(sk))
504 				return result;
505 
506 			/* Reuseport logic returned an error, keep original score. */
507 			if (IS_ERR(result))
508 				continue;
509 
510 			/* compute_score is too long of a function to be
511 			 * inlined, and calling it again here yields
512 			 * measurable overhead for some
513 			 * workloads. Work around it by jumping
514 			 * backwards to rescore 'result'.
515 			 */
516 			need_rescore = true;
517 			goto rescore;
518 		}
519 	}
520 	return result;
521 }
522 
523 #if IS_ENABLED(CONFIG_BASE_SMALL)
524 static struct sock *udp4_lib_lookup4(const struct net *net,
525 				     __be32 saddr, __be16 sport,
526 				     __be32 daddr, unsigned int hnum,
527 				     int dif, int sdif,
528 				     struct udp_table *udptable)
529 {
530 	return NULL;
531 }
532 
533 static void udp_rehash4(struct udp_table *udptable, struct sock *sk,
534 			u16 newhash4)
535 {
536 }
537 
538 static void udp_unhash4(struct udp_table *udptable, struct sock *sk)
539 {
540 }
541 #else /* !CONFIG_BASE_SMALL */
542 static struct sock *udp4_lib_lookup4(const struct net *net,
543 				     __be32 saddr, __be16 sport,
544 				     __be32 daddr, unsigned int hnum,
545 				     int dif, int sdif,
546 				     struct udp_table *udptable)
547 {
548 	const __portpair ports = INET_COMBINED_PORTS(sport, hnum);
549 	const struct hlist_nulls_node *node;
550 	struct udp_hslot *hslot4;
551 	unsigned int hash4, slot;
552 	struct udp_sock *up;
553 	struct sock *sk;
554 
555 	hash4 = udp_ehashfn(net, daddr, hnum, saddr, sport);
556 	slot = hash4 & udptable->mask;
557 	hslot4 = &udptable->hash4[slot];
558 	INET_ADDR_COOKIE(acookie, saddr, daddr);
559 
560 begin:
561 	/* SLAB_TYPESAFE_BY_RCU not used, so we don't need to touch sk_refcnt */
562 	udp_lrpa_for_each_entry_rcu(up, node, &hslot4->nulls_head) {
563 		sk = (struct sock *)up;
564 		if (inet_match(net, sk, acookie, ports, dif, sdif))
565 			return sk;
566 	}
567 
568 	/* if the nulls value we got at the end of this lookup is not the
569 	 * expected one, we must restart lookup. We probably met an item that
570 	 * was moved to another chain due to rehash.
571 	 */
572 	if (get_nulls_value(node) != slot)
573 		goto begin;
574 
575 	return NULL;
576 }
577 
578 /* udp_rehash4() only checks hslot4, and hash4_cnt is not processed. */
579 static void udp_rehash4(struct udp_table *udptable, struct sock *sk,
580 			u16 newhash4)
581 {
582 	struct udp_hslot *hslot4, *nhslot4;
583 
584 	hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash);
585 	nhslot4 = udp_hashslot4(udptable, newhash4);
586 	udp_sk(sk)->udp_lrpa_hash = newhash4;
587 
588 	if (hslot4 != nhslot4) {
589 		spin_lock_bh(&hslot4->lock);
590 		hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node);
591 		hslot4->count--;
592 		spin_unlock_bh(&hslot4->lock);
593 
594 		spin_lock_bh(&nhslot4->lock);
595 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node,
596 					 &nhslot4->nulls_head);
597 		nhslot4->count++;
598 		spin_unlock_bh(&nhslot4->lock);
599 	}
600 }
601 
602 static void udp_unhash4(struct udp_table *udptable, struct sock *sk)
603 {
604 	struct udp_hslot *hslot2, *hslot4;
605 
606 	if (udp_hashed4(sk)) {
607 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
608 		hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash);
609 
610 		spin_lock(&hslot4->lock);
611 		hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node);
612 		hslot4->count--;
613 		spin_unlock(&hslot4->lock);
614 
615 		spin_lock(&hslot2->lock);
616 		udp_hash4_dec(hslot2);
617 		spin_unlock(&hslot2->lock);
618 	}
619 }
620 
621 void udp_lib_hash4(struct sock *sk, u16 hash)
622 {
623 	struct udp_hslot *hslot, *hslot2, *hslot4;
624 	struct net *net = sock_net(sk);
625 	struct udp_table *udptable;
626 
627 	/* Connected udp socket can re-connect to another remote address, which
628 	 * will be handled by rehash. Thus no need to redo hash4 here.
629 	 */
630 	if (udp_hashed4(sk))
631 		return;
632 
633 	udptable = net->ipv4.udp_table;
634 	hslot = udp_hashslot(udptable, net, udp_sk(sk)->udp_port_hash);
635 	hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
636 	hslot4 = udp_hashslot4(udptable, hash);
637 	udp_sk(sk)->udp_lrpa_hash = hash;
638 
639 	spin_lock_bh(&hslot->lock);
640 	if (rcu_access_pointer(sk->sk_reuseport_cb))
641 		reuseport_detach_sock(sk);
642 
643 	spin_lock(&hslot4->lock);
644 	hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node,
645 				 &hslot4->nulls_head);
646 	hslot4->count++;
647 	spin_unlock(&hslot4->lock);
648 
649 	spin_lock(&hslot2->lock);
650 	udp_hash4_inc(hslot2);
651 	spin_unlock(&hslot2->lock);
652 
653 	spin_unlock_bh(&hslot->lock);
654 }
655 EXPORT_IPV6_MOD(udp_lib_hash4);
656 
657 /* call with sock lock */
658 void udp4_hash4(struct sock *sk)
659 {
660 	struct net *net = sock_net(sk);
661 	unsigned int hash;
662 
663 	if (sk_unhashed(sk) || sk->sk_rcv_saddr == htonl(INADDR_ANY))
664 		return;
665 
666 	hash = udp_ehashfn(net, sk->sk_rcv_saddr, sk->sk_num,
667 			   sk->sk_daddr, sk->sk_dport);
668 
669 	udp_lib_hash4(sk, hash);
670 }
671 EXPORT_IPV6_MOD(udp4_hash4);
672 #endif /* CONFIG_BASE_SMALL */
673 
674 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
675  * harder than this. -DaveM
676  */
677 struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr,
678 		__be16 sport, __be32 daddr, __be16 dport, int dif,
679 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
680 {
681 	unsigned short hnum = ntohs(dport);
682 	struct udp_hslot *hslot2;
683 	struct sock *result, *sk;
684 	unsigned int hash2;
685 
686 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
687 	hslot2 = udp_hashslot2(udptable, hash2);
688 
689 	if (udp_has_hash4(hslot2)) {
690 		result = udp4_lib_lookup4(net, saddr, sport, daddr, hnum,
691 					  dif, sdif, udptable);
692 		if (result) /* udp4_lib_lookup4 return sk or NULL */
693 			return result;
694 	}
695 
696 	/* Lookup connected or non-wildcard socket */
697 	result = udp4_lib_lookup2(net, saddr, sport,
698 				  daddr, hnum, dif, sdif,
699 				  hslot2, skb);
700 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
701 		goto done;
702 
703 	/* Lookup redirect from BPF */
704 	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
705 	    udptable == net->ipv4.udp_table) {
706 		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
707 					       saddr, sport, daddr, hnum, dif,
708 					       udp_ehashfn);
709 		if (sk) {
710 			result = sk;
711 			goto done;
712 		}
713 	}
714 
715 	/* Got non-wildcard socket or error on first lookup */
716 	if (result)
717 		goto done;
718 
719 	/* Lookup wildcard sockets */
720 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
721 	hslot2 = udp_hashslot2(udptable, hash2);
722 
723 	result = udp4_lib_lookup2(net, saddr, sport,
724 				  htonl(INADDR_ANY), hnum, dif, sdif,
725 				  hslot2, skb);
726 	if (!IS_ERR_OR_NULL(result))
727 		goto done;
728 
729 	/* Primary hash (destination port) lookup as fallback for this race:
730 	 *   1. __ip4_datagram_connect() sets sk_rcv_saddr
731 	 *   2. lookup (this function): new sk_rcv_saddr, hashes not updated yet
732 	 *   3. rehash operation updating _secondary and four-tuple_ hashes
733 	 * The primary hash doesn't need an update after 1., so, thanks to this
734 	 * further step, 1. and 3. don't need to be atomic against the lookup.
735 	 */
736 	result = udp4_lib_lookup1(net, saddr, sport, daddr, hnum, dif, sdif,
737 				  udptable);
738 
739 done:
740 	if (IS_ERR(result))
741 		return NULL;
742 	return result;
743 }
744 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
745 
746 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
747 						 __be16 sport, __be16 dport,
748 						 struct udp_table *udptable)
749 {
750 	const struct iphdr *iph = ip_hdr(skb);
751 
752 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
753 				 iph->daddr, dport, inet_iif(skb),
754 				 inet_sdif(skb), udptable, skb);
755 }
756 
757 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
758 				 __be16 sport, __be16 dport)
759 {
760 	const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
761 	const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
762 	struct net *net = dev_net(skb->dev);
763 	int iif, sdif;
764 
765 	inet_get_iif_sdif(skb, &iif, &sdif);
766 
767 	return __udp4_lib_lookup(net, iph->saddr, sport,
768 				 iph->daddr, dport, iif,
769 				 sdif, net->ipv4.udp_table, NULL);
770 }
771 
772 /* Must be called under rcu_read_lock().
773  * Does increment socket refcount.
774  */
775 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
776 struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport,
777 			     __be32 daddr, __be16 dport, int dif)
778 {
779 	struct sock *sk;
780 
781 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
782 			       dif, 0, net->ipv4.udp_table, NULL);
783 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
784 		sk = NULL;
785 	return sk;
786 }
787 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
788 #endif
789 
790 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
791 				       __be16 loc_port, __be32 loc_addr,
792 				       __be16 rmt_port, __be32 rmt_addr,
793 				       int dif, int sdif, unsigned short hnum)
794 {
795 	const struct inet_sock *inet = inet_sk(sk);
796 
797 	if (!net_eq(sock_net(sk), net) ||
798 	    udp_sk(sk)->udp_port_hash != hnum ||
799 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
800 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
801 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
802 	    ipv6_only_sock(sk) ||
803 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
804 		return false;
805 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
806 		return false;
807 	return true;
808 }
809 
810 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
811 EXPORT_IPV6_MOD(udp_encap_needed_key);
812 
813 #if IS_ENABLED(CONFIG_IPV6)
814 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
815 EXPORT_IPV6_MOD(udpv6_encap_needed_key);
816 #endif
817 
818 void udp_encap_enable(void)
819 {
820 	static_branch_inc(&udp_encap_needed_key);
821 }
822 EXPORT_SYMBOL(udp_encap_enable);
823 
824 void udp_encap_disable(void)
825 {
826 	static_branch_dec(&udp_encap_needed_key);
827 }
828 EXPORT_SYMBOL(udp_encap_disable);
829 
830 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
831  * through error handlers in encapsulations looking for a match.
832  */
833 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
834 {
835 	int i;
836 
837 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
838 		int (*handler)(struct sk_buff *skb, u32 info);
839 		const struct ip_tunnel_encap_ops *encap;
840 
841 		encap = rcu_dereference(iptun_encaps[i]);
842 		if (!encap)
843 			continue;
844 		handler = encap->err_handler;
845 		if (handler && !handler(skb, info))
846 			return 0;
847 	}
848 
849 	return -ENOENT;
850 }
851 
852 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
853  * reversing source and destination port: this will match tunnels that force the
854  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
855  * lwtunnels might actually break this assumption by being configured with
856  * different destination ports on endpoints, in this case we won't be able to
857  * trace ICMP messages back to them.
858  *
859  * If this doesn't match any socket, probe tunnels with arbitrary destination
860  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
861  * we've sent packets to won't necessarily match the local destination port.
862  *
863  * Then ask the tunnel implementation to match the error against a valid
864  * association.
865  *
866  * Return an error if we can't find a match, the socket if we need further
867  * processing, zero otherwise.
868  */
869 static struct sock *__udp4_lib_err_encap(struct net *net,
870 					 const struct iphdr *iph,
871 					 struct udphdr *uh,
872 					 struct udp_table *udptable,
873 					 struct sock *sk,
874 					 struct sk_buff *skb, u32 info)
875 {
876 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
877 	int network_offset, transport_offset;
878 	struct udp_sock *up;
879 
880 	network_offset = skb_network_offset(skb);
881 	transport_offset = skb_transport_offset(skb);
882 
883 	/* Network header needs to point to the outer IPv4 header inside ICMP */
884 	skb_reset_network_header(skb);
885 
886 	/* Transport header needs to point to the UDP header */
887 	skb_set_transport_header(skb, iph->ihl << 2);
888 
889 	if (sk) {
890 		up = udp_sk(sk);
891 
892 		lookup = READ_ONCE(up->encap_err_lookup);
893 		if (lookup && lookup(sk, skb))
894 			sk = NULL;
895 
896 		goto out;
897 	}
898 
899 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
900 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
901 			       udptable, NULL);
902 	if (sk) {
903 		up = udp_sk(sk);
904 
905 		lookup = READ_ONCE(up->encap_err_lookup);
906 		if (!lookup || lookup(sk, skb))
907 			sk = NULL;
908 	}
909 
910 out:
911 	if (!sk)
912 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
913 
914 	skb_set_transport_header(skb, transport_offset);
915 	skb_set_network_header(skb, network_offset);
916 
917 	return sk;
918 }
919 
920 /*
921  * This routine is called by the ICMP module when it gets some
922  * sort of error condition.  If err < 0 then the socket should
923  * be closed and the error returned to the user.  If err > 0
924  * it's just the icmp type << 8 | icmp code.
925  * Header points to the ip header of the error packet. We move
926  * on past this. Then (as it used to claim before adjustment)
927  * header points to the first 8 bytes of the udp header.  We need
928  * to find the appropriate port.
929  */
930 
931 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
932 {
933 	struct inet_sock *inet;
934 	const struct iphdr *iph = (const struct iphdr *)skb->data;
935 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
936 	const int type = icmp_hdr(skb)->type;
937 	const int code = icmp_hdr(skb)->code;
938 	bool tunnel = false;
939 	struct sock *sk;
940 	int harderr;
941 	int err;
942 	struct net *net = dev_net(skb->dev);
943 
944 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
945 			       iph->saddr, uh->source, skb->dev->ifindex,
946 			       inet_sdif(skb), udptable, NULL);
947 
948 	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
949 		/* No socket for error: try tunnels before discarding */
950 		if (static_branch_unlikely(&udp_encap_needed_key)) {
951 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
952 						  info);
953 			if (!sk)
954 				return 0;
955 		} else
956 			sk = ERR_PTR(-ENOENT);
957 
958 		if (IS_ERR(sk)) {
959 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
960 			return PTR_ERR(sk);
961 		}
962 
963 		tunnel = true;
964 	}
965 
966 	err = 0;
967 	harderr = 0;
968 	inet = inet_sk(sk);
969 
970 	switch (type) {
971 	default:
972 	case ICMP_TIME_EXCEEDED:
973 		err = EHOSTUNREACH;
974 		break;
975 	case ICMP_SOURCE_QUENCH:
976 		goto out;
977 	case ICMP_PARAMETERPROB:
978 		err = EPROTO;
979 		harderr = 1;
980 		break;
981 	case ICMP_DEST_UNREACH:
982 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
983 			ipv4_sk_update_pmtu(skb, sk, info);
984 			if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
985 				err = EMSGSIZE;
986 				harderr = 1;
987 				break;
988 			}
989 			goto out;
990 		}
991 		err = EHOSTUNREACH;
992 		if (code <= NR_ICMP_UNREACH) {
993 			harderr = icmp_err_convert[code].fatal;
994 			err = icmp_err_convert[code].errno;
995 		}
996 		break;
997 	case ICMP_REDIRECT:
998 		ipv4_sk_redirect(skb, sk);
999 		goto out;
1000 	}
1001 
1002 	/*
1003 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
1004 	 *	4.1.3.3.
1005 	 */
1006 	if (tunnel) {
1007 		/* ...not for tunnels though: we don't have a sending socket */
1008 		if (udp_sk(sk)->encap_err_rcv)
1009 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
1010 						  (u8 *)(uh+1));
1011 		goto out;
1012 	}
1013 	if (!inet_test_bit(RECVERR, sk)) {
1014 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
1015 			goto out;
1016 	} else
1017 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
1018 
1019 	sk->sk_err = err;
1020 	sk_error_report(sk);
1021 out:
1022 	return 0;
1023 }
1024 
1025 int udp_err(struct sk_buff *skb, u32 info)
1026 {
1027 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
1028 }
1029 
1030 /*
1031  * Throw away all pending data and cancel the corking. Socket is locked.
1032  */
1033 void udp_flush_pending_frames(struct sock *sk)
1034 {
1035 	struct udp_sock *up = udp_sk(sk);
1036 
1037 	if (up->pending) {
1038 		up->len = 0;
1039 		WRITE_ONCE(up->pending, 0);
1040 		ip_flush_pending_frames(sk);
1041 	}
1042 }
1043 EXPORT_IPV6_MOD(udp_flush_pending_frames);
1044 
1045 /**
1046  * 	udp4_hwcsum  -  handle outgoing HW checksumming
1047  * 	@skb: 	sk_buff containing the filled-in UDP header
1048  * 	        (checksum field must be zeroed out)
1049  *	@src:	source IP address
1050  *	@dst:	destination IP address
1051  */
1052 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
1053 {
1054 	struct udphdr *uh = udp_hdr(skb);
1055 	int offset = skb_transport_offset(skb);
1056 	int len = skb->len - offset;
1057 	int hlen = len;
1058 	__wsum csum = 0;
1059 
1060 	if (!skb_has_frag_list(skb)) {
1061 		/*
1062 		 * Only one fragment on the socket.
1063 		 */
1064 		skb->csum_start = skb_transport_header(skb) - skb->head;
1065 		skb->csum_offset = offsetof(struct udphdr, check);
1066 		uh->check = ~csum_tcpudp_magic(src, dst, len,
1067 					       IPPROTO_UDP, 0);
1068 	} else {
1069 		struct sk_buff *frags;
1070 
1071 		/*
1072 		 * HW-checksum won't work as there are two or more
1073 		 * fragments on the socket so that all csums of sk_buffs
1074 		 * should be together
1075 		 */
1076 		skb_walk_frags(skb, frags) {
1077 			csum = csum_add(csum, frags->csum);
1078 			hlen -= frags->len;
1079 		}
1080 
1081 		csum = skb_checksum(skb, offset, hlen, csum);
1082 		skb->ip_summed = CHECKSUM_NONE;
1083 
1084 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
1085 		if (uh->check == 0)
1086 			uh->check = CSUM_MANGLED_0;
1087 	}
1088 }
1089 EXPORT_SYMBOL_GPL(udp4_hwcsum);
1090 
1091 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
1092  * for the simple case like when setting the checksum for a UDP tunnel.
1093  */
1094 void udp_set_csum(bool nocheck, struct sk_buff *skb,
1095 		  __be32 saddr, __be32 daddr, int len)
1096 {
1097 	struct udphdr *uh = udp_hdr(skb);
1098 
1099 	if (nocheck) {
1100 		uh->check = 0;
1101 	} else if (skb_is_gso(skb)) {
1102 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
1103 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
1104 		uh->check = 0;
1105 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
1106 		if (uh->check == 0)
1107 			uh->check = CSUM_MANGLED_0;
1108 	} else {
1109 		skb->ip_summed = CHECKSUM_PARTIAL;
1110 		skb->csum_start = skb_transport_header(skb) - skb->head;
1111 		skb->csum_offset = offsetof(struct udphdr, check);
1112 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
1113 	}
1114 }
1115 EXPORT_SYMBOL(udp_set_csum);
1116 
1117 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
1118 			struct inet_cork *cork)
1119 {
1120 	struct sock *sk = skb->sk;
1121 	struct inet_sock *inet = inet_sk(sk);
1122 	struct udphdr *uh;
1123 	int err;
1124 	int is_udplite = IS_UDPLITE(sk);
1125 	int offset = skb_transport_offset(skb);
1126 	int len = skb->len - offset;
1127 	int datalen = len - sizeof(*uh);
1128 	__wsum csum = 0;
1129 
1130 	/*
1131 	 * Create a UDP header
1132 	 */
1133 	uh = udp_hdr(skb);
1134 	uh->source = inet->inet_sport;
1135 	uh->dest = fl4->fl4_dport;
1136 	uh->len = htons(len);
1137 	uh->check = 0;
1138 
1139 	if (cork->gso_size) {
1140 		const int hlen = skb_network_header_len(skb) +
1141 				 sizeof(struct udphdr);
1142 
1143 		if (hlen + min(datalen, cork->gso_size) > cork->fragsize) {
1144 			kfree_skb(skb);
1145 			return -EMSGSIZE;
1146 		}
1147 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
1148 			kfree_skb(skb);
1149 			return -EINVAL;
1150 		}
1151 		if (sk->sk_no_check_tx) {
1152 			kfree_skb(skb);
1153 			return -EINVAL;
1154 		}
1155 		if (is_udplite || dst_xfrm(skb_dst(skb))) {
1156 			kfree_skb(skb);
1157 			return -EIO;
1158 		}
1159 
1160 		if (datalen > cork->gso_size) {
1161 			skb_shinfo(skb)->gso_size = cork->gso_size;
1162 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
1163 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
1164 								 cork->gso_size);
1165 
1166 			/* Don't checksum the payload, skb will get segmented */
1167 			goto csum_partial;
1168 		}
1169 	}
1170 
1171 	if (is_udplite)  				 /*     UDP-Lite      */
1172 		csum = udplite_csum(skb);
1173 
1174 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
1175 
1176 		skb->ip_summed = CHECKSUM_NONE;
1177 		goto send;
1178 
1179 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
1180 csum_partial:
1181 
1182 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
1183 		goto send;
1184 
1185 	} else
1186 		csum = udp_csum(skb);
1187 
1188 	/* add protocol-dependent pseudo-header */
1189 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
1190 				      sk->sk_protocol, csum);
1191 	if (uh->check == 0)
1192 		uh->check = CSUM_MANGLED_0;
1193 
1194 send:
1195 	err = ip_send_skb(sock_net(sk), skb);
1196 	if (unlikely(err)) {
1197 		if (err == -ENOBUFS &&
1198 		    !inet_test_bit(RECVERR, sk)) {
1199 			UDP_INC_STATS(sock_net(sk),
1200 				      UDP_MIB_SNDBUFERRORS, is_udplite);
1201 			err = 0;
1202 		}
1203 	} else
1204 		UDP_INC_STATS(sock_net(sk),
1205 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
1206 	return err;
1207 }
1208 
1209 /*
1210  * Push out all pending data as one UDP datagram. Socket is locked.
1211  */
1212 int udp_push_pending_frames(struct sock *sk)
1213 {
1214 	struct udp_sock  *up = udp_sk(sk);
1215 	struct inet_sock *inet = inet_sk(sk);
1216 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1217 	struct sk_buff *skb;
1218 	int err = 0;
1219 
1220 	skb = ip_finish_skb(sk, fl4);
1221 	if (!skb)
1222 		goto out;
1223 
1224 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1225 
1226 out:
1227 	up->len = 0;
1228 	WRITE_ONCE(up->pending, 0);
1229 	return err;
1230 }
1231 EXPORT_IPV6_MOD(udp_push_pending_frames);
1232 
1233 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1234 {
1235 	switch (cmsg->cmsg_type) {
1236 	case UDP_SEGMENT:
1237 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1238 			return -EINVAL;
1239 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1240 		return 0;
1241 	default:
1242 		return -EINVAL;
1243 	}
1244 }
1245 
1246 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1247 {
1248 	struct cmsghdr *cmsg;
1249 	bool need_ip = false;
1250 	int err;
1251 
1252 	for_each_cmsghdr(cmsg, msg) {
1253 		if (!CMSG_OK(msg, cmsg))
1254 			return -EINVAL;
1255 
1256 		if (cmsg->cmsg_level != SOL_UDP) {
1257 			need_ip = true;
1258 			continue;
1259 		}
1260 
1261 		err = __udp_cmsg_send(cmsg, gso_size);
1262 		if (err)
1263 			return err;
1264 	}
1265 
1266 	return need_ip;
1267 }
1268 EXPORT_IPV6_MOD_GPL(udp_cmsg_send);
1269 
1270 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1271 {
1272 	DEFINE_RAW_FLEX(struct ip_options_rcu, opt_copy, opt.__data,
1273 			IP_OPTIONS_DATA_FIXED_SIZE);
1274 	struct inet_sock *inet = inet_sk(sk);
1275 	struct udp_sock *up = udp_sk(sk);
1276 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1277 	struct flowi4 fl4_stack;
1278 	struct flowi4 *fl4;
1279 	int ulen = len;
1280 	struct ipcm_cookie ipc;
1281 	struct rtable *rt = NULL;
1282 	int free = 0;
1283 	int connected = 0;
1284 	__be32 daddr, faddr, saddr;
1285 	u8 scope;
1286 	__be16 dport;
1287 	int err, is_udplite = IS_UDPLITE(sk);
1288 	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1289 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1290 	struct sk_buff *skb;
1291 	int uc_index;
1292 
1293 	if (len > 0xFFFF)
1294 		return -EMSGSIZE;
1295 
1296 	/*
1297 	 *	Check the flags.
1298 	 */
1299 
1300 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1301 		return -EOPNOTSUPP;
1302 
1303 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1304 
1305 	fl4 = &inet->cork.fl.u.ip4;
1306 	if (READ_ONCE(up->pending)) {
1307 		/*
1308 		 * There are pending frames.
1309 		 * The socket lock must be held while it's corked.
1310 		 */
1311 		lock_sock(sk);
1312 		if (likely(up->pending)) {
1313 			if (unlikely(up->pending != AF_INET)) {
1314 				release_sock(sk);
1315 				return -EINVAL;
1316 			}
1317 			goto do_append_data;
1318 		}
1319 		release_sock(sk);
1320 	}
1321 	ulen += sizeof(struct udphdr);
1322 
1323 	/*
1324 	 *	Get and verify the address.
1325 	 */
1326 	if (usin) {
1327 		if (msg->msg_namelen < sizeof(*usin))
1328 			return -EINVAL;
1329 		if (usin->sin_family != AF_INET) {
1330 			if (usin->sin_family != AF_UNSPEC)
1331 				return -EAFNOSUPPORT;
1332 		}
1333 
1334 		daddr = usin->sin_addr.s_addr;
1335 		dport = usin->sin_port;
1336 		if (dport == 0)
1337 			return -EINVAL;
1338 	} else {
1339 		if (sk->sk_state != TCP_ESTABLISHED)
1340 			return -EDESTADDRREQ;
1341 		daddr = inet->inet_daddr;
1342 		dport = inet->inet_dport;
1343 		/* Open fast path for connected socket.
1344 		   Route will not be used, if at least one option is set.
1345 		 */
1346 		connected = 1;
1347 	}
1348 
1349 	ipcm_init_sk(&ipc, inet);
1350 	ipc.gso_size = READ_ONCE(up->gso_size);
1351 
1352 	if (msg->msg_controllen) {
1353 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1354 		if (err > 0) {
1355 			err = ip_cmsg_send(sk, msg, &ipc,
1356 					   sk->sk_family == AF_INET6);
1357 			connected = 0;
1358 		}
1359 		if (unlikely(err < 0)) {
1360 			kfree(ipc.opt);
1361 			return err;
1362 		}
1363 		if (ipc.opt)
1364 			free = 1;
1365 	}
1366 	if (!ipc.opt) {
1367 		struct ip_options_rcu *inet_opt;
1368 
1369 		rcu_read_lock();
1370 		inet_opt = rcu_dereference(inet->inet_opt);
1371 		if (inet_opt) {
1372 			memcpy(opt_copy, inet_opt,
1373 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1374 			ipc.opt = opt_copy;
1375 		}
1376 		rcu_read_unlock();
1377 	}
1378 
1379 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1380 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1381 					    (struct sockaddr *)usin,
1382 					    &msg->msg_namelen,
1383 					    &ipc.addr);
1384 		if (err)
1385 			goto out_free;
1386 		if (usin) {
1387 			if (usin->sin_port == 0) {
1388 				/* BPF program set invalid port. Reject it. */
1389 				err = -EINVAL;
1390 				goto out_free;
1391 			}
1392 			daddr = usin->sin_addr.s_addr;
1393 			dport = usin->sin_port;
1394 		}
1395 	}
1396 
1397 	saddr = ipc.addr;
1398 	ipc.addr = faddr = daddr;
1399 
1400 	if (ipc.opt && ipc.opt->opt.srr) {
1401 		if (!daddr) {
1402 			err = -EINVAL;
1403 			goto out_free;
1404 		}
1405 		faddr = ipc.opt->opt.faddr;
1406 		connected = 0;
1407 	}
1408 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1409 	if (scope == RT_SCOPE_LINK)
1410 		connected = 0;
1411 
1412 	uc_index = READ_ONCE(inet->uc_index);
1413 	if (ipv4_is_multicast(daddr)) {
1414 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1415 			ipc.oif = READ_ONCE(inet->mc_index);
1416 		if (!saddr)
1417 			saddr = READ_ONCE(inet->mc_addr);
1418 		connected = 0;
1419 	} else if (!ipc.oif) {
1420 		ipc.oif = uc_index;
1421 	} else if (ipv4_is_lbcast(daddr) && uc_index) {
1422 		/* oif is set, packet is to local broadcast and
1423 		 * uc_index is set. oif is most likely set
1424 		 * by sk_bound_dev_if. If uc_index != oif check if the
1425 		 * oif is an L3 master and uc_index is an L3 slave.
1426 		 * If so, we want to allow the send using the uc_index.
1427 		 */
1428 		if (ipc.oif != uc_index &&
1429 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1430 							      uc_index)) {
1431 			ipc.oif = uc_index;
1432 		}
1433 	}
1434 
1435 	if (connected)
1436 		rt = dst_rtable(sk_dst_check(sk, 0));
1437 
1438 	if (!rt) {
1439 		struct net *net = sock_net(sk);
1440 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1441 
1442 		fl4 = &fl4_stack;
1443 
1444 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark,
1445 				   ipc.tos & INET_DSCP_MASK, scope,
1446 				   sk->sk_protocol, flow_flags, faddr, saddr,
1447 				   dport, inet->inet_sport,
1448 				   sk_uid(sk));
1449 
1450 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1451 		rt = ip_route_output_flow(net, fl4, sk);
1452 		if (IS_ERR(rt)) {
1453 			err = PTR_ERR(rt);
1454 			rt = NULL;
1455 			if (err == -ENETUNREACH)
1456 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1457 			goto out;
1458 		}
1459 
1460 		err = -EACCES;
1461 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1462 		    !sock_flag(sk, SOCK_BROADCAST))
1463 			goto out;
1464 		if (connected)
1465 			sk_dst_set(sk, dst_clone(&rt->dst));
1466 	}
1467 
1468 	if (msg->msg_flags&MSG_CONFIRM)
1469 		goto do_confirm;
1470 back_from_confirm:
1471 
1472 	saddr = fl4->saddr;
1473 	if (!ipc.addr)
1474 		daddr = ipc.addr = fl4->daddr;
1475 
1476 	/* Lockless fast path for the non-corking case. */
1477 	if (!corkreq) {
1478 		struct inet_cork cork;
1479 
1480 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1481 				  sizeof(struct udphdr), &ipc, &rt,
1482 				  &cork, msg->msg_flags);
1483 		err = PTR_ERR(skb);
1484 		if (!IS_ERR_OR_NULL(skb))
1485 			err = udp_send_skb(skb, fl4, &cork);
1486 		goto out;
1487 	}
1488 
1489 	lock_sock(sk);
1490 	if (unlikely(up->pending)) {
1491 		/* The socket is already corked while preparing it. */
1492 		/* ... which is an evident application bug. --ANK */
1493 		release_sock(sk);
1494 
1495 		net_dbg_ratelimited("socket already corked\n");
1496 		err = -EINVAL;
1497 		goto out;
1498 	}
1499 	/*
1500 	 *	Now cork the socket to pend data.
1501 	 */
1502 	fl4 = &inet->cork.fl.u.ip4;
1503 	fl4->daddr = daddr;
1504 	fl4->saddr = saddr;
1505 	fl4->fl4_dport = dport;
1506 	fl4->fl4_sport = inet->inet_sport;
1507 	WRITE_ONCE(up->pending, AF_INET);
1508 
1509 do_append_data:
1510 	up->len += ulen;
1511 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1512 			     sizeof(struct udphdr), &ipc, &rt,
1513 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1514 	if (err)
1515 		udp_flush_pending_frames(sk);
1516 	else if (!corkreq)
1517 		err = udp_push_pending_frames(sk);
1518 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1519 		WRITE_ONCE(up->pending, 0);
1520 	release_sock(sk);
1521 
1522 out:
1523 	ip_rt_put(rt);
1524 out_free:
1525 	if (free)
1526 		kfree(ipc.opt);
1527 	if (!err)
1528 		return len;
1529 	/*
1530 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1531 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1532 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1533 	 * things).  We could add another new stat but at least for now that
1534 	 * seems like overkill.
1535 	 */
1536 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1537 		UDP_INC_STATS(sock_net(sk),
1538 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1539 	}
1540 	return err;
1541 
1542 do_confirm:
1543 	if (msg->msg_flags & MSG_PROBE)
1544 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1545 	if (!(msg->msg_flags&MSG_PROBE) || len)
1546 		goto back_from_confirm;
1547 	err = 0;
1548 	goto out;
1549 }
1550 EXPORT_SYMBOL(udp_sendmsg);
1551 
1552 void udp_splice_eof(struct socket *sock)
1553 {
1554 	struct sock *sk = sock->sk;
1555 	struct udp_sock *up = udp_sk(sk);
1556 
1557 	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1558 		return;
1559 
1560 	lock_sock(sk);
1561 	if (up->pending && !udp_test_bit(CORK, sk))
1562 		udp_push_pending_frames(sk);
1563 	release_sock(sk);
1564 }
1565 EXPORT_IPV6_MOD_GPL(udp_splice_eof);
1566 
1567 #define UDP_SKB_IS_STATELESS 0x80000000
1568 
1569 /* all head states (dst, sk, nf conntrack) except skb extensions are
1570  * cleared by udp_rcv().
1571  *
1572  * We need to preserve secpath, if present, to eventually process
1573  * IP_CMSG_PASSSEC at recvmsg() time.
1574  *
1575  * Other extensions can be cleared.
1576  */
1577 static bool udp_try_make_stateless(struct sk_buff *skb)
1578 {
1579 	if (!skb_has_extensions(skb))
1580 		return true;
1581 
1582 	if (!secpath_exists(skb)) {
1583 		skb_ext_reset(skb);
1584 		return true;
1585 	}
1586 
1587 	return false;
1588 }
1589 
1590 static void udp_set_dev_scratch(struct sk_buff *skb)
1591 {
1592 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1593 
1594 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1595 	scratch->_tsize_state = skb->truesize;
1596 #if BITS_PER_LONG == 64
1597 	scratch->len = skb->len;
1598 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1599 	scratch->is_linear = !skb_is_nonlinear(skb);
1600 #endif
1601 	if (udp_try_make_stateless(skb))
1602 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1603 }
1604 
1605 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1606 {
1607 	/* We come here after udp_lib_checksum_complete() returned 0.
1608 	 * This means that __skb_checksum_complete() might have
1609 	 * set skb->csum_valid to 1.
1610 	 * On 64bit platforms, we can set csum_unnecessary
1611 	 * to true, but only if the skb is not shared.
1612 	 */
1613 #if BITS_PER_LONG == 64
1614 	if (!skb_shared(skb))
1615 		udp_skb_scratch(skb)->csum_unnecessary = true;
1616 #endif
1617 }
1618 
1619 static int udp_skb_truesize(struct sk_buff *skb)
1620 {
1621 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1622 }
1623 
1624 static bool udp_skb_has_head_state(struct sk_buff *skb)
1625 {
1626 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1627 }
1628 
1629 /* fully reclaim rmem/fwd memory allocated for skb */
1630 static void udp_rmem_release(struct sock *sk, unsigned int size,
1631 			     int partial, bool rx_queue_lock_held)
1632 {
1633 	struct udp_sock *up = udp_sk(sk);
1634 	struct sk_buff_head *sk_queue;
1635 	unsigned int amt;
1636 
1637 	if (likely(partial)) {
1638 		up->forward_deficit += size;
1639 		size = up->forward_deficit;
1640 		if (size < READ_ONCE(up->forward_threshold) &&
1641 		    !skb_queue_empty(&up->reader_queue))
1642 			return;
1643 	} else {
1644 		size += up->forward_deficit;
1645 	}
1646 	up->forward_deficit = 0;
1647 
1648 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1649 	 * if the called don't held it already
1650 	 */
1651 	sk_queue = &sk->sk_receive_queue;
1652 	if (!rx_queue_lock_held)
1653 		spin_lock(&sk_queue->lock);
1654 
1655 	amt = (size + sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1656 	sk_forward_alloc_add(sk, size - amt);
1657 
1658 	if (amt)
1659 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1660 
1661 	atomic_sub(size, &sk->sk_rmem_alloc);
1662 
1663 	/* this can save us from acquiring the rx queue lock on next receive */
1664 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1665 
1666 	if (!rx_queue_lock_held)
1667 		spin_unlock(&sk_queue->lock);
1668 }
1669 
1670 /* Note: called with reader_queue.lock held.
1671  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1672  * This avoids a cache line miss while receive_queue lock is held.
1673  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1674  */
1675 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1676 {
1677 	prefetch(&skb->data);
1678 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1679 }
1680 EXPORT_IPV6_MOD(udp_skb_destructor);
1681 
1682 /* as above, but the caller held the rx queue lock, too */
1683 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1684 {
1685 	prefetch(&skb->data);
1686 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1687 }
1688 
1689 static int udp_rmem_schedule(struct sock *sk, int size)
1690 {
1691 	int delta;
1692 
1693 	delta = size - sk->sk_forward_alloc;
1694 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1695 		return -ENOBUFS;
1696 
1697 	return 0;
1698 }
1699 
1700 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1701 {
1702 	struct sk_buff_head *list = &sk->sk_receive_queue;
1703 	struct udp_prod_queue *udp_prod_queue;
1704 	struct sk_buff *next, *to_drop = NULL;
1705 	struct llist_node *ll_list;
1706 	unsigned int rmem, rcvbuf;
1707 	int size, err = -ENOMEM;
1708 	int total_size = 0;
1709 	int q_size = 0;
1710 	int dropcount;
1711 	int nb = 0;
1712 
1713 	rmem = atomic_read(&sk->sk_rmem_alloc);
1714 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1715 	size = skb->truesize;
1716 
1717 	udp_prod_queue = &udp_sk(sk)->udp_prod_queue[numa_node_id()];
1718 
1719 	rmem += atomic_read(&udp_prod_queue->rmem_alloc);
1720 
1721 	/* Immediately drop when the receive queue is full.
1722 	 * Cast to unsigned int performs the boundary check for INT_MAX.
1723 	 */
1724 	if (rmem + size > rcvbuf) {
1725 		if (rcvbuf > INT_MAX >> 1)
1726 			goto drop;
1727 
1728 		/* Accept the packet if queue is empty. */
1729 		if (rmem)
1730 			goto drop;
1731 	}
1732 
1733 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1734 	 * having linear skbs :
1735 	 * - Reduce memory overhead and thus increase receive queue capacity
1736 	 * - Less cache line misses at copyout() time
1737 	 * - Less work at consume_skb() (less alien page frag freeing)
1738 	 */
1739 	if (rmem > (rcvbuf >> 1)) {
1740 		skb_condense(skb);
1741 		size = skb->truesize;
1742 	}
1743 
1744 	udp_set_dev_scratch(skb);
1745 
1746 	atomic_add(size, &udp_prod_queue->rmem_alloc);
1747 
1748 	if (!llist_add(&skb->ll_node, &udp_prod_queue->ll_root))
1749 		return 0;
1750 
1751 	dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? sk_drops_read(sk) : 0;
1752 
1753 	spin_lock(&list->lock);
1754 
1755 	ll_list = llist_del_all(&udp_prod_queue->ll_root);
1756 
1757 	ll_list = llist_reverse_order(ll_list);
1758 
1759 	llist_for_each_entry_safe(skb, next, ll_list, ll_node) {
1760 		size = udp_skb_truesize(skb);
1761 		total_size += size;
1762 		err = udp_rmem_schedule(sk, size);
1763 		if (unlikely(err)) {
1764 			/*  Free the skbs outside of locked section. */
1765 			skb->next = to_drop;
1766 			to_drop = skb;
1767 			continue;
1768 		}
1769 
1770 		q_size += size;
1771 		sk_forward_alloc_add(sk, -size);
1772 
1773 		/* no need to setup a destructor, we will explicitly release the
1774 		 * forward allocated memory on dequeue
1775 		 */
1776 		SOCK_SKB_CB(skb)->dropcount = dropcount;
1777 		nb++;
1778 		__skb_queue_tail(list, skb);
1779 	}
1780 
1781 	atomic_add(q_size, &sk->sk_rmem_alloc);
1782 
1783 	spin_unlock(&list->lock);
1784 
1785 	if (!sock_flag(sk, SOCK_DEAD)) {
1786 		/* Multiple threads might be blocked in recvmsg(),
1787 		 * using prepare_to_wait_exclusive().
1788 		 */
1789 		while (nb) {
1790 			INDIRECT_CALL_1(sk->sk_data_ready,
1791 					sock_def_readable, sk);
1792 			nb--;
1793 		}
1794 	}
1795 
1796 	if (unlikely(to_drop)) {
1797 		int err_ipv4 = 0;
1798 		int err_ipv6 = 0;
1799 
1800 		for (nb = 0; to_drop != NULL; nb++) {
1801 			skb = to_drop;
1802 			if (skb->protocol == htons(ETH_P_IP))
1803 				err_ipv4++;
1804 			else
1805 				err_ipv6++;
1806 			to_drop = skb->next;
1807 			skb_mark_not_on_list(skb);
1808 			sk_skb_reason_drop(sk, skb, SKB_DROP_REASON_PROTO_MEM);
1809 		}
1810 		numa_drop_add(&udp_sk(sk)->drop_counters, nb);
1811 		if (err_ipv4 > 0) {
1812 			SNMP_ADD_STATS(__UDPX_MIB(sk, true), UDP_MIB_MEMERRORS,
1813 				       err_ipv4);
1814 			SNMP_ADD_STATS(__UDPX_MIB(sk, true), UDP_MIB_INERRORS,
1815 				       err_ipv4);
1816 		}
1817 		if (err_ipv6 > 0) {
1818 			SNMP_ADD_STATS(__UDPX_MIB(sk, false), UDP_MIB_MEMERRORS,
1819 				       err_ipv6);
1820 			SNMP_ADD_STATS(__UDPX_MIB(sk, false), UDP_MIB_INERRORS,
1821 				       err_ipv6);
1822 		}
1823 	}
1824 
1825 	atomic_sub(total_size, &udp_prod_queue->rmem_alloc);
1826 
1827 	return 0;
1828 
1829 drop:
1830 	udp_drops_inc(sk);
1831 	return err;
1832 }
1833 EXPORT_IPV6_MOD_GPL(__udp_enqueue_schedule_skb);
1834 
1835 void udp_destruct_common(struct sock *sk)
1836 {
1837 	/* reclaim completely the forward allocated memory */
1838 	struct udp_sock *up = udp_sk(sk);
1839 	unsigned int total = 0;
1840 	struct sk_buff *skb;
1841 
1842 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1843 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1844 		total += skb->truesize;
1845 		kfree_skb(skb);
1846 	}
1847 	udp_rmem_release(sk, total, 0, true);
1848 	kfree(up->udp_prod_queue);
1849 }
1850 EXPORT_IPV6_MOD_GPL(udp_destruct_common);
1851 
1852 static void udp_destruct_sock(struct sock *sk)
1853 {
1854 	udp_destruct_common(sk);
1855 	inet_sock_destruct(sk);
1856 }
1857 
1858 int udp_init_sock(struct sock *sk)
1859 {
1860 	int res = udp_lib_init_sock(sk);
1861 
1862 	sk->sk_destruct = udp_destruct_sock;
1863 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1864 	return res;
1865 }
1866 
1867 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1868 {
1869 	if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
1870 		sk_peek_offset_bwd(sk, len);
1871 
1872 	if (!skb_shared(skb)) {
1873 		skb_orphan(skb);
1874 		skb_attempt_defer_free(skb);
1875 		return;
1876 	}
1877 
1878 	if (!skb_unref(skb))
1879 		return;
1880 
1881 	/* In the more common cases we cleared the head states previously,
1882 	 * see __udp_queue_rcv_skb().
1883 	 */
1884 	if (unlikely(udp_skb_has_head_state(skb)))
1885 		skb_release_head_state(skb);
1886 	__consume_stateless_skb(skb);
1887 }
1888 EXPORT_IPV6_MOD_GPL(skb_consume_udp);
1889 
1890 static struct sk_buff *__first_packet_length(struct sock *sk,
1891 					     struct sk_buff_head *rcvq,
1892 					     unsigned int *total)
1893 {
1894 	struct sk_buff *skb;
1895 
1896 	while ((skb = skb_peek(rcvq)) != NULL) {
1897 		if (udp_lib_checksum_complete(skb)) {
1898 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1899 					IS_UDPLITE(sk));
1900 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1901 					IS_UDPLITE(sk));
1902 			udp_drops_inc(sk);
1903 			__skb_unlink(skb, rcvq);
1904 			*total += skb->truesize;
1905 			kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM);
1906 		} else {
1907 			udp_skb_csum_unnecessary_set(skb);
1908 			break;
1909 		}
1910 	}
1911 	return skb;
1912 }
1913 
1914 /**
1915  *	first_packet_length	- return length of first packet in receive queue
1916  *	@sk: socket
1917  *
1918  *	Drops all bad checksum frames, until a valid one is found.
1919  *	Returns the length of found skb, or -1 if none is found.
1920  */
1921 static int first_packet_length(struct sock *sk)
1922 {
1923 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1924 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1925 	unsigned int total = 0;
1926 	struct sk_buff *skb;
1927 	int res;
1928 
1929 	spin_lock_bh(&rcvq->lock);
1930 	skb = __first_packet_length(sk, rcvq, &total);
1931 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1932 		spin_lock(&sk_queue->lock);
1933 		skb_queue_splice_tail_init(sk_queue, rcvq);
1934 		spin_unlock(&sk_queue->lock);
1935 
1936 		skb = __first_packet_length(sk, rcvq, &total);
1937 	}
1938 	res = skb ? skb->len : -1;
1939 	if (total)
1940 		udp_rmem_release(sk, total, 1, false);
1941 	spin_unlock_bh(&rcvq->lock);
1942 	return res;
1943 }
1944 
1945 /*
1946  *	IOCTL requests applicable to the UDP protocol
1947  */
1948 
1949 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1950 {
1951 	switch (cmd) {
1952 	case SIOCOUTQ:
1953 	{
1954 		*karg = sk_wmem_alloc_get(sk);
1955 		return 0;
1956 	}
1957 
1958 	case SIOCINQ:
1959 	{
1960 		*karg = max_t(int, 0, first_packet_length(sk));
1961 		return 0;
1962 	}
1963 
1964 	default:
1965 		return -ENOIOCTLCMD;
1966 	}
1967 
1968 	return 0;
1969 }
1970 EXPORT_IPV6_MOD(udp_ioctl);
1971 
1972 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1973 			       int *off, int *err)
1974 {
1975 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1976 	struct sk_buff_head *queue;
1977 	struct sk_buff *last;
1978 	long timeo;
1979 	int error;
1980 
1981 	queue = &udp_sk(sk)->reader_queue;
1982 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1983 	do {
1984 		struct sk_buff *skb;
1985 
1986 		error = sock_error(sk);
1987 		if (error)
1988 			break;
1989 
1990 		error = -EAGAIN;
1991 		do {
1992 			spin_lock_bh(&queue->lock);
1993 			skb = __skb_try_recv_from_queue(queue, flags, off, err,
1994 							&last);
1995 			if (skb) {
1996 				if (!(flags & MSG_PEEK))
1997 					udp_skb_destructor(sk, skb);
1998 				spin_unlock_bh(&queue->lock);
1999 				return skb;
2000 			}
2001 
2002 			if (skb_queue_empty_lockless(sk_queue)) {
2003 				spin_unlock_bh(&queue->lock);
2004 				goto busy_check;
2005 			}
2006 
2007 			/* refill the reader queue and walk it again
2008 			 * keep both queues locked to avoid re-acquiring
2009 			 * the sk_receive_queue lock if fwd memory scheduling
2010 			 * is needed.
2011 			 */
2012 			spin_lock(&sk_queue->lock);
2013 			skb_queue_splice_tail_init(sk_queue, queue);
2014 
2015 			skb = __skb_try_recv_from_queue(queue, flags, off, err,
2016 							&last);
2017 			if (skb && !(flags & MSG_PEEK))
2018 				udp_skb_dtor_locked(sk, skb);
2019 			spin_unlock(&sk_queue->lock);
2020 			spin_unlock_bh(&queue->lock);
2021 			if (skb)
2022 				return skb;
2023 
2024 busy_check:
2025 			if (!sk_can_busy_loop(sk))
2026 				break;
2027 
2028 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
2029 		} while (!skb_queue_empty_lockless(sk_queue));
2030 
2031 		/* sk_queue is empty, reader_queue may contain peeked packets */
2032 	} while (timeo &&
2033 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
2034 					      &error, &timeo,
2035 					      (struct sk_buff *)sk_queue));
2036 
2037 	*err = error;
2038 	return NULL;
2039 }
2040 EXPORT_SYMBOL(__skb_recv_udp);
2041 
2042 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
2043 {
2044 	struct sk_buff *skb;
2045 	int err;
2046 
2047 try_again:
2048 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
2049 	if (!skb)
2050 		return err;
2051 
2052 	if (udp_lib_checksum_complete(skb)) {
2053 		int is_udplite = IS_UDPLITE(sk);
2054 		struct net *net = sock_net(sk);
2055 
2056 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
2057 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
2058 		udp_drops_inc(sk);
2059 		kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM);
2060 		goto try_again;
2061 	}
2062 
2063 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
2064 	return recv_actor(sk, skb);
2065 }
2066 EXPORT_IPV6_MOD(udp_read_skb);
2067 
2068 /*
2069  * 	This should be easy, if there is something there we
2070  * 	return it, otherwise we block.
2071  */
2072 
2073 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2074 		int *addr_len)
2075 {
2076 	struct inet_sock *inet = inet_sk(sk);
2077 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
2078 	struct sk_buff *skb;
2079 	unsigned int ulen, copied;
2080 	int off, err, peeking = flags & MSG_PEEK;
2081 	int is_udplite = IS_UDPLITE(sk);
2082 	bool checksum_valid = false;
2083 
2084 	if (flags & MSG_ERRQUEUE)
2085 		return ip_recv_error(sk, msg, len, addr_len);
2086 
2087 try_again:
2088 	off = sk_peek_offset(sk, flags);
2089 	skb = __skb_recv_udp(sk, flags, &off, &err);
2090 	if (!skb)
2091 		return err;
2092 
2093 	ulen = udp_skb_len(skb);
2094 	copied = len;
2095 	if (copied > ulen - off)
2096 		copied = ulen - off;
2097 	else if (copied < ulen)
2098 		msg->msg_flags |= MSG_TRUNC;
2099 
2100 	/*
2101 	 * If checksum is needed at all, try to do it while copying the
2102 	 * data.  If the data is truncated, or if we only want a partial
2103 	 * coverage checksum (UDP-Lite), do it before the copy.
2104 	 */
2105 
2106 	if (copied < ulen || peeking ||
2107 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
2108 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
2109 				!__udp_lib_checksum_complete(skb);
2110 		if (!checksum_valid)
2111 			goto csum_copy_err;
2112 	}
2113 
2114 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
2115 		if (udp_skb_is_linear(skb))
2116 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
2117 		else
2118 			err = skb_copy_datagram_msg(skb, off, msg, copied);
2119 	} else {
2120 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
2121 
2122 		if (err == -EINVAL)
2123 			goto csum_copy_err;
2124 	}
2125 
2126 	if (unlikely(err)) {
2127 		if (!peeking) {
2128 			udp_drops_inc(sk);
2129 			UDP_INC_STATS(sock_net(sk),
2130 				      UDP_MIB_INERRORS, is_udplite);
2131 		}
2132 		kfree_skb(skb);
2133 		return err;
2134 	}
2135 
2136 	if (!peeking)
2137 		UDP_INC_STATS(sock_net(sk),
2138 			      UDP_MIB_INDATAGRAMS, is_udplite);
2139 
2140 	sock_recv_cmsgs(msg, sk, skb);
2141 
2142 	/* Copy the address. */
2143 	if (sin) {
2144 		sin->sin_family = AF_INET;
2145 		sin->sin_port = udp_hdr(skb)->source;
2146 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
2147 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2148 		*addr_len = sizeof(*sin);
2149 
2150 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
2151 						      (struct sockaddr *)sin,
2152 						      addr_len);
2153 	}
2154 
2155 	if (udp_test_bit(GRO_ENABLED, sk))
2156 		udp_cmsg_recv(msg, sk, skb);
2157 
2158 	if (inet_cmsg_flags(inet))
2159 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
2160 
2161 	err = copied;
2162 	if (flags & MSG_TRUNC)
2163 		err = ulen;
2164 
2165 	skb_consume_udp(sk, skb, peeking ? -err : err);
2166 	return err;
2167 
2168 csum_copy_err:
2169 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
2170 				 udp_skb_destructor)) {
2171 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2172 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2173 	}
2174 	kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM);
2175 
2176 	/* starting over for a new packet, but check if we need to yield */
2177 	cond_resched();
2178 	msg->msg_flags &= ~MSG_TRUNC;
2179 	goto try_again;
2180 }
2181 
2182 int udp_pre_connect(struct sock *sk, struct sockaddr_unsized *uaddr,
2183 		    int addr_len)
2184 {
2185 	/* This check is replicated from __ip4_datagram_connect() and
2186 	 * intended to prevent BPF program called below from accessing bytes
2187 	 * that are out of the bound specified by user in addr_len.
2188 	 */
2189 	if (addr_len < sizeof(struct sockaddr_in))
2190 		return -EINVAL;
2191 
2192 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
2193 }
2194 EXPORT_IPV6_MOD(udp_pre_connect);
2195 
2196 static int udp_connect(struct sock *sk, struct sockaddr_unsized *uaddr,
2197 		       int addr_len)
2198 {
2199 	int res;
2200 
2201 	lock_sock(sk);
2202 	res = __ip4_datagram_connect(sk, uaddr, addr_len);
2203 	if (!res)
2204 		udp4_hash4(sk);
2205 	release_sock(sk);
2206 	return res;
2207 }
2208 
2209 int __udp_disconnect(struct sock *sk, int flags)
2210 {
2211 	struct inet_sock *inet = inet_sk(sk);
2212 	/*
2213 	 *	1003.1g - break association.
2214 	 */
2215 
2216 	sk->sk_state = TCP_CLOSE;
2217 	inet->inet_daddr = 0;
2218 	inet->inet_dport = 0;
2219 	sock_rps_reset_rxhash(sk);
2220 	sk->sk_bound_dev_if = 0;
2221 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
2222 		inet_reset_saddr(sk);
2223 		if (sk->sk_prot->rehash &&
2224 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2225 			sk->sk_prot->rehash(sk);
2226 	}
2227 
2228 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
2229 		sk->sk_prot->unhash(sk);
2230 		inet->inet_sport = 0;
2231 	}
2232 	sk_dst_reset(sk);
2233 	return 0;
2234 }
2235 EXPORT_SYMBOL(__udp_disconnect);
2236 
2237 int udp_disconnect(struct sock *sk, int flags)
2238 {
2239 	lock_sock(sk);
2240 	__udp_disconnect(sk, flags);
2241 	release_sock(sk);
2242 	return 0;
2243 }
2244 EXPORT_IPV6_MOD(udp_disconnect);
2245 
2246 void udp_lib_unhash(struct sock *sk)
2247 {
2248 	if (sk_hashed(sk)) {
2249 		struct udp_table *udptable = udp_get_table_prot(sk);
2250 		struct udp_hslot *hslot, *hslot2;
2251 
2252 		sock_rps_delete_flow(sk);
2253 		hslot  = udp_hashslot(udptable, sock_net(sk),
2254 				      udp_sk(sk)->udp_port_hash);
2255 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2256 
2257 		spin_lock_bh(&hslot->lock);
2258 		if (rcu_access_pointer(sk->sk_reuseport_cb))
2259 			reuseport_detach_sock(sk);
2260 		if (sk_del_node_init_rcu(sk)) {
2261 			hslot->count--;
2262 			inet_sk(sk)->inet_num = 0;
2263 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2264 
2265 			spin_lock(&hslot2->lock);
2266 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2267 			hslot2->count--;
2268 			spin_unlock(&hslot2->lock);
2269 
2270 			udp_unhash4(udptable, sk);
2271 		}
2272 		spin_unlock_bh(&hslot->lock);
2273 	}
2274 }
2275 EXPORT_IPV6_MOD(udp_lib_unhash);
2276 
2277 /*
2278  * inet_rcv_saddr was changed, we must rehash secondary hash
2279  */
2280 void udp_lib_rehash(struct sock *sk, u16 newhash, u16 newhash4)
2281 {
2282 	if (sk_hashed(sk)) {
2283 		struct udp_table *udptable = udp_get_table_prot(sk);
2284 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2285 
2286 		hslot = udp_hashslot(udptable, sock_net(sk),
2287 				     udp_sk(sk)->udp_port_hash);
2288 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2289 		nhslot2 = udp_hashslot2(udptable, newhash);
2290 		udp_sk(sk)->udp_portaddr_hash = newhash;
2291 
2292 		if (hslot2 != nhslot2 ||
2293 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2294 			/* we must lock primary chain too */
2295 			spin_lock_bh(&hslot->lock);
2296 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2297 				reuseport_detach_sock(sk);
2298 
2299 			if (hslot2 != nhslot2) {
2300 				spin_lock(&hslot2->lock);
2301 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2302 				hslot2->count--;
2303 				spin_unlock(&hslot2->lock);
2304 
2305 				spin_lock(&nhslot2->lock);
2306 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2307 							 &nhslot2->head);
2308 				nhslot2->count++;
2309 				spin_unlock(&nhslot2->lock);
2310 			}
2311 
2312 			spin_unlock_bh(&hslot->lock);
2313 		}
2314 
2315 		/* Now process hash4 if necessary:
2316 		 * (1) update hslot4;
2317 		 * (2) update hslot2->hash4_cnt.
2318 		 * Note that hslot2/hslot4 should be checked separately, as
2319 		 * either of them may change with the other unchanged.
2320 		 */
2321 		if (udp_hashed4(sk)) {
2322 			spin_lock_bh(&hslot->lock);
2323 
2324 			udp_rehash4(udptable, sk, newhash4);
2325 			if (hslot2 != nhslot2) {
2326 				spin_lock(&hslot2->lock);
2327 				udp_hash4_dec(hslot2);
2328 				spin_unlock(&hslot2->lock);
2329 
2330 				spin_lock(&nhslot2->lock);
2331 				udp_hash4_inc(nhslot2);
2332 				spin_unlock(&nhslot2->lock);
2333 			}
2334 
2335 			spin_unlock_bh(&hslot->lock);
2336 		}
2337 	}
2338 }
2339 EXPORT_IPV6_MOD(udp_lib_rehash);
2340 
2341 void udp_v4_rehash(struct sock *sk)
2342 {
2343 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2344 					  inet_sk(sk)->inet_rcv_saddr,
2345 					  inet_sk(sk)->inet_num);
2346 	u16 new_hash4 = udp_ehashfn(sock_net(sk),
2347 				    sk->sk_rcv_saddr, sk->sk_num,
2348 				    sk->sk_daddr, sk->sk_dport);
2349 
2350 	udp_lib_rehash(sk, new_hash, new_hash4);
2351 }
2352 
2353 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2354 {
2355 	int rc;
2356 
2357 	if (inet_sk(sk)->inet_daddr) {
2358 		sock_rps_save_rxhash(sk, skb);
2359 		sk_mark_napi_id(sk, skb);
2360 		sk_incoming_cpu_update(sk);
2361 	} else {
2362 		sk_mark_napi_id_once(sk, skb);
2363 	}
2364 
2365 	rc = __udp_enqueue_schedule_skb(sk, skb);
2366 	if (rc < 0) {
2367 		int is_udplite = IS_UDPLITE(sk);
2368 		int drop_reason;
2369 
2370 		/* Note that an ENOMEM error is charged twice */
2371 		if (rc == -ENOMEM) {
2372 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2373 					is_udplite);
2374 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2375 		} else {
2376 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2377 				      is_udplite);
2378 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2379 		}
2380 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2381 		trace_udp_fail_queue_rcv_skb(rc, sk, skb);
2382 		sk_skb_reason_drop(sk, skb, drop_reason);
2383 		return -1;
2384 	}
2385 
2386 	return 0;
2387 }
2388 
2389 /* returns:
2390  *  -1: error
2391  *   0: success
2392  *  >0: "udp encap" protocol resubmission
2393  *
2394  * Note that in the success and error cases, the skb is assumed to
2395  * have either been requeued or freed.
2396  */
2397 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2398 {
2399 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2400 	struct udp_sock *up = udp_sk(sk);
2401 	int is_udplite = IS_UDPLITE(sk);
2402 
2403 	/*
2404 	 *	Charge it to the socket, dropping if the queue is full.
2405 	 */
2406 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2407 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2408 		goto drop;
2409 	}
2410 	nf_reset_ct(skb);
2411 
2412 	if (static_branch_unlikely(&udp_encap_needed_key) &&
2413 	    READ_ONCE(up->encap_type)) {
2414 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2415 
2416 		/*
2417 		 * This is an encapsulation socket so pass the skb to
2418 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2419 		 * fall through and pass this up the UDP socket.
2420 		 * up->encap_rcv() returns the following value:
2421 		 * =0 if skb was successfully passed to the encap
2422 		 *    handler or was discarded by it.
2423 		 * >0 if skb should be passed on to UDP.
2424 		 * <0 if skb should be resubmitted as proto -N
2425 		 */
2426 
2427 		/* if we're overly short, let UDP handle it */
2428 		encap_rcv = READ_ONCE(up->encap_rcv);
2429 		if (encap_rcv) {
2430 			int ret;
2431 
2432 			/* Verify checksum before giving to encap */
2433 			if (udp_lib_checksum_complete(skb))
2434 				goto csum_error;
2435 
2436 			ret = encap_rcv(sk, skb);
2437 			if (ret <= 0) {
2438 				__UDP_INC_STATS(sock_net(sk),
2439 						UDP_MIB_INDATAGRAMS,
2440 						is_udplite);
2441 				return -ret;
2442 			}
2443 		}
2444 
2445 		/* FALLTHROUGH -- it's a UDP Packet */
2446 	}
2447 
2448 	/*
2449 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2450 	 */
2451 	if (unlikely(udp_test_bit(UDPLITE_RECV_CC, sk) &&
2452 		     UDP_SKB_CB(skb)->partial_cov)) {
2453 		u16 pcrlen = READ_ONCE(up->pcrlen);
2454 
2455 		/*
2456 		 * MIB statistics other than incrementing the error count are
2457 		 * disabled for the following two types of errors: these depend
2458 		 * on the application settings, not on the functioning of the
2459 		 * protocol stack as such.
2460 		 *
2461 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2462 		 * way ... to ... at least let the receiving application block
2463 		 * delivery of packets with coverage values less than a value
2464 		 * provided by the application."
2465 		 */
2466 		if (pcrlen == 0) {          /* full coverage was set  */
2467 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2468 					    UDP_SKB_CB(skb)->cscov, skb->len);
2469 			goto drop;
2470 		}
2471 		/* The next case involves violating the min. coverage requested
2472 		 * by the receiver. This is subtle: if receiver wants x and x is
2473 		 * greater than the buffersize/MTU then receiver will complain
2474 		 * that it wants x while sender emits packets of smaller size y.
2475 		 * Therefore the above ...()->partial_cov statement is essential.
2476 		 */
2477 		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2478 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2479 					    UDP_SKB_CB(skb)->cscov, pcrlen);
2480 			goto drop;
2481 		}
2482 	}
2483 
2484 	prefetch(&sk->sk_rmem_alloc);
2485 	if (rcu_access_pointer(sk->sk_filter) &&
2486 	    udp_lib_checksum_complete(skb))
2487 			goto csum_error;
2488 
2489 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr), &drop_reason))
2490 		goto drop;
2491 
2492 	udp_csum_pull_header(skb);
2493 
2494 	ipv4_pktinfo_prepare(sk, skb, true);
2495 	return __udp_queue_rcv_skb(sk, skb);
2496 
2497 csum_error:
2498 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2499 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2500 drop:
2501 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2502 	udp_drops_inc(sk);
2503 	sk_skb_reason_drop(sk, skb, drop_reason);
2504 	return -1;
2505 }
2506 
2507 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2508 {
2509 	struct sk_buff *next, *segs;
2510 	int ret;
2511 
2512 	if (likely(!udp_unexpected_gso(sk, skb)))
2513 		return udp_queue_rcv_one_skb(sk, skb);
2514 
2515 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2516 	__skb_push(skb, -skb_mac_offset(skb));
2517 	segs = udp_rcv_segment(sk, skb, true);
2518 	skb_list_walk_safe(segs, skb, next) {
2519 		__skb_pull(skb, skb_transport_offset(skb));
2520 
2521 		udp_post_segment_fix_csum(skb);
2522 		ret = udp_queue_rcv_one_skb(sk, skb);
2523 		if (ret > 0)
2524 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2525 	}
2526 	return 0;
2527 }
2528 
2529 /* For TCP sockets, sk_rx_dst is protected by socket lock
2530  * For UDP, we use xchg() to guard against concurrent changes.
2531  */
2532 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2533 {
2534 	struct dst_entry *old;
2535 
2536 	if (dst_hold_safe(dst)) {
2537 		old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst)));
2538 		dst_release(old);
2539 		return old != dst;
2540 	}
2541 	return false;
2542 }
2543 EXPORT_IPV6_MOD(udp_sk_rx_dst_set);
2544 
2545 /*
2546  *	Multicasts and broadcasts go to each listener.
2547  *
2548  *	Note: called only from the BH handler context.
2549  */
2550 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2551 				    struct udphdr  *uh,
2552 				    __be32 saddr, __be32 daddr,
2553 				    struct udp_table *udptable,
2554 				    int proto)
2555 {
2556 	struct sock *sk, *first = NULL;
2557 	unsigned short hnum = ntohs(uh->dest);
2558 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2559 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2560 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2561 	int dif = skb->dev->ifindex;
2562 	int sdif = inet_sdif(skb);
2563 	struct hlist_node *node;
2564 	struct sk_buff *nskb;
2565 
2566 	if (use_hash2) {
2567 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2568 			    udptable->mask;
2569 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2570 start_lookup:
2571 		hslot = &udptable->hash2[hash2].hslot;
2572 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2573 	}
2574 
2575 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2576 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2577 					 uh->source, saddr, dif, sdif, hnum))
2578 			continue;
2579 
2580 		if (!first) {
2581 			first = sk;
2582 			continue;
2583 		}
2584 		nskb = skb_clone(skb, GFP_ATOMIC);
2585 
2586 		if (unlikely(!nskb)) {
2587 			udp_drops_inc(sk);
2588 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2589 					IS_UDPLITE(sk));
2590 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2591 					IS_UDPLITE(sk));
2592 			continue;
2593 		}
2594 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2595 			consume_skb(nskb);
2596 	}
2597 
2598 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2599 	if (use_hash2 && hash2 != hash2_any) {
2600 		hash2 = hash2_any;
2601 		goto start_lookup;
2602 	}
2603 
2604 	if (first) {
2605 		if (udp_queue_rcv_skb(first, skb) > 0)
2606 			consume_skb(skb);
2607 	} else {
2608 		kfree_skb(skb);
2609 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2610 				proto == IPPROTO_UDPLITE);
2611 	}
2612 	return 0;
2613 }
2614 
2615 /* Initialize UDP checksum. If exited with zero value (success),
2616  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2617  * Otherwise, csum completion requires checksumming packet body,
2618  * including udp header and folding it to skb->csum.
2619  */
2620 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2621 				 int proto)
2622 {
2623 	int err;
2624 
2625 	UDP_SKB_CB(skb)->partial_cov = 0;
2626 	UDP_SKB_CB(skb)->cscov = skb->len;
2627 
2628 	if (proto == IPPROTO_UDPLITE) {
2629 		err = udplite_checksum_init(skb, uh);
2630 		if (err)
2631 			return err;
2632 
2633 		if (UDP_SKB_CB(skb)->partial_cov) {
2634 			skb->csum = inet_compute_pseudo(skb, proto);
2635 			return 0;
2636 		}
2637 	}
2638 
2639 	/* Note, we are only interested in != 0 or == 0, thus the
2640 	 * force to int.
2641 	 */
2642 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2643 							inet_compute_pseudo);
2644 	if (err)
2645 		return err;
2646 
2647 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2648 		/* If SW calculated the value, we know it's bad */
2649 		if (skb->csum_complete_sw)
2650 			return 1;
2651 
2652 		/* HW says the value is bad. Let's validate that.
2653 		 * skb->csum is no longer the full packet checksum,
2654 		 * so don't treat it as such.
2655 		 */
2656 		skb_checksum_complete_unset(skb);
2657 	}
2658 
2659 	return 0;
2660 }
2661 
2662 /* wrapper for udp_queue_rcv_skb taking care of csum conversion and
2663  * return code conversion for ip layer consumption
2664  */
2665 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2666 			       struct udphdr *uh)
2667 {
2668 	int ret;
2669 
2670 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2671 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2672 
2673 	ret = udp_queue_rcv_skb(sk, skb);
2674 
2675 	/* a return value > 0 means to resubmit the input, but
2676 	 * it wants the return to be -protocol, or 0
2677 	 */
2678 	if (ret > 0)
2679 		return -ret;
2680 	return 0;
2681 }
2682 
2683 /*
2684  *	All we need to do is get the socket, and then do a checksum.
2685  */
2686 
2687 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2688 		   int proto)
2689 {
2690 	struct sock *sk = NULL;
2691 	struct udphdr *uh;
2692 	unsigned short ulen;
2693 	struct rtable *rt = skb_rtable(skb);
2694 	__be32 saddr, daddr;
2695 	struct net *net = dev_net(skb->dev);
2696 	bool refcounted;
2697 	int drop_reason;
2698 
2699 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2700 
2701 	/*
2702 	 *  Validate the packet.
2703 	 */
2704 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2705 		goto drop;		/* No space for header. */
2706 
2707 	uh   = udp_hdr(skb);
2708 	ulen = ntohs(uh->len);
2709 	saddr = ip_hdr(skb)->saddr;
2710 	daddr = ip_hdr(skb)->daddr;
2711 
2712 	if (ulen > skb->len)
2713 		goto short_packet;
2714 
2715 	if (proto == IPPROTO_UDP) {
2716 		/* UDP validates ulen. */
2717 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2718 			goto short_packet;
2719 		uh = udp_hdr(skb);
2720 	}
2721 
2722 	if (udp4_csum_init(skb, uh, proto))
2723 		goto csum_error;
2724 
2725 	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2726 			     &refcounted, udp_ehashfn);
2727 	if (IS_ERR(sk))
2728 		goto no_sk;
2729 
2730 	if (sk) {
2731 		struct dst_entry *dst = skb_dst(skb);
2732 		int ret;
2733 
2734 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2735 			udp_sk_rx_dst_set(sk, dst);
2736 
2737 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2738 		if (refcounted)
2739 			sock_put(sk);
2740 		return ret;
2741 	}
2742 
2743 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2744 		return __udp4_lib_mcast_deliver(net, skb, uh,
2745 						saddr, daddr, udptable, proto);
2746 
2747 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2748 	if (sk)
2749 		return udp_unicast_rcv_skb(sk, skb, uh);
2750 no_sk:
2751 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2752 		goto drop;
2753 	nf_reset_ct(skb);
2754 
2755 	/* No socket. Drop packet silently, if checksum is wrong */
2756 	if (udp_lib_checksum_complete(skb))
2757 		goto csum_error;
2758 
2759 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2760 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2761 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2762 
2763 	/*
2764 	 * Hmm.  We got an UDP packet to a port to which we
2765 	 * don't wanna listen.  Ignore it.
2766 	 */
2767 	sk_skb_reason_drop(sk, skb, drop_reason);
2768 	return 0;
2769 
2770 short_packet:
2771 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2772 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2773 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2774 			    &saddr, ntohs(uh->source),
2775 			    ulen, skb->len,
2776 			    &daddr, ntohs(uh->dest));
2777 	goto drop;
2778 
2779 csum_error:
2780 	/*
2781 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2782 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2783 	 */
2784 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2785 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2786 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2787 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2788 			    ulen);
2789 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2790 drop:
2791 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2792 	sk_skb_reason_drop(sk, skb, drop_reason);
2793 	return 0;
2794 }
2795 
2796 /* We can only early demux multicast if there is a single matching socket.
2797  * If more than one socket found returns NULL
2798  */
2799 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2800 						  __be16 loc_port, __be32 loc_addr,
2801 						  __be16 rmt_port, __be32 rmt_addr,
2802 						  int dif, int sdif)
2803 {
2804 	struct udp_table *udptable = net->ipv4.udp_table;
2805 	unsigned short hnum = ntohs(loc_port);
2806 	struct sock *sk, *result;
2807 	struct udp_hslot *hslot;
2808 	unsigned int slot;
2809 
2810 	slot = udp_hashfn(net, hnum, udptable->mask);
2811 	hslot = &udptable->hash[slot];
2812 
2813 	/* Do not bother scanning a too big list */
2814 	if (hslot->count > 10)
2815 		return NULL;
2816 
2817 	result = NULL;
2818 	sk_for_each_rcu(sk, &hslot->head) {
2819 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2820 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2821 			if (result)
2822 				return NULL;
2823 			result = sk;
2824 		}
2825 	}
2826 
2827 	return result;
2828 }
2829 
2830 /* For unicast we should only early demux connected sockets or we can
2831  * break forwarding setups.  The chains here can be long so only check
2832  * if the first socket is an exact match and if not move on.
2833  */
2834 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2835 					    __be16 loc_port, __be32 loc_addr,
2836 					    __be16 rmt_port, __be32 rmt_addr,
2837 					    int dif, int sdif)
2838 {
2839 	struct udp_table *udptable = net->ipv4.udp_table;
2840 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2841 	unsigned short hnum = ntohs(loc_port);
2842 	struct udp_hslot *hslot2;
2843 	unsigned int hash2;
2844 	__portpair ports;
2845 	struct sock *sk;
2846 
2847 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2848 	hslot2 = udp_hashslot2(udptable, hash2);
2849 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2850 
2851 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2852 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2853 			return sk;
2854 		/* Only check first socket in chain */
2855 		break;
2856 	}
2857 	return NULL;
2858 }
2859 
2860 enum skb_drop_reason udp_v4_early_demux(struct sk_buff *skb)
2861 {
2862 	struct net *net = dev_net(skb->dev);
2863 	struct in_device *in_dev = NULL;
2864 	const struct iphdr *iph;
2865 	const struct udphdr *uh;
2866 	struct sock *sk = NULL;
2867 	struct dst_entry *dst;
2868 	int dif = skb->dev->ifindex;
2869 	int sdif = inet_sdif(skb);
2870 	int ours;
2871 
2872 	/* validate the packet */
2873 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2874 		return SKB_NOT_DROPPED_YET;
2875 
2876 	iph = ip_hdr(skb);
2877 	uh = udp_hdr(skb);
2878 
2879 	if (skb->pkt_type == PACKET_MULTICAST) {
2880 		in_dev = __in_dev_get_rcu(skb->dev);
2881 
2882 		if (!in_dev)
2883 			return SKB_NOT_DROPPED_YET;
2884 
2885 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2886 				       iph->protocol);
2887 		if (!ours)
2888 			return SKB_NOT_DROPPED_YET;
2889 
2890 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2891 						   uh->source, iph->saddr,
2892 						   dif, sdif);
2893 	} else if (skb->pkt_type == PACKET_HOST) {
2894 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2895 					     uh->source, iph->saddr, dif, sdif);
2896 	}
2897 
2898 	if (!sk)
2899 		return SKB_NOT_DROPPED_YET;
2900 
2901 	skb->sk = sk;
2902 	DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2903 	skb->destructor = sock_pfree;
2904 	dst = rcu_dereference(sk->sk_rx_dst);
2905 
2906 	if (dst)
2907 		dst = dst_check(dst, 0);
2908 	if (dst) {
2909 		u32 itag = 0;
2910 
2911 		/* set noref for now.
2912 		 * any place which wants to hold dst has to call
2913 		 * dst_hold_safe()
2914 		 */
2915 		skb_dst_set_noref(skb, dst);
2916 
2917 		/* for unconnected multicast sockets we need to validate
2918 		 * the source on each packet
2919 		 */
2920 		if (!inet_sk(sk)->inet_daddr && in_dev)
2921 			return ip_mc_validate_source(skb, iph->daddr,
2922 						     iph->saddr,
2923 						     ip4h_dscp(iph),
2924 						     skb->dev, in_dev, &itag);
2925 	}
2926 	return SKB_NOT_DROPPED_YET;
2927 }
2928 
2929 int udp_rcv(struct sk_buff *skb)
2930 {
2931 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2932 }
2933 
2934 void udp_destroy_sock(struct sock *sk)
2935 {
2936 	struct udp_sock *up = udp_sk(sk);
2937 	bool slow = lock_sock_fast(sk);
2938 
2939 	/* protects from races with udp_abort() */
2940 	sock_set_flag(sk, SOCK_DEAD);
2941 	udp_flush_pending_frames(sk);
2942 	unlock_sock_fast(sk, slow);
2943 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2944 		if (up->encap_type) {
2945 			void (*encap_destroy)(struct sock *sk);
2946 			encap_destroy = READ_ONCE(up->encap_destroy);
2947 			if (encap_destroy)
2948 				encap_destroy(sk);
2949 		}
2950 		if (udp_test_bit(ENCAP_ENABLED, sk)) {
2951 			static_branch_dec(&udp_encap_needed_key);
2952 			udp_tunnel_cleanup_gro(sk);
2953 		}
2954 	}
2955 }
2956 
2957 typedef struct sk_buff *(*udp_gro_receive_t)(struct sock *sk,
2958 					     struct list_head *head,
2959 					     struct sk_buff *skb);
2960 
2961 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2962 				       struct sock *sk)
2963 {
2964 #ifdef CONFIG_XFRM
2965 	udp_gro_receive_t new_gro_receive;
2966 
2967 	if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2968 		if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2969 			new_gro_receive = ipv6_stub->xfrm6_gro_udp_encap_rcv;
2970 		else
2971 			new_gro_receive = xfrm4_gro_udp_encap_rcv;
2972 
2973 		if (udp_sk(sk)->gro_receive != new_gro_receive) {
2974 			/*
2975 			 * With IPV6_ADDRFORM the gro callback could change
2976 			 * after being set, unregister the old one, if valid.
2977 			 */
2978 			if (udp_sk(sk)->gro_receive)
2979 				udp_tunnel_update_gro_rcv(sk, false);
2980 
2981 			WRITE_ONCE(udp_sk(sk)->gro_receive, new_gro_receive);
2982 			udp_tunnel_update_gro_rcv(sk, true);
2983 		}
2984 	}
2985 #endif
2986 }
2987 
2988 /*
2989  *	Socket option code for UDP
2990  */
2991 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2992 		       sockptr_t optval, unsigned int optlen,
2993 		       int (*push_pending_frames)(struct sock *))
2994 {
2995 	struct udp_sock *up = udp_sk(sk);
2996 	int val, valbool;
2997 	int err = 0;
2998 	int is_udplite = IS_UDPLITE(sk);
2999 
3000 	if (level == SOL_SOCKET) {
3001 		err = sk_setsockopt(sk, level, optname, optval, optlen);
3002 
3003 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
3004 			sockopt_lock_sock(sk);
3005 			/* paired with READ_ONCE in udp_rmem_release() */
3006 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
3007 			sockopt_release_sock(sk);
3008 		}
3009 		return err;
3010 	}
3011 
3012 	if (optlen < sizeof(int))
3013 		return -EINVAL;
3014 
3015 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3016 		return -EFAULT;
3017 
3018 	valbool = val ? 1 : 0;
3019 
3020 	switch (optname) {
3021 	case UDP_CORK:
3022 		if (val != 0) {
3023 			udp_set_bit(CORK, sk);
3024 		} else {
3025 			udp_clear_bit(CORK, sk);
3026 			lock_sock(sk);
3027 			push_pending_frames(sk);
3028 			release_sock(sk);
3029 		}
3030 		break;
3031 
3032 	case UDP_ENCAP:
3033 		sockopt_lock_sock(sk);
3034 		switch (val) {
3035 		case 0:
3036 #ifdef CONFIG_XFRM
3037 		case UDP_ENCAP_ESPINUDP:
3038 			set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
3039 #if IS_ENABLED(CONFIG_IPV6)
3040 			if (sk->sk_family == AF_INET6)
3041 				WRITE_ONCE(up->encap_rcv,
3042 					   ipv6_stub->xfrm6_udp_encap_rcv);
3043 			else
3044 #endif
3045 				WRITE_ONCE(up->encap_rcv,
3046 					   xfrm4_udp_encap_rcv);
3047 #endif
3048 			fallthrough;
3049 		case UDP_ENCAP_L2TPINUDP:
3050 			WRITE_ONCE(up->encap_type, val);
3051 			udp_tunnel_encap_enable(sk);
3052 			break;
3053 		default:
3054 			err = -ENOPROTOOPT;
3055 			break;
3056 		}
3057 		sockopt_release_sock(sk);
3058 		break;
3059 
3060 	case UDP_NO_CHECK6_TX:
3061 		udp_set_no_check6_tx(sk, valbool);
3062 		break;
3063 
3064 	case UDP_NO_CHECK6_RX:
3065 		udp_set_no_check6_rx(sk, valbool);
3066 		break;
3067 
3068 	case UDP_SEGMENT:
3069 		if (val < 0 || val > USHRT_MAX)
3070 			return -EINVAL;
3071 		WRITE_ONCE(up->gso_size, val);
3072 		break;
3073 
3074 	case UDP_GRO:
3075 		sockopt_lock_sock(sk);
3076 		/* when enabling GRO, accept the related GSO packet type */
3077 		if (valbool)
3078 			udp_tunnel_encap_enable(sk);
3079 		udp_assign_bit(GRO_ENABLED, sk, valbool);
3080 		udp_assign_bit(ACCEPT_L4, sk, valbool);
3081 		set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
3082 		sockopt_release_sock(sk);
3083 		break;
3084 
3085 	/*
3086 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
3087 	 */
3088 	/* The sender sets actual checksum coverage length via this option.
3089 	 * The case coverage > packet length is handled by send module. */
3090 	case UDPLITE_SEND_CSCOV:
3091 		if (!is_udplite)         /* Disable the option on UDP sockets */
3092 			return -ENOPROTOOPT;
3093 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
3094 			val = 8;
3095 		else if (val > USHRT_MAX)
3096 			val = USHRT_MAX;
3097 		WRITE_ONCE(up->pcslen, val);
3098 		udp_set_bit(UDPLITE_SEND_CC, sk);
3099 		break;
3100 
3101 	/* The receiver specifies a minimum checksum coverage value. To make
3102 	 * sense, this should be set to at least 8 (as done below). If zero is
3103 	 * used, this again means full checksum coverage.                     */
3104 	case UDPLITE_RECV_CSCOV:
3105 		if (!is_udplite)         /* Disable the option on UDP sockets */
3106 			return -ENOPROTOOPT;
3107 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
3108 			val = 8;
3109 		else if (val > USHRT_MAX)
3110 			val = USHRT_MAX;
3111 		WRITE_ONCE(up->pcrlen, val);
3112 		udp_set_bit(UDPLITE_RECV_CC, sk);
3113 		break;
3114 
3115 	default:
3116 		err = -ENOPROTOOPT;
3117 		break;
3118 	}
3119 
3120 	return err;
3121 }
3122 EXPORT_IPV6_MOD(udp_lib_setsockopt);
3123 
3124 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3125 		   unsigned int optlen)
3126 {
3127 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
3128 		return udp_lib_setsockopt(sk, level, optname,
3129 					  optval, optlen,
3130 					  udp_push_pending_frames);
3131 	return ip_setsockopt(sk, level, optname, optval, optlen);
3132 }
3133 
3134 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
3135 		       char __user *optval, int __user *optlen)
3136 {
3137 	struct udp_sock *up = udp_sk(sk);
3138 	int val, len;
3139 
3140 	if (get_user(len, optlen))
3141 		return -EFAULT;
3142 
3143 	if (len < 0)
3144 		return -EINVAL;
3145 
3146 	len = min_t(unsigned int, len, sizeof(int));
3147 
3148 	switch (optname) {
3149 	case UDP_CORK:
3150 		val = udp_test_bit(CORK, sk);
3151 		break;
3152 
3153 	case UDP_ENCAP:
3154 		val = READ_ONCE(up->encap_type);
3155 		break;
3156 
3157 	case UDP_NO_CHECK6_TX:
3158 		val = udp_get_no_check6_tx(sk);
3159 		break;
3160 
3161 	case UDP_NO_CHECK6_RX:
3162 		val = udp_get_no_check6_rx(sk);
3163 		break;
3164 
3165 	case UDP_SEGMENT:
3166 		val = READ_ONCE(up->gso_size);
3167 		break;
3168 
3169 	case UDP_GRO:
3170 		val = udp_test_bit(GRO_ENABLED, sk);
3171 		break;
3172 
3173 	/* The following two cannot be changed on UDP sockets, the return is
3174 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
3175 	case UDPLITE_SEND_CSCOV:
3176 		val = READ_ONCE(up->pcslen);
3177 		break;
3178 
3179 	case UDPLITE_RECV_CSCOV:
3180 		val = READ_ONCE(up->pcrlen);
3181 		break;
3182 
3183 	default:
3184 		return -ENOPROTOOPT;
3185 	}
3186 
3187 	if (put_user(len, optlen))
3188 		return -EFAULT;
3189 	if (copy_to_user(optval, &val, len))
3190 		return -EFAULT;
3191 	return 0;
3192 }
3193 EXPORT_IPV6_MOD(udp_lib_getsockopt);
3194 
3195 int udp_getsockopt(struct sock *sk, int level, int optname,
3196 		   char __user *optval, int __user *optlen)
3197 {
3198 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
3199 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
3200 	return ip_getsockopt(sk, level, optname, optval, optlen);
3201 }
3202 
3203 /**
3204  * 	udp_poll - wait for a UDP event.
3205  *	@file: - file struct
3206  *	@sock: - socket
3207  *	@wait: - poll table
3208  *
3209  *	This is same as datagram poll, except for the special case of
3210  *	blocking sockets. If application is using a blocking fd
3211  *	and a packet with checksum error is in the queue;
3212  *	then it could get return from select indicating data available
3213  *	but then block when reading it. Add special case code
3214  *	to work around these arguably broken applications.
3215  */
3216 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
3217 {
3218 	__poll_t mask = datagram_poll(file, sock, wait);
3219 	struct sock *sk = sock->sk;
3220 
3221 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
3222 		mask |= EPOLLIN | EPOLLRDNORM;
3223 
3224 	/* Check for false positives due to checksum errors */
3225 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
3226 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
3227 		mask &= ~(EPOLLIN | EPOLLRDNORM);
3228 
3229 	/* psock ingress_msg queue should not contain any bad checksum frames */
3230 	if (sk_is_readable(sk))
3231 		mask |= EPOLLIN | EPOLLRDNORM;
3232 	return mask;
3233 
3234 }
3235 EXPORT_IPV6_MOD(udp_poll);
3236 
3237 int udp_abort(struct sock *sk, int err)
3238 {
3239 	if (!has_current_bpf_ctx())
3240 		lock_sock(sk);
3241 
3242 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
3243 	 * with close()
3244 	 */
3245 	if (sock_flag(sk, SOCK_DEAD))
3246 		goto out;
3247 
3248 	sk->sk_err = err;
3249 	sk_error_report(sk);
3250 	__udp_disconnect(sk, 0);
3251 
3252 out:
3253 	if (!has_current_bpf_ctx())
3254 		release_sock(sk);
3255 
3256 	return 0;
3257 }
3258 EXPORT_IPV6_MOD_GPL(udp_abort);
3259 
3260 struct proto udp_prot = {
3261 	.name			= "UDP",
3262 	.owner			= THIS_MODULE,
3263 	.close			= udp_lib_close,
3264 	.pre_connect		= udp_pre_connect,
3265 	.connect		= udp_connect,
3266 	.disconnect		= udp_disconnect,
3267 	.ioctl			= udp_ioctl,
3268 	.init			= udp_init_sock,
3269 	.destroy		= udp_destroy_sock,
3270 	.setsockopt		= udp_setsockopt,
3271 	.getsockopt		= udp_getsockopt,
3272 	.sendmsg		= udp_sendmsg,
3273 	.recvmsg		= udp_recvmsg,
3274 	.splice_eof		= udp_splice_eof,
3275 	.release_cb		= ip4_datagram_release_cb,
3276 	.hash			= udp_lib_hash,
3277 	.unhash			= udp_lib_unhash,
3278 	.rehash			= udp_v4_rehash,
3279 	.get_port		= udp_v4_get_port,
3280 	.put_port		= udp_lib_unhash,
3281 #ifdef CONFIG_BPF_SYSCALL
3282 	.psock_update_sk_prot	= udp_bpf_update_proto,
3283 #endif
3284 	.memory_allocated	= &net_aligned_data.udp_memory_allocated,
3285 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
3286 
3287 	.sysctl_mem		= sysctl_udp_mem,
3288 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
3289 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
3290 	.obj_size		= sizeof(struct udp_sock),
3291 	.h.udp_table		= NULL,
3292 	.diag_destroy		= udp_abort,
3293 };
3294 EXPORT_SYMBOL(udp_prot);
3295 
3296 /* ------------------------------------------------------------------------ */
3297 #ifdef CONFIG_PROC_FS
3298 
3299 static unsigned short seq_file_family(const struct seq_file *seq);
3300 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
3301 {
3302 	unsigned short family = seq_file_family(seq);
3303 
3304 	/* AF_UNSPEC is used as a match all */
3305 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
3306 		net_eq(sock_net(sk), seq_file_net(seq)));
3307 }
3308 
3309 #ifdef CONFIG_BPF_SYSCALL
3310 static const struct seq_operations bpf_iter_udp_seq_ops;
3311 #endif
3312 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
3313 					   struct net *net)
3314 {
3315 	const struct udp_seq_afinfo *afinfo;
3316 
3317 #ifdef CONFIG_BPF_SYSCALL
3318 	if (seq->op == &bpf_iter_udp_seq_ops)
3319 		return net->ipv4.udp_table;
3320 #endif
3321 
3322 	afinfo = pde_data(file_inode(seq->file));
3323 	return afinfo->udp_table ? : net->ipv4.udp_table;
3324 }
3325 
3326 static struct sock *udp_get_first(struct seq_file *seq, int start)
3327 {
3328 	struct udp_iter_state *state = seq->private;
3329 	struct net *net = seq_file_net(seq);
3330 	struct udp_table *udptable;
3331 	struct sock *sk;
3332 
3333 	udptable = udp_get_table_seq(seq, net);
3334 
3335 	for (state->bucket = start; state->bucket <= udptable->mask;
3336 	     ++state->bucket) {
3337 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
3338 
3339 		if (hlist_empty(&hslot->head))
3340 			continue;
3341 
3342 		spin_lock_bh(&hslot->lock);
3343 		sk_for_each(sk, &hslot->head) {
3344 			if (seq_sk_match(seq, sk))
3345 				goto found;
3346 		}
3347 		spin_unlock_bh(&hslot->lock);
3348 	}
3349 	sk = NULL;
3350 found:
3351 	return sk;
3352 }
3353 
3354 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3355 {
3356 	struct udp_iter_state *state = seq->private;
3357 	struct net *net = seq_file_net(seq);
3358 	struct udp_table *udptable;
3359 
3360 	do {
3361 		sk = sk_next(sk);
3362 	} while (sk && !seq_sk_match(seq, sk));
3363 
3364 	if (!sk) {
3365 		udptable = udp_get_table_seq(seq, net);
3366 
3367 		if (state->bucket <= udptable->mask)
3368 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3369 
3370 		return udp_get_first(seq, state->bucket + 1);
3371 	}
3372 	return sk;
3373 }
3374 
3375 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3376 {
3377 	struct sock *sk = udp_get_first(seq, 0);
3378 
3379 	if (sk)
3380 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3381 			--pos;
3382 	return pos ? NULL : sk;
3383 }
3384 
3385 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3386 {
3387 	struct udp_iter_state *state = seq->private;
3388 	state->bucket = MAX_UDP_PORTS;
3389 
3390 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3391 }
3392 EXPORT_IPV6_MOD(udp_seq_start);
3393 
3394 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3395 {
3396 	struct sock *sk;
3397 
3398 	if (v == SEQ_START_TOKEN)
3399 		sk = udp_get_idx(seq, 0);
3400 	else
3401 		sk = udp_get_next(seq, v);
3402 
3403 	++*pos;
3404 	return sk;
3405 }
3406 EXPORT_IPV6_MOD(udp_seq_next);
3407 
3408 void udp_seq_stop(struct seq_file *seq, void *v)
3409 {
3410 	struct udp_iter_state *state = seq->private;
3411 	struct udp_table *udptable;
3412 
3413 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3414 
3415 	if (state->bucket <= udptable->mask)
3416 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3417 }
3418 EXPORT_IPV6_MOD(udp_seq_stop);
3419 
3420 /* ------------------------------------------------------------------------ */
3421 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3422 		int bucket)
3423 {
3424 	struct inet_sock *inet = inet_sk(sp);
3425 	__be32 dest = inet->inet_daddr;
3426 	__be32 src  = inet->inet_rcv_saddr;
3427 	__u16 destp	  = ntohs(inet->inet_dport);
3428 	__u16 srcp	  = ntohs(inet->inet_sport);
3429 
3430 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3431 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3432 		bucket, src, srcp, dest, destp, sp->sk_state,
3433 		sk_wmem_alloc_get(sp),
3434 		udp_rqueue_get(sp),
3435 		0, 0L, 0,
3436 		from_kuid_munged(seq_user_ns(f), sk_uid(sp)),
3437 		0, sock_i_ino(sp),
3438 		refcount_read(&sp->sk_refcnt), sp,
3439 		sk_drops_read(sp));
3440 }
3441 
3442 int udp4_seq_show(struct seq_file *seq, void *v)
3443 {
3444 	seq_setwidth(seq, 127);
3445 	if (v == SEQ_START_TOKEN)
3446 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3447 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3448 			   "inode ref pointer drops");
3449 	else {
3450 		struct udp_iter_state *state = seq->private;
3451 
3452 		udp4_format_sock(v, seq, state->bucket);
3453 	}
3454 	seq_pad(seq, '\n');
3455 	return 0;
3456 }
3457 
3458 #ifdef CONFIG_BPF_SYSCALL
3459 struct bpf_iter__udp {
3460 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3461 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3462 	uid_t uid __aligned(8);
3463 	int bucket __aligned(8);
3464 };
3465 
3466 union bpf_udp_iter_batch_item {
3467 	struct sock *sk;
3468 	__u64 cookie;
3469 };
3470 
3471 struct bpf_udp_iter_state {
3472 	struct udp_iter_state state;
3473 	unsigned int cur_sk;
3474 	unsigned int end_sk;
3475 	unsigned int max_sk;
3476 	union bpf_udp_iter_batch_item *batch;
3477 };
3478 
3479 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3480 				      unsigned int new_batch_sz, gfp_t flags);
3481 static struct sock *bpf_iter_udp_resume(struct sock *first_sk,
3482 					union bpf_udp_iter_batch_item *cookies,
3483 					int n_cookies)
3484 {
3485 	struct sock *sk = NULL;
3486 	int i;
3487 
3488 	for (i = 0; i < n_cookies; i++) {
3489 		sk = first_sk;
3490 		udp_portaddr_for_each_entry_from(sk)
3491 			if (cookies[i].cookie == atomic64_read(&sk->sk_cookie))
3492 				goto done;
3493 	}
3494 done:
3495 	return sk;
3496 }
3497 
3498 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3499 {
3500 	struct bpf_udp_iter_state *iter = seq->private;
3501 	struct udp_iter_state *state = &iter->state;
3502 	unsigned int find_cookie, end_cookie;
3503 	struct net *net = seq_file_net(seq);
3504 	struct udp_table *udptable;
3505 	unsigned int batch_sks = 0;
3506 	int resume_bucket;
3507 	int resizes = 0;
3508 	struct sock *sk;
3509 	int err = 0;
3510 
3511 	resume_bucket = state->bucket;
3512 
3513 	/* The current batch is done, so advance the bucket. */
3514 	if (iter->cur_sk == iter->end_sk)
3515 		state->bucket++;
3516 
3517 	udptable = udp_get_table_seq(seq, net);
3518 
3519 again:
3520 	/* New batch for the next bucket.
3521 	 * Iterate over the hash table to find a bucket with sockets matching
3522 	 * the iterator attributes, and return the first matching socket from
3523 	 * the bucket. The remaining matched sockets from the bucket are batched
3524 	 * before releasing the bucket lock. This allows BPF programs that are
3525 	 * called in seq_show to acquire the bucket lock if needed.
3526 	 */
3527 	find_cookie = iter->cur_sk;
3528 	end_cookie = iter->end_sk;
3529 	iter->cur_sk = 0;
3530 	iter->end_sk = 0;
3531 	batch_sks = 0;
3532 
3533 	for (; state->bucket <= udptable->mask; state->bucket++) {
3534 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket].hslot;
3535 
3536 		if (hlist_empty(&hslot2->head))
3537 			goto next_bucket;
3538 
3539 		spin_lock_bh(&hslot2->lock);
3540 		sk = hlist_entry_safe(hslot2->head.first, struct sock,
3541 				      __sk_common.skc_portaddr_node);
3542 		/* Resume from the first (in iteration order) unseen socket from
3543 		 * the last batch that still exists in resume_bucket. Most of
3544 		 * the time this will just be where the last iteration left off
3545 		 * in resume_bucket unless that socket disappeared between
3546 		 * reads.
3547 		 */
3548 		if (state->bucket == resume_bucket)
3549 			sk = bpf_iter_udp_resume(sk, &iter->batch[find_cookie],
3550 						 end_cookie - find_cookie);
3551 fill_batch:
3552 		udp_portaddr_for_each_entry_from(sk) {
3553 			if (seq_sk_match(seq, sk)) {
3554 				if (iter->end_sk < iter->max_sk) {
3555 					sock_hold(sk);
3556 					iter->batch[iter->end_sk++].sk = sk;
3557 				}
3558 				batch_sks++;
3559 			}
3560 		}
3561 
3562 		/* Allocate a larger batch and try again. */
3563 		if (unlikely(resizes <= 1 && iter->end_sk &&
3564 			     iter->end_sk != batch_sks)) {
3565 			resizes++;
3566 
3567 			/* First, try with GFP_USER to maximize the chances of
3568 			 * grabbing more memory.
3569 			 */
3570 			if (resizes == 1) {
3571 				spin_unlock_bh(&hslot2->lock);
3572 				err = bpf_iter_udp_realloc_batch(iter,
3573 								 batch_sks * 3 / 2,
3574 								 GFP_USER);
3575 				if (err)
3576 					return ERR_PTR(err);
3577 				/* Start over. */
3578 				goto again;
3579 			}
3580 
3581 			/* Next, hold onto the lock, so the bucket doesn't
3582 			 * change while we get the rest of the sockets.
3583 			 */
3584 			err = bpf_iter_udp_realloc_batch(iter, batch_sks,
3585 							 GFP_NOWAIT);
3586 			if (err) {
3587 				spin_unlock_bh(&hslot2->lock);
3588 				return ERR_PTR(err);
3589 			}
3590 
3591 			/* Pick up where we left off. */
3592 			sk = iter->batch[iter->end_sk - 1].sk;
3593 			sk = hlist_entry_safe(sk->__sk_common.skc_portaddr_node.next,
3594 					      struct sock,
3595 					      __sk_common.skc_portaddr_node);
3596 			batch_sks = iter->end_sk;
3597 			goto fill_batch;
3598 		}
3599 
3600 		spin_unlock_bh(&hslot2->lock);
3601 
3602 		if (iter->end_sk)
3603 			break;
3604 next_bucket:
3605 		resizes = 0;
3606 	}
3607 
3608 	WARN_ON_ONCE(iter->end_sk != batch_sks);
3609 	return iter->end_sk ? iter->batch[0].sk : NULL;
3610 }
3611 
3612 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3613 {
3614 	struct bpf_udp_iter_state *iter = seq->private;
3615 	struct sock *sk;
3616 
3617 	/* Whenever seq_next() is called, the iter->cur_sk is
3618 	 * done with seq_show(), so unref the iter->cur_sk.
3619 	 */
3620 	if (iter->cur_sk < iter->end_sk)
3621 		sock_put(iter->batch[iter->cur_sk++].sk);
3622 
3623 	/* After updating iter->cur_sk, check if there are more sockets
3624 	 * available in the current bucket batch.
3625 	 */
3626 	if (iter->cur_sk < iter->end_sk)
3627 		sk = iter->batch[iter->cur_sk].sk;
3628 	else
3629 		/* Prepare a new batch. */
3630 		sk = bpf_iter_udp_batch(seq);
3631 
3632 	++*pos;
3633 	return sk;
3634 }
3635 
3636 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3637 {
3638 	/* bpf iter does not support lseek, so it always
3639 	 * continue from where it was stop()-ped.
3640 	 */
3641 	if (*pos)
3642 		return bpf_iter_udp_batch(seq);
3643 
3644 	return SEQ_START_TOKEN;
3645 }
3646 
3647 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3648 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3649 {
3650 	struct bpf_iter__udp ctx;
3651 
3652 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3653 	ctx.meta = meta;
3654 	ctx.udp_sk = udp_sk;
3655 	ctx.uid = uid;
3656 	ctx.bucket = bucket;
3657 	return bpf_iter_run_prog(prog, &ctx);
3658 }
3659 
3660 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3661 {
3662 	struct udp_iter_state *state = seq->private;
3663 	struct bpf_iter_meta meta;
3664 	struct bpf_prog *prog;
3665 	struct sock *sk = v;
3666 	uid_t uid;
3667 	int ret;
3668 
3669 	if (v == SEQ_START_TOKEN)
3670 		return 0;
3671 
3672 	lock_sock(sk);
3673 
3674 	if (unlikely(sk_unhashed(sk))) {
3675 		ret = SEQ_SKIP;
3676 		goto unlock;
3677 	}
3678 
3679 	uid = from_kuid_munged(seq_user_ns(seq), sk_uid(sk));
3680 	meta.seq = seq;
3681 	prog = bpf_iter_get_info(&meta, false);
3682 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3683 
3684 unlock:
3685 	release_sock(sk);
3686 	return ret;
3687 }
3688 
3689 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3690 {
3691 	union bpf_udp_iter_batch_item *item;
3692 	unsigned int cur_sk = iter->cur_sk;
3693 	__u64 cookie;
3694 
3695 	/* Remember the cookies of the sockets we haven't seen yet, so we can
3696 	 * pick up where we left off next time around.
3697 	 */
3698 	while (cur_sk < iter->end_sk) {
3699 		item = &iter->batch[cur_sk++];
3700 		cookie = sock_gen_cookie(item->sk);
3701 		sock_put(item->sk);
3702 		item->cookie = cookie;
3703 	}
3704 }
3705 
3706 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3707 {
3708 	struct bpf_udp_iter_state *iter = seq->private;
3709 	struct bpf_iter_meta meta;
3710 	struct bpf_prog *prog;
3711 
3712 	if (!v) {
3713 		meta.seq = seq;
3714 		prog = bpf_iter_get_info(&meta, true);
3715 		if (prog)
3716 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3717 	}
3718 
3719 	if (iter->cur_sk < iter->end_sk)
3720 		bpf_iter_udp_put_batch(iter);
3721 }
3722 
3723 static const struct seq_operations bpf_iter_udp_seq_ops = {
3724 	.start		= bpf_iter_udp_seq_start,
3725 	.next		= bpf_iter_udp_seq_next,
3726 	.stop		= bpf_iter_udp_seq_stop,
3727 	.show		= bpf_iter_udp_seq_show,
3728 };
3729 #endif
3730 
3731 static unsigned short seq_file_family(const struct seq_file *seq)
3732 {
3733 	const struct udp_seq_afinfo *afinfo;
3734 
3735 #ifdef CONFIG_BPF_SYSCALL
3736 	/* BPF iterator: bpf programs to filter sockets. */
3737 	if (seq->op == &bpf_iter_udp_seq_ops)
3738 		return AF_UNSPEC;
3739 #endif
3740 
3741 	/* Proc fs iterator */
3742 	afinfo = pde_data(file_inode(seq->file));
3743 	return afinfo->family;
3744 }
3745 
3746 const struct seq_operations udp_seq_ops = {
3747 	.start		= udp_seq_start,
3748 	.next		= udp_seq_next,
3749 	.stop		= udp_seq_stop,
3750 	.show		= udp4_seq_show,
3751 };
3752 EXPORT_IPV6_MOD(udp_seq_ops);
3753 
3754 static struct udp_seq_afinfo udp4_seq_afinfo = {
3755 	.family		= AF_INET,
3756 	.udp_table	= NULL,
3757 };
3758 
3759 static int __net_init udp4_proc_init_net(struct net *net)
3760 {
3761 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3762 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3763 		return -ENOMEM;
3764 	return 0;
3765 }
3766 
3767 static void __net_exit udp4_proc_exit_net(struct net *net)
3768 {
3769 	remove_proc_entry("udp", net->proc_net);
3770 }
3771 
3772 static struct pernet_operations udp4_net_ops = {
3773 	.init = udp4_proc_init_net,
3774 	.exit = udp4_proc_exit_net,
3775 };
3776 
3777 int __init udp4_proc_init(void)
3778 {
3779 	return register_pernet_subsys(&udp4_net_ops);
3780 }
3781 
3782 void udp4_proc_exit(void)
3783 {
3784 	unregister_pernet_subsys(&udp4_net_ops);
3785 }
3786 #endif /* CONFIG_PROC_FS */
3787 
3788 static __initdata unsigned long uhash_entries;
3789 static int __init set_uhash_entries(char *str)
3790 {
3791 	ssize_t ret;
3792 
3793 	if (!str)
3794 		return 0;
3795 
3796 	ret = kstrtoul(str, 0, &uhash_entries);
3797 	if (ret)
3798 		return 0;
3799 
3800 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3801 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3802 	return 1;
3803 }
3804 __setup("uhash_entries=", set_uhash_entries);
3805 
3806 void __init udp_table_init(struct udp_table *table, const char *name)
3807 {
3808 	unsigned int i, slot_size;
3809 
3810 	slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) +
3811 		    udp_hash4_slot_size();
3812 	table->hash = alloc_large_system_hash(name,
3813 					      slot_size,
3814 					      uhash_entries,
3815 					      21, /* one slot per 2 MB */
3816 					      0,
3817 					      &table->log,
3818 					      &table->mask,
3819 					      UDP_HTABLE_SIZE_MIN,
3820 					      UDP_HTABLE_SIZE_MAX);
3821 
3822 	table->hash2 = (void *)(table->hash + (table->mask + 1));
3823 	for (i = 0; i <= table->mask; i++) {
3824 		INIT_HLIST_HEAD(&table->hash[i].head);
3825 		table->hash[i].count = 0;
3826 		spin_lock_init(&table->hash[i].lock);
3827 	}
3828 	for (i = 0; i <= table->mask; i++) {
3829 		INIT_HLIST_HEAD(&table->hash2[i].hslot.head);
3830 		table->hash2[i].hslot.count = 0;
3831 		spin_lock_init(&table->hash2[i].hslot.lock);
3832 	}
3833 	udp_table_hash4_init(table);
3834 }
3835 
3836 u32 udp_flow_hashrnd(void)
3837 {
3838 	static u32 hashrnd __read_mostly;
3839 
3840 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3841 
3842 	return hashrnd;
3843 }
3844 EXPORT_SYMBOL(udp_flow_hashrnd);
3845 
3846 static void __net_init udp_sysctl_init(struct net *net)
3847 {
3848 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3849 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3850 
3851 #ifdef CONFIG_NET_L3_MASTER_DEV
3852 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3853 #endif
3854 }
3855 
3856 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3857 {
3858 	struct udp_table *udptable;
3859 	unsigned int slot_size;
3860 	int i;
3861 
3862 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3863 	if (!udptable)
3864 		goto out;
3865 
3866 	slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) +
3867 		    udp_hash4_slot_size();
3868 	udptable->hash = vmalloc_huge(hash_entries * slot_size,
3869 				      GFP_KERNEL_ACCOUNT);
3870 	if (!udptable->hash)
3871 		goto free_table;
3872 
3873 	udptable->hash2 = (void *)(udptable->hash + hash_entries);
3874 	udptable->mask = hash_entries - 1;
3875 	udptable->log = ilog2(hash_entries);
3876 
3877 	for (i = 0; i < hash_entries; i++) {
3878 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3879 		udptable->hash[i].count = 0;
3880 		spin_lock_init(&udptable->hash[i].lock);
3881 
3882 		INIT_HLIST_HEAD(&udptable->hash2[i].hslot.head);
3883 		udptable->hash2[i].hslot.count = 0;
3884 		spin_lock_init(&udptable->hash2[i].hslot.lock);
3885 	}
3886 	udp_table_hash4_init(udptable);
3887 
3888 	return udptable;
3889 
3890 free_table:
3891 	kfree(udptable);
3892 out:
3893 	return NULL;
3894 }
3895 
3896 static void __net_exit udp_pernet_table_free(struct net *net)
3897 {
3898 	struct udp_table *udptable = net->ipv4.udp_table;
3899 
3900 	if (udptable == &udp_table)
3901 		return;
3902 
3903 	kvfree(udptable->hash);
3904 	kfree(udptable);
3905 }
3906 
3907 static void __net_init udp_set_table(struct net *net)
3908 {
3909 	struct udp_table *udptable;
3910 	unsigned int hash_entries;
3911 	struct net *old_net;
3912 
3913 	if (net_eq(net, &init_net))
3914 		goto fallback;
3915 
3916 	old_net = current->nsproxy->net_ns;
3917 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3918 	if (!hash_entries)
3919 		goto fallback;
3920 
3921 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3922 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3923 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3924 	else
3925 		hash_entries = roundup_pow_of_two(hash_entries);
3926 
3927 	udptable = udp_pernet_table_alloc(hash_entries);
3928 	if (udptable) {
3929 		net->ipv4.udp_table = udptable;
3930 	} else {
3931 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3932 			"for a netns, fallback to the global one\n",
3933 			hash_entries);
3934 fallback:
3935 		net->ipv4.udp_table = &udp_table;
3936 	}
3937 }
3938 
3939 static int __net_init udp_pernet_init(struct net *net)
3940 {
3941 #if IS_ENABLED(CONFIG_NET_UDP_TUNNEL)
3942 	int i;
3943 
3944 	/* No tunnel is configured */
3945 	for (i = 0; i < ARRAY_SIZE(net->ipv4.udp_tunnel_gro); ++i) {
3946 		INIT_HLIST_HEAD(&net->ipv4.udp_tunnel_gro[i].list);
3947 		RCU_INIT_POINTER(net->ipv4.udp_tunnel_gro[i].sk, NULL);
3948 	}
3949 #endif
3950 	udp_sysctl_init(net);
3951 	udp_set_table(net);
3952 
3953 	return 0;
3954 }
3955 
3956 static void __net_exit udp_pernet_exit(struct net *net)
3957 {
3958 	udp_pernet_table_free(net);
3959 }
3960 
3961 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3962 	.init	= udp_pernet_init,
3963 	.exit	= udp_pernet_exit,
3964 };
3965 
3966 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3967 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3968 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3969 
3970 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3971 				      unsigned int new_batch_sz, gfp_t flags)
3972 {
3973 	union bpf_udp_iter_batch_item *new_batch;
3974 
3975 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3976 				   flags | __GFP_NOWARN);
3977 	if (!new_batch)
3978 		return -ENOMEM;
3979 
3980 	if (flags != GFP_NOWAIT)
3981 		bpf_iter_udp_put_batch(iter);
3982 
3983 	memcpy(new_batch, iter->batch, sizeof(*iter->batch) * iter->end_sk);
3984 	kvfree(iter->batch);
3985 	iter->batch = new_batch;
3986 	iter->max_sk = new_batch_sz;
3987 
3988 	return 0;
3989 }
3990 
3991 #define INIT_BATCH_SZ 16
3992 
3993 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3994 {
3995 	struct bpf_udp_iter_state *iter = priv_data;
3996 	int ret;
3997 
3998 	ret = bpf_iter_init_seq_net(priv_data, aux);
3999 	if (ret)
4000 		return ret;
4001 
4002 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ, GFP_USER);
4003 	if (ret)
4004 		bpf_iter_fini_seq_net(priv_data);
4005 
4006 	iter->state.bucket = -1;
4007 
4008 	return ret;
4009 }
4010 
4011 static void bpf_iter_fini_udp(void *priv_data)
4012 {
4013 	struct bpf_udp_iter_state *iter = priv_data;
4014 
4015 	bpf_iter_fini_seq_net(priv_data);
4016 	kvfree(iter->batch);
4017 }
4018 
4019 static const struct bpf_iter_seq_info udp_seq_info = {
4020 	.seq_ops		= &bpf_iter_udp_seq_ops,
4021 	.init_seq_private	= bpf_iter_init_udp,
4022 	.fini_seq_private	= bpf_iter_fini_udp,
4023 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
4024 };
4025 
4026 static struct bpf_iter_reg udp_reg_info = {
4027 	.target			= "udp",
4028 	.ctx_arg_info_size	= 1,
4029 	.ctx_arg_info		= {
4030 		{ offsetof(struct bpf_iter__udp, udp_sk),
4031 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
4032 	},
4033 	.seq_info		= &udp_seq_info,
4034 };
4035 
4036 static void __init bpf_iter_register(void)
4037 {
4038 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
4039 	if (bpf_iter_reg_target(&udp_reg_info))
4040 		pr_warn("Warning: could not register bpf iterator udp\n");
4041 }
4042 #endif
4043 
4044 void __init udp_init(void)
4045 {
4046 	unsigned long limit;
4047 
4048 	udp_table_init(&udp_table, "UDP");
4049 	limit = nr_free_buffer_pages() / 8;
4050 	limit = max(limit, 128UL);
4051 	sysctl_udp_mem[0] = limit / 4 * 3;
4052 	sysctl_udp_mem[1] = limit;
4053 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
4054 
4055 	if (register_pernet_subsys(&udp_sysctl_ops))
4056 		panic("UDP: failed to init sysctl parameters.\n");
4057 
4058 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
4059 	bpf_iter_register();
4060 #endif
4061 }
4062