xref: /linux/fs/ubifs/journal.c (revision 04b43ea325d21c4c98e831383a1b7d540721898a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements UBIFS journal.
13  *
14  * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
15  * length and position, while a bud logical eraseblock is any LEB in the main
16  * area. Buds contain file system data - data nodes, inode nodes, etc. The log
17  * contains only references to buds and some other stuff like commit
18  * start node. The idea is that when we commit the journal, we do
19  * not copy the data, the buds just become indexed. Since after the commit the
20  * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
21  * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
22  * become leafs in the future.
23  *
24  * The journal is multi-headed because we want to write data to the journal as
25  * optimally as possible. It is nice to have nodes belonging to the same inode
26  * in one LEB, so we may write data owned by different inodes to different
27  * journal heads, although at present only one data head is used.
28  *
29  * For recovery reasons, the base head contains all inode nodes, all directory
30  * entry nodes and all truncate nodes. This means that the other heads contain
31  * only data nodes.
32  *
33  * Bud LEBs may be half-indexed. For example, if the bud was not full at the
34  * time of commit, the bud is retained to continue to be used in the journal,
35  * even though the "front" of the LEB is now indexed. In that case, the log
36  * reference contains the offset where the bud starts for the purposes of the
37  * journal.
38  *
39  * The journal size has to be limited, because the larger is the journal, the
40  * longer it takes to mount UBIFS (scanning the journal) and the more memory it
41  * takes (indexing in the TNC).
42  *
43  * All the journal write operations like 'ubifs_jnl_update()' here, which write
44  * multiple UBIFS nodes to the journal at one go, are atomic with respect to
45  * unclean reboots. Should the unclean reboot happen, the recovery code drops
46  * all the nodes.
47  */
48 
49 #include "ubifs.h"
50 
51 /**
52  * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
53  * @ino: the inode to zero out
54  */
zero_ino_node_unused(struct ubifs_ino_node * ino)55 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
56 {
57 	memset(ino->padding1, 0, 4);
58 	memset(ino->padding2, 0, 26);
59 }
60 
61 /**
62  * zero_dent_node_unused - zero out unused fields of an on-flash directory
63  *                         entry node.
64  * @dent: the directory entry to zero out
65  */
zero_dent_node_unused(struct ubifs_dent_node * dent)66 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
67 {
68 	dent->padding1 = 0;
69 }
70 
71 /**
72  * zero_trun_node_unused - zero out unused fields of an on-flash truncation
73  *                         node.
74  * @trun: the truncation node to zero out
75  */
zero_trun_node_unused(struct ubifs_trun_node * trun)76 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
77 {
78 	memset(trun->padding, 0, 12);
79 }
80 
ubifs_add_auth_dirt(struct ubifs_info * c,int lnum)81 static void ubifs_add_auth_dirt(struct ubifs_info *c, int lnum)
82 {
83 	if (ubifs_authenticated(c))
84 		ubifs_add_dirt(c, lnum, ubifs_auth_node_sz(c));
85 }
86 
87 /**
88  * reserve_space - reserve space in the journal.
89  * @c: UBIFS file-system description object
90  * @jhead: journal head number
91  * @len: node length
92  *
93  * This function reserves space in journal head @head. If the reservation
94  * succeeded, the journal head stays locked and later has to be unlocked using
95  * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
96  * be done, and other negative error codes in case of other failures.
97  */
reserve_space(struct ubifs_info * c,int jhead,int len)98 static int reserve_space(struct ubifs_info *c, int jhead, int len)
99 {
100 	int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
101 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
102 
103 	/*
104 	 * Typically, the base head has smaller nodes written to it, so it is
105 	 * better to try to allocate space at the ends of eraseblocks. This is
106 	 * what the squeeze parameter does.
107 	 */
108 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
109 	squeeze = (jhead == BASEHD);
110 again:
111 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
112 
113 	if (c->ro_error) {
114 		err = -EROFS;
115 		goto out_unlock;
116 	}
117 
118 	avail = c->leb_size - wbuf->offs - wbuf->used;
119 	if (wbuf->lnum != -1 && avail >= len)
120 		return 0;
121 
122 	/*
123 	 * Write buffer wasn't seek'ed or there is no enough space - look for an
124 	 * LEB with some empty space.
125 	 */
126 	lnum = ubifs_find_free_space(c, len, &offs, squeeze);
127 	if (lnum >= 0)
128 		goto out;
129 
130 	err = lnum;
131 	if (err != -ENOSPC)
132 		goto out_unlock;
133 
134 	/*
135 	 * No free space, we have to run garbage collector to make
136 	 * some. But the write-buffer mutex has to be unlocked because
137 	 * GC also takes it.
138 	 */
139 	dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
140 	mutex_unlock(&wbuf->io_mutex);
141 
142 	lnum = ubifs_garbage_collect(c, 0);
143 	if (lnum < 0) {
144 		err = lnum;
145 		if (err != -ENOSPC)
146 			return err;
147 
148 		/*
149 		 * GC could not make a free LEB. But someone else may
150 		 * have allocated new bud for this journal head,
151 		 * because we dropped @wbuf->io_mutex, so try once
152 		 * again.
153 		 */
154 		dbg_jnl("GC couldn't make a free LEB for jhead %s",
155 			dbg_jhead(jhead));
156 		if (retries++ < 2) {
157 			dbg_jnl("retry (%d)", retries);
158 			goto again;
159 		}
160 
161 		dbg_jnl("return -ENOSPC");
162 		return err;
163 	}
164 
165 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
166 	dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
167 	avail = c->leb_size - wbuf->offs - wbuf->used;
168 
169 	if (wbuf->lnum != -1 && avail >= len) {
170 		/*
171 		 * Someone else has switched the journal head and we have
172 		 * enough space now. This happens when more than one process is
173 		 * trying to write to the same journal head at the same time.
174 		 */
175 		dbg_jnl("return LEB %d back, already have LEB %d:%d",
176 			lnum, wbuf->lnum, wbuf->offs + wbuf->used);
177 		err = ubifs_return_leb(c, lnum);
178 		if (err)
179 			goto out_unlock;
180 		return 0;
181 	}
182 
183 	offs = 0;
184 
185 out:
186 	/*
187 	 * Make sure we synchronize the write-buffer before we add the new bud
188 	 * to the log. Otherwise we may have a power cut after the log
189 	 * reference node for the last bud (@lnum) is written but before the
190 	 * write-buffer data are written to the next-to-last bud
191 	 * (@wbuf->lnum). And the effect would be that the recovery would see
192 	 * that there is corruption in the next-to-last bud.
193 	 */
194 	err = ubifs_wbuf_sync_nolock(wbuf);
195 	if (err)
196 		goto out_return;
197 	err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
198 	if (err)
199 		goto out_return;
200 	err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
201 	if (err)
202 		goto out_unlock;
203 
204 	return 0;
205 
206 out_unlock:
207 	mutex_unlock(&wbuf->io_mutex);
208 	return err;
209 
210 out_return:
211 	/* An error occurred and the LEB has to be returned to lprops */
212 	ubifs_assert(c, err < 0);
213 	err1 = ubifs_return_leb(c, lnum);
214 	if (err1 && err == -EAGAIN)
215 		/*
216 		 * Return original error code only if it is not %-EAGAIN,
217 		 * which is not really an error. Otherwise, return the error
218 		 * code of 'ubifs_return_leb()'.
219 		 */
220 		err = err1;
221 	mutex_unlock(&wbuf->io_mutex);
222 	return err;
223 }
224 
ubifs_hash_nodes(struct ubifs_info * c,void * node,int len,struct shash_desc * hash)225 static int ubifs_hash_nodes(struct ubifs_info *c, void *node,
226 			     int len, struct shash_desc *hash)
227 {
228 	int auth_node_size = ubifs_auth_node_sz(c);
229 	int err;
230 
231 	while (1) {
232 		const struct ubifs_ch *ch = node;
233 		int nodelen = le32_to_cpu(ch->len);
234 
235 		ubifs_assert(c, len >= auth_node_size);
236 
237 		if (len == auth_node_size)
238 			break;
239 
240 		ubifs_assert(c, len > nodelen);
241 		ubifs_assert(c, ch->magic == cpu_to_le32(UBIFS_NODE_MAGIC));
242 
243 		err = ubifs_shash_update(c, hash, (void *)node, nodelen);
244 		if (err)
245 			return err;
246 
247 		node += ALIGN(nodelen, 8);
248 		len -= ALIGN(nodelen, 8);
249 	}
250 
251 	return ubifs_prepare_auth_node(c, node, hash);
252 }
253 
254 /**
255  * write_head - write data to a journal head.
256  * @c: UBIFS file-system description object
257  * @jhead: journal head
258  * @buf: buffer to write
259  * @len: length to write
260  * @lnum: LEB number written is returned here
261  * @offs: offset written is returned here
262  * @sync: non-zero if the write-buffer has to by synchronized
263  *
264  * This function writes data to the reserved space of journal head @jhead.
265  * Returns zero in case of success and a negative error code in case of
266  * failure.
267  */
write_head(struct ubifs_info * c,int jhead,void * buf,int len,int * lnum,int * offs,int sync)268 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
269 		      int *lnum, int *offs, int sync)
270 {
271 	int err;
272 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
273 
274 	ubifs_assert(c, jhead != GCHD);
275 
276 	*lnum = c->jheads[jhead].wbuf.lnum;
277 	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
278 	dbg_jnl("jhead %s, LEB %d:%d, len %d",
279 		dbg_jhead(jhead), *lnum, *offs, len);
280 
281 	if (ubifs_authenticated(c)) {
282 		err = ubifs_hash_nodes(c, buf, len, c->jheads[jhead].log_hash);
283 		if (err)
284 			return err;
285 	}
286 
287 	err = ubifs_wbuf_write_nolock(wbuf, buf, len);
288 	if (err)
289 		return err;
290 	if (sync)
291 		err = ubifs_wbuf_sync_nolock(wbuf);
292 	return err;
293 }
294 
295 /**
296  * __queue_and_wait - queue a task and wait until the task is waked up.
297  * @c: UBIFS file-system description object
298  *
299  * This function adds current task in queue and waits until the task is waked
300  * up. This function should be called with @c->reserve_space_wq locked.
301  */
__queue_and_wait(struct ubifs_info * c)302 static void __queue_and_wait(struct ubifs_info *c)
303 {
304 	DEFINE_WAIT(wait);
305 
306 	__add_wait_queue_entry_tail_exclusive(&c->reserve_space_wq, &wait);
307 	set_current_state(TASK_UNINTERRUPTIBLE);
308 	spin_unlock(&c->reserve_space_wq.lock);
309 
310 	schedule();
311 	finish_wait(&c->reserve_space_wq, &wait);
312 }
313 
314 /**
315  * wait_for_reservation - try queuing current task to wait until waked up.
316  * @c: UBIFS file-system description object
317  *
318  * This function queues current task to wait until waked up, if queuing is
319  * started(@c->need_wait_space is not %0). Returns %true if current task is
320  * added in queue, otherwise %false is returned.
321  */
wait_for_reservation(struct ubifs_info * c)322 static bool wait_for_reservation(struct ubifs_info *c)
323 {
324 	if (likely(atomic_read(&c->need_wait_space) == 0))
325 		/* Quick path to check whether queuing is started. */
326 		return false;
327 
328 	spin_lock(&c->reserve_space_wq.lock);
329 	if (atomic_read(&c->need_wait_space) == 0) {
330 		/* Queuing is not started, don't queue current task. */
331 		spin_unlock(&c->reserve_space_wq.lock);
332 		return false;
333 	}
334 
335 	__queue_and_wait(c);
336 	return true;
337 }
338 
339 /**
340  * wake_up_reservation - wake up first task in queue or stop queuing.
341  * @c: UBIFS file-system description object
342  *
343  * This function wakes up the first task in queue if it exists, or stops
344  * queuing if no tasks in queue.
345  */
wake_up_reservation(struct ubifs_info * c)346 static void wake_up_reservation(struct ubifs_info *c)
347 {
348 	spin_lock(&c->reserve_space_wq.lock);
349 	if (waitqueue_active(&c->reserve_space_wq))
350 		wake_up_locked(&c->reserve_space_wq);
351 	else
352 		/*
353 		 * Compared with wait_for_reservation(), set @c->need_wait_space
354 		 * under the protection of wait queue lock, which can avoid that
355 		 * @c->need_wait_space is set to 0 after new task queued.
356 		 */
357 		atomic_set(&c->need_wait_space, 0);
358 	spin_unlock(&c->reserve_space_wq.lock);
359 }
360 
361 /**
362  * add_or_start_queue - add current task in queue or start queuing.
363  * @c: UBIFS file-system description object
364  *
365  * This function starts queuing if queuing is not started, otherwise adds
366  * current task in queue.
367  */
add_or_start_queue(struct ubifs_info * c)368 static void add_or_start_queue(struct ubifs_info *c)
369 {
370 	spin_lock(&c->reserve_space_wq.lock);
371 	if (atomic_cmpxchg(&c->need_wait_space, 0, 1) == 0) {
372 		/* Starts queuing, task can go on directly. */
373 		spin_unlock(&c->reserve_space_wq.lock);
374 		return;
375 	}
376 
377 	/*
378 	 * There are at least two tasks have retried more than 32 times
379 	 * at certain point, first task has started queuing, just queue
380 	 * the left tasks.
381 	 */
382 	__queue_and_wait(c);
383 }
384 
385 /**
386  * make_reservation - reserve journal space.
387  * @c: UBIFS file-system description object
388  * @jhead: journal head
389  * @len: how many bytes to reserve
390  *
391  * This function makes space reservation in journal head @jhead. The function
392  * takes the commit lock and locks the journal head, and the caller has to
393  * unlock the head and finish the reservation with 'finish_reservation()'.
394  * Returns zero in case of success and a negative error code in case of
395  * failure.
396  *
397  * Note, the journal head may be unlocked as soon as the data is written, while
398  * the commit lock has to be released after the data has been added to the
399  * TNC.
400  */
make_reservation(struct ubifs_info * c,int jhead,int len)401 static int make_reservation(struct ubifs_info *c, int jhead, int len)
402 {
403 	int err, cmt_retries = 0, nospc_retries = 0;
404 	bool blocked = wait_for_reservation(c);
405 
406 again:
407 	down_read(&c->commit_sem);
408 	err = reserve_space(c, jhead, len);
409 	if (!err) {
410 		/* c->commit_sem will get released via finish_reservation(). */
411 		goto out_wake_up;
412 	}
413 	up_read(&c->commit_sem);
414 
415 	if (err == -ENOSPC) {
416 		/*
417 		 * GC could not make any progress. We should try to commit
418 		 * because it could make some dirty space and GC would make
419 		 * progress, so make the error -EAGAIN so that the below
420 		 * will commit and re-try.
421 		 */
422 		nospc_retries++;
423 		dbg_jnl("no space, retry");
424 		err = -EAGAIN;
425 	}
426 
427 	if (err != -EAGAIN)
428 		goto out;
429 
430 	/*
431 	 * -EAGAIN means that the journal is full or too large, or the above
432 	 * code wants to do one commit. Do this and re-try.
433 	 */
434 	if (cmt_retries > 128) {
435 		/*
436 		 * This should not happen unless:
437 		 * 1. The journal size limitations are too tough.
438 		 * 2. The budgeting is incorrect. We always have to be able to
439 		 *    write to the media, because all operations are budgeted.
440 		 *    Deletions are not budgeted, though, but we reserve an
441 		 *    extra LEB for them.
442 		 */
443 		ubifs_err(c, "stuck in space allocation, nospc_retries %d",
444 			  nospc_retries);
445 		err = -ENOSPC;
446 		goto out;
447 	} else if (cmt_retries > 32) {
448 		/*
449 		 * It's almost impossible to happen, unless there are many tasks
450 		 * making reservation concurrently and someone task has retried
451 		 * gc + commit for many times, generated available space during
452 		 * this period are grabbed by other tasks.
453 		 * But if it happens, start queuing up all tasks that will make
454 		 * space reservation, then there is only one task making space
455 		 * reservation at any time, and it can always make success under
456 		 * the premise of correct budgeting.
457 		 */
458 		ubifs_warn(c, "too many space allocation cmt_retries (%d) "
459 			   "nospc_retries (%d), start queuing tasks",
460 			   cmt_retries, nospc_retries);
461 
462 		if (!blocked) {
463 			blocked = true;
464 			add_or_start_queue(c);
465 		}
466 	}
467 
468 	dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
469 		cmt_retries);
470 	cmt_retries += 1;
471 
472 	err = ubifs_run_commit(c);
473 	if (err)
474 		goto out_wake_up;
475 	goto again;
476 
477 out:
478 	ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
479 		  len, jhead, err);
480 	if (err == -ENOSPC) {
481 		/* This are some budgeting problems, print useful information */
482 		down_write(&c->commit_sem);
483 		dump_stack();
484 		ubifs_dump_budg(c, &c->bi);
485 		ubifs_dump_lprops(c);
486 		cmt_retries = dbg_check_lprops(c);
487 		up_write(&c->commit_sem);
488 	}
489 out_wake_up:
490 	if (blocked) {
491 		/*
492 		 * Only tasks that have ever started queuing or ever been queued
493 		 * can wake up other queued tasks, which can make sure that
494 		 * there is only one task waked up to make space reservation.
495 		 * For example:
496 		 *      task A          task B           task C
497 		 *                 make_reservation  make_reservation
498 		 * reserve_space // 0
499 		 * wake_up_reservation
500 		 *                  atomic_cmpxchg // 0, start queuing
501 		 *                  reserve_space
502 		 *                                    wait_for_reservation
503 		 *                                     __queue_and_wait
504 		 *                                      add_wait_queue
505 		 *  if (blocked) // false
506 		 *  // So that task C won't be waked up to race with task B
507 		 */
508 		wake_up_reservation(c);
509 	}
510 	return err;
511 }
512 
513 /**
514  * release_head - release a journal head.
515  * @c: UBIFS file-system description object
516  * @jhead: journal head
517  *
518  * This function releases journal head @jhead which was locked by
519  * the 'make_reservation()' function. It has to be called after each successful
520  * 'make_reservation()' invocation.
521  */
release_head(struct ubifs_info * c,int jhead)522 static inline void release_head(struct ubifs_info *c, int jhead)
523 {
524 	mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
525 }
526 
527 /**
528  * finish_reservation - finish a reservation.
529  * @c: UBIFS file-system description object
530  *
531  * This function finishes journal space reservation. It must be called after
532  * 'make_reservation()'.
533  */
finish_reservation(struct ubifs_info * c)534 static void finish_reservation(struct ubifs_info *c)
535 {
536 	up_read(&c->commit_sem);
537 }
538 
539 /**
540  * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
541  * @mode: inode mode
542  */
get_dent_type(int mode)543 static int get_dent_type(int mode)
544 {
545 	switch (mode & S_IFMT) {
546 	case S_IFREG:
547 		return UBIFS_ITYPE_REG;
548 	case S_IFDIR:
549 		return UBIFS_ITYPE_DIR;
550 	case S_IFLNK:
551 		return UBIFS_ITYPE_LNK;
552 	case S_IFBLK:
553 		return UBIFS_ITYPE_BLK;
554 	case S_IFCHR:
555 		return UBIFS_ITYPE_CHR;
556 	case S_IFIFO:
557 		return UBIFS_ITYPE_FIFO;
558 	case S_IFSOCK:
559 		return UBIFS_ITYPE_SOCK;
560 	default:
561 		BUG();
562 	}
563 	return 0;
564 }
565 
566 /**
567  * pack_inode - pack an inode node.
568  * @c: UBIFS file-system description object
569  * @ino: buffer in which to pack inode node
570  * @inode: inode to pack
571  * @last: indicates the last node of the group
572  */
pack_inode(struct ubifs_info * c,struct ubifs_ino_node * ino,const struct inode * inode,int last)573 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
574 		       const struct inode *inode, int last)
575 {
576 	int data_len = 0, last_reference = !inode->i_nlink;
577 	struct ubifs_inode *ui = ubifs_inode(inode);
578 
579 	ino->ch.node_type = UBIFS_INO_NODE;
580 	ino_key_init_flash(c, &ino->key, inode->i_ino);
581 	ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
582 	ino->atime_sec  = cpu_to_le64(inode_get_atime_sec(inode));
583 	ino->atime_nsec = cpu_to_le32(inode_get_atime_nsec(inode));
584 	ino->ctime_sec  = cpu_to_le64(inode_get_ctime_sec(inode));
585 	ino->ctime_nsec = cpu_to_le32(inode_get_ctime_nsec(inode));
586 	ino->mtime_sec  = cpu_to_le64(inode_get_mtime_sec(inode));
587 	ino->mtime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
588 	ino->uid   = cpu_to_le32(i_uid_read(inode));
589 	ino->gid   = cpu_to_le32(i_gid_read(inode));
590 	ino->mode  = cpu_to_le32(inode->i_mode);
591 	ino->flags = cpu_to_le32(ui->flags);
592 	ino->size  = cpu_to_le64(ui->ui_size);
593 	ino->nlink = cpu_to_le32(inode->i_nlink);
594 	ino->compr_type  = cpu_to_le16(ui->compr_type);
595 	ino->data_len    = cpu_to_le32(ui->data_len);
596 	ino->xattr_cnt   = cpu_to_le32(ui->xattr_cnt);
597 	ino->xattr_size  = cpu_to_le32(ui->xattr_size);
598 	ino->xattr_names = cpu_to_le32(ui->xattr_names);
599 	zero_ino_node_unused(ino);
600 
601 	/*
602 	 * Drop the attached data if this is a deletion inode, the data is not
603 	 * needed anymore.
604 	 */
605 	if (!last_reference) {
606 		memcpy(ino->data, ui->data, ui->data_len);
607 		data_len = ui->data_len;
608 	}
609 
610 	ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
611 }
612 
613 /**
614  * mark_inode_clean - mark UBIFS inode as clean.
615  * @c: UBIFS file-system description object
616  * @ui: UBIFS inode to mark as clean
617  *
618  * This helper function marks UBIFS inode @ui as clean by cleaning the
619  * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
620  * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
621  * just do nothing.
622  */
mark_inode_clean(struct ubifs_info * c,struct ubifs_inode * ui)623 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
624 {
625 	if (ui->dirty)
626 		ubifs_release_dirty_inode_budget(c, ui);
627 	ui->dirty = 0;
628 }
629 
set_dent_cookie(struct ubifs_info * c,struct ubifs_dent_node * dent)630 static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
631 {
632 	if (c->double_hash)
633 		dent->cookie = (__force __le32) get_random_u32();
634 	else
635 		dent->cookie = 0;
636 }
637 
638 /**
639  * ubifs_jnl_update - update inode.
640  * @c: UBIFS file-system description object
641  * @dir: parent inode or host inode in case of extended attributes
642  * @nm: directory entry name
643  * @inode: inode to update
644  * @deletion: indicates a directory entry deletion i.e unlink or rmdir
645  * @xent: non-zero if the directory entry is an extended attribute entry
646  * @in_orphan: indicates whether the @inode is in orphan list
647  *
648  * This function updates an inode by writing a directory entry (or extended
649  * attribute entry), the inode itself, and the parent directory inode (or the
650  * host inode) to the journal.
651  *
652  * The function writes the host inode @dir last, which is important in case of
653  * extended attributes. Indeed, then we guarantee that if the host inode gets
654  * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
655  * the extended attribute inode gets flushed too. And this is exactly what the
656  * user expects - synchronizing the host inode synchronizes its extended
657  * attributes. Similarly, this guarantees that if @dir is synchronized, its
658  * directory entry corresponding to @nm gets synchronized too.
659  *
660  * If the inode (@inode) or the parent directory (@dir) are synchronous, this
661  * function synchronizes the write-buffer.
662  *
663  * This function marks the @dir and @inode inodes as clean and returns zero on
664  * success. In case of failure, a negative error code is returned.
665  */
ubifs_jnl_update(struct ubifs_info * c,const struct inode * dir,const struct fscrypt_name * nm,const struct inode * inode,int deletion,int xent,int in_orphan)666 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
667 		     const struct fscrypt_name *nm, const struct inode *inode,
668 		     int deletion, int xent, int in_orphan)
669 {
670 	int err, dlen, ilen, len, lnum, ino_offs, dent_offs, orphan_added = 0;
671 	int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
672 	int last_reference = !!(deletion && inode->i_nlink == 0);
673 	struct ubifs_inode *ui = ubifs_inode(inode);
674 	struct ubifs_inode *host_ui = ubifs_inode(dir);
675 	struct ubifs_dent_node *dent;
676 	struct ubifs_ino_node *ino;
677 	union ubifs_key dent_key, ino_key;
678 	u8 hash_dent[UBIFS_HASH_ARR_SZ];
679 	u8 hash_ino[UBIFS_HASH_ARR_SZ];
680 	u8 hash_ino_host[UBIFS_HASH_ARR_SZ];
681 
682 	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
683 
684 	dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
685 	ilen = UBIFS_INO_NODE_SZ;
686 
687 	/*
688 	 * If the last reference to the inode is being deleted, then there is
689 	 * no need to attach and write inode data, it is being deleted anyway.
690 	 * And if the inode is being deleted, no need to synchronize
691 	 * write-buffer even if the inode is synchronous.
692 	 */
693 	if (!last_reference) {
694 		ilen += ui->data_len;
695 		sync |= IS_SYNC(inode);
696 	}
697 
698 	aligned_dlen = ALIGN(dlen, 8);
699 	aligned_ilen = ALIGN(ilen, 8);
700 
701 	len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
702 	/* Make sure to also account for extended attributes */
703 	if (ubifs_authenticated(c))
704 		len += ALIGN(host_ui->data_len, 8) + ubifs_auth_node_sz(c);
705 	else
706 		len += host_ui->data_len;
707 
708 	dent = kzalloc(len, GFP_NOFS);
709 	if (!dent)
710 		return -ENOMEM;
711 
712 	/* Make reservation before allocating sequence numbers */
713 	err = make_reservation(c, BASEHD, len);
714 	if (err)
715 		goto out_free;
716 
717 	if (!xent) {
718 		dent->ch.node_type = UBIFS_DENT_NODE;
719 		if (fname_name(nm) == NULL)
720 			dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
721 		else
722 			dent_key_init(c, &dent_key, dir->i_ino, nm);
723 	} else {
724 		dent->ch.node_type = UBIFS_XENT_NODE;
725 		xent_key_init(c, &dent_key, dir->i_ino, nm);
726 	}
727 
728 	key_write(c, &dent_key, dent->key);
729 	dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
730 	dent->type = get_dent_type(inode->i_mode);
731 	dent->nlen = cpu_to_le16(fname_len(nm));
732 	memcpy(dent->name, fname_name(nm), fname_len(nm));
733 	dent->name[fname_len(nm)] = '\0';
734 	set_dent_cookie(c, dent);
735 
736 	zero_dent_node_unused(dent);
737 	ubifs_prep_grp_node(c, dent, dlen, 0);
738 	err = ubifs_node_calc_hash(c, dent, hash_dent);
739 	if (err)
740 		goto out_release;
741 
742 	ino = (void *)dent + aligned_dlen;
743 	pack_inode(c, ino, inode, 0);
744 	err = ubifs_node_calc_hash(c, ino, hash_ino);
745 	if (err)
746 		goto out_release;
747 
748 	ino = (void *)ino + aligned_ilen;
749 	pack_inode(c, ino, dir, 1);
750 	err = ubifs_node_calc_hash(c, ino, hash_ino_host);
751 	if (err)
752 		goto out_release;
753 
754 	if (last_reference && !in_orphan) {
755 		err = ubifs_add_orphan(c, inode->i_ino);
756 		if (err) {
757 			release_head(c, BASEHD);
758 			goto out_finish;
759 		}
760 		ui->del_cmtno = c->cmt_no;
761 		orphan_added = 1;
762 	}
763 
764 	err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
765 	if (err)
766 		goto out_release;
767 	if (!sync) {
768 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
769 
770 		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
771 		ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
772 	}
773 	release_head(c, BASEHD);
774 	kfree(dent);
775 	ubifs_add_auth_dirt(c, lnum);
776 
777 	if (deletion) {
778 		if (fname_name(nm) == NULL)
779 			err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
780 		else
781 			err = ubifs_tnc_remove_nm(c, &dent_key, nm);
782 		if (err)
783 			goto out_ro;
784 		err = ubifs_add_dirt(c, lnum, dlen);
785 	} else
786 		err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen,
787 				       hash_dent, nm);
788 	if (err)
789 		goto out_ro;
790 
791 	/*
792 	 * Note, we do not remove the inode from TNC even if the last reference
793 	 * to it has just been deleted, because the inode may still be opened.
794 	 * Instead, the inode has been added to orphan lists and the orphan
795 	 * subsystem will take further care about it.
796 	 */
797 	ino_key_init(c, &ino_key, inode->i_ino);
798 	ino_offs = dent_offs + aligned_dlen;
799 	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen, hash_ino);
800 	if (err)
801 		goto out_ro;
802 
803 	ino_key_init(c, &ino_key, dir->i_ino);
804 	ino_offs += aligned_ilen;
805 	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
806 			    UBIFS_INO_NODE_SZ + host_ui->data_len, hash_ino_host);
807 	if (err)
808 		goto out_ro;
809 
810 	if (in_orphan && inode->i_nlink)
811 		ubifs_delete_orphan(c, inode->i_ino);
812 
813 	finish_reservation(c);
814 	spin_lock(&ui->ui_lock);
815 	ui->synced_i_size = ui->ui_size;
816 	spin_unlock(&ui->ui_lock);
817 	if (xent) {
818 		spin_lock(&host_ui->ui_lock);
819 		host_ui->synced_i_size = host_ui->ui_size;
820 		spin_unlock(&host_ui->ui_lock);
821 	}
822 	mark_inode_clean(c, ui);
823 	mark_inode_clean(c, host_ui);
824 	return 0;
825 
826 out_finish:
827 	finish_reservation(c);
828 out_free:
829 	kfree(dent);
830 	return err;
831 
832 out_release:
833 	release_head(c, BASEHD);
834 	kfree(dent);
835 out_ro:
836 	ubifs_ro_mode(c, err);
837 	if (orphan_added)
838 		ubifs_delete_orphan(c, inode->i_ino);
839 	finish_reservation(c);
840 	return err;
841 }
842 
843 /**
844  * ubifs_jnl_write_data - write a data node to the journal.
845  * @c: UBIFS file-system description object
846  * @inode: inode the data node belongs to
847  * @key: node key
848  * @buf: buffer to write
849  * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
850  *
851  * This function writes a data node to the journal. Returns %0 if the data node
852  * was successfully written, and a negative error code in case of failure.
853  */
ubifs_jnl_write_data(struct ubifs_info * c,const struct inode * inode,const union ubifs_key * key,const void * buf,int len)854 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
855 			 const union ubifs_key *key, const void *buf, int len)
856 {
857 	struct ubifs_data_node *data;
858 	int err, lnum, offs, compr_type, out_len, compr_len, auth_len;
859 	int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
860 	int write_len;
861 	struct ubifs_inode *ui = ubifs_inode(inode);
862 	bool encrypted = IS_ENCRYPTED(inode);
863 	u8 hash[UBIFS_HASH_ARR_SZ];
864 
865 	dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
866 		(unsigned long)key_inum(c, key), key_block(c, key), len);
867 	ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
868 
869 	if (encrypted)
870 		dlen += UBIFS_CIPHER_BLOCK_SIZE;
871 
872 	auth_len = ubifs_auth_node_sz(c);
873 
874 	data = kmalloc(dlen + auth_len, GFP_NOFS | __GFP_NOWARN);
875 	if (!data) {
876 		/*
877 		 * Fall-back to the write reserve buffer. Note, we might be
878 		 * currently on the memory reclaim path, when the kernel is
879 		 * trying to free some memory by writing out dirty pages. The
880 		 * write reserve buffer helps us to guarantee that we are
881 		 * always able to write the data.
882 		 */
883 		allocated = 0;
884 		mutex_lock(&c->write_reserve_mutex);
885 		data = c->write_reserve_buf;
886 	}
887 
888 	data->ch.node_type = UBIFS_DATA_NODE;
889 	key_write(c, key, &data->key);
890 	data->size = cpu_to_le32(len);
891 
892 	if (!(ui->flags & UBIFS_COMPR_FL))
893 		/* Compression is disabled for this inode */
894 		compr_type = UBIFS_COMPR_NONE;
895 	else
896 		compr_type = ui->compr_type;
897 
898 	out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
899 	ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
900 	ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
901 
902 	if (encrypted) {
903 		err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
904 		if (err)
905 			goto out_free;
906 
907 	} else {
908 		data->compr_size = 0;
909 		out_len = compr_len;
910 	}
911 
912 	dlen = UBIFS_DATA_NODE_SZ + out_len;
913 	if (ubifs_authenticated(c))
914 		write_len = ALIGN(dlen, 8) + auth_len;
915 	else
916 		write_len = dlen;
917 
918 	data->compr_type = cpu_to_le16(compr_type);
919 
920 	/* Make reservation before allocating sequence numbers */
921 	err = make_reservation(c, DATAHD, write_len);
922 	if (err)
923 		goto out_free;
924 
925 	ubifs_prepare_node(c, data, dlen, 0);
926 	err = write_head(c, DATAHD, data, write_len, &lnum, &offs, 0);
927 	if (err)
928 		goto out_release;
929 
930 	err = ubifs_node_calc_hash(c, data, hash);
931 	if (err)
932 		goto out_release;
933 
934 	ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
935 	release_head(c, DATAHD);
936 
937 	ubifs_add_auth_dirt(c, lnum);
938 
939 	err = ubifs_tnc_add(c, key, lnum, offs, dlen, hash);
940 	if (err)
941 		goto out_ro;
942 
943 	finish_reservation(c);
944 	if (!allocated)
945 		mutex_unlock(&c->write_reserve_mutex);
946 	else
947 		kfree(data);
948 	return 0;
949 
950 out_release:
951 	release_head(c, DATAHD);
952 out_ro:
953 	ubifs_ro_mode(c, err);
954 	finish_reservation(c);
955 out_free:
956 	if (!allocated)
957 		mutex_unlock(&c->write_reserve_mutex);
958 	else
959 		kfree(data);
960 	return err;
961 }
962 
963 /**
964  * ubifs_jnl_write_inode - flush inode to the journal.
965  * @c: UBIFS file-system description object
966  * @inode: inode to flush
967  *
968  * This function writes inode @inode to the journal. If the inode is
969  * synchronous, it also synchronizes the write-buffer. Returns zero in case of
970  * success and a negative error code in case of failure.
971  */
ubifs_jnl_write_inode(struct ubifs_info * c,const struct inode * inode)972 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
973 {
974 	int err, lnum, offs;
975 	struct ubifs_ino_node *ino, *ino_start;
976 	struct ubifs_inode *ui = ubifs_inode(inode);
977 	int sync = 0, write_len = 0, ilen = UBIFS_INO_NODE_SZ;
978 	int last_reference = !inode->i_nlink;
979 	int kill_xattrs = ui->xattr_cnt && last_reference;
980 	u8 hash[UBIFS_HASH_ARR_SZ];
981 
982 	dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
983 
984 	if (kill_xattrs && ui->xattr_cnt > ubifs_xattr_max_cnt(c)) {
985 		ubifs_err(c, "Cannot delete inode, it has too much xattrs!");
986 		err = -EPERM;
987 		ubifs_ro_mode(c, err);
988 		return err;
989 	}
990 
991 	/*
992 	 * If the inode is being deleted, do not write the attached data. No
993 	 * need to synchronize the write-buffer either.
994 	 */
995 	if (!last_reference) {
996 		ilen += ui->data_len;
997 		sync = IS_SYNC(inode);
998 	} else if (kill_xattrs) {
999 		write_len += UBIFS_INO_NODE_SZ * ui->xattr_cnt;
1000 	}
1001 
1002 	if (ubifs_authenticated(c))
1003 		write_len += ALIGN(ilen, 8) + ubifs_auth_node_sz(c);
1004 	else
1005 		write_len += ilen;
1006 
1007 	ino_start = ino = kmalloc(write_len, GFP_NOFS);
1008 	if (!ino)
1009 		return -ENOMEM;
1010 
1011 	/* Make reservation before allocating sequence numbers */
1012 	err = make_reservation(c, BASEHD, write_len);
1013 	if (err)
1014 		goto out_free;
1015 
1016 	if (kill_xattrs) {
1017 		union ubifs_key key;
1018 		struct fscrypt_name nm = {0};
1019 		struct inode *xino;
1020 		struct ubifs_dent_node *xent, *pxent = NULL;
1021 
1022 		lowest_xent_key(c, &key, inode->i_ino);
1023 		while (1) {
1024 			xent = ubifs_tnc_next_ent(c, &key, &nm);
1025 			if (IS_ERR(xent)) {
1026 				err = PTR_ERR(xent);
1027 				if (err == -ENOENT)
1028 					break;
1029 
1030 				kfree(pxent);
1031 				goto out_release;
1032 			}
1033 
1034 			fname_name(&nm) = xent->name;
1035 			fname_len(&nm) = le16_to_cpu(xent->nlen);
1036 
1037 			xino = ubifs_iget(c->vfs_sb, le64_to_cpu(xent->inum));
1038 			if (IS_ERR(xino)) {
1039 				err = PTR_ERR(xino);
1040 				ubifs_err(c, "dead directory entry '%s', error %d",
1041 					  xent->name, err);
1042 				ubifs_ro_mode(c, err);
1043 				kfree(pxent);
1044 				kfree(xent);
1045 				goto out_release;
1046 			}
1047 			ubifs_assert(c, ubifs_inode(xino)->xattr);
1048 
1049 			clear_nlink(xino);
1050 			pack_inode(c, ino, xino, 0);
1051 			ino = (void *)ino + UBIFS_INO_NODE_SZ;
1052 			iput(xino);
1053 
1054 			kfree(pxent);
1055 			pxent = xent;
1056 			key_read(c, &xent->key, &key);
1057 		}
1058 		kfree(pxent);
1059 	}
1060 
1061 	pack_inode(c, ino, inode, 1);
1062 	err = ubifs_node_calc_hash(c, ino, hash);
1063 	if (err)
1064 		goto out_release;
1065 
1066 	err = write_head(c, BASEHD, ino_start, write_len, &lnum, &offs, sync);
1067 	if (err)
1068 		goto out_release;
1069 	if (!sync)
1070 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1071 					  inode->i_ino);
1072 	release_head(c, BASEHD);
1073 
1074 	if (last_reference) {
1075 		err = ubifs_tnc_remove_ino(c, inode->i_ino);
1076 		if (err)
1077 			goto out_ro;
1078 		ubifs_delete_orphan(c, inode->i_ino);
1079 		err = ubifs_add_dirt(c, lnum, write_len);
1080 	} else {
1081 		union ubifs_key key;
1082 
1083 		ubifs_add_auth_dirt(c, lnum);
1084 
1085 		ino_key_init(c, &key, inode->i_ino);
1086 		err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash);
1087 	}
1088 	if (err)
1089 		goto out_ro;
1090 
1091 	finish_reservation(c);
1092 	spin_lock(&ui->ui_lock);
1093 	ui->synced_i_size = ui->ui_size;
1094 	spin_unlock(&ui->ui_lock);
1095 	kfree(ino_start);
1096 	return 0;
1097 
1098 out_release:
1099 	release_head(c, BASEHD);
1100 out_ro:
1101 	ubifs_ro_mode(c, err);
1102 	finish_reservation(c);
1103 out_free:
1104 	kfree(ino_start);
1105 	return err;
1106 }
1107 
1108 /**
1109  * ubifs_jnl_delete_inode - delete an inode.
1110  * @c: UBIFS file-system description object
1111  * @inode: inode to delete
1112  *
1113  * This function deletes inode @inode which includes removing it from orphans,
1114  * deleting it from TNC and, in some cases, writing a deletion inode to the
1115  * journal.
1116  *
1117  * When regular file inodes are unlinked or a directory inode is removed, the
1118  * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
1119  * direntry to the media, and adds the inode to orphans. After this, when the
1120  * last reference to this inode has been dropped, this function is called. In
1121  * general, it has to write one more deletion inode to the media, because if
1122  * a commit happened between 'ubifs_jnl_update()' and
1123  * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
1124  * anymore, and in fact it might not be on the flash anymore, because it might
1125  * have been garbage-collected already. And for optimization reasons UBIFS does
1126  * not read the orphan area if it has been unmounted cleanly, so it would have
1127  * no indication in the journal that there is a deleted inode which has to be
1128  * removed from TNC.
1129  *
1130  * However, if there was no commit between 'ubifs_jnl_update()' and
1131  * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
1132  * inode to the media for the second time. And this is quite a typical case.
1133  *
1134  * This function returns zero in case of success and a negative error code in
1135  * case of failure.
1136  */
ubifs_jnl_delete_inode(struct ubifs_info * c,const struct inode * inode)1137 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
1138 {
1139 	int err;
1140 	struct ubifs_inode *ui = ubifs_inode(inode);
1141 
1142 	ubifs_assert(c, inode->i_nlink == 0);
1143 
1144 	if (ui->xattr_cnt || ui->del_cmtno != c->cmt_no)
1145 		/* A commit happened for sure or inode hosts xattrs */
1146 		return ubifs_jnl_write_inode(c, inode);
1147 
1148 	down_read(&c->commit_sem);
1149 	/*
1150 	 * Check commit number again, because the first test has been done
1151 	 * without @c->commit_sem, so a commit might have happened.
1152 	 */
1153 	if (ui->del_cmtno != c->cmt_no) {
1154 		up_read(&c->commit_sem);
1155 		return ubifs_jnl_write_inode(c, inode);
1156 	}
1157 
1158 	err = ubifs_tnc_remove_ino(c, inode->i_ino);
1159 	if (err)
1160 		ubifs_ro_mode(c, err);
1161 	else
1162 		ubifs_delete_orphan(c, inode->i_ino);
1163 	up_read(&c->commit_sem);
1164 	return err;
1165 }
1166 
1167 /**
1168  * ubifs_jnl_xrename - cross rename two directory entries.
1169  * @c: UBIFS file-system description object
1170  * @fst_dir: parent inode of 1st directory entry to exchange
1171  * @fst_inode: 1st inode to exchange
1172  * @fst_nm: name of 1st inode to exchange
1173  * @snd_dir: parent inode of 2nd directory entry to exchange
1174  * @snd_inode: 2nd inode to exchange
1175  * @snd_nm: name of 2nd inode to exchange
1176  * @sync: non-zero if the write-buffer has to be synchronized
1177  *
1178  * This function implements the cross rename operation which may involve
1179  * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
1180  * and returns zero on success. In case of failure, a negative error code is
1181  * returned.
1182  */
ubifs_jnl_xrename(struct ubifs_info * c,const struct inode * fst_dir,const struct inode * fst_inode,const struct fscrypt_name * fst_nm,const struct inode * snd_dir,const struct inode * snd_inode,const struct fscrypt_name * snd_nm,int sync)1183 int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
1184 		      const struct inode *fst_inode,
1185 		      const struct fscrypt_name *fst_nm,
1186 		      const struct inode *snd_dir,
1187 		      const struct inode *snd_inode,
1188 		      const struct fscrypt_name *snd_nm, int sync)
1189 {
1190 	union ubifs_key key;
1191 	struct ubifs_dent_node *dent1, *dent2;
1192 	int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
1193 	int aligned_dlen1, aligned_dlen2;
1194 	int twoparents = (fst_dir != snd_dir);
1195 	void *p;
1196 	u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1197 	u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1198 	u8 hash_p1[UBIFS_HASH_ARR_SZ];
1199 	u8 hash_p2[UBIFS_HASH_ARR_SZ];
1200 
1201 	ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
1202 	ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
1203 	ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
1204 	ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
1205 
1206 	dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
1207 	dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
1208 	aligned_dlen1 = ALIGN(dlen1, 8);
1209 	aligned_dlen2 = ALIGN(dlen2, 8);
1210 
1211 	len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
1212 	if (twoparents)
1213 		len += plen;
1214 
1215 	len += ubifs_auth_node_sz(c);
1216 
1217 	dent1 = kzalloc(len, GFP_NOFS);
1218 	if (!dent1)
1219 		return -ENOMEM;
1220 
1221 	/* Make reservation before allocating sequence numbers */
1222 	err = make_reservation(c, BASEHD, len);
1223 	if (err)
1224 		goto out_free;
1225 
1226 	/* Make new dent for 1st entry */
1227 	dent1->ch.node_type = UBIFS_DENT_NODE;
1228 	dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
1229 	dent1->inum = cpu_to_le64(fst_inode->i_ino);
1230 	dent1->type = get_dent_type(fst_inode->i_mode);
1231 	dent1->nlen = cpu_to_le16(fname_len(snd_nm));
1232 	memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
1233 	dent1->name[fname_len(snd_nm)] = '\0';
1234 	set_dent_cookie(c, dent1);
1235 	zero_dent_node_unused(dent1);
1236 	ubifs_prep_grp_node(c, dent1, dlen1, 0);
1237 	err = ubifs_node_calc_hash(c, dent1, hash_dent1);
1238 	if (err)
1239 		goto out_release;
1240 
1241 	/* Make new dent for 2nd entry */
1242 	dent2 = (void *)dent1 + aligned_dlen1;
1243 	dent2->ch.node_type = UBIFS_DENT_NODE;
1244 	dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
1245 	dent2->inum = cpu_to_le64(snd_inode->i_ino);
1246 	dent2->type = get_dent_type(snd_inode->i_mode);
1247 	dent2->nlen = cpu_to_le16(fname_len(fst_nm));
1248 	memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1249 	dent2->name[fname_len(fst_nm)] = '\0';
1250 	set_dent_cookie(c, dent2);
1251 	zero_dent_node_unused(dent2);
1252 	ubifs_prep_grp_node(c, dent2, dlen2, 0);
1253 	err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1254 	if (err)
1255 		goto out_release;
1256 
1257 	p = (void *)dent2 + aligned_dlen2;
1258 	if (!twoparents) {
1259 		pack_inode(c, p, fst_dir, 1);
1260 		err = ubifs_node_calc_hash(c, p, hash_p1);
1261 		if (err)
1262 			goto out_release;
1263 	} else {
1264 		pack_inode(c, p, fst_dir, 0);
1265 		err = ubifs_node_calc_hash(c, p, hash_p1);
1266 		if (err)
1267 			goto out_release;
1268 		p += ALIGN(plen, 8);
1269 		pack_inode(c, p, snd_dir, 1);
1270 		err = ubifs_node_calc_hash(c, p, hash_p2);
1271 		if (err)
1272 			goto out_release;
1273 	}
1274 
1275 	err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1276 	if (err)
1277 		goto out_release;
1278 	if (!sync) {
1279 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1280 
1281 		ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1282 		ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1283 	}
1284 	release_head(c, BASEHD);
1285 
1286 	ubifs_add_auth_dirt(c, lnum);
1287 
1288 	dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1289 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, snd_nm);
1290 	if (err)
1291 		goto out_ro;
1292 
1293 	offs += aligned_dlen1;
1294 	dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1295 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, fst_nm);
1296 	if (err)
1297 		goto out_ro;
1298 
1299 	offs += aligned_dlen2;
1300 
1301 	ino_key_init(c, &key, fst_dir->i_ino);
1302 	err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p1);
1303 	if (err)
1304 		goto out_ro;
1305 
1306 	if (twoparents) {
1307 		offs += ALIGN(plen, 8);
1308 		ino_key_init(c, &key, snd_dir->i_ino);
1309 		err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p2);
1310 		if (err)
1311 			goto out_ro;
1312 	}
1313 
1314 	finish_reservation(c);
1315 
1316 	mark_inode_clean(c, ubifs_inode(fst_dir));
1317 	if (twoparents)
1318 		mark_inode_clean(c, ubifs_inode(snd_dir));
1319 	kfree(dent1);
1320 	return 0;
1321 
1322 out_release:
1323 	release_head(c, BASEHD);
1324 out_ro:
1325 	ubifs_ro_mode(c, err);
1326 	finish_reservation(c);
1327 out_free:
1328 	kfree(dent1);
1329 	return err;
1330 }
1331 
1332 /**
1333  * ubifs_jnl_rename - rename a directory entry.
1334  * @c: UBIFS file-system description object
1335  * @old_dir: parent inode of directory entry to rename
1336  * @old_inode: directory entry's inode to rename
1337  * @old_nm: name of the old directory entry to rename
1338  * @new_dir: parent inode of directory entry to rename
1339  * @new_inode: new directory entry's inode (or directory entry's inode to
1340  *		replace)
1341  * @new_nm: new name of the new directory entry
1342  * @whiteout: whiteout inode
1343  * @sync: non-zero if the write-buffer has to be synchronized
1344  * @delete_orphan: indicates an orphan entry deletion for @whiteout
1345  *
1346  * This function implements the re-name operation which may involve writing up
1347  * to 4 inodes(new inode, whiteout inode, old and new parent directory inodes)
1348  * and 2 directory entries. It marks the written inodes as clean and returns
1349  * zero on success. In case of failure, a negative error code is returned.
1350  */
ubifs_jnl_rename(struct ubifs_info * c,const struct inode * old_dir,const struct inode * old_inode,const struct fscrypt_name * old_nm,const struct inode * new_dir,const struct inode * new_inode,const struct fscrypt_name * new_nm,const struct inode * whiteout,int sync,int delete_orphan)1351 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1352 		     const struct inode *old_inode,
1353 		     const struct fscrypt_name *old_nm,
1354 		     const struct inode *new_dir,
1355 		     const struct inode *new_inode,
1356 		     const struct fscrypt_name *new_nm,
1357 		     const struct inode *whiteout, int sync, int delete_orphan)
1358 {
1359 	void *p;
1360 	union ubifs_key key;
1361 	struct ubifs_dent_node *dent, *dent2;
1362 	int err, dlen1, dlen2, ilen, wlen, lnum, offs, len, orphan_added = 0;
1363 	int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1364 	int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1365 	int move = (old_dir != new_dir);
1366 	struct ubifs_inode *new_ui, *whiteout_ui;
1367 	u8 hash_old_dir[UBIFS_HASH_ARR_SZ];
1368 	u8 hash_new_dir[UBIFS_HASH_ARR_SZ];
1369 	u8 hash_new_inode[UBIFS_HASH_ARR_SZ];
1370 	u8 hash_whiteout_inode[UBIFS_HASH_ARR_SZ];
1371 	u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1372 	u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1373 
1374 	ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
1375 	ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
1376 	ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1377 	ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1378 
1379 	dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1380 	dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1381 	if (new_inode) {
1382 		new_ui = ubifs_inode(new_inode);
1383 		ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
1384 		ilen = UBIFS_INO_NODE_SZ;
1385 		if (!last_reference)
1386 			ilen += new_ui->data_len;
1387 	} else
1388 		ilen = 0;
1389 
1390 	if (whiteout) {
1391 		whiteout_ui = ubifs_inode(whiteout);
1392 		ubifs_assert(c, mutex_is_locked(&whiteout_ui->ui_mutex));
1393 		ubifs_assert(c, whiteout->i_nlink == 1);
1394 		ubifs_assert(c, !whiteout_ui->dirty);
1395 		wlen = UBIFS_INO_NODE_SZ;
1396 		wlen += whiteout_ui->data_len;
1397 	} else
1398 		wlen = 0;
1399 
1400 	aligned_dlen1 = ALIGN(dlen1, 8);
1401 	aligned_dlen2 = ALIGN(dlen2, 8);
1402 	len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) +
1403 	      ALIGN(wlen, 8) + ALIGN(plen, 8);
1404 	if (move)
1405 		len += plen;
1406 
1407 	len += ubifs_auth_node_sz(c);
1408 
1409 	dent = kzalloc(len, GFP_NOFS);
1410 	if (!dent)
1411 		return -ENOMEM;
1412 
1413 	/* Make reservation before allocating sequence numbers */
1414 	err = make_reservation(c, BASEHD, len);
1415 	if (err)
1416 		goto out_free;
1417 
1418 	/* Make new dent */
1419 	dent->ch.node_type = UBIFS_DENT_NODE;
1420 	dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1421 	dent->inum = cpu_to_le64(old_inode->i_ino);
1422 	dent->type = get_dent_type(old_inode->i_mode);
1423 	dent->nlen = cpu_to_le16(fname_len(new_nm));
1424 	memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1425 	dent->name[fname_len(new_nm)] = '\0';
1426 	set_dent_cookie(c, dent);
1427 	zero_dent_node_unused(dent);
1428 	ubifs_prep_grp_node(c, dent, dlen1, 0);
1429 	err = ubifs_node_calc_hash(c, dent, hash_dent1);
1430 	if (err)
1431 		goto out_release;
1432 
1433 	dent2 = (void *)dent + aligned_dlen1;
1434 	dent2->ch.node_type = UBIFS_DENT_NODE;
1435 	dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1436 
1437 	if (whiteout) {
1438 		dent2->inum = cpu_to_le64(whiteout->i_ino);
1439 		dent2->type = get_dent_type(whiteout->i_mode);
1440 	} else {
1441 		/* Make deletion dent */
1442 		dent2->inum = 0;
1443 		dent2->type = DT_UNKNOWN;
1444 	}
1445 	dent2->nlen = cpu_to_le16(fname_len(old_nm));
1446 	memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1447 	dent2->name[fname_len(old_nm)] = '\0';
1448 	set_dent_cookie(c, dent2);
1449 	zero_dent_node_unused(dent2);
1450 	ubifs_prep_grp_node(c, dent2, dlen2, 0);
1451 	err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1452 	if (err)
1453 		goto out_release;
1454 
1455 	p = (void *)dent2 + aligned_dlen2;
1456 	if (new_inode) {
1457 		pack_inode(c, p, new_inode, 0);
1458 		err = ubifs_node_calc_hash(c, p, hash_new_inode);
1459 		if (err)
1460 			goto out_release;
1461 
1462 		p += ALIGN(ilen, 8);
1463 	}
1464 
1465 	if (whiteout) {
1466 		pack_inode(c, p, whiteout, 0);
1467 		err = ubifs_node_calc_hash(c, p, hash_whiteout_inode);
1468 		if (err)
1469 			goto out_release;
1470 
1471 		p += ALIGN(wlen, 8);
1472 	}
1473 
1474 	if (!move) {
1475 		pack_inode(c, p, old_dir, 1);
1476 		err = ubifs_node_calc_hash(c, p, hash_old_dir);
1477 		if (err)
1478 			goto out_release;
1479 	} else {
1480 		pack_inode(c, p, old_dir, 0);
1481 		err = ubifs_node_calc_hash(c, p, hash_old_dir);
1482 		if (err)
1483 			goto out_release;
1484 
1485 		p += ALIGN(plen, 8);
1486 		pack_inode(c, p, new_dir, 1);
1487 		err = ubifs_node_calc_hash(c, p, hash_new_dir);
1488 		if (err)
1489 			goto out_release;
1490 	}
1491 
1492 	if (last_reference) {
1493 		err = ubifs_add_orphan(c, new_inode->i_ino);
1494 		if (err) {
1495 			release_head(c, BASEHD);
1496 			goto out_finish;
1497 		}
1498 		new_ui->del_cmtno = c->cmt_no;
1499 		orphan_added = 1;
1500 	}
1501 
1502 	err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1503 	if (err)
1504 		goto out_release;
1505 	if (!sync) {
1506 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1507 
1508 		ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1509 		ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1510 		if (new_inode)
1511 			ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1512 						  new_inode->i_ino);
1513 		if (whiteout)
1514 			ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1515 						  whiteout->i_ino);
1516 	}
1517 	release_head(c, BASEHD);
1518 
1519 	ubifs_add_auth_dirt(c, lnum);
1520 
1521 	dent_key_init(c, &key, new_dir->i_ino, new_nm);
1522 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, new_nm);
1523 	if (err)
1524 		goto out_ro;
1525 
1526 	offs += aligned_dlen1;
1527 	if (whiteout) {
1528 		dent_key_init(c, &key, old_dir->i_ino, old_nm);
1529 		err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, old_nm);
1530 		if (err)
1531 			goto out_ro;
1532 	} else {
1533 		err = ubifs_add_dirt(c, lnum, dlen2);
1534 		if (err)
1535 			goto out_ro;
1536 
1537 		dent_key_init(c, &key, old_dir->i_ino, old_nm);
1538 		err = ubifs_tnc_remove_nm(c, &key, old_nm);
1539 		if (err)
1540 			goto out_ro;
1541 	}
1542 
1543 	offs += aligned_dlen2;
1544 	if (new_inode) {
1545 		ino_key_init(c, &key, new_inode->i_ino);
1546 		err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash_new_inode);
1547 		if (err)
1548 			goto out_ro;
1549 		offs += ALIGN(ilen, 8);
1550 	}
1551 
1552 	if (whiteout) {
1553 		ino_key_init(c, &key, whiteout->i_ino);
1554 		err = ubifs_tnc_add(c, &key, lnum, offs, wlen,
1555 				    hash_whiteout_inode);
1556 		if (err)
1557 			goto out_ro;
1558 		offs += ALIGN(wlen, 8);
1559 	}
1560 
1561 	ino_key_init(c, &key, old_dir->i_ino);
1562 	err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_old_dir);
1563 	if (err)
1564 		goto out_ro;
1565 
1566 	if (move) {
1567 		offs += ALIGN(plen, 8);
1568 		ino_key_init(c, &key, new_dir->i_ino);
1569 		err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_new_dir);
1570 		if (err)
1571 			goto out_ro;
1572 	}
1573 
1574 	if (delete_orphan)
1575 		ubifs_delete_orphan(c, whiteout->i_ino);
1576 
1577 	finish_reservation(c);
1578 	if (new_inode) {
1579 		mark_inode_clean(c, new_ui);
1580 		spin_lock(&new_ui->ui_lock);
1581 		new_ui->synced_i_size = new_ui->ui_size;
1582 		spin_unlock(&new_ui->ui_lock);
1583 	}
1584 	/*
1585 	 * No need to mark whiteout inode clean.
1586 	 * Whiteout doesn't have non-zero size, no need to update
1587 	 * synced_i_size for whiteout_ui.
1588 	 */
1589 	mark_inode_clean(c, ubifs_inode(old_dir));
1590 	if (move)
1591 		mark_inode_clean(c, ubifs_inode(new_dir));
1592 	kfree(dent);
1593 	return 0;
1594 
1595 out_release:
1596 	release_head(c, BASEHD);
1597 out_ro:
1598 	ubifs_ro_mode(c, err);
1599 	if (orphan_added)
1600 		ubifs_delete_orphan(c, new_inode->i_ino);
1601 out_finish:
1602 	finish_reservation(c);
1603 out_free:
1604 	kfree(dent);
1605 	return err;
1606 }
1607 
1608 /**
1609  * truncate_data_node - re-compress/encrypt a truncated data node.
1610  * @c: UBIFS file-system description object
1611  * @inode: inode which refers to the data node
1612  * @block: data block number
1613  * @dn: data node to re-compress
1614  * @new_len: new length
1615  * @dn_size: size of the data node @dn in memory
1616  *
1617  * This function is used when an inode is truncated and the last data node of
1618  * the inode has to be re-compressed/encrypted and re-written.
1619  */
truncate_data_node(const struct ubifs_info * c,const struct inode * inode,unsigned int block,struct ubifs_data_node * dn,int * new_len,int dn_size)1620 static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1621 			      unsigned int block, struct ubifs_data_node *dn,
1622 			      int *new_len, int dn_size)
1623 {
1624 	void *buf;
1625 	int err, dlen, compr_type, out_len, data_size;
1626 
1627 	out_len = le32_to_cpu(dn->size);
1628 	buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS);
1629 	if (!buf)
1630 		return -ENOMEM;
1631 
1632 	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1633 	data_size = dn_size - UBIFS_DATA_NODE_SZ;
1634 	compr_type = le16_to_cpu(dn->compr_type);
1635 
1636 	if (IS_ENCRYPTED(inode)) {
1637 		err = ubifs_decrypt(inode, dn, &dlen, block);
1638 		if (err)
1639 			goto out;
1640 	}
1641 
1642 	if (compr_type == UBIFS_COMPR_NONE) {
1643 		out_len = *new_len;
1644 	} else {
1645 		err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1646 		if (err)
1647 			goto out;
1648 
1649 		ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1650 	}
1651 
1652 	if (IS_ENCRYPTED(inode)) {
1653 		err = ubifs_encrypt(inode, dn, out_len, &data_size, block);
1654 		if (err)
1655 			goto out;
1656 
1657 		out_len = data_size;
1658 	} else {
1659 		dn->compr_size = 0;
1660 	}
1661 
1662 	ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
1663 	dn->compr_type = cpu_to_le16(compr_type);
1664 	dn->size = cpu_to_le32(*new_len);
1665 	*new_len = UBIFS_DATA_NODE_SZ + out_len;
1666 	err = 0;
1667 out:
1668 	kfree(buf);
1669 	return err;
1670 }
1671 
1672 /**
1673  * ubifs_jnl_truncate - update the journal for a truncation.
1674  * @c: UBIFS file-system description object
1675  * @inode: inode to truncate
1676  * @old_size: old size
1677  * @new_size: new size
1678  *
1679  * When the size of a file decreases due to truncation, a truncation node is
1680  * written, the journal tree is updated, and the last data block is re-written
1681  * if it has been affected. The inode is also updated in order to synchronize
1682  * the new inode size.
1683  *
1684  * This function marks the inode as clean and returns zero on success. In case
1685  * of failure, a negative error code is returned.
1686  */
ubifs_jnl_truncate(struct ubifs_info * c,const struct inode * inode,loff_t old_size,loff_t new_size)1687 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1688 		       loff_t old_size, loff_t new_size)
1689 {
1690 	union ubifs_key key, to_key;
1691 	struct ubifs_ino_node *ino;
1692 	struct ubifs_trun_node *trun;
1693 	struct ubifs_data_node *dn;
1694 	int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1695 	int dn_size;
1696 	struct ubifs_inode *ui = ubifs_inode(inode);
1697 	ino_t inum = inode->i_ino;
1698 	unsigned int blk;
1699 	u8 hash_ino[UBIFS_HASH_ARR_SZ];
1700 	u8 hash_dn[UBIFS_HASH_ARR_SZ];
1701 
1702 	dbg_jnl("ino %lu, size %lld -> %lld",
1703 		(unsigned long)inum, old_size, new_size);
1704 	ubifs_assert(c, !ui->data_len);
1705 	ubifs_assert(c, S_ISREG(inode->i_mode));
1706 	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1707 
1708 	dn_size = COMPRESSED_DATA_NODE_BUF_SZ;
1709 
1710 	if (IS_ENCRYPTED(inode))
1711 		dn_size += UBIFS_CIPHER_BLOCK_SIZE;
1712 
1713 	sz =  UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1714 		dn_size + ubifs_auth_node_sz(c);
1715 
1716 	ino = kmalloc(sz, GFP_NOFS);
1717 	if (!ino)
1718 		return -ENOMEM;
1719 
1720 	trun = (void *)ino + UBIFS_INO_NODE_SZ;
1721 	trun->ch.node_type = UBIFS_TRUN_NODE;
1722 	trun->inum = cpu_to_le32(inum);
1723 	trun->old_size = cpu_to_le64(old_size);
1724 	trun->new_size = cpu_to_le64(new_size);
1725 	zero_trun_node_unused(trun);
1726 
1727 	dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1728 	if (dlen) {
1729 		/* Get last data block so it can be truncated */
1730 		dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1731 		blk = new_size >> UBIFS_BLOCK_SHIFT;
1732 		data_key_init(c, &key, inum, blk);
1733 		dbg_jnlk(&key, "last block key ");
1734 		err = ubifs_tnc_lookup(c, &key, dn);
1735 		if (err == -ENOENT)
1736 			dlen = 0; /* Not found (so it is a hole) */
1737 		else if (err)
1738 			goto out_free;
1739 		else {
1740 			int dn_len = le32_to_cpu(dn->size);
1741 
1742 			if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
1743 				ubifs_err(c, "bad data node (block %u, inode %lu)",
1744 					  blk, inode->i_ino);
1745 				ubifs_dump_node(c, dn, dn_size);
1746 				err = -EUCLEAN;
1747 				goto out_free;
1748 			}
1749 
1750 			if (dn_len <= dlen)
1751 				dlen = 0; /* Nothing to do */
1752 			else {
1753 				err = truncate_data_node(c, inode, blk, dn,
1754 						&dlen, dn_size);
1755 				if (err)
1756 					goto out_free;
1757 			}
1758 		}
1759 	}
1760 
1761 	/* Must make reservation before allocating sequence numbers */
1762 	len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1763 
1764 	if (ubifs_authenticated(c))
1765 		len += ALIGN(dlen, 8) + ubifs_auth_node_sz(c);
1766 	else
1767 		len += dlen;
1768 
1769 	err = make_reservation(c, BASEHD, len);
1770 	if (err)
1771 		goto out_free;
1772 
1773 	pack_inode(c, ino, inode, 0);
1774 	err = ubifs_node_calc_hash(c, ino, hash_ino);
1775 	if (err)
1776 		goto out_release;
1777 
1778 	ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1779 	if (dlen) {
1780 		ubifs_prep_grp_node(c, dn, dlen, 1);
1781 		err = ubifs_node_calc_hash(c, dn, hash_dn);
1782 		if (err)
1783 			goto out_release;
1784 	}
1785 
1786 	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1787 	if (err)
1788 		goto out_release;
1789 	if (!sync)
1790 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1791 	release_head(c, BASEHD);
1792 
1793 	ubifs_add_auth_dirt(c, lnum);
1794 
1795 	if (dlen) {
1796 		sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1797 		err = ubifs_tnc_add(c, &key, lnum, sz, dlen, hash_dn);
1798 		if (err)
1799 			goto out_ro;
1800 	}
1801 
1802 	ino_key_init(c, &key, inum);
1803 	err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ, hash_ino);
1804 	if (err)
1805 		goto out_ro;
1806 
1807 	err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1808 	if (err)
1809 		goto out_ro;
1810 
1811 	bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1812 	blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1813 	data_key_init(c, &key, inum, blk);
1814 
1815 	bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1816 	blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1817 	data_key_init(c, &to_key, inum, blk);
1818 
1819 	err = ubifs_tnc_remove_range(c, &key, &to_key);
1820 	if (err)
1821 		goto out_ro;
1822 
1823 	finish_reservation(c);
1824 	spin_lock(&ui->ui_lock);
1825 	ui->synced_i_size = ui->ui_size;
1826 	spin_unlock(&ui->ui_lock);
1827 	mark_inode_clean(c, ui);
1828 	kfree(ino);
1829 	return 0;
1830 
1831 out_release:
1832 	release_head(c, BASEHD);
1833 out_ro:
1834 	ubifs_ro_mode(c, err);
1835 	finish_reservation(c);
1836 out_free:
1837 	kfree(ino);
1838 	return err;
1839 }
1840 
1841 
1842 /**
1843  * ubifs_jnl_delete_xattr - delete an extended attribute.
1844  * @c: UBIFS file-system description object
1845  * @host: host inode
1846  * @inode: extended attribute inode
1847  * @nm: extended attribute entry name
1848  *
1849  * This function delete an extended attribute which is very similar to
1850  * un-linking regular files - it writes a deletion xentry, a deletion inode and
1851  * updates the target inode. Returns zero in case of success and a negative
1852  * error code in case of failure.
1853  */
ubifs_jnl_delete_xattr(struct ubifs_info * c,const struct inode * host,const struct inode * inode,const struct fscrypt_name * nm)1854 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1855 			   const struct inode *inode,
1856 			   const struct fscrypt_name *nm)
1857 {
1858 	int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen, write_len;
1859 	struct ubifs_dent_node *xent;
1860 	struct ubifs_ino_node *ino;
1861 	union ubifs_key xent_key, key1, key2;
1862 	int sync = IS_DIRSYNC(host);
1863 	struct ubifs_inode *host_ui = ubifs_inode(host);
1864 	u8 hash[UBIFS_HASH_ARR_SZ];
1865 
1866 	ubifs_assert(c, inode->i_nlink == 0);
1867 	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1868 
1869 	/*
1870 	 * Since we are deleting the inode, we do not bother to attach any data
1871 	 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1872 	 */
1873 	xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1874 	aligned_xlen = ALIGN(xlen, 8);
1875 	hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1876 	len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1877 
1878 	write_len = len + ubifs_auth_node_sz(c);
1879 
1880 	xent = kzalloc(write_len, GFP_NOFS);
1881 	if (!xent)
1882 		return -ENOMEM;
1883 
1884 	/* Make reservation before allocating sequence numbers */
1885 	err = make_reservation(c, BASEHD, write_len);
1886 	if (err) {
1887 		kfree(xent);
1888 		return err;
1889 	}
1890 
1891 	xent->ch.node_type = UBIFS_XENT_NODE;
1892 	xent_key_init(c, &xent_key, host->i_ino, nm);
1893 	key_write(c, &xent_key, xent->key);
1894 	xent->inum = 0;
1895 	xent->type = get_dent_type(inode->i_mode);
1896 	xent->nlen = cpu_to_le16(fname_len(nm));
1897 	memcpy(xent->name, fname_name(nm), fname_len(nm));
1898 	xent->name[fname_len(nm)] = '\0';
1899 	zero_dent_node_unused(xent);
1900 	ubifs_prep_grp_node(c, xent, xlen, 0);
1901 
1902 	ino = (void *)xent + aligned_xlen;
1903 	pack_inode(c, ino, inode, 0);
1904 	ino = (void *)ino + UBIFS_INO_NODE_SZ;
1905 	pack_inode(c, ino, host, 1);
1906 	err = ubifs_node_calc_hash(c, ino, hash);
1907 	if (err)
1908 		goto out_release;
1909 
1910 	err = write_head(c, BASEHD, xent, write_len, &lnum, &xent_offs, sync);
1911 	if (!sync && !err)
1912 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1913 	release_head(c, BASEHD);
1914 
1915 	ubifs_add_auth_dirt(c, lnum);
1916 	kfree(xent);
1917 	if (err)
1918 		goto out_ro;
1919 
1920 	/* Remove the extended attribute entry from TNC */
1921 	err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1922 	if (err)
1923 		goto out_ro;
1924 	err = ubifs_add_dirt(c, lnum, xlen);
1925 	if (err)
1926 		goto out_ro;
1927 
1928 	/*
1929 	 * Remove all nodes belonging to the extended attribute inode from TNC.
1930 	 * Well, there actually must be only one node - the inode itself.
1931 	 */
1932 	lowest_ino_key(c, &key1, inode->i_ino);
1933 	highest_ino_key(c, &key2, inode->i_ino);
1934 	err = ubifs_tnc_remove_range(c, &key1, &key2);
1935 	if (err)
1936 		goto out_ro;
1937 	err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1938 	if (err)
1939 		goto out_ro;
1940 
1941 	/* And update TNC with the new host inode position */
1942 	ino_key_init(c, &key1, host->i_ino);
1943 	err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen, hash);
1944 	if (err)
1945 		goto out_ro;
1946 
1947 	finish_reservation(c);
1948 	spin_lock(&host_ui->ui_lock);
1949 	host_ui->synced_i_size = host_ui->ui_size;
1950 	spin_unlock(&host_ui->ui_lock);
1951 	mark_inode_clean(c, host_ui);
1952 	return 0;
1953 
1954 out_release:
1955 	kfree(xent);
1956 	release_head(c, BASEHD);
1957 out_ro:
1958 	ubifs_ro_mode(c, err);
1959 	finish_reservation(c);
1960 	return err;
1961 }
1962 
1963 /**
1964  * ubifs_jnl_change_xattr - change an extended attribute.
1965  * @c: UBIFS file-system description object
1966  * @inode: extended attribute inode
1967  * @host: host inode
1968  *
1969  * This function writes the updated version of an extended attribute inode and
1970  * the host inode to the journal (to the base head). The host inode is written
1971  * after the extended attribute inode in order to guarantee that the extended
1972  * attribute will be flushed when the inode is synchronized by 'fsync()' and
1973  * consequently, the write-buffer is synchronized. This function returns zero
1974  * in case of success and a negative error code in case of failure.
1975  */
ubifs_jnl_change_xattr(struct ubifs_info * c,const struct inode * inode,const struct inode * host)1976 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1977 			   const struct inode *host)
1978 {
1979 	int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1980 	struct ubifs_inode *host_ui = ubifs_inode(host);
1981 	struct ubifs_ino_node *ino;
1982 	union ubifs_key key;
1983 	int sync = IS_DIRSYNC(host);
1984 	u8 hash_host[UBIFS_HASH_ARR_SZ];
1985 	u8 hash[UBIFS_HASH_ARR_SZ];
1986 
1987 	dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1988 	ubifs_assert(c, inode->i_nlink > 0);
1989 	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1990 
1991 	len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1992 	len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1993 	aligned_len1 = ALIGN(len1, 8);
1994 	aligned_len = aligned_len1 + ALIGN(len2, 8);
1995 
1996 	aligned_len += ubifs_auth_node_sz(c);
1997 
1998 	ino = kzalloc(aligned_len, GFP_NOFS);
1999 	if (!ino)
2000 		return -ENOMEM;
2001 
2002 	/* Make reservation before allocating sequence numbers */
2003 	err = make_reservation(c, BASEHD, aligned_len);
2004 	if (err)
2005 		goto out_free;
2006 
2007 	pack_inode(c, ino, host, 0);
2008 	err = ubifs_node_calc_hash(c, ino, hash_host);
2009 	if (err)
2010 		goto out_release;
2011 	pack_inode(c, (void *)ino + aligned_len1, inode, 1);
2012 	err = ubifs_node_calc_hash(c, (void *)ino + aligned_len1, hash);
2013 	if (err)
2014 		goto out_release;
2015 
2016 	err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
2017 	if (!sync && !err) {
2018 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
2019 
2020 		ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
2021 		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
2022 	}
2023 	release_head(c, BASEHD);
2024 	if (err)
2025 		goto out_ro;
2026 
2027 	ubifs_add_auth_dirt(c, lnum);
2028 
2029 	ino_key_init(c, &key, host->i_ino);
2030 	err = ubifs_tnc_add(c, &key, lnum, offs, len1, hash_host);
2031 	if (err)
2032 		goto out_ro;
2033 
2034 	ino_key_init(c, &key, inode->i_ino);
2035 	err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2, hash);
2036 	if (err)
2037 		goto out_ro;
2038 
2039 	finish_reservation(c);
2040 	spin_lock(&host_ui->ui_lock);
2041 	host_ui->synced_i_size = host_ui->ui_size;
2042 	spin_unlock(&host_ui->ui_lock);
2043 	mark_inode_clean(c, host_ui);
2044 	kfree(ino);
2045 	return 0;
2046 
2047 out_release:
2048 	release_head(c, BASEHD);
2049 out_ro:
2050 	ubifs_ro_mode(c, err);
2051 	finish_reservation(c);
2052 out_free:
2053 	kfree(ino);
2054 	return err;
2055 }
2056 
2057