xref: /linux/fs/bcachefs/util.h (revision 131c040bbb0f561ef68ad2ba6fcd28c97fa6d4cf)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_UTIL_H
3 #define _BCACHEFS_UTIL_H
4 
5 #include <linux/bio.h>
6 #include <linux/blkdev.h>
7 #include <linux/closure.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kernel.h>
11 #include <linux/min_heap.h>
12 #include <linux/sched/clock.h>
13 #include <linux/llist.h>
14 #include <linux/log2.h>
15 #include <linux/percpu.h>
16 #include <linux/preempt.h>
17 #include <linux/ratelimit.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/workqueue.h>
21 
22 #include "mean_and_variance.h"
23 
24 #include "darray.h"
25 #include "time_stats.h"
26 
27 struct closure;
28 
29 #ifdef CONFIG_BCACHEFS_DEBUG
30 #define EBUG_ON(cond)		BUG_ON(cond)
31 #else
32 #define EBUG_ON(cond)
33 #endif
34 
35 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
36 #define CPU_BIG_ENDIAN		0
37 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
38 #define CPU_BIG_ENDIAN		1
39 #endif
40 
41 /* type hackery */
42 
43 #define type_is_exact(_val, _type)					\
44 	__builtin_types_compatible_p(typeof(_val), _type)
45 
46 #define type_is(_val, _type)						\
47 	(__builtin_types_compatible_p(typeof(_val), _type) ||		\
48 	 __builtin_types_compatible_p(typeof(_val), const _type))
49 
50 /* Userspace doesn't align allocations as nicely as the kernel allocators: */
buf_pages(void * p,size_t len)51 static inline size_t buf_pages(void *p, size_t len)
52 {
53 	return DIV_ROUND_UP(len +
54 			    ((unsigned long) p & (PAGE_SIZE - 1)),
55 			    PAGE_SIZE);
56 }
57 
bch2_kvmalloc(size_t n,gfp_t flags)58 static inline void *bch2_kvmalloc(size_t n, gfp_t flags)
59 {
60 	void *p = unlikely(n >= INT_MAX)
61 		? vmalloc(n)
62 		: kvmalloc(n, flags & ~__GFP_ZERO);
63 	if (p && (flags & __GFP_ZERO))
64 		memset(p, 0, n);
65 	return p;
66 }
67 
68 #define init_heap(heap, _size, gfp)					\
69 ({									\
70 	(heap)->nr = 0;						\
71 	(heap)->size = (_size);						\
72 	(heap)->data = kvmalloc((heap)->size * sizeof((heap)->data[0]),\
73 				 (gfp));				\
74 })
75 
76 #define free_heap(heap)							\
77 do {									\
78 	kvfree((heap)->data);						\
79 	(heap)->data = NULL;						\
80 } while (0)
81 
82 #define ANYSINT_MAX(t)							\
83 	((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
84 
85 #include "printbuf.h"
86 
87 #define prt_vprintf(_out, ...)		bch2_prt_vprintf(_out, __VA_ARGS__)
88 #define prt_printf(_out, ...)		bch2_prt_printf(_out, __VA_ARGS__)
89 #define printbuf_str(_buf)		bch2_printbuf_str(_buf)
90 #define printbuf_exit(_buf)		bch2_printbuf_exit(_buf)
91 
92 #define printbuf_tabstops_reset(_buf)	bch2_printbuf_tabstops_reset(_buf)
93 #define printbuf_tabstop_pop(_buf)	bch2_printbuf_tabstop_pop(_buf)
94 #define printbuf_tabstop_push(_buf, _n)	bch2_printbuf_tabstop_push(_buf, _n)
95 
96 #define printbuf_indent_add(_out, _n)	bch2_printbuf_indent_add(_out, _n)
97 #define printbuf_indent_sub(_out, _n)	bch2_printbuf_indent_sub(_out, _n)
98 
99 #define prt_newline(_out)		bch2_prt_newline(_out)
100 #define prt_tab(_out)			bch2_prt_tab(_out)
101 #define prt_tab_rjust(_out)		bch2_prt_tab_rjust(_out)
102 
103 #define prt_bytes_indented(...)		bch2_prt_bytes_indented(__VA_ARGS__)
104 #define prt_u64(_out, _v)		prt_printf(_out, "%llu", (u64) (_v))
105 #define prt_human_readable_u64(...)	bch2_prt_human_readable_u64(__VA_ARGS__)
106 #define prt_human_readable_s64(...)	bch2_prt_human_readable_s64(__VA_ARGS__)
107 #define prt_units_u64(...)		bch2_prt_units_u64(__VA_ARGS__)
108 #define prt_units_s64(...)		bch2_prt_units_s64(__VA_ARGS__)
109 #define prt_string_option(...)		bch2_prt_string_option(__VA_ARGS__)
110 #define prt_bitflags(...)		bch2_prt_bitflags(__VA_ARGS__)
111 #define prt_bitflags_vector(...)	bch2_prt_bitflags_vector(__VA_ARGS__)
112 
113 void bch2_pr_time_units(struct printbuf *, u64);
114 void bch2_prt_datetime(struct printbuf *, time64_t);
115 
116 #ifdef __KERNEL__
uuid_unparse_lower(u8 * uuid,char * out)117 static inline void uuid_unparse_lower(u8 *uuid, char *out)
118 {
119 	sprintf(out, "%pUb", uuid);
120 }
121 #else
122 #include <uuid/uuid.h>
123 #endif
124 
pr_uuid(struct printbuf * out,u8 * uuid)125 static inline void pr_uuid(struct printbuf *out, u8 *uuid)
126 {
127 	char uuid_str[40];
128 
129 	uuid_unparse_lower(uuid, uuid_str);
130 	prt_printf(out, "%s", uuid_str);
131 }
132 
133 int bch2_strtoint_h(const char *, int *);
134 int bch2_strtouint_h(const char *, unsigned int *);
135 int bch2_strtoll_h(const char *, long long *);
136 int bch2_strtoull_h(const char *, unsigned long long *);
137 int bch2_strtou64_h(const char *, u64 *);
138 
bch2_strtol_h(const char * cp,long * res)139 static inline int bch2_strtol_h(const char *cp, long *res)
140 {
141 #if BITS_PER_LONG == 32
142 	return bch2_strtoint_h(cp, (int *) res);
143 #else
144 	return bch2_strtoll_h(cp, (long long *) res);
145 #endif
146 }
147 
bch2_strtoul_h(const char * cp,long * res)148 static inline int bch2_strtoul_h(const char *cp, long *res)
149 {
150 #if BITS_PER_LONG == 32
151 	return bch2_strtouint_h(cp, (unsigned int *) res);
152 #else
153 	return bch2_strtoull_h(cp, (unsigned long long *) res);
154 #endif
155 }
156 
157 #define strtoi_h(cp, res)						\
158 	( type_is(*res, int)		? bch2_strtoint_h(cp, (void *) res)\
159 	: type_is(*res, long)		? bch2_strtol_h(cp, (void *) res)\
160 	: type_is(*res, long long)	? bch2_strtoll_h(cp, (void *) res)\
161 	: type_is(*res, unsigned)	? bch2_strtouint_h(cp, (void *) res)\
162 	: type_is(*res, unsigned long)	? bch2_strtoul_h(cp, (void *) res)\
163 	: type_is(*res, unsigned long long) ? bch2_strtoull_h(cp, (void *) res)\
164 	: -EINVAL)
165 
166 #define strtoul_safe(cp, var)						\
167 ({									\
168 	unsigned long _v;						\
169 	int _r = kstrtoul(cp, 10, &_v);					\
170 	if (!_r)							\
171 		var = _v;						\
172 	_r;								\
173 })
174 
175 #define strtoul_safe_clamp(cp, var, min, max)				\
176 ({									\
177 	unsigned long _v;						\
178 	int _r = kstrtoul(cp, 10, &_v);					\
179 	if (!_r)							\
180 		var = clamp_t(typeof(var), _v, min, max);		\
181 	_r;								\
182 })
183 
184 #define strtoul_safe_restrict(cp, var, min, max)			\
185 ({									\
186 	unsigned long _v;						\
187 	int _r = kstrtoul(cp, 10, &_v);					\
188 	if (!_r && _v >= min && _v <= max)				\
189 		var = _v;						\
190 	else								\
191 		_r = -EINVAL;						\
192 	_r;								\
193 })
194 
195 #define snprint(out, var)						\
196 	prt_printf(out,							\
197 		   type_is(var, int)		? "%i\n"		\
198 		 : type_is(var, unsigned)	? "%u\n"		\
199 		 : type_is(var, long)		? "%li\n"		\
200 		 : type_is(var, unsigned long)	? "%lu\n"		\
201 		 : type_is(var, s64)		? "%lli\n"		\
202 		 : type_is(var, u64)		? "%llu\n"		\
203 		 : type_is(var, char *)		? "%s\n"		\
204 		 : "%i\n", var)
205 
206 bool bch2_is_zero(const void *, size_t);
207 
208 u64 bch2_read_flag_list(const char *, const char * const[]);
209 
210 void bch2_prt_u64_base2_nbits(struct printbuf *, u64, unsigned);
211 void bch2_prt_u64_base2(struct printbuf *, u64);
212 
213 void bch2_print_string_as_lines(const char *prefix, const char *lines);
214 void bch2_print_string_as_lines_nonblocking(const char *prefix, const char *lines);
215 
216 typedef DARRAY(unsigned long) bch_stacktrace;
217 int bch2_save_backtrace(bch_stacktrace *stack, struct task_struct *, unsigned, gfp_t);
218 void bch2_prt_backtrace(struct printbuf *, bch_stacktrace *);
219 int bch2_prt_task_backtrace(struct printbuf *, struct task_struct *, unsigned, gfp_t);
220 
prt_bdevname(struct printbuf * out,struct block_device * bdev)221 static inline void prt_bdevname(struct printbuf *out, struct block_device *bdev)
222 {
223 #ifdef __KERNEL__
224 	prt_printf(out, "%pg", bdev);
225 #else
226 	prt_str(out, bdev->name);
227 #endif
228 }
229 
230 void bch2_time_stats_to_text(struct printbuf *, struct bch2_time_stats *);
231 
232 #define ewma_add(ewma, val, weight)					\
233 ({									\
234 	typeof(ewma) _ewma = (ewma);					\
235 	typeof(weight) _weight = (weight);				\
236 									\
237 	(((_ewma << _weight) - _ewma) + (val)) >> _weight;		\
238 })
239 
240 struct bch_ratelimit {
241 	/* Next time we want to do some work, in nanoseconds */
242 	u64			next;
243 
244 	/*
245 	 * Rate at which we want to do work, in units per nanosecond
246 	 * The units here correspond to the units passed to
247 	 * bch2_ratelimit_increment()
248 	 */
249 	unsigned		rate;
250 };
251 
bch2_ratelimit_reset(struct bch_ratelimit * d)252 static inline void bch2_ratelimit_reset(struct bch_ratelimit *d)
253 {
254 	d->next = local_clock();
255 }
256 
257 u64 bch2_ratelimit_delay(struct bch_ratelimit *);
258 void bch2_ratelimit_increment(struct bch_ratelimit *, u64);
259 
260 struct bch_pd_controller {
261 	struct bch_ratelimit	rate;
262 	unsigned long		last_update;
263 
264 	s64			last_actual;
265 	s64			smoothed_derivative;
266 
267 	unsigned		p_term_inverse;
268 	unsigned		d_smooth;
269 	unsigned		d_term;
270 
271 	/* for exporting to sysfs (no effect on behavior) */
272 	s64			last_derivative;
273 	s64			last_proportional;
274 	s64			last_change;
275 	s64			last_target;
276 
277 	/*
278 	 * If true, the rate will not increase if bch2_ratelimit_delay()
279 	 * is not being called often enough.
280 	 */
281 	bool			backpressure;
282 };
283 
284 void bch2_pd_controller_update(struct bch_pd_controller *, s64, s64, int);
285 void bch2_pd_controller_init(struct bch_pd_controller *);
286 void bch2_pd_controller_debug_to_text(struct printbuf *, struct bch_pd_controller *);
287 
288 #define sysfs_pd_controller_attribute(name)				\
289 	rw_attribute(name##_rate);					\
290 	rw_attribute(name##_rate_bytes);				\
291 	rw_attribute(name##_rate_d_term);				\
292 	rw_attribute(name##_rate_p_term_inverse);			\
293 	read_attribute(name##_rate_debug)
294 
295 #define sysfs_pd_controller_files(name)					\
296 	&sysfs_##name##_rate,						\
297 	&sysfs_##name##_rate_bytes,					\
298 	&sysfs_##name##_rate_d_term,					\
299 	&sysfs_##name##_rate_p_term_inverse,				\
300 	&sysfs_##name##_rate_debug
301 
302 #define sysfs_pd_controller_show(name, var)				\
303 do {									\
304 	sysfs_hprint(name##_rate,		(var)->rate.rate);	\
305 	sysfs_print(name##_rate_bytes,		(var)->rate.rate);	\
306 	sysfs_print(name##_rate_d_term,		(var)->d_term);		\
307 	sysfs_print(name##_rate_p_term_inverse,	(var)->p_term_inverse);	\
308 									\
309 	if (attr == &sysfs_##name##_rate_debug)				\
310 		bch2_pd_controller_debug_to_text(out, var);		\
311 } while (0)
312 
313 #define sysfs_pd_controller_store(name, var)				\
314 do {									\
315 	sysfs_strtoul_clamp(name##_rate,				\
316 			    (var)->rate.rate, 1, UINT_MAX);		\
317 	sysfs_strtoul_clamp(name##_rate_bytes,				\
318 			    (var)->rate.rate, 1, UINT_MAX);		\
319 	sysfs_strtoul(name##_rate_d_term,	(var)->d_term);		\
320 	sysfs_strtoul_clamp(name##_rate_p_term_inverse,			\
321 			    (var)->p_term_inverse, 1, INT_MAX);		\
322 } while (0)
323 
324 #define container_of_or_null(ptr, type, member)				\
325 ({									\
326 	typeof(ptr) _ptr = ptr;						\
327 	_ptr ? container_of(_ptr, type, member) : NULL;			\
328 })
329 
list_pop(struct list_head * head)330 static inline struct list_head *list_pop(struct list_head *head)
331 {
332 	if (list_empty(head))
333 		return NULL;
334 
335 	struct list_head *ret = head->next;
336 	list_del_init(ret);
337 	return ret;
338 }
339 
340 #define list_pop_entry(head, type, member)		\
341 	container_of_or_null(list_pop(head), type, member)
342 
343 /* Does linear interpolation between powers of two */
fract_exp_two(unsigned x,unsigned fract_bits)344 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
345 {
346 	unsigned fract = x & ~(~0 << fract_bits);
347 
348 	x >>= fract_bits;
349 	x   = 1 << x;
350 	x  += (x * fract) >> fract_bits;
351 
352 	return x;
353 }
354 
355 void bch2_bio_map(struct bio *bio, void *base, size_t);
356 int bch2_bio_alloc_pages(struct bio *, size_t, gfp_t);
357 
358 #define closure_bio_submit(bio, cl)					\
359 do {									\
360 	closure_get(cl);						\
361 	submit_bio(bio);						\
362 } while (0)
363 
364 #define kthread_wait(cond)						\
365 ({									\
366 	int _ret = 0;							\
367 									\
368 	while (1) {							\
369 		set_current_state(TASK_INTERRUPTIBLE);			\
370 		if (kthread_should_stop()) {				\
371 			_ret = -1;					\
372 			break;						\
373 		}							\
374 									\
375 		if (cond)						\
376 			break;						\
377 									\
378 		schedule();						\
379 	}								\
380 	set_current_state(TASK_RUNNING);				\
381 	_ret;								\
382 })
383 
384 #define kthread_wait_freezable(cond)					\
385 ({									\
386 	int _ret = 0;							\
387 	while (1) {							\
388 		set_current_state(TASK_INTERRUPTIBLE);			\
389 		if (kthread_should_stop()) {				\
390 			_ret = -1;					\
391 			break;						\
392 		}							\
393 									\
394 		if (cond)						\
395 			break;						\
396 									\
397 		schedule();						\
398 		try_to_freeze();					\
399 	}								\
400 	set_current_state(TASK_RUNNING);				\
401 	_ret;								\
402 })
403 
404 u64 bch2_get_random_u64_below(u64);
405 
406 void memcpy_to_bio(struct bio *, struct bvec_iter, const void *);
407 void memcpy_from_bio(void *, struct bio *, struct bvec_iter);
408 
memcpy_u64s_small(void * dst,const void * src,unsigned u64s)409 static inline void memcpy_u64s_small(void *dst, const void *src,
410 				     unsigned u64s)
411 {
412 	u64 *d = dst;
413 	const u64 *s = src;
414 
415 	while (u64s--)
416 		*d++ = *s++;
417 }
418 
__memcpy_u64s(void * dst,const void * src,unsigned u64s)419 static inline void __memcpy_u64s(void *dst, const void *src,
420 				 unsigned u64s)
421 {
422 #ifdef CONFIG_X86_64
423 	long d0, d1, d2;
424 
425 	asm volatile("rep ; movsq"
426 		     : "=&c" (d0), "=&D" (d1), "=&S" (d2)
427 		     : "0" (u64s), "1" (dst), "2" (src)
428 		     : "memory");
429 #else
430 	u64 *d = dst;
431 	const u64 *s = src;
432 
433 	while (u64s--)
434 		*d++ = *s++;
435 #endif
436 }
437 
memcpy_u64s(void * dst,const void * src,unsigned u64s)438 static inline void memcpy_u64s(void *dst, const void *src,
439 			       unsigned u64s)
440 {
441 	EBUG_ON(!(dst >= src + u64s * sizeof(u64) ||
442 		 dst + u64s * sizeof(u64) <= src));
443 
444 	__memcpy_u64s(dst, src, u64s);
445 }
446 
__memmove_u64s_down(void * dst,const void * src,unsigned u64s)447 static inline void __memmove_u64s_down(void *dst, const void *src,
448 				       unsigned u64s)
449 {
450 	__memcpy_u64s(dst, src, u64s);
451 }
452 
memmove_u64s_down(void * dst,const void * src,unsigned u64s)453 static inline void memmove_u64s_down(void *dst, const void *src,
454 				     unsigned u64s)
455 {
456 	EBUG_ON(dst > src);
457 
458 	__memmove_u64s_down(dst, src, u64s);
459 }
460 
__memmove_u64s_down_small(void * dst,const void * src,unsigned u64s)461 static inline void __memmove_u64s_down_small(void *dst, const void *src,
462 				       unsigned u64s)
463 {
464 	memcpy_u64s_small(dst, src, u64s);
465 }
466 
memmove_u64s_down_small(void * dst,const void * src,unsigned u64s)467 static inline void memmove_u64s_down_small(void *dst, const void *src,
468 				     unsigned u64s)
469 {
470 	EBUG_ON(dst > src);
471 
472 	__memmove_u64s_down_small(dst, src, u64s);
473 }
474 
__memmove_u64s_up_small(void * _dst,const void * _src,unsigned u64s)475 static inline void __memmove_u64s_up_small(void *_dst, const void *_src,
476 					   unsigned u64s)
477 {
478 	u64 *dst = (u64 *) _dst + u64s;
479 	u64 *src = (u64 *) _src + u64s;
480 
481 	while (u64s--)
482 		*--dst = *--src;
483 }
484 
memmove_u64s_up_small(void * dst,const void * src,unsigned u64s)485 static inline void memmove_u64s_up_small(void *dst, const void *src,
486 					 unsigned u64s)
487 {
488 	EBUG_ON(dst < src);
489 
490 	__memmove_u64s_up_small(dst, src, u64s);
491 }
492 
__memmove_u64s_up(void * _dst,const void * _src,unsigned u64s)493 static inline void __memmove_u64s_up(void *_dst, const void *_src,
494 				     unsigned u64s)
495 {
496 	u64 *dst = (u64 *) _dst + u64s - 1;
497 	u64 *src = (u64 *) _src + u64s - 1;
498 
499 #ifdef CONFIG_X86_64
500 	long d0, d1, d2;
501 
502 	asm volatile("std ;\n"
503 		     "rep ; movsq\n"
504 		     "cld ;\n"
505 		     : "=&c" (d0), "=&D" (d1), "=&S" (d2)
506 		     : "0" (u64s), "1" (dst), "2" (src)
507 		     : "memory");
508 #else
509 	while (u64s--)
510 		*dst-- = *src--;
511 #endif
512 }
513 
memmove_u64s_up(void * dst,const void * src,unsigned u64s)514 static inline void memmove_u64s_up(void *dst, const void *src,
515 				   unsigned u64s)
516 {
517 	EBUG_ON(dst < src);
518 
519 	__memmove_u64s_up(dst, src, u64s);
520 }
521 
memmove_u64s(void * dst,const void * src,unsigned u64s)522 static inline void memmove_u64s(void *dst, const void *src,
523 				unsigned u64s)
524 {
525 	if (dst < src)
526 		__memmove_u64s_down(dst, src, u64s);
527 	else
528 		__memmove_u64s_up(dst, src, u64s);
529 }
530 
531 /* Set the last few bytes up to a u64 boundary given an offset into a buffer. */
memset_u64s_tail(void * s,int c,unsigned bytes)532 static inline void memset_u64s_tail(void *s, int c, unsigned bytes)
533 {
534 	unsigned rem = round_up(bytes, sizeof(u64)) - bytes;
535 
536 	memset(s + bytes, c, rem);
537 }
538 
539 /* just the memmove, doesn't update @_nr */
540 #define __array_insert_item(_array, _nr, _pos)				\
541 	memmove(&(_array)[(_pos) + 1],					\
542 		&(_array)[(_pos)],					\
543 		sizeof((_array)[0]) * ((_nr) - (_pos)))
544 
545 #define array_insert_item(_array, _nr, _pos, _new_item)			\
546 do {									\
547 	__array_insert_item(_array, _nr, _pos);				\
548 	(_nr)++;							\
549 	(_array)[(_pos)] = (_new_item);					\
550 } while (0)
551 
552 #define array_remove_items(_array, _nr, _pos, _nr_to_remove)		\
553 do {									\
554 	(_nr) -= (_nr_to_remove);					\
555 	memmove(&(_array)[(_pos)],					\
556 		&(_array)[(_pos) + (_nr_to_remove)],			\
557 		sizeof((_array)[0]) * ((_nr) - (_pos)));		\
558 } while (0)
559 
560 #define array_remove_item(_array, _nr, _pos)				\
561 	array_remove_items(_array, _nr, _pos, 1)
562 
__move_gap(void * array,size_t element_size,size_t nr,size_t size,size_t old_gap,size_t new_gap)563 static inline void __move_gap(void *array, size_t element_size,
564 			      size_t nr, size_t size,
565 			      size_t old_gap, size_t new_gap)
566 {
567 	size_t gap_end = old_gap + size - nr;
568 
569 	if (new_gap < old_gap) {
570 		size_t move = old_gap - new_gap;
571 
572 		memmove(array + element_size * (gap_end - move),
573 			array + element_size * (old_gap - move),
574 				element_size * move);
575 	} else if (new_gap > old_gap) {
576 		size_t move = new_gap - old_gap;
577 
578 		memmove(array + element_size * old_gap,
579 			array + element_size * gap_end,
580 				element_size * move);
581 	}
582 }
583 
584 /* Move the gap in a gap buffer: */
585 #define move_gap(_d, _new_gap)						\
586 do {									\
587 	BUG_ON(_new_gap > (_d)->nr);					\
588 	BUG_ON((_d)->gap > (_d)->nr);					\
589 									\
590 	__move_gap((_d)->data, sizeof((_d)->data[0]),			\
591 		   (_d)->nr, (_d)->size, (_d)->gap, _new_gap);		\
592 	(_d)->gap = _new_gap;						\
593 } while (0)
594 
595 #define bubble_sort(_base, _nr, _cmp)					\
596 do {									\
597 	ssize_t _i, _last;						\
598 	bool _swapped = true;						\
599 									\
600 	for (_last= (ssize_t) (_nr) - 1; _last > 0 && _swapped; --_last) {\
601 		_swapped = false;					\
602 		for (_i = 0; _i < _last; _i++)				\
603 			if (_cmp((_base)[_i], (_base)[_i + 1]) > 0) {	\
604 				swap((_base)[_i], (_base)[_i + 1]);	\
605 				_swapped = true;			\
606 			}						\
607 	}								\
608 } while (0)
609 
610 #define per_cpu_sum(_p)							\
611 ({									\
612 	typeof(*_p) _ret = 0;						\
613 									\
614 	int cpu;							\
615 	for_each_possible_cpu(cpu)					\
616 		_ret += *per_cpu_ptr(_p, cpu);				\
617 	_ret;								\
618 })
619 
percpu_u64_get(u64 __percpu * src)620 static inline u64 percpu_u64_get(u64 __percpu *src)
621 {
622 	return per_cpu_sum(src);
623 }
624 
percpu_u64_set(u64 __percpu * dst,u64 src)625 static inline void percpu_u64_set(u64 __percpu *dst, u64 src)
626 {
627 	int cpu;
628 
629 	for_each_possible_cpu(cpu)
630 		*per_cpu_ptr(dst, cpu) = 0;
631 	this_cpu_write(*dst, src);
632 }
633 
acc_u64s(u64 * acc,const u64 * src,unsigned nr)634 static inline void acc_u64s(u64 *acc, const u64 *src, unsigned nr)
635 {
636 	for (unsigned i = 0; i < nr; i++)
637 		acc[i] += src[i];
638 }
639 
acc_u64s_percpu(u64 * acc,const u64 __percpu * src,unsigned nr)640 static inline void acc_u64s_percpu(u64 *acc, const u64 __percpu *src,
641 				   unsigned nr)
642 {
643 	int cpu;
644 
645 	for_each_possible_cpu(cpu)
646 		acc_u64s(acc, per_cpu_ptr(src, cpu), nr);
647 }
648 
percpu_memset(void __percpu * p,int c,size_t bytes)649 static inline void percpu_memset(void __percpu *p, int c, size_t bytes)
650 {
651 	int cpu;
652 
653 	for_each_possible_cpu(cpu)
654 		memset(per_cpu_ptr(p, cpu), c, bytes);
655 }
656 
657 u64 *bch2_acc_percpu_u64s(u64 __percpu *, unsigned);
658 
659 #define cmp_int(l, r)		((l > r) - (l < r))
660 
u8_cmp(u8 l,u8 r)661 static inline int u8_cmp(u8 l, u8 r)
662 {
663 	return cmp_int(l, r);
664 }
665 
cmp_le32(__le32 l,__le32 r)666 static inline int cmp_le32(__le32 l, __le32 r)
667 {
668 	return cmp_int(le32_to_cpu(l), le32_to_cpu(r));
669 }
670 
671 #include <linux/uuid.h>
672 
qstr_eq(const struct qstr l,const struct qstr r)673 static inline bool qstr_eq(const struct qstr l, const struct qstr r)
674 {
675 	return l.len == r.len && !memcmp(l.name, r.name, l.len);
676 }
677 
678 void bch2_darray_str_exit(darray_str *);
679 int bch2_split_devs(const char *, darray_str *);
680 
681 #ifdef __KERNEL__
682 
683 __must_check
copy_to_user_errcode(void __user * to,const void * from,unsigned long n)684 static inline int copy_to_user_errcode(void __user *to, const void *from, unsigned long n)
685 {
686 	return copy_to_user(to, from, n) ? -EFAULT : 0;
687 }
688 
689 __must_check
copy_from_user_errcode(void * to,const void __user * from,unsigned long n)690 static inline int copy_from_user_errcode(void *to, const void __user *from, unsigned long n)
691 {
692 	return copy_from_user(to, from, n) ? -EFAULT : 0;
693 }
694 
695 #endif
696 
mod_bit(long nr,volatile unsigned long * addr,bool v)697 static inline void mod_bit(long nr, volatile unsigned long *addr, bool v)
698 {
699 	if (v)
700 		set_bit(nr, addr);
701 	else
702 		clear_bit(nr, addr);
703 }
704 
__set_bit_le64(size_t bit,__le64 * addr)705 static inline void __set_bit_le64(size_t bit, __le64 *addr)
706 {
707 	addr[bit / 64] |= cpu_to_le64(BIT_ULL(bit % 64));
708 }
709 
__clear_bit_le64(size_t bit,__le64 * addr)710 static inline void __clear_bit_le64(size_t bit, __le64 *addr)
711 {
712 	addr[bit / 64] &= ~cpu_to_le64(BIT_ULL(bit % 64));
713 }
714 
test_bit_le64(size_t bit,__le64 * addr)715 static inline bool test_bit_le64(size_t bit, __le64 *addr)
716 {
717 	return (addr[bit / 64] & cpu_to_le64(BIT_ULL(bit % 64))) != 0;
718 }
719 
memcpy_swab(void * _dst,void * _src,size_t len)720 static inline void memcpy_swab(void *_dst, void *_src, size_t len)
721 {
722 	u8 *dst = _dst + len;
723 	u8 *src = _src;
724 
725 	while (len--)
726 		*--dst = *src++;
727 }
728 
729 #endif /* _BCACHEFS_UTIL_H */
730