xref: /linux/include/linux/kernel.h (revision 79790b6818e96c58fe2bffee1b418c16e64e7b80)
1  /* SPDX-License-Identifier: GPL-2.0 */
2  /*
3   * NOTE:
4   *
5   * This header has combined a lot of unrelated to each other stuff.
6   * The process of splitting its content is in progress while keeping
7   * backward compatibility. That's why it's highly recommended NOT to
8   * include this header inside another header file, especially under
9   * generic or architectural include/ directory.
10   */
11  #ifndef _LINUX_KERNEL_H
12  #define _LINUX_KERNEL_H
13  
14  #include <linux/stdarg.h>
15  #include <linux/align.h>
16  #include <linux/array_size.h>
17  #include <linux/limits.h>
18  #include <linux/linkage.h>
19  #include <linux/stddef.h>
20  #include <linux/types.h>
21  #include <linux/compiler.h>
22  #include <linux/container_of.h>
23  #include <linux/bitops.h>
24  #include <linux/hex.h>
25  #include <linux/kstrtox.h>
26  #include <linux/log2.h>
27  #include <linux/math.h>
28  #include <linux/minmax.h>
29  #include <linux/typecheck.h>
30  #include <linux/panic.h>
31  #include <linux/printk.h>
32  #include <linux/build_bug.h>
33  #include <linux/sprintf.h>
34  #include <linux/static_call_types.h>
35  #include <linux/instruction_pointer.h>
36  #include <linux/wordpart.h>
37  
38  #include <asm/byteorder.h>
39  
40  #include <uapi/linux/kernel.h>
41  
42  #define STACK_MAGIC	0xdeadbeef
43  
44  /* generic data direction definitions */
45  #define READ			0
46  #define WRITE			1
47  
48  #define PTR_IF(cond, ptr)	((cond) ? (ptr) : NULL)
49  
50  #define u64_to_user_ptr(x) (		\
51  {					\
52  	typecheck(u64, (x));		\
53  	(void __user *)(uintptr_t)(x);	\
54  }					\
55  )
56  
57  struct completion;
58  struct user;
59  
60  #ifdef CONFIG_PREEMPT_VOLUNTARY_BUILD
61  
62  extern int __cond_resched(void);
63  # define might_resched() __cond_resched()
64  
65  #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
66  
67  extern int __cond_resched(void);
68  
69  DECLARE_STATIC_CALL(might_resched, __cond_resched);
70  
might_resched(void)71  static __always_inline void might_resched(void)
72  {
73  	static_call_mod(might_resched)();
74  }
75  
76  #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
77  
78  extern int dynamic_might_resched(void);
79  # define might_resched() dynamic_might_resched()
80  
81  #else
82  
83  # define might_resched() do { } while (0)
84  
85  #endif /* CONFIG_PREEMPT_* */
86  
87  #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
88  extern void __might_resched(const char *file, int line, unsigned int offsets);
89  extern void __might_sleep(const char *file, int line);
90  extern void __cant_sleep(const char *file, int line, int preempt_offset);
91  extern void __cant_migrate(const char *file, int line);
92  
93  /**
94   * might_sleep - annotation for functions that can sleep
95   *
96   * this macro will print a stack trace if it is executed in an atomic
97   * context (spinlock, irq-handler, ...). Additional sections where blocking is
98   * not allowed can be annotated with non_block_start() and non_block_end()
99   * pairs.
100   *
101   * This is a useful debugging help to be able to catch problems early and not
102   * be bitten later when the calling function happens to sleep when it is not
103   * supposed to.
104   */
105  # define might_sleep() \
106  	do { __might_sleep(__FILE__, __LINE__); might_resched(); } while (0)
107  /**
108   * cant_sleep - annotation for functions that cannot sleep
109   *
110   * this macro will print a stack trace if it is executed with preemption enabled
111   */
112  # define cant_sleep() \
113  	do { __cant_sleep(__FILE__, __LINE__, 0); } while (0)
114  # define sched_annotate_sleep()	(current->task_state_change = 0)
115  
116  /**
117   * cant_migrate - annotation for functions that cannot migrate
118   *
119   * Will print a stack trace if executed in code which is migratable
120   */
121  # define cant_migrate()							\
122  	do {								\
123  		if (IS_ENABLED(CONFIG_SMP))				\
124  			__cant_migrate(__FILE__, __LINE__);		\
125  	} while (0)
126  
127  /**
128   * non_block_start - annotate the start of section where sleeping is prohibited
129   *
130   * This is on behalf of the oom reaper, specifically when it is calling the mmu
131   * notifiers. The problem is that if the notifier were to block on, for example,
132   * mutex_lock() and if the process which holds that mutex were to perform a
133   * sleeping memory allocation, the oom reaper is now blocked on completion of
134   * that memory allocation. Other blocking calls like wait_event() pose similar
135   * issues.
136   */
137  # define non_block_start() (current->non_block_count++)
138  /**
139   * non_block_end - annotate the end of section where sleeping is prohibited
140   *
141   * Closes a section opened by non_block_start().
142   */
143  # define non_block_end() WARN_ON(current->non_block_count-- == 0)
144  #else
__might_resched(const char * file,int line,unsigned int offsets)145    static inline void __might_resched(const char *file, int line,
146  				     unsigned int offsets) { }
__might_sleep(const char * file,int line)147  static inline void __might_sleep(const char *file, int line) { }
148  # define might_sleep() do { might_resched(); } while (0)
149  # define cant_sleep() do { } while (0)
150  # define cant_migrate()		do { } while (0)
151  # define sched_annotate_sleep() do { } while (0)
152  # define non_block_start() do { } while (0)
153  # define non_block_end() do { } while (0)
154  #endif
155  
156  #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
157  
158  #if defined(CONFIG_MMU) && \
159  	(defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
160  #define might_fault() __might_fault(__FILE__, __LINE__)
161  void __might_fault(const char *file, int line);
162  #else
might_fault(void)163  static inline void might_fault(void) { }
164  #endif
165  
166  void do_exit(long error_code) __noreturn;
167  
168  extern int core_kernel_text(unsigned long addr);
169  extern int __kernel_text_address(unsigned long addr);
170  extern int kernel_text_address(unsigned long addr);
171  extern int func_ptr_is_kernel_text(void *ptr);
172  
173  extern void bust_spinlocks(int yes);
174  
175  extern int root_mountflags;
176  
177  extern bool early_boot_irqs_disabled;
178  
179  /*
180   * Values used for system_state. Ordering of the states must not be changed
181   * as code checks for <, <=, >, >= STATE.
182   */
183  extern enum system_states {
184  	SYSTEM_BOOTING,
185  	SYSTEM_SCHEDULING,
186  	SYSTEM_FREEING_INITMEM,
187  	SYSTEM_RUNNING,
188  	SYSTEM_HALT,
189  	SYSTEM_POWER_OFF,
190  	SYSTEM_RESTART,
191  	SYSTEM_SUSPEND,
192  } system_state;
193  
194  /*
195   * General tracing related utility functions - trace_printk(),
196   * tracing_on/tracing_off and tracing_start()/tracing_stop
197   *
198   * Use tracing_on/tracing_off when you want to quickly turn on or off
199   * tracing. It simply enables or disables the recording of the trace events.
200   * This also corresponds to the user space /sys/kernel/tracing/tracing_on
201   * file, which gives a means for the kernel and userspace to interact.
202   * Place a tracing_off() in the kernel where you want tracing to end.
203   * From user space, examine the trace, and then echo 1 > tracing_on
204   * to continue tracing.
205   *
206   * tracing_stop/tracing_start has slightly more overhead. It is used
207   * by things like suspend to ram where disabling the recording of the
208   * trace is not enough, but tracing must actually stop because things
209   * like calling smp_processor_id() may crash the system.
210   *
211   * Most likely, you want to use tracing_on/tracing_off.
212   */
213  
214  enum ftrace_dump_mode {
215  	DUMP_NONE,
216  	DUMP_ALL,
217  	DUMP_ORIG,
218  	DUMP_PARAM,
219  };
220  
221  #ifdef CONFIG_TRACING
222  void tracing_on(void);
223  void tracing_off(void);
224  int tracing_is_on(void);
225  void tracing_snapshot(void);
226  void tracing_snapshot_alloc(void);
227  
228  extern void tracing_start(void);
229  extern void tracing_stop(void);
230  
231  static inline __printf(1, 2)
____trace_printk_check_format(const char * fmt,...)232  void ____trace_printk_check_format(const char *fmt, ...)
233  {
234  }
235  #define __trace_printk_check_format(fmt, args...)			\
236  do {									\
237  	if (0)								\
238  		____trace_printk_check_format(fmt, ##args);		\
239  } while (0)
240  
241  /**
242   * trace_printk - printf formatting in the ftrace buffer
243   * @fmt: the printf format for printing
244   *
245   * Note: __trace_printk is an internal function for trace_printk() and
246   *       the @ip is passed in via the trace_printk() macro.
247   *
248   * This function allows a kernel developer to debug fast path sections
249   * that printk is not appropriate for. By scattering in various
250   * printk like tracing in the code, a developer can quickly see
251   * where problems are occurring.
252   *
253   * This is intended as a debugging tool for the developer only.
254   * Please refrain from leaving trace_printks scattered around in
255   * your code. (Extra memory is used for special buffers that are
256   * allocated when trace_printk() is used.)
257   *
258   * A little optimization trick is done here. If there's only one
259   * argument, there's no need to scan the string for printf formats.
260   * The trace_puts() will suffice. But how can we take advantage of
261   * using trace_puts() when trace_printk() has only one argument?
262   * By stringifying the args and checking the size we can tell
263   * whether or not there are args. __stringify((__VA_ARGS__)) will
264   * turn into "()\0" with a size of 3 when there are no args, anything
265   * else will be bigger. All we need to do is define a string to this,
266   * and then take its size and compare to 3. If it's bigger, use
267   * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
268   * let gcc optimize the rest.
269   */
270  
271  #define trace_printk(fmt, ...)				\
272  do {							\
273  	char _______STR[] = __stringify((__VA_ARGS__));	\
274  	if (sizeof(_______STR) > 3)			\
275  		do_trace_printk(fmt, ##__VA_ARGS__);	\
276  	else						\
277  		trace_puts(fmt);			\
278  } while (0)
279  
280  #define do_trace_printk(fmt, args...)					\
281  do {									\
282  	static const char *trace_printk_fmt __used			\
283  		__section("__trace_printk_fmt") =			\
284  		__builtin_constant_p(fmt) ? fmt : NULL;			\
285  									\
286  	__trace_printk_check_format(fmt, ##args);			\
287  									\
288  	if (__builtin_constant_p(fmt))					\
289  		__trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args);	\
290  	else								\
291  		__trace_printk(_THIS_IP_, fmt, ##args);			\
292  } while (0)
293  
294  extern __printf(2, 3)
295  int __trace_bprintk(unsigned long ip, const char *fmt, ...);
296  
297  extern __printf(2, 3)
298  int __trace_printk(unsigned long ip, const char *fmt, ...);
299  
300  /**
301   * trace_puts - write a string into the ftrace buffer
302   * @str: the string to record
303   *
304   * Note: __trace_bputs is an internal function for trace_puts and
305   *       the @ip is passed in via the trace_puts macro.
306   *
307   * This is similar to trace_printk() but is made for those really fast
308   * paths that a developer wants the least amount of "Heisenbug" effects,
309   * where the processing of the print format is still too much.
310   *
311   * This function allows a kernel developer to debug fast path sections
312   * that printk is not appropriate for. By scattering in various
313   * printk like tracing in the code, a developer can quickly see
314   * where problems are occurring.
315   *
316   * This is intended as a debugging tool for the developer only.
317   * Please refrain from leaving trace_puts scattered around in
318   * your code. (Extra memory is used for special buffers that are
319   * allocated when trace_puts() is used.)
320   *
321   * Returns: 0 if nothing was written, positive # if string was.
322   *  (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
323   */
324  
325  #define trace_puts(str) ({						\
326  	static const char *trace_printk_fmt __used			\
327  		__section("__trace_printk_fmt") =			\
328  		__builtin_constant_p(str) ? str : NULL;			\
329  									\
330  	if (__builtin_constant_p(str))					\
331  		__trace_bputs(_THIS_IP_, trace_printk_fmt);		\
332  	else								\
333  		__trace_puts(_THIS_IP_, str, strlen(str));		\
334  })
335  extern int __trace_bputs(unsigned long ip, const char *str);
336  extern int __trace_puts(unsigned long ip, const char *str, int size);
337  
338  extern void trace_dump_stack(int skip);
339  
340  /*
341   * The double __builtin_constant_p is because gcc will give us an error
342   * if we try to allocate the static variable to fmt if it is not a
343   * constant. Even with the outer if statement.
344   */
345  #define ftrace_vprintk(fmt, vargs)					\
346  do {									\
347  	if (__builtin_constant_p(fmt)) {				\
348  		static const char *trace_printk_fmt __used		\
349  		  __section("__trace_printk_fmt") =			\
350  			__builtin_constant_p(fmt) ? fmt : NULL;		\
351  									\
352  		__ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs);	\
353  	} else								\
354  		__ftrace_vprintk(_THIS_IP_, fmt, vargs);		\
355  } while (0)
356  
357  extern __printf(2, 0) int
358  __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
359  
360  extern __printf(2, 0) int
361  __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
362  
363  extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
364  #else
tracing_start(void)365  static inline void tracing_start(void) { }
tracing_stop(void)366  static inline void tracing_stop(void) { }
trace_dump_stack(int skip)367  static inline void trace_dump_stack(int skip) { }
368  
tracing_on(void)369  static inline void tracing_on(void) { }
tracing_off(void)370  static inline void tracing_off(void) { }
tracing_is_on(void)371  static inline int tracing_is_on(void) { return 0; }
tracing_snapshot(void)372  static inline void tracing_snapshot(void) { }
tracing_snapshot_alloc(void)373  static inline void tracing_snapshot_alloc(void) { }
374  
375  static inline __printf(1, 2)
trace_printk(const char * fmt,...)376  int trace_printk(const char *fmt, ...)
377  {
378  	return 0;
379  }
380  static __printf(1, 0) inline int
ftrace_vprintk(const char * fmt,va_list ap)381  ftrace_vprintk(const char *fmt, va_list ap)
382  {
383  	return 0;
384  }
ftrace_dump(enum ftrace_dump_mode oops_dump_mode)385  static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
386  #endif /* CONFIG_TRACING */
387  
388  /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
389  #ifdef CONFIG_FTRACE_MCOUNT_RECORD
390  # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
391  #endif
392  
393  /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
394  #define VERIFY_OCTAL_PERMISSIONS(perms)						\
395  	(BUILD_BUG_ON_ZERO((perms) < 0) +					\
396  	 BUILD_BUG_ON_ZERO((perms) > 0777) +					\
397  	 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */		\
398  	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) +	\
399  	 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) +		\
400  	 /* USER_WRITABLE >= GROUP_WRITABLE */					\
401  	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) +	\
402  	 /* OTHER_WRITABLE?  Generally considered a bad idea. */		\
403  	 BUILD_BUG_ON_ZERO((perms) & 2) +					\
404  	 (perms))
405  #endif
406