xref: /linux/drivers/gpu/drm/vkms/vkms_composer.c (revision e05b08d7d0162cf77fff119367fb1a2d5ab3e669)
1 // SPDX-License-Identifier: GPL-2.0+
2 
3 #include <linux/crc32.h>
4 
5 #include <drm/drm_atomic.h>
6 #include <drm/drm_atomic_helper.h>
7 #include <drm/drm_blend.h>
8 #include <drm/drm_colorop.h>
9 #include <drm/drm_fourcc.h>
10 #include <drm/drm_fixed.h>
11 #include <drm/drm_gem_framebuffer_helper.h>
12 #include <drm/drm_print.h>
13 #include <drm/drm_vblank.h>
14 #include <linux/minmax.h>
15 #include <kunit/visibility.h>
16 
17 #include "vkms_composer.h"
18 #include "vkms_luts.h"
19 
20 static u16 pre_mul_blend_channel(u16 src, u16 dst, u16 alpha)
21 {
22 	u32 new_color;
23 
24 	new_color = (src * 0xffff + dst * (0xffff - alpha));
25 
26 	return DIV_ROUND_CLOSEST(new_color, 0xffff);
27 }
28 
29 /**
30  * pre_mul_alpha_blend - alpha blending equation
31  * @stage_buffer: The line with the pixels from src_plane
32  * @output_buffer: A line buffer that receives all the blends output
33  * @x_start: The start offset
34  * @pixel_count: The number of pixels to blend
35  *
36  * The pixels [@x_start;@x_start+@pixel_count) in stage_buffer are blended at
37  * [@x_start;@x_start+@pixel_count) in output_buffer.
38  *
39  * The current DRM assumption is that pixel color values have been already
40  * pre-multiplied with the alpha channel values. See more
41  * drm_plane_create_blend_mode_property(). Also, this formula assumes a
42  * completely opaque background.
43  */
44 static void pre_mul_alpha_blend(const struct line_buffer *stage_buffer,
45 				struct line_buffer *output_buffer, int x_start, int pixel_count)
46 {
47 	struct pixel_argb_u16 *out = &output_buffer->pixels[x_start];
48 	const struct pixel_argb_u16 *in = &stage_buffer->pixels[x_start];
49 
50 	for (int i = 0; i < pixel_count; i++) {
51 		out[i].a = (u16)0xffff;
52 		out[i].r = pre_mul_blend_channel(in[i].r, out[i].r, in[i].a);
53 		out[i].g = pre_mul_blend_channel(in[i].g, out[i].g, in[i].a);
54 		out[i].b = pre_mul_blend_channel(in[i].b, out[i].b, in[i].a);
55 	}
56 }
57 
58 
59 static void fill_background(const struct pixel_argb_u16 *background_color,
60 			    struct line_buffer *output_buffer)
61 {
62 	for (size_t i = 0; i < output_buffer->n_pixels; i++)
63 		output_buffer->pixels[i] = *background_color;
64 }
65 
66 // lerp(a, b, t) = a + (b - a) * t
67 VISIBLE_IF_KUNIT u16 lerp_u16(u16 a, u16 b, s64 t)
68 {
69 	s64 a_fp = drm_int2fixp(a);
70 	s64 b_fp = drm_int2fixp(b);
71 
72 	s64 delta = drm_fixp_mul(b_fp - a_fp, t);
73 
74 	return drm_fixp2int_round(a_fp + delta);
75 }
76 EXPORT_SYMBOL_IF_KUNIT(lerp_u16);
77 
78 VISIBLE_IF_KUNIT s64 get_lut_index(const struct vkms_color_lut *lut, u16 channel_value)
79 {
80 	s64 color_channel_fp = drm_int2fixp(channel_value);
81 
82 	return drm_fixp_mul(color_channel_fp, lut->channel_value2index_ratio);
83 }
84 EXPORT_SYMBOL_IF_KUNIT(get_lut_index);
85 
86 VISIBLE_IF_KUNIT u16 apply_lut_to_channel_value(const struct vkms_color_lut *lut, u16 channel_value,
87 						enum lut_channel channel)
88 {
89 	s64 lut_index = get_lut_index(lut, channel_value);
90 	u16 *floor_lut_value, *ceil_lut_value;
91 	u16 floor_channel_value, ceil_channel_value;
92 
93 	/*
94 	 * This checks if `struct drm_color_lut` has any gap added by the compiler
95 	 * between the struct fields.
96 	 */
97 	static_assert(sizeof(struct drm_color_lut) == sizeof(__u16) * 4);
98 
99 	floor_lut_value = (__u16 *)&lut->base[drm_fixp2int(lut_index)];
100 	if (drm_fixp2int(lut_index) == (lut->lut_length - 1))
101 		/* We're at the end of the LUT array, use same value for ceil and floor */
102 		ceil_lut_value = floor_lut_value;
103 	else
104 		ceil_lut_value = (__u16 *)&lut->base[drm_fixp2int_ceil(lut_index)];
105 
106 	floor_channel_value = floor_lut_value[channel];
107 	ceil_channel_value = ceil_lut_value[channel];
108 
109 	return lerp_u16(floor_channel_value, ceil_channel_value,
110 			lut_index & DRM_FIXED_DECIMAL_MASK);
111 }
112 EXPORT_SYMBOL_IF_KUNIT(apply_lut_to_channel_value);
113 
114 
115 static void apply_lut(const struct vkms_crtc_state *crtc_state, struct line_buffer *output_buffer)
116 {
117 	if (!crtc_state->gamma_lut.base)
118 		return;
119 
120 	if (!crtc_state->gamma_lut.lut_length)
121 		return;
122 
123 	for (size_t x = 0; x < output_buffer->n_pixels; x++) {
124 		struct pixel_argb_u16 *pixel = &output_buffer->pixels[x];
125 
126 		pixel->r = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->r, LUT_RED);
127 		pixel->g = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->g, LUT_GREEN);
128 		pixel->b = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->b, LUT_BLUE);
129 	}
130 }
131 
132 VISIBLE_IF_KUNIT void apply_3x4_matrix(struct pixel_argb_s32 *pixel,
133 				       const struct drm_color_ctm_3x4 *matrix)
134 {
135 	s64 rf, gf, bf;
136 	s64 r, g, b;
137 
138 	r = drm_int2fixp(pixel->r);
139 	g = drm_int2fixp(pixel->g);
140 	b = drm_int2fixp(pixel->b);
141 
142 	rf = drm_fixp_mul(drm_sm2fixp(matrix->matrix[0]), r) +
143 	     drm_fixp_mul(drm_sm2fixp(matrix->matrix[1]), g) +
144 	     drm_fixp_mul(drm_sm2fixp(matrix->matrix[2]), b) +
145 	     drm_sm2fixp(matrix->matrix[3]);
146 
147 	gf = drm_fixp_mul(drm_sm2fixp(matrix->matrix[4]), r) +
148 	     drm_fixp_mul(drm_sm2fixp(matrix->matrix[5]), g) +
149 	     drm_fixp_mul(drm_sm2fixp(matrix->matrix[6]), b) +
150 	     drm_sm2fixp(matrix->matrix[7]);
151 
152 	bf = drm_fixp_mul(drm_sm2fixp(matrix->matrix[8]), r) +
153 	     drm_fixp_mul(drm_sm2fixp(matrix->matrix[9]), g) +
154 	     drm_fixp_mul(drm_sm2fixp(matrix->matrix[10]), b) +
155 	     drm_sm2fixp(matrix->matrix[11]);
156 
157 	pixel->r = drm_fixp2int_round(rf);
158 	pixel->g = drm_fixp2int_round(gf);
159 	pixel->b = drm_fixp2int_round(bf);
160 }
161 EXPORT_SYMBOL_IF_KUNIT(apply_3x4_matrix);
162 
163 static void apply_colorop(struct pixel_argb_s32 *pixel, struct drm_colorop *colorop)
164 {
165 	struct drm_colorop_state *colorop_state = colorop->state;
166 	struct drm_device *dev = colorop->dev;
167 
168 	if (colorop->type == DRM_COLOROP_1D_CURVE) {
169 		switch (colorop_state->curve_1d_type) {
170 		case DRM_COLOROP_1D_CURVE_SRGB_INV_EOTF:
171 			pixel->r = apply_lut_to_channel_value(&srgb_inv_eotf, pixel->r, LUT_RED);
172 			pixel->g = apply_lut_to_channel_value(&srgb_inv_eotf, pixel->g, LUT_GREEN);
173 			pixel->b = apply_lut_to_channel_value(&srgb_inv_eotf, pixel->b, LUT_BLUE);
174 			break;
175 		case DRM_COLOROP_1D_CURVE_SRGB_EOTF:
176 			pixel->r = apply_lut_to_channel_value(&srgb_eotf, pixel->r, LUT_RED);
177 			pixel->g = apply_lut_to_channel_value(&srgb_eotf, pixel->g, LUT_GREEN);
178 			pixel->b = apply_lut_to_channel_value(&srgb_eotf, pixel->b, LUT_BLUE);
179 			break;
180 		default:
181 			drm_WARN_ONCE(dev, true,
182 				      "unknown colorop 1D curve type %d\n",
183 				      colorop_state->curve_1d_type);
184 			break;
185 		}
186 	} else if (colorop->type == DRM_COLOROP_CTM_3X4) {
187 		if (colorop_state->data)
188 			apply_3x4_matrix(pixel,
189 					 (struct drm_color_ctm_3x4 *)colorop_state->data->data);
190 	}
191 }
192 
193 static void pre_blend_color_transform(const struct vkms_plane_state *plane_state,
194 				      struct line_buffer *output_buffer)
195 {
196 	struct pixel_argb_s32 pixel;
197 
198 	for (size_t x = 0; x < output_buffer->n_pixels; x++) {
199 		struct drm_colorop *colorop = plane_state->base.base.color_pipeline;
200 
201 		/*
202 		 * Some operations, such as applying a BT709 encoding matrix,
203 		 * followed by a decoding matrix, require that we preserve
204 		 * values above 1.0 and below 0.0 until the end of the pipeline.
205 		 *
206 		 * Pack the 16-bit UNORM values into s32 to give us head-room to
207 		 * avoid clipping until we're at the end of the pipeline. Clip
208 		 * intentionally at the end of the pipeline before packing
209 		 * UNORM values back into u16.
210 		 */
211 		pixel.a = output_buffer->pixels[x].a;
212 		pixel.r = output_buffer->pixels[x].r;
213 		pixel.g = output_buffer->pixels[x].g;
214 		pixel.b = output_buffer->pixels[x].b;
215 
216 		while (colorop) {
217 			struct drm_colorop_state *colorop_state;
218 
219 			colorop_state = colorop->state;
220 
221 			if (!colorop_state)
222 				return;
223 
224 			if (!colorop_state->bypass)
225 				apply_colorop(&pixel, colorop);
226 
227 			colorop = colorop->next;
228 		}
229 
230 		/* clamp values */
231 		output_buffer->pixels[x].a = clamp_val(pixel.a, 0, 0xffff);
232 		output_buffer->pixels[x].r = clamp_val(pixel.r, 0, 0xffff);
233 		output_buffer->pixels[x].g = clamp_val(pixel.g, 0, 0xffff);
234 		output_buffer->pixels[x].b = clamp_val(pixel.b, 0, 0xffff);
235 	}
236 }
237 
238 /**
239  * direction_for_rotation() - Get the correct reading direction for a given rotation
240  *
241  * @rotation: Rotation to analyze. It correspond the field @frame_info.rotation.
242  *
243  * This function will use the @rotation setting of a source plane to compute the reading
244  * direction in this plane which correspond to a "left to right writing" in the CRTC.
245  * For example, if the buffer is reflected on X axis, the pixel must be read from right to left
246  * to be written from left to right on the CRTC.
247  */
248 static enum pixel_read_direction direction_for_rotation(unsigned int rotation)
249 {
250 	struct drm_rect tmp_a, tmp_b;
251 	int x, y;
252 
253 	/*
254 	 * Points A and B are depicted as zero-size rectangles on the CRTC.
255 	 * The CRTC writing direction is from A to B. The plane reading direction
256 	 * is discovered by inverse-transforming A and B.
257 	 * The reading direction is computed by rotating the vector AB (top-left to top-right) in a
258 	 * 1x1 square.
259 	 */
260 
261 	tmp_a = DRM_RECT_INIT(0, 0, 0, 0);
262 	tmp_b = DRM_RECT_INIT(1, 0, 0, 0);
263 	drm_rect_rotate_inv(&tmp_a, 1, 1, rotation);
264 	drm_rect_rotate_inv(&tmp_b, 1, 1, rotation);
265 
266 	x = tmp_b.x1 - tmp_a.x1;
267 	y = tmp_b.y1 - tmp_a.y1;
268 
269 	if (x == 1 && y == 0)
270 		return READ_LEFT_TO_RIGHT;
271 	else if (x == -1 && y == 0)
272 		return READ_RIGHT_TO_LEFT;
273 	else if (y == 1 && x == 0)
274 		return READ_TOP_TO_BOTTOM;
275 	else if (y == -1 && x == 0)
276 		return READ_BOTTOM_TO_TOP;
277 
278 	WARN_ONCE(true, "The inverse of the rotation gives an incorrect direction.");
279 	return READ_LEFT_TO_RIGHT;
280 }
281 
282 /**
283  * clamp_line_coordinates() - Compute and clamp the coordinate to read and write during the blend
284  * process.
285  *
286  * @direction: direction of the reading
287  * @current_plane: current plane blended
288  * @src_line: source line of the reading. Only the top-left coordinate is used. This rectangle
289  * must be rotated and have a shape of 1*pixel_count if @direction is vertical and a shape of
290  * pixel_count*1 if @direction is horizontal.
291  * @src_x_start: x start coordinate for the line reading
292  * @src_y_start: y start coordinate for the line reading
293  * @dst_x_start: x coordinate to blend the read line
294  * @pixel_count: number of pixels to blend
295  *
296  * This function is mainly a safety net to avoid reading outside the source buffer. As the
297  * userspace should never ask to read outside the source plane, all the cases covered here should
298  * be dead code.
299  */
300 static void clamp_line_coordinates(enum pixel_read_direction direction,
301 				   const struct vkms_plane_state *current_plane,
302 				   const struct drm_rect *src_line, int *src_x_start,
303 				   int *src_y_start, int *dst_x_start, int *pixel_count)
304 {
305 	/* By default the start points are correct */
306 	*src_x_start = src_line->x1;
307 	*src_y_start = src_line->y1;
308 	*dst_x_start = current_plane->frame_info->dst.x1;
309 
310 	/* Get the correct number of pixel to blend, it depends of the direction */
311 	switch (direction) {
312 	case READ_LEFT_TO_RIGHT:
313 	case READ_RIGHT_TO_LEFT:
314 		*pixel_count = drm_rect_width(src_line);
315 		break;
316 	case READ_BOTTOM_TO_TOP:
317 	case READ_TOP_TO_BOTTOM:
318 		*pixel_count = drm_rect_height(src_line);
319 		break;
320 	}
321 
322 	/*
323 	 * Clamp the coordinates to avoid reading outside the buffer
324 	 *
325 	 * This is mainly a security check to avoid reading outside the buffer, the userspace
326 	 * should never request to read outside the source buffer.
327 	 */
328 	switch (direction) {
329 	case READ_LEFT_TO_RIGHT:
330 	case READ_RIGHT_TO_LEFT:
331 		if (*src_x_start < 0) {
332 			*pixel_count += *src_x_start;
333 			*dst_x_start -= *src_x_start;
334 			*src_x_start = 0;
335 		}
336 		if (*src_x_start + *pixel_count > current_plane->frame_info->fb->width)
337 			*pixel_count = max(0, (int)current_plane->frame_info->fb->width -
338 				*src_x_start);
339 		break;
340 	case READ_BOTTOM_TO_TOP:
341 	case READ_TOP_TO_BOTTOM:
342 		if (*src_y_start < 0) {
343 			*pixel_count += *src_y_start;
344 			*dst_x_start -= *src_y_start;
345 			*src_y_start = 0;
346 		}
347 		if (*src_y_start + *pixel_count > current_plane->frame_info->fb->height)
348 			*pixel_count = max(0, (int)current_plane->frame_info->fb->height -
349 				*src_y_start);
350 		break;
351 	}
352 }
353 
354 /**
355  * blend_line() - Blend a line from a plane to the output buffer
356  *
357  * @current_plane: current plane to work on
358  * @y: line to write in the output buffer
359  * @crtc_x_limit: width of the output buffer
360  * @stage_buffer: temporary buffer to convert the pixel line from the source buffer
361  * @output_buffer: buffer to blend the read line into.
362  */
363 static void blend_line(struct vkms_plane_state *current_plane, int y,
364 		       int crtc_x_limit, struct line_buffer *stage_buffer,
365 		       struct line_buffer *output_buffer)
366 {
367 	int src_x_start, src_y_start, dst_x_start, pixel_count;
368 	struct drm_rect dst_line, tmp_src, src_line;
369 
370 	/* Avoid rendering useless lines */
371 	if (y < current_plane->frame_info->dst.y1 ||
372 	    y >= current_plane->frame_info->dst.y2)
373 		return;
374 
375 	/*
376 	 * dst_line is the line to copy. The initial coordinates are inside the
377 	 * destination framebuffer, and then drm_rect_* helpers are used to
378 	 * compute the correct position into the source framebuffer.
379 	 */
380 	dst_line = DRM_RECT_INIT(current_plane->frame_info->dst.x1, y,
381 				 drm_rect_width(&current_plane->frame_info->dst),
382 				 1);
383 
384 	drm_rect_fp_to_int(&tmp_src, &current_plane->frame_info->src);
385 
386 	/*
387 	 * [1]: Clamping src_line to the crtc_x_limit to avoid writing outside of
388 	 * the destination buffer
389 	 */
390 	dst_line.x1 = max_t(int, dst_line.x1, 0);
391 	dst_line.x2 = min_t(int, dst_line.x2, crtc_x_limit);
392 	/* The destination is completely outside of the crtc. */
393 	if (dst_line.x2 <= dst_line.x1)
394 		return;
395 
396 	src_line = dst_line;
397 
398 	/*
399 	 * Transform the coordinate x/y from the crtc to coordinates into
400 	 * coordinates for the src buffer.
401 	 *
402 	 * - Cancel the offset of the dst buffer.
403 	 * - Invert the rotation. This assumes that
404 	 *   dst = drm_rect_rotate(src, rotation) (dst and src have the
405 	 *   same size, but can be rotated).
406 	 * - Apply the offset of the source rectangle to the coordinate.
407 	 */
408 	drm_rect_translate(&src_line, -current_plane->frame_info->dst.x1,
409 			   -current_plane->frame_info->dst.y1);
410 	drm_rect_rotate_inv(&src_line, drm_rect_width(&tmp_src),
411 			    drm_rect_height(&tmp_src),
412 			    current_plane->frame_info->rotation);
413 	drm_rect_translate(&src_line, tmp_src.x1, tmp_src.y1);
414 
415 	/* Get the correct reading direction in the source buffer. */
416 
417 	enum pixel_read_direction direction =
418 		direction_for_rotation(current_plane->frame_info->rotation);
419 
420 	/* [2]: Compute and clamp the number of pixel to read */
421 	clamp_line_coordinates(direction, current_plane, &src_line, &src_x_start, &src_y_start,
422 			       &dst_x_start, &pixel_count);
423 
424 	if (pixel_count <= 0) {
425 		/* Nothing to read, so avoid multiple function calls */
426 		return;
427 	}
428 
429 	/*
430 	 * Modify the starting point to take in account the rotation
431 	 *
432 	 * src_line is the top-left corner, so when reading READ_RIGHT_TO_LEFT or
433 	 * READ_BOTTOM_TO_TOP, it must be changed to the top-right/bottom-left
434 	 * corner.
435 	 */
436 	if (direction == READ_RIGHT_TO_LEFT) {
437 		// src_x_start is now the right point
438 		src_x_start += pixel_count - 1;
439 	} else if (direction == READ_BOTTOM_TO_TOP) {
440 		// src_y_start is now the bottom point
441 		src_y_start += pixel_count - 1;
442 	}
443 
444 	/*
445 	 * Perform the conversion and the blending
446 	 *
447 	 * Here we know that the read line (x_start, y_start, pixel_count) is
448 	 * inside the source buffer [2] and we don't write outside the stage
449 	 * buffer [1].
450 	 */
451 	current_plane->pixel_read_line(current_plane, src_x_start, src_y_start, direction,
452 				       pixel_count, &stage_buffer->pixels[dst_x_start]);
453 	pre_blend_color_transform(current_plane, stage_buffer);
454 	pre_mul_alpha_blend(stage_buffer, output_buffer,
455 			    dst_x_start, pixel_count);
456 }
457 
458 /**
459  * blend - blend the pixels from all planes and compute crc
460  * @wb: The writeback frame buffer metadata
461  * @crtc_state: The crtc state
462  * @crc32: The crc output of the final frame
463  * @output_buffer: A buffer of a row that will receive the result of the blend(s)
464  * @stage_buffer: The line with the pixels from plane being blend to the output
465  * @row_size: The size, in bytes, of a single row
466  *
467  * This function blends the pixels (Using the `pre_mul_alpha_blend`)
468  * from all planes, calculates the crc32 of the output from the former step,
469  * and, if necessary, convert and store the output to the writeback buffer.
470  */
471 static void blend(struct vkms_writeback_job *wb,
472 		  struct vkms_crtc_state *crtc_state,
473 		  u32 *crc32, struct line_buffer *stage_buffer,
474 		  struct line_buffer *output_buffer, size_t row_size)
475 {
476 	struct vkms_plane_state **plane = crtc_state->active_planes;
477 	u32 n_active_planes = crtc_state->num_active_planes;
478 
479 	const struct pixel_argb_u16 background_color = { .a = 0xffff };
480 
481 	int crtc_y_limit = crtc_state->base.mode.vdisplay;
482 	int crtc_x_limit = crtc_state->base.mode.hdisplay;
483 
484 	/*
485 	 * The planes are composed line-by-line to avoid heavy memory usage. It is a necessary
486 	 * complexity to avoid poor blending performance.
487 	 *
488 	 * The function pixel_read_line callback is used to read a line, using an efficient
489 	 * algorithm for a specific format, into the staging buffer.
490 	 */
491 	for (int y = 0; y < crtc_y_limit; y++) {
492 		fill_background(&background_color, output_buffer);
493 
494 		/* The active planes are composed associatively in z-order. */
495 		for (size_t i = 0; i < n_active_planes; i++) {
496 			blend_line(plane[i], y, crtc_x_limit, stage_buffer, output_buffer);
497 		}
498 
499 		apply_lut(crtc_state, output_buffer);
500 
501 		*crc32 = crc32_le(*crc32, (void *)output_buffer->pixels, row_size);
502 
503 		if (wb)
504 			vkms_writeback_row(wb, output_buffer, y);
505 	}
506 }
507 
508 static int check_format_funcs(struct vkms_crtc_state *crtc_state,
509 			      struct vkms_writeback_job *active_wb)
510 {
511 	struct vkms_plane_state **planes = crtc_state->active_planes;
512 	u32 n_active_planes = crtc_state->num_active_planes;
513 
514 	for (size_t i = 0; i < n_active_planes; i++)
515 		if (!planes[i]->pixel_read_line)
516 			return -1;
517 
518 	if (active_wb && !active_wb->pixel_write)
519 		return -1;
520 
521 	return 0;
522 }
523 
524 static int check_iosys_map(struct vkms_crtc_state *crtc_state)
525 {
526 	struct vkms_plane_state **plane_state = crtc_state->active_planes;
527 	u32 n_active_planes = crtc_state->num_active_planes;
528 
529 	for (size_t i = 0; i < n_active_planes; i++)
530 		if (iosys_map_is_null(&plane_state[i]->frame_info->map[0]))
531 			return -1;
532 
533 	return 0;
534 }
535 
536 static int compose_active_planes(struct vkms_writeback_job *active_wb,
537 				 struct vkms_crtc_state *crtc_state,
538 				 u32 *crc32)
539 {
540 	size_t line_width, pixel_size = sizeof(struct pixel_argb_u16);
541 	struct line_buffer output_buffer, stage_buffer;
542 	int ret = 0;
543 
544 	/*
545 	 * This check exists so we can call `crc32_le` for the entire line
546 	 * instead doing it for each channel of each pixel in case
547 	 * `struct `pixel_argb_u16` had any gap added by the compiler
548 	 * between the struct fields.
549 	 */
550 	static_assert(sizeof(struct pixel_argb_u16) == 8);
551 
552 	if (WARN_ON(check_iosys_map(crtc_state)))
553 		return -EINVAL;
554 
555 	if (WARN_ON(check_format_funcs(crtc_state, active_wb)))
556 		return -EINVAL;
557 
558 	line_width = crtc_state->base.mode.hdisplay;
559 	stage_buffer.n_pixels = line_width;
560 	output_buffer.n_pixels = line_width;
561 
562 	stage_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL);
563 	if (!stage_buffer.pixels) {
564 		DRM_ERROR("Cannot allocate memory for the output line buffer");
565 		return -ENOMEM;
566 	}
567 
568 	output_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL);
569 	if (!output_buffer.pixels) {
570 		DRM_ERROR("Cannot allocate memory for intermediate line buffer");
571 		ret = -ENOMEM;
572 		goto free_stage_buffer;
573 	}
574 
575 	blend(active_wb, crtc_state, crc32, &stage_buffer,
576 	      &output_buffer, line_width * pixel_size);
577 
578 	kvfree(output_buffer.pixels);
579 free_stage_buffer:
580 	kvfree(stage_buffer.pixels);
581 
582 	return ret;
583 }
584 
585 /**
586  * vkms_composer_worker - ordered work_struct to compute CRC
587  *
588  * @work: work_struct
589  *
590  * Work handler for composing and computing CRCs. work_struct scheduled in
591  * an ordered workqueue that's periodically scheduled to run by
592  * vkms_vblank_simulate() and flushed at vkms_atomic_commit_tail().
593  */
594 void vkms_composer_worker(struct work_struct *work)
595 {
596 	struct vkms_crtc_state *crtc_state = container_of(work,
597 							  struct vkms_crtc_state,
598 							  composer_work);
599 	struct drm_crtc *crtc = crtc_state->base.crtc;
600 	struct vkms_writeback_job *active_wb = crtc_state->active_writeback;
601 	struct vkms_output *out = drm_crtc_to_vkms_output(crtc);
602 	bool crc_pending, wb_pending;
603 	u64 frame_start, frame_end;
604 	u32 crc32 = 0;
605 	int ret;
606 
607 	spin_lock_irq(&out->composer_lock);
608 	frame_start = crtc_state->frame_start;
609 	frame_end = crtc_state->frame_end;
610 	crc_pending = crtc_state->crc_pending;
611 	wb_pending = crtc_state->wb_pending;
612 	crtc_state->frame_start = 0;
613 	crtc_state->frame_end = 0;
614 	crtc_state->crc_pending = false;
615 
616 	if (crtc->state->gamma_lut) {
617 		s64 max_lut_index_fp;
618 		s64 u16_max_fp = drm_int2fixp(0xffff);
619 
620 		crtc_state->gamma_lut.base = (struct drm_color_lut *)crtc->state->gamma_lut->data;
621 		crtc_state->gamma_lut.lut_length =
622 			crtc->state->gamma_lut->length / sizeof(struct drm_color_lut);
623 		max_lut_index_fp = drm_int2fixp(crtc_state->gamma_lut.lut_length - 1);
624 		crtc_state->gamma_lut.channel_value2index_ratio = drm_fixp_div(max_lut_index_fp,
625 									       u16_max_fp);
626 
627 	} else {
628 		crtc_state->gamma_lut.base = NULL;
629 	}
630 
631 	spin_unlock_irq(&out->composer_lock);
632 
633 	/*
634 	 * We raced with the vblank hrtimer and previous work already computed
635 	 * the crc, nothing to do.
636 	 */
637 	if (!crc_pending)
638 		return;
639 
640 	if (wb_pending)
641 		ret = compose_active_planes(active_wb, crtc_state, &crc32);
642 	else
643 		ret = compose_active_planes(NULL, crtc_state, &crc32);
644 
645 	if (ret)
646 		return;
647 
648 	if (wb_pending) {
649 		drm_writeback_signal_completion(&out->wb_connector, 0);
650 		spin_lock_irq(&out->composer_lock);
651 		crtc_state->wb_pending = false;
652 		spin_unlock_irq(&out->composer_lock);
653 	}
654 
655 	/*
656 	 * The worker can fall behind the vblank hrtimer, make sure we catch up.
657 	 */
658 	while (frame_start <= frame_end)
659 		drm_crtc_add_crc_entry(crtc, true, frame_start++, &crc32);
660 }
661 
662 static const char *const pipe_crc_sources[] = { "auto" };
663 
664 const char *const *vkms_get_crc_sources(struct drm_crtc *crtc,
665 					size_t *count)
666 {
667 	*count = ARRAY_SIZE(pipe_crc_sources);
668 	return pipe_crc_sources;
669 }
670 
671 static int vkms_crc_parse_source(const char *src_name, bool *enabled)
672 {
673 	int ret = 0;
674 
675 	if (!src_name) {
676 		*enabled = false;
677 	} else if (strcmp(src_name, "auto") == 0) {
678 		*enabled = true;
679 	} else {
680 		*enabled = false;
681 		ret = -EINVAL;
682 	}
683 
684 	return ret;
685 }
686 
687 int vkms_verify_crc_source(struct drm_crtc *crtc, const char *src_name,
688 			   size_t *values_cnt)
689 {
690 	bool enabled;
691 
692 	if (vkms_crc_parse_source(src_name, &enabled) < 0) {
693 		DRM_DEBUG_DRIVER("unknown source %s\n", src_name);
694 		return -EINVAL;
695 	}
696 
697 	*values_cnt = 1;
698 
699 	return 0;
700 }
701 
702 void vkms_set_composer(struct vkms_output *out, bool enabled)
703 {
704 	bool old_enabled;
705 
706 	if (enabled)
707 		drm_crtc_vblank_get(&out->crtc);
708 
709 	spin_lock_irq(&out->lock);
710 	old_enabled = out->composer_enabled;
711 	out->composer_enabled = enabled;
712 	spin_unlock_irq(&out->lock);
713 
714 	if (old_enabled)
715 		drm_crtc_vblank_put(&out->crtc);
716 }
717 
718 int vkms_set_crc_source(struct drm_crtc *crtc, const char *src_name)
719 {
720 	struct vkms_output *out = drm_crtc_to_vkms_output(crtc);
721 	bool enabled = false;
722 	int ret = 0;
723 
724 	ret = vkms_crc_parse_source(src_name, &enabled);
725 
726 	vkms_set_composer(out, enabled);
727 
728 	return ret;
729 }
730