1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2015 - 2022 Beijing WangXun Technology Co., Ltd. */
3
4 #include <linux/etherdevice.h>
5 #include <linux/netdevice.h>
6 #include <linux/if_ether.h>
7 #include <linux/if_vlan.h>
8 #include <linux/iopoll.h>
9 #include <linux/pci.h>
10
11 #include "wx_type.h"
12 #include "wx_lib.h"
13 #include "wx_sriov.h"
14 #include "wx_hw.h"
15
wx_phy_read_reg_mdi(struct mii_bus * bus,int phy_addr,int devnum,int regnum)16 static int wx_phy_read_reg_mdi(struct mii_bus *bus, int phy_addr, int devnum, int regnum)
17 {
18 struct wx *wx = bus->priv;
19 u32 command, val;
20 int ret;
21
22 /* setup and write the address cycle command */
23 command = WX_MSCA_RA(regnum) |
24 WX_MSCA_PA(phy_addr) |
25 WX_MSCA_DA(devnum);
26 wr32(wx, WX_MSCA, command);
27
28 command = WX_MSCC_CMD(WX_MSCA_CMD_READ) | WX_MSCC_BUSY;
29 if (wx->mac.type == wx_mac_em)
30 command |= WX_MDIO_CLK(6);
31 wr32(wx, WX_MSCC, command);
32
33 /* wait to complete */
34 ret = read_poll_timeout(rd32, val, !(val & WX_MSCC_BUSY), 1000,
35 100000, false, wx, WX_MSCC);
36 if (ret) {
37 wx_err(wx, "Mdio read c22 command did not complete.\n");
38 return ret;
39 }
40
41 return (u16)rd32(wx, WX_MSCC);
42 }
43
wx_phy_write_reg_mdi(struct mii_bus * bus,int phy_addr,int devnum,int regnum,u16 value)44 static int wx_phy_write_reg_mdi(struct mii_bus *bus, int phy_addr,
45 int devnum, int regnum, u16 value)
46 {
47 struct wx *wx = bus->priv;
48 u32 command, val;
49 int ret;
50
51 /* setup and write the address cycle command */
52 command = WX_MSCA_RA(regnum) |
53 WX_MSCA_PA(phy_addr) |
54 WX_MSCA_DA(devnum);
55 wr32(wx, WX_MSCA, command);
56
57 command = value | WX_MSCC_CMD(WX_MSCA_CMD_WRITE) | WX_MSCC_BUSY;
58 if (wx->mac.type == wx_mac_em)
59 command |= WX_MDIO_CLK(6);
60 wr32(wx, WX_MSCC, command);
61
62 /* wait to complete */
63 ret = read_poll_timeout(rd32, val, !(val & WX_MSCC_BUSY), 1000,
64 100000, false, wx, WX_MSCC);
65 if (ret)
66 wx_err(wx, "Mdio write c22 command did not complete.\n");
67
68 return ret;
69 }
70
wx_phy_read_reg_mdi_c22(struct mii_bus * bus,int phy_addr,int regnum)71 int wx_phy_read_reg_mdi_c22(struct mii_bus *bus, int phy_addr, int regnum)
72 {
73 struct wx *wx = bus->priv;
74
75 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0xF);
76 return wx_phy_read_reg_mdi(bus, phy_addr, 0, regnum);
77 }
78 EXPORT_SYMBOL(wx_phy_read_reg_mdi_c22);
79
wx_phy_write_reg_mdi_c22(struct mii_bus * bus,int phy_addr,int regnum,u16 value)80 int wx_phy_write_reg_mdi_c22(struct mii_bus *bus, int phy_addr, int regnum, u16 value)
81 {
82 struct wx *wx = bus->priv;
83
84 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0xF);
85 return wx_phy_write_reg_mdi(bus, phy_addr, 0, regnum, value);
86 }
87 EXPORT_SYMBOL(wx_phy_write_reg_mdi_c22);
88
wx_phy_read_reg_mdi_c45(struct mii_bus * bus,int phy_addr,int devnum,int regnum)89 int wx_phy_read_reg_mdi_c45(struct mii_bus *bus, int phy_addr, int devnum, int regnum)
90 {
91 struct wx *wx = bus->priv;
92
93 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0);
94 return wx_phy_read_reg_mdi(bus, phy_addr, devnum, regnum);
95 }
96 EXPORT_SYMBOL(wx_phy_read_reg_mdi_c45);
97
wx_phy_write_reg_mdi_c45(struct mii_bus * bus,int phy_addr,int devnum,int regnum,u16 value)98 int wx_phy_write_reg_mdi_c45(struct mii_bus *bus, int phy_addr,
99 int devnum, int regnum, u16 value)
100 {
101 struct wx *wx = bus->priv;
102
103 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0);
104 return wx_phy_write_reg_mdi(bus, phy_addr, devnum, regnum, value);
105 }
106 EXPORT_SYMBOL(wx_phy_write_reg_mdi_c45);
107
wx_intr_disable(struct wx * wx,u64 qmask)108 static void wx_intr_disable(struct wx *wx, u64 qmask)
109 {
110 u32 mask;
111
112 mask = (qmask & U32_MAX);
113 if (mask)
114 wr32(wx, WX_PX_IMS(0), mask);
115
116 if (test_bit(WX_FLAG_MULTI_64_FUNC, wx->flags)) {
117 mask = (qmask >> 32);
118 if (mask)
119 wr32(wx, WX_PX_IMS(1), mask);
120 }
121 }
122
wx_intr_enable(struct wx * wx,u64 qmask)123 void wx_intr_enable(struct wx *wx, u64 qmask)
124 {
125 u32 mask;
126
127 mask = (qmask & U32_MAX);
128 if (mask)
129 wr32(wx, WX_PX_IMC(0), mask);
130
131 if (test_bit(WX_FLAG_MULTI_64_FUNC, wx->flags)) {
132 mask = (qmask >> 32);
133 if (mask)
134 wr32(wx, WX_PX_IMC(1), mask);
135 }
136 }
137 EXPORT_SYMBOL(wx_intr_enable);
138
139 /**
140 * wx_irq_disable - Mask off interrupt generation on the NIC
141 * @wx: board private structure
142 **/
wx_irq_disable(struct wx * wx)143 void wx_irq_disable(struct wx *wx)
144 {
145 struct pci_dev *pdev = wx->pdev;
146
147 wr32(wx, WX_PX_MISC_IEN, 0);
148 wx_intr_disable(wx, WX_INTR_ALL);
149
150 if (pdev->msix_enabled) {
151 int vector;
152
153 for (vector = 0; vector < wx->num_q_vectors; vector++)
154 synchronize_irq(wx->msix_q_entries[vector].vector);
155
156 synchronize_irq(wx->msix_entry->vector);
157 } else {
158 synchronize_irq(pdev->irq);
159 }
160 }
161 EXPORT_SYMBOL(wx_irq_disable);
162
163 /* cmd_addr is used for some special command:
164 * 1. to be sector address, when implemented erase sector command
165 * 2. to be flash address when implemented read, write flash address
166 */
wx_fmgr_cmd_op(struct wx * wx,u32 cmd,u32 cmd_addr)167 static int wx_fmgr_cmd_op(struct wx *wx, u32 cmd, u32 cmd_addr)
168 {
169 u32 cmd_val = 0, val = 0;
170
171 cmd_val = WX_SPI_CMD_CMD(cmd) |
172 WX_SPI_CMD_CLK(WX_SPI_CLK_DIV) |
173 cmd_addr;
174 wr32(wx, WX_SPI_CMD, cmd_val);
175
176 return read_poll_timeout(rd32, val, (val & 0x1), 10, 100000,
177 false, wx, WX_SPI_STATUS);
178 }
179
wx_flash_read_dword(struct wx * wx,u32 addr,u32 * data)180 static int wx_flash_read_dword(struct wx *wx, u32 addr, u32 *data)
181 {
182 int ret = 0;
183
184 ret = wx_fmgr_cmd_op(wx, WX_SPI_CMD_READ_DWORD, addr);
185 if (ret < 0)
186 return ret;
187
188 *data = rd32(wx, WX_SPI_DATA);
189
190 return ret;
191 }
192
wx_check_flash_load(struct wx * hw,u32 check_bit)193 int wx_check_flash_load(struct wx *hw, u32 check_bit)
194 {
195 u32 reg = 0;
196 int err = 0;
197
198 /* if there's flash existing */
199 if (!(rd32(hw, WX_SPI_STATUS) &
200 WX_SPI_STATUS_FLASH_BYPASS)) {
201 /* wait hw load flash done */
202 err = read_poll_timeout(rd32, reg, !(reg & check_bit), 20000, 2000000,
203 false, hw, WX_SPI_ILDR_STATUS);
204 if (err < 0)
205 wx_err(hw, "Check flash load timeout.\n");
206 }
207
208 return err;
209 }
210 EXPORT_SYMBOL(wx_check_flash_load);
211
wx_control_hw(struct wx * wx,bool drv)212 void wx_control_hw(struct wx *wx, bool drv)
213 {
214 /* True : Let firmware know the driver has taken over
215 * False : Let firmware take over control of hw
216 */
217 wr32m(wx, WX_CFG_PORT_CTL, WX_CFG_PORT_CTL_DRV_LOAD,
218 drv ? WX_CFG_PORT_CTL_DRV_LOAD : 0);
219 }
220 EXPORT_SYMBOL(wx_control_hw);
221
222 /**
223 * wx_mng_present - returns 0 when management capability is present
224 * @wx: pointer to hardware structure
225 */
wx_mng_present(struct wx * wx)226 int wx_mng_present(struct wx *wx)
227 {
228 u32 fwsm;
229
230 fwsm = rd32(wx, WX_MIS_ST);
231 if (fwsm & WX_MIS_ST_MNG_INIT_DN)
232 return 0;
233 else
234 return -EACCES;
235 }
236 EXPORT_SYMBOL(wx_mng_present);
237
238 /* Software lock to be held while software semaphore is being accessed. */
239 static DEFINE_MUTEX(wx_sw_sync_lock);
240
241 /**
242 * wx_release_sw_sync - Release SW semaphore
243 * @wx: pointer to hardware structure
244 * @mask: Mask to specify which semaphore to release
245 *
246 * Releases the SW semaphore for the specified
247 * function (CSR, PHY0, PHY1, EEPROM, Flash)
248 **/
wx_release_sw_sync(struct wx * wx,u32 mask)249 static void wx_release_sw_sync(struct wx *wx, u32 mask)
250 {
251 mutex_lock(&wx_sw_sync_lock);
252 wr32m(wx, WX_MNG_SWFW_SYNC, mask, 0);
253 mutex_unlock(&wx_sw_sync_lock);
254 }
255
256 /**
257 * wx_acquire_sw_sync - Acquire SW semaphore
258 * @wx: pointer to hardware structure
259 * @mask: Mask to specify which semaphore to acquire
260 *
261 * Acquires the SW semaphore for the specified
262 * function (CSR, PHY0, PHY1, EEPROM, Flash)
263 **/
wx_acquire_sw_sync(struct wx * wx,u32 mask)264 static int wx_acquire_sw_sync(struct wx *wx, u32 mask)
265 {
266 u32 sem = 0;
267 int ret = 0;
268
269 mutex_lock(&wx_sw_sync_lock);
270 ret = read_poll_timeout(rd32, sem, !(sem & mask),
271 5000, 2000000, false, wx, WX_MNG_SWFW_SYNC);
272 if (!ret) {
273 sem |= mask;
274 wr32(wx, WX_MNG_SWFW_SYNC, sem);
275 } else {
276 wx_err(wx, "SW Semaphore not granted: 0x%x.\n", sem);
277 }
278 mutex_unlock(&wx_sw_sync_lock);
279
280 return ret;
281 }
282
wx_host_interface_command_s(struct wx * wx,u32 * buffer,u32 length,u32 timeout,bool return_data)283 static int wx_host_interface_command_s(struct wx *wx, u32 *buffer,
284 u32 length, u32 timeout, bool return_data)
285 {
286 u32 hdr_size = sizeof(struct wx_hic_hdr);
287 u32 hicr, i, bi, buf[64] = {};
288 int status = 0;
289 u32 dword_len;
290 u16 buf_len;
291
292 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
293 if (status != 0)
294 return status;
295
296 dword_len = length >> 2;
297
298 /* The device driver writes the relevant command block
299 * into the ram area.
300 */
301 for (i = 0; i < dword_len; i++) {
302 wr32a(wx, WX_MNG_MBOX, i, (__force u32)cpu_to_le32(buffer[i]));
303 /* write flush */
304 buf[i] = rd32a(wx, WX_MNG_MBOX, i);
305 }
306 /* Setting this bit tells the ARC that a new command is pending. */
307 wr32m(wx, WX_MNG_MBOX_CTL,
308 WX_MNG_MBOX_CTL_SWRDY, WX_MNG_MBOX_CTL_SWRDY);
309
310 status = read_poll_timeout(rd32, hicr, hicr & WX_MNG_MBOX_CTL_FWRDY, 1000,
311 timeout * 1000, false, wx, WX_MNG_MBOX_CTL);
312
313 buf[0] = rd32(wx, WX_MNG_MBOX);
314 if ((buf[0] & 0xff0000) >> 16 == 0x80) {
315 wx_err(wx, "Unknown FW command: 0x%x\n", buffer[0] & 0xff);
316 status = -EINVAL;
317 goto rel_out;
318 }
319
320 /* Check command completion */
321 if (status) {
322 wx_err(wx, "Command has failed with no status valid.\n");
323 wx_dbg(wx, "write value:\n");
324 for (i = 0; i < dword_len; i++)
325 wx_dbg(wx, "%x ", buffer[i]);
326 wx_dbg(wx, "read value:\n");
327 for (i = 0; i < dword_len; i++)
328 wx_dbg(wx, "%x ", buf[i]);
329 wx_dbg(wx, "\ncheck: %x %x\n", buffer[0] & 0xff, ~buf[0] >> 24);
330
331 goto rel_out;
332 }
333
334 if (!return_data)
335 goto rel_out;
336
337 /* Calculate length in DWORDs */
338 dword_len = hdr_size >> 2;
339
340 /* first pull in the header so we know the buffer length */
341 for (bi = 0; bi < dword_len; bi++) {
342 buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
343 le32_to_cpus(&buffer[bi]);
344 }
345
346 /* If there is any thing in data position pull it in */
347 buf_len = ((struct wx_hic_hdr *)buffer)->buf_len;
348 if (buf_len == 0)
349 goto rel_out;
350
351 if (length < buf_len + hdr_size) {
352 wx_err(wx, "Buffer not large enough for reply message.\n");
353 status = -EFAULT;
354 goto rel_out;
355 }
356
357 /* Calculate length in DWORDs, add 3 for odd lengths */
358 dword_len = (buf_len + 3) >> 2;
359
360 /* Pull in the rest of the buffer (bi is where we left off) */
361 for (; bi <= dword_len; bi++) {
362 buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
363 le32_to_cpus(&buffer[bi]);
364 }
365
366 rel_out:
367 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
368 return status;
369 }
370
wx_poll_fw_reply(struct wx * wx,u32 * buffer,u8 send_cmd)371 static bool wx_poll_fw_reply(struct wx *wx, u32 *buffer, u8 send_cmd)
372 {
373 u32 dword_len = sizeof(struct wx_hic_hdr) >> 2;
374 struct wx_hic_hdr *recv_hdr;
375 u32 i;
376
377 /* read hdr */
378 for (i = 0; i < dword_len; i++) {
379 buffer[i] = rd32a(wx, WX_FW2SW_MBOX, i);
380 le32_to_cpus(&buffer[i]);
381 }
382
383 /* check hdr */
384 recv_hdr = (struct wx_hic_hdr *)buffer;
385 if (recv_hdr->cmd == send_cmd &&
386 recv_hdr->index == wx->swfw_index)
387 return true;
388
389 return false;
390 }
391
wx_host_interface_command_r(struct wx * wx,u32 * buffer,u32 length,u32 timeout,bool return_data)392 static int wx_host_interface_command_r(struct wx *wx, u32 *buffer,
393 u32 length, u32 timeout, bool return_data)
394 {
395 struct wx_hic_hdr *hdr = (struct wx_hic_hdr *)buffer;
396 u32 hdr_size = sizeof(struct wx_hic_hdr);
397 bool busy, reply;
398 u32 dword_len;
399 u16 buf_len;
400 int err = 0;
401 u8 send_cmd;
402 u32 i;
403
404 /* wait to get lock */
405 might_sleep();
406 err = read_poll_timeout(test_and_set_bit, busy, !busy, 1000, timeout * 1000,
407 false, WX_STATE_SWFW_BUSY, wx->state);
408 if (err)
409 return err;
410
411 /* index to unique seq id for each mbox message */
412 hdr->index = wx->swfw_index;
413 send_cmd = hdr->cmd;
414
415 dword_len = length >> 2;
416 /* write data to SW-FW mbox array */
417 for (i = 0; i < dword_len; i++) {
418 wr32a(wx, WX_SW2FW_MBOX, i, (__force u32)cpu_to_le32(buffer[i]));
419 /* write flush */
420 rd32a(wx, WX_SW2FW_MBOX, i);
421 }
422
423 /* generate interrupt to notify FW */
424 wr32m(wx, WX_SW2FW_MBOX_CMD, WX_SW2FW_MBOX_CMD_VLD, 0);
425 wr32m(wx, WX_SW2FW_MBOX_CMD, WX_SW2FW_MBOX_CMD_VLD, WX_SW2FW_MBOX_CMD_VLD);
426
427 /* polling reply from FW */
428 err = read_poll_timeout(wx_poll_fw_reply, reply, reply, 2000,
429 timeout * 1000, true, wx, buffer, send_cmd);
430 if (err) {
431 wx_err(wx, "Polling from FW messages timeout, cmd: 0x%x, index: %d\n",
432 send_cmd, wx->swfw_index);
433 goto rel_out;
434 }
435
436 if (hdr->cmd_or_resp.ret_status == 0x80) {
437 wx_err(wx, "Unknown FW command: 0x%x\n", send_cmd);
438 err = -EINVAL;
439 goto rel_out;
440 }
441
442 /* expect no reply from FW then return */
443 if (!return_data)
444 goto rel_out;
445
446 /* If there is any thing in data position pull it in */
447 buf_len = hdr->buf_len;
448 if (buf_len == 0)
449 goto rel_out;
450
451 if (length < buf_len + hdr_size) {
452 wx_err(wx, "Buffer not large enough for reply message.\n");
453 err = -EFAULT;
454 goto rel_out;
455 }
456
457 /* Calculate length in DWORDs, add 3 for odd lengths */
458 dword_len = (buf_len + 3) >> 2;
459 for (i = hdr_size >> 2; i <= dword_len; i++) {
460 buffer[i] = rd32a(wx, WX_FW2SW_MBOX, i);
461 le32_to_cpus(&buffer[i]);
462 }
463
464 rel_out:
465 /* index++, index replace wx_hic_hdr.checksum */
466 if (wx->swfw_index == WX_HIC_HDR_INDEX_MAX)
467 wx->swfw_index = 0;
468 else
469 wx->swfw_index++;
470
471 clear_bit(WX_STATE_SWFW_BUSY, wx->state);
472 return err;
473 }
474
475 /**
476 * wx_host_interface_command - Issue command to manageability block
477 * @wx: pointer to the HW structure
478 * @buffer: contains the command to write and where the return status will
479 * be placed
480 * @length: length of buffer, must be multiple of 4 bytes
481 * @timeout: time in ms to wait for command completion
482 * @return_data: read and return data from the buffer (true) or not (false)
483 * Needed because FW structures are big endian and decoding of
484 * these fields can be 8 bit or 16 bit based on command. Decoding
485 * is not easily understood without making a table of commands.
486 * So we will leave this up to the caller to read back the data
487 * in these cases.
488 **/
wx_host_interface_command(struct wx * wx,u32 * buffer,u32 length,u32 timeout,bool return_data)489 int wx_host_interface_command(struct wx *wx, u32 *buffer,
490 u32 length, u32 timeout, bool return_data)
491 {
492 if (length == 0 || length > WX_HI_MAX_BLOCK_BYTE_LENGTH) {
493 wx_err(wx, "Buffer length failure buffersize=%d.\n", length);
494 return -EINVAL;
495 }
496
497 /* Calculate length in DWORDs. We must be DWORD aligned */
498 if ((length % (sizeof(u32))) != 0) {
499 wx_err(wx, "Buffer length failure, not aligned to dword");
500 return -EINVAL;
501 }
502
503 if (test_bit(WX_FLAG_SWFW_RING, wx->flags))
504 return wx_host_interface_command_r(wx, buffer, length,
505 timeout, return_data);
506
507 return wx_host_interface_command_s(wx, buffer, length, timeout, return_data);
508 }
509 EXPORT_SYMBOL(wx_host_interface_command);
510
wx_set_pps(struct wx * wx,bool enable,u64 nsec,u64 cycles)511 int wx_set_pps(struct wx *wx, bool enable, u64 nsec, u64 cycles)
512 {
513 struct wx_hic_set_pps pps_cmd;
514
515 pps_cmd.hdr.cmd = FW_PPS_SET_CMD;
516 pps_cmd.hdr.buf_len = FW_PPS_SET_LEN;
517 pps_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
518 pps_cmd.lan_id = wx->bus.func;
519 pps_cmd.enable = (u8)enable;
520 pps_cmd.nsec = nsec;
521 pps_cmd.cycles = cycles;
522 pps_cmd.hdr.checksum = FW_DEFAULT_CHECKSUM;
523
524 return wx_host_interface_command(wx, (u32 *)&pps_cmd,
525 sizeof(pps_cmd),
526 WX_HI_COMMAND_TIMEOUT,
527 false);
528 }
529
530 /**
531 * wx_read_ee_hostif_data - Read EEPROM word using a host interface cmd
532 * assuming that the semaphore is already obtained.
533 * @wx: pointer to hardware structure
534 * @offset: offset of word in the EEPROM to read
535 * @data: word read from the EEPROM
536 *
537 * Reads a 16 bit word from the EEPROM using the hostif.
538 **/
wx_read_ee_hostif_data(struct wx * wx,u16 offset,u16 * data)539 static int wx_read_ee_hostif_data(struct wx *wx, u16 offset, u16 *data)
540 {
541 struct wx_hic_read_shadow_ram buffer;
542 int status;
543
544 buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
545 buffer.hdr.req.buf_lenh = 0;
546 buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
547 buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
548
549 /* convert offset from words to bytes */
550 buffer.address = (__force u32)cpu_to_be32(offset * 2);
551 /* one word */
552 buffer.length = (__force u16)cpu_to_be16(sizeof(u16));
553
554 status = wx_host_interface_command(wx, (u32 *)&buffer, sizeof(buffer),
555 WX_HI_COMMAND_TIMEOUT, false);
556
557 if (status != 0)
558 return status;
559
560 if (!test_bit(WX_FLAG_SWFW_RING, wx->flags))
561 *data = (u16)rd32a(wx, WX_MNG_MBOX, FW_NVM_DATA_OFFSET);
562 else
563 *data = (u16)rd32a(wx, WX_FW2SW_MBOX, FW_NVM_DATA_OFFSET);
564
565 return status;
566 }
567
568 /**
569 * wx_read_ee_hostif - Read EEPROM word using a host interface cmd
570 * @wx: pointer to hardware structure
571 * @offset: offset of word in the EEPROM to read
572 * @data: word read from the EEPROM
573 *
574 * Reads a 16 bit word from the EEPROM using the hostif.
575 **/
wx_read_ee_hostif(struct wx * wx,u16 offset,u16 * data)576 int wx_read_ee_hostif(struct wx *wx, u16 offset, u16 *data)
577 {
578 int status = 0;
579
580 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
581 if (status == 0) {
582 status = wx_read_ee_hostif_data(wx, offset, data);
583 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
584 }
585
586 return status;
587 }
588 EXPORT_SYMBOL(wx_read_ee_hostif);
589
590 /**
591 * wx_read_ee_hostif_buffer- Read EEPROM word(s) using hostif
592 * @wx: pointer to hardware structure
593 * @offset: offset of word in the EEPROM to read
594 * @words: number of words
595 * @data: word(s) read from the EEPROM
596 *
597 * Reads a 16 bit word(s) from the EEPROM using the hostif.
598 **/
wx_read_ee_hostif_buffer(struct wx * wx,u16 offset,u16 words,u16 * data)599 int wx_read_ee_hostif_buffer(struct wx *wx,
600 u16 offset, u16 words, u16 *data)
601 {
602 struct wx_hic_read_shadow_ram buffer;
603 u32 current_word = 0;
604 u16 words_to_read;
605 u32 value = 0;
606 int status;
607 u32 mbox;
608 u32 i;
609
610 /* Take semaphore for the entire operation. */
611 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
612 if (status != 0)
613 return status;
614
615 while (words) {
616 if (words > FW_MAX_READ_BUFFER_SIZE / 2)
617 words_to_read = FW_MAX_READ_BUFFER_SIZE / 2;
618 else
619 words_to_read = words;
620
621 buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
622 buffer.hdr.req.buf_lenh = 0;
623 buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
624 buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
625
626 /* convert offset from words to bytes */
627 buffer.address = (__force u32)cpu_to_be32((offset + current_word) * 2);
628 buffer.length = (__force u16)cpu_to_be16(words_to_read * 2);
629
630 status = wx_host_interface_command(wx, (u32 *)&buffer,
631 sizeof(buffer),
632 WX_HI_COMMAND_TIMEOUT,
633 false);
634
635 if (status != 0) {
636 wx_err(wx, "Host interface command failed\n");
637 goto out;
638 }
639
640 if (!test_bit(WX_FLAG_SWFW_RING, wx->flags))
641 mbox = WX_MNG_MBOX;
642 else
643 mbox = WX_FW2SW_MBOX;
644 for (i = 0; i < words_to_read; i++) {
645 u32 reg = mbox + (FW_NVM_DATA_OFFSET << 2) + 2 * i;
646
647 value = rd32(wx, reg);
648 data[current_word] = (u16)(value & 0xffff);
649 current_word++;
650 i++;
651 if (i < words_to_read) {
652 value >>= 16;
653 data[current_word] = (u16)(value & 0xffff);
654 current_word++;
655 }
656 }
657 words -= words_to_read;
658 }
659
660 out:
661 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
662 return status;
663 }
664 EXPORT_SYMBOL(wx_read_ee_hostif_buffer);
665
666 /**
667 * wx_init_eeprom_params - Initialize EEPROM params
668 * @wx: pointer to hardware structure
669 *
670 * Initializes the EEPROM parameters wx_eeprom_info within the
671 * wx_hw struct in order to set up EEPROM access.
672 **/
wx_init_eeprom_params(struct wx * wx)673 void wx_init_eeprom_params(struct wx *wx)
674 {
675 struct wx_eeprom_info *eeprom = &wx->eeprom;
676 u16 eeprom_size;
677 u16 data = 0x80;
678
679 if (eeprom->type == wx_eeprom_uninitialized) {
680 eeprom->semaphore_delay = 10;
681 eeprom->type = wx_eeprom_none;
682
683 if (!(rd32(wx, WX_SPI_STATUS) &
684 WX_SPI_STATUS_FLASH_BYPASS)) {
685 eeprom->type = wx_flash;
686
687 eeprom_size = 4096;
688 eeprom->word_size = eeprom_size >> 1;
689
690 wx_dbg(wx, "Eeprom params: type = %d, size = %d\n",
691 eeprom->type, eeprom->word_size);
692 }
693 }
694
695 switch (wx->mac.type) {
696 case wx_mac_sp:
697 case wx_mac_aml:
698 case wx_mac_aml40:
699 if (wx_read_ee_hostif(wx, WX_SW_REGION_PTR, &data)) {
700 wx_err(wx, "NVM Read Error\n");
701 return;
702 }
703 data = data >> 1;
704 break;
705 default:
706 break;
707 }
708
709 eeprom->sw_region_offset = data;
710 }
711 EXPORT_SYMBOL(wx_init_eeprom_params);
712
713 /**
714 * wx_get_mac_addr - Generic get MAC address
715 * @wx: pointer to hardware structure
716 * @mac_addr: Adapter MAC address
717 *
718 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
719 * A reset of the adapter must be performed prior to calling this function
720 * in order for the MAC address to have been loaded from the EEPROM into RAR0
721 **/
wx_get_mac_addr(struct wx * wx,u8 * mac_addr)722 void wx_get_mac_addr(struct wx *wx, u8 *mac_addr)
723 {
724 u32 rar_high;
725 u32 rar_low;
726 u16 i;
727
728 wr32(wx, WX_PSR_MAC_SWC_IDX, 0);
729 rar_high = rd32(wx, WX_PSR_MAC_SWC_AD_H);
730 rar_low = rd32(wx, WX_PSR_MAC_SWC_AD_L);
731
732 for (i = 0; i < 2; i++)
733 mac_addr[i] = (u8)(rar_high >> (1 - i) * 8);
734
735 for (i = 0; i < 4; i++)
736 mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8);
737 }
738 EXPORT_SYMBOL(wx_get_mac_addr);
739
740 /**
741 * wx_set_rar - Set Rx address register
742 * @wx: pointer to hardware structure
743 * @index: Receive address register to write
744 * @addr: Address to put into receive address register
745 * @pools: VMDq "set" or "pool" index
746 * @enable_addr: set flag that address is active
747 *
748 * Puts an ethernet address into a receive address register.
749 **/
wx_set_rar(struct wx * wx,u32 index,u8 * addr,u64 pools,u32 enable_addr)750 static int wx_set_rar(struct wx *wx, u32 index, u8 *addr, u64 pools,
751 u32 enable_addr)
752 {
753 u32 rar_entries = wx->mac.num_rar_entries;
754 u32 rar_low, rar_high;
755
756 /* Make sure we are using a valid rar index range */
757 if (index >= rar_entries) {
758 wx_err(wx, "RAR index %d is out of range.\n", index);
759 return -EINVAL;
760 }
761
762 /* select the MAC address */
763 wr32(wx, WX_PSR_MAC_SWC_IDX, index);
764
765 /* setup VMDq pool mapping */
766 wr32(wx, WX_PSR_MAC_SWC_VM_L, pools & 0xFFFFFFFF);
767
768 if (test_bit(WX_FLAG_MULTI_64_FUNC, wx->flags))
769 wr32(wx, WX_PSR_MAC_SWC_VM_H, pools >> 32);
770
771 /* HW expects these in little endian so we reverse the byte
772 * order from network order (big endian) to little endian
773 *
774 * Some parts put the VMDq setting in the extra RAH bits,
775 * so save everything except the lower 16 bits that hold part
776 * of the address and the address valid bit.
777 */
778 rar_low = ((u32)addr[5] |
779 ((u32)addr[4] << 8) |
780 ((u32)addr[3] << 16) |
781 ((u32)addr[2] << 24));
782 rar_high = ((u32)addr[1] |
783 ((u32)addr[0] << 8));
784 if (enable_addr != 0)
785 rar_high |= WX_PSR_MAC_SWC_AD_H_AV;
786
787 wr32(wx, WX_PSR_MAC_SWC_AD_L, rar_low);
788 wr32m(wx, WX_PSR_MAC_SWC_AD_H,
789 (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
790 WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
791 WX_PSR_MAC_SWC_AD_H_AV),
792 rar_high);
793
794 return 0;
795 }
796
797 /**
798 * wx_clear_rar - Remove Rx address register
799 * @wx: pointer to hardware structure
800 * @index: Receive address register to write
801 *
802 * Clears an ethernet address from a receive address register.
803 **/
wx_clear_rar(struct wx * wx,u32 index)804 static int wx_clear_rar(struct wx *wx, u32 index)
805 {
806 u32 rar_entries = wx->mac.num_rar_entries;
807
808 /* Make sure we are using a valid rar index range */
809 if (index >= rar_entries) {
810 wx_err(wx, "RAR index %d is out of range.\n", index);
811 return -EINVAL;
812 }
813
814 /* Some parts put the VMDq setting in the extra RAH bits,
815 * so save everything except the lower 16 bits that hold part
816 * of the address and the address valid bit.
817 */
818 wr32(wx, WX_PSR_MAC_SWC_IDX, index);
819
820 wr32(wx, WX_PSR_MAC_SWC_VM_L, 0);
821 wr32(wx, WX_PSR_MAC_SWC_VM_H, 0);
822
823 wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
824 wr32m(wx, WX_PSR_MAC_SWC_AD_H,
825 (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
826 WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
827 WX_PSR_MAC_SWC_AD_H_AV),
828 0);
829
830 return 0;
831 }
832
833 /**
834 * wx_clear_vmdq - Disassociate a VMDq pool index from a rx address
835 * @wx: pointer to hardware struct
836 * @rar: receive address register index to disassociate
837 * @vmdq: VMDq pool index to remove from the rar
838 **/
wx_clear_vmdq(struct wx * wx,u32 rar,u32 __maybe_unused vmdq)839 static int wx_clear_vmdq(struct wx *wx, u32 rar, u32 __maybe_unused vmdq)
840 {
841 u32 rar_entries = wx->mac.num_rar_entries;
842 u32 mpsar_lo, mpsar_hi;
843
844 /* Make sure we are using a valid rar index range */
845 if (rar >= rar_entries) {
846 wx_err(wx, "RAR index %d is out of range.\n", rar);
847 return -EINVAL;
848 }
849
850 wr32(wx, WX_PSR_MAC_SWC_IDX, rar);
851 mpsar_lo = rd32(wx, WX_PSR_MAC_SWC_VM_L);
852 mpsar_hi = rd32(wx, WX_PSR_MAC_SWC_VM_H);
853
854 if (!mpsar_lo && !mpsar_hi)
855 return 0;
856
857 /* was that the last pool using this rar? */
858 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
859 wx_clear_rar(wx, rar);
860
861 return 0;
862 }
863
864 /**
865 * wx_init_uta_tables - Initialize the Unicast Table Array
866 * @wx: pointer to hardware structure
867 **/
wx_init_uta_tables(struct wx * wx)868 static void wx_init_uta_tables(struct wx *wx)
869 {
870 int i;
871
872 wx_dbg(wx, " Clearing UTA\n");
873
874 for (i = 0; i < 128; i++)
875 wr32(wx, WX_PSR_UC_TBL(i), 0);
876 }
877
878 /**
879 * wx_init_rx_addrs - Initializes receive address filters.
880 * @wx: pointer to hardware structure
881 *
882 * Places the MAC address in receive address register 0 and clears the rest
883 * of the receive address registers. Clears the multicast table. Assumes
884 * the receiver is in reset when the routine is called.
885 **/
wx_init_rx_addrs(struct wx * wx)886 void wx_init_rx_addrs(struct wx *wx)
887 {
888 u32 rar_entries = wx->mac.num_rar_entries;
889 u32 psrctl;
890 int i;
891
892 /* If the current mac address is valid, assume it is a software override
893 * to the permanent address.
894 * Otherwise, use the permanent address from the eeprom.
895 */
896 if (!is_valid_ether_addr(wx->mac.addr)) {
897 /* Get the MAC address from the RAR0 for later reference */
898 wx_get_mac_addr(wx, wx->mac.addr);
899 wx_dbg(wx, "Keeping Current RAR0 Addr = %pM\n", wx->mac.addr);
900 } else {
901 /* Setup the receive address. */
902 wx_dbg(wx, "Overriding MAC Address in RAR[0]\n");
903 wx_dbg(wx, "New MAC Addr = %pM\n", wx->mac.addr);
904
905 wx_set_rar(wx, 0, wx->mac.addr, 0, WX_PSR_MAC_SWC_AD_H_AV);
906
907 if (test_bit(WX_FLAG_MULTI_64_FUNC, wx->flags)) {
908 /* clear VMDq pool/queue selection for RAR 0 */
909 wx_clear_vmdq(wx, 0, WX_CLEAR_VMDQ_ALL);
910 }
911 }
912
913 /* Zero out the other receive addresses. */
914 wx_dbg(wx, "Clearing RAR[1-%d]\n", rar_entries - 1);
915 for (i = 1; i < rar_entries; i++) {
916 wr32(wx, WX_PSR_MAC_SWC_IDX, i);
917 wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
918 wr32(wx, WX_PSR_MAC_SWC_AD_H, 0);
919 }
920
921 /* Clear the MTA */
922 wx->addr_ctrl.mta_in_use = 0;
923 psrctl = rd32(wx, WX_PSR_CTL);
924 psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
925 psrctl |= wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT;
926 wr32(wx, WX_PSR_CTL, psrctl);
927 wx_dbg(wx, " Clearing MTA\n");
928 for (i = 0; i < wx->mac.mcft_size; i++)
929 wr32(wx, WX_PSR_MC_TBL(i), 0);
930
931 wx_init_uta_tables(wx);
932 }
933 EXPORT_SYMBOL(wx_init_rx_addrs);
934
wx_sync_mac_table(struct wx * wx)935 static void wx_sync_mac_table(struct wx *wx)
936 {
937 int i;
938
939 for (i = 0; i < wx->mac.num_rar_entries; i++) {
940 if (wx->mac_table[i].state & WX_MAC_STATE_MODIFIED) {
941 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
942 wx_set_rar(wx, i,
943 wx->mac_table[i].addr,
944 wx->mac_table[i].pools,
945 WX_PSR_MAC_SWC_AD_H_AV);
946 } else {
947 wx_clear_rar(wx, i);
948 }
949 wx->mac_table[i].state &= ~(WX_MAC_STATE_MODIFIED);
950 }
951 }
952 }
953
wx_full_sync_mac_table(struct wx * wx)954 static void wx_full_sync_mac_table(struct wx *wx)
955 {
956 int i;
957
958 for (i = 0; i < wx->mac.num_rar_entries; i++) {
959 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
960 wx_set_rar(wx, i,
961 wx->mac_table[i].addr,
962 wx->mac_table[i].pools,
963 WX_PSR_MAC_SWC_AD_H_AV);
964 } else {
965 wx_clear_rar(wx, i);
966 }
967 wx->mac_table[i].state &= ~(WX_MAC_STATE_MODIFIED);
968 }
969 }
970
971 /* this function destroys the first RAR entry */
wx_mac_set_default_filter(struct wx * wx,u8 * addr)972 void wx_mac_set_default_filter(struct wx *wx, u8 *addr)
973 {
974 memcpy(&wx->mac_table[0].addr, addr, ETH_ALEN);
975 wx->mac_table[0].pools = BIT(VMDQ_P(0));
976 wx->mac_table[0].state = (WX_MAC_STATE_DEFAULT | WX_MAC_STATE_IN_USE);
977 wx_set_rar(wx, 0, wx->mac_table[0].addr,
978 wx->mac_table[0].pools,
979 WX_PSR_MAC_SWC_AD_H_AV);
980 }
981 EXPORT_SYMBOL(wx_mac_set_default_filter);
982
wx_flush_sw_mac_table(struct wx * wx)983 void wx_flush_sw_mac_table(struct wx *wx)
984 {
985 u32 i;
986
987 for (i = 0; i < wx->mac.num_rar_entries; i++) {
988 if (!(wx->mac_table[i].state & WX_MAC_STATE_IN_USE))
989 continue;
990
991 wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
992 wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
993 memset(wx->mac_table[i].addr, 0, ETH_ALEN);
994 wx->mac_table[i].pools = 0;
995 }
996 wx_sync_mac_table(wx);
997 }
998 EXPORT_SYMBOL(wx_flush_sw_mac_table);
999
wx_add_mac_filter(struct wx * wx,u8 * addr,u16 pool)1000 int wx_add_mac_filter(struct wx *wx, u8 *addr, u16 pool)
1001 {
1002 u32 i;
1003
1004 if (is_zero_ether_addr(addr))
1005 return -EINVAL;
1006
1007 for (i = 0; i < wx->mac.num_rar_entries; i++) {
1008 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
1009 if (ether_addr_equal(addr, wx->mac_table[i].addr)) {
1010 if (wx->mac_table[i].pools != (1ULL << pool)) {
1011 memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
1012 wx->mac_table[i].pools |= (1ULL << pool);
1013 wx_sync_mac_table(wx);
1014 return i;
1015 }
1016 }
1017 }
1018
1019 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE)
1020 continue;
1021 wx->mac_table[i].state |= (WX_MAC_STATE_MODIFIED |
1022 WX_MAC_STATE_IN_USE);
1023 memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
1024 wx->mac_table[i].pools |= (1ULL << pool);
1025 wx_sync_mac_table(wx);
1026 return i;
1027 }
1028 return -ENOMEM;
1029 }
1030
wx_del_mac_filter(struct wx * wx,u8 * addr,u16 pool)1031 int wx_del_mac_filter(struct wx *wx, u8 *addr, u16 pool)
1032 {
1033 u32 i;
1034
1035 if (is_zero_ether_addr(addr))
1036 return -EINVAL;
1037
1038 /* search table for addr, if found, set to 0 and sync */
1039 for (i = 0; i < wx->mac.num_rar_entries; i++) {
1040 if (!ether_addr_equal(addr, wx->mac_table[i].addr))
1041 continue;
1042
1043 wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
1044 wx->mac_table[i].pools &= ~(1ULL << pool);
1045 if (!wx->mac_table[i].pools) {
1046 wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
1047 memset(wx->mac_table[i].addr, 0, ETH_ALEN);
1048 }
1049 wx_sync_mac_table(wx);
1050 return 0;
1051 }
1052 return -ENOMEM;
1053 }
1054
wx_available_rars(struct wx * wx)1055 static int wx_available_rars(struct wx *wx)
1056 {
1057 u32 i, count = 0;
1058
1059 for (i = 0; i < wx->mac.num_rar_entries; i++) {
1060 if (wx->mac_table[i].state == 0)
1061 count++;
1062 }
1063
1064 return count;
1065 }
1066
1067 /**
1068 * wx_write_uc_addr_list - write unicast addresses to RAR table
1069 * @netdev: network interface device structure
1070 * @pool: index for mac table
1071 *
1072 * Writes unicast address list to the RAR table.
1073 * Returns: -ENOMEM on failure/insufficient address space
1074 * 0 on no addresses written
1075 * X on writing X addresses to the RAR table
1076 **/
wx_write_uc_addr_list(struct net_device * netdev,int pool)1077 static int wx_write_uc_addr_list(struct net_device *netdev, int pool)
1078 {
1079 struct wx *wx = netdev_priv(netdev);
1080 int count = 0;
1081
1082 /* return ENOMEM indicating insufficient memory for addresses */
1083 if (netdev_uc_count(netdev) > wx_available_rars(wx))
1084 return -ENOMEM;
1085
1086 if (!netdev_uc_empty(netdev)) {
1087 struct netdev_hw_addr *ha;
1088
1089 netdev_for_each_uc_addr(ha, netdev) {
1090 wx_del_mac_filter(wx, ha->addr, pool);
1091 wx_add_mac_filter(wx, ha->addr, pool);
1092 count++;
1093 }
1094 }
1095 return count;
1096 }
1097
1098 /**
1099 * wx_mta_vector - Determines bit-vector in multicast table to set
1100 * @wx: pointer to private structure
1101 * @mc_addr: the multicast address
1102 *
1103 * Extracts the 12 bits, from a multicast address, to determine which
1104 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1105 * incoming rx multicast addresses, to determine the bit-vector to check in
1106 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1107 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1108 * to mc_filter_type.
1109 **/
wx_mta_vector(struct wx * wx,u8 * mc_addr)1110 static u32 wx_mta_vector(struct wx *wx, u8 *mc_addr)
1111 {
1112 u32 vector = 0;
1113
1114 switch (wx->mac.mc_filter_type) {
1115 case 0: /* use bits [47:36] of the address */
1116 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1117 break;
1118 case 1: /* use bits [46:35] of the address */
1119 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1120 break;
1121 case 2: /* use bits [45:34] of the address */
1122 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1123 break;
1124 case 3: /* use bits [43:32] of the address */
1125 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1126 break;
1127 default: /* Invalid mc_filter_type */
1128 wx_err(wx, "MC filter type param set incorrectly\n");
1129 break;
1130 }
1131
1132 /* vector can only be 12-bits or boundary will be exceeded */
1133 vector &= 0xFFF;
1134 return vector;
1135 }
1136
1137 /**
1138 * wx_set_mta - Set bit-vector in multicast table
1139 * @wx: pointer to private structure
1140 * @mc_addr: Multicast address
1141 *
1142 * Sets the bit-vector in the multicast table.
1143 **/
wx_set_mta(struct wx * wx,u8 * mc_addr)1144 static void wx_set_mta(struct wx *wx, u8 *mc_addr)
1145 {
1146 u32 vector, vector_bit, vector_reg;
1147
1148 wx->addr_ctrl.mta_in_use++;
1149
1150 vector = wx_mta_vector(wx, mc_addr);
1151 wx_dbg(wx, " bit-vector = 0x%03X\n", vector);
1152
1153 /* The MTA is a register array of 128 32-bit registers. It is treated
1154 * like an array of 4096 bits. We want to set bit
1155 * BitArray[vector_value]. So we figure out what register the bit is
1156 * in, read it, OR in the new bit, then write back the new value. The
1157 * register is determined by the upper 7 bits of the vector value and
1158 * the bit within that register are determined by the lower 5 bits of
1159 * the value.
1160 */
1161 vector_reg = (vector >> 5) & 0x7F;
1162 vector_bit = vector & 0x1F;
1163 wx->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1164 }
1165
1166 /**
1167 * wx_update_mc_addr_list - Updates MAC list of multicast addresses
1168 * @wx: pointer to private structure
1169 * @netdev: pointer to net device structure
1170 *
1171 * The given list replaces any existing list. Clears the MC addrs from receive
1172 * address registers and the multicast table. Uses unused receive address
1173 * registers for the first multicast addresses, and hashes the rest into the
1174 * multicast table.
1175 **/
wx_update_mc_addr_list(struct wx * wx,struct net_device * netdev)1176 static void wx_update_mc_addr_list(struct wx *wx, struct net_device *netdev)
1177 {
1178 struct netdev_hw_addr *ha;
1179 u32 i, psrctl;
1180
1181 /* Set the new number of MC addresses that we are being requested to
1182 * use.
1183 */
1184 wx->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
1185 wx->addr_ctrl.mta_in_use = 0;
1186
1187 /* Clear mta_shadow */
1188 wx_dbg(wx, " Clearing MTA\n");
1189 memset(&wx->mac.mta_shadow, 0, sizeof(wx->mac.mta_shadow));
1190
1191 /* Update mta_shadow */
1192 netdev_for_each_mc_addr(ha, netdev) {
1193 wx_dbg(wx, " Adding the multicast addresses:\n");
1194 wx_set_mta(wx, ha->addr);
1195 }
1196
1197 /* Enable mta */
1198 for (i = 0; i < wx->mac.mcft_size; i++)
1199 wr32a(wx, WX_PSR_MC_TBL(0), i,
1200 wx->mac.mta_shadow[i]);
1201
1202 if (wx->addr_ctrl.mta_in_use > 0) {
1203 psrctl = rd32(wx, WX_PSR_CTL);
1204 psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
1205 psrctl |= WX_PSR_CTL_MFE |
1206 (wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT);
1207 wr32(wx, WX_PSR_CTL, psrctl);
1208 }
1209
1210 wx_dbg(wx, "Update mc addr list Complete\n");
1211 }
1212
wx_restore_vf_multicasts(struct wx * wx)1213 static void wx_restore_vf_multicasts(struct wx *wx)
1214 {
1215 u32 i, j, vector_bit, vector_reg;
1216 struct vf_data_storage *vfinfo;
1217
1218 for (i = 0; i < wx->num_vfs; i++) {
1219 u32 vmolr = rd32(wx, WX_PSR_VM_L2CTL(i));
1220
1221 vfinfo = &wx->vfinfo[i];
1222 for (j = 0; j < vfinfo->num_vf_mc_hashes; j++) {
1223 wx->addr_ctrl.mta_in_use++;
1224 vector_reg = WX_PSR_MC_TBL_REG(vfinfo->vf_mc_hashes[j]);
1225 vector_bit = WX_PSR_MC_TBL_BIT(vfinfo->vf_mc_hashes[j]);
1226 wr32m(wx, WX_PSR_MC_TBL(vector_reg),
1227 BIT(vector_bit), BIT(vector_bit));
1228 /* errata 5: maintain a copy of the reg table conf */
1229 wx->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
1230 }
1231 if (vfinfo->num_vf_mc_hashes)
1232 vmolr |= WX_PSR_VM_L2CTL_ROMPE;
1233 else
1234 vmolr &= ~WX_PSR_VM_L2CTL_ROMPE;
1235 wr32(wx, WX_PSR_VM_L2CTL(i), vmolr);
1236 }
1237
1238 /* Restore any VF macvlans */
1239 wx_full_sync_mac_table(wx);
1240 }
1241
1242 /**
1243 * wx_write_mc_addr_list - write multicast addresses to MTA
1244 * @netdev: network interface device structure
1245 *
1246 * Writes multicast address list to the MTA hash table.
1247 * Returns: 0 on no addresses written
1248 * X on writing X addresses to MTA
1249 **/
wx_write_mc_addr_list(struct net_device * netdev)1250 static int wx_write_mc_addr_list(struct net_device *netdev)
1251 {
1252 struct wx *wx = netdev_priv(netdev);
1253
1254 if (!netif_running(netdev))
1255 return 0;
1256
1257 wx_update_mc_addr_list(wx, netdev);
1258
1259 if (test_bit(WX_FLAG_SRIOV_ENABLED, wx->flags))
1260 wx_restore_vf_multicasts(wx);
1261
1262 return netdev_mc_count(netdev);
1263 }
1264
1265 /**
1266 * wx_set_mac - Change the Ethernet Address of the NIC
1267 * @netdev: network interface device structure
1268 * @p: pointer to an address structure
1269 *
1270 * Returns 0 on success, negative on failure
1271 **/
wx_set_mac(struct net_device * netdev,void * p)1272 int wx_set_mac(struct net_device *netdev, void *p)
1273 {
1274 struct wx *wx = netdev_priv(netdev);
1275 struct sockaddr *addr = p;
1276 int retval;
1277
1278 retval = eth_prepare_mac_addr_change(netdev, addr);
1279 if (retval)
1280 return retval;
1281
1282 wx_del_mac_filter(wx, wx->mac.addr, VMDQ_P(0));
1283 eth_hw_addr_set(netdev, addr->sa_data);
1284 memcpy(wx->mac.addr, addr->sa_data, netdev->addr_len);
1285
1286 wx_mac_set_default_filter(wx, wx->mac.addr);
1287
1288 return 0;
1289 }
1290 EXPORT_SYMBOL(wx_set_mac);
1291
wx_disable_rx(struct wx * wx)1292 void wx_disable_rx(struct wx *wx)
1293 {
1294 u32 pfdtxgswc;
1295 u32 rxctrl;
1296
1297 rxctrl = rd32(wx, WX_RDB_PB_CTL);
1298 if (rxctrl & WX_RDB_PB_CTL_RXEN) {
1299 pfdtxgswc = rd32(wx, WX_PSR_CTL);
1300 if (pfdtxgswc & WX_PSR_CTL_SW_EN) {
1301 pfdtxgswc &= ~WX_PSR_CTL_SW_EN;
1302 wr32(wx, WX_PSR_CTL, pfdtxgswc);
1303 wx->mac.set_lben = true;
1304 } else {
1305 wx->mac.set_lben = false;
1306 }
1307 rxctrl &= ~WX_RDB_PB_CTL_RXEN;
1308 wr32(wx, WX_RDB_PB_CTL, rxctrl);
1309
1310 if (!(((wx->subsystem_device_id & WX_NCSI_MASK) == WX_NCSI_SUP) ||
1311 ((wx->subsystem_device_id & WX_WOL_MASK) == WX_WOL_SUP))) {
1312 /* disable mac receiver */
1313 wr32m(wx, WX_MAC_RX_CFG,
1314 WX_MAC_RX_CFG_RE, 0);
1315 }
1316 }
1317 }
1318 EXPORT_SYMBOL(wx_disable_rx);
1319
wx_enable_rx(struct wx * wx)1320 static void wx_enable_rx(struct wx *wx)
1321 {
1322 u32 psrctl;
1323
1324 /* enable mac receiver */
1325 wr32m(wx, WX_MAC_RX_CFG,
1326 WX_MAC_RX_CFG_RE, WX_MAC_RX_CFG_RE);
1327
1328 wr32m(wx, WX_RDB_PB_CTL,
1329 WX_RDB_PB_CTL_RXEN, WX_RDB_PB_CTL_RXEN);
1330
1331 if (wx->mac.set_lben) {
1332 psrctl = rd32(wx, WX_PSR_CTL);
1333 psrctl |= WX_PSR_CTL_SW_EN;
1334 wr32(wx, WX_PSR_CTL, psrctl);
1335 wx->mac.set_lben = false;
1336 }
1337 }
1338
1339 /**
1340 * wx_set_rxpba - Initialize Rx packet buffer
1341 * @wx: pointer to private structure
1342 **/
wx_set_rxpba(struct wx * wx)1343 static void wx_set_rxpba(struct wx *wx)
1344 {
1345 u32 rxpktsize, txpktsize, txpbthresh;
1346 u32 pbsize = wx->mac.rx_pb_size;
1347
1348 if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags)) {
1349 if (test_bit(WX_FLAG_FDIR_HASH, wx->flags) ||
1350 test_bit(WX_FLAG_FDIR_PERFECT, wx->flags))
1351 pbsize -= 64; /* Default 64KB */
1352 }
1353
1354 rxpktsize = pbsize << WX_RDB_PB_SZ_SHIFT;
1355 wr32(wx, WX_RDB_PB_SZ(0), rxpktsize);
1356
1357 /* Only support an equally distributed Tx packet buffer strategy. */
1358 txpktsize = wx->mac.tx_pb_size;
1359 txpbthresh = (txpktsize / 1024) - WX_TXPKT_SIZE_MAX;
1360 wr32(wx, WX_TDB_PB_SZ(0), txpktsize);
1361 wr32(wx, WX_TDM_PB_THRE(0), txpbthresh);
1362 }
1363
1364 #define WX_ETH_FRAMING 20
1365
1366 /**
1367 * wx_hpbthresh - calculate high water mark for flow control
1368 *
1369 * @wx: board private structure to calculate for
1370 **/
wx_hpbthresh(struct wx * wx)1371 static int wx_hpbthresh(struct wx *wx)
1372 {
1373 struct net_device *dev = wx->netdev;
1374 int link, tc, kb, marker;
1375 u32 dv_id, rx_pba;
1376
1377 /* Calculate max LAN frame size */
1378 link = dev->mtu + ETH_HLEN + ETH_FCS_LEN + WX_ETH_FRAMING;
1379 tc = link;
1380
1381 /* Calculate delay value for device */
1382 dv_id = WX_DV(link, tc);
1383
1384 /* Loopback switch introduces additional latency */
1385 if (test_bit(WX_FLAG_SRIOV_ENABLED, wx->flags))
1386 dv_id += WX_B2BT(tc);
1387
1388 /* Delay value is calculated in bit times convert to KB */
1389 kb = WX_BT2KB(dv_id);
1390 rx_pba = rd32(wx, WX_RDB_PB_SZ(0)) >> WX_RDB_PB_SZ_SHIFT;
1391
1392 marker = rx_pba - kb;
1393
1394 /* It is possible that the packet buffer is not large enough
1395 * to provide required headroom. In this case throw an error
1396 * to user and a do the best we can.
1397 */
1398 if (marker < 0) {
1399 dev_warn(&wx->pdev->dev,
1400 "Packet Buffer can not provide enough headroom to support flow control. Decrease MTU or number of traffic classes\n");
1401 marker = tc + 1;
1402 }
1403
1404 return marker;
1405 }
1406
1407 /**
1408 * wx_lpbthresh - calculate low water mark for flow control
1409 *
1410 * @wx: board private structure to calculate for
1411 **/
wx_lpbthresh(struct wx * wx)1412 static int wx_lpbthresh(struct wx *wx)
1413 {
1414 struct net_device *dev = wx->netdev;
1415 u32 dv_id;
1416 int tc;
1417
1418 /* Calculate max LAN frame size */
1419 tc = dev->mtu + ETH_HLEN + ETH_FCS_LEN;
1420
1421 /* Calculate delay value for device */
1422 dv_id = WX_LOW_DV(tc);
1423
1424 /* Delay value is calculated in bit times convert to KB */
1425 return WX_BT2KB(dv_id);
1426 }
1427
1428 /**
1429 * wx_pbthresh_setup - calculate and setup high low water marks
1430 *
1431 * @wx: board private structure to calculate for
1432 **/
wx_pbthresh_setup(struct wx * wx)1433 static void wx_pbthresh_setup(struct wx *wx)
1434 {
1435 wx->fc.high_water = wx_hpbthresh(wx);
1436 wx->fc.low_water = wx_lpbthresh(wx);
1437
1438 /* Low water marks must not be larger than high water marks */
1439 if (wx->fc.low_water > wx->fc.high_water)
1440 wx->fc.low_water = 0;
1441 }
1442
wx_set_ethertype_anti_spoofing(struct wx * wx,bool enable,int vf)1443 static void wx_set_ethertype_anti_spoofing(struct wx *wx, bool enable, int vf)
1444 {
1445 u32 pfvfspoof, reg_offset, vf_shift;
1446
1447 vf_shift = WX_VF_IND_SHIFT(vf);
1448 reg_offset = WX_VF_REG_OFFSET(vf);
1449
1450 pfvfspoof = rd32(wx, WX_TDM_ETYPE_AS(reg_offset));
1451 if (enable)
1452 pfvfspoof |= BIT(vf_shift);
1453 else
1454 pfvfspoof &= ~BIT(vf_shift);
1455 wr32(wx, WX_TDM_ETYPE_AS(reg_offset), pfvfspoof);
1456 }
1457
wx_set_vf_spoofchk(struct net_device * netdev,int vf,bool setting)1458 int wx_set_vf_spoofchk(struct net_device *netdev, int vf, bool setting)
1459 {
1460 u32 index = WX_VF_REG_OFFSET(vf), vf_bit = WX_VF_IND_SHIFT(vf);
1461 struct wx *wx = netdev_priv(netdev);
1462 u32 regval;
1463
1464 if (vf >= wx->num_vfs)
1465 return -EINVAL;
1466
1467 wx->vfinfo[vf].spoofchk_enabled = setting;
1468
1469 regval = (setting << vf_bit);
1470 wr32m(wx, WX_TDM_MAC_AS(index), regval | BIT(vf_bit), regval);
1471
1472 if (wx->vfinfo[vf].vlan_count)
1473 wr32m(wx, WX_TDM_VLAN_AS(index), regval | BIT(vf_bit), regval);
1474
1475 return 0;
1476 }
1477
wx_configure_virtualization(struct wx * wx)1478 static void wx_configure_virtualization(struct wx *wx)
1479 {
1480 u16 pool = wx->num_rx_pools;
1481 u32 reg_offset, vf_shift;
1482 u32 i;
1483
1484 if (!test_bit(WX_FLAG_SRIOV_ENABLED, wx->flags))
1485 return;
1486
1487 wr32m(wx, WX_PSR_VM_CTL,
1488 WX_PSR_VM_CTL_POOL_MASK | WX_PSR_VM_CTL_REPLEN,
1489 FIELD_PREP(WX_PSR_VM_CTL_POOL_MASK, VMDQ_P(0)) |
1490 WX_PSR_VM_CTL_REPLEN);
1491 while (pool--)
1492 wr32m(wx, WX_PSR_VM_L2CTL(pool),
1493 WX_PSR_VM_L2CTL_AUPE, WX_PSR_VM_L2CTL_AUPE);
1494
1495 if (!test_bit(WX_FLAG_MULTI_64_FUNC, wx->flags)) {
1496 vf_shift = BIT(VMDQ_P(0));
1497 /* Enable only the PF pools for Tx/Rx */
1498 wr32(wx, WX_RDM_VF_RE(0), vf_shift);
1499 wr32(wx, WX_TDM_VF_TE(0), vf_shift);
1500 } else {
1501 vf_shift = WX_VF_IND_SHIFT(VMDQ_P(0));
1502 reg_offset = WX_VF_REG_OFFSET(VMDQ_P(0));
1503
1504 /* Enable only the PF pools for Tx/Rx */
1505 wr32(wx, WX_RDM_VF_RE(reg_offset), GENMASK(31, vf_shift));
1506 wr32(wx, WX_RDM_VF_RE(reg_offset ^ 1), reg_offset - 1);
1507 wr32(wx, WX_TDM_VF_TE(reg_offset), GENMASK(31, vf_shift));
1508 wr32(wx, WX_TDM_VF_TE(reg_offset ^ 1), reg_offset - 1);
1509 }
1510
1511 /* clear VLAN promisc flag so VFTA will be updated if necessary */
1512 clear_bit(WX_FLAG_VLAN_PROMISC, wx->flags);
1513
1514 for (i = 0; i < wx->num_vfs; i++) {
1515 if (!wx->vfinfo[i].spoofchk_enabled)
1516 wx_set_vf_spoofchk(wx->netdev, i, false);
1517 /* enable ethertype anti spoofing if hw supports it */
1518 wx_set_ethertype_anti_spoofing(wx, true, i);
1519 }
1520 }
1521
wx_configure_port(struct wx * wx)1522 static void wx_configure_port(struct wx *wx)
1523 {
1524 u32 value, i;
1525
1526 if (!test_bit(WX_FLAG_MULTI_64_FUNC, wx->flags)) {
1527 value = (wx->num_vfs == 0) ?
1528 WX_CFG_PORT_CTL_NUM_VT_NONE :
1529 WX_CFG_PORT_CTL_NUM_VT_8;
1530 } else {
1531 if (test_bit(WX_FLAG_VMDQ_ENABLED, wx->flags)) {
1532 if (wx->ring_feature[RING_F_RSS].indices == 4)
1533 value = WX_CFG_PORT_CTL_NUM_VT_32;
1534 else
1535 value = WX_CFG_PORT_CTL_NUM_VT_64;
1536 } else {
1537 value = 0;
1538 }
1539 }
1540
1541 value |= WX_CFG_PORT_CTL_D_VLAN | WX_CFG_PORT_CTL_QINQ;
1542 wr32m(wx, WX_CFG_PORT_CTL,
1543 WX_CFG_PORT_CTL_NUM_VT_MASK |
1544 WX_CFG_PORT_CTL_D_VLAN |
1545 WX_CFG_PORT_CTL_QINQ,
1546 value);
1547
1548 wr32(wx, WX_CFG_TAG_TPID(0),
1549 ETH_P_8021Q | ETH_P_8021AD << 16);
1550 wx->tpid[0] = ETH_P_8021Q;
1551 wx->tpid[1] = ETH_P_8021AD;
1552 for (i = 1; i < 4; i++)
1553 wr32(wx, WX_CFG_TAG_TPID(i),
1554 ETH_P_8021Q | ETH_P_8021Q << 16);
1555 for (i = 2; i < 8; i++)
1556 wx->tpid[i] = ETH_P_8021Q;
1557 }
1558
1559 /**
1560 * wx_disable_sec_rx_path - Stops the receive data path
1561 * @wx: pointer to private structure
1562 *
1563 * Stops the receive data path and waits for the HW to internally empty
1564 * the Rx security block
1565 **/
wx_disable_sec_rx_path(struct wx * wx)1566 int wx_disable_sec_rx_path(struct wx *wx)
1567 {
1568 u32 secrx;
1569
1570 wr32m(wx, WX_RSC_CTL,
1571 WX_RSC_CTL_RX_DIS, WX_RSC_CTL_RX_DIS);
1572
1573 return read_poll_timeout(rd32, secrx, secrx & WX_RSC_ST_RSEC_RDY,
1574 1000, 40000, false, wx, WX_RSC_ST);
1575 }
1576 EXPORT_SYMBOL(wx_disable_sec_rx_path);
1577
1578 /**
1579 * wx_enable_sec_rx_path - Enables the receive data path
1580 * @wx: pointer to private structure
1581 *
1582 * Enables the receive data path.
1583 **/
wx_enable_sec_rx_path(struct wx * wx)1584 void wx_enable_sec_rx_path(struct wx *wx)
1585 {
1586 wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_RX_DIS, 0);
1587 WX_WRITE_FLUSH(wx);
1588 }
1589 EXPORT_SYMBOL(wx_enable_sec_rx_path);
1590
wx_vlan_strip_control(struct wx * wx,bool enable)1591 static void wx_vlan_strip_control(struct wx *wx, bool enable)
1592 {
1593 int i, j;
1594
1595 for (i = 0; i < wx->num_rx_queues; i++) {
1596 struct wx_ring *ring = wx->rx_ring[i];
1597
1598 j = ring->reg_idx;
1599 wr32m(wx, WX_PX_RR_CFG(j), WX_PX_RR_CFG_VLAN,
1600 enable ? WX_PX_RR_CFG_VLAN : 0);
1601 }
1602 }
1603
wx_vlan_promisc_enable(struct wx * wx)1604 static void wx_vlan_promisc_enable(struct wx *wx)
1605 {
1606 u32 vlnctrl, i, vind, bits, reg_idx;
1607
1608 vlnctrl = rd32(wx, WX_PSR_VLAN_CTL);
1609 if (test_bit(WX_FLAG_VMDQ_ENABLED, wx->flags)) {
1610 /* we need to keep the VLAN filter on in SRIOV */
1611 vlnctrl |= WX_PSR_VLAN_CTL_VFE;
1612 wr32(wx, WX_PSR_VLAN_CTL, vlnctrl);
1613 } else {
1614 vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1615 wr32(wx, WX_PSR_VLAN_CTL, vlnctrl);
1616 return;
1617 }
1618 /* We are already in VLAN promisc, nothing to do */
1619 if (test_bit(WX_FLAG_VLAN_PROMISC, wx->flags))
1620 return;
1621 /* Set flag so we don't redo unnecessary work */
1622 set_bit(WX_FLAG_VLAN_PROMISC, wx->flags);
1623 /* Add PF to all active pools */
1624 for (i = WX_PSR_VLAN_SWC_ENTRIES; --i;) {
1625 wr32(wx, WX_PSR_VLAN_SWC_IDX, i);
1626 vind = WX_VF_IND_SHIFT(VMDQ_P(0));
1627 reg_idx = WX_VF_REG_OFFSET(VMDQ_P(0));
1628 bits = rd32(wx, WX_PSR_VLAN_SWC_VM(reg_idx));
1629 bits |= BIT(vind);
1630 wr32(wx, WX_PSR_VLAN_SWC_VM(reg_idx), bits);
1631 }
1632 /* Set all bits in the VLAN filter table array */
1633 for (i = 0; i < wx->mac.vft_size; i++)
1634 wr32(wx, WX_PSR_VLAN_TBL(i), U32_MAX);
1635 }
1636
wx_scrub_vfta(struct wx * wx)1637 static void wx_scrub_vfta(struct wx *wx)
1638 {
1639 u32 i, vid, bits, vfta, vind, vlvf, reg_idx;
1640
1641 for (i = WX_PSR_VLAN_SWC_ENTRIES; --i;) {
1642 wr32(wx, WX_PSR_VLAN_SWC_IDX, i);
1643 vlvf = rd32(wx, WX_PSR_VLAN_SWC_IDX);
1644 /* pull VLAN ID from VLVF */
1645 vid = vlvf & ~WX_PSR_VLAN_SWC_VIEN;
1646 if (vlvf & WX_PSR_VLAN_SWC_VIEN) {
1647 /* if PF is part of this then continue */
1648 if (test_bit(vid, wx->active_vlans))
1649 continue;
1650 }
1651 /* remove PF from the pool */
1652 vind = WX_VF_IND_SHIFT(VMDQ_P(0));
1653 reg_idx = WX_VF_REG_OFFSET(VMDQ_P(0));
1654 bits = rd32(wx, WX_PSR_VLAN_SWC_VM(reg_idx));
1655 bits &= ~BIT(vind);
1656 wr32(wx, WX_PSR_VLAN_SWC_VM(reg_idx), bits);
1657 }
1658 /* extract values from vft_shadow and write back to VFTA */
1659 for (i = 0; i < wx->mac.vft_size; i++) {
1660 vfta = wx->mac.vft_shadow[i];
1661 wr32(wx, WX_PSR_VLAN_TBL(i), vfta);
1662 }
1663 }
1664
wx_vlan_promisc_disable(struct wx * wx)1665 static void wx_vlan_promisc_disable(struct wx *wx)
1666 {
1667 u32 vlnctrl;
1668
1669 /* configure vlan filtering */
1670 vlnctrl = rd32(wx, WX_PSR_VLAN_CTL);
1671 vlnctrl |= WX_PSR_VLAN_CTL_VFE;
1672 wr32(wx, WX_PSR_VLAN_CTL, vlnctrl);
1673 /* We are not in VLAN promisc, nothing to do */
1674 if (!test_bit(WX_FLAG_VLAN_PROMISC, wx->flags))
1675 return;
1676 /* Set flag so we don't redo unnecessary work */
1677 clear_bit(WX_FLAG_VLAN_PROMISC, wx->flags);
1678 wx_scrub_vfta(wx);
1679 }
1680
wx_set_rx_mode(struct net_device * netdev)1681 void wx_set_rx_mode(struct net_device *netdev)
1682 {
1683 struct wx *wx = netdev_priv(netdev);
1684 netdev_features_t features;
1685 u32 fctrl, vmolr, vlnctrl;
1686 int count;
1687
1688 features = netdev->features;
1689
1690 /* Check for Promiscuous and All Multicast modes */
1691 fctrl = rd32(wx, WX_PSR_CTL);
1692 fctrl &= ~(WX_PSR_CTL_UPE | WX_PSR_CTL_MPE);
1693 vmolr = rd32(wx, WX_PSR_VM_L2CTL(VMDQ_P(0)));
1694 vmolr &= ~(WX_PSR_VM_L2CTL_UPE |
1695 WX_PSR_VM_L2CTL_MPE |
1696 WX_PSR_VM_L2CTL_ROPE |
1697 WX_PSR_VM_L2CTL_ROMPE);
1698 vlnctrl = rd32(wx, WX_PSR_VLAN_CTL);
1699 vlnctrl &= ~(WX_PSR_VLAN_CTL_VFE | WX_PSR_VLAN_CTL_CFIEN);
1700
1701 /* set all bits that we expect to always be set */
1702 fctrl |= WX_PSR_CTL_BAM | WX_PSR_CTL_MFE;
1703 vmolr |= WX_PSR_VM_L2CTL_BAM |
1704 WX_PSR_VM_L2CTL_AUPE |
1705 WX_PSR_VM_L2CTL_VACC;
1706 vlnctrl |= WX_PSR_VLAN_CTL_VFE;
1707
1708 wx->addr_ctrl.user_set_promisc = false;
1709 if (netdev->flags & IFF_PROMISC) {
1710 wx->addr_ctrl.user_set_promisc = true;
1711 fctrl |= WX_PSR_CTL_UPE | WX_PSR_CTL_MPE;
1712 /* pf don't want packets routing to vf, so clear UPE */
1713 vmolr |= WX_PSR_VM_L2CTL_MPE;
1714 if (test_bit(WX_FLAG_VMDQ_ENABLED, wx->flags) &&
1715 test_bit(WX_FLAG_SRIOV_ENABLED, wx->flags))
1716 vlnctrl |= WX_PSR_VLAN_CTL_VFE;
1717 features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
1718 }
1719
1720 if (netdev->flags & IFF_ALLMULTI) {
1721 fctrl |= WX_PSR_CTL_MPE;
1722 vmolr |= WX_PSR_VM_L2CTL_MPE;
1723 }
1724
1725 if (netdev->features & NETIF_F_RXALL) {
1726 vmolr |= (WX_PSR_VM_L2CTL_UPE | WX_PSR_VM_L2CTL_MPE);
1727 vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1728 /* receive bad packets */
1729 wr32m(wx, WX_RSC_CTL,
1730 WX_RSC_CTL_SAVE_MAC_ERR,
1731 WX_RSC_CTL_SAVE_MAC_ERR);
1732 } else {
1733 vmolr |= WX_PSR_VM_L2CTL_ROPE | WX_PSR_VM_L2CTL_ROMPE;
1734 }
1735
1736 /* Write addresses to available RAR registers, if there is not
1737 * sufficient space to store all the addresses then enable
1738 * unicast promiscuous mode
1739 */
1740 count = wx_write_uc_addr_list(netdev, VMDQ_P(0));
1741 if (count < 0) {
1742 vmolr &= ~WX_PSR_VM_L2CTL_ROPE;
1743 vmolr |= WX_PSR_VM_L2CTL_UPE;
1744 }
1745
1746 /* Write addresses to the MTA, if the attempt fails
1747 * then we should just turn on promiscuous mode so
1748 * that we can at least receive multicast traffic
1749 */
1750 count = wx_write_mc_addr_list(netdev);
1751 if (count < 0) {
1752 vmolr &= ~WX_PSR_VM_L2CTL_ROMPE;
1753 vmolr |= WX_PSR_VM_L2CTL_MPE;
1754 }
1755
1756 wr32(wx, WX_PSR_VLAN_CTL, vlnctrl);
1757 wr32(wx, WX_PSR_CTL, fctrl);
1758 wr32(wx, WX_PSR_VM_L2CTL(VMDQ_P(0)), vmolr);
1759
1760 if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1761 (features & NETIF_F_HW_VLAN_STAG_RX))
1762 wx_vlan_strip_control(wx, true);
1763 else
1764 wx_vlan_strip_control(wx, false);
1765
1766 if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
1767 wx_vlan_promisc_disable(wx);
1768 else
1769 wx_vlan_promisc_enable(wx);
1770 }
1771 EXPORT_SYMBOL(wx_set_rx_mode);
1772
wx_set_rx_buffer_len(struct wx * wx)1773 static void wx_set_rx_buffer_len(struct wx *wx)
1774 {
1775 struct net_device *netdev = wx->netdev;
1776 u32 mhadd, max_frame;
1777
1778 max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
1779 /* adjust max frame to be at least the size of a standard frame */
1780 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
1781 max_frame = (ETH_FRAME_LEN + ETH_FCS_LEN);
1782
1783 mhadd = rd32(wx, WX_PSR_MAX_SZ);
1784 if (max_frame != mhadd)
1785 wr32(wx, WX_PSR_MAX_SZ, max_frame);
1786 }
1787
1788 /**
1789 * wx_change_mtu - Change the Maximum Transfer Unit
1790 * @netdev: network interface device structure
1791 * @new_mtu: new value for maximum frame size
1792 *
1793 * Returns 0 on success, negative on failure
1794 **/
wx_change_mtu(struct net_device * netdev,int new_mtu)1795 int wx_change_mtu(struct net_device *netdev, int new_mtu)
1796 {
1797 struct wx *wx = netdev_priv(netdev);
1798
1799 WRITE_ONCE(netdev->mtu, new_mtu);
1800 wx_set_rx_buffer_len(wx);
1801
1802 return 0;
1803 }
1804 EXPORT_SYMBOL(wx_change_mtu);
1805
1806 /* Disable the specified rx queue */
wx_disable_rx_queue(struct wx * wx,struct wx_ring * ring)1807 void wx_disable_rx_queue(struct wx *wx, struct wx_ring *ring)
1808 {
1809 u8 reg_idx = ring->reg_idx;
1810 u32 rxdctl;
1811 int ret;
1812
1813 /* write value back with RRCFG.EN bit cleared */
1814 wr32m(wx, WX_PX_RR_CFG(reg_idx),
1815 WX_PX_RR_CFG_RR_EN, 0);
1816
1817 /* the hardware may take up to 100us to really disable the rx queue */
1818 ret = read_poll_timeout(rd32, rxdctl, !(rxdctl & WX_PX_RR_CFG_RR_EN),
1819 10, 100, true, wx, WX_PX_RR_CFG(reg_idx));
1820
1821 if (ret == -ETIMEDOUT) {
1822 /* Just for information */
1823 wx_err(wx,
1824 "RRCFG.EN on Rx queue %d not cleared within the polling period\n",
1825 reg_idx);
1826 }
1827 }
1828 EXPORT_SYMBOL(wx_disable_rx_queue);
1829
wx_enable_rx_queue(struct wx * wx,struct wx_ring * ring)1830 static void wx_enable_rx_queue(struct wx *wx, struct wx_ring *ring)
1831 {
1832 u8 reg_idx = ring->reg_idx;
1833 u32 rxdctl;
1834 int ret;
1835
1836 ret = read_poll_timeout(rd32, rxdctl, rxdctl & WX_PX_RR_CFG_RR_EN,
1837 1000, 10000, true, wx, WX_PX_RR_CFG(reg_idx));
1838
1839 if (ret == -ETIMEDOUT) {
1840 /* Just for information */
1841 wx_err(wx,
1842 "RRCFG.EN on Rx queue %d not set within the polling period\n",
1843 reg_idx);
1844 }
1845 }
1846
wx_configure_srrctl(struct wx * wx,struct wx_ring * rx_ring)1847 static void wx_configure_srrctl(struct wx *wx,
1848 struct wx_ring *rx_ring)
1849 {
1850 u16 reg_idx = rx_ring->reg_idx;
1851 u32 srrctl;
1852
1853 srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1854 srrctl &= ~(WX_PX_RR_CFG_RR_HDR_SZ |
1855 WX_PX_RR_CFG_RR_BUF_SZ |
1856 WX_PX_RR_CFG_SPLIT_MODE);
1857 /* configure header buffer length, needed for RSC */
1858 srrctl |= WX_RXBUFFER_256 << WX_PX_RR_CFG_BHDRSIZE_SHIFT;
1859
1860 /* configure the packet buffer length */
1861 srrctl |= WX_RX_BUFSZ >> WX_PX_RR_CFG_BSIZEPKT_SHIFT;
1862
1863 wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
1864 }
1865
wx_configure_tx_ring(struct wx * wx,struct wx_ring * ring)1866 static void wx_configure_tx_ring(struct wx *wx,
1867 struct wx_ring *ring)
1868 {
1869 u32 txdctl = WX_PX_TR_CFG_ENABLE;
1870 u8 reg_idx = ring->reg_idx;
1871 u64 tdba = ring->dma;
1872 int ret;
1873
1874 /* disable queue to avoid issues while updating state */
1875 wr32(wx, WX_PX_TR_CFG(reg_idx), WX_PX_TR_CFG_SWFLSH);
1876 WX_WRITE_FLUSH(wx);
1877
1878 wr32(wx, WX_PX_TR_BAL(reg_idx), tdba & DMA_BIT_MASK(32));
1879 wr32(wx, WX_PX_TR_BAH(reg_idx), upper_32_bits(tdba));
1880
1881 /* reset head and tail pointers */
1882 wr32(wx, WX_PX_TR_RP(reg_idx), 0);
1883 wr32(wx, WX_PX_TR_WP(reg_idx), 0);
1884 ring->tail = wx->hw_addr + WX_PX_TR_WP(reg_idx);
1885
1886 if (ring->count < WX_MAX_TXD)
1887 txdctl |= ring->count / 128 << WX_PX_TR_CFG_TR_SIZE_SHIFT;
1888 txdctl |= 0x20 << WX_PX_TR_CFG_WTHRESH_SHIFT;
1889
1890 ring->atr_count = 0;
1891 if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags) &&
1892 test_bit(WX_FLAG_FDIR_HASH, wx->flags))
1893 ring->atr_sample_rate = wx->atr_sample_rate;
1894 else
1895 ring->atr_sample_rate = 0;
1896
1897 /* reinitialize tx_buffer_info */
1898 memset(ring->tx_buffer_info, 0,
1899 sizeof(struct wx_tx_buffer) * ring->count);
1900
1901 /* enable queue */
1902 wr32(wx, WX_PX_TR_CFG(reg_idx), txdctl);
1903
1904 /* poll to verify queue is enabled */
1905 ret = read_poll_timeout(rd32, txdctl, txdctl & WX_PX_TR_CFG_ENABLE,
1906 1000, 10000, true, wx, WX_PX_TR_CFG(reg_idx));
1907 if (ret == -ETIMEDOUT)
1908 wx_err(wx, "Could not enable Tx Queue %d\n", reg_idx);
1909 }
1910
wx_configure_rx_ring(struct wx * wx,struct wx_ring * ring)1911 static void wx_configure_rx_ring(struct wx *wx,
1912 struct wx_ring *ring)
1913 {
1914 u16 reg_idx = ring->reg_idx;
1915 union wx_rx_desc *rx_desc;
1916 u64 rdba = ring->dma;
1917 u32 rxdctl;
1918
1919 /* disable queue to avoid issues while updating state */
1920 rxdctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1921 wx_disable_rx_queue(wx, ring);
1922
1923 wr32(wx, WX_PX_RR_BAL(reg_idx), rdba & DMA_BIT_MASK(32));
1924 wr32(wx, WX_PX_RR_BAH(reg_idx), upper_32_bits(rdba));
1925
1926 if (ring->count == WX_MAX_RXD)
1927 rxdctl |= 0 << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1928 else
1929 rxdctl |= (ring->count / 128) << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1930
1931 rxdctl |= 0x1 << WX_PX_RR_CFG_RR_THER_SHIFT;
1932 wr32(wx, WX_PX_RR_CFG(reg_idx), rxdctl);
1933
1934 /* reset head and tail pointers */
1935 wr32(wx, WX_PX_RR_RP(reg_idx), 0);
1936 wr32(wx, WX_PX_RR_WP(reg_idx), 0);
1937 ring->tail = wx->hw_addr + WX_PX_RR_WP(reg_idx);
1938
1939 wx_configure_srrctl(wx, ring);
1940
1941 /* initialize rx_buffer_info */
1942 memset(ring->rx_buffer_info, 0,
1943 sizeof(struct wx_rx_buffer) * ring->count);
1944
1945 /* initialize Rx descriptor 0 */
1946 rx_desc = WX_RX_DESC(ring, 0);
1947 rx_desc->wb.upper.length = 0;
1948
1949 /* enable receive descriptor ring */
1950 wr32m(wx, WX_PX_RR_CFG(reg_idx),
1951 WX_PX_RR_CFG_RR_EN, WX_PX_RR_CFG_RR_EN);
1952
1953 wx_enable_rx_queue(wx, ring);
1954 wx_alloc_rx_buffers(ring, wx_desc_unused(ring));
1955 }
1956
1957 /**
1958 * wx_configure_tx - Configure Transmit Unit after Reset
1959 * @wx: pointer to private structure
1960 *
1961 * Configure the Tx unit of the MAC after a reset.
1962 **/
wx_configure_tx(struct wx * wx)1963 static void wx_configure_tx(struct wx *wx)
1964 {
1965 u32 i;
1966
1967 /* TDM_CTL.TE must be before Tx queues are enabled */
1968 wr32m(wx, WX_TDM_CTL,
1969 WX_TDM_CTL_TE, WX_TDM_CTL_TE);
1970
1971 /* Setup the HW Tx Head and Tail descriptor pointers */
1972 for (i = 0; i < wx->num_tx_queues; i++)
1973 wx_configure_tx_ring(wx, wx->tx_ring[i]);
1974
1975 wr32m(wx, WX_TSC_BUF_AE, WX_TSC_BUF_AE_THR, 0x10);
1976
1977 if (wx->mac.type == wx_mac_em)
1978 wr32m(wx, WX_TSC_CTL, WX_TSC_CTL_TX_DIS | WX_TSC_CTL_TSEC_DIS, 0x1);
1979
1980 /* enable mac transmitter */
1981 wr32m(wx, WX_MAC_TX_CFG,
1982 WX_MAC_TX_CFG_TE, WX_MAC_TX_CFG_TE);
1983 }
1984
wx_restore_vlan(struct wx * wx)1985 static void wx_restore_vlan(struct wx *wx)
1986 {
1987 u16 vid = 1;
1988
1989 wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), 0);
1990
1991 for_each_set_bit_from(vid, wx->active_vlans, VLAN_N_VID)
1992 wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), vid);
1993 }
1994
wx_store_reta(struct wx * wx)1995 static void wx_store_reta(struct wx *wx)
1996 {
1997 u8 *indir_tbl = wx->rss_indir_tbl;
1998 u32 reta = 0;
1999 u32 i;
2000
2001 /* Fill out the redirection table as follows:
2002 * - 8 bit wide entries containing 4 bit RSS index
2003 */
2004 for (i = 0; i < WX_MAX_RETA_ENTRIES; i++) {
2005 reta |= indir_tbl[i] << (i & 0x3) * 8;
2006 if ((i & 3) == 3) {
2007 wr32(wx, WX_RDB_RSSTBL(i >> 2), reta);
2008 reta = 0;
2009 }
2010 }
2011 }
2012
wx_setup_reta(struct wx * wx)2013 static void wx_setup_reta(struct wx *wx)
2014 {
2015 u16 rss_i = wx->ring_feature[RING_F_RSS].indices;
2016 u32 random_key_size = WX_RSS_KEY_SIZE / 4;
2017 u32 i, j;
2018
2019 if (test_bit(WX_FLAG_SRIOV_ENABLED, wx->flags)) {
2020 if (wx->mac.type == wx_mac_em)
2021 rss_i = 1;
2022 else
2023 rss_i = rss_i < 4 ? 4 : rss_i;
2024 }
2025
2026 /* Fill out hash function seeds */
2027 for (i = 0; i < random_key_size; i++)
2028 wr32(wx, WX_RDB_RSSRK(i), wx->rss_key[i]);
2029
2030 /* Fill out redirection table */
2031 memset(wx->rss_indir_tbl, 0, sizeof(wx->rss_indir_tbl));
2032
2033 for (i = 0, j = 0; i < WX_MAX_RETA_ENTRIES; i++, j++) {
2034 if (j == rss_i)
2035 j = 0;
2036
2037 wx->rss_indir_tbl[i] = j;
2038 }
2039
2040 wx_store_reta(wx);
2041 }
2042
2043 #define WX_RDB_RSS_PL_2 FIELD_PREP(GENMASK(31, 29), 1)
2044 #define WX_RDB_RSS_PL_4 FIELD_PREP(GENMASK(31, 29), 2)
wx_setup_psrtype(struct wx * wx)2045 static void wx_setup_psrtype(struct wx *wx)
2046 {
2047 int rss_i = wx->ring_feature[RING_F_RSS].indices;
2048 u32 psrtype;
2049 int pool;
2050
2051 psrtype = WX_RDB_PL_CFG_L4HDR |
2052 WX_RDB_PL_CFG_L3HDR |
2053 WX_RDB_PL_CFG_L2HDR |
2054 WX_RDB_PL_CFG_TUN_OUTL2HDR |
2055 WX_RDB_PL_CFG_TUN_TUNHDR;
2056
2057 if (!test_bit(WX_FLAG_MULTI_64_FUNC, wx->flags)) {
2058 for_each_set_bit(pool, &wx->fwd_bitmask, 8)
2059 wr32(wx, WX_RDB_PL_CFG(VMDQ_P(pool)), psrtype);
2060 } else {
2061 if (rss_i > 3)
2062 psrtype |= WX_RDB_RSS_PL_4;
2063 else if (rss_i > 1)
2064 psrtype |= WX_RDB_RSS_PL_2;
2065
2066 for_each_set_bit(pool, &wx->fwd_bitmask, 32)
2067 wr32(wx, WX_RDB_PL_CFG(VMDQ_P(pool)), psrtype);
2068 }
2069 }
2070
wx_setup_mrqc(struct wx * wx)2071 static void wx_setup_mrqc(struct wx *wx)
2072 {
2073 u32 rss_field = 0;
2074
2075 /* VT, and RSS do not coexist at the same time */
2076 if (test_bit(WX_FLAG_VMDQ_ENABLED, wx->flags))
2077 return;
2078
2079 /* Disable indicating checksum in descriptor, enables RSS hash */
2080 wr32m(wx, WX_PSR_CTL, WX_PSR_CTL_PCSD, WX_PSR_CTL_PCSD);
2081
2082 /* Perform hash on these packet types */
2083 rss_field = WX_RDB_RA_CTL_RSS_IPV4 |
2084 WX_RDB_RA_CTL_RSS_IPV4_TCP |
2085 WX_RDB_RA_CTL_RSS_IPV4_UDP |
2086 WX_RDB_RA_CTL_RSS_IPV6 |
2087 WX_RDB_RA_CTL_RSS_IPV6_TCP |
2088 WX_RDB_RA_CTL_RSS_IPV6_UDP;
2089
2090 netdev_rss_key_fill(wx->rss_key, sizeof(wx->rss_key));
2091
2092 wx_setup_reta(wx);
2093
2094 if (wx->rss_enabled)
2095 rss_field |= WX_RDB_RA_CTL_RSS_EN;
2096
2097 wr32(wx, WX_RDB_RA_CTL, rss_field);
2098 }
2099
2100 /**
2101 * wx_configure_rx - Configure Receive Unit after Reset
2102 * @wx: pointer to private structure
2103 *
2104 * Configure the Rx unit of the MAC after a reset.
2105 **/
wx_configure_rx(struct wx * wx)2106 void wx_configure_rx(struct wx *wx)
2107 {
2108 int ret;
2109 u32 i;
2110
2111 wx_disable_rx(wx);
2112 wx_setup_psrtype(wx);
2113
2114 /* enable hw crc stripping */
2115 wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_CRC_STRIP, WX_RSC_CTL_CRC_STRIP);
2116
2117 if (test_bit(WX_FLAG_RSC_CAPABLE, wx->flags)) {
2118 u32 psrctl;
2119
2120 /* RSC Setup */
2121 psrctl = rd32(wx, WX_PSR_CTL);
2122 psrctl |= WX_PSR_CTL_RSC_ACK; /* Disable RSC for ACK packets */
2123 psrctl |= WX_PSR_CTL_RSC_DIS;
2124 wr32(wx, WX_PSR_CTL, psrctl);
2125 }
2126
2127 wx_setup_mrqc(wx);
2128
2129 /* set_rx_buffer_len must be called before ring initialization */
2130 wx_set_rx_buffer_len(wx);
2131
2132 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2133 * the Base and Length of the Rx Descriptor Ring
2134 */
2135 for (i = 0; i < wx->num_rx_queues; i++)
2136 wx_configure_rx_ring(wx, wx->rx_ring[i]);
2137
2138 /* Enable all receives, disable security engine prior to block traffic */
2139 ret = wx_disable_sec_rx_path(wx);
2140 if (ret < 0)
2141 wx_err(wx, "The register status is abnormal, please check device.");
2142
2143 wx_enable_rx(wx);
2144 wx_enable_sec_rx_path(wx);
2145 }
2146 EXPORT_SYMBOL(wx_configure_rx);
2147
wx_configure_isb(struct wx * wx)2148 static void wx_configure_isb(struct wx *wx)
2149 {
2150 /* set ISB Address */
2151 wr32(wx, WX_PX_ISB_ADDR_L, wx->isb_dma & DMA_BIT_MASK(32));
2152 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
2153 wr32(wx, WX_PX_ISB_ADDR_H, upper_32_bits(wx->isb_dma));
2154 }
2155
wx_configure(struct wx * wx)2156 void wx_configure(struct wx *wx)
2157 {
2158 wx_set_rxpba(wx);
2159 wx_pbthresh_setup(wx);
2160 wx_configure_virtualization(wx);
2161 wx_configure_port(wx);
2162
2163 wx_set_rx_mode(wx->netdev);
2164 wx_restore_vlan(wx);
2165
2166 if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags))
2167 wx->configure_fdir(wx);
2168
2169 wx_configure_tx(wx);
2170 wx_configure_rx(wx);
2171 wx_configure_isb(wx);
2172 }
2173 EXPORT_SYMBOL(wx_configure);
2174
2175 /**
2176 * wx_disable_pcie_master - Disable PCI-express master access
2177 * @wx: pointer to hardware structure
2178 *
2179 * Disables PCI-Express master access and verifies there are no pending
2180 * requests.
2181 **/
wx_disable_pcie_master(struct wx * wx)2182 int wx_disable_pcie_master(struct wx *wx)
2183 {
2184 int status = 0;
2185 u32 val;
2186
2187 /* Always set this bit to ensure any future transactions are blocked */
2188 pci_clear_master(wx->pdev);
2189
2190 /* Exit if master requests are blocked */
2191 if (!(rd32(wx, WX_PX_TRANSACTION_PENDING)))
2192 return 0;
2193
2194 /* Poll for master request bit to clear */
2195 status = read_poll_timeout(rd32, val, !val, 100, WX_PCI_MASTER_DISABLE_TIMEOUT,
2196 false, wx, WX_PX_TRANSACTION_PENDING);
2197 if (status < 0)
2198 wx_err(wx, "PCIe transaction pending bit did not clear.\n");
2199
2200 return status;
2201 }
2202 EXPORT_SYMBOL(wx_disable_pcie_master);
2203
2204 /**
2205 * wx_stop_adapter - Generic stop Tx/Rx units
2206 * @wx: pointer to hardware structure
2207 *
2208 * Sets the adapter_stopped flag within wx_hw struct. Clears interrupts,
2209 * disables transmit and receive units. The adapter_stopped flag is used by
2210 * the shared code and drivers to determine if the adapter is in a stopped
2211 * state and should not touch the hardware.
2212 **/
wx_stop_adapter(struct wx * wx)2213 int wx_stop_adapter(struct wx *wx)
2214 {
2215 u16 i;
2216
2217 /* Set the adapter_stopped flag so other driver functions stop touching
2218 * the hardware
2219 */
2220 wx->adapter_stopped = true;
2221
2222 /* Disable the receive unit */
2223 wx_disable_rx(wx);
2224
2225 /* Set interrupt mask to stop interrupts from being generated */
2226 wx_intr_disable(wx, WX_INTR_ALL);
2227
2228 /* Clear any pending interrupts, flush previous writes */
2229 wr32(wx, WX_PX_MISC_IC, 0xffffffff);
2230 wr32(wx, WX_BME_CTL, 0x3);
2231
2232 /* Disable the transmit unit. Each queue must be disabled. */
2233 for (i = 0; i < wx->mac.max_tx_queues; i++) {
2234 wr32m(wx, WX_PX_TR_CFG(i),
2235 WX_PX_TR_CFG_SWFLSH | WX_PX_TR_CFG_ENABLE,
2236 WX_PX_TR_CFG_SWFLSH);
2237 }
2238
2239 /* Disable the receive unit by stopping each queue */
2240 for (i = 0; i < wx->mac.max_rx_queues; i++) {
2241 wr32m(wx, WX_PX_RR_CFG(i),
2242 WX_PX_RR_CFG_RR_EN, 0);
2243 }
2244
2245 /* flush all queues disables */
2246 WX_WRITE_FLUSH(wx);
2247
2248 /* Prevent the PCI-E bus from hanging by disabling PCI-E master
2249 * access and verify no pending requests
2250 */
2251 return wx_disable_pcie_master(wx);
2252 }
2253 EXPORT_SYMBOL(wx_stop_adapter);
2254
wx_reset_mac(struct wx * wx)2255 void wx_reset_mac(struct wx *wx)
2256 {
2257 /* receive packets that size > 2048 */
2258 wr32m(wx, WX_MAC_RX_CFG, WX_MAC_RX_CFG_JE, WX_MAC_RX_CFG_JE);
2259
2260 /* clear counters on read */
2261 wr32m(wx, WX_MMC_CONTROL,
2262 WX_MMC_CONTROL_RSTONRD, WX_MMC_CONTROL_RSTONRD);
2263
2264 wr32m(wx, WX_MAC_RX_FLOW_CTRL,
2265 WX_MAC_RX_FLOW_CTRL_RFE, WX_MAC_RX_FLOW_CTRL_RFE);
2266
2267 wr32(wx, WX_MAC_PKT_FLT, WX_MAC_PKT_FLT_PR);
2268 }
2269 EXPORT_SYMBOL(wx_reset_mac);
2270
wx_reset_misc(struct wx * wx)2271 void wx_reset_misc(struct wx *wx)
2272 {
2273 int i;
2274
2275 wx_reset_mac(wx);
2276
2277 wr32m(wx, WX_MIS_RST_ST,
2278 WX_MIS_RST_ST_RST_INIT, 0x1E00);
2279
2280 /* errata 4: initialize mng flex tbl and wakeup flex tbl*/
2281 wr32(wx, WX_PSR_MNG_FLEX_SEL, 0);
2282 for (i = 0; i < 16; i++) {
2283 wr32(wx, WX_PSR_MNG_FLEX_DW_L(i), 0);
2284 wr32(wx, WX_PSR_MNG_FLEX_DW_H(i), 0);
2285 wr32(wx, WX_PSR_MNG_FLEX_MSK(i), 0);
2286 }
2287 wr32(wx, WX_PSR_LAN_FLEX_SEL, 0);
2288 for (i = 0; i < 16; i++) {
2289 wr32(wx, WX_PSR_LAN_FLEX_DW_L(i), 0);
2290 wr32(wx, WX_PSR_LAN_FLEX_DW_H(i), 0);
2291 wr32(wx, WX_PSR_LAN_FLEX_MSK(i), 0);
2292 }
2293
2294 /* set pause frame dst mac addr */
2295 wr32(wx, WX_RDB_PFCMACDAL, 0xC2000001);
2296 wr32(wx, WX_RDB_PFCMACDAH, 0x0180);
2297 }
2298 EXPORT_SYMBOL(wx_reset_misc);
2299
2300 /**
2301 * wx_get_pcie_msix_counts - Gets MSI-X vector count
2302 * @wx: pointer to hardware structure
2303 * @msix_count: number of MSI interrupts that can be obtained
2304 * @max_msix_count: number of MSI interrupts that mac need
2305 *
2306 * Read PCIe configuration space, and get the MSI-X vector count from
2307 * the capabilities table.
2308 **/
wx_get_pcie_msix_counts(struct wx * wx,u16 * msix_count,u16 max_msix_count)2309 int wx_get_pcie_msix_counts(struct wx *wx, u16 *msix_count, u16 max_msix_count)
2310 {
2311 struct pci_dev *pdev = wx->pdev;
2312 struct device *dev = &pdev->dev;
2313 int pos;
2314
2315 *msix_count = 1;
2316 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
2317 if (!pos) {
2318 dev_err(dev, "Unable to find MSI-X Capabilities\n");
2319 return -EINVAL;
2320 }
2321 pci_read_config_word(pdev,
2322 pos + PCI_MSIX_FLAGS,
2323 msix_count);
2324 *msix_count &= WX_PCIE_MSIX_TBL_SZ_MASK;
2325 /* MSI-X count is zero-based in HW */
2326 *msix_count += 1;
2327
2328 if (*msix_count > max_msix_count)
2329 *msix_count = max_msix_count;
2330
2331 return 0;
2332 }
2333 EXPORT_SYMBOL(wx_get_pcie_msix_counts);
2334
2335 /**
2336 * wx_init_rss_key - Initialize wx RSS key
2337 * @wx: device handle
2338 *
2339 * Allocates and initializes the RSS key if it is not allocated.
2340 **/
wx_init_rss_key(struct wx * wx)2341 static int wx_init_rss_key(struct wx *wx)
2342 {
2343 u32 *rss_key;
2344
2345 if (!wx->rss_key) {
2346 rss_key = kzalloc(WX_RSS_KEY_SIZE, GFP_KERNEL);
2347 if (unlikely(!rss_key))
2348 return -ENOMEM;
2349
2350 netdev_rss_key_fill(rss_key, WX_RSS_KEY_SIZE);
2351 wx->rss_key = rss_key;
2352 }
2353
2354 return 0;
2355 }
2356
wx_sw_init(struct wx * wx)2357 int wx_sw_init(struct wx *wx)
2358 {
2359 struct pci_dev *pdev = wx->pdev;
2360 u32 ssid = 0;
2361 int err = 0;
2362
2363 wx->vendor_id = pdev->vendor;
2364 wx->device_id = pdev->device;
2365 wx->revision_id = pdev->revision;
2366 wx->oem_svid = pdev->subsystem_vendor;
2367 wx->oem_ssid = pdev->subsystem_device;
2368 wx->bus.device = PCI_SLOT(pdev->devfn);
2369 wx->bus.func = PCI_FUNC(pdev->devfn);
2370
2371 if (wx->oem_svid == PCI_VENDOR_ID_WANGXUN) {
2372 wx->subsystem_vendor_id = pdev->subsystem_vendor;
2373 wx->subsystem_device_id = pdev->subsystem_device;
2374 } else {
2375 err = wx_flash_read_dword(wx, 0xfffdc, &ssid);
2376 if (err < 0) {
2377 wx_err(wx, "read of internal subsystem device id failed\n");
2378 return err;
2379 }
2380
2381 wx->subsystem_device_id = swab16((u16)ssid);
2382 }
2383
2384 err = wx_init_rss_key(wx);
2385 if (err < 0) {
2386 wx_err(wx, "rss key allocation failed\n");
2387 return err;
2388 }
2389
2390 wx->mac_table = kcalloc(wx->mac.num_rar_entries,
2391 sizeof(struct wx_mac_addr),
2392 GFP_KERNEL);
2393 if (!wx->mac_table) {
2394 wx_err(wx, "mac_table allocation failed\n");
2395 kfree(wx->rss_key);
2396 return -ENOMEM;
2397 }
2398
2399 bitmap_zero(wx->state, WX_STATE_NBITS);
2400 bitmap_zero(wx->flags, WX_PF_FLAGS_NBITS);
2401 wx->misc_irq_domain = false;
2402
2403 return 0;
2404 }
2405 EXPORT_SYMBOL(wx_sw_init);
2406
2407 /**
2408 * wx_find_vlvf_slot - find the vlanid or the first empty slot
2409 * @wx: pointer to hardware structure
2410 * @vlan: VLAN id to write to VLAN filter
2411 *
2412 * return the VLVF index where this VLAN id should be placed
2413 *
2414 **/
wx_find_vlvf_slot(struct wx * wx,u32 vlan)2415 static int wx_find_vlvf_slot(struct wx *wx, u32 vlan)
2416 {
2417 u32 bits = 0, first_empty_slot = 0;
2418 int regindex;
2419
2420 /* short cut the special case */
2421 if (vlan == 0)
2422 return 0;
2423
2424 /* Search for the vlan id in the VLVF entries. Save off the first empty
2425 * slot found along the way
2426 */
2427 for (regindex = 1; regindex < WX_PSR_VLAN_SWC_ENTRIES; regindex++) {
2428 wr32(wx, WX_PSR_VLAN_SWC_IDX, regindex);
2429 bits = rd32(wx, WX_PSR_VLAN_SWC);
2430 if (!bits && !(first_empty_slot))
2431 first_empty_slot = regindex;
2432 else if ((bits & 0x0FFF) == vlan)
2433 break;
2434 }
2435
2436 if (regindex >= WX_PSR_VLAN_SWC_ENTRIES) {
2437 if (first_empty_slot)
2438 regindex = first_empty_slot;
2439 else
2440 regindex = -ENOMEM;
2441 }
2442
2443 return regindex;
2444 }
2445
2446 /**
2447 * wx_set_vlvf - Set VLAN Pool Filter
2448 * @wx: pointer to hardware structure
2449 * @vlan: VLAN id to write to VLAN filter
2450 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
2451 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
2452 * @vfta_changed: pointer to boolean flag which indicates whether VFTA
2453 * should be changed
2454 *
2455 * Turn on/off specified bit in VLVF table.
2456 **/
wx_set_vlvf(struct wx * wx,u32 vlan,u32 vind,bool vlan_on,bool * vfta_changed)2457 static int wx_set_vlvf(struct wx *wx, u32 vlan, u32 vind, bool vlan_on,
2458 bool *vfta_changed)
2459 {
2460 int vlvf_index;
2461 u32 vt, bits;
2462
2463 /* If VT Mode is set
2464 * Either vlan_on
2465 * make sure the vlan is in VLVF
2466 * set the vind bit in the matching VLVFB
2467 * Or !vlan_on
2468 * clear the pool bit and possibly the vind
2469 */
2470 vt = rd32(wx, WX_CFG_PORT_CTL);
2471 if (!(vt & WX_CFG_PORT_CTL_NUM_VT_MASK))
2472 return 0;
2473
2474 vlvf_index = wx_find_vlvf_slot(wx, vlan);
2475 if (vlvf_index < 0)
2476 return vlvf_index;
2477
2478 wr32(wx, WX_PSR_VLAN_SWC_IDX, vlvf_index);
2479 if (vlan_on) {
2480 /* set the pool bit */
2481 if (vind < 32) {
2482 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
2483 bits |= (1 << vind);
2484 wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
2485 } else {
2486 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
2487 bits |= (1 << (vind - 32));
2488 wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
2489 }
2490 } else {
2491 /* clear the pool bit */
2492 if (vind < 32) {
2493 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
2494 bits &= ~(1 << vind);
2495 wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
2496 bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_H);
2497 } else {
2498 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
2499 bits &= ~(1 << (vind - 32));
2500 wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
2501 bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_L);
2502 }
2503 }
2504
2505 if (bits) {
2506 wr32(wx, WX_PSR_VLAN_SWC, (WX_PSR_VLAN_SWC_VIEN | vlan));
2507 if (!vlan_on && vfta_changed)
2508 *vfta_changed = false;
2509 } else {
2510 wr32(wx, WX_PSR_VLAN_SWC, 0);
2511 }
2512
2513 return 0;
2514 }
2515
2516 /**
2517 * wx_set_vfta - Set VLAN filter table
2518 * @wx: pointer to hardware structure
2519 * @vlan: VLAN id to write to VLAN filter
2520 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
2521 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
2522 *
2523 * Turn on/off specified VLAN in the VLAN filter table.
2524 **/
wx_set_vfta(struct wx * wx,u32 vlan,u32 vind,bool vlan_on)2525 int wx_set_vfta(struct wx *wx, u32 vlan, u32 vind, bool vlan_on)
2526 {
2527 u32 bitindex, vfta, targetbit;
2528 bool vfta_changed = false;
2529 int regindex, ret;
2530
2531 /* this is a 2 part operation - first the VFTA, then the
2532 * VLVF and VLVFB if VT Mode is set
2533 * We don't write the VFTA until we know the VLVF part succeeded.
2534 */
2535
2536 /* Part 1
2537 * The VFTA is a bitstring made up of 128 32-bit registers
2538 * that enable the particular VLAN id, much like the MTA:
2539 * bits[11-5]: which register
2540 * bits[4-0]: which bit in the register
2541 */
2542 regindex = (vlan >> 5) & 0x7F;
2543 bitindex = vlan & 0x1F;
2544 targetbit = (1 << bitindex);
2545 /* errata 5 */
2546 vfta = wx->mac.vft_shadow[regindex];
2547 if (vlan_on) {
2548 if (!(vfta & targetbit)) {
2549 vfta |= targetbit;
2550 vfta_changed = true;
2551 }
2552 } else {
2553 if ((vfta & targetbit)) {
2554 vfta &= ~targetbit;
2555 vfta_changed = true;
2556 }
2557 }
2558 /* Part 2
2559 * Call wx_set_vlvf to set VLVFB and VLVF
2560 */
2561 ret = wx_set_vlvf(wx, vlan, vind, vlan_on, &vfta_changed);
2562 if (ret != 0)
2563 return ret;
2564
2565 if (vfta_changed)
2566 wr32(wx, WX_PSR_VLAN_TBL(regindex), vfta);
2567 wx->mac.vft_shadow[regindex] = vfta;
2568
2569 return 0;
2570 }
2571
2572 /**
2573 * wx_clear_vfta - Clear VLAN filter table
2574 * @wx: pointer to hardware structure
2575 *
2576 * Clears the VLAN filer table, and the VMDq index associated with the filter
2577 **/
wx_clear_vfta(struct wx * wx)2578 static void wx_clear_vfta(struct wx *wx)
2579 {
2580 u32 offset;
2581
2582 for (offset = 0; offset < wx->mac.vft_size; offset++) {
2583 wr32(wx, WX_PSR_VLAN_TBL(offset), 0);
2584 wx->mac.vft_shadow[offset] = 0;
2585 }
2586
2587 for (offset = 0; offset < WX_PSR_VLAN_SWC_ENTRIES; offset++) {
2588 wr32(wx, WX_PSR_VLAN_SWC_IDX, offset);
2589 wr32(wx, WX_PSR_VLAN_SWC, 0);
2590 wr32(wx, WX_PSR_VLAN_SWC_VM_L, 0);
2591 wr32(wx, WX_PSR_VLAN_SWC_VM_H, 0);
2592 }
2593 }
2594
wx_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)2595 int wx_vlan_rx_add_vid(struct net_device *netdev,
2596 __be16 proto, u16 vid)
2597 {
2598 struct wx *wx = netdev_priv(netdev);
2599
2600 /* add VID to filter table */
2601 wx_set_vfta(wx, vid, VMDQ_P(0), true);
2602 set_bit(vid, wx->active_vlans);
2603
2604 return 0;
2605 }
2606 EXPORT_SYMBOL(wx_vlan_rx_add_vid);
2607
wx_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)2608 int wx_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
2609 {
2610 struct wx *wx = netdev_priv(netdev);
2611
2612 /* remove VID from filter table */
2613 if (vid)
2614 wx_set_vfta(wx, vid, VMDQ_P(0), false);
2615 clear_bit(vid, wx->active_vlans);
2616
2617 return 0;
2618 }
2619 EXPORT_SYMBOL(wx_vlan_rx_kill_vid);
2620
wx_enable_rx_drop(struct wx * wx,struct wx_ring * ring)2621 static void wx_enable_rx_drop(struct wx *wx, struct wx_ring *ring)
2622 {
2623 u16 reg_idx = ring->reg_idx;
2624 u32 srrctl;
2625
2626 srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
2627 srrctl |= WX_PX_RR_CFG_DROP_EN;
2628
2629 wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
2630 }
2631
wx_disable_rx_drop(struct wx * wx,struct wx_ring * ring)2632 static void wx_disable_rx_drop(struct wx *wx, struct wx_ring *ring)
2633 {
2634 u16 reg_idx = ring->reg_idx;
2635 u32 srrctl;
2636
2637 srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
2638 srrctl &= ~WX_PX_RR_CFG_DROP_EN;
2639
2640 wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
2641 }
2642
wx_fc_enable(struct wx * wx,bool tx_pause,bool rx_pause)2643 int wx_fc_enable(struct wx *wx, bool tx_pause, bool rx_pause)
2644 {
2645 u16 pause_time = WX_DEFAULT_FCPAUSE;
2646 u32 mflcn_reg, fccfg_reg, reg;
2647 u32 fcrtl, fcrth;
2648 int i;
2649
2650 /* Low water mark of zero causes XOFF floods */
2651 if (tx_pause && wx->fc.high_water) {
2652 if (!wx->fc.low_water || wx->fc.low_water >= wx->fc.high_water) {
2653 wx_err(wx, "Invalid water mark configuration\n");
2654 return -EINVAL;
2655 }
2656 }
2657
2658 /* Disable any previous flow control settings */
2659 mflcn_reg = rd32(wx, WX_MAC_RX_FLOW_CTRL);
2660 mflcn_reg &= ~WX_MAC_RX_FLOW_CTRL_RFE;
2661
2662 fccfg_reg = rd32(wx, WX_RDB_RFCC);
2663 fccfg_reg &= ~WX_RDB_RFCC_RFCE_802_3X;
2664
2665 if (rx_pause)
2666 mflcn_reg |= WX_MAC_RX_FLOW_CTRL_RFE;
2667 if (tx_pause)
2668 fccfg_reg |= WX_RDB_RFCC_RFCE_802_3X;
2669
2670 /* Set 802.3x based flow control settings. */
2671 wr32(wx, WX_MAC_RX_FLOW_CTRL, mflcn_reg);
2672 wr32(wx, WX_RDB_RFCC, fccfg_reg);
2673
2674 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2675 if (tx_pause && wx->fc.high_water) {
2676 fcrtl = (wx->fc.low_water << 10) | WX_RDB_RFCL_XONE;
2677 wr32(wx, WX_RDB_RFCL, fcrtl);
2678 fcrth = (wx->fc.high_water << 10) | WX_RDB_RFCH_XOFFE;
2679 } else {
2680 wr32(wx, WX_RDB_RFCL, 0);
2681 /* In order to prevent Tx hangs when the internal Tx
2682 * switch is enabled we must set the high water mark
2683 * to the Rx packet buffer size - 24KB. This allows
2684 * the Tx switch to function even under heavy Rx
2685 * workloads.
2686 */
2687 fcrth = rd32(wx, WX_RDB_PB_SZ(0)) - 24576;
2688 }
2689
2690 wr32(wx, WX_RDB_RFCH, fcrth);
2691
2692 /* Configure pause time */
2693 reg = pause_time * 0x00010001;
2694 wr32(wx, WX_RDB_RFCV, reg);
2695
2696 /* Configure flow control refresh threshold value */
2697 wr32(wx, WX_RDB_RFCRT, pause_time / 2);
2698
2699 /* We should set the drop enable bit if:
2700 * Number of Rx queues > 1 and flow control is disabled
2701 *
2702 * This allows us to avoid head of line blocking for security
2703 * and performance reasons.
2704 */
2705 if (wx->num_rx_queues > 1 && !tx_pause) {
2706 for (i = 0; i < wx->num_rx_queues; i++)
2707 wx_enable_rx_drop(wx, wx->rx_ring[i]);
2708 } else {
2709 for (i = 0; i < wx->num_rx_queues; i++)
2710 wx_disable_rx_drop(wx, wx->rx_ring[i]);
2711 }
2712
2713 return 0;
2714 }
2715 EXPORT_SYMBOL(wx_fc_enable);
2716
2717 /**
2718 * wx_update_stats - Update the board statistics counters.
2719 * @wx: board private structure
2720 **/
wx_update_stats(struct wx * wx)2721 void wx_update_stats(struct wx *wx)
2722 {
2723 struct wx_hw_stats *hwstats = &wx->stats;
2724
2725 u64 non_eop_descs = 0, alloc_rx_buff_failed = 0;
2726 u64 hw_csum_rx_good = 0, hw_csum_rx_error = 0;
2727 u64 restart_queue = 0, tx_busy = 0;
2728 u32 i;
2729
2730 /* gather some stats to the wx struct that are per queue */
2731 for (i = 0; i < wx->num_rx_queues; i++) {
2732 struct wx_ring *rx_ring = wx->rx_ring[i];
2733
2734 non_eop_descs += rx_ring->rx_stats.non_eop_descs;
2735 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed;
2736 hw_csum_rx_good += rx_ring->rx_stats.csum_good_cnt;
2737 hw_csum_rx_error += rx_ring->rx_stats.csum_err;
2738 }
2739 wx->non_eop_descs = non_eop_descs;
2740 wx->alloc_rx_buff_failed = alloc_rx_buff_failed;
2741 wx->hw_csum_rx_error = hw_csum_rx_error;
2742 wx->hw_csum_rx_good = hw_csum_rx_good;
2743
2744 for (i = 0; i < wx->num_tx_queues; i++) {
2745 struct wx_ring *tx_ring = wx->tx_ring[i];
2746
2747 restart_queue += tx_ring->tx_stats.restart_queue;
2748 tx_busy += tx_ring->tx_stats.tx_busy;
2749 }
2750 wx->restart_queue = restart_queue;
2751 wx->tx_busy = tx_busy;
2752
2753 hwstats->gprc += rd32(wx, WX_RDM_PKT_CNT);
2754 hwstats->gptc += rd32(wx, WX_TDM_PKT_CNT);
2755 hwstats->gorc += rd64(wx, WX_RDM_BYTE_CNT_LSB);
2756 hwstats->gotc += rd64(wx, WX_TDM_BYTE_CNT_LSB);
2757 hwstats->tpr += rd64(wx, WX_RX_FRAME_CNT_GOOD_BAD_L);
2758 hwstats->tpt += rd64(wx, WX_TX_FRAME_CNT_GOOD_BAD_L);
2759 hwstats->crcerrs += rd64(wx, WX_RX_CRC_ERROR_FRAMES_L);
2760 hwstats->rlec += rd64(wx, WX_RX_LEN_ERROR_FRAMES_L);
2761 hwstats->bprc += rd64(wx, WX_RX_BC_FRAMES_GOOD_L);
2762 hwstats->bptc += rd64(wx, WX_TX_BC_FRAMES_GOOD_L);
2763 hwstats->mprc += rd64(wx, WX_RX_MC_FRAMES_GOOD_L);
2764 hwstats->mptc += rd64(wx, WX_TX_MC_FRAMES_GOOD_L);
2765 hwstats->roc += rd32(wx, WX_RX_OVERSIZE_FRAMES_GOOD);
2766 hwstats->ruc += rd32(wx, WX_RX_UNDERSIZE_FRAMES_GOOD);
2767 hwstats->lxonoffrxc += rd32(wx, WX_MAC_LXONOFFRXC);
2768 hwstats->lxontxc += rd32(wx, WX_RDB_LXONTXC);
2769 hwstats->lxofftxc += rd32(wx, WX_RDB_LXOFFTXC);
2770 hwstats->o2bgptc += rd32(wx, WX_TDM_OS2BMC_CNT);
2771 hwstats->b2ospc += rd32(wx, WX_MNG_BMC2OS_CNT);
2772 hwstats->o2bspc += rd32(wx, WX_MNG_OS2BMC_CNT);
2773 hwstats->b2ogprc += rd32(wx, WX_RDM_BMC2OS_CNT);
2774 hwstats->rdmdrop += rd32(wx, WX_RDM_DRP_PKT);
2775
2776 if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags)) {
2777 hwstats->fdirmatch += rd32(wx, WX_RDB_FDIR_MATCH);
2778 hwstats->fdirmiss += rd32(wx, WX_RDB_FDIR_MISS);
2779 }
2780
2781 for (i = wx->num_vfs * wx->num_rx_queues_per_pool;
2782 i < wx->mac.max_rx_queues; i++)
2783 hwstats->qmprc += rd32(wx, WX_PX_MPRC(i));
2784 }
2785 EXPORT_SYMBOL(wx_update_stats);
2786
2787 /**
2788 * wx_clear_hw_cntrs - Generic clear hardware counters
2789 * @wx: board private structure
2790 *
2791 * Clears all hardware statistics counters by reading them from the hardware
2792 * Statistics counters are clear on read.
2793 **/
wx_clear_hw_cntrs(struct wx * wx)2794 void wx_clear_hw_cntrs(struct wx *wx)
2795 {
2796 u16 i = 0;
2797
2798 for (i = 0; i < wx->mac.max_rx_queues; i++)
2799 wr32(wx, WX_PX_MPRC(i), 0);
2800
2801 rd32(wx, WX_RDM_PKT_CNT);
2802 rd32(wx, WX_TDM_PKT_CNT);
2803 rd64(wx, WX_RDM_BYTE_CNT_LSB);
2804 rd32(wx, WX_TDM_BYTE_CNT_LSB);
2805 rd32(wx, WX_RDM_DRP_PKT);
2806 rd32(wx, WX_RX_UNDERSIZE_FRAMES_GOOD);
2807 rd32(wx, WX_RX_OVERSIZE_FRAMES_GOOD);
2808 rd64(wx, WX_RX_FRAME_CNT_GOOD_BAD_L);
2809 rd64(wx, WX_TX_FRAME_CNT_GOOD_BAD_L);
2810 rd64(wx, WX_RX_MC_FRAMES_GOOD_L);
2811 rd64(wx, WX_TX_MC_FRAMES_GOOD_L);
2812 rd64(wx, WX_RX_BC_FRAMES_GOOD_L);
2813 rd64(wx, WX_TX_BC_FRAMES_GOOD_L);
2814 rd64(wx, WX_RX_CRC_ERROR_FRAMES_L);
2815 rd64(wx, WX_RX_LEN_ERROR_FRAMES_L);
2816 rd32(wx, WX_RDB_LXONTXC);
2817 rd32(wx, WX_RDB_LXOFFTXC);
2818 rd32(wx, WX_MAC_LXONOFFRXC);
2819 }
2820 EXPORT_SYMBOL(wx_clear_hw_cntrs);
2821
2822 /**
2823 * wx_start_hw - Prepare hardware for Tx/Rx
2824 * @wx: pointer to hardware structure
2825 *
2826 * Starts the hardware using the generic start_hw function
2827 * and the generation start_hw function.
2828 * Then performs revision-specific operations, if any.
2829 **/
wx_start_hw(struct wx * wx)2830 void wx_start_hw(struct wx *wx)
2831 {
2832 int i;
2833
2834 /* Clear the VLAN filter table */
2835 wx_clear_vfta(wx);
2836 WX_WRITE_FLUSH(wx);
2837 /* Clear the rate limiters */
2838 for (i = 0; i < wx->mac.max_tx_queues; i++) {
2839 wr32(wx, WX_TDM_RP_IDX, i);
2840 wr32(wx, WX_TDM_RP_RATE, 0);
2841 }
2842 }
2843 EXPORT_SYMBOL(wx_start_hw);
2844
2845 MODULE_LICENSE("GPL");
2846