1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_type.h" 11 #include "ice_vsi_vlan_ops.h" 12 13 /** 14 * ice_vsi_type_str - maps VSI type enum to string equivalents 15 * @vsi_type: VSI type enum 16 */ 17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 18 { 19 switch (vsi_type) { 20 case ICE_VSI_PF: 21 return "ICE_VSI_PF"; 22 case ICE_VSI_VF: 23 return "ICE_VSI_VF"; 24 case ICE_VSI_SF: 25 return "ICE_VSI_SF"; 26 case ICE_VSI_CTRL: 27 return "ICE_VSI_CTRL"; 28 case ICE_VSI_CHNL: 29 return "ICE_VSI_CHNL"; 30 case ICE_VSI_LB: 31 return "ICE_VSI_LB"; 32 default: 33 return "unknown"; 34 } 35 } 36 37 /** 38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 39 * @vsi: the VSI being configured 40 * @ena: start or stop the Rx rings 41 * 42 * First enable/disable all of the Rx rings, flush any remaining writes, and 43 * then verify that they have all been enabled/disabled successfully. This will 44 * let all of the register writes complete when enabling/disabling the Rx rings 45 * before waiting for the change in hardware to complete. 46 */ 47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 48 { 49 int ret = 0; 50 u16 i; 51 52 ice_for_each_rxq(vsi, i) 53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 54 55 ice_flush(&vsi->back->hw); 56 57 ice_for_each_rxq(vsi, i) { 58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 59 if (ret) 60 break; 61 } 62 63 return ret; 64 } 65 66 /** 67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 68 * @vsi: VSI pointer 69 * 70 * On error: returns error code (negative) 71 * On success: returns 0 72 */ 73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 74 { 75 struct ice_pf *pf = vsi->back; 76 struct device *dev; 77 78 dev = ice_pf_to_dev(pf); 79 if (vsi->type == ICE_VSI_CHNL) 80 return 0; 81 82 /* allocate memory for both Tx and Rx ring pointers */ 83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 84 sizeof(*vsi->tx_rings), GFP_KERNEL); 85 if (!vsi->tx_rings) 86 return -ENOMEM; 87 88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 89 sizeof(*vsi->rx_rings), GFP_KERNEL); 90 if (!vsi->rx_rings) 91 goto err_rings; 92 93 /* txq_map needs to have enough space to track both Tx (stack) rings 94 * and XDP rings; at this point vsi->num_xdp_txq might not be set, 95 * so use num_possible_cpus() as we want to always provide XDP ring 96 * per CPU, regardless of queue count settings from user that might 97 * have come from ethtool's set_channels() callback; 98 */ 99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()), 100 sizeof(*vsi->txq_map), GFP_KERNEL); 101 102 if (!vsi->txq_map) 103 goto err_txq_map; 104 105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 106 sizeof(*vsi->rxq_map), GFP_KERNEL); 107 if (!vsi->rxq_map) 108 goto err_rxq_map; 109 110 /* There is no need to allocate q_vectors for a loopback VSI. */ 111 if (vsi->type == ICE_VSI_LB) 112 return 0; 113 114 /* allocate memory for q_vector pointers */ 115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 116 sizeof(*vsi->q_vectors), GFP_KERNEL); 117 if (!vsi->q_vectors) 118 goto err_vectors; 119 120 return 0; 121 122 err_vectors: 123 devm_kfree(dev, vsi->rxq_map); 124 err_rxq_map: 125 devm_kfree(dev, vsi->txq_map); 126 err_txq_map: 127 devm_kfree(dev, vsi->rx_rings); 128 err_rings: 129 devm_kfree(dev, vsi->tx_rings); 130 return -ENOMEM; 131 } 132 133 /** 134 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 135 * @vsi: the VSI being configured 136 */ 137 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 138 { 139 switch (vsi->type) { 140 case ICE_VSI_PF: 141 case ICE_VSI_SF: 142 case ICE_VSI_CTRL: 143 case ICE_VSI_LB: 144 /* a user could change the values of num_[tr]x_desc using 145 * ethtool -G so we should keep those values instead of 146 * overwriting them with the defaults. 147 */ 148 if (!vsi->num_rx_desc) 149 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 150 if (!vsi->num_tx_desc) 151 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 152 break; 153 default: 154 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 155 vsi->type); 156 break; 157 } 158 } 159 160 static u16 ice_get_rxq_count(struct ice_pf *pf) 161 { 162 return min(ice_get_avail_rxq_count(pf), 163 netif_get_num_default_rss_queues()); 164 } 165 166 static u16 ice_get_txq_count(struct ice_pf *pf) 167 { 168 return min(ice_get_avail_txq_count(pf), 169 netif_get_num_default_rss_queues()); 170 } 171 172 /** 173 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 174 * @vsi: the VSI being configured 175 * 176 * Return 0 on success and a negative value on error 177 */ 178 static void ice_vsi_set_num_qs(struct ice_vsi *vsi) 179 { 180 enum ice_vsi_type vsi_type = vsi->type; 181 struct ice_pf *pf = vsi->back; 182 struct ice_vf *vf = vsi->vf; 183 184 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 185 return; 186 187 switch (vsi_type) { 188 case ICE_VSI_PF: 189 if (vsi->req_txq) { 190 vsi->alloc_txq = vsi->req_txq; 191 vsi->num_txq = vsi->req_txq; 192 } else { 193 vsi->alloc_txq = ice_get_txq_count(pf); 194 } 195 196 pf->num_lan_tx = vsi->alloc_txq; 197 198 /* only 1 Rx queue unless RSS is enabled */ 199 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 200 vsi->alloc_rxq = 1; 201 } else { 202 if (vsi->req_rxq) { 203 vsi->alloc_rxq = vsi->req_rxq; 204 vsi->num_rxq = vsi->req_rxq; 205 } else { 206 vsi->alloc_rxq = ice_get_rxq_count(pf); 207 } 208 } 209 210 pf->num_lan_rx = vsi->alloc_rxq; 211 212 vsi->num_q_vectors = max(vsi->alloc_rxq, vsi->alloc_txq); 213 break; 214 case ICE_VSI_SF: 215 vsi->alloc_txq = 1; 216 vsi->alloc_rxq = 1; 217 vsi->num_q_vectors = 1; 218 vsi->irq_dyn_alloc = true; 219 break; 220 case ICE_VSI_VF: 221 if (vf->num_req_qs) 222 vf->num_vf_qs = vf->num_req_qs; 223 vsi->alloc_txq = vf->num_vf_qs; 224 vsi->alloc_rxq = vf->num_vf_qs; 225 /* pf->vfs.num_msix_per includes (VF miscellaneous vector + 226 * data queue interrupts). Since vsi->num_q_vectors is number 227 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 228 * original vector count 229 */ 230 vsi->num_q_vectors = vf->num_msix - ICE_NONQ_VECS_VF; 231 break; 232 case ICE_VSI_CTRL: 233 vsi->alloc_txq = 1; 234 vsi->alloc_rxq = 1; 235 vsi->num_q_vectors = 1; 236 break; 237 case ICE_VSI_CHNL: 238 vsi->alloc_txq = 0; 239 vsi->alloc_rxq = 0; 240 break; 241 case ICE_VSI_LB: 242 vsi->alloc_txq = 1; 243 vsi->alloc_rxq = 1; 244 break; 245 default: 246 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type); 247 break; 248 } 249 250 ice_vsi_set_num_desc(vsi); 251 } 252 253 /** 254 * ice_get_free_slot - get the next non-NULL location index in array 255 * @array: array to search 256 * @size: size of the array 257 * @curr: last known occupied index to be used as a search hint 258 * 259 * void * is being used to keep the functionality generic. This lets us use this 260 * function on any array of pointers. 261 */ 262 static int ice_get_free_slot(void *array, int size, int curr) 263 { 264 int **tmp_array = (int **)array; 265 int next; 266 267 if (curr < (size - 1) && !tmp_array[curr + 1]) { 268 next = curr + 1; 269 } else { 270 int i = 0; 271 272 while ((i < size) && (tmp_array[i])) 273 i++; 274 if (i == size) 275 next = ICE_NO_VSI; 276 else 277 next = i; 278 } 279 return next; 280 } 281 282 /** 283 * ice_vsi_delete_from_hw - delete a VSI from the switch 284 * @vsi: pointer to VSI being removed 285 */ 286 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi) 287 { 288 struct ice_pf *pf = vsi->back; 289 struct ice_vsi_ctx *ctxt; 290 int status; 291 292 ice_fltr_remove_all(vsi); 293 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 294 if (!ctxt) 295 return; 296 297 if (vsi->type == ICE_VSI_VF) 298 ctxt->vf_num = vsi->vf->vf_id; 299 ctxt->vsi_num = vsi->vsi_num; 300 301 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 302 303 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 304 if (status) 305 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", 306 vsi->vsi_num, status); 307 308 kfree(ctxt); 309 } 310 311 /** 312 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 313 * @vsi: pointer to VSI being cleared 314 */ 315 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 316 { 317 struct ice_pf *pf = vsi->back; 318 struct device *dev; 319 320 dev = ice_pf_to_dev(pf); 321 322 /* free the ring and vector containers */ 323 devm_kfree(dev, vsi->q_vectors); 324 vsi->q_vectors = NULL; 325 devm_kfree(dev, vsi->tx_rings); 326 vsi->tx_rings = NULL; 327 devm_kfree(dev, vsi->rx_rings); 328 vsi->rx_rings = NULL; 329 devm_kfree(dev, vsi->txq_map); 330 vsi->txq_map = NULL; 331 devm_kfree(dev, vsi->rxq_map); 332 vsi->rxq_map = NULL; 333 } 334 335 /** 336 * ice_vsi_free_stats - Free the ring statistics structures 337 * @vsi: VSI pointer 338 */ 339 static void ice_vsi_free_stats(struct ice_vsi *vsi) 340 { 341 struct ice_vsi_stats *vsi_stat; 342 struct ice_pf *pf = vsi->back; 343 int i; 344 345 if (vsi->type == ICE_VSI_CHNL) 346 return; 347 if (!pf->vsi_stats) 348 return; 349 350 vsi_stat = pf->vsi_stats[vsi->idx]; 351 if (!vsi_stat) 352 return; 353 354 ice_for_each_alloc_txq(vsi, i) { 355 if (vsi_stat->tx_ring_stats[i]) { 356 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu); 357 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL); 358 } 359 } 360 361 ice_for_each_alloc_rxq(vsi, i) { 362 if (vsi_stat->rx_ring_stats[i]) { 363 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu); 364 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL); 365 } 366 } 367 368 kfree(vsi_stat->tx_ring_stats); 369 kfree(vsi_stat->rx_ring_stats); 370 kfree(vsi_stat); 371 pf->vsi_stats[vsi->idx] = NULL; 372 } 373 374 /** 375 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI 376 * @vsi: VSI which is having stats allocated 377 */ 378 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi) 379 { 380 struct ice_ring_stats **tx_ring_stats; 381 struct ice_ring_stats **rx_ring_stats; 382 struct ice_vsi_stats *vsi_stats; 383 struct ice_pf *pf = vsi->back; 384 u16 i; 385 386 vsi_stats = pf->vsi_stats[vsi->idx]; 387 tx_ring_stats = vsi_stats->tx_ring_stats; 388 rx_ring_stats = vsi_stats->rx_ring_stats; 389 390 /* Allocate Tx ring stats */ 391 ice_for_each_alloc_txq(vsi, i) { 392 struct ice_ring_stats *ring_stats; 393 struct ice_tx_ring *ring; 394 395 ring = vsi->tx_rings[i]; 396 ring_stats = tx_ring_stats[i]; 397 398 if (!ring_stats) { 399 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 400 if (!ring_stats) 401 goto err_out; 402 403 u64_stats_init(&ring_stats->syncp); 404 405 WRITE_ONCE(tx_ring_stats[i], ring_stats); 406 } 407 408 ring->ring_stats = ring_stats; 409 } 410 411 /* Allocate Rx ring stats */ 412 ice_for_each_alloc_rxq(vsi, i) { 413 struct ice_ring_stats *ring_stats; 414 struct ice_rx_ring *ring; 415 416 ring = vsi->rx_rings[i]; 417 ring_stats = rx_ring_stats[i]; 418 419 if (!ring_stats) { 420 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 421 if (!ring_stats) 422 goto err_out; 423 424 u64_stats_init(&ring_stats->syncp); 425 426 WRITE_ONCE(rx_ring_stats[i], ring_stats); 427 } 428 429 ring->ring_stats = ring_stats; 430 } 431 432 return 0; 433 434 err_out: 435 ice_vsi_free_stats(vsi); 436 return -ENOMEM; 437 } 438 439 /** 440 * ice_vsi_free - clean up and deallocate the provided VSI 441 * @vsi: pointer to VSI being cleared 442 * 443 * This deallocates the VSI's queue resources, removes it from the PF's 444 * VSI array if necessary, and deallocates the VSI 445 */ 446 void ice_vsi_free(struct ice_vsi *vsi) 447 { 448 struct ice_pf *pf = NULL; 449 struct device *dev; 450 451 if (!vsi || !vsi->back) 452 return; 453 454 pf = vsi->back; 455 dev = ice_pf_to_dev(pf); 456 457 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 458 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 459 return; 460 } 461 462 mutex_lock(&pf->sw_mutex); 463 /* updates the PF for this cleared VSI */ 464 465 pf->vsi[vsi->idx] = NULL; 466 pf->next_vsi = vsi->idx; 467 468 ice_vsi_free_stats(vsi); 469 ice_vsi_free_arrays(vsi); 470 mutex_destroy(&vsi->xdp_state_lock); 471 mutex_unlock(&pf->sw_mutex); 472 devm_kfree(dev, vsi); 473 } 474 475 void ice_vsi_delete(struct ice_vsi *vsi) 476 { 477 ice_vsi_delete_from_hw(vsi); 478 ice_vsi_free(vsi); 479 } 480 481 /** 482 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 483 * @irq: interrupt number 484 * @data: pointer to a q_vector 485 */ 486 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 487 { 488 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 489 490 if (!q_vector->tx.tx_ring) 491 return IRQ_HANDLED; 492 493 ice_clean_ctrl_rx_irq(q_vector->rx.rx_ring); 494 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring); 495 496 return IRQ_HANDLED; 497 } 498 499 /** 500 * ice_msix_clean_rings - MSIX mode Interrupt Handler 501 * @irq: interrupt number 502 * @data: pointer to a q_vector 503 */ 504 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 505 { 506 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 507 508 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 509 return IRQ_HANDLED; 510 511 q_vector->total_events++; 512 513 napi_schedule(&q_vector->napi); 514 515 return IRQ_HANDLED; 516 } 517 518 /** 519 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays 520 * @vsi: VSI pointer 521 */ 522 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi) 523 { 524 struct ice_vsi_stats *vsi_stat; 525 struct ice_pf *pf = vsi->back; 526 527 if (vsi->type == ICE_VSI_CHNL) 528 return 0; 529 if (!pf->vsi_stats) 530 return -ENOENT; 531 532 if (pf->vsi_stats[vsi->idx]) 533 /* realloc will happen in rebuild path */ 534 return 0; 535 536 vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL); 537 if (!vsi_stat) 538 return -ENOMEM; 539 540 vsi_stat->tx_ring_stats = 541 kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats), 542 GFP_KERNEL); 543 if (!vsi_stat->tx_ring_stats) 544 goto err_alloc_tx; 545 546 vsi_stat->rx_ring_stats = 547 kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats), 548 GFP_KERNEL); 549 if (!vsi_stat->rx_ring_stats) 550 goto err_alloc_rx; 551 552 pf->vsi_stats[vsi->idx] = vsi_stat; 553 554 return 0; 555 556 err_alloc_rx: 557 kfree(vsi_stat->rx_ring_stats); 558 err_alloc_tx: 559 kfree(vsi_stat->tx_ring_stats); 560 kfree(vsi_stat); 561 pf->vsi_stats[vsi->idx] = NULL; 562 return -ENOMEM; 563 } 564 565 /** 566 * ice_vsi_alloc_def - set default values for already allocated VSI 567 * @vsi: ptr to VSI 568 * @ch: ptr to channel 569 */ 570 static int 571 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch) 572 { 573 if (vsi->type != ICE_VSI_CHNL) { 574 ice_vsi_set_num_qs(vsi); 575 if (ice_vsi_alloc_arrays(vsi)) 576 return -ENOMEM; 577 } 578 579 vsi->irq_dyn_alloc = pci_msix_can_alloc_dyn(vsi->back->pdev); 580 581 switch (vsi->type) { 582 case ICE_VSI_PF: 583 case ICE_VSI_SF: 584 /* Setup default MSIX irq handler for VSI */ 585 vsi->irq_handler = ice_msix_clean_rings; 586 break; 587 case ICE_VSI_CTRL: 588 /* Setup ctrl VSI MSIX irq handler */ 589 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 590 break; 591 case ICE_VSI_CHNL: 592 if (!ch) 593 return -EINVAL; 594 595 vsi->num_rxq = ch->num_rxq; 596 vsi->num_txq = ch->num_txq; 597 vsi->next_base_q = ch->base_q; 598 break; 599 case ICE_VSI_VF: 600 case ICE_VSI_LB: 601 break; 602 default: 603 ice_vsi_free_arrays(vsi); 604 return -EINVAL; 605 } 606 607 return 0; 608 } 609 610 /** 611 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 612 * @pf: board private structure 613 * 614 * Reserves a VSI index from the PF and allocates an empty VSI structure 615 * without a type. The VSI structure must later be initialized by calling 616 * ice_vsi_cfg(). 617 * 618 * returns a pointer to a VSI on success, NULL on failure. 619 */ 620 struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf) 621 { 622 struct device *dev = ice_pf_to_dev(pf); 623 struct ice_vsi *vsi = NULL; 624 625 /* Need to protect the allocation of the VSIs at the PF level */ 626 mutex_lock(&pf->sw_mutex); 627 628 /* If we have already allocated our maximum number of VSIs, 629 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 630 * is available to be populated 631 */ 632 if (pf->next_vsi == ICE_NO_VSI) { 633 dev_dbg(dev, "out of VSI slots!\n"); 634 goto unlock_pf; 635 } 636 637 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 638 if (!vsi) 639 goto unlock_pf; 640 641 vsi->back = pf; 642 set_bit(ICE_VSI_DOWN, vsi->state); 643 644 /* fill slot and make note of the index */ 645 vsi->idx = pf->next_vsi; 646 pf->vsi[pf->next_vsi] = vsi; 647 648 /* prepare pf->next_vsi for next use */ 649 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 650 pf->next_vsi); 651 652 mutex_init(&vsi->xdp_state_lock); 653 654 unlock_pf: 655 mutex_unlock(&pf->sw_mutex); 656 return vsi; 657 } 658 659 /** 660 * ice_alloc_fd_res - Allocate FD resource for a VSI 661 * @vsi: pointer to the ice_vsi 662 * 663 * This allocates the FD resources 664 * 665 * Returns 0 on success, -EPERM on no-op or -EIO on failure 666 */ 667 static int ice_alloc_fd_res(struct ice_vsi *vsi) 668 { 669 struct ice_pf *pf = vsi->back; 670 u32 g_val, b_val; 671 672 /* Flow Director filters are only allocated/assigned to the PF VSI or 673 * CHNL VSI which passes the traffic. The CTRL VSI is only used to 674 * add/delete filters so resources are not allocated to it 675 */ 676 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 677 return -EPERM; 678 679 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF || 680 vsi->type == ICE_VSI_CHNL)) 681 return -EPERM; 682 683 /* FD filters from guaranteed pool per VSI */ 684 g_val = pf->hw.func_caps.fd_fltr_guar; 685 if (!g_val) 686 return -EPERM; 687 688 /* FD filters from best effort pool */ 689 b_val = pf->hw.func_caps.fd_fltr_best_effort; 690 if (!b_val) 691 return -EPERM; 692 693 /* PF main VSI gets only 64 FD resources from guaranteed pool 694 * when ADQ is configured. 695 */ 696 #define ICE_PF_VSI_GFLTR 64 697 698 /* determine FD filter resources per VSI from shared(best effort) and 699 * dedicated pool 700 */ 701 if (vsi->type == ICE_VSI_PF) { 702 vsi->num_gfltr = g_val; 703 /* if MQPRIO is configured, main VSI doesn't get all FD 704 * resources from guaranteed pool. PF VSI gets 64 FD resources 705 */ 706 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 707 if (g_val < ICE_PF_VSI_GFLTR) 708 return -EPERM; 709 /* allow bare minimum entries for PF VSI */ 710 vsi->num_gfltr = ICE_PF_VSI_GFLTR; 711 } 712 713 /* each VSI gets same "best_effort" quota */ 714 vsi->num_bfltr = b_val; 715 } else if (vsi->type == ICE_VSI_VF) { 716 vsi->num_gfltr = 0; 717 718 /* each VSI gets same "best_effort" quota */ 719 vsi->num_bfltr = b_val; 720 } else { 721 struct ice_vsi *main_vsi; 722 int numtc; 723 724 main_vsi = ice_get_main_vsi(pf); 725 if (!main_vsi) 726 return -EPERM; 727 728 if (!main_vsi->all_numtc) 729 return -EINVAL; 730 731 /* figure out ADQ numtc */ 732 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC; 733 734 /* only one TC but still asking resources for channels, 735 * invalid config 736 */ 737 if (numtc < ICE_CHNL_START_TC) 738 return -EPERM; 739 740 g_val -= ICE_PF_VSI_GFLTR; 741 /* channel VSIs gets equal share from guaranteed pool */ 742 vsi->num_gfltr = g_val / numtc; 743 744 /* each VSI gets same "best_effort" quota */ 745 vsi->num_bfltr = b_val; 746 } 747 748 return 0; 749 } 750 751 /** 752 * ice_vsi_get_qs - Assign queues from PF to VSI 753 * @vsi: the VSI to assign queues to 754 * 755 * Returns 0 on success and a negative value on error 756 */ 757 static int ice_vsi_get_qs(struct ice_vsi *vsi) 758 { 759 struct ice_pf *pf = vsi->back; 760 struct ice_qs_cfg tx_qs_cfg = { 761 .qs_mutex = &pf->avail_q_mutex, 762 .pf_map = pf->avail_txqs, 763 .pf_map_size = pf->max_pf_txqs, 764 .q_count = vsi->alloc_txq, 765 .scatter_count = ICE_MAX_SCATTER_TXQS, 766 .vsi_map = vsi->txq_map, 767 .vsi_map_offset = 0, 768 .mapping_mode = ICE_VSI_MAP_CONTIG 769 }; 770 struct ice_qs_cfg rx_qs_cfg = { 771 .qs_mutex = &pf->avail_q_mutex, 772 .pf_map = pf->avail_rxqs, 773 .pf_map_size = pf->max_pf_rxqs, 774 .q_count = vsi->alloc_rxq, 775 .scatter_count = ICE_MAX_SCATTER_RXQS, 776 .vsi_map = vsi->rxq_map, 777 .vsi_map_offset = 0, 778 .mapping_mode = ICE_VSI_MAP_CONTIG 779 }; 780 int ret; 781 782 if (vsi->type == ICE_VSI_CHNL) 783 return 0; 784 785 ret = __ice_vsi_get_qs(&tx_qs_cfg); 786 if (ret) 787 return ret; 788 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 789 790 ret = __ice_vsi_get_qs(&rx_qs_cfg); 791 if (ret) 792 return ret; 793 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 794 795 return 0; 796 } 797 798 /** 799 * ice_vsi_put_qs - Release queues from VSI to PF 800 * @vsi: the VSI that is going to release queues 801 */ 802 static void ice_vsi_put_qs(struct ice_vsi *vsi) 803 { 804 struct ice_pf *pf = vsi->back; 805 int i; 806 807 mutex_lock(&pf->avail_q_mutex); 808 809 ice_for_each_alloc_txq(vsi, i) { 810 clear_bit(vsi->txq_map[i], pf->avail_txqs); 811 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 812 } 813 814 ice_for_each_alloc_rxq(vsi, i) { 815 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 816 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 817 } 818 819 mutex_unlock(&pf->avail_q_mutex); 820 } 821 822 /** 823 * ice_is_safe_mode 824 * @pf: pointer to the PF struct 825 * 826 * returns true if driver is in safe mode, false otherwise 827 */ 828 bool ice_is_safe_mode(struct ice_pf *pf) 829 { 830 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 831 } 832 833 /** 834 * ice_is_rdma_ena 835 * @pf: pointer to the PF struct 836 * 837 * returns true if RDMA is currently supported, false otherwise 838 */ 839 bool ice_is_rdma_ena(struct ice_pf *pf) 840 { 841 union devlink_param_value value; 842 int err; 843 844 err = devl_param_driverinit_value_get(priv_to_devlink(pf), 845 DEVLINK_PARAM_GENERIC_ID_ENABLE_RDMA, 846 &value); 847 return err ? test_bit(ICE_FLAG_RDMA_ENA, pf->flags) : value.vbool; 848 } 849 850 /** 851 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 852 * @vsi: the VSI being cleaned up 853 * 854 * This function deletes RSS input set for all flows that were configured 855 * for this VSI 856 */ 857 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 858 { 859 struct ice_pf *pf = vsi->back; 860 int status; 861 862 if (ice_is_safe_mode(pf)) 863 return; 864 865 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 866 if (status) 867 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n", 868 vsi->vsi_num, status); 869 } 870 871 /** 872 * ice_rss_clean - Delete RSS related VSI structures and configuration 873 * @vsi: the VSI being removed 874 */ 875 static void ice_rss_clean(struct ice_vsi *vsi) 876 { 877 struct ice_pf *pf = vsi->back; 878 struct device *dev; 879 880 dev = ice_pf_to_dev(pf); 881 882 devm_kfree(dev, vsi->rss_hkey_user); 883 devm_kfree(dev, vsi->rss_lut_user); 884 885 ice_vsi_clean_rss_flow_fld(vsi); 886 /* remove RSS replay list */ 887 if (!ice_is_safe_mode(pf)) 888 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 889 } 890 891 /** 892 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 893 * @vsi: the VSI being configured 894 */ 895 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 896 { 897 struct ice_hw_common_caps *cap; 898 struct ice_pf *pf = vsi->back; 899 u16 max_rss_size; 900 901 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 902 vsi->rss_size = 1; 903 return; 904 } 905 906 cap = &pf->hw.func_caps.common_cap; 907 max_rss_size = BIT(cap->rss_table_entry_width); 908 switch (vsi->type) { 909 case ICE_VSI_CHNL: 910 case ICE_VSI_PF: 911 /* PF VSI will inherit RSS instance of PF */ 912 vsi->rss_table_size = (u16)cap->rss_table_size; 913 if (vsi->type == ICE_VSI_CHNL) 914 vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size); 915 else 916 vsi->rss_size = min_t(u16, 917 netif_get_num_default_rss_queues(), 918 max_rss_size); 919 vsi->rss_lut_type = ICE_LUT_PF; 920 break; 921 case ICE_VSI_SF: 922 vsi->rss_table_size = ICE_LUT_VSI_SIZE; 923 vsi->rss_size = min_t(u16, netif_get_num_default_rss_queues(), 924 max_rss_size); 925 vsi->rss_lut_type = ICE_LUT_VSI; 926 break; 927 case ICE_VSI_VF: 928 /* VF VSI will get a small RSS table. 929 * For VSI_LUT, LUT size should be set to 64 bytes. 930 */ 931 vsi->rss_table_size = ICE_LUT_VSI_SIZE; 932 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 933 vsi->rss_lut_type = ICE_LUT_VSI; 934 break; 935 case ICE_VSI_LB: 936 break; 937 default: 938 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 939 ice_vsi_type_str(vsi->type)); 940 break; 941 } 942 } 943 944 /** 945 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 946 * @hw: HW structure used to determine the VLAN mode of the device 947 * @ctxt: the VSI context being set 948 * 949 * This initializes a default VSI context for all sections except the Queues. 950 */ 951 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt) 952 { 953 u32 table = 0; 954 955 memset(&ctxt->info, 0, sizeof(ctxt->info)); 956 /* VSI's should be allocated from shared pool */ 957 ctxt->alloc_from_pool = true; 958 /* Src pruning enabled by default */ 959 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 960 /* Traffic from VSI can be sent to LAN */ 961 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 962 /* allow all untagged/tagged packets by default on Tx */ 963 ctxt->info.inner_vlan_flags = FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_TX_MODE_M, 964 ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL); 965 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which 966 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor. 967 * 968 * DVM - leave inner VLAN in packet by default 969 */ 970 if (ice_is_dvm_ena(hw)) { 971 ctxt->info.inner_vlan_flags |= 972 FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M, 973 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING); 974 ctxt->info.outer_vlan_flags = 975 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M, 976 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL); 977 ctxt->info.outer_vlan_flags |= 978 FIELD_PREP(ICE_AQ_VSI_OUTER_TAG_TYPE_M, 979 ICE_AQ_VSI_OUTER_TAG_VLAN_8100); 980 ctxt->info.outer_vlan_flags |= 981 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M, 982 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING); 983 } 984 /* Have 1:1 UP mapping for both ingress/egress tables */ 985 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 986 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 987 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 988 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 989 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 990 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 991 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 992 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 993 ctxt->info.ingress_table = cpu_to_le32(table); 994 ctxt->info.egress_table = cpu_to_le32(table); 995 /* Have 1:1 UP mapping for outer to inner UP table */ 996 ctxt->info.outer_up_table = cpu_to_le32(table); 997 /* No Outer tag support outer_tag_flags remains to zero */ 998 } 999 1000 /** 1001 * ice_vsi_setup_q_map - Setup a VSI queue map 1002 * @vsi: the VSI being configured 1003 * @ctxt: VSI context structure 1004 */ 1005 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1006 { 1007 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0; 1008 u16 num_txq_per_tc, num_rxq_per_tc; 1009 u16 qcount_tx = vsi->alloc_txq; 1010 u16 qcount_rx = vsi->alloc_rxq; 1011 u8 netdev_tc = 0; 1012 int i; 1013 1014 if (!vsi->tc_cfg.numtc) { 1015 /* at least TC0 should be enabled by default */ 1016 vsi->tc_cfg.numtc = 1; 1017 vsi->tc_cfg.ena_tc = 1; 1018 } 1019 1020 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 1021 if (!num_rxq_per_tc) 1022 num_rxq_per_tc = 1; 1023 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 1024 if (!num_txq_per_tc) 1025 num_txq_per_tc = 1; 1026 1027 /* find the (rounded up) power-of-2 of qcount */ 1028 pow = (u16)order_base_2(num_rxq_per_tc); 1029 1030 /* TC mapping is a function of the number of Rx queues assigned to the 1031 * VSI for each traffic class and the offset of these queues. 1032 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 1033 * queues allocated to TC0. No:of queues is a power-of-2. 1034 * 1035 * If TC is not enabled, the queue offset is set to 0, and allocate one 1036 * queue, this way, traffic for the given TC will be sent to the default 1037 * queue. 1038 * 1039 * Setup number and offset of Rx queues for all TCs for the VSI 1040 */ 1041 ice_for_each_traffic_class(i) { 1042 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 1043 /* TC is not enabled */ 1044 vsi->tc_cfg.tc_info[i].qoffset = 0; 1045 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 1046 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 1047 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 1048 ctxt->info.tc_mapping[i] = 0; 1049 continue; 1050 } 1051 1052 /* TC is enabled */ 1053 vsi->tc_cfg.tc_info[i].qoffset = offset; 1054 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 1055 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 1056 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 1057 1058 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset); 1059 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow); 1060 offset += num_rxq_per_tc; 1061 tx_count += num_txq_per_tc; 1062 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1063 } 1064 1065 /* if offset is non-zero, means it is calculated correctly based on 1066 * enabled TCs for a given VSI otherwise qcount_rx will always 1067 * be correct and non-zero because it is based off - VSI's 1068 * allocated Rx queues which is at least 1 (hence qcount_tx will be 1069 * at least 1) 1070 */ 1071 if (offset) 1072 rx_count = offset; 1073 else 1074 rx_count = num_rxq_per_tc; 1075 1076 if (rx_count > vsi->alloc_rxq) { 1077 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 1078 rx_count, vsi->alloc_rxq); 1079 return -EINVAL; 1080 } 1081 1082 if (tx_count > vsi->alloc_txq) { 1083 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 1084 tx_count, vsi->alloc_txq); 1085 return -EINVAL; 1086 } 1087 1088 vsi->num_txq = tx_count; 1089 vsi->num_rxq = rx_count; 1090 1091 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 1092 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 1093 /* since there is a chance that num_rxq could have been changed 1094 * in the above for loop, make num_txq equal to num_rxq. 1095 */ 1096 vsi->num_txq = vsi->num_rxq; 1097 } 1098 1099 /* Rx queue mapping */ 1100 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1101 /* q_mapping buffer holds the info for the first queue allocated for 1102 * this VSI in the PF space and also the number of queues associated 1103 * with this VSI. 1104 */ 1105 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 1106 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 1107 1108 return 0; 1109 } 1110 1111 /** 1112 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 1113 * @ctxt: the VSI context being set 1114 * @vsi: the VSI being configured 1115 */ 1116 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1117 { 1118 u8 dflt_q_group, dflt_q_prio; 1119 u16 dflt_q, report_q, val; 1120 1121 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 1122 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL) 1123 return; 1124 1125 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 1126 ctxt->info.valid_sections |= cpu_to_le16(val); 1127 dflt_q = 0; 1128 dflt_q_group = 0; 1129 report_q = 0; 1130 dflt_q_prio = 0; 1131 1132 /* enable flow director filtering/programming */ 1133 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 1134 ctxt->info.fd_options = cpu_to_le16(val); 1135 /* max of allocated flow director filters */ 1136 ctxt->info.max_fd_fltr_dedicated = 1137 cpu_to_le16(vsi->num_gfltr); 1138 /* max of shared flow director filters any VSI may program */ 1139 ctxt->info.max_fd_fltr_shared = 1140 cpu_to_le16(vsi->num_bfltr); 1141 /* default queue index within the VSI of the default FD */ 1142 val = FIELD_PREP(ICE_AQ_VSI_FD_DEF_Q_M, dflt_q); 1143 /* target queue or queue group to the FD filter */ 1144 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_GRP_M, dflt_q_group); 1145 ctxt->info.fd_def_q = cpu_to_le16(val); 1146 /* queue index on which FD filter completion is reported */ 1147 val = FIELD_PREP(ICE_AQ_VSI_FD_REPORT_Q_M, report_q); 1148 /* priority of the default qindex action */ 1149 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_PRIORITY_M, dflt_q_prio); 1150 ctxt->info.fd_report_opt = cpu_to_le16(val); 1151 } 1152 1153 /** 1154 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 1155 * @ctxt: the VSI context being set 1156 * @vsi: the VSI being configured 1157 */ 1158 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1159 { 1160 u8 lut_type, hash_type; 1161 struct device *dev; 1162 struct ice_pf *pf; 1163 1164 pf = vsi->back; 1165 dev = ice_pf_to_dev(pf); 1166 1167 switch (vsi->type) { 1168 case ICE_VSI_CHNL: 1169 case ICE_VSI_PF: 1170 /* PF VSI will inherit RSS instance of PF */ 1171 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 1172 break; 1173 case ICE_VSI_VF: 1174 case ICE_VSI_SF: 1175 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 1176 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 1177 break; 1178 default: 1179 dev_dbg(dev, "Unsupported VSI type %s\n", 1180 ice_vsi_type_str(vsi->type)); 1181 return; 1182 } 1183 1184 hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 1185 vsi->rss_hfunc = hash_type; 1186 1187 ctxt->info.q_opt_rss = 1188 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) | 1189 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type); 1190 } 1191 1192 static void 1193 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1194 { 1195 u16 qcount, qmap; 1196 u8 offset = 0; 1197 int pow; 1198 1199 qcount = vsi->num_rxq; 1200 1201 pow = order_base_2(qcount); 1202 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset); 1203 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow); 1204 1205 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1206 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1207 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q); 1208 ctxt->info.q_mapping[1] = cpu_to_le16(qcount); 1209 } 1210 1211 /** 1212 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 1213 * @vsi: VSI to check whether or not VLAN pruning is enabled. 1214 * 1215 * returns true if Rx VLAN pruning is enabled and false otherwise. 1216 */ 1217 static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 1218 { 1219 return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1220 } 1221 1222 /** 1223 * ice_vsi_init - Create and initialize a VSI 1224 * @vsi: the VSI being configured 1225 * @vsi_flags: VSI configuration flags 1226 * 1227 * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to 1228 * reconfigure an existing context. 1229 * 1230 * This initializes a VSI context depending on the VSI type to be added and 1231 * passes it down to the add_vsi aq command to create a new VSI. 1232 */ 1233 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags) 1234 { 1235 struct ice_pf *pf = vsi->back; 1236 struct ice_hw *hw = &pf->hw; 1237 struct ice_vsi_ctx *ctxt; 1238 struct device *dev; 1239 int ret = 0; 1240 1241 dev = ice_pf_to_dev(pf); 1242 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1243 if (!ctxt) 1244 return -ENOMEM; 1245 1246 switch (vsi->type) { 1247 case ICE_VSI_CTRL: 1248 case ICE_VSI_LB: 1249 case ICE_VSI_PF: 1250 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 1251 break; 1252 case ICE_VSI_SF: 1253 case ICE_VSI_CHNL: 1254 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2; 1255 break; 1256 case ICE_VSI_VF: 1257 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 1258 /* VF number here is the absolute VF number (0-255) */ 1259 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id; 1260 break; 1261 default: 1262 ret = -ENODEV; 1263 goto out; 1264 } 1265 1266 /* Handle VLAN pruning for channel VSI if main VSI has VLAN 1267 * prune enabled 1268 */ 1269 if (vsi->type == ICE_VSI_CHNL) { 1270 struct ice_vsi *main_vsi; 1271 1272 main_vsi = ice_get_main_vsi(pf); 1273 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi)) 1274 ctxt->info.sw_flags2 |= 1275 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1276 else 1277 ctxt->info.sw_flags2 &= 1278 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1279 } 1280 1281 ice_set_dflt_vsi_ctx(hw, ctxt); 1282 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 1283 ice_set_fd_vsi_ctx(ctxt, vsi); 1284 /* if the switch is in VEB mode, allow VSI loopback */ 1285 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 1286 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 1287 1288 /* Set LUT type and HASH type if RSS is enabled */ 1289 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1290 vsi->type != ICE_VSI_CTRL) { 1291 ice_set_rss_vsi_ctx(ctxt, vsi); 1292 /* if updating VSI context, make sure to set valid_section: 1293 * to indicate which section of VSI context being updated 1294 */ 1295 if (!(vsi_flags & ICE_VSI_FLAG_INIT)) 1296 ctxt->info.valid_sections |= 1297 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1298 } 1299 1300 ctxt->info.sw_id = vsi->port_info->sw_id; 1301 if (vsi->type == ICE_VSI_CHNL) { 1302 ice_chnl_vsi_setup_q_map(vsi, ctxt); 1303 } else { 1304 ret = ice_vsi_setup_q_map(vsi, ctxt); 1305 if (ret) 1306 goto out; 1307 1308 if (!(vsi_flags & ICE_VSI_FLAG_INIT)) 1309 /* means VSI being updated */ 1310 /* must to indicate which section of VSI context are 1311 * being modified 1312 */ 1313 ctxt->info.valid_sections |= 1314 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1315 } 1316 1317 /* Allow control frames out of main VSI */ 1318 if (vsi->type == ICE_VSI_PF) { 1319 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1320 ctxt->info.valid_sections |= 1321 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1322 } 1323 1324 if (vsi_flags & ICE_VSI_FLAG_INIT) { 1325 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1326 if (ret) { 1327 dev_err(dev, "Add VSI failed, err %d\n", ret); 1328 ret = -EIO; 1329 goto out; 1330 } 1331 } else { 1332 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1333 if (ret) { 1334 dev_err(dev, "Update VSI failed, err %d\n", ret); 1335 ret = -EIO; 1336 goto out; 1337 } 1338 } 1339 1340 /* keep context for update VSI operations */ 1341 vsi->info = ctxt->info; 1342 1343 /* record VSI number returned */ 1344 vsi->vsi_num = ctxt->vsi_num; 1345 1346 out: 1347 kfree(ctxt); 1348 return ret; 1349 } 1350 1351 /** 1352 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1353 * @vsi: the VSI having rings deallocated 1354 */ 1355 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1356 { 1357 int i; 1358 1359 /* Avoid stale references by clearing map from vector to ring */ 1360 if (vsi->q_vectors) { 1361 ice_for_each_q_vector(vsi, i) { 1362 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1363 1364 if (q_vector) { 1365 q_vector->tx.tx_ring = NULL; 1366 q_vector->rx.rx_ring = NULL; 1367 } 1368 } 1369 } 1370 1371 if (vsi->tx_rings) { 1372 ice_for_each_alloc_txq(vsi, i) { 1373 if (vsi->tx_rings[i]) { 1374 kfree_rcu(vsi->tx_rings[i], rcu); 1375 WRITE_ONCE(vsi->tx_rings[i], NULL); 1376 } 1377 } 1378 } 1379 if (vsi->rx_rings) { 1380 ice_for_each_alloc_rxq(vsi, i) { 1381 if (vsi->rx_rings[i]) { 1382 kfree_rcu(vsi->rx_rings[i], rcu); 1383 WRITE_ONCE(vsi->rx_rings[i], NULL); 1384 } 1385 } 1386 } 1387 } 1388 1389 /** 1390 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1391 * @vsi: VSI which is having rings allocated 1392 */ 1393 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1394 { 1395 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw); 1396 struct ice_pf *pf = vsi->back; 1397 struct device *dev; 1398 u16 i; 1399 1400 dev = ice_pf_to_dev(pf); 1401 /* Allocate Tx rings */ 1402 ice_for_each_alloc_txq(vsi, i) { 1403 struct ice_tx_ring *ring; 1404 1405 /* allocate with kzalloc(), free with kfree_rcu() */ 1406 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1407 1408 if (!ring) 1409 goto err_out; 1410 1411 ring->q_index = i; 1412 ring->reg_idx = vsi->txq_map[i]; 1413 ring->vsi = vsi; 1414 ring->tx_tstamps = &pf->ptp.port.tx; 1415 ring->dev = dev; 1416 ring->count = vsi->num_tx_desc; 1417 ring->txq_teid = ICE_INVAL_TEID; 1418 if (dvm_ena) 1419 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2; 1420 else 1421 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1; 1422 WRITE_ONCE(vsi->tx_rings[i], ring); 1423 } 1424 1425 /* Allocate Rx rings */ 1426 ice_for_each_alloc_rxq(vsi, i) { 1427 struct ice_rx_ring *ring; 1428 1429 /* allocate with kzalloc(), free with kfree_rcu() */ 1430 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1431 if (!ring) 1432 goto err_out; 1433 1434 ring->q_index = i; 1435 ring->reg_idx = vsi->rxq_map[i]; 1436 ring->vsi = vsi; 1437 ring->netdev = vsi->netdev; 1438 ring->count = vsi->num_rx_desc; 1439 ring->cached_phctime = pf->ptp.cached_phc_time; 1440 1441 if (ice_is_feature_supported(pf, ICE_F_GCS)) 1442 ring->flags |= ICE_RX_FLAGS_RING_GCS; 1443 1444 WRITE_ONCE(vsi->rx_rings[i], ring); 1445 } 1446 1447 return 0; 1448 1449 err_out: 1450 ice_vsi_clear_rings(vsi); 1451 return -ENOMEM; 1452 } 1453 1454 /** 1455 * ice_vsi_manage_rss_lut - disable/enable RSS 1456 * @vsi: the VSI being changed 1457 * @ena: boolean value indicating if this is an enable or disable request 1458 * 1459 * In the event of disable request for RSS, this function will zero out RSS 1460 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1461 * LUT. 1462 */ 1463 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1464 { 1465 u8 *lut; 1466 1467 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1468 if (!lut) 1469 return; 1470 1471 if (ena) { 1472 if (vsi->rss_lut_user) 1473 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1474 else 1475 ice_fill_rss_lut(lut, vsi->rss_table_size, 1476 vsi->rss_size); 1477 } 1478 1479 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1480 kfree(lut); 1481 } 1482 1483 /** 1484 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI 1485 * @vsi: VSI to be configured 1486 * @disable: set to true to have FCS / CRC in the frame data 1487 */ 1488 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable) 1489 { 1490 int i; 1491 1492 ice_for_each_rxq(vsi, i) 1493 if (disable) 1494 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS; 1495 else 1496 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS; 1497 } 1498 1499 /** 1500 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1501 * @vsi: VSI to be configured 1502 */ 1503 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1504 { 1505 struct ice_pf *pf = vsi->back; 1506 struct device *dev; 1507 u8 *lut, *key; 1508 int err; 1509 1510 dev = ice_pf_to_dev(pf); 1511 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size && 1512 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) { 1513 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size); 1514 } else { 1515 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1516 1517 /* If orig_rss_size is valid and it is less than determined 1518 * main VSI's rss_size, update main VSI's rss_size to be 1519 * orig_rss_size so that when tc-qdisc is deleted, main VSI 1520 * RSS table gets programmed to be correct (whatever it was 1521 * to begin with (prior to setup-tc for ADQ config) 1522 */ 1523 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size && 1524 vsi->orig_rss_size <= vsi->num_rxq) { 1525 vsi->rss_size = vsi->orig_rss_size; 1526 /* now orig_rss_size is used, reset it to zero */ 1527 vsi->orig_rss_size = 0; 1528 } 1529 } 1530 1531 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1532 if (!lut) 1533 return -ENOMEM; 1534 1535 if (vsi->rss_lut_user) 1536 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1537 else 1538 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1539 1540 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1541 if (err) { 1542 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1543 goto ice_vsi_cfg_rss_exit; 1544 } 1545 1546 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1547 if (!key) { 1548 err = -ENOMEM; 1549 goto ice_vsi_cfg_rss_exit; 1550 } 1551 1552 if (vsi->rss_hkey_user) 1553 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1554 else 1555 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1556 1557 err = ice_set_rss_key(vsi, key); 1558 if (err) 1559 dev_err(dev, "set_rss_key failed, error %d\n", err); 1560 1561 kfree(key); 1562 ice_vsi_cfg_rss_exit: 1563 kfree(lut); 1564 return err; 1565 } 1566 1567 /** 1568 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1569 * @vsi: VSI to be configured 1570 * 1571 * This function will only be called during the VF VSI setup. Upon successful 1572 * completion of package download, this function will configure default RSS 1573 * input sets for VF VSI. 1574 */ 1575 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1576 { 1577 struct ice_pf *pf = vsi->back; 1578 struct device *dev; 1579 int status; 1580 1581 dev = ice_pf_to_dev(pf); 1582 if (ice_is_safe_mode(pf)) { 1583 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1584 vsi->vsi_num); 1585 return; 1586 } 1587 1588 status = ice_add_avf_rss_cfg(&pf->hw, vsi, ICE_DEFAULT_RSS_HASHCFG); 1589 if (status) 1590 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n", 1591 vsi->vsi_num, status); 1592 } 1593 1594 static const struct ice_rss_hash_cfg default_rss_cfgs[] = { 1595 /* configure RSS for IPv4 with input set IP src/dst */ 1596 {ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_IPV4, ICE_RSS_ANY_HEADERS, false}, 1597 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1598 {ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_IPV6, ICE_RSS_ANY_HEADERS, false}, 1599 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1600 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4, 1601 ICE_HASH_TCP_IPV4, ICE_RSS_ANY_HEADERS, false}, 1602 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1603 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4, 1604 ICE_HASH_UDP_IPV4, ICE_RSS_ANY_HEADERS, false}, 1605 /* configure RSS for sctp4 with input set IP src/dst - only support 1606 * RSS on SCTPv4 on outer headers (non-tunneled) 1607 */ 1608 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4, 1609 ICE_HASH_SCTP_IPV4, ICE_RSS_OUTER_HEADERS, false}, 1610 /* configure RSS for gtpc4 with input set IPv4 src/dst */ 1611 {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4, 1612 ICE_FLOW_HASH_IPV4, ICE_RSS_OUTER_HEADERS, false}, 1613 /* configure RSS for gtpc4t with input set IPv4 src/dst */ 1614 {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4, 1615 ICE_FLOW_HASH_GTP_C_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false}, 1616 /* configure RSS for gtpu4 with input set IPv4 src/dst */ 1617 {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4, 1618 ICE_FLOW_HASH_GTP_U_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false}, 1619 /* configure RSS for gtpu4e with input set IPv4 src/dst */ 1620 {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4, 1621 ICE_FLOW_HASH_GTP_U_IPV4_EH, ICE_RSS_OUTER_HEADERS, false}, 1622 /* configure RSS for gtpu4u with input set IPv4 src/dst */ 1623 { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4, 1624 ICE_FLOW_HASH_GTP_U_IPV4_UP, ICE_RSS_OUTER_HEADERS, false}, 1625 /* configure RSS for gtpu4d with input set IPv4 src/dst */ 1626 {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4, 1627 ICE_FLOW_HASH_GTP_U_IPV4_DWN, ICE_RSS_OUTER_HEADERS, false}, 1628 1629 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1630 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6, 1631 ICE_HASH_TCP_IPV6, ICE_RSS_ANY_HEADERS, false}, 1632 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1633 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6, 1634 ICE_HASH_UDP_IPV6, ICE_RSS_ANY_HEADERS, false}, 1635 /* configure RSS for sctp6 with input set IPv6 src/dst - only support 1636 * RSS on SCTPv6 on outer headers (non-tunneled) 1637 */ 1638 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6, 1639 ICE_HASH_SCTP_IPV6, ICE_RSS_OUTER_HEADERS, false}, 1640 /* configure RSS for IPSEC ESP SPI with input set MAC_IPV4_SPI */ 1641 {ICE_FLOW_SEG_HDR_ESP, 1642 ICE_FLOW_HASH_ESP_SPI, ICE_RSS_OUTER_HEADERS, false}, 1643 /* configure RSS for gtpc6 with input set IPv6 src/dst */ 1644 {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6, 1645 ICE_FLOW_HASH_IPV6, ICE_RSS_OUTER_HEADERS, false}, 1646 /* configure RSS for gtpc6t with input set IPv6 src/dst */ 1647 {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6, 1648 ICE_FLOW_HASH_GTP_C_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false}, 1649 /* configure RSS for gtpu6 with input set IPv6 src/dst */ 1650 {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6, 1651 ICE_FLOW_HASH_GTP_U_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false}, 1652 /* configure RSS for gtpu6e with input set IPv6 src/dst */ 1653 {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6, 1654 ICE_FLOW_HASH_GTP_U_IPV6_EH, ICE_RSS_OUTER_HEADERS, false}, 1655 /* configure RSS for gtpu6u with input set IPv6 src/dst */ 1656 { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6, 1657 ICE_FLOW_HASH_GTP_U_IPV6_UP, ICE_RSS_OUTER_HEADERS, false}, 1658 /* configure RSS for gtpu6d with input set IPv6 src/dst */ 1659 {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6, 1660 ICE_FLOW_HASH_GTP_U_IPV6_DWN, ICE_RSS_OUTER_HEADERS, false}, 1661 }; 1662 1663 /** 1664 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1665 * @vsi: VSI to be configured 1666 * 1667 * This function will only be called after successful download package call 1668 * during initialization of PF. Since the downloaded package will erase the 1669 * RSS section, this function will configure RSS input sets for different 1670 * flow types. The last profile added has the highest priority, therefore 2 1671 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1672 * (i.e. IPv4 src/dst TCP src/dst port). 1673 */ 1674 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1675 { 1676 u16 vsi_num = vsi->vsi_num; 1677 struct ice_pf *pf = vsi->back; 1678 struct ice_hw *hw = &pf->hw; 1679 struct device *dev; 1680 int status; 1681 u32 i; 1682 1683 dev = ice_pf_to_dev(pf); 1684 if (ice_is_safe_mode(pf)) { 1685 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1686 vsi_num); 1687 return; 1688 } 1689 for (i = 0; i < ARRAY_SIZE(default_rss_cfgs); i++) { 1690 const struct ice_rss_hash_cfg *cfg = &default_rss_cfgs[i]; 1691 1692 status = ice_add_rss_cfg(hw, vsi, cfg); 1693 if (status) 1694 dev_dbg(dev, "ice_add_rss_cfg failed, addl_hdrs = %x, hash_flds = %llx, hdr_type = %d, symm = %d\n", 1695 cfg->addl_hdrs, cfg->hash_flds, 1696 cfg->hdr_type, cfg->symm); 1697 } 1698 } 1699 1700 /** 1701 * ice_pf_state_is_nominal - checks the PF for nominal state 1702 * @pf: pointer to PF to check 1703 * 1704 * Check the PF's state for a collection of bits that would indicate 1705 * the PF is in a state that would inhibit normal operation for 1706 * driver functionality. 1707 * 1708 * Returns true if PF is in a nominal state, false otherwise 1709 */ 1710 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1711 { 1712 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1713 1714 if (!pf) 1715 return false; 1716 1717 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1718 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1719 return false; 1720 1721 return true; 1722 } 1723 1724 #define ICE_FW_MODE_REC_M BIT(1) 1725 bool ice_is_recovery_mode(struct ice_hw *hw) 1726 { 1727 return rd32(hw, GL_MNG_FWSM) & ICE_FW_MODE_REC_M; 1728 } 1729 1730 /** 1731 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1732 * @vsi: the VSI to be updated 1733 */ 1734 void ice_update_eth_stats(struct ice_vsi *vsi) 1735 { 1736 struct ice_eth_stats *prev_es, *cur_es; 1737 struct ice_hw *hw = &vsi->back->hw; 1738 struct ice_pf *pf = vsi->back; 1739 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1740 1741 prev_es = &vsi->eth_stats_prev; 1742 cur_es = &vsi->eth_stats; 1743 1744 if (ice_is_reset_in_progress(pf->state)) 1745 vsi->stat_offsets_loaded = false; 1746 1747 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1748 &prev_es->rx_bytes, &cur_es->rx_bytes); 1749 1750 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1751 &prev_es->rx_unicast, &cur_es->rx_unicast); 1752 1753 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1754 &prev_es->rx_multicast, &cur_es->rx_multicast); 1755 1756 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1757 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1758 1759 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1760 &prev_es->rx_discards, &cur_es->rx_discards); 1761 1762 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1763 &prev_es->tx_bytes, &cur_es->tx_bytes); 1764 1765 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1766 &prev_es->tx_unicast, &cur_es->tx_unicast); 1767 1768 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1769 &prev_es->tx_multicast, &cur_es->tx_multicast); 1770 1771 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1772 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1773 1774 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1775 &prev_es->tx_errors, &cur_es->tx_errors); 1776 1777 vsi->stat_offsets_loaded = true; 1778 } 1779 1780 /** 1781 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1782 * @hw: HW pointer 1783 * @pf_q: index of the Rx queue in the PF's queue space 1784 * @rxdid: flexible descriptor RXDID 1785 * @prio: priority for the RXDID for this queue 1786 * @ena_ts: true to enable timestamp and false to disable timestamp 1787 */ 1788 void ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 1789 bool ena_ts) 1790 { 1791 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1792 1793 /* clear any previous values */ 1794 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1795 QRXFLXP_CNTXT_RXDID_PRIO_M | 1796 QRXFLXP_CNTXT_TS_M); 1797 1798 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_IDX_M, rxdid); 1799 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_PRIO_M, prio); 1800 1801 if (ena_ts) 1802 /* Enable TimeSync on this queue */ 1803 regval |= QRXFLXP_CNTXT_TS_M; 1804 1805 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1806 } 1807 1808 /** 1809 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1810 * @intrl: interrupt rate limit in usecs 1811 * @gran: interrupt rate limit granularity in usecs 1812 * 1813 * This function converts a decimal interrupt rate limit in usecs to the format 1814 * expected by firmware. 1815 */ 1816 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1817 { 1818 u32 val = intrl / gran; 1819 1820 if (val) 1821 return val | GLINT_RATE_INTRL_ENA_M; 1822 return 0; 1823 } 1824 1825 /** 1826 * ice_write_intrl - write throttle rate limit to interrupt specific register 1827 * @q_vector: pointer to interrupt specific structure 1828 * @intrl: throttle rate limit in microseconds to write 1829 */ 1830 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 1831 { 1832 struct ice_hw *hw = &q_vector->vsi->back->hw; 1833 1834 wr32(hw, GLINT_RATE(q_vector->reg_idx), 1835 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 1836 } 1837 1838 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc) 1839 { 1840 switch (rc->type) { 1841 case ICE_RX_CONTAINER: 1842 if (rc->rx_ring) 1843 return rc->rx_ring->q_vector; 1844 break; 1845 case ICE_TX_CONTAINER: 1846 if (rc->tx_ring) 1847 return rc->tx_ring->q_vector; 1848 break; 1849 default: 1850 break; 1851 } 1852 1853 return NULL; 1854 } 1855 1856 /** 1857 * __ice_write_itr - write throttle rate to register 1858 * @q_vector: pointer to interrupt data structure 1859 * @rc: pointer to ring container 1860 * @itr: throttle rate in microseconds to write 1861 */ 1862 static void __ice_write_itr(struct ice_q_vector *q_vector, 1863 struct ice_ring_container *rc, u16 itr) 1864 { 1865 struct ice_hw *hw = &q_vector->vsi->back->hw; 1866 1867 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 1868 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 1869 } 1870 1871 /** 1872 * ice_write_itr - write throttle rate to queue specific register 1873 * @rc: pointer to ring container 1874 * @itr: throttle rate in microseconds to write 1875 */ 1876 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 1877 { 1878 struct ice_q_vector *q_vector; 1879 1880 q_vector = ice_pull_qvec_from_rc(rc); 1881 if (!q_vector) 1882 return; 1883 1884 __ice_write_itr(q_vector, rc, itr); 1885 } 1886 1887 /** 1888 * ice_set_q_vector_intrl - set up interrupt rate limiting 1889 * @q_vector: the vector to be configured 1890 * 1891 * Interrupt rate limiting is local to the vector, not per-queue so we must 1892 * detect if either ring container has dynamic moderation enabled to decide 1893 * what to set the interrupt rate limit to via INTRL settings. In the case that 1894 * dynamic moderation is disabled on both, write the value with the cached 1895 * setting to make sure INTRL register matches the user visible value. 1896 */ 1897 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector) 1898 { 1899 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) { 1900 /* in the case of dynamic enabled, cap each vector to no more 1901 * than (4 us) 250,000 ints/sec, which allows low latency 1902 * but still less than 500,000 interrupts per second, which 1903 * reduces CPU a bit in the case of the lowest latency 1904 * setting. The 4 here is a value in microseconds. 1905 */ 1906 ice_write_intrl(q_vector, 4); 1907 } else { 1908 ice_write_intrl(q_vector, q_vector->intrl); 1909 } 1910 } 1911 1912 /** 1913 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1914 * @vsi: the VSI being configured 1915 * 1916 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1917 * for the VF VSI. 1918 */ 1919 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1920 { 1921 struct ice_pf *pf = vsi->back; 1922 struct ice_hw *hw = &pf->hw; 1923 u16 txq = 0, rxq = 0; 1924 int i, q; 1925 1926 ice_for_each_q_vector(vsi, i) { 1927 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1928 u16 reg_idx = q_vector->reg_idx; 1929 1930 ice_cfg_itr(hw, q_vector); 1931 1932 /* Both Transmit Queue Interrupt Cause Control register 1933 * and Receive Queue Interrupt Cause control register 1934 * expects MSIX_INDX field to be the vector index 1935 * within the function space and not the absolute 1936 * vector index across PF or across device. 1937 * For SR-IOV VF VSIs queue vector index always starts 1938 * with 1 since first vector index(0) is used for OICR 1939 * in VF space. Since VMDq and other PF VSIs are within 1940 * the PF function space, use the vector index that is 1941 * tracked for this PF. 1942 */ 1943 for (q = 0; q < q_vector->num_ring_tx; q++) { 1944 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1945 q_vector->tx.itr_idx); 1946 txq++; 1947 } 1948 1949 for (q = 0; q < q_vector->num_ring_rx; q++) { 1950 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1951 q_vector->rx.itr_idx); 1952 rxq++; 1953 } 1954 } 1955 } 1956 1957 /** 1958 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 1959 * @vsi: the VSI whose rings are to be enabled 1960 * 1961 * Returns 0 on success and a negative value on error 1962 */ 1963 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 1964 { 1965 return ice_vsi_ctrl_all_rx_rings(vsi, true); 1966 } 1967 1968 /** 1969 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 1970 * @vsi: the VSI whose rings are to be disabled 1971 * 1972 * Returns 0 on success and a negative value on error 1973 */ 1974 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 1975 { 1976 return ice_vsi_ctrl_all_rx_rings(vsi, false); 1977 } 1978 1979 /** 1980 * ice_vsi_stop_tx_rings - Disable Tx rings 1981 * @vsi: the VSI being configured 1982 * @rst_src: reset source 1983 * @rel_vmvf_num: Relative ID of VF/VM 1984 * @rings: Tx ring array to be stopped 1985 * @count: number of Tx ring array elements 1986 */ 1987 static int 1988 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1989 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count) 1990 { 1991 u16 q_idx; 1992 1993 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 1994 return -EINVAL; 1995 1996 for (q_idx = 0; q_idx < count; q_idx++) { 1997 struct ice_txq_meta txq_meta = { }; 1998 int status; 1999 2000 if (!rings || !rings[q_idx]) 2001 return -EINVAL; 2002 2003 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2004 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2005 rings[q_idx], &txq_meta); 2006 2007 if (status) 2008 return status; 2009 } 2010 2011 return 0; 2012 } 2013 2014 /** 2015 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2016 * @vsi: the VSI being configured 2017 * @rst_src: reset source 2018 * @rel_vmvf_num: Relative ID of VF/VM 2019 */ 2020 int 2021 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2022 u16 rel_vmvf_num) 2023 { 2024 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 2025 } 2026 2027 /** 2028 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2029 * @vsi: the VSI being configured 2030 */ 2031 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2032 { 2033 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2034 } 2035 2036 /** 2037 * ice_vsi_is_rx_queue_active 2038 * @vsi: the VSI being configured 2039 * 2040 * Return true if at least one queue is active. 2041 */ 2042 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi) 2043 { 2044 struct ice_pf *pf = vsi->back; 2045 struct ice_hw *hw = &pf->hw; 2046 int i; 2047 2048 ice_for_each_rxq(vsi, i) { 2049 u32 rx_reg; 2050 int pf_q; 2051 2052 pf_q = vsi->rxq_map[i]; 2053 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 2054 if (rx_reg & QRX_CTRL_QENA_STAT_M) 2055 return true; 2056 } 2057 2058 return false; 2059 } 2060 2061 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2062 { 2063 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) { 2064 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS; 2065 vsi->tc_cfg.numtc = 1; 2066 return; 2067 } 2068 2069 /* set VSI TC information based on DCB config */ 2070 ice_vsi_set_dcb_tc_cfg(vsi); 2071 } 2072 2073 /** 2074 * ice_vsi_cfg_sw_lldp - Config switch rules for LLDP packet handling 2075 * @vsi: the VSI being configured 2076 * @tx: bool to determine Tx or Rx rule 2077 * @create: bool to determine create or remove Rule 2078 * 2079 * Adding an ethtype Tx rule to the uplink VSI results in it being applied 2080 * to the whole port, so LLDP transmission for VFs will be blocked too. 2081 */ 2082 void ice_vsi_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2083 { 2084 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2085 enum ice_sw_fwd_act_type act); 2086 struct ice_pf *pf = vsi->back; 2087 struct device *dev; 2088 int status; 2089 2090 dev = ice_pf_to_dev(pf); 2091 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2092 2093 if (tx) { 2094 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2095 ICE_DROP_PACKET); 2096 } else { 2097 if (!test_bit(ICE_FLAG_LLDP_AQ_FLTR, pf->flags)) { 2098 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2099 ICE_FWD_TO_VSI); 2100 if (!status || !create) 2101 goto report; 2102 2103 dev_info(dev, 2104 "Failed to add generic LLDP Rx filter on VSI %i error: %d, falling back to specialized AQ control\n", 2105 vsi->vsi_num, status); 2106 } 2107 2108 status = ice_lldp_fltr_add_remove(&pf->hw, vsi, create); 2109 if (!status) 2110 set_bit(ICE_FLAG_LLDP_AQ_FLTR, pf->flags); 2111 2112 } 2113 2114 report: 2115 if (status) 2116 dev_warn(dev, "Failed to %s %s LLDP rule on VSI %i error: %d\n", 2117 create ? "add" : "remove", tx ? "Tx" : "Rx", 2118 vsi->vsi_num, status); 2119 } 2120 2121 /** 2122 * ice_cfg_sw_rx_lldp - Enable/disable software handling of LLDP 2123 * @pf: the PF being configured 2124 * @enable: enable or disable 2125 * 2126 * Configure switch rules to enable/disable LLDP handling by software 2127 * across PF. 2128 */ 2129 void ice_cfg_sw_rx_lldp(struct ice_pf *pf, bool enable) 2130 { 2131 struct ice_vsi *vsi; 2132 struct ice_vf *vf; 2133 unsigned int bkt; 2134 2135 vsi = ice_get_main_vsi(pf); 2136 ice_vsi_cfg_sw_lldp(vsi, false, enable); 2137 2138 if (!test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) 2139 return; 2140 2141 ice_for_each_vf(pf, bkt, vf) { 2142 vsi = ice_get_vf_vsi(vf); 2143 2144 if (WARN_ON(!vsi)) 2145 continue; 2146 2147 if (ice_vf_is_lldp_ena(vf)) 2148 ice_vsi_cfg_sw_lldp(vsi, false, enable); 2149 } 2150 } 2151 2152 /** 2153 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2154 * @vsi: pointer to the VSI 2155 * 2156 * This function will allocate new scheduler aggregator now if needed and will 2157 * move specified VSI into it. 2158 */ 2159 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2160 { 2161 struct device *dev = ice_pf_to_dev(vsi->back); 2162 struct ice_agg_node *agg_node_iter = NULL; 2163 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2164 struct ice_agg_node *agg_node = NULL; 2165 int node_offset, max_agg_nodes = 0; 2166 struct ice_port_info *port_info; 2167 struct ice_pf *pf = vsi->back; 2168 u32 agg_node_id_start = 0; 2169 int status; 2170 2171 /* create (as needed) scheduler aggregator node and move VSI into 2172 * corresponding aggregator node 2173 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2174 * - VF aggregator nodes will contain VF VSI 2175 */ 2176 port_info = pf->hw.port_info; 2177 if (!port_info) 2178 return; 2179 2180 switch (vsi->type) { 2181 case ICE_VSI_CTRL: 2182 case ICE_VSI_CHNL: 2183 case ICE_VSI_LB: 2184 case ICE_VSI_PF: 2185 case ICE_VSI_SF: 2186 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2187 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2188 agg_node_iter = &pf->pf_agg_node[0]; 2189 break; 2190 case ICE_VSI_VF: 2191 /* user can create 'n' VFs on a given PF, but since max children 2192 * per aggregator node can be only 64. Following code handles 2193 * aggregator(s) for VF VSIs, either selects a agg_node which 2194 * was already created provided num_vsis < 64, otherwise 2195 * select next available node, which will be created 2196 */ 2197 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2198 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2199 agg_node_iter = &pf->vf_agg_node[0]; 2200 break; 2201 default: 2202 /* other VSI type, handle later if needed */ 2203 dev_dbg(dev, "unexpected VSI type %s\n", 2204 ice_vsi_type_str(vsi->type)); 2205 return; 2206 } 2207 2208 /* find the appropriate aggregator node */ 2209 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2210 /* see if we can find space in previously created 2211 * node if num_vsis < 64, otherwise skip 2212 */ 2213 if (agg_node_iter->num_vsis && 2214 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2215 agg_node_iter++; 2216 continue; 2217 } 2218 2219 if (agg_node_iter->valid && 2220 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2221 agg_id = agg_node_iter->agg_id; 2222 agg_node = agg_node_iter; 2223 break; 2224 } 2225 2226 /* find unclaimed agg_id */ 2227 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2228 agg_id = node_offset + agg_node_id_start; 2229 agg_node = agg_node_iter; 2230 break; 2231 } 2232 /* move to next agg_node */ 2233 agg_node_iter++; 2234 } 2235 2236 if (!agg_node) 2237 return; 2238 2239 /* if selected aggregator node was not created, create it */ 2240 if (!agg_node->valid) { 2241 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2242 (u8)vsi->tc_cfg.ena_tc); 2243 if (status) { 2244 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2245 agg_id); 2246 return; 2247 } 2248 /* aggregator node is created, store the needed info */ 2249 agg_node->valid = true; 2250 agg_node->agg_id = agg_id; 2251 } 2252 2253 /* move VSI to corresponding aggregator node */ 2254 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2255 (u8)vsi->tc_cfg.ena_tc); 2256 if (status) { 2257 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2258 vsi->idx, agg_id); 2259 return; 2260 } 2261 2262 /* keep active children count for aggregator node */ 2263 agg_node->num_vsis++; 2264 2265 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2266 * to aggregator node 2267 */ 2268 vsi->agg_node = agg_node; 2269 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2270 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2271 vsi->agg_node->num_vsis); 2272 } 2273 2274 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi) 2275 { 2276 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2277 struct device *dev = ice_pf_to_dev(pf); 2278 int ret, i; 2279 2280 /* configure VSI nodes based on number of queues and TC's */ 2281 ice_for_each_traffic_class(i) { 2282 if (!(vsi->tc_cfg.ena_tc & BIT(i))) 2283 continue; 2284 2285 if (vsi->type == ICE_VSI_CHNL) { 2286 if (!vsi->alloc_txq && vsi->num_txq) 2287 max_txqs[i] = vsi->num_txq; 2288 else 2289 max_txqs[i] = pf->num_lan_tx; 2290 } else { 2291 max_txqs[i] = vsi->alloc_txq; 2292 } 2293 2294 if (vsi->type == ICE_VSI_PF) 2295 max_txqs[i] += vsi->num_xdp_txq; 2296 } 2297 2298 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc); 2299 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2300 max_txqs); 2301 if (ret) { 2302 dev_err(dev, "VSI %d failed lan queue config, error %d\n", 2303 vsi->vsi_num, ret); 2304 return ret; 2305 } 2306 2307 return 0; 2308 } 2309 2310 /** 2311 * ice_vsi_cfg_def - configure default VSI based on the type 2312 * @vsi: pointer to VSI 2313 */ 2314 static int ice_vsi_cfg_def(struct ice_vsi *vsi) 2315 { 2316 struct device *dev = ice_pf_to_dev(vsi->back); 2317 struct ice_pf *pf = vsi->back; 2318 int ret; 2319 2320 vsi->vsw = pf->first_sw; 2321 2322 ret = ice_vsi_alloc_def(vsi, vsi->ch); 2323 if (ret) 2324 return ret; 2325 2326 /* allocate memory for Tx/Rx ring stat pointers */ 2327 ret = ice_vsi_alloc_stat_arrays(vsi); 2328 if (ret) 2329 goto unroll_vsi_alloc; 2330 2331 ice_alloc_fd_res(vsi); 2332 2333 ret = ice_vsi_get_qs(vsi); 2334 if (ret) { 2335 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2336 vsi->idx); 2337 goto unroll_vsi_alloc_stat; 2338 } 2339 2340 /* set RSS capabilities */ 2341 ice_vsi_set_rss_params(vsi); 2342 2343 /* set TC configuration */ 2344 ice_vsi_set_tc_cfg(vsi); 2345 2346 /* create the VSI */ 2347 ret = ice_vsi_init(vsi, vsi->flags); 2348 if (ret) 2349 goto unroll_get_qs; 2350 2351 ice_vsi_init_vlan_ops(vsi); 2352 2353 switch (vsi->type) { 2354 case ICE_VSI_CTRL: 2355 case ICE_VSI_SF: 2356 case ICE_VSI_PF: 2357 ret = ice_vsi_alloc_q_vectors(vsi); 2358 if (ret) 2359 goto unroll_vsi_init; 2360 2361 ret = ice_vsi_alloc_rings(vsi); 2362 if (ret) 2363 goto unroll_vector_base; 2364 2365 ret = ice_vsi_alloc_ring_stats(vsi); 2366 if (ret) 2367 goto unroll_vector_base; 2368 2369 if (ice_is_xdp_ena_vsi(vsi)) { 2370 ret = ice_vsi_determine_xdp_res(vsi); 2371 if (ret) 2372 goto unroll_vector_base; 2373 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog, 2374 ICE_XDP_CFG_PART); 2375 if (ret) 2376 goto unroll_vector_base; 2377 } 2378 2379 ice_vsi_map_rings_to_vectors(vsi); 2380 2381 vsi->stat_offsets_loaded = false; 2382 2383 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2384 if (vsi->type != ICE_VSI_CTRL) 2385 /* Do not exit if configuring RSS had an issue, at 2386 * least receive traffic on first queue. Hence no 2387 * need to capture return value 2388 */ 2389 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2390 ice_vsi_cfg_rss_lut_key(vsi); 2391 ice_vsi_set_rss_flow_fld(vsi); 2392 } 2393 ice_init_arfs(vsi); 2394 break; 2395 case ICE_VSI_CHNL: 2396 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2397 ice_vsi_cfg_rss_lut_key(vsi); 2398 ice_vsi_set_rss_flow_fld(vsi); 2399 } 2400 break; 2401 case ICE_VSI_VF: 2402 /* VF driver will take care of creating netdev for this type and 2403 * map queues to vectors through Virtchnl, PF driver only 2404 * creates a VSI and corresponding structures for bookkeeping 2405 * purpose 2406 */ 2407 ret = ice_vsi_alloc_q_vectors(vsi); 2408 if (ret) 2409 goto unroll_vsi_init; 2410 2411 ret = ice_vsi_alloc_rings(vsi); 2412 if (ret) 2413 goto unroll_alloc_q_vector; 2414 2415 ret = ice_vsi_alloc_ring_stats(vsi); 2416 if (ret) 2417 goto unroll_vector_base; 2418 2419 vsi->stat_offsets_loaded = false; 2420 2421 /* Do not exit if configuring RSS had an issue, at least 2422 * receive traffic on first queue. Hence no need to capture 2423 * return value 2424 */ 2425 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2426 ice_vsi_cfg_rss_lut_key(vsi); 2427 ice_vsi_set_vf_rss_flow_fld(vsi); 2428 } 2429 break; 2430 case ICE_VSI_LB: 2431 ret = ice_vsi_alloc_rings(vsi); 2432 if (ret) 2433 goto unroll_vsi_init; 2434 2435 ret = ice_vsi_alloc_ring_stats(vsi); 2436 if (ret) 2437 goto unroll_vector_base; 2438 2439 break; 2440 default: 2441 /* clean up the resources and exit */ 2442 ret = -EINVAL; 2443 goto unroll_vsi_init; 2444 } 2445 2446 return 0; 2447 2448 unroll_vector_base: 2449 /* reclaim SW interrupts back to the common pool */ 2450 unroll_alloc_q_vector: 2451 ice_vsi_free_q_vectors(vsi); 2452 unroll_vsi_init: 2453 ice_vsi_delete_from_hw(vsi); 2454 unroll_get_qs: 2455 ice_vsi_put_qs(vsi); 2456 unroll_vsi_alloc_stat: 2457 ice_vsi_free_stats(vsi); 2458 unroll_vsi_alloc: 2459 ice_vsi_free_arrays(vsi); 2460 return ret; 2461 } 2462 2463 /** 2464 * ice_vsi_cfg - configure a previously allocated VSI 2465 * @vsi: pointer to VSI 2466 */ 2467 int ice_vsi_cfg(struct ice_vsi *vsi) 2468 { 2469 struct ice_pf *pf = vsi->back; 2470 int ret; 2471 2472 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf)) 2473 return -EINVAL; 2474 2475 ret = ice_vsi_cfg_def(vsi); 2476 if (ret) 2477 return ret; 2478 2479 ret = ice_vsi_cfg_tc_lan(vsi->back, vsi); 2480 if (ret) 2481 ice_vsi_decfg(vsi); 2482 2483 if (vsi->type == ICE_VSI_CTRL) { 2484 if (vsi->vf) { 2485 WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI); 2486 vsi->vf->ctrl_vsi_idx = vsi->idx; 2487 } else { 2488 WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI); 2489 pf->ctrl_vsi_idx = vsi->idx; 2490 } 2491 } 2492 2493 return ret; 2494 } 2495 2496 /** 2497 * ice_vsi_decfg - remove all VSI configuration 2498 * @vsi: pointer to VSI 2499 */ 2500 void ice_vsi_decfg(struct ice_vsi *vsi) 2501 { 2502 struct ice_pf *pf = vsi->back; 2503 int err; 2504 2505 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2506 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 2507 if (err) 2508 dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 2509 vsi->vsi_num, err); 2510 2511 if (vsi->xdp_rings) 2512 /* return value check can be skipped here, it always returns 2513 * 0 if reset is in progress 2514 */ 2515 ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_PART); 2516 2517 ice_vsi_clear_rings(vsi); 2518 ice_vsi_free_q_vectors(vsi); 2519 ice_vsi_put_qs(vsi); 2520 ice_vsi_free_arrays(vsi); 2521 2522 /* SR-IOV determines needed MSIX resources all at once instead of per 2523 * VSI since when VFs are spawned we know how many VFs there are and how 2524 * many interrupts each VF needs. SR-IOV MSIX resources are also 2525 * cleared in the same manner. 2526 */ 2527 2528 if (vsi->type == ICE_VSI_VF && 2529 vsi->agg_node && vsi->agg_node->valid) 2530 vsi->agg_node->num_vsis--; 2531 } 2532 2533 /** 2534 * ice_vsi_setup - Set up a VSI by a given type 2535 * @pf: board private structure 2536 * @params: parameters to use when creating the VSI 2537 * 2538 * This allocates the sw VSI structure and its queue resources. 2539 * 2540 * Returns pointer to the successfully allocated and configured VSI sw struct on 2541 * success, NULL on failure. 2542 */ 2543 struct ice_vsi * 2544 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params) 2545 { 2546 struct device *dev = ice_pf_to_dev(pf); 2547 struct ice_vsi *vsi; 2548 int ret; 2549 2550 /* ice_vsi_setup can only initialize a new VSI, and we must have 2551 * a port_info structure for it. 2552 */ 2553 if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) || 2554 WARN_ON(!params->port_info)) 2555 return NULL; 2556 2557 vsi = ice_vsi_alloc(pf); 2558 if (!vsi) { 2559 dev_err(dev, "could not allocate VSI\n"); 2560 return NULL; 2561 } 2562 2563 vsi->params = *params; 2564 ret = ice_vsi_cfg(vsi); 2565 if (ret) 2566 goto err_vsi_cfg; 2567 2568 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2569 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2570 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2571 * The rule is added once for PF VSI in order to create appropriate 2572 * recipe, since VSI/VSI list is ignored with drop action... 2573 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2574 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2575 * settings in the HW. 2576 */ 2577 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) { 2578 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2579 ICE_DROP_PACKET); 2580 ice_vsi_cfg_sw_lldp(vsi, true, true); 2581 } 2582 2583 if (!vsi->agg_node) 2584 ice_set_agg_vsi(vsi); 2585 2586 return vsi; 2587 2588 err_vsi_cfg: 2589 ice_vsi_free(vsi); 2590 2591 return NULL; 2592 } 2593 2594 /** 2595 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2596 * @vsi: the VSI being cleaned up 2597 */ 2598 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2599 { 2600 struct ice_pf *pf = vsi->back; 2601 struct ice_hw *hw = &pf->hw; 2602 u32 txq = 0; 2603 u32 rxq = 0; 2604 int i, q; 2605 2606 ice_for_each_q_vector(vsi, i) { 2607 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2608 2609 ice_write_intrl(q_vector, 0); 2610 for (q = 0; q < q_vector->num_ring_tx; q++) { 2611 ice_write_itr(&q_vector->tx, 0); 2612 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2613 if (vsi->xdp_rings) { 2614 u32 xdp_txq = txq + vsi->num_xdp_txq; 2615 2616 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2617 } 2618 txq++; 2619 } 2620 2621 for (q = 0; q < q_vector->num_ring_rx; q++) { 2622 ice_write_itr(&q_vector->rx, 0); 2623 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2624 rxq++; 2625 } 2626 } 2627 2628 ice_flush(hw); 2629 } 2630 2631 /** 2632 * ice_vsi_free_irq - Free the IRQ association with the OS 2633 * @vsi: the VSI being configured 2634 */ 2635 void ice_vsi_free_irq(struct ice_vsi *vsi) 2636 { 2637 struct ice_pf *pf = vsi->back; 2638 int i; 2639 2640 if (!vsi->q_vectors || !vsi->irqs_ready) 2641 return; 2642 2643 ice_vsi_release_msix(vsi); 2644 if (vsi->type == ICE_VSI_VF) 2645 return; 2646 2647 vsi->irqs_ready = false; 2648 2649 ice_for_each_q_vector(vsi, i) { 2650 int irq_num; 2651 2652 irq_num = vsi->q_vectors[i]->irq.virq; 2653 2654 /* free only the irqs that were actually requested */ 2655 if (!vsi->q_vectors[i] || 2656 !(vsi->q_vectors[i]->num_ring_tx || 2657 vsi->q_vectors[i]->num_ring_rx)) 2658 continue; 2659 2660 synchronize_irq(irq_num); 2661 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2662 } 2663 } 2664 2665 /** 2666 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2667 * @vsi: the VSI having resources freed 2668 */ 2669 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2670 { 2671 int i; 2672 2673 if (!vsi->tx_rings) 2674 return; 2675 2676 ice_for_each_txq(vsi, i) 2677 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2678 ice_free_tx_ring(vsi->tx_rings[i]); 2679 } 2680 2681 /** 2682 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2683 * @vsi: the VSI having resources freed 2684 */ 2685 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2686 { 2687 int i; 2688 2689 if (!vsi->rx_rings) 2690 return; 2691 2692 ice_for_each_rxq(vsi, i) 2693 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2694 ice_free_rx_ring(vsi->rx_rings[i]); 2695 } 2696 2697 /** 2698 * ice_vsi_close - Shut down a VSI 2699 * @vsi: the VSI being shut down 2700 */ 2701 void ice_vsi_close(struct ice_vsi *vsi) 2702 { 2703 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2704 ice_down(vsi); 2705 2706 ice_vsi_clear_napi_queues(vsi); 2707 ice_vsi_free_irq(vsi); 2708 ice_vsi_free_tx_rings(vsi); 2709 ice_vsi_free_rx_rings(vsi); 2710 } 2711 2712 /** 2713 * ice_ena_vsi - resume a VSI 2714 * @vsi: the VSI being resume 2715 * @locked: is the rtnl_lock already held 2716 */ 2717 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2718 { 2719 int err = 0; 2720 2721 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2722 return 0; 2723 2724 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2725 2726 if (vsi->netdev && (vsi->type == ICE_VSI_PF || 2727 vsi->type == ICE_VSI_SF)) { 2728 if (netif_running(vsi->netdev)) { 2729 if (!locked) 2730 rtnl_lock(); 2731 2732 err = ice_open_internal(vsi->netdev); 2733 2734 if (!locked) 2735 rtnl_unlock(); 2736 } 2737 } else if (vsi->type == ICE_VSI_CTRL) { 2738 err = ice_vsi_open_ctrl(vsi); 2739 } 2740 2741 return err; 2742 } 2743 2744 /** 2745 * ice_dis_vsi - pause a VSI 2746 * @vsi: the VSI being paused 2747 * @locked: is the rtnl_lock already held 2748 */ 2749 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2750 { 2751 bool already_down = test_bit(ICE_VSI_DOWN, vsi->state); 2752 2753 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2754 2755 if (vsi->netdev && (vsi->type == ICE_VSI_PF || 2756 vsi->type == ICE_VSI_SF)) { 2757 if (netif_running(vsi->netdev)) { 2758 if (!locked) 2759 rtnl_lock(); 2760 already_down = test_bit(ICE_VSI_DOWN, vsi->state); 2761 if (!already_down) 2762 ice_vsi_close(vsi); 2763 2764 if (!locked) 2765 rtnl_unlock(); 2766 } else if (!already_down) { 2767 ice_vsi_close(vsi); 2768 } 2769 } else if (vsi->type == ICE_VSI_CTRL && !already_down) { 2770 ice_vsi_close(vsi); 2771 } 2772 } 2773 2774 /** 2775 * ice_vsi_set_napi_queues - associate netdev queues with napi 2776 * @vsi: VSI pointer 2777 * 2778 * Associate queue[s] with napi for all vectors. 2779 */ 2780 void ice_vsi_set_napi_queues(struct ice_vsi *vsi) 2781 { 2782 struct net_device *netdev = vsi->netdev; 2783 int q_idx, v_idx; 2784 2785 if (!netdev) 2786 return; 2787 2788 ASSERT_RTNL(); 2789 ice_for_each_rxq(vsi, q_idx) 2790 if (vsi->rx_rings[q_idx] && vsi->rx_rings[q_idx]->q_vector) 2791 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_RX, 2792 &vsi->rx_rings[q_idx]->q_vector->napi); 2793 2794 ice_for_each_txq(vsi, q_idx) 2795 if (vsi->tx_rings[q_idx] && vsi->tx_rings[q_idx]->q_vector) 2796 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_TX, 2797 &vsi->tx_rings[q_idx]->q_vector->napi); 2798 /* Also set the interrupt number for the NAPI */ 2799 ice_for_each_q_vector(vsi, v_idx) { 2800 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2801 2802 netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq); 2803 } 2804 } 2805 2806 /** 2807 * ice_vsi_clear_napi_queues - dissociate netdev queues from napi 2808 * @vsi: VSI pointer 2809 * 2810 * Clear the association between all VSI queues queue[s] and napi. 2811 */ 2812 void ice_vsi_clear_napi_queues(struct ice_vsi *vsi) 2813 { 2814 struct net_device *netdev = vsi->netdev; 2815 int q_idx, v_idx; 2816 2817 if (!netdev) 2818 return; 2819 2820 ASSERT_RTNL(); 2821 /* Clear the NAPI's interrupt number */ 2822 ice_for_each_q_vector(vsi, v_idx) { 2823 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2824 2825 netif_napi_set_irq(&q_vector->napi, -1); 2826 } 2827 2828 ice_for_each_txq(vsi, q_idx) 2829 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_TX, NULL); 2830 2831 ice_for_each_rxq(vsi, q_idx) 2832 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_RX, NULL); 2833 } 2834 2835 /** 2836 * ice_napi_add - register NAPI handler for the VSI 2837 * @vsi: VSI for which NAPI handler is to be registered 2838 * 2839 * This function is only called in the driver's load path. Registering the NAPI 2840 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 2841 * reset/rebuild, etc.) 2842 */ 2843 void ice_napi_add(struct ice_vsi *vsi) 2844 { 2845 int v_idx; 2846 2847 if (!vsi->netdev) 2848 return; 2849 2850 ice_for_each_q_vector(vsi, v_idx) 2851 netif_napi_add_config(vsi->netdev, 2852 &vsi->q_vectors[v_idx]->napi, 2853 ice_napi_poll, 2854 v_idx); 2855 } 2856 2857 /** 2858 * ice_vsi_release - Delete a VSI and free its resources 2859 * @vsi: the VSI being removed 2860 * 2861 * Returns 0 on success or < 0 on error 2862 */ 2863 int ice_vsi_release(struct ice_vsi *vsi) 2864 { 2865 struct ice_pf *pf; 2866 2867 if (!vsi->back) 2868 return -ENODEV; 2869 pf = vsi->back; 2870 2871 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2872 ice_rss_clean(vsi); 2873 2874 ice_vsi_close(vsi); 2875 2876 /* The Rx rule will only exist to remove if the LLDP FW 2877 * engine is currently stopped 2878 */ 2879 if (!ice_is_safe_mode(pf) && 2880 !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags) && 2881 (vsi->type == ICE_VSI_PF || (vsi->type == ICE_VSI_VF && 2882 ice_vf_is_lldp_ena(vsi->vf)))) 2883 ice_vsi_cfg_sw_lldp(vsi, false, false); 2884 2885 ice_vsi_decfg(vsi); 2886 2887 /* retain SW VSI data structure since it is needed to unregister and 2888 * free VSI netdev when PF is not in reset recovery pending state,\ 2889 * for ex: during rmmod. 2890 */ 2891 if (!ice_is_reset_in_progress(pf->state)) 2892 ice_vsi_delete(vsi); 2893 2894 return 0; 2895 } 2896 2897 /** 2898 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 2899 * @vsi: VSI connected with q_vectors 2900 * @coalesce: array of struct with stored coalesce 2901 * 2902 * Returns array size. 2903 */ 2904 static int 2905 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 2906 struct ice_coalesce_stored *coalesce) 2907 { 2908 int i; 2909 2910 ice_for_each_q_vector(vsi, i) { 2911 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2912 2913 coalesce[i].itr_tx = q_vector->tx.itr_settings; 2914 coalesce[i].itr_rx = q_vector->rx.itr_settings; 2915 coalesce[i].intrl = q_vector->intrl; 2916 2917 if (i < vsi->num_txq) 2918 coalesce[i].tx_valid = true; 2919 if (i < vsi->num_rxq) 2920 coalesce[i].rx_valid = true; 2921 } 2922 2923 return vsi->num_q_vectors; 2924 } 2925 2926 /** 2927 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 2928 * @vsi: VSI connected with q_vectors 2929 * @coalesce: pointer to array of struct with stored coalesce 2930 * @size: size of coalesce array 2931 * 2932 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 2933 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 2934 * to default value. 2935 */ 2936 static void 2937 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 2938 struct ice_coalesce_stored *coalesce, int size) 2939 { 2940 struct ice_ring_container *rc; 2941 int i; 2942 2943 if ((size && !coalesce) || !vsi) 2944 return; 2945 2946 /* There are a couple of cases that have to be handled here: 2947 * 1. The case where the number of queue vectors stays the same, but 2948 * the number of Tx or Rx rings changes (the first for loop) 2949 * 2. The case where the number of queue vectors increased (the 2950 * second for loop) 2951 */ 2952 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 2953 /* There are 2 cases to handle here and they are the same for 2954 * both Tx and Rx: 2955 * if the entry was valid previously (coalesce[i].[tr]x_valid 2956 * and the loop variable is less than the number of rings 2957 * allocated, then write the previous values 2958 * 2959 * if the entry was not valid previously, but the number of 2960 * rings is less than are allocated (this means the number of 2961 * rings increased from previously), then write out the 2962 * values in the first element 2963 * 2964 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 2965 * as there is no harm because the dynamic algorithm 2966 * will just overwrite. 2967 */ 2968 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 2969 rc = &vsi->q_vectors[i]->rx; 2970 rc->itr_settings = coalesce[i].itr_rx; 2971 ice_write_itr(rc, rc->itr_setting); 2972 } else if (i < vsi->alloc_rxq) { 2973 rc = &vsi->q_vectors[i]->rx; 2974 rc->itr_settings = coalesce[0].itr_rx; 2975 ice_write_itr(rc, rc->itr_setting); 2976 } 2977 2978 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 2979 rc = &vsi->q_vectors[i]->tx; 2980 rc->itr_settings = coalesce[i].itr_tx; 2981 ice_write_itr(rc, rc->itr_setting); 2982 } else if (i < vsi->alloc_txq) { 2983 rc = &vsi->q_vectors[i]->tx; 2984 rc->itr_settings = coalesce[0].itr_tx; 2985 ice_write_itr(rc, rc->itr_setting); 2986 } 2987 2988 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 2989 ice_set_q_vector_intrl(vsi->q_vectors[i]); 2990 } 2991 2992 /* the number of queue vectors increased so write whatever is in 2993 * the first element 2994 */ 2995 for (; i < vsi->num_q_vectors; i++) { 2996 /* transmit */ 2997 rc = &vsi->q_vectors[i]->tx; 2998 rc->itr_settings = coalesce[0].itr_tx; 2999 ice_write_itr(rc, rc->itr_setting); 3000 3001 /* receive */ 3002 rc = &vsi->q_vectors[i]->rx; 3003 rc->itr_settings = coalesce[0].itr_rx; 3004 ice_write_itr(rc, rc->itr_setting); 3005 3006 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3007 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3008 } 3009 } 3010 3011 /** 3012 * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones 3013 * @vsi: VSI pointer 3014 */ 3015 static int 3016 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi) 3017 { 3018 u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq; 3019 u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq; 3020 struct ice_ring_stats **tx_ring_stats; 3021 struct ice_ring_stats **rx_ring_stats; 3022 struct ice_vsi_stats *vsi_stat; 3023 struct ice_pf *pf = vsi->back; 3024 u16 prev_txq = vsi->alloc_txq; 3025 u16 prev_rxq = vsi->alloc_rxq; 3026 int i; 3027 3028 vsi_stat = pf->vsi_stats[vsi->idx]; 3029 3030 if (req_txq < prev_txq) { 3031 for (i = req_txq; i < prev_txq; i++) { 3032 if (vsi_stat->tx_ring_stats[i]) { 3033 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu); 3034 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL); 3035 } 3036 } 3037 } 3038 3039 tx_ring_stats = vsi_stat->tx_ring_stats; 3040 vsi_stat->tx_ring_stats = 3041 krealloc_array(vsi_stat->tx_ring_stats, req_txq, 3042 sizeof(*vsi_stat->tx_ring_stats), 3043 GFP_KERNEL | __GFP_ZERO); 3044 if (!vsi_stat->tx_ring_stats) { 3045 vsi_stat->tx_ring_stats = tx_ring_stats; 3046 return -ENOMEM; 3047 } 3048 3049 if (req_rxq < prev_rxq) { 3050 for (i = req_rxq; i < prev_rxq; i++) { 3051 if (vsi_stat->rx_ring_stats[i]) { 3052 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu); 3053 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL); 3054 } 3055 } 3056 } 3057 3058 rx_ring_stats = vsi_stat->rx_ring_stats; 3059 vsi_stat->rx_ring_stats = 3060 krealloc_array(vsi_stat->rx_ring_stats, req_rxq, 3061 sizeof(*vsi_stat->rx_ring_stats), 3062 GFP_KERNEL | __GFP_ZERO); 3063 if (!vsi_stat->rx_ring_stats) { 3064 vsi_stat->rx_ring_stats = rx_ring_stats; 3065 return -ENOMEM; 3066 } 3067 3068 return 0; 3069 } 3070 3071 /** 3072 * ice_vsi_rebuild - Rebuild VSI after reset 3073 * @vsi: VSI to be rebuild 3074 * @vsi_flags: flags used for VSI rebuild flow 3075 * 3076 * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or 3077 * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware. 3078 * 3079 * Returns 0 on success and negative value on failure 3080 */ 3081 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags) 3082 { 3083 struct ice_coalesce_stored *coalesce; 3084 int prev_num_q_vectors; 3085 struct ice_pf *pf; 3086 int ret; 3087 3088 if (!vsi) 3089 return -EINVAL; 3090 3091 vsi->flags = vsi_flags; 3092 pf = vsi->back; 3093 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf)) 3094 return -EINVAL; 3095 3096 mutex_lock(&vsi->xdp_state_lock); 3097 3098 ret = ice_vsi_realloc_stat_arrays(vsi); 3099 if (ret) 3100 goto unlock; 3101 3102 ice_vsi_decfg(vsi); 3103 ret = ice_vsi_cfg_def(vsi); 3104 if (ret) 3105 goto unlock; 3106 3107 coalesce = kcalloc(vsi->num_q_vectors, 3108 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3109 if (!coalesce) { 3110 ret = -ENOMEM; 3111 goto decfg; 3112 } 3113 3114 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3115 3116 ret = ice_vsi_cfg_tc_lan(pf, vsi); 3117 if (ret) { 3118 if (vsi_flags & ICE_VSI_FLAG_INIT) { 3119 ret = -EIO; 3120 goto free_coalesce; 3121 } 3122 3123 ret = ice_schedule_reset(pf, ICE_RESET_PFR); 3124 goto free_coalesce; 3125 } 3126 3127 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3128 clear_bit(ICE_VSI_REBUILD_PENDING, vsi->state); 3129 3130 free_coalesce: 3131 kfree(coalesce); 3132 decfg: 3133 if (ret) 3134 ice_vsi_decfg(vsi); 3135 unlock: 3136 mutex_unlock(&vsi->xdp_state_lock); 3137 return ret; 3138 } 3139 3140 /** 3141 * ice_is_reset_in_progress - check for a reset in progress 3142 * @state: PF state field 3143 */ 3144 bool ice_is_reset_in_progress(unsigned long *state) 3145 { 3146 return test_bit(ICE_RESET_OICR_RECV, state) || 3147 test_bit(ICE_PFR_REQ, state) || 3148 test_bit(ICE_CORER_REQ, state) || 3149 test_bit(ICE_GLOBR_REQ, state); 3150 } 3151 3152 /** 3153 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3154 * @pf: pointer to the PF structure 3155 * @timeout: length of time to wait, in jiffies 3156 * 3157 * Wait (sleep) for a short time until the driver finishes cleaning up from 3158 * a device reset. The caller must be able to sleep. Use this to delay 3159 * operations that could fail while the driver is cleaning up after a device 3160 * reset. 3161 * 3162 * Returns 0 on success, -EBUSY if the reset is not finished within the 3163 * timeout, and -ERESTARTSYS if the thread was interrupted. 3164 */ 3165 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3166 { 3167 long ret; 3168 3169 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3170 !ice_is_reset_in_progress(pf->state), 3171 timeout); 3172 if (ret < 0) 3173 return ret; 3174 else if (!ret) 3175 return -EBUSY; 3176 else 3177 return 0; 3178 } 3179 3180 /** 3181 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3182 * @vsi: VSI being configured 3183 * @ctx: the context buffer returned from AQ VSI update command 3184 */ 3185 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3186 { 3187 vsi->info.mapping_flags = ctx->info.mapping_flags; 3188 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3189 sizeof(vsi->info.q_mapping)); 3190 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3191 sizeof(vsi->info.tc_mapping)); 3192 } 3193 3194 /** 3195 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration 3196 * @vsi: the VSI being configured 3197 * @ena_tc: TC map to be enabled 3198 */ 3199 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) 3200 { 3201 struct net_device *netdev = vsi->netdev; 3202 struct ice_pf *pf = vsi->back; 3203 int numtc = vsi->tc_cfg.numtc; 3204 struct ice_dcbx_cfg *dcbcfg; 3205 u8 netdev_tc; 3206 int i; 3207 3208 if (!netdev) 3209 return; 3210 3211 /* CHNL VSI doesn't have its own netdev, hence, no netdev_tc */ 3212 if (vsi->type == ICE_VSI_CHNL) 3213 return; 3214 3215 if (!ena_tc) { 3216 netdev_reset_tc(netdev); 3217 return; 3218 } 3219 3220 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf)) 3221 numtc = vsi->all_numtc; 3222 3223 if (netdev_set_num_tc(netdev, numtc)) 3224 return; 3225 3226 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 3227 3228 ice_for_each_traffic_class(i) 3229 if (vsi->tc_cfg.ena_tc & BIT(i)) 3230 netdev_set_tc_queue(netdev, 3231 vsi->tc_cfg.tc_info[i].netdev_tc, 3232 vsi->tc_cfg.tc_info[i].qcount_tx, 3233 vsi->tc_cfg.tc_info[i].qoffset); 3234 /* setup TC queue map for CHNL TCs */ 3235 ice_for_each_chnl_tc(i) { 3236 if (!(vsi->all_enatc & BIT(i))) 3237 break; 3238 if (!vsi->mqprio_qopt.qopt.count[i]) 3239 break; 3240 netdev_set_tc_queue(netdev, i, 3241 vsi->mqprio_qopt.qopt.count[i], 3242 vsi->mqprio_qopt.qopt.offset[i]); 3243 } 3244 3245 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3246 return; 3247 3248 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 3249 u8 ets_tc = dcbcfg->etscfg.prio_table[i]; 3250 3251 /* Get the mapped netdev TC# for the UP */ 3252 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; 3253 netdev_set_prio_tc_map(netdev, i, netdev_tc); 3254 } 3255 } 3256 3257 /** 3258 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config 3259 * @vsi: the VSI being configured, 3260 * @ctxt: VSI context structure 3261 * @ena_tc: number of traffic classes to enable 3262 * 3263 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 3264 */ 3265 static int 3266 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt, 3267 u8 ena_tc) 3268 { 3269 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap; 3270 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0]; 3271 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0]; 3272 u16 new_txq, new_rxq; 3273 u8 netdev_tc = 0; 3274 int i; 3275 3276 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1; 3277 3278 pow = order_base_2(tc0_qcount); 3279 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, tc0_offset); 3280 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow); 3281 3282 ice_for_each_traffic_class(i) { 3283 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 3284 /* TC is not enabled */ 3285 vsi->tc_cfg.tc_info[i].qoffset = 0; 3286 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 3287 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 3288 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 3289 ctxt->info.tc_mapping[i] = 0; 3290 continue; 3291 } 3292 3293 offset = vsi->mqprio_qopt.qopt.offset[i]; 3294 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3295 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3296 vsi->tc_cfg.tc_info[i].qoffset = offset; 3297 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 3298 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx; 3299 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 3300 } 3301 3302 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) { 3303 ice_for_each_chnl_tc(i) { 3304 if (!(vsi->all_enatc & BIT(i))) 3305 continue; 3306 offset = vsi->mqprio_qopt.qopt.offset[i]; 3307 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3308 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3309 } 3310 } 3311 3312 new_txq = offset + qcount_tx; 3313 if (new_txq > vsi->alloc_txq) { 3314 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 3315 new_txq, vsi->alloc_txq); 3316 return -EINVAL; 3317 } 3318 3319 new_rxq = offset + qcount_rx; 3320 if (new_rxq > vsi->alloc_rxq) { 3321 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 3322 new_rxq, vsi->alloc_rxq); 3323 return -EINVAL; 3324 } 3325 3326 /* Set actual Tx/Rx queue pairs */ 3327 vsi->num_txq = new_txq; 3328 vsi->num_rxq = new_rxq; 3329 3330 /* Setup queue TC[0].qmap for given VSI context */ 3331 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 3332 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 3333 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount); 3334 3335 /* Find queue count available for channel VSIs and starting offset 3336 * for channel VSIs 3337 */ 3338 if (tc0_qcount && tc0_qcount < vsi->num_rxq) { 3339 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount; 3340 vsi->next_base_q = tc0_qcount; 3341 } 3342 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq); 3343 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq); 3344 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n", 3345 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc); 3346 3347 return 0; 3348 } 3349 3350 /** 3351 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3352 * @vsi: VSI to be configured 3353 * @ena_tc: TC bitmap 3354 * 3355 * VSI queues expected to be quiesced before calling this function 3356 */ 3357 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3358 { 3359 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3360 struct ice_pf *pf = vsi->back; 3361 struct ice_tc_cfg old_tc_cfg; 3362 struct ice_vsi_ctx *ctx; 3363 struct device *dev; 3364 int i, ret = 0; 3365 u8 num_tc = 0; 3366 3367 dev = ice_pf_to_dev(pf); 3368 if (vsi->tc_cfg.ena_tc == ena_tc && 3369 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 3370 return 0; 3371 3372 ice_for_each_traffic_class(i) { 3373 /* build bitmap of enabled TCs */ 3374 if (ena_tc & BIT(i)) 3375 num_tc++; 3376 /* populate max_txqs per TC */ 3377 max_txqs[i] = vsi->alloc_txq; 3378 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are 3379 * zero for CHNL VSI, hence use num_txq instead as max_txqs 3380 */ 3381 if (vsi->type == ICE_VSI_CHNL && 3382 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3383 max_txqs[i] = vsi->num_txq; 3384 } 3385 3386 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg)); 3387 vsi->tc_cfg.ena_tc = ena_tc; 3388 vsi->tc_cfg.numtc = num_tc; 3389 3390 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3391 if (!ctx) 3392 return -ENOMEM; 3393 3394 ctx->vf_num = 0; 3395 ctx->info = vsi->info; 3396 3397 if (vsi->type == ICE_VSI_PF && 3398 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3399 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc); 3400 else 3401 ret = ice_vsi_setup_q_map(vsi, ctx); 3402 3403 if (ret) { 3404 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg)); 3405 goto out; 3406 } 3407 3408 /* must to indicate which section of VSI context are being modified */ 3409 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3410 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3411 if (ret) { 3412 dev_info(dev, "Failed VSI Update\n"); 3413 goto out; 3414 } 3415 3416 if (vsi->type == ICE_VSI_PF && 3417 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3418 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3419 else 3420 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3421 vsi->tc_cfg.ena_tc, max_txqs); 3422 3423 if (ret) { 3424 dev_err(dev, "VSI %d failed TC config, error %d\n", 3425 vsi->vsi_num, ret); 3426 goto out; 3427 } 3428 ice_vsi_update_q_map(vsi, ctx); 3429 vsi->info.valid_sections = 0; 3430 3431 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3432 out: 3433 kfree(ctx); 3434 return ret; 3435 } 3436 3437 /** 3438 * ice_update_tx_ring_stats - Update Tx ring specific counters 3439 * @tx_ring: ring to update 3440 * @pkts: number of processed packets 3441 * @bytes: number of processed bytes 3442 */ 3443 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes) 3444 { 3445 u64_stats_update_begin(&tx_ring->ring_stats->syncp); 3446 u64_stats_add(&tx_ring->ring_stats->pkts, pkts); 3447 u64_stats_add(&tx_ring->ring_stats->bytes, bytes); 3448 u64_stats_update_end(&tx_ring->ring_stats->syncp); 3449 } 3450 3451 /** 3452 * ice_update_rx_ring_stats - Update Rx ring specific counters 3453 * @rx_ring: ring to update 3454 * @pkts: number of processed packets 3455 * @bytes: number of processed bytes 3456 */ 3457 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes) 3458 { 3459 u64_stats_update_begin(&rx_ring->ring_stats->syncp); 3460 u64_stats_add(&rx_ring->ring_stats->pkts, pkts); 3461 u64_stats_add(&rx_ring->ring_stats->bytes, bytes); 3462 u64_stats_update_end(&rx_ring->ring_stats->syncp); 3463 } 3464 3465 /** 3466 * ice_fetch_tx_ring_stats - Fetch Tx ring packet and byte counters 3467 * @ring: ring to update 3468 * @pkts: number of processed packets 3469 * @bytes: number of processed bytes 3470 */ 3471 void ice_fetch_tx_ring_stats(const struct ice_tx_ring *ring, 3472 u64 *pkts, u64 *bytes) 3473 { 3474 unsigned int start; 3475 3476 do { 3477 start = u64_stats_fetch_begin(&ring->ring_stats->syncp); 3478 *pkts = u64_stats_read(&ring->ring_stats->pkts); 3479 *bytes = u64_stats_read(&ring->ring_stats->bytes); 3480 } while (u64_stats_fetch_retry(&ring->ring_stats->syncp, start)); 3481 } 3482 3483 /** 3484 * ice_fetch_rx_ring_stats - Fetch Rx ring packet and byte counters 3485 * @ring: ring to read 3486 * @pkts: number of processed packets 3487 * @bytes: number of processed bytes 3488 */ 3489 void ice_fetch_rx_ring_stats(const struct ice_rx_ring *ring, 3490 u64 *pkts, u64 *bytes) 3491 { 3492 unsigned int start; 3493 3494 do { 3495 start = u64_stats_fetch_begin(&ring->ring_stats->syncp); 3496 *pkts = u64_stats_read(&ring->ring_stats->pkts); 3497 *bytes = u64_stats_read(&ring->ring_stats->bytes); 3498 } while (u64_stats_fetch_retry(&ring->ring_stats->syncp, start)); 3499 } 3500 3501 /** 3502 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3503 * @pi: port info of the switch with default VSI 3504 * 3505 * Return true if the there is a single VSI in default forwarding VSI list 3506 */ 3507 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi) 3508 { 3509 bool exists = false; 3510 3511 ice_check_if_dflt_vsi(pi, 0, &exists); 3512 return exists; 3513 } 3514 3515 /** 3516 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3517 * @vsi: VSI to compare against default forwarding VSI 3518 * 3519 * If this VSI passed in is the default forwarding VSI then return true, else 3520 * return false 3521 */ 3522 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi) 3523 { 3524 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL); 3525 } 3526 3527 /** 3528 * ice_set_dflt_vsi - set the default forwarding VSI 3529 * @vsi: VSI getting set as the default forwarding VSI on the switch 3530 * 3531 * If the VSI passed in is already the default VSI and it's enabled just return 3532 * success. 3533 * 3534 * Otherwise try to set the VSI passed in as the switch's default VSI and 3535 * return the result. 3536 */ 3537 int ice_set_dflt_vsi(struct ice_vsi *vsi) 3538 { 3539 struct device *dev; 3540 int status; 3541 3542 if (!vsi) 3543 return -EINVAL; 3544 3545 dev = ice_pf_to_dev(vsi->back); 3546 3547 if (ice_lag_is_switchdev_running(vsi->back)) { 3548 dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n", 3549 vsi->vsi_num); 3550 return 0; 3551 } 3552 3553 /* the VSI passed in is already the default VSI */ 3554 if (ice_is_vsi_dflt_vsi(vsi)) { 3555 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3556 vsi->vsi_num); 3557 return 0; 3558 } 3559 3560 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX); 3561 if (status) { 3562 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n", 3563 vsi->vsi_num, status); 3564 return status; 3565 } 3566 3567 return 0; 3568 } 3569 3570 /** 3571 * ice_clear_dflt_vsi - clear the default forwarding VSI 3572 * @vsi: VSI to remove from filter list 3573 * 3574 * If the switch has no default VSI or it's not enabled then return error. 3575 * 3576 * Otherwise try to clear the default VSI and return the result. 3577 */ 3578 int ice_clear_dflt_vsi(struct ice_vsi *vsi) 3579 { 3580 struct device *dev; 3581 int status; 3582 3583 if (!vsi) 3584 return -EINVAL; 3585 3586 dev = ice_pf_to_dev(vsi->back); 3587 3588 /* there is no default VSI configured */ 3589 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) 3590 return -ENODEV; 3591 3592 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false, 3593 ICE_FLTR_RX); 3594 if (status) { 3595 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n", 3596 vsi->vsi_num, status); 3597 return -EIO; 3598 } 3599 3600 return 0; 3601 } 3602 3603 /** 3604 * ice_get_link_speed_mbps - get link speed in Mbps 3605 * @vsi: the VSI whose link speed is being queried 3606 * 3607 * Return current VSI link speed and 0 if the speed is unknown. 3608 */ 3609 int ice_get_link_speed_mbps(struct ice_vsi *vsi) 3610 { 3611 unsigned int link_speed; 3612 3613 link_speed = vsi->port_info->phy.link_info.link_speed; 3614 3615 return (int)ice_get_link_speed(fls(link_speed) - 1); 3616 } 3617 3618 /** 3619 * ice_get_link_speed_kbps - get link speed in Kbps 3620 * @vsi: the VSI whose link speed is being queried 3621 * 3622 * Return current VSI link speed and 0 if the speed is unknown. 3623 */ 3624 int ice_get_link_speed_kbps(struct ice_vsi *vsi) 3625 { 3626 int speed_mbps; 3627 3628 speed_mbps = ice_get_link_speed_mbps(vsi); 3629 3630 return speed_mbps * 1000; 3631 } 3632 3633 /** 3634 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate 3635 * @vsi: VSI to be configured 3636 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit 3637 * 3638 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit 3639 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI 3640 * on TC 0. 3641 */ 3642 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate) 3643 { 3644 struct ice_pf *pf = vsi->back; 3645 struct device *dev; 3646 int status; 3647 int speed; 3648 3649 dev = ice_pf_to_dev(pf); 3650 if (!vsi->port_info) { 3651 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3652 vsi->idx, vsi->type); 3653 return -EINVAL; 3654 } 3655 3656 speed = ice_get_link_speed_kbps(vsi); 3657 if (min_tx_rate > (u64)speed) { 3658 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3659 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3660 speed); 3661 return -EINVAL; 3662 } 3663 3664 /* Configure min BW for VSI limit */ 3665 if (min_tx_rate) { 3666 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3667 ICE_MIN_BW, min_tx_rate); 3668 if (status) { 3669 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n", 3670 min_tx_rate, ice_vsi_type_str(vsi->type), 3671 vsi->idx); 3672 return status; 3673 } 3674 3675 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n", 3676 min_tx_rate, ice_vsi_type_str(vsi->type)); 3677 } else { 3678 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3679 vsi->idx, 0, 3680 ICE_MIN_BW); 3681 if (status) { 3682 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n", 3683 ice_vsi_type_str(vsi->type), vsi->idx); 3684 return status; 3685 } 3686 3687 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n", 3688 ice_vsi_type_str(vsi->type), vsi->idx); 3689 } 3690 3691 return 0; 3692 } 3693 3694 /** 3695 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate 3696 * @vsi: VSI to be configured 3697 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit 3698 * 3699 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit 3700 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI 3701 * on TC 0. 3702 */ 3703 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate) 3704 { 3705 struct ice_pf *pf = vsi->back; 3706 struct device *dev; 3707 int status; 3708 int speed; 3709 3710 dev = ice_pf_to_dev(pf); 3711 if (!vsi->port_info) { 3712 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3713 vsi->idx, vsi->type); 3714 return -EINVAL; 3715 } 3716 3717 speed = ice_get_link_speed_kbps(vsi); 3718 if (max_tx_rate > (u64)speed) { 3719 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3720 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3721 speed); 3722 return -EINVAL; 3723 } 3724 3725 /* Configure max BW for VSI limit */ 3726 if (max_tx_rate) { 3727 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3728 ICE_MAX_BW, max_tx_rate); 3729 if (status) { 3730 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n", 3731 max_tx_rate, ice_vsi_type_str(vsi->type), 3732 vsi->idx); 3733 return status; 3734 } 3735 3736 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n", 3737 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); 3738 } else { 3739 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3740 vsi->idx, 0, 3741 ICE_MAX_BW); 3742 if (status) { 3743 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n", 3744 ice_vsi_type_str(vsi->type), vsi->idx); 3745 return status; 3746 } 3747 3748 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n", 3749 ice_vsi_type_str(vsi->type), vsi->idx); 3750 } 3751 3752 return 0; 3753 } 3754 3755 /** 3756 * ice_set_link - turn on/off physical link 3757 * @vsi: VSI to modify physical link on 3758 * @ena: turn on/off physical link 3759 */ 3760 int ice_set_link(struct ice_vsi *vsi, bool ena) 3761 { 3762 struct device *dev = ice_pf_to_dev(vsi->back); 3763 struct ice_port_info *pi = vsi->port_info; 3764 struct ice_hw *hw = pi->hw; 3765 int status; 3766 3767 if (vsi->type != ICE_VSI_PF) 3768 return -EINVAL; 3769 3770 status = ice_aq_set_link_restart_an(pi, ena, NULL); 3771 3772 /* if link is owned by manageability, FW will return LIBIE_AQ_RC_EMODE. 3773 * this is not a fatal error, so print a warning message and return 3774 * a success code. Return an error if FW returns an error code other 3775 * than LIBIE_AQ_RC_EMODE 3776 */ 3777 if (status == -EIO) { 3778 if (hw->adminq.sq_last_status == LIBIE_AQ_RC_EMODE) 3779 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n", 3780 (ena ? "ON" : "OFF"), status, 3781 libie_aq_str(hw->adminq.sq_last_status)); 3782 } else if (status) { 3783 dev_err(dev, "can't set link to %s, err %d aq_err %s\n", 3784 (ena ? "ON" : "OFF"), status, 3785 libie_aq_str(hw->adminq.sq_last_status)); 3786 return status; 3787 } 3788 3789 return 0; 3790 } 3791 3792 /** 3793 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI 3794 * @vsi: VSI used to add VLAN filters 3795 * 3796 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based 3797 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't 3798 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via 3799 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID. 3800 * 3801 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic 3802 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged 3803 * traffic in SVM, since the VLAN TPID isn't part of filtering. 3804 * 3805 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be 3806 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is 3807 * part of filtering. 3808 */ 3809 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi) 3810 { 3811 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3812 struct ice_vlan vlan; 3813 int err; 3814 3815 vlan = ICE_VLAN(0, 0, 0); 3816 err = vlan_ops->add_vlan(vsi, &vlan); 3817 if (err && err != -EEXIST) 3818 return err; 3819 3820 /* in SVM both VLAN 0 filters are identical */ 3821 if (!ice_is_dvm_ena(&vsi->back->hw)) 3822 return 0; 3823 3824 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 3825 err = vlan_ops->add_vlan(vsi, &vlan); 3826 if (err && err != -EEXIST) 3827 return err; 3828 3829 return 0; 3830 } 3831 3832 /** 3833 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI 3834 * @vsi: VSI used to add VLAN filters 3835 * 3836 * Delete the VLAN 0 filters in the same manner that they were added in 3837 * ice_vsi_add_vlan_zero. 3838 */ 3839 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi) 3840 { 3841 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3842 struct ice_pf *pf = vsi->back; 3843 struct ice_vlan vlan; 3844 int err; 3845 3846 if (pf->lag && pf->lag->primary) { 3847 dev_dbg(ice_pf_to_dev(pf), "Interface is primary in aggregate - not deleting prune list\n"); 3848 } else { 3849 vlan = ICE_VLAN(0, 0, 0); 3850 err = vlan_ops->del_vlan(vsi, &vlan); 3851 if (err && err != -EEXIST) 3852 return err; 3853 } 3854 3855 /* in SVM both VLAN 0 filters are identical */ 3856 if (!ice_is_dvm_ena(&vsi->back->hw)) 3857 return 0; 3858 3859 if (pf->lag && pf->lag->primary) { 3860 dev_dbg(ice_pf_to_dev(pf), "Interface is primary in aggregate - not deleting QinQ prune list\n"); 3861 } else { 3862 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 3863 err = vlan_ops->del_vlan(vsi, &vlan); 3864 if (err && err != -EEXIST) 3865 return err; 3866 } 3867 3868 /* when deleting the last VLAN filter, make sure to disable the VLAN 3869 * promisc mode so the filter isn't left by accident 3870 */ 3871 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3872 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3873 } 3874 3875 /** 3876 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode 3877 * @vsi: VSI used to get the VLAN mode 3878 * 3879 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled 3880 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details. 3881 */ 3882 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi) 3883 { 3884 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2 3885 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1 3886 /* no VLAN 0 filter is created when a port VLAN is active */ 3887 if (vsi->type == ICE_VSI_VF) { 3888 if (WARN_ON(!vsi->vf)) 3889 return 0; 3890 3891 if (ice_vf_is_port_vlan_ena(vsi->vf)) 3892 return 0; 3893 } 3894 3895 if (ice_is_dvm_ena(&vsi->back->hw)) 3896 return ICE_DVM_NUM_ZERO_VLAN_FLTRS; 3897 else 3898 return ICE_SVM_NUM_ZERO_VLAN_FLTRS; 3899 } 3900 3901 /** 3902 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs 3903 * @vsi: VSI used to determine if any non-zero VLANs have been added 3904 */ 3905 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi) 3906 { 3907 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi)); 3908 } 3909 3910 /** 3911 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI 3912 * @vsi: VSI used to get the number of non-zero VLANs added 3913 */ 3914 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi) 3915 { 3916 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi)); 3917 } 3918 3919 /** 3920 * ice_is_feature_supported 3921 * @pf: pointer to the struct ice_pf instance 3922 * @f: feature enum to be checked 3923 * 3924 * returns true if feature is supported, false otherwise 3925 */ 3926 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f) 3927 { 3928 if (f < 0 || f >= ICE_F_MAX) 3929 return false; 3930 3931 return test_bit(f, pf->features); 3932 } 3933 3934 /** 3935 * ice_set_feature_support 3936 * @pf: pointer to the struct ice_pf instance 3937 * @f: feature enum to set 3938 */ 3939 void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f) 3940 { 3941 if (f < 0 || f >= ICE_F_MAX) 3942 return; 3943 3944 set_bit(f, pf->features); 3945 } 3946 3947 /** 3948 * ice_clear_feature_support 3949 * @pf: pointer to the struct ice_pf instance 3950 * @f: feature enum to clear 3951 */ 3952 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f) 3953 { 3954 if (f < 0 || f >= ICE_F_MAX) 3955 return; 3956 3957 clear_bit(f, pf->features); 3958 } 3959 3960 /** 3961 * ice_init_feature_support 3962 * @pf: pointer to the struct ice_pf instance 3963 * 3964 * called during init to setup supported feature 3965 */ 3966 void ice_init_feature_support(struct ice_pf *pf) 3967 { 3968 switch (pf->hw.device_id) { 3969 case ICE_DEV_ID_E810C_BACKPLANE: 3970 case ICE_DEV_ID_E810C_QSFP: 3971 case ICE_DEV_ID_E810C_SFP: 3972 case ICE_DEV_ID_E810_XXV_BACKPLANE: 3973 case ICE_DEV_ID_E810_XXV_QSFP: 3974 case ICE_DEV_ID_E810_XXV_SFP: 3975 ice_set_feature_support(pf, ICE_F_DSCP); 3976 if (ice_is_phy_rclk_in_netlist(&pf->hw)) 3977 ice_set_feature_support(pf, ICE_F_PHY_RCLK); 3978 /* If we don't own the timer - don't enable other caps */ 3979 if (!ice_pf_src_tmr_owned(pf)) 3980 break; 3981 if (ice_is_cgu_in_netlist(&pf->hw)) 3982 ice_set_feature_support(pf, ICE_F_CGU); 3983 if (ice_is_clock_mux_in_netlist(&pf->hw)) 3984 ice_set_feature_support(pf, ICE_F_SMA_CTRL); 3985 if (ice_gnss_is_module_present(&pf->hw)) 3986 ice_set_feature_support(pf, ICE_F_GNSS); 3987 break; 3988 default: 3989 break; 3990 } 3991 3992 if (pf->hw.mac_type == ICE_MAC_GENERIC_3K_E825) 3993 ice_set_feature_support(pf, ICE_F_PHY_RCLK); 3994 3995 if (pf->hw.mac_type == ICE_MAC_E830) { 3996 ice_set_feature_support(pf, ICE_F_MBX_LIMIT); 3997 ice_set_feature_support(pf, ICE_F_GCS); 3998 ice_set_feature_support(pf, ICE_F_TXTIME); 3999 } 4000 } 4001 4002 /** 4003 * ice_vsi_update_security - update security block in VSI 4004 * @vsi: pointer to VSI structure 4005 * @fill: function pointer to fill ctx 4006 */ 4007 int 4008 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *)) 4009 { 4010 struct ice_vsi_ctx ctx = { 0 }; 4011 4012 ctx.info = vsi->info; 4013 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 4014 fill(&ctx); 4015 4016 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4017 return -ENODEV; 4018 4019 vsi->info = ctx.info; 4020 return 0; 4021 } 4022 4023 /** 4024 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx 4025 * @ctx: pointer to VSI ctx structure 4026 */ 4027 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx) 4028 { 4029 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 4030 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4031 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4032 } 4033 4034 /** 4035 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx 4036 * @ctx: pointer to VSI ctx structure 4037 */ 4038 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx) 4039 { 4040 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF & 4041 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4042 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4043 } 4044 4045 /** 4046 * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit 4047 * @vsi: pointer to VSI structure 4048 * @set: set or unset the bit 4049 */ 4050 int 4051 ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set) 4052 { 4053 struct ice_vsi_ctx ctx = { 4054 .info = vsi->info, 4055 }; 4056 4057 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 4058 if (set) 4059 ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB; 4060 else 4061 ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB; 4062 4063 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4064 return -ENODEV; 4065 4066 vsi->info = ctx.info; 4067 return 0; 4068 } 4069 4070 /** 4071 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI 4072 * @vsi: VSI used to update l2tsel on 4073 * @l2tsel: l2tsel setting requested 4074 * 4075 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel. 4076 * This will modify which descriptor field the first offloaded VLAN will be 4077 * stripped into. 4078 */ 4079 void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel) 4080 { 4081 struct ice_hw *hw = &vsi->back->hw; 4082 u32 l2tsel_bit; 4083 int i; 4084 4085 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND) 4086 l2tsel_bit = 0; 4087 else 4088 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET); 4089 4090 for (i = 0; i < vsi->alloc_rxq; i++) { 4091 u16 pfq = vsi->rxq_map[i]; 4092 u32 qrx_context_offset; 4093 u32 regval; 4094 4095 qrx_context_offset = 4096 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq); 4097 4098 regval = rd32(hw, qrx_context_offset); 4099 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET); 4100 regval |= l2tsel_bit; 4101 wr32(hw, qrx_context_offset, regval); 4102 } 4103 } 4104