1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2012 Intel Corporation. All rights reserved.
8 * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * BSD LICENSE
15 *
16 * Copyright(c) 2012 Intel Corporation. All rights reserved.
17 * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 *
23 * * Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
25 * * Redistributions in binary form must reproduce the above copy
26 * notice, this list of conditions and the following disclaimer in
27 * the documentation and/or other materials provided with the
28 * distribution.
29 * * Neither the name of Intel Corporation nor the names of its
30 * contributors may be used to endorse or promote products derived
31 * from this software without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44 *
45 * PCIe NTB Transport Linux driver
46 *
47 * Contact Information:
48 * Jon Mason <jon.mason@intel.com>
49 */
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include <linux/uaccess.h>
62 #include <linux/mutex.h>
63 #include "linux/ntb.h"
64 #include "linux/ntb_transport.h"
65
66 #define NTB_TRANSPORT_VERSION 4
67 #define NTB_TRANSPORT_VER "4"
68 #define NTB_TRANSPORT_NAME "ntb_transport"
69 #define NTB_TRANSPORT_DESC "Software Queue-Pair Transport over NTB"
70 #define NTB_TRANSPORT_MIN_SPADS (MW0_SZ_HIGH + 2)
71
72 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
73 MODULE_VERSION(NTB_TRANSPORT_VER);
74 MODULE_LICENSE("Dual BSD/GPL");
75 MODULE_AUTHOR("Intel Corporation");
76
77 static unsigned long max_mw_size;
78 module_param(max_mw_size, ulong, 0644);
79 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
80
81 static unsigned int transport_mtu = 0x10000;
82 module_param(transport_mtu, uint, 0644);
83 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
84
85 static unsigned char max_num_clients;
86 module_param(max_num_clients, byte, 0644);
87 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
88
89 static unsigned int copy_bytes = 1024;
90 module_param(copy_bytes, uint, 0644);
91 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
92
93 static bool use_dma;
94 module_param(use_dma, bool, 0644);
95 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
96
97 static bool use_msi;
98 #ifdef CONFIG_NTB_MSI
99 module_param(use_msi, bool, 0644);
100 MODULE_PARM_DESC(use_msi, "Use MSI interrupts instead of doorbells");
101 #endif
102
103 static struct dentry *nt_debugfs_dir;
104
105 /* Only two-ports NTB devices are supported */
106 #define PIDX NTB_DEF_PEER_IDX
107
108 struct ntb_queue_entry {
109 /* ntb_queue list reference */
110 struct list_head entry;
111 /* pointers to data to be transferred */
112 void *cb_data;
113 void *buf;
114 unsigned int len;
115 unsigned int flags;
116 int retries;
117 int errors;
118 unsigned int tx_index;
119 unsigned int rx_index;
120
121 struct ntb_transport_qp *qp;
122 union {
123 struct ntb_payload_header __iomem *tx_hdr;
124 struct ntb_payload_header *rx_hdr;
125 };
126 };
127
128 struct ntb_rx_info {
129 unsigned int entry;
130 };
131
132 struct ntb_transport_qp {
133 struct ntb_transport_ctx *transport;
134 struct ntb_dev *ndev;
135 void *cb_data;
136 struct dma_chan *tx_dma_chan;
137 struct dma_chan *rx_dma_chan;
138
139 bool client_ready;
140 bool link_is_up;
141 bool active;
142
143 u8 qp_num; /* Only 64 QP's are allowed. 0-63 */
144 u64 qp_bit;
145
146 struct ntb_rx_info __iomem *rx_info;
147 struct ntb_rx_info *remote_rx_info;
148
149 void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
150 void *data, int len);
151 struct list_head tx_free_q;
152 spinlock_t ntb_tx_free_q_lock;
153 void __iomem *tx_mw;
154 phys_addr_t tx_mw_phys;
155 size_t tx_mw_size;
156 dma_addr_t tx_mw_dma_addr;
157 unsigned int tx_index;
158 unsigned int tx_max_entry;
159 unsigned int tx_max_frame;
160
161 void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
162 void *data, int len);
163 struct list_head rx_post_q;
164 struct list_head rx_pend_q;
165 struct list_head rx_free_q;
166 /* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
167 spinlock_t ntb_rx_q_lock;
168 void *rx_buff;
169 unsigned int rx_index;
170 unsigned int rx_max_entry;
171 unsigned int rx_max_frame;
172 unsigned int rx_alloc_entry;
173 dma_cookie_t last_cookie;
174 struct tasklet_struct rxc_db_work;
175
176 void (*event_handler)(void *data, int status);
177 struct delayed_work link_work;
178 struct work_struct link_cleanup;
179
180 struct dentry *debugfs_dir;
181 struct dentry *debugfs_stats;
182
183 /* Stats */
184 u64 rx_bytes;
185 u64 rx_pkts;
186 u64 rx_ring_empty;
187 u64 rx_err_no_buf;
188 u64 rx_err_oflow;
189 u64 rx_err_ver;
190 u64 rx_memcpy;
191 u64 rx_async;
192 u64 tx_bytes;
193 u64 tx_pkts;
194 u64 tx_ring_full;
195 u64 tx_err_no_buf;
196 u64 tx_memcpy;
197 u64 tx_async;
198
199 bool use_msi;
200 int msi_irq;
201 struct ntb_msi_desc msi_desc;
202 struct ntb_msi_desc peer_msi_desc;
203 };
204
205 struct ntb_transport_mw {
206 phys_addr_t phys_addr;
207 resource_size_t phys_size;
208 void __iomem *vbase;
209 size_t xlat_size;
210 size_t buff_size;
211 size_t alloc_size;
212 void *alloc_addr;
213 void *virt_addr;
214 dma_addr_t dma_addr;
215 };
216
217 struct ntb_transport_client_dev {
218 struct list_head entry;
219 struct ntb_transport_ctx *nt;
220 struct device dev;
221 };
222
223 struct ntb_transport_ctx {
224 struct list_head entry;
225 struct list_head client_devs;
226
227 struct ntb_dev *ndev;
228
229 struct ntb_transport_mw *mw_vec;
230 struct ntb_transport_qp *qp_vec;
231 unsigned int mw_count;
232 unsigned int qp_count;
233 u64 qp_bitmap;
234 u64 qp_bitmap_free;
235
236 bool use_msi;
237 unsigned int msi_spad_offset;
238 u64 msi_db_mask;
239
240 bool link_is_up;
241 struct delayed_work link_work;
242 struct work_struct link_cleanup;
243
244 struct dentry *debugfs_node_dir;
245
246 /* Make sure workq of link event be executed serially */
247 struct mutex link_event_lock;
248 };
249
250 enum {
251 DESC_DONE_FLAG = BIT(0),
252 LINK_DOWN_FLAG = BIT(1),
253 };
254
255 struct ntb_payload_header {
256 unsigned int ver;
257 unsigned int len;
258 unsigned int flags;
259 };
260
261 enum {
262 VERSION = 0,
263 QP_LINKS,
264 NUM_QPS,
265 NUM_MWS,
266 MW0_SZ_HIGH,
267 MW0_SZ_LOW,
268 };
269
270 #define dev_client_dev(__dev) \
271 container_of((__dev), struct ntb_transport_client_dev, dev)
272
273 #define drv_client(__drv) \
274 container_of((__drv), struct ntb_transport_client, driver)
275
276 #define QP_TO_MW(nt, qp) ((qp) % nt->mw_count)
277 #define NTB_QP_DEF_NUM_ENTRIES 100
278 #define NTB_LINK_DOWN_TIMEOUT 10
279
280 static void ntb_transport_rxc_db(unsigned long data);
281 static const struct ntb_ctx_ops ntb_transport_ops;
282 static struct ntb_client ntb_transport_client;
283 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
284 struct ntb_queue_entry *entry);
285 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset);
286 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset);
287 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset);
288
289
ntb_transport_bus_match(struct device * dev,const struct device_driver * drv)290 static int ntb_transport_bus_match(struct device *dev,
291 const struct device_driver *drv)
292 {
293 return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
294 }
295
ntb_transport_bus_probe(struct device * dev)296 static int ntb_transport_bus_probe(struct device *dev)
297 {
298 const struct ntb_transport_client *client;
299 int rc;
300
301 get_device(dev);
302
303 client = drv_client(dev->driver);
304 rc = client->probe(dev);
305 if (rc)
306 put_device(dev);
307
308 return rc;
309 }
310
ntb_transport_bus_remove(struct device * dev)311 static void ntb_transport_bus_remove(struct device *dev)
312 {
313 const struct ntb_transport_client *client;
314
315 client = drv_client(dev->driver);
316 client->remove(dev);
317
318 put_device(dev);
319 }
320
321 static const struct bus_type ntb_transport_bus = {
322 .name = "ntb_transport",
323 .match = ntb_transport_bus_match,
324 .probe = ntb_transport_bus_probe,
325 .remove = ntb_transport_bus_remove,
326 };
327
328 static LIST_HEAD(ntb_transport_list);
329
ntb_bus_init(struct ntb_transport_ctx * nt)330 static int ntb_bus_init(struct ntb_transport_ctx *nt)
331 {
332 list_add_tail(&nt->entry, &ntb_transport_list);
333 return 0;
334 }
335
ntb_bus_remove(struct ntb_transport_ctx * nt)336 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
337 {
338 struct ntb_transport_client_dev *client_dev, *cd;
339
340 list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
341 dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
342 dev_name(&client_dev->dev));
343 list_del(&client_dev->entry);
344 device_unregister(&client_dev->dev);
345 }
346
347 list_del(&nt->entry);
348 }
349
ntb_transport_client_release(struct device * dev)350 static void ntb_transport_client_release(struct device *dev)
351 {
352 struct ntb_transport_client_dev *client_dev;
353
354 client_dev = dev_client_dev(dev);
355 kfree(client_dev);
356 }
357
358 /**
359 * ntb_transport_unregister_client_dev - Unregister NTB client device
360 * @device_name: Name of NTB client device
361 *
362 * Unregister an NTB client device with the NTB transport layer
363 */
ntb_transport_unregister_client_dev(char * device_name)364 void ntb_transport_unregister_client_dev(char *device_name)
365 {
366 struct ntb_transport_client_dev *client, *cd;
367 struct ntb_transport_ctx *nt;
368
369 list_for_each_entry(nt, &ntb_transport_list, entry)
370 list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
371 if (!strncmp(dev_name(&client->dev), device_name,
372 strlen(device_name))) {
373 list_del(&client->entry);
374 device_unregister(&client->dev);
375 }
376 }
377 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
378
379 /**
380 * ntb_transport_register_client_dev - Register NTB client device
381 * @device_name: Name of NTB client device
382 *
383 * Register an NTB client device with the NTB transport layer
384 *
385 * Returns: %0 on success or -errno code on error
386 */
ntb_transport_register_client_dev(char * device_name)387 int ntb_transport_register_client_dev(char *device_name)
388 {
389 struct ntb_transport_client_dev *client_dev;
390 struct ntb_transport_ctx *nt;
391 int node;
392 int rc, i = 0;
393
394 if (list_empty(&ntb_transport_list))
395 return -ENODEV;
396
397 list_for_each_entry(nt, &ntb_transport_list, entry) {
398 struct device *dev;
399
400 node = dev_to_node(&nt->ndev->dev);
401
402 client_dev = kzalloc_node(sizeof(*client_dev),
403 GFP_KERNEL, node);
404 if (!client_dev) {
405 rc = -ENOMEM;
406 goto err;
407 }
408
409 dev = &client_dev->dev;
410
411 /* setup and register client devices */
412 dev_set_name(dev, "%s%d", device_name, i);
413 dev->bus = &ntb_transport_bus;
414 dev->release = ntb_transport_client_release;
415 dev->parent = &nt->ndev->dev;
416
417 rc = device_register(dev);
418 if (rc) {
419 put_device(dev);
420 goto err;
421 }
422
423 list_add_tail(&client_dev->entry, &nt->client_devs);
424 i++;
425 }
426
427 return 0;
428
429 err:
430 ntb_transport_unregister_client_dev(device_name);
431
432 return rc;
433 }
434 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
435
436 /**
437 * ntb_transport_register_client - Register NTB client driver
438 * @drv: NTB client driver to be registered
439 *
440 * Register an NTB client driver with the NTB transport layer
441 *
442 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
443 */
ntb_transport_register_client(struct ntb_transport_client * drv)444 int ntb_transport_register_client(struct ntb_transport_client *drv)
445 {
446 drv->driver.bus = &ntb_transport_bus;
447
448 if (list_empty(&ntb_transport_list))
449 return -ENODEV;
450
451 return driver_register(&drv->driver);
452 }
453 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
454
455 /**
456 * ntb_transport_unregister_client - Unregister NTB client driver
457 * @drv: NTB client driver to be unregistered
458 *
459 * Unregister an NTB client driver with the NTB transport layer
460 *
461 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
462 */
ntb_transport_unregister_client(struct ntb_transport_client * drv)463 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
464 {
465 driver_unregister(&drv->driver);
466 }
467 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
468
debugfs_read(struct file * filp,char __user * ubuf,size_t count,loff_t * offp)469 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
470 loff_t *offp)
471 {
472 struct ntb_transport_qp *qp;
473 char *buf;
474 ssize_t ret, out_offset, out_count;
475
476 qp = filp->private_data;
477
478 if (!qp || !qp->link_is_up)
479 return 0;
480
481 out_count = 1000;
482
483 buf = kmalloc(out_count, GFP_KERNEL);
484 if (!buf)
485 return -ENOMEM;
486
487 out_offset = 0;
488 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
489 "\nNTB QP stats:\n\n");
490 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
491 "rx_bytes - \t%llu\n", qp->rx_bytes);
492 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
493 "rx_pkts - \t%llu\n", qp->rx_pkts);
494 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
495 "rx_memcpy - \t%llu\n", qp->rx_memcpy);
496 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
497 "rx_async - \t%llu\n", qp->rx_async);
498 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
499 "rx_ring_empty - %llu\n", qp->rx_ring_empty);
500 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
501 "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
502 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
503 "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
504 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
505 "rx_err_ver - \t%llu\n", qp->rx_err_ver);
506 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
507 "rx_buff - \t0x%p\n", qp->rx_buff);
508 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
509 "rx_index - \t%u\n", qp->rx_index);
510 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
511 "rx_max_entry - \t%u\n", qp->rx_max_entry);
512 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
513 "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry);
514
515 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
516 "tx_bytes - \t%llu\n", qp->tx_bytes);
517 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
518 "tx_pkts - \t%llu\n", qp->tx_pkts);
519 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
520 "tx_memcpy - \t%llu\n", qp->tx_memcpy);
521 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
522 "tx_async - \t%llu\n", qp->tx_async);
523 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
524 "tx_ring_full - \t%llu\n", qp->tx_ring_full);
525 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
526 "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
527 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
528 "tx_mw - \t0x%p\n", qp->tx_mw);
529 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
530 "tx_index (H) - \t%u\n", qp->tx_index);
531 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
532 "RRI (T) - \t%u\n",
533 qp->remote_rx_info->entry);
534 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
535 "tx_max_entry - \t%u\n", qp->tx_max_entry);
536 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
537 "free tx - \t%u\n",
538 ntb_transport_tx_free_entry(qp));
539
540 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
541 "\n");
542 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
543 "Using TX DMA - \t%s\n",
544 qp->tx_dma_chan ? "Yes" : "No");
545 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
546 "Using RX DMA - \t%s\n",
547 qp->rx_dma_chan ? "Yes" : "No");
548 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
549 "QP Link - \t%s\n",
550 qp->link_is_up ? "Up" : "Down");
551 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
552 "\n");
553
554 if (out_offset > out_count)
555 out_offset = out_count;
556
557 ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
558 kfree(buf);
559 return ret;
560 }
561
562 static const struct file_operations ntb_qp_debugfs_stats = {
563 .owner = THIS_MODULE,
564 .open = simple_open,
565 .read = debugfs_read,
566 };
567
ntb_list_add(spinlock_t * lock,struct list_head * entry,struct list_head * list)568 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
569 struct list_head *list)
570 {
571 unsigned long flags;
572
573 spin_lock_irqsave(lock, flags);
574 list_add_tail(entry, list);
575 spin_unlock_irqrestore(lock, flags);
576 }
577
ntb_list_rm(spinlock_t * lock,struct list_head * list)578 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
579 struct list_head *list)
580 {
581 struct ntb_queue_entry *entry;
582 unsigned long flags;
583
584 spin_lock_irqsave(lock, flags);
585 if (list_empty(list)) {
586 entry = NULL;
587 goto out;
588 }
589 entry = list_first_entry(list, struct ntb_queue_entry, entry);
590 list_del(&entry->entry);
591
592 out:
593 spin_unlock_irqrestore(lock, flags);
594
595 return entry;
596 }
597
ntb_list_mv(spinlock_t * lock,struct list_head * list,struct list_head * to_list)598 static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
599 struct list_head *list,
600 struct list_head *to_list)
601 {
602 struct ntb_queue_entry *entry;
603 unsigned long flags;
604
605 spin_lock_irqsave(lock, flags);
606
607 if (list_empty(list)) {
608 entry = NULL;
609 } else {
610 entry = list_first_entry(list, struct ntb_queue_entry, entry);
611 list_move_tail(&entry->entry, to_list);
612 }
613
614 spin_unlock_irqrestore(lock, flags);
615
616 return entry;
617 }
618
ntb_transport_setup_qp_mw(struct ntb_transport_ctx * nt,unsigned int qp_num)619 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
620 unsigned int qp_num)
621 {
622 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
623 struct ntb_transport_mw *mw;
624 struct ntb_dev *ndev = nt->ndev;
625 struct ntb_queue_entry *entry;
626 unsigned int rx_size, num_qps_mw;
627 unsigned int mw_num, mw_count, qp_count;
628 unsigned int i;
629 int node;
630
631 mw_count = nt->mw_count;
632 qp_count = nt->qp_count;
633
634 mw_num = QP_TO_MW(nt, qp_num);
635 mw = &nt->mw_vec[mw_num];
636
637 if (!mw->virt_addr)
638 return -ENOMEM;
639
640 if (mw_num < qp_count % mw_count)
641 num_qps_mw = qp_count / mw_count + 1;
642 else
643 num_qps_mw = qp_count / mw_count;
644
645 rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
646 qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count);
647 rx_size -= sizeof(struct ntb_rx_info);
648
649 qp->remote_rx_info = qp->rx_buff + rx_size;
650
651 /* Due to housekeeping, there must be atleast 2 buffs */
652 qp->rx_max_frame = min(transport_mtu, rx_size / 2);
653 qp->rx_max_entry = rx_size / qp->rx_max_frame;
654 qp->rx_index = 0;
655
656 /*
657 * Checking to see if we have more entries than the default.
658 * We should add additional entries if that is the case so we
659 * can be in sync with the transport frames.
660 */
661 node = dev_to_node(&ndev->dev);
662 for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) {
663 entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
664 if (!entry)
665 return -ENOMEM;
666
667 entry->qp = qp;
668 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
669 &qp->rx_free_q);
670 qp->rx_alloc_entry++;
671 }
672
673 qp->remote_rx_info->entry = qp->rx_max_entry - 1;
674
675 /* setup the hdr offsets with 0's */
676 for (i = 0; i < qp->rx_max_entry; i++) {
677 void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
678 sizeof(struct ntb_payload_header));
679 memset(offset, 0, sizeof(struct ntb_payload_header));
680 }
681
682 qp->rx_pkts = 0;
683 qp->tx_pkts = 0;
684 qp->tx_index = 0;
685
686 return 0;
687 }
688
ntb_transport_isr(int irq,void * dev)689 static irqreturn_t ntb_transport_isr(int irq, void *dev)
690 {
691 struct ntb_transport_qp *qp = dev;
692
693 tasklet_schedule(&qp->rxc_db_work);
694
695 return IRQ_HANDLED;
696 }
697
ntb_transport_setup_qp_peer_msi(struct ntb_transport_ctx * nt,unsigned int qp_num)698 static void ntb_transport_setup_qp_peer_msi(struct ntb_transport_ctx *nt,
699 unsigned int qp_num)
700 {
701 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
702 int spad = qp_num * 2 + nt->msi_spad_offset;
703
704 if (!nt->use_msi)
705 return;
706
707 if (spad >= ntb_spad_count(nt->ndev))
708 return;
709
710 qp->peer_msi_desc.addr_offset =
711 ntb_peer_spad_read(qp->ndev, PIDX, spad);
712 qp->peer_msi_desc.data =
713 ntb_peer_spad_read(qp->ndev, PIDX, spad + 1);
714
715 dev_dbg(&qp->ndev->pdev->dev, "QP%d Peer MSI addr=%x data=%x\n",
716 qp_num, qp->peer_msi_desc.addr_offset, qp->peer_msi_desc.data);
717
718 if (qp->peer_msi_desc.addr_offset) {
719 qp->use_msi = true;
720 dev_info(&qp->ndev->pdev->dev,
721 "Using MSI interrupts for QP%d\n", qp_num);
722 }
723 }
724
ntb_transport_setup_qp_msi(struct ntb_transport_ctx * nt,unsigned int qp_num)725 static void ntb_transport_setup_qp_msi(struct ntb_transport_ctx *nt,
726 unsigned int qp_num)
727 {
728 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
729 int spad = qp_num * 2 + nt->msi_spad_offset;
730 int rc;
731
732 if (!nt->use_msi)
733 return;
734
735 if (spad >= ntb_spad_count(nt->ndev)) {
736 dev_warn_once(&qp->ndev->pdev->dev,
737 "Not enough SPADS to use MSI interrupts\n");
738 return;
739 }
740
741 ntb_spad_write(qp->ndev, spad, 0);
742 ntb_spad_write(qp->ndev, spad + 1, 0);
743
744 if (!qp->msi_irq) {
745 qp->msi_irq = ntbm_msi_request_irq(qp->ndev, ntb_transport_isr,
746 KBUILD_MODNAME, qp,
747 &qp->msi_desc);
748 if (qp->msi_irq < 0) {
749 dev_warn(&qp->ndev->pdev->dev,
750 "Unable to allocate MSI interrupt for qp%d\n",
751 qp_num);
752 return;
753 }
754 }
755
756 rc = ntb_spad_write(qp->ndev, spad, qp->msi_desc.addr_offset);
757 if (rc)
758 goto err_free_interrupt;
759
760 rc = ntb_spad_write(qp->ndev, spad + 1, qp->msi_desc.data);
761 if (rc)
762 goto err_free_interrupt;
763
764 dev_dbg(&qp->ndev->pdev->dev, "QP%d MSI %d addr=%x data=%x\n",
765 qp_num, qp->msi_irq, qp->msi_desc.addr_offset,
766 qp->msi_desc.data);
767
768 return;
769
770 err_free_interrupt:
771 devm_free_irq(&nt->ndev->dev, qp->msi_irq, qp);
772 }
773
ntb_transport_msi_peer_desc_changed(struct ntb_transport_ctx * nt)774 static void ntb_transport_msi_peer_desc_changed(struct ntb_transport_ctx *nt)
775 {
776 int i;
777
778 dev_dbg(&nt->ndev->pdev->dev, "Peer MSI descriptors changed");
779
780 for (i = 0; i < nt->qp_count; i++)
781 ntb_transport_setup_qp_peer_msi(nt, i);
782 }
783
ntb_transport_msi_desc_changed(void * data)784 static void ntb_transport_msi_desc_changed(void *data)
785 {
786 struct ntb_transport_ctx *nt = data;
787 int i;
788
789 dev_dbg(&nt->ndev->pdev->dev, "MSI descriptors changed");
790
791 for (i = 0; i < nt->qp_count; i++)
792 ntb_transport_setup_qp_msi(nt, i);
793
794 ntb_peer_db_set(nt->ndev, nt->msi_db_mask);
795 }
796
ntb_free_mw(struct ntb_transport_ctx * nt,int num_mw)797 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
798 {
799 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
800 struct pci_dev *pdev = nt->ndev->pdev;
801
802 if (!mw->virt_addr)
803 return;
804
805 ntb_mw_clear_trans(nt->ndev, PIDX, num_mw);
806 dma_free_coherent(&pdev->dev, mw->alloc_size,
807 mw->alloc_addr, mw->dma_addr);
808 mw->xlat_size = 0;
809 mw->buff_size = 0;
810 mw->alloc_size = 0;
811 mw->alloc_addr = NULL;
812 mw->virt_addr = NULL;
813 }
814
ntb_alloc_mw_buffer(struct ntb_transport_mw * mw,struct device * ntb_dev,size_t align)815 static int ntb_alloc_mw_buffer(struct ntb_transport_mw *mw,
816 struct device *ntb_dev, size_t align)
817 {
818 dma_addr_t dma_addr;
819 void *alloc_addr, *virt_addr;
820 int rc;
821
822 /*
823 * The buffer here is allocated against the NTB device. The reason to
824 * use dma_alloc_*() call is to allocate a large IOVA contiguous buffer
825 * backing the NTB BAR for the remote host to write to. During receive
826 * processing, the data is being copied out of the receive buffer to
827 * the kernel skbuff. When a DMA device is being used, dma_map_page()
828 * is called on the kvaddr of the receive buffer (from dma_alloc_*())
829 * and remapped against the DMA device. It appears to be a double
830 * DMA mapping of buffers, but first is mapped to the NTB device and
831 * second is to the DMA device. DMA_ATTR_FORCE_CONTIGUOUS is necessary
832 * in order for the later dma_map_page() to not fail.
833 */
834 alloc_addr = dma_alloc_attrs(ntb_dev, mw->alloc_size,
835 &dma_addr, GFP_KERNEL,
836 DMA_ATTR_FORCE_CONTIGUOUS);
837 if (!alloc_addr) {
838 dev_err(ntb_dev, "Unable to alloc MW buff of size %zu\n",
839 mw->alloc_size);
840 return -ENOMEM;
841 }
842 virt_addr = alloc_addr;
843
844 /*
845 * we must ensure that the memory address allocated is BAR size
846 * aligned in order for the XLAT register to take the value. This
847 * is a requirement of the hardware. It is recommended to setup CMA
848 * for BAR sizes equal or greater than 4MB.
849 */
850 if (!IS_ALIGNED(dma_addr, align)) {
851 if (mw->alloc_size > mw->buff_size) {
852 virt_addr = PTR_ALIGN(alloc_addr, align);
853 dma_addr = ALIGN(dma_addr, align);
854 } else {
855 rc = -ENOMEM;
856 goto err;
857 }
858 }
859
860 mw->alloc_addr = alloc_addr;
861 mw->virt_addr = virt_addr;
862 mw->dma_addr = dma_addr;
863
864 return 0;
865
866 err:
867 dma_free_coherent(ntb_dev, mw->alloc_size, alloc_addr, dma_addr);
868
869 return rc;
870 }
871
ntb_set_mw(struct ntb_transport_ctx * nt,int num_mw,resource_size_t size)872 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
873 resource_size_t size)
874 {
875 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
876 struct pci_dev *pdev = nt->ndev->pdev;
877 size_t xlat_size, buff_size;
878 resource_size_t xlat_align;
879 resource_size_t xlat_align_size;
880 int rc;
881
882 if (!size)
883 return -EINVAL;
884
885 rc = ntb_mw_get_align(nt->ndev, PIDX, num_mw, &xlat_align,
886 &xlat_align_size, NULL);
887 if (rc)
888 return rc;
889
890 xlat_size = round_up(size, xlat_align_size);
891 buff_size = round_up(size, xlat_align);
892
893 /* No need to re-setup */
894 if (mw->xlat_size == xlat_size)
895 return 0;
896
897 if (mw->buff_size)
898 ntb_free_mw(nt, num_mw);
899
900 /* Alloc memory for receiving data. Must be aligned */
901 mw->xlat_size = xlat_size;
902 mw->buff_size = buff_size;
903 mw->alloc_size = buff_size;
904
905 rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align);
906 if (rc) {
907 mw->alloc_size *= 2;
908 rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align);
909 if (rc) {
910 dev_err(&pdev->dev,
911 "Unable to alloc aligned MW buff\n");
912 mw->xlat_size = 0;
913 mw->buff_size = 0;
914 mw->alloc_size = 0;
915 return rc;
916 }
917 }
918
919 /* Notify HW the memory location of the receive buffer */
920 rc = ntb_mw_set_trans(nt->ndev, PIDX, num_mw, mw->dma_addr,
921 mw->xlat_size);
922 if (rc) {
923 dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
924 ntb_free_mw(nt, num_mw);
925 return -EIO;
926 }
927
928 return 0;
929 }
930
ntb_qp_link_context_reset(struct ntb_transport_qp * qp)931 static void ntb_qp_link_context_reset(struct ntb_transport_qp *qp)
932 {
933 qp->link_is_up = false;
934 qp->active = false;
935
936 qp->tx_index = 0;
937 qp->rx_index = 0;
938 qp->rx_bytes = 0;
939 qp->rx_pkts = 0;
940 qp->rx_ring_empty = 0;
941 qp->rx_err_no_buf = 0;
942 qp->rx_err_oflow = 0;
943 qp->rx_err_ver = 0;
944 qp->rx_memcpy = 0;
945 qp->rx_async = 0;
946 qp->tx_bytes = 0;
947 qp->tx_pkts = 0;
948 qp->tx_ring_full = 0;
949 qp->tx_err_no_buf = 0;
950 qp->tx_memcpy = 0;
951 qp->tx_async = 0;
952 }
953
ntb_qp_link_down_reset(struct ntb_transport_qp * qp)954 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
955 {
956 ntb_qp_link_context_reset(qp);
957 if (qp->remote_rx_info)
958 qp->remote_rx_info->entry = qp->rx_max_entry - 1;
959 }
960
ntb_qp_link_cleanup(struct ntb_transport_qp * qp)961 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
962 {
963 struct ntb_transport_ctx *nt = qp->transport;
964 struct pci_dev *pdev = nt->ndev->pdev;
965
966 dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
967
968 cancel_delayed_work_sync(&qp->link_work);
969 ntb_qp_link_down_reset(qp);
970
971 if (qp->event_handler)
972 qp->event_handler(qp->cb_data, qp->link_is_up);
973 }
974
ntb_qp_link_cleanup_work(struct work_struct * work)975 static void ntb_qp_link_cleanup_work(struct work_struct *work)
976 {
977 struct ntb_transport_qp *qp = container_of(work,
978 struct ntb_transport_qp,
979 link_cleanup);
980 struct ntb_transport_ctx *nt = qp->transport;
981
982 ntb_qp_link_cleanup(qp);
983
984 if (nt->link_is_up)
985 schedule_delayed_work(&qp->link_work,
986 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
987 }
988
ntb_qp_link_down(struct ntb_transport_qp * qp)989 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
990 {
991 schedule_work(&qp->link_cleanup);
992 }
993
ntb_transport_link_cleanup(struct ntb_transport_ctx * nt)994 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
995 {
996 struct ntb_transport_qp *qp;
997 u64 qp_bitmap_alloc;
998 unsigned int i, count;
999
1000 qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1001
1002 /* Pass along the info to any clients */
1003 for (i = 0; i < nt->qp_count; i++)
1004 if (qp_bitmap_alloc & BIT_ULL(i)) {
1005 qp = &nt->qp_vec[i];
1006 ntb_qp_link_cleanup(qp);
1007 cancel_work_sync(&qp->link_cleanup);
1008 cancel_delayed_work_sync(&qp->link_work);
1009 }
1010
1011 if (!nt->link_is_up)
1012 cancel_delayed_work_sync(&nt->link_work);
1013
1014 for (i = 0; i < nt->mw_count; i++)
1015 ntb_free_mw(nt, i);
1016
1017 /* The scratchpad registers keep the values if the remote side
1018 * goes down, blast them now to give them a sane value the next
1019 * time they are accessed
1020 */
1021 count = ntb_spad_count(nt->ndev);
1022 for (i = 0; i < count; i++)
1023 ntb_spad_write(nt->ndev, i, 0);
1024 }
1025
ntb_transport_link_cleanup_work(struct work_struct * work)1026 static void ntb_transport_link_cleanup_work(struct work_struct *work)
1027 {
1028 struct ntb_transport_ctx *nt =
1029 container_of(work, struct ntb_transport_ctx, link_cleanup);
1030
1031 guard(mutex)(&nt->link_event_lock);
1032 ntb_transport_link_cleanup(nt);
1033 }
1034
ntb_transport_event_callback(void * data)1035 static void ntb_transport_event_callback(void *data)
1036 {
1037 struct ntb_transport_ctx *nt = data;
1038
1039 if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
1040 schedule_delayed_work(&nt->link_work, 0);
1041 else
1042 schedule_work(&nt->link_cleanup);
1043 }
1044
ntb_transport_link_work(struct work_struct * work)1045 static void ntb_transport_link_work(struct work_struct *work)
1046 {
1047 struct ntb_transport_ctx *nt =
1048 container_of(work, struct ntb_transport_ctx, link_work.work);
1049 struct ntb_dev *ndev = nt->ndev;
1050 struct pci_dev *pdev = ndev->pdev;
1051 resource_size_t size;
1052 u32 val;
1053 int rc = 0, i, spad;
1054
1055 guard(mutex)(&nt->link_event_lock);
1056
1057 /* send the local info, in the opposite order of the way we read it */
1058
1059 if (nt->use_msi) {
1060 rc = ntb_msi_setup_mws(ndev);
1061 if (rc) {
1062 dev_warn(&pdev->dev,
1063 "Failed to register MSI memory window: %d\n",
1064 rc);
1065 nt->use_msi = false;
1066 }
1067 }
1068
1069 for (i = 0; i < nt->qp_count; i++)
1070 ntb_transport_setup_qp_msi(nt, i);
1071
1072 for (i = 0; i < nt->mw_count; i++) {
1073 size = nt->mw_vec[i].phys_size;
1074
1075 if (max_mw_size && size > max_mw_size)
1076 size = max_mw_size;
1077
1078 spad = MW0_SZ_HIGH + (i * 2);
1079 ntb_peer_spad_write(ndev, PIDX, spad, upper_32_bits(size));
1080
1081 spad = MW0_SZ_LOW + (i * 2);
1082 ntb_peer_spad_write(ndev, PIDX, spad, lower_32_bits(size));
1083 }
1084
1085 ntb_peer_spad_write(ndev, PIDX, NUM_MWS, nt->mw_count);
1086
1087 ntb_peer_spad_write(ndev, PIDX, NUM_QPS, nt->qp_count);
1088
1089 ntb_peer_spad_write(ndev, PIDX, VERSION, NTB_TRANSPORT_VERSION);
1090
1091 /* Query the remote side for its info */
1092 val = ntb_spad_read(ndev, VERSION);
1093 dev_dbg(&pdev->dev, "Remote version = %d\n", val);
1094 if (val != NTB_TRANSPORT_VERSION)
1095 goto out;
1096
1097 val = ntb_spad_read(ndev, NUM_QPS);
1098 dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
1099 if (val != nt->qp_count)
1100 goto out;
1101
1102 val = ntb_spad_read(ndev, NUM_MWS);
1103 dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
1104 if (val != nt->mw_count)
1105 goto out;
1106
1107 for (i = 0; i < nt->mw_count; i++) {
1108 u64 val64;
1109
1110 val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
1111 val64 = (u64)val << 32;
1112
1113 val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
1114 val64 |= val;
1115
1116 dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
1117
1118 rc = ntb_set_mw(nt, i, val64);
1119 if (rc)
1120 goto out1;
1121 }
1122
1123 nt->link_is_up = true;
1124
1125 for (i = 0; i < nt->qp_count; i++) {
1126 struct ntb_transport_qp *qp = &nt->qp_vec[i];
1127
1128 ntb_transport_setup_qp_mw(nt, i);
1129 ntb_transport_setup_qp_peer_msi(nt, i);
1130
1131 if (qp->client_ready)
1132 schedule_delayed_work(&qp->link_work, 0);
1133 }
1134
1135 return;
1136
1137 out1:
1138 for (i = 0; i < nt->mw_count; i++)
1139 ntb_free_mw(nt, i);
1140
1141 /* if there's an actual failure, we should just bail */
1142 if (rc < 0)
1143 return;
1144
1145 out:
1146 if (ntb_link_is_up(ndev, NULL, NULL) == 1)
1147 schedule_delayed_work(&nt->link_work,
1148 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
1149 }
1150
ntb_qp_link_work(struct work_struct * work)1151 static void ntb_qp_link_work(struct work_struct *work)
1152 {
1153 struct ntb_transport_qp *qp = container_of(work,
1154 struct ntb_transport_qp,
1155 link_work.work);
1156 struct pci_dev *pdev = qp->ndev->pdev;
1157 struct ntb_transport_ctx *nt = qp->transport;
1158 int val;
1159
1160 WARN_ON(!nt->link_is_up);
1161
1162 val = ntb_spad_read(nt->ndev, QP_LINKS);
1163
1164 ntb_peer_spad_write(nt->ndev, PIDX, QP_LINKS, val | BIT(qp->qp_num));
1165
1166 /* query remote spad for qp ready bits */
1167 dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
1168
1169 /* See if the remote side is up */
1170 if (val & BIT(qp->qp_num)) {
1171 dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
1172 qp->link_is_up = true;
1173 qp->active = true;
1174
1175 if (qp->event_handler)
1176 qp->event_handler(qp->cb_data, qp->link_is_up);
1177
1178 if (qp->active)
1179 tasklet_schedule(&qp->rxc_db_work);
1180 } else if (nt->link_is_up)
1181 schedule_delayed_work(&qp->link_work,
1182 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
1183 }
1184
ntb_transport_init_queue(struct ntb_transport_ctx * nt,unsigned int qp_num)1185 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
1186 unsigned int qp_num)
1187 {
1188 struct ntb_transport_qp *qp;
1189 phys_addr_t mw_base;
1190 resource_size_t mw_size;
1191 unsigned int num_qps_mw, tx_size;
1192 unsigned int mw_num, mw_count, qp_count;
1193 u64 qp_offset;
1194
1195 mw_count = nt->mw_count;
1196 qp_count = nt->qp_count;
1197
1198 mw_num = QP_TO_MW(nt, qp_num);
1199
1200 qp = &nt->qp_vec[qp_num];
1201 qp->qp_num = qp_num;
1202 qp->transport = nt;
1203 qp->ndev = nt->ndev;
1204 qp->client_ready = false;
1205 qp->event_handler = NULL;
1206 ntb_qp_link_context_reset(qp);
1207
1208 if (mw_num < qp_count % mw_count)
1209 num_qps_mw = qp_count / mw_count + 1;
1210 else
1211 num_qps_mw = qp_count / mw_count;
1212
1213 mw_base = nt->mw_vec[mw_num].phys_addr;
1214 mw_size = nt->mw_vec[mw_num].phys_size;
1215
1216 if (max_mw_size && mw_size > max_mw_size)
1217 mw_size = max_mw_size;
1218
1219 tx_size = (unsigned int)mw_size / num_qps_mw;
1220 qp_offset = tx_size * (qp_num / mw_count);
1221
1222 qp->tx_mw_size = tx_size;
1223 qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
1224 if (!qp->tx_mw)
1225 return -EINVAL;
1226
1227 qp->tx_mw_phys = mw_base + qp_offset;
1228 if (!qp->tx_mw_phys)
1229 return -EINVAL;
1230
1231 tx_size -= sizeof(struct ntb_rx_info);
1232 qp->rx_info = qp->tx_mw + tx_size;
1233
1234 /* Due to housekeeping, there must be atleast 2 buffs */
1235 qp->tx_max_frame = min(transport_mtu, tx_size / 2);
1236 qp->tx_max_entry = tx_size / qp->tx_max_frame;
1237
1238 if (nt->debugfs_node_dir) {
1239 char debugfs_name[4];
1240
1241 snprintf(debugfs_name, 4, "qp%d", qp_num);
1242 qp->debugfs_dir = debugfs_create_dir(debugfs_name,
1243 nt->debugfs_node_dir);
1244
1245 qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
1246 qp->debugfs_dir, qp,
1247 &ntb_qp_debugfs_stats);
1248 } else {
1249 qp->debugfs_dir = NULL;
1250 qp->debugfs_stats = NULL;
1251 }
1252
1253 INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
1254 INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
1255
1256 spin_lock_init(&qp->ntb_rx_q_lock);
1257 spin_lock_init(&qp->ntb_tx_free_q_lock);
1258
1259 INIT_LIST_HEAD(&qp->rx_post_q);
1260 INIT_LIST_HEAD(&qp->rx_pend_q);
1261 INIT_LIST_HEAD(&qp->rx_free_q);
1262 INIT_LIST_HEAD(&qp->tx_free_q);
1263
1264 tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
1265 (unsigned long)qp);
1266
1267 return 0;
1268 }
1269
ntb_transport_probe(struct ntb_client * self,struct ntb_dev * ndev)1270 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
1271 {
1272 struct ntb_transport_ctx *nt;
1273 struct ntb_transport_mw *mw;
1274 unsigned int mw_count, qp_count, spad_count, max_mw_count_for_spads;
1275 u64 qp_bitmap;
1276 int node;
1277 int rc, i;
1278
1279 mw_count = ntb_peer_mw_count(ndev);
1280
1281 if (!ndev->ops->mw_set_trans) {
1282 dev_err(&ndev->dev, "Inbound MW based NTB API is required\n");
1283 return -EINVAL;
1284 }
1285
1286 if (ntb_db_is_unsafe(ndev))
1287 dev_dbg(&ndev->dev,
1288 "doorbell is unsafe, proceed anyway...\n");
1289 if (ntb_spad_is_unsafe(ndev))
1290 dev_dbg(&ndev->dev,
1291 "scratchpad is unsafe, proceed anyway...\n");
1292
1293 if (ntb_peer_port_count(ndev) != NTB_DEF_PEER_CNT)
1294 dev_warn(&ndev->dev, "Multi-port NTB devices unsupported\n");
1295
1296 node = dev_to_node(&ndev->dev);
1297
1298 nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
1299 if (!nt)
1300 return -ENOMEM;
1301
1302 nt->ndev = ndev;
1303
1304 /*
1305 * If we are using MSI, and have at least one extra memory window,
1306 * we will reserve the last MW for the MSI window.
1307 */
1308 if (use_msi && mw_count > 1) {
1309 rc = ntb_msi_init(ndev, ntb_transport_msi_desc_changed);
1310 if (!rc) {
1311 mw_count -= 1;
1312 nt->use_msi = true;
1313 }
1314 }
1315
1316 spad_count = ntb_spad_count(ndev);
1317
1318 /* Limit the MW's based on the availability of scratchpads */
1319
1320 if (spad_count < NTB_TRANSPORT_MIN_SPADS) {
1321 nt->mw_count = 0;
1322 rc = -EINVAL;
1323 goto err;
1324 }
1325
1326 max_mw_count_for_spads = (spad_count - MW0_SZ_HIGH) / 2;
1327 nt->mw_count = min(mw_count, max_mw_count_for_spads);
1328
1329 nt->msi_spad_offset = nt->mw_count * 2 + MW0_SZ_HIGH;
1330
1331 nt->mw_vec = kcalloc_node(mw_count, sizeof(*nt->mw_vec),
1332 GFP_KERNEL, node);
1333 if (!nt->mw_vec) {
1334 rc = -ENOMEM;
1335 goto err;
1336 }
1337
1338 for (i = 0; i < mw_count; i++) {
1339 mw = &nt->mw_vec[i];
1340
1341 rc = ntb_peer_mw_get_addr(ndev, i, &mw->phys_addr,
1342 &mw->phys_size);
1343 if (rc)
1344 goto err1;
1345
1346 mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1347 if (!mw->vbase) {
1348 rc = -ENOMEM;
1349 goto err1;
1350 }
1351
1352 mw->buff_size = 0;
1353 mw->xlat_size = 0;
1354 mw->virt_addr = NULL;
1355 mw->dma_addr = 0;
1356 }
1357
1358 qp_bitmap = ntb_db_valid_mask(ndev);
1359
1360 qp_count = ilog2(qp_bitmap);
1361 if (nt->use_msi) {
1362 qp_count -= 1;
1363 nt->msi_db_mask = BIT_ULL(qp_count);
1364 ntb_db_clear_mask(ndev, nt->msi_db_mask);
1365 }
1366
1367 if (max_num_clients && max_num_clients < qp_count)
1368 qp_count = max_num_clients;
1369 else if (nt->mw_count < qp_count)
1370 qp_count = nt->mw_count;
1371
1372 qp_bitmap &= BIT_ULL(qp_count) - 1;
1373
1374 nt->qp_count = qp_count;
1375 nt->qp_bitmap = qp_bitmap;
1376 nt->qp_bitmap_free = qp_bitmap;
1377
1378 nt->qp_vec = kcalloc_node(qp_count, sizeof(*nt->qp_vec),
1379 GFP_KERNEL, node);
1380 if (!nt->qp_vec) {
1381 rc = -ENOMEM;
1382 goto err1;
1383 }
1384
1385 if (nt_debugfs_dir) {
1386 nt->debugfs_node_dir =
1387 debugfs_create_dir(pci_name(ndev->pdev),
1388 nt_debugfs_dir);
1389 }
1390
1391 for (i = 0; i < qp_count; i++) {
1392 rc = ntb_transport_init_queue(nt, i);
1393 if (rc)
1394 goto err2;
1395 }
1396
1397 mutex_init(&nt->link_event_lock);
1398 INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1399 INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1400
1401 rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1402 if (rc)
1403 goto err2;
1404
1405 INIT_LIST_HEAD(&nt->client_devs);
1406 rc = ntb_bus_init(nt);
1407 if (rc)
1408 goto err3;
1409
1410 nt->link_is_up = false;
1411 ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1412 ntb_link_event(ndev);
1413
1414 return 0;
1415
1416 err3:
1417 ntb_clear_ctx(ndev);
1418 err2:
1419 kfree(nt->qp_vec);
1420 err1:
1421 while (i--) {
1422 mw = &nt->mw_vec[i];
1423 iounmap(mw->vbase);
1424 }
1425 kfree(nt->mw_vec);
1426 err:
1427 kfree(nt);
1428 return rc;
1429 }
1430
ntb_transport_free(struct ntb_client * self,struct ntb_dev * ndev)1431 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1432 {
1433 struct ntb_transport_ctx *nt = ndev->ctx;
1434 struct ntb_transport_qp *qp;
1435 u64 qp_bitmap_alloc;
1436 int i;
1437
1438 ntb_transport_link_cleanup(nt);
1439 cancel_work_sync(&nt->link_cleanup);
1440 cancel_delayed_work_sync(&nt->link_work);
1441
1442 qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1443
1444 /* verify that all the qp's are freed */
1445 for (i = 0; i < nt->qp_count; i++) {
1446 qp = &nt->qp_vec[i];
1447 if (qp_bitmap_alloc & BIT_ULL(i))
1448 ntb_transport_free_queue(qp);
1449 debugfs_remove_recursive(qp->debugfs_dir);
1450 }
1451
1452 ntb_link_disable(ndev);
1453 ntb_clear_ctx(ndev);
1454
1455 ntb_bus_remove(nt);
1456
1457 for (i = nt->mw_count; i--; ) {
1458 ntb_free_mw(nt, i);
1459 iounmap(nt->mw_vec[i].vbase);
1460 }
1461
1462 kfree(nt->qp_vec);
1463 kfree(nt->mw_vec);
1464 kfree(nt);
1465 }
1466
ntb_complete_rxc(struct ntb_transport_qp * qp)1467 static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1468 {
1469 struct ntb_queue_entry *entry;
1470 void *cb_data;
1471 unsigned int len;
1472 unsigned long irqflags;
1473
1474 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1475
1476 while (!list_empty(&qp->rx_post_q)) {
1477 entry = list_first_entry(&qp->rx_post_q,
1478 struct ntb_queue_entry, entry);
1479 if (!(entry->flags & DESC_DONE_FLAG))
1480 break;
1481
1482 entry->rx_hdr->flags = 0;
1483 iowrite32(entry->rx_index, &qp->rx_info->entry);
1484
1485 cb_data = entry->cb_data;
1486 len = entry->len;
1487
1488 list_move_tail(&entry->entry, &qp->rx_free_q);
1489
1490 spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1491
1492 if (qp->rx_handler && qp->client_ready)
1493 qp->rx_handler(qp, qp->cb_data, cb_data, len);
1494
1495 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1496 }
1497
1498 spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1499 }
1500
ntb_rx_copy_callback(void * data,const struct dmaengine_result * res)1501 static void ntb_rx_copy_callback(void *data,
1502 const struct dmaengine_result *res)
1503 {
1504 struct ntb_queue_entry *entry = data;
1505
1506 /* we need to check DMA results if we are using DMA */
1507 if (res) {
1508 enum dmaengine_tx_result dma_err = res->result;
1509
1510 switch (dma_err) {
1511 case DMA_TRANS_READ_FAILED:
1512 case DMA_TRANS_WRITE_FAILED:
1513 entry->errors++;
1514 fallthrough;
1515 case DMA_TRANS_ABORTED:
1516 {
1517 struct ntb_transport_qp *qp = entry->qp;
1518 void *offset = qp->rx_buff + qp->rx_max_frame *
1519 qp->rx_index;
1520
1521 ntb_memcpy_rx(entry, offset);
1522 qp->rx_memcpy++;
1523 return;
1524 }
1525
1526 case DMA_TRANS_NOERROR:
1527 default:
1528 break;
1529 }
1530 }
1531
1532 entry->flags |= DESC_DONE_FLAG;
1533
1534 ntb_complete_rxc(entry->qp);
1535 }
1536
ntb_memcpy_rx(struct ntb_queue_entry * entry,void * offset)1537 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1538 {
1539 void *buf = entry->buf;
1540 size_t len = entry->len;
1541
1542 memcpy(buf, offset, len);
1543
1544 /* Ensure that the data is fully copied out before clearing the flag */
1545 wmb();
1546
1547 ntb_rx_copy_callback(entry, NULL);
1548 }
1549
ntb_async_rx_submit(struct ntb_queue_entry * entry,void * offset)1550 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset)
1551 {
1552 struct dma_async_tx_descriptor *txd;
1553 struct ntb_transport_qp *qp = entry->qp;
1554 struct dma_chan *chan = qp->rx_dma_chan;
1555 struct dma_device *device;
1556 size_t pay_off, buff_off, len;
1557 struct dmaengine_unmap_data *unmap;
1558 dma_cookie_t cookie;
1559 void *buf = entry->buf;
1560
1561 len = entry->len;
1562 device = chan->device;
1563 pay_off = (size_t)offset & ~PAGE_MASK;
1564 buff_off = (size_t)buf & ~PAGE_MASK;
1565
1566 if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1567 goto err;
1568
1569 unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1570 if (!unmap)
1571 goto err;
1572
1573 unmap->len = len;
1574 unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1575 pay_off, len, DMA_TO_DEVICE);
1576 if (dma_mapping_error(device->dev, unmap->addr[0]))
1577 goto err_get_unmap;
1578
1579 unmap->to_cnt = 1;
1580
1581 unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1582 buff_off, len, DMA_FROM_DEVICE);
1583 if (dma_mapping_error(device->dev, unmap->addr[1]))
1584 goto err_get_unmap;
1585
1586 unmap->from_cnt = 1;
1587
1588 txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1589 unmap->addr[0], len,
1590 DMA_PREP_INTERRUPT);
1591 if (!txd)
1592 goto err_get_unmap;
1593
1594 txd->callback_result = ntb_rx_copy_callback;
1595 txd->callback_param = entry;
1596 dma_set_unmap(txd, unmap);
1597
1598 cookie = dmaengine_submit(txd);
1599 if (dma_submit_error(cookie))
1600 goto err_set_unmap;
1601
1602 dmaengine_unmap_put(unmap);
1603
1604 qp->last_cookie = cookie;
1605
1606 qp->rx_async++;
1607
1608 return 0;
1609
1610 err_set_unmap:
1611 dmaengine_unmap_put(unmap);
1612 err_get_unmap:
1613 dmaengine_unmap_put(unmap);
1614 err:
1615 return -ENXIO;
1616 }
1617
ntb_async_rx(struct ntb_queue_entry * entry,void * offset)1618 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1619 {
1620 struct ntb_transport_qp *qp = entry->qp;
1621 struct dma_chan *chan = qp->rx_dma_chan;
1622 int res;
1623
1624 if (!chan)
1625 goto err;
1626
1627 if (entry->len < copy_bytes)
1628 goto err;
1629
1630 res = ntb_async_rx_submit(entry, offset);
1631 if (res < 0)
1632 goto err;
1633
1634 if (!entry->retries)
1635 qp->rx_async++;
1636
1637 return;
1638
1639 err:
1640 ntb_memcpy_rx(entry, offset);
1641 qp->rx_memcpy++;
1642 }
1643
ntb_process_rxc(struct ntb_transport_qp * qp)1644 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1645 {
1646 struct ntb_payload_header *hdr;
1647 struct ntb_queue_entry *entry;
1648 void *offset;
1649
1650 offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1651 hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1652
1653 dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1654 qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1655
1656 if (!(hdr->flags & DESC_DONE_FLAG)) {
1657 dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1658 qp->rx_ring_empty++;
1659 return -EAGAIN;
1660 }
1661
1662 if (hdr->flags & LINK_DOWN_FLAG) {
1663 dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1664 ntb_qp_link_down(qp);
1665 hdr->flags = 0;
1666 return -EAGAIN;
1667 }
1668
1669 if (hdr->ver != (u32)qp->rx_pkts) {
1670 dev_dbg(&qp->ndev->pdev->dev,
1671 "version mismatch, expected %llu - got %u\n",
1672 qp->rx_pkts, hdr->ver);
1673 qp->rx_err_ver++;
1674 return -EIO;
1675 }
1676
1677 entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q);
1678 if (!entry) {
1679 dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1680 qp->rx_err_no_buf++;
1681 return -EAGAIN;
1682 }
1683
1684 entry->rx_hdr = hdr;
1685 entry->rx_index = qp->rx_index;
1686
1687 if (hdr->len > entry->len) {
1688 dev_dbg(&qp->ndev->pdev->dev,
1689 "receive buffer overflow! Wanted %d got %d\n",
1690 hdr->len, entry->len);
1691 qp->rx_err_oflow++;
1692
1693 entry->len = -EIO;
1694 entry->flags |= DESC_DONE_FLAG;
1695
1696 ntb_complete_rxc(qp);
1697 } else {
1698 dev_dbg(&qp->ndev->pdev->dev,
1699 "RX OK index %u ver %u size %d into buf size %d\n",
1700 qp->rx_index, hdr->ver, hdr->len, entry->len);
1701
1702 qp->rx_bytes += hdr->len;
1703 qp->rx_pkts++;
1704
1705 entry->len = hdr->len;
1706
1707 ntb_async_rx(entry, offset);
1708 }
1709
1710 qp->rx_index++;
1711 qp->rx_index %= qp->rx_max_entry;
1712
1713 return 0;
1714 }
1715
ntb_transport_rxc_db(unsigned long data)1716 static void ntb_transport_rxc_db(unsigned long data)
1717 {
1718 struct ntb_transport_qp *qp = (void *)data;
1719 int rc, i;
1720
1721 dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1722 __func__, qp->qp_num);
1723
1724 /* Limit the number of packets processed in a single interrupt to
1725 * provide fairness to others
1726 */
1727 for (i = 0; i < qp->rx_max_entry; i++) {
1728 rc = ntb_process_rxc(qp);
1729 if (rc)
1730 break;
1731 }
1732
1733 if (i && qp->rx_dma_chan)
1734 dma_async_issue_pending(qp->rx_dma_chan);
1735
1736 if (i == qp->rx_max_entry) {
1737 /* there is more work to do */
1738 if (qp->active)
1739 tasklet_schedule(&qp->rxc_db_work);
1740 } else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1741 /* the doorbell bit is set: clear it */
1742 ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1743 /* ntb_db_read ensures ntb_db_clear write is committed */
1744 ntb_db_read(qp->ndev);
1745
1746 /* an interrupt may have arrived between finishing
1747 * ntb_process_rxc and clearing the doorbell bit:
1748 * there might be some more work to do.
1749 */
1750 if (qp->active)
1751 tasklet_schedule(&qp->rxc_db_work);
1752 }
1753 }
1754
ntb_tx_copy_callback(void * data,const struct dmaengine_result * res)1755 static void ntb_tx_copy_callback(void *data,
1756 const struct dmaengine_result *res)
1757 {
1758 struct ntb_queue_entry *entry = data;
1759 struct ntb_transport_qp *qp = entry->qp;
1760 struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1761
1762 /* we need to check DMA results if we are using DMA */
1763 if (res) {
1764 enum dmaengine_tx_result dma_err = res->result;
1765
1766 switch (dma_err) {
1767 case DMA_TRANS_READ_FAILED:
1768 case DMA_TRANS_WRITE_FAILED:
1769 entry->errors++;
1770 fallthrough;
1771 case DMA_TRANS_ABORTED:
1772 {
1773 void __iomem *offset =
1774 qp->tx_mw + qp->tx_max_frame *
1775 entry->tx_index;
1776
1777 /* resubmit via CPU */
1778 ntb_memcpy_tx(entry, offset);
1779 qp->tx_memcpy++;
1780 return;
1781 }
1782
1783 case DMA_TRANS_NOERROR:
1784 default:
1785 break;
1786 }
1787 }
1788
1789 iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1790
1791 if (qp->use_msi)
1792 ntb_msi_peer_trigger(qp->ndev, PIDX, &qp->peer_msi_desc);
1793 else
1794 ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1795
1796 /* The entry length can only be zero if the packet is intended to be a
1797 * "link down" or similar. Since no payload is being sent in these
1798 * cases, there is nothing to add to the completion queue.
1799 */
1800 if (entry->len > 0) {
1801 qp->tx_bytes += entry->len;
1802
1803 if (qp->tx_handler)
1804 qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1805 entry->len);
1806 }
1807
1808 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1809 }
1810
ntb_memcpy_tx(struct ntb_queue_entry * entry,void __iomem * offset)1811 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1812 {
1813 #ifdef ARCH_HAS_NOCACHE_UACCESS
1814 /*
1815 * Using non-temporal mov to improve performance on non-cached
1816 * writes, even though we aren't actually copying from user space.
1817 */
1818 __copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1819 #else
1820 memcpy_toio(offset, entry->buf, entry->len);
1821 #endif
1822
1823 /* Ensure that the data is fully copied out before setting the flags */
1824 wmb();
1825
1826 ntb_tx_copy_callback(entry, NULL);
1827 }
1828
ntb_async_tx_submit(struct ntb_transport_qp * qp,struct ntb_queue_entry * entry)1829 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
1830 struct ntb_queue_entry *entry)
1831 {
1832 struct dma_async_tx_descriptor *txd;
1833 struct dma_chan *chan = qp->tx_dma_chan;
1834 struct dma_device *device;
1835 size_t len = entry->len;
1836 void *buf = entry->buf;
1837 size_t dest_off, buff_off;
1838 struct dmaengine_unmap_data *unmap;
1839 dma_addr_t dest;
1840 dma_cookie_t cookie;
1841
1842 device = chan->device;
1843 dest = qp->tx_mw_dma_addr + qp->tx_max_frame * entry->tx_index;
1844 buff_off = (size_t)buf & ~PAGE_MASK;
1845 dest_off = (size_t)dest & ~PAGE_MASK;
1846
1847 if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1848 goto err;
1849
1850 unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1851 if (!unmap)
1852 goto err;
1853
1854 unmap->len = len;
1855 unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1856 buff_off, len, DMA_TO_DEVICE);
1857 if (dma_mapping_error(device->dev, unmap->addr[0]))
1858 goto err_get_unmap;
1859
1860 unmap->to_cnt = 1;
1861
1862 txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1863 DMA_PREP_INTERRUPT);
1864 if (!txd)
1865 goto err_get_unmap;
1866
1867 txd->callback_result = ntb_tx_copy_callback;
1868 txd->callback_param = entry;
1869 dma_set_unmap(txd, unmap);
1870
1871 cookie = dmaengine_submit(txd);
1872 if (dma_submit_error(cookie))
1873 goto err_set_unmap;
1874
1875 dmaengine_unmap_put(unmap);
1876
1877 dma_async_issue_pending(chan);
1878
1879 return 0;
1880 err_set_unmap:
1881 dmaengine_unmap_put(unmap);
1882 err_get_unmap:
1883 dmaengine_unmap_put(unmap);
1884 err:
1885 return -ENXIO;
1886 }
1887
ntb_async_tx(struct ntb_transport_qp * qp,struct ntb_queue_entry * entry)1888 static void ntb_async_tx(struct ntb_transport_qp *qp,
1889 struct ntb_queue_entry *entry)
1890 {
1891 struct ntb_payload_header __iomem *hdr;
1892 struct dma_chan *chan = qp->tx_dma_chan;
1893 void __iomem *offset;
1894 int res;
1895
1896 entry->tx_index = qp->tx_index;
1897 offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index;
1898 hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1899 entry->tx_hdr = hdr;
1900
1901 iowrite32(entry->len, &hdr->len);
1902 iowrite32((u32)qp->tx_pkts, &hdr->ver);
1903
1904 if (!chan)
1905 goto err;
1906
1907 if (entry->len < copy_bytes)
1908 goto err;
1909
1910 res = ntb_async_tx_submit(qp, entry);
1911 if (res < 0)
1912 goto err;
1913
1914 if (!entry->retries)
1915 qp->tx_async++;
1916
1917 return;
1918
1919 err:
1920 ntb_memcpy_tx(entry, offset);
1921 qp->tx_memcpy++;
1922 }
1923
ntb_process_tx(struct ntb_transport_qp * qp,struct ntb_queue_entry * entry)1924 static int ntb_process_tx(struct ntb_transport_qp *qp,
1925 struct ntb_queue_entry *entry)
1926 {
1927 if (!ntb_transport_tx_free_entry(qp)) {
1928 qp->tx_ring_full++;
1929 return -EAGAIN;
1930 }
1931
1932 if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1933 if (qp->tx_handler)
1934 qp->tx_handler(qp, qp->cb_data, NULL, -EIO);
1935
1936 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1937 &qp->tx_free_q);
1938 return 0;
1939 }
1940
1941 ntb_async_tx(qp, entry);
1942
1943 qp->tx_index++;
1944 qp->tx_index %= qp->tx_max_entry;
1945
1946 qp->tx_pkts++;
1947
1948 return 0;
1949 }
1950
ntb_send_link_down(struct ntb_transport_qp * qp)1951 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1952 {
1953 struct pci_dev *pdev = qp->ndev->pdev;
1954 struct ntb_queue_entry *entry;
1955 int i, rc;
1956
1957 if (!qp->link_is_up)
1958 return;
1959
1960 dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1961
1962 for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1963 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1964 if (entry)
1965 break;
1966 msleep(100);
1967 }
1968
1969 if (!entry)
1970 return;
1971
1972 entry->cb_data = NULL;
1973 entry->buf = NULL;
1974 entry->len = 0;
1975 entry->flags = LINK_DOWN_FLAG;
1976
1977 rc = ntb_process_tx(qp, entry);
1978 if (rc)
1979 dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1980 qp->qp_num);
1981
1982 ntb_qp_link_down_reset(qp);
1983 }
1984
ntb_dma_filter_fn(struct dma_chan * chan,void * node)1985 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1986 {
1987 return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1988 }
1989
1990 /**
1991 * ntb_transport_create_queue - Create a new NTB transport layer queue
1992 * @data: pointer for callback data
1993 * @client_dev: &struct device pointer
1994 * @handlers: pointer to various ntb queue (callback) handlers
1995 *
1996 * Create a new NTB transport layer queue and provide the queue with a callback
1997 * routine for both transmit and receive. The receive callback routine will be
1998 * used to pass up data when the transport has received it on the queue. The
1999 * transmit callback routine will be called when the transport has completed the
2000 * transmission of the data on the queue and the data is ready to be freed.
2001 *
2002 * RETURNS: pointer to newly created ntb_queue, NULL on error.
2003 */
2004 struct ntb_transport_qp *
ntb_transport_create_queue(void * data,struct device * client_dev,const struct ntb_queue_handlers * handlers)2005 ntb_transport_create_queue(void *data, struct device *client_dev,
2006 const struct ntb_queue_handlers *handlers)
2007 {
2008 struct ntb_dev *ndev;
2009 struct pci_dev *pdev;
2010 struct ntb_transport_ctx *nt;
2011 struct ntb_queue_entry *entry;
2012 struct ntb_transport_qp *qp;
2013 u64 qp_bit;
2014 unsigned int free_queue;
2015 dma_cap_mask_t dma_mask;
2016 int node;
2017 int i;
2018
2019 ndev = dev_ntb(client_dev->parent);
2020 pdev = ndev->pdev;
2021 nt = ndev->ctx;
2022
2023 node = dev_to_node(&ndev->dev);
2024
2025 free_queue = ffs(nt->qp_bitmap_free);
2026 if (!free_queue)
2027 goto err;
2028
2029 /* decrement free_queue to make it zero based */
2030 free_queue--;
2031
2032 qp = &nt->qp_vec[free_queue];
2033 qp_bit = BIT_ULL(qp->qp_num);
2034
2035 nt->qp_bitmap_free &= ~qp_bit;
2036
2037 qp->cb_data = data;
2038 qp->rx_handler = handlers->rx_handler;
2039 qp->tx_handler = handlers->tx_handler;
2040 qp->event_handler = handlers->event_handler;
2041
2042 dma_cap_zero(dma_mask);
2043 dma_cap_set(DMA_MEMCPY, dma_mask);
2044
2045 if (use_dma) {
2046 qp->tx_dma_chan =
2047 dma_request_channel(dma_mask, ntb_dma_filter_fn,
2048 (void *)(unsigned long)node);
2049 if (!qp->tx_dma_chan)
2050 dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n");
2051
2052 qp->rx_dma_chan =
2053 dma_request_channel(dma_mask, ntb_dma_filter_fn,
2054 (void *)(unsigned long)node);
2055 if (!qp->rx_dma_chan)
2056 dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n");
2057 } else {
2058 qp->tx_dma_chan = NULL;
2059 qp->rx_dma_chan = NULL;
2060 }
2061
2062 qp->tx_mw_dma_addr = 0;
2063 if (qp->tx_dma_chan) {
2064 qp->tx_mw_dma_addr =
2065 dma_map_resource(qp->tx_dma_chan->device->dev,
2066 qp->tx_mw_phys, qp->tx_mw_size,
2067 DMA_FROM_DEVICE, 0);
2068 if (dma_mapping_error(qp->tx_dma_chan->device->dev,
2069 qp->tx_mw_dma_addr)) {
2070 qp->tx_mw_dma_addr = 0;
2071 goto err1;
2072 }
2073 }
2074
2075 dev_dbg(&pdev->dev, "Using %s memcpy for TX\n",
2076 qp->tx_dma_chan ? "DMA" : "CPU");
2077
2078 dev_dbg(&pdev->dev, "Using %s memcpy for RX\n",
2079 qp->rx_dma_chan ? "DMA" : "CPU");
2080
2081 for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
2082 entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
2083 if (!entry)
2084 goto err1;
2085
2086 entry->qp = qp;
2087 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
2088 &qp->rx_free_q);
2089 }
2090 qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES;
2091
2092 for (i = 0; i < qp->tx_max_entry; i++) {
2093 entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
2094 if (!entry)
2095 goto err2;
2096
2097 entry->qp = qp;
2098 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2099 &qp->tx_free_q);
2100 }
2101
2102 ntb_db_clear(qp->ndev, qp_bit);
2103 ntb_db_clear_mask(qp->ndev, qp_bit);
2104
2105 dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
2106
2107 return qp;
2108
2109 err2:
2110 while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
2111 kfree(entry);
2112 err1:
2113 qp->rx_alloc_entry = 0;
2114 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
2115 kfree(entry);
2116 if (qp->tx_mw_dma_addr)
2117 dma_unmap_resource(qp->tx_dma_chan->device->dev,
2118 qp->tx_mw_dma_addr, qp->tx_mw_size,
2119 DMA_FROM_DEVICE, 0);
2120 if (qp->tx_dma_chan)
2121 dma_release_channel(qp->tx_dma_chan);
2122 if (qp->rx_dma_chan)
2123 dma_release_channel(qp->rx_dma_chan);
2124 nt->qp_bitmap_free |= qp_bit;
2125 err:
2126 return NULL;
2127 }
2128 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
2129
2130 /**
2131 * ntb_transport_free_queue - Frees NTB transport queue
2132 * @qp: NTB queue to be freed
2133 *
2134 * Frees NTB transport queue
2135 */
ntb_transport_free_queue(struct ntb_transport_qp * qp)2136 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
2137 {
2138 struct pci_dev *pdev;
2139 struct ntb_queue_entry *entry;
2140 u64 qp_bit;
2141
2142 if (!qp)
2143 return;
2144
2145 pdev = qp->ndev->pdev;
2146
2147 qp->active = false;
2148
2149 if (qp->tx_dma_chan) {
2150 struct dma_chan *chan = qp->tx_dma_chan;
2151 /* Putting the dma_chan to NULL will force any new traffic to be
2152 * processed by the CPU instead of the DAM engine
2153 */
2154 qp->tx_dma_chan = NULL;
2155
2156 /* Try to be nice and wait for any queued DMA engine
2157 * transactions to process before smashing it with a rock
2158 */
2159 dma_sync_wait(chan, qp->last_cookie);
2160 dmaengine_terminate_all(chan);
2161
2162 dma_unmap_resource(chan->device->dev,
2163 qp->tx_mw_dma_addr, qp->tx_mw_size,
2164 DMA_FROM_DEVICE, 0);
2165
2166 dma_release_channel(chan);
2167 }
2168
2169 if (qp->rx_dma_chan) {
2170 struct dma_chan *chan = qp->rx_dma_chan;
2171 /* Putting the dma_chan to NULL will force any new traffic to be
2172 * processed by the CPU instead of the DAM engine
2173 */
2174 qp->rx_dma_chan = NULL;
2175
2176 /* Try to be nice and wait for any queued DMA engine
2177 * transactions to process before smashing it with a rock
2178 */
2179 dma_sync_wait(chan, qp->last_cookie);
2180 dmaengine_terminate_all(chan);
2181 dma_release_channel(chan);
2182 }
2183
2184 qp_bit = BIT_ULL(qp->qp_num);
2185
2186 ntb_db_set_mask(qp->ndev, qp_bit);
2187 tasklet_kill(&qp->rxc_db_work);
2188
2189 cancel_delayed_work_sync(&qp->link_work);
2190
2191 qp->cb_data = NULL;
2192 qp->rx_handler = NULL;
2193 qp->tx_handler = NULL;
2194 qp->event_handler = NULL;
2195
2196 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
2197 kfree(entry);
2198
2199 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) {
2200 dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
2201 kfree(entry);
2202 }
2203
2204 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) {
2205 dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
2206 kfree(entry);
2207 }
2208
2209 while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
2210 kfree(entry);
2211
2212 qp->transport->qp_bitmap_free |= qp_bit;
2213
2214 dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
2215 }
2216 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
2217
2218 /**
2219 * ntb_transport_rx_remove - Dequeues enqueued rx packet
2220 * @qp: NTB queue to be freed
2221 * @len: pointer to variable to write enqueued buffers length
2222 *
2223 * Dequeues unused buffers from receive queue. Should only be used during
2224 * shutdown of qp.
2225 *
2226 * RETURNS: NULL error value on error, or void* for success.
2227 */
ntb_transport_rx_remove(struct ntb_transport_qp * qp,unsigned int * len)2228 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
2229 {
2230 struct ntb_queue_entry *entry;
2231 void *buf;
2232
2233 if (!qp || qp->client_ready)
2234 return NULL;
2235
2236 entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q);
2237 if (!entry)
2238 return NULL;
2239
2240 buf = entry->cb_data;
2241 *len = entry->len;
2242
2243 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q);
2244
2245 return buf;
2246 }
2247 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
2248
2249 /**
2250 * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
2251 * @qp: NTB transport layer queue the entry is to be enqueued on
2252 * @cb: per buffer pointer for callback function to use
2253 * @data: pointer to data buffer that incoming packets will be copied into
2254 * @len: length of the data buffer
2255 *
2256 * Enqueue a new receive buffer onto the transport queue into which a NTB
2257 * payload can be received into.
2258 *
2259 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2260 */
ntb_transport_rx_enqueue(struct ntb_transport_qp * qp,void * cb,void * data,unsigned int len)2261 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2262 unsigned int len)
2263 {
2264 struct ntb_queue_entry *entry;
2265
2266 if (!qp)
2267 return -EINVAL;
2268
2269 entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q);
2270 if (!entry)
2271 return -ENOMEM;
2272
2273 entry->cb_data = cb;
2274 entry->buf = data;
2275 entry->len = len;
2276 entry->flags = 0;
2277 entry->retries = 0;
2278 entry->errors = 0;
2279 entry->rx_index = 0;
2280
2281 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q);
2282
2283 if (qp->active)
2284 tasklet_schedule(&qp->rxc_db_work);
2285
2286 return 0;
2287 }
2288 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
2289
2290 /**
2291 * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
2292 * @qp: NTB transport layer queue the entry is to be enqueued on
2293 * @cb: per buffer pointer for callback function to use
2294 * @data: pointer to data buffer that will be sent
2295 * @len: length of the data buffer
2296 *
2297 * Enqueue a new transmit buffer onto the transport queue from which a NTB
2298 * payload will be transmitted. This assumes that a lock is being held to
2299 * serialize access to the qp.
2300 *
2301 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2302 */
ntb_transport_tx_enqueue(struct ntb_transport_qp * qp,void * cb,void * data,unsigned int len)2303 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2304 unsigned int len)
2305 {
2306 struct ntb_queue_entry *entry;
2307 int rc;
2308
2309 if (!qp || !len)
2310 return -EINVAL;
2311
2312 /* If the qp link is down already, just ignore. */
2313 if (!qp->link_is_up)
2314 return 0;
2315
2316 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
2317 if (!entry) {
2318 qp->tx_err_no_buf++;
2319 return -EBUSY;
2320 }
2321
2322 entry->cb_data = cb;
2323 entry->buf = data;
2324 entry->len = len;
2325 entry->flags = 0;
2326 entry->errors = 0;
2327 entry->retries = 0;
2328 entry->tx_index = 0;
2329
2330 rc = ntb_process_tx(qp, entry);
2331 if (rc)
2332 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2333 &qp->tx_free_q);
2334
2335 return rc;
2336 }
2337 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
2338
2339 /**
2340 * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
2341 * @qp: NTB transport layer queue to be enabled
2342 *
2343 * Notify NTB transport layer of client readiness to use queue
2344 */
ntb_transport_link_up(struct ntb_transport_qp * qp)2345 void ntb_transport_link_up(struct ntb_transport_qp *qp)
2346 {
2347 if (!qp)
2348 return;
2349
2350 qp->client_ready = true;
2351
2352 if (qp->transport->link_is_up)
2353 schedule_delayed_work(&qp->link_work, 0);
2354 }
2355 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
2356
2357 /**
2358 * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
2359 * @qp: NTB transport layer queue to be disabled
2360 *
2361 * Notify NTB transport layer of client's desire to no longer receive data on
2362 * transport queue specified. It is the client's responsibility to ensure all
2363 * entries on queue are purged or otherwise handled appropriately.
2364 */
ntb_transport_link_down(struct ntb_transport_qp * qp)2365 void ntb_transport_link_down(struct ntb_transport_qp *qp)
2366 {
2367 int val;
2368
2369 if (!qp)
2370 return;
2371
2372 qp->client_ready = false;
2373
2374 val = ntb_spad_read(qp->ndev, QP_LINKS);
2375
2376 ntb_peer_spad_write(qp->ndev, PIDX, QP_LINKS, val & ~BIT(qp->qp_num));
2377
2378 if (qp->link_is_up)
2379 ntb_send_link_down(qp);
2380 else
2381 cancel_delayed_work_sync(&qp->link_work);
2382 }
2383 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
2384
2385 /**
2386 * ntb_transport_link_query - Query transport link state
2387 * @qp: NTB transport layer queue to be queried
2388 *
2389 * Query connectivity to the remote system of the NTB transport queue
2390 *
2391 * RETURNS: true for link up or false for link down
2392 */
ntb_transport_link_query(struct ntb_transport_qp * qp)2393 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
2394 {
2395 if (!qp)
2396 return false;
2397
2398 return qp->link_is_up;
2399 }
2400 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
2401
2402 /**
2403 * ntb_transport_qp_num - Query the qp number
2404 * @qp: NTB transport layer queue to be queried
2405 *
2406 * Query qp number of the NTB transport queue
2407 *
2408 * RETURNS: a zero based number specifying the qp number
2409 */
ntb_transport_qp_num(struct ntb_transport_qp * qp)2410 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
2411 {
2412 if (!qp)
2413 return 0;
2414
2415 return qp->qp_num;
2416 }
2417 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
2418
2419 /**
2420 * ntb_transport_max_size - Query the max payload size of a qp
2421 * @qp: NTB transport layer queue to be queried
2422 *
2423 * Query the maximum payload size permissible on the given qp
2424 *
2425 * RETURNS: the max payload size of a qp
2426 */
ntb_transport_max_size(struct ntb_transport_qp * qp)2427 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
2428 {
2429 unsigned int max_size;
2430 unsigned int copy_align;
2431 struct dma_chan *rx_chan, *tx_chan;
2432
2433 if (!qp)
2434 return 0;
2435
2436 rx_chan = qp->rx_dma_chan;
2437 tx_chan = qp->tx_dma_chan;
2438
2439 copy_align = max(rx_chan ? rx_chan->device->copy_align : 0,
2440 tx_chan ? tx_chan->device->copy_align : 0);
2441
2442 /* If DMA engine usage is possible, try to find the max size for that */
2443 max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header);
2444 max_size = round_down(max_size, 1 << copy_align);
2445
2446 return max_size;
2447 }
2448 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
2449
ntb_transport_tx_free_entry(struct ntb_transport_qp * qp)2450 unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp)
2451 {
2452 unsigned int head = qp->tx_index;
2453 unsigned int tail = qp->remote_rx_info->entry;
2454
2455 return tail >= head ? tail - head : qp->tx_max_entry + tail - head;
2456 }
2457 EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry);
2458
ntb_transport_doorbell_callback(void * data,int vector)2459 static void ntb_transport_doorbell_callback(void *data, int vector)
2460 {
2461 struct ntb_transport_ctx *nt = data;
2462 struct ntb_transport_qp *qp;
2463 u64 db_bits;
2464 unsigned int qp_num;
2465
2466 if (ntb_db_read(nt->ndev) & nt->msi_db_mask) {
2467 ntb_transport_msi_peer_desc_changed(nt);
2468 ntb_db_clear(nt->ndev, nt->msi_db_mask);
2469 }
2470
2471 db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
2472 ntb_db_vector_mask(nt->ndev, vector));
2473
2474 while (db_bits) {
2475 qp_num = __ffs(db_bits);
2476 qp = &nt->qp_vec[qp_num];
2477
2478 if (qp->active)
2479 tasklet_schedule(&qp->rxc_db_work);
2480
2481 db_bits &= ~BIT_ULL(qp_num);
2482 }
2483 }
2484
2485 static const struct ntb_ctx_ops ntb_transport_ops = {
2486 .link_event = ntb_transport_event_callback,
2487 .db_event = ntb_transport_doorbell_callback,
2488 };
2489
2490 static struct ntb_client ntb_transport_client = {
2491 .ops = {
2492 .probe = ntb_transport_probe,
2493 .remove = ntb_transport_free,
2494 },
2495 };
2496
ntb_transport_init(void)2497 static int __init ntb_transport_init(void)
2498 {
2499 int rc;
2500
2501 pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2502
2503 if (debugfs_initialized())
2504 nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2505
2506 rc = bus_register(&ntb_transport_bus);
2507 if (rc)
2508 goto err_bus;
2509
2510 rc = ntb_register_client(&ntb_transport_client);
2511 if (rc)
2512 goto err_client;
2513
2514 return 0;
2515
2516 err_client:
2517 bus_unregister(&ntb_transport_bus);
2518 err_bus:
2519 debugfs_remove_recursive(nt_debugfs_dir);
2520 return rc;
2521 }
2522 module_init(ntb_transport_init);
2523
ntb_transport_exit(void)2524 static void __exit ntb_transport_exit(void)
2525 {
2526 ntb_unregister_client(&ntb_transport_client);
2527 bus_unregister(&ntb_transport_bus);
2528 debugfs_remove_recursive(nt_debugfs_dir);
2529 }
2530 module_exit(ntb_transport_exit);
2531