xref: /linux/drivers/net/ethernet/intel/iavf/iavf_txrx.h (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #ifndef _IAVF_TXRX_H_
5 #define _IAVF_TXRX_H_
6 
7 /* Interrupt Throttling and Rate Limiting Goodies */
8 #define IAVF_DEFAULT_IRQ_WORK      256
9 
10 /* The datasheet for the X710 and XL710 indicate that the maximum value for
11  * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
12  * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
13  * the register value which is divided by 2 lets use the actual values and
14  * avoid an excessive amount of translation.
15  */
16 #define IAVF_ITR_DYNAMIC	0x8000	/* use top bit as a flag */
17 #define IAVF_ITR_MASK		0x1FFE	/* mask for ITR register value */
18 #define IAVF_ITR_100K		    10	/* all values below must be even */
19 #define IAVF_ITR_50K		    20
20 #define IAVF_ITR_20K		    50
21 #define IAVF_ITR_18K		    60
22 #define IAVF_ITR_8K		   122
23 #define IAVF_MAX_ITR		  8160	/* maximum value as per datasheet */
24 #define ITR_TO_REG(setting) ((setting) & ~IAVF_ITR_DYNAMIC)
25 #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~IAVF_ITR_MASK)
26 #define ITR_IS_DYNAMIC(setting) (!!((setting) & IAVF_ITR_DYNAMIC))
27 
28 #define IAVF_ITR_RX_DEF		(IAVF_ITR_20K | IAVF_ITR_DYNAMIC)
29 #define IAVF_ITR_TX_DEF		(IAVF_ITR_20K | IAVF_ITR_DYNAMIC)
30 
31 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if
32  * the value of the rate limit is non-zero
33  */
34 #define INTRL_ENA                  BIT(6)
35 #define IAVF_MAX_INTRL             0x3B    /* reg uses 4 usec resolution */
36 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
37 #define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0)
38 #define IAVF_INTRL_8K              125     /* 8000 ints/sec */
39 #define IAVF_INTRL_62K             16      /* 62500 ints/sec */
40 #define IAVF_INTRL_83K             12      /* 83333 ints/sec */
41 
42 #define IAVF_QUEUE_END_OF_LIST 0x7FF
43 
44 /* this enum matches hardware bits and is meant to be used by DYN_CTLN
45  * registers and QINT registers or more generally anywhere in the manual
46  * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
47  * register but instead is a special value meaning "don't update" ITR0/1/2.
48  */
49 enum iavf_dyn_idx_t {
50 	IAVF_IDX_ITR0 = 0,
51 	IAVF_IDX_ITR1 = 1,
52 	IAVF_IDX_ITR2 = 2,
53 	IAVF_ITR_NONE = 3	/* ITR_NONE must not be used as an index */
54 };
55 
56 /* these are indexes into ITRN registers */
57 #define IAVF_RX_ITR    IAVF_IDX_ITR0
58 #define IAVF_TX_ITR    IAVF_IDX_ITR1
59 #define IAVF_PE_ITR    IAVF_IDX_ITR2
60 
61 /* Supported RSS offloads */
62 #define IAVF_DEFAULT_RSS_HENA ( \
63 	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_UDP) | \
64 	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
65 	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_TCP) | \
66 	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
67 	BIT_ULL(IAVF_FILTER_PCTYPE_FRAG_IPV4) | \
68 	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_UDP) | \
69 	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_TCP) | \
70 	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
71 	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
72 	BIT_ULL(IAVF_FILTER_PCTYPE_FRAG_IPV6) | \
73 	BIT_ULL(IAVF_FILTER_PCTYPE_L2_PAYLOAD))
74 
75 #define IAVF_DEFAULT_RSS_HENA_EXPANDED (IAVF_DEFAULT_RSS_HENA | \
76 	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
77 	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
78 	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
79 	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
80 	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
81 	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
82 
83 /* How many Rx Buffers do we bundle into one write to the hardware ? */
84 #define IAVF_RX_INCREMENT(r, i) \
85 	do {					\
86 		(i)++;				\
87 		if ((i) == (r)->count)		\
88 			i = 0;			\
89 		r->next_to_clean = i;		\
90 	} while (0)
91 
92 #define IAVF_RX_NEXT_DESC(r, i, n)		\
93 	do {					\
94 		(i)++;				\
95 		if ((i) == (r)->count)		\
96 			i = 0;			\
97 		(n) = IAVF_RX_DESC((r), (i));	\
98 	} while (0)
99 
100 #define IAVF_RX_NEXT_DESC_PREFETCH(r, i, n)		\
101 	do {						\
102 		IAVF_RX_NEXT_DESC((r), (i), (n));	\
103 		prefetch((n));				\
104 	} while (0)
105 
106 #define IAVF_MAX_BUFFER_TXD	8
107 #define IAVF_MIN_TX_LEN		17
108 
109 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
110  * In order to align with the read requests we will align the value to
111  * the nearest 4K which represents our maximum read request size.
112  */
113 #define IAVF_MAX_READ_REQ_SIZE		4096
114 #define IAVF_MAX_DATA_PER_TXD		(16 * 1024 - 1)
115 #define IAVF_MAX_DATA_PER_TXD_ALIGNED \
116 	(IAVF_MAX_DATA_PER_TXD & ~(IAVF_MAX_READ_REQ_SIZE - 1))
117 
118 /**
119  * iavf_txd_use_count  - estimate the number of descriptors needed for Tx
120  * @size: transmit request size in bytes
121  *
122  * Due to hardware alignment restrictions (4K alignment), we need to
123  * assume that we can have no more than 12K of data per descriptor, even
124  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
125  * Thus, we need to divide by 12K. But division is slow! Instead,
126  * we decompose the operation into shifts and one relatively cheap
127  * multiply operation.
128  *
129  * To divide by 12K, we first divide by 4K, then divide by 3:
130  *     To divide by 4K, shift right by 12 bits
131  *     To divide by 3, multiply by 85, then divide by 256
132  *     (Divide by 256 is done by shifting right by 8 bits)
133  * Finally, we add one to round up. Because 256 isn't an exact multiple of
134  * 3, we'll underestimate near each multiple of 12K. This is actually more
135  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
136  * segment.  For our purposes this is accurate out to 1M which is orders of
137  * magnitude greater than our largest possible GSO size.
138  *
139  * This would then be implemented as:
140  *     return (((size >> 12) * 85) >> 8) + 1;
141  *
142  * Since multiplication and division are commutative, we can reorder
143  * operations into:
144  *     return ((size * 85) >> 20) + 1;
145  */
iavf_txd_use_count(unsigned int size)146 static inline unsigned int iavf_txd_use_count(unsigned int size)
147 {
148 	return ((size * 85) >> 20) + 1;
149 }
150 
151 /* Tx Descriptors needed, worst case */
152 #define DESC_NEEDED (MAX_SKB_FRAGS + 6)
153 #define IAVF_MIN_DESC_PENDING	4
154 
155 #define IAVF_TX_FLAGS_HW_VLAN			BIT(1)
156 #define IAVF_TX_FLAGS_SW_VLAN			BIT(2)
157 #define IAVF_TX_FLAGS_TSO			BIT(3)
158 #define IAVF_TX_FLAGS_IPV4			BIT(4)
159 #define IAVF_TX_FLAGS_IPV6			BIT(5)
160 #define IAVF_TX_FLAGS_FCCRC			BIT(6)
161 #define IAVF_TX_FLAGS_FSO			BIT(7)
162 #define IAVF_TX_FLAGS_FD_SB			BIT(9)
163 #define IAVF_TX_FLAGS_VXLAN_TUNNEL		BIT(10)
164 #define IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN	BIT(11)
165 #define IAVF_TX_FLAGS_VLAN_MASK			0xffff0000
166 #define IAVF_TX_FLAGS_VLAN_PRIO_MASK		0xe0000000
167 #define IAVF_TX_FLAGS_VLAN_PRIO_SHIFT		29
168 #define IAVF_TX_FLAGS_VLAN_SHIFT		16
169 
170 struct iavf_tx_buffer {
171 	struct iavf_tx_desc *next_to_watch;
172 	union {
173 		struct sk_buff *skb;
174 		void *raw_buf;
175 	};
176 	unsigned int bytecount;
177 	unsigned short gso_segs;
178 
179 	DEFINE_DMA_UNMAP_ADDR(dma);
180 	DEFINE_DMA_UNMAP_LEN(len);
181 	u32 tx_flags;
182 };
183 
184 struct iavf_queue_stats {
185 	u64 packets;
186 	u64 bytes;
187 };
188 
189 struct iavf_tx_queue_stats {
190 	u64 restart_queue;
191 	u64 tx_busy;
192 	u64 tx_done_old;
193 	u64 tx_linearize;
194 	u64 tx_force_wb;
195 	u64 tx_lost_interrupt;
196 };
197 
198 struct iavf_rx_queue_stats {
199 	u64 non_eop_descs;
200 	u64 alloc_page_failed;
201 	u64 alloc_buff_failed;
202 };
203 
204 /* some useful defines for virtchannel interface, which
205  * is the only remaining user of header split
206  */
207 #define IAVF_RX_DTYPE_NO_SPLIT      0
208 #define IAVF_RX_DTYPE_HEADER_SPLIT  1
209 #define IAVF_RX_DTYPE_SPLIT_ALWAYS  2
210 #define IAVF_RX_SPLIT_L2      0x1
211 #define IAVF_RX_SPLIT_IP      0x2
212 #define IAVF_RX_SPLIT_TCP_UDP 0x4
213 #define IAVF_RX_SPLIT_SCTP    0x8
214 
215 /* struct that defines a descriptor ring, associated with a VSI */
216 struct iavf_ring {
217 	struct iavf_ring *next;		/* pointer to next ring in q_vector */
218 	void *desc;			/* Descriptor ring memory */
219 	union {
220 		struct page_pool *pp;	/* Used on Rx for buffer management */
221 		struct device *dev;	/* Used on Tx for DMA mapping */
222 	};
223 	struct net_device *netdev;	/* netdev ring maps to */
224 	union {
225 		struct libeth_fqe *rx_fqes;
226 		struct iavf_tx_buffer *tx_bi;
227 	};
228 	u8 __iomem *tail;
229 	u32 truesize;
230 
231 	u16 queue_index;		/* Queue number of ring */
232 
233 	/* high bit set means dynamic, use accessors routines to read/write.
234 	 * hardware only supports 2us resolution for the ITR registers.
235 	 * these values always store the USER setting, and must be converted
236 	 * before programming to a register.
237 	 */
238 	u16 itr_setting;
239 
240 	u16 count;			/* Number of descriptors */
241 
242 	/* used in interrupt processing */
243 	u16 next_to_use;
244 	u16 next_to_clean;
245 
246 	u16 rxdid;		/* Rx descriptor format */
247 
248 	u16 flags;
249 #define IAVF_TXR_FLAGS_WB_ON_ITR		BIT(0)
250 #define IAVF_TXR_FLAGS_ARM_WB			BIT(1)
251 /* BIT(2) is free */
252 #define IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1	BIT(3)
253 #define IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2	BIT(4)
254 #define IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2	BIT(5)
255 #define IAVF_TXRX_FLAGS_HW_TSTAMP		BIT(6)
256 
257 	/* stats structs */
258 	struct iavf_queue_stats	stats;
259 	struct u64_stats_sync syncp;
260 	union {
261 		struct iavf_tx_queue_stats tx_stats;
262 		struct iavf_rx_queue_stats rx_stats;
263 	};
264 
265 	int prev_pkt_ctr;		/* For Tx stall detection */
266 	unsigned int size;		/* length of descriptor ring in bytes */
267 	dma_addr_t dma;			/* physical address of ring */
268 
269 	struct iavf_vsi *vsi;		/* Backreference to associated VSI */
270 	struct iavf_q_vector *q_vector;	/* Backreference to associated vector */
271 
272 	struct rcu_head rcu;		/* to avoid race on free */
273 	struct sk_buff *skb;		/* When iavf_clean_rx_ring_irq() must
274 					 * return before it sees the EOP for
275 					 * the current packet, we save that skb
276 					 * here and resume receiving this
277 					 * packet the next time
278 					 * iavf_clean_rx_ring_irq() is called
279 					 * for this ring.
280 					 */
281 
282 	struct iavf_ptp *ptp;
283 
284 	u32 rx_buf_len;
285 	struct net_shaper q_shaper;
286 	bool q_shaper_update;
287 } ____cacheline_internodealigned_in_smp;
288 
289 #define IAVF_ITR_ADAPTIVE_MIN_INC	0x0002
290 #define IAVF_ITR_ADAPTIVE_MIN_USECS	0x0002
291 #define IAVF_ITR_ADAPTIVE_MAX_USECS	0x007e
292 #define IAVF_ITR_ADAPTIVE_LATENCY	0x8000
293 #define IAVF_ITR_ADAPTIVE_BULK		0x0000
294 #define ITR_IS_BULK(x) (!((x) & IAVF_ITR_ADAPTIVE_LATENCY))
295 
296 struct iavf_ring_container {
297 	struct iavf_ring *ring;		/* pointer to linked list of ring(s) */
298 	unsigned long next_update;	/* jiffies value of next update */
299 	unsigned int total_bytes;	/* total bytes processed this int */
300 	unsigned int total_packets;	/* total packets processed this int */
301 	u16 count;
302 	u16 target_itr;			/* target ITR setting for ring(s) */
303 	u16 current_itr;		/* current ITR setting for ring(s) */
304 };
305 
306 /* iterator for handling rings in ring container */
307 #define iavf_for_each_ring(pos, head) \
308 	for (pos = (head).ring; pos != NULL; pos = pos->next)
309 
310 bool iavf_alloc_rx_buffers(struct iavf_ring *rxr, u16 cleaned_count);
311 netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
312 int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring);
313 int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring);
314 void iavf_free_tx_resources(struct iavf_ring *tx_ring);
315 void iavf_free_rx_resources(struct iavf_ring *rx_ring);
316 int iavf_napi_poll(struct napi_struct *napi, int budget);
317 void iavf_detect_recover_hung(struct iavf_vsi *vsi);
318 int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size);
319 bool __iavf_chk_linearize(struct sk_buff *skb);
320 
321 /**
322  * iavf_xmit_descriptor_count - calculate number of Tx descriptors needed
323  * @skb:     send buffer
324  *
325  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
326  * there is not enough descriptors available in this ring since we need at least
327  * one descriptor.
328  **/
iavf_xmit_descriptor_count(struct sk_buff * skb)329 static inline int iavf_xmit_descriptor_count(struct sk_buff *skb)
330 {
331 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
332 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
333 	int count = 0, size = skb_headlen(skb);
334 
335 	for (;;) {
336 		count += iavf_txd_use_count(size);
337 
338 		if (!nr_frags--)
339 			break;
340 
341 		size = skb_frag_size(frag++);
342 	}
343 
344 	return count;
345 }
346 
347 /**
348  * iavf_maybe_stop_tx - 1st level check for Tx stop conditions
349  * @tx_ring: the ring to be checked
350  * @size:    the size buffer we want to assure is available
351  *
352  * Returns 0 if stop is not needed
353  **/
iavf_maybe_stop_tx(struct iavf_ring * tx_ring,int size)354 static inline int iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
355 {
356 	if (likely(IAVF_DESC_UNUSED(tx_ring) >= size))
357 		return 0;
358 	return __iavf_maybe_stop_tx(tx_ring, size);
359 }
360 
361 /**
362  * iavf_chk_linearize - Check if there are more than 8 fragments per packet
363  * @skb:      send buffer
364  * @count:    number of buffers used
365  *
366  * Note: Our HW can't scatter-gather more than 8 fragments to build
367  * a packet on the wire and so we need to figure out the cases where we
368  * need to linearize the skb.
369  **/
iavf_chk_linearize(struct sk_buff * skb,int count)370 static inline bool iavf_chk_linearize(struct sk_buff *skb, int count)
371 {
372 	/* Both TSO and single send will work if count is less than 8 */
373 	if (likely(count < IAVF_MAX_BUFFER_TXD))
374 		return false;
375 
376 	if (skb_is_gso(skb))
377 		return __iavf_chk_linearize(skb);
378 
379 	/* we can support up to 8 data buffers for a single send */
380 	return count != IAVF_MAX_BUFFER_TXD;
381 }
382 /**
383  * txring_txq - helper to convert from a ring to a queue
384  * @ring: Tx ring to find the netdev equivalent of
385  **/
txring_txq(const struct iavf_ring * ring)386 static inline struct netdev_queue *txring_txq(const struct iavf_ring *ring)
387 {
388 	return netdev_get_tx_queue(ring->netdev, ring->queue_index);
389 }
390 #endif /* _IAVF_TXRX_H_ */
391