xref: /linux/drivers/net/ethernet/marvell/octeontx2/af/rvu.c (revision 0a80e38d0fe1fe7b59c1e93ad908c4148a15926a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell.
5  *
6  */
7 
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/irq.h>
12 #include <linux/pci.h>
13 #include <linux/sysfs.h>
14 
15 #include "cgx.h"
16 #include "rvu.h"
17 #include "rvu_reg.h"
18 #include "ptp.h"
19 #include "mcs.h"
20 
21 #include "rvu_trace.h"
22 #include "rvu_npc_hash.h"
23 #include "cn20k/reg.h"
24 #include "cn20k/api.h"
25 
26 #define DRV_NAME	"rvu_af"
27 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
28 
29 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
30 				struct rvu_block *block, int lf);
31 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
32 				  struct rvu_block *block, int lf);
33 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
34 
35 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
36 			 int type, int num,
37 			 void (mbox_handler)(struct work_struct *),
38 			 void (mbox_up_handler)(struct work_struct *));
39 static irqreturn_t rvu_mbox_pf_intr_handler(int irq, void *rvu_irq);
40 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq);
41 
42 /* Supported devices */
43 static const struct pci_device_id rvu_id_table[] = {
44 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
45 	{ 0, }  /* end of table */
46 };
47 
48 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
49 MODULE_DESCRIPTION(DRV_STRING);
50 MODULE_LICENSE("GPL v2");
51 MODULE_DEVICE_TABLE(pci, rvu_id_table);
52 
53 static char *mkex_profile; /* MKEX profile name */
54 module_param(mkex_profile, charp, 0000);
55 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
56 
57 static char *kpu_profile; /* KPU profile name */
58 module_param(kpu_profile, charp, 0000);
59 MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
60 
rvu_setup_hw_capabilities(struct rvu * rvu)61 static void rvu_setup_hw_capabilities(struct rvu *rvu)
62 {
63 	struct rvu_hwinfo *hw = rvu->hw;
64 
65 	hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
66 	hw->cap.nix_fixed_txschq_mapping = false;
67 	hw->cap.nix_shaping = true;
68 	hw->cap.nix_tx_link_bp = true;
69 	hw->cap.nix_rx_multicast = true;
70 	hw->cap.nix_shaper_toggle_wait = false;
71 	hw->cap.npc_hash_extract = false;
72 	hw->cap.npc_exact_match_enabled = false;
73 	hw->rvu = rvu;
74 
75 	if (is_rvu_pre_96xx_C0(rvu)) {
76 		hw->cap.nix_fixed_txschq_mapping = true;
77 		hw->cap.nix_txsch_per_cgx_lmac = 4;
78 		hw->cap.nix_txsch_per_lbk_lmac = 132;
79 		hw->cap.nix_txsch_per_sdp_lmac = 76;
80 		hw->cap.nix_shaping = false;
81 		hw->cap.nix_tx_link_bp = false;
82 		if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu))
83 			hw->cap.nix_rx_multicast = false;
84 	}
85 	if (!is_rvu_pre_96xx_C0(rvu))
86 		hw->cap.nix_shaper_toggle_wait = true;
87 
88 	if (!is_rvu_otx2(rvu))
89 		hw->cap.per_pf_mbox_regs = true;
90 
91 	if (is_rvu_npc_hash_extract_en(rvu))
92 		hw->cap.npc_hash_extract = true;
93 }
94 
95 /* Poll a RVU block's register 'offset', for a 'zero'
96  * or 'nonzero' at bits specified by 'mask'
97  */
rvu_poll_reg(struct rvu * rvu,u64 block,u64 offset,u64 mask,bool zero)98 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
99 {
100 	unsigned long timeout = jiffies + usecs_to_jiffies(20000);
101 	bool twice = false;
102 	void __iomem *reg;
103 	u64 reg_val;
104 
105 	reg = rvu->afreg_base + ((block << 28) | offset);
106 again:
107 	reg_val = readq(reg);
108 	if (zero && !(reg_val & mask))
109 		return 0;
110 	if (!zero && (reg_val & mask))
111 		return 0;
112 	if (time_before(jiffies, timeout)) {
113 		usleep_range(1, 5);
114 		goto again;
115 	}
116 	/* In scenarios where CPU is scheduled out before checking
117 	 * 'time_before' (above) and gets scheduled in such that
118 	 * jiffies are beyond timeout value, then check again if HW is
119 	 * done with the operation in the meantime.
120 	 */
121 	if (!twice) {
122 		twice = true;
123 		goto again;
124 	}
125 	return -EBUSY;
126 }
127 
rvu_alloc_rsrc(struct rsrc_bmap * rsrc)128 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
129 {
130 	int id;
131 
132 	if (!rsrc->bmap)
133 		return -EINVAL;
134 
135 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
136 	if (id >= rsrc->max)
137 		return -ENOSPC;
138 
139 	__set_bit(id, rsrc->bmap);
140 
141 	return id;
142 }
143 
rvu_alloc_rsrc_contig(struct rsrc_bmap * rsrc,int nrsrc)144 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
145 {
146 	int start;
147 
148 	if (!rsrc->bmap)
149 		return -EINVAL;
150 
151 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
152 	if (start >= rsrc->max)
153 		return -ENOSPC;
154 
155 	bitmap_set(rsrc->bmap, start, nrsrc);
156 	return start;
157 }
158 
rvu_free_rsrc_contig(struct rsrc_bmap * rsrc,int nrsrc,int start)159 void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
160 {
161 	if (!rsrc->bmap)
162 		return;
163 	if (start >= rsrc->max)
164 		return;
165 
166 	bitmap_clear(rsrc->bmap, start, nrsrc);
167 }
168 
rvu_rsrc_check_contig(struct rsrc_bmap * rsrc,int nrsrc)169 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
170 {
171 	int start;
172 
173 	if (!rsrc->bmap)
174 		return false;
175 
176 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
177 	if (start >= rsrc->max)
178 		return false;
179 
180 	return true;
181 }
182 
rvu_free_rsrc(struct rsrc_bmap * rsrc,int id)183 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
184 {
185 	if (!rsrc->bmap)
186 		return;
187 
188 	__clear_bit(id, rsrc->bmap);
189 }
190 
rvu_rsrc_free_count(struct rsrc_bmap * rsrc)191 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
192 {
193 	int used;
194 
195 	if (!rsrc->bmap)
196 		return 0;
197 
198 	used = bitmap_weight(rsrc->bmap, rsrc->max);
199 	return (rsrc->max - used);
200 }
201 
is_rsrc_free(struct rsrc_bmap * rsrc,int id)202 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
203 {
204 	if (!rsrc->bmap)
205 		return false;
206 
207 	return !test_bit(id, rsrc->bmap);
208 }
209 
rvu_alloc_bitmap(struct rsrc_bmap * rsrc)210 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
211 {
212 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
213 			     sizeof(long), GFP_KERNEL);
214 	if (!rsrc->bmap)
215 		return -ENOMEM;
216 	return 0;
217 }
218 
rvu_free_bitmap(struct rsrc_bmap * rsrc)219 void rvu_free_bitmap(struct rsrc_bmap *rsrc)
220 {
221 	kfree(rsrc->bmap);
222 }
223 
224 /* Get block LF's HW index from a PF_FUNC's block slot number */
rvu_get_lf(struct rvu * rvu,struct rvu_block * block,u16 pcifunc,u16 slot)225 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
226 {
227 	u16 match = 0;
228 	int lf;
229 
230 	mutex_lock(&rvu->rsrc_lock);
231 	for (lf = 0; lf < block->lf.max; lf++) {
232 		if (block->fn_map[lf] == pcifunc) {
233 			if (slot == match) {
234 				mutex_unlock(&rvu->rsrc_lock);
235 				return lf;
236 			}
237 			match++;
238 		}
239 	}
240 	mutex_unlock(&rvu->rsrc_lock);
241 	return -ENODEV;
242 }
243 
244 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
245  * Some silicon variants of OcteonTX2 supports
246  * multiple blocks of same type.
247  *
248  * @pcifunc has to be zero when no LF is yet attached.
249  *
250  * For a pcifunc if LFs are attached from multiple blocks of same type, then
251  * return blkaddr of first encountered block.
252  */
rvu_get_blkaddr(struct rvu * rvu,int blktype,u16 pcifunc)253 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
254 {
255 	int devnum, blkaddr = -ENODEV;
256 	u64 cfg, reg;
257 	bool is_pf;
258 
259 	switch (blktype) {
260 	case BLKTYPE_NPC:
261 		blkaddr = BLKADDR_NPC;
262 		goto exit;
263 	case BLKTYPE_NPA:
264 		blkaddr = BLKADDR_NPA;
265 		goto exit;
266 	case BLKTYPE_NIX:
267 		/* For now assume NIX0 */
268 		if (!pcifunc) {
269 			blkaddr = BLKADDR_NIX0;
270 			goto exit;
271 		}
272 		break;
273 	case BLKTYPE_SSO:
274 		blkaddr = BLKADDR_SSO;
275 		goto exit;
276 	case BLKTYPE_SSOW:
277 		blkaddr = BLKADDR_SSOW;
278 		goto exit;
279 	case BLKTYPE_TIM:
280 		blkaddr = BLKADDR_TIM;
281 		goto exit;
282 	case BLKTYPE_CPT:
283 		/* For now assume CPT0 */
284 		if (!pcifunc) {
285 			blkaddr = BLKADDR_CPT0;
286 			goto exit;
287 		}
288 		break;
289 	}
290 
291 	/* Check if this is a RVU PF or VF */
292 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
293 		is_pf = false;
294 		devnum = rvu_get_hwvf(rvu, pcifunc);
295 	} else {
296 		is_pf = true;
297 		devnum = rvu_get_pf(rvu->pdev, pcifunc);
298 	}
299 
300 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
301 	 * 'BLKADDR_NIX1'.
302 	 */
303 	if (blktype == BLKTYPE_NIX) {
304 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
305 			RVU_PRIV_HWVFX_NIXX_CFG(0);
306 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
307 		if (cfg) {
308 			blkaddr = BLKADDR_NIX0;
309 			goto exit;
310 		}
311 
312 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
313 			RVU_PRIV_HWVFX_NIXX_CFG(1);
314 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
315 		if (cfg)
316 			blkaddr = BLKADDR_NIX1;
317 	}
318 
319 	if (blktype == BLKTYPE_CPT) {
320 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
321 			RVU_PRIV_HWVFX_CPTX_CFG(0);
322 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
323 		if (cfg) {
324 			blkaddr = BLKADDR_CPT0;
325 			goto exit;
326 		}
327 
328 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
329 			RVU_PRIV_HWVFX_CPTX_CFG(1);
330 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
331 		if (cfg)
332 			blkaddr = BLKADDR_CPT1;
333 	}
334 
335 exit:
336 	if (is_block_implemented(rvu->hw, blkaddr))
337 		return blkaddr;
338 	return -ENODEV;
339 }
340 
rvu_update_rsrc_map(struct rvu * rvu,struct rvu_pfvf * pfvf,struct rvu_block * block,u16 pcifunc,u16 lf,bool attach)341 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
342 				struct rvu_block *block, u16 pcifunc,
343 				u16 lf, bool attach)
344 {
345 	int devnum, num_lfs = 0;
346 	bool is_pf;
347 	u64 reg;
348 
349 	if (lf >= block->lf.max) {
350 		dev_err(&rvu->pdev->dev,
351 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
352 			__func__, lf, block->name, block->lf.max);
353 		return;
354 	}
355 
356 	/* Check if this is for a RVU PF or VF */
357 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
358 		is_pf = false;
359 		devnum = rvu_get_hwvf(rvu, pcifunc);
360 	} else {
361 		is_pf = true;
362 		devnum = rvu_get_pf(rvu->pdev, pcifunc);
363 	}
364 
365 	block->fn_map[lf] = attach ? pcifunc : 0;
366 
367 	switch (block->addr) {
368 	case BLKADDR_NPA:
369 		pfvf->npalf = attach ? true : false;
370 		num_lfs = pfvf->npalf;
371 		break;
372 	case BLKADDR_NIX0:
373 	case BLKADDR_NIX1:
374 		pfvf->nixlf = attach ? true : false;
375 		num_lfs = pfvf->nixlf;
376 		break;
377 	case BLKADDR_SSO:
378 		attach ? pfvf->sso++ : pfvf->sso--;
379 		num_lfs = pfvf->sso;
380 		break;
381 	case BLKADDR_SSOW:
382 		attach ? pfvf->ssow++ : pfvf->ssow--;
383 		num_lfs = pfvf->ssow;
384 		break;
385 	case BLKADDR_TIM:
386 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
387 		num_lfs = pfvf->timlfs;
388 		break;
389 	case BLKADDR_CPT0:
390 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
391 		num_lfs = pfvf->cptlfs;
392 		break;
393 	case BLKADDR_CPT1:
394 		attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
395 		num_lfs = pfvf->cpt1_lfs;
396 		break;
397 	}
398 
399 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
400 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
401 }
402 
rvu_get_pf_numvfs(struct rvu * rvu,int pf,int * numvfs,int * hwvf)403 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
404 {
405 	u64 cfg;
406 
407 	/* Get numVFs attached to this PF and first HWVF */
408 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
409 	if (numvfs)
410 		*numvfs = (cfg >> 12) & 0xFF;
411 	if (hwvf)
412 		*hwvf = cfg & 0xFFF;
413 }
414 
rvu_get_hwvf(struct rvu * rvu,int pcifunc)415 int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
416 {
417 	int pf, func;
418 	u64 cfg;
419 
420 	pf = rvu_get_pf(rvu->pdev, pcifunc);
421 	func = pcifunc & RVU_PFVF_FUNC_MASK;
422 
423 	/* Get first HWVF attached to this PF */
424 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
425 
426 	return ((cfg & 0xFFF) + func - 1);
427 }
428 
rvu_get_pfvf(struct rvu * rvu,int pcifunc)429 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
430 {
431 	/* Check if it is a PF or VF */
432 	if (pcifunc & RVU_PFVF_FUNC_MASK)
433 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
434 	else
435 		return &rvu->pf[rvu_get_pf(rvu->pdev, pcifunc)];
436 }
437 
is_pf_func_valid(struct rvu * rvu,u16 pcifunc)438 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
439 {
440 	int pf, vf, nvfs;
441 	u64 cfg;
442 
443 	pf = rvu_get_pf(rvu->pdev, pcifunc);
444 	if (pf >= rvu->hw->total_pfs)
445 		return false;
446 
447 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
448 		return true;
449 
450 	/* Check if VF is within number of VFs attached to this PF */
451 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
452 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
453 	nvfs = (cfg >> 12) & 0xFF;
454 	if (vf >= nvfs)
455 		return false;
456 
457 	return true;
458 }
459 
is_block_implemented(struct rvu_hwinfo * hw,int blkaddr)460 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
461 {
462 	struct rvu_block *block;
463 
464 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
465 		return false;
466 
467 	block = &hw->block[blkaddr];
468 	return block->implemented;
469 }
470 
rvu_check_block_implemented(struct rvu * rvu)471 static void rvu_check_block_implemented(struct rvu *rvu)
472 {
473 	struct rvu_hwinfo *hw = rvu->hw;
474 	struct rvu_block *block;
475 	int blkid;
476 	u64 cfg;
477 
478 	/* For each block check if 'implemented' bit is set */
479 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
480 		block = &hw->block[blkid];
481 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
482 		if (cfg & BIT_ULL(11))
483 			block->implemented = true;
484 	}
485 }
486 
rvu_setup_rvum_blk_revid(struct rvu * rvu)487 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
488 {
489 	rvu_write64(rvu, BLKADDR_RVUM,
490 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
491 		    RVU_BLK_RVUM_REVID);
492 }
493 
rvu_clear_rvum_blk_revid(struct rvu * rvu)494 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
495 {
496 	rvu_write64(rvu, BLKADDR_RVUM,
497 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
498 }
499 
rvu_lf_reset(struct rvu * rvu,struct rvu_block * block,int lf)500 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
501 {
502 	int err;
503 
504 	if (!block->implemented)
505 		return 0;
506 
507 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
508 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
509 			   true);
510 	return err;
511 }
512 
rvu_block_reset(struct rvu * rvu,int blkaddr,u64 rst_reg)513 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
514 {
515 	struct rvu_block *block = &rvu->hw->block[blkaddr];
516 	int err;
517 
518 	if (!block->implemented)
519 		return;
520 
521 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
522 	err = rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
523 	if (err) {
524 		dev_err(rvu->dev, "HW block:%d reset timeout retrying again\n", blkaddr);
525 		while (rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true) == -EBUSY)
526 			;
527 	}
528 }
529 
rvu_reset_all_blocks(struct rvu * rvu)530 static void rvu_reset_all_blocks(struct rvu *rvu)
531 {
532 	/* Do a HW reset of all RVU blocks */
533 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
534 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
535 	rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
536 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
537 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
538 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
539 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
540 	rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
541 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
542 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
543 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
544 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
545 	rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
546 }
547 
rvu_scan_block(struct rvu * rvu,struct rvu_block * block)548 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
549 {
550 	struct rvu_pfvf *pfvf;
551 	u64 cfg;
552 	int lf;
553 
554 	for (lf = 0; lf < block->lf.max; lf++) {
555 		cfg = rvu_read64(rvu, block->addr,
556 				 block->lfcfg_reg | (lf << block->lfshift));
557 		if (!(cfg & BIT_ULL(63)))
558 			continue;
559 
560 		/* Set this resource as being used */
561 		__set_bit(lf, block->lf.bmap);
562 
563 		/* Get, to whom this LF is attached */
564 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
565 		rvu_update_rsrc_map(rvu, pfvf, block,
566 				    (cfg >> 8) & 0xFFFF, lf, true);
567 
568 		/* Set start MSIX vector for this LF within this PF/VF */
569 		rvu_set_msix_offset(rvu, pfvf, block, lf);
570 	}
571 }
572 
rvu_check_min_msix_vec(struct rvu * rvu,int nvecs,int pf,int vf)573 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
574 {
575 	int min_vecs;
576 
577 	if (!vf)
578 		goto check_pf;
579 
580 	if (!nvecs) {
581 		dev_warn(rvu->dev,
582 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
583 			 pf, vf - 1, nvecs);
584 	}
585 	return;
586 
587 check_pf:
588 	if (pf == 0)
589 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
590 	else
591 		min_vecs = RVU_PF_INT_VEC_CNT;
592 
593 	if (!(nvecs < min_vecs))
594 		return;
595 	dev_warn(rvu->dev,
596 		 "PF%d is configured with too few vectors, %d, min is %d\n",
597 		 pf, nvecs, min_vecs);
598 }
599 
rvu_setup_msix_resources(struct rvu * rvu)600 static int rvu_setup_msix_resources(struct rvu *rvu)
601 {
602 	struct rvu_hwinfo *hw = rvu->hw;
603 	int pf, vf, numvfs, hwvf, err;
604 	int nvecs, offset, max_msix;
605 	struct rvu_pfvf *pfvf;
606 	u64 cfg, phy_addr;
607 	dma_addr_t iova;
608 
609 	for (pf = 0; pf < hw->total_pfs; pf++) {
610 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
611 		/* If PF is not enabled, nothing to do */
612 		if (!((cfg >> 20) & 0x01))
613 			continue;
614 
615 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
616 
617 		pfvf = &rvu->pf[pf];
618 		/* Get num of MSIX vectors attached to this PF */
619 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
620 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
621 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
622 
623 		/* Alloc msix bitmap for this PF */
624 		err = rvu_alloc_bitmap(&pfvf->msix);
625 		if (err)
626 			return err;
627 
628 		/* Allocate memory for MSIX vector to RVU block LF mapping */
629 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
630 						sizeof(u16), GFP_KERNEL);
631 		if (!pfvf->msix_lfmap)
632 			return -ENOMEM;
633 
634 		/* For PF0 (AF) firmware will set msix vector offsets for
635 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
636 		 */
637 		if (!pf)
638 			goto setup_vfmsix;
639 
640 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
641 		 * These are allocated on driver init and never freed,
642 		 * so no need to set 'msix_lfmap' for these.
643 		 */
644 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
645 		nvecs = (cfg >> 12) & 0xFF;
646 		cfg &= ~0x7FFULL;
647 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
648 		rvu_write64(rvu, BLKADDR_RVUM,
649 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
650 setup_vfmsix:
651 		/* Alloc msix bitmap for VFs */
652 		for (vf = 0; vf < numvfs; vf++) {
653 			pfvf =  &rvu->hwvf[hwvf + vf];
654 			/* Get num of MSIX vectors attached to this VF */
655 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
656 					 RVU_PRIV_PFX_MSIX_CFG(pf));
657 			pfvf->msix.max = (cfg & 0xFFF) + 1;
658 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
659 
660 			/* Alloc msix bitmap for this VF */
661 			err = rvu_alloc_bitmap(&pfvf->msix);
662 			if (err)
663 				return err;
664 
665 			pfvf->msix_lfmap =
666 				devm_kcalloc(rvu->dev, pfvf->msix.max,
667 					     sizeof(u16), GFP_KERNEL);
668 			if (!pfvf->msix_lfmap)
669 				return -ENOMEM;
670 
671 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
672 			 * These are allocated on driver init and never freed,
673 			 * so no need to set 'msix_lfmap' for these.
674 			 */
675 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
676 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
677 			nvecs = (cfg >> 12) & 0xFF;
678 			cfg &= ~0x7FFULL;
679 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
680 			rvu_write64(rvu, BLKADDR_RVUM,
681 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
682 				    cfg | offset);
683 		}
684 	}
685 
686 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
687 	 * create an IOMMU mapping for the physical address configured by
688 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
689 	 */
690 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
691 	max_msix = cfg & 0xFFFFF;
692 	if (rvu->fwdata && rvu->fwdata->msixtr_base)
693 		phy_addr = rvu->fwdata->msixtr_base;
694 	else
695 		phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
696 
697 	iova = dma_map_resource(rvu->dev, phy_addr,
698 				max_msix * PCI_MSIX_ENTRY_SIZE,
699 				DMA_BIDIRECTIONAL, 0);
700 
701 	if (dma_mapping_error(rvu->dev, iova))
702 		return -ENOMEM;
703 
704 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
705 	rvu->msix_base_iova = iova;
706 	rvu->msixtr_base_phy = phy_addr;
707 
708 	return 0;
709 }
710 
rvu_reset_msix(struct rvu * rvu)711 static void rvu_reset_msix(struct rvu *rvu)
712 {
713 	/* Restore msixtr base register */
714 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
715 		    rvu->msixtr_base_phy);
716 }
717 
rvu_free_hw_resources(struct rvu * rvu)718 static void rvu_free_hw_resources(struct rvu *rvu)
719 {
720 	struct rvu_hwinfo *hw = rvu->hw;
721 	struct rvu_block *block;
722 	struct rvu_pfvf  *pfvf;
723 	int id, max_msix;
724 	u64 cfg;
725 
726 	rvu_npa_freemem(rvu);
727 	rvu_npc_freemem(rvu);
728 	rvu_nix_freemem(rvu);
729 
730 	/* Free block LF bitmaps */
731 	for (id = 0; id < BLK_COUNT; id++) {
732 		block = &hw->block[id];
733 		kfree(block->lf.bmap);
734 	}
735 
736 	/* Free MSIX bitmaps */
737 	for (id = 0; id < hw->total_pfs; id++) {
738 		pfvf = &rvu->pf[id];
739 		kfree(pfvf->msix.bmap);
740 	}
741 
742 	for (id = 0; id < hw->total_vfs; id++) {
743 		pfvf = &rvu->hwvf[id];
744 		kfree(pfvf->msix.bmap);
745 	}
746 
747 	/* Unmap MSIX vector base IOVA mapping */
748 	if (!rvu->msix_base_iova)
749 		return;
750 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
751 	max_msix = cfg & 0xFFFFF;
752 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
753 			   max_msix * PCI_MSIX_ENTRY_SIZE,
754 			   DMA_BIDIRECTIONAL, 0);
755 
756 	rvu_reset_msix(rvu);
757 	mutex_destroy(&rvu->rsrc_lock);
758 
759 	/* Free the QINT/CINT memory */
760 	pfvf = &rvu->pf[RVU_AFPF];
761 	qmem_free(rvu->dev, pfvf->nix_qints_ctx);
762 	qmem_free(rvu->dev, pfvf->cq_ints_ctx);
763 }
764 
rvu_setup_pfvf_macaddress(struct rvu * rvu)765 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
766 {
767 	struct rvu_hwinfo *hw = rvu->hw;
768 	int pf, vf, numvfs, hwvf;
769 	struct rvu_pfvf *pfvf;
770 	u64 *mac;
771 
772 	for (pf = 0; pf < hw->total_pfs; pf++) {
773 		/* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
774 		if (!pf)
775 			goto lbkvf;
776 
777 		if (!is_pf_cgxmapped(rvu, pf))
778 			continue;
779 		/* Assign MAC address to PF */
780 		pfvf = &rvu->pf[pf];
781 		if (rvu->fwdata && pf < PF_MACNUM_MAX) {
782 			mac = &rvu->fwdata->pf_macs[pf];
783 			if (*mac)
784 				u64_to_ether_addr(*mac, pfvf->mac_addr);
785 			else
786 				eth_random_addr(pfvf->mac_addr);
787 		} else {
788 			eth_random_addr(pfvf->mac_addr);
789 		}
790 		ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
791 
792 lbkvf:
793 		/* Assign MAC address to VFs*/
794 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
795 		for (vf = 0; vf < numvfs; vf++, hwvf++) {
796 			pfvf = &rvu->hwvf[hwvf];
797 			if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
798 				mac = &rvu->fwdata->vf_macs[hwvf];
799 				if (*mac)
800 					u64_to_ether_addr(*mac, pfvf->mac_addr);
801 				else
802 					eth_random_addr(pfvf->mac_addr);
803 			} else {
804 				eth_random_addr(pfvf->mac_addr);
805 			}
806 			ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
807 		}
808 	}
809 }
810 
rvu_fwdata_init(struct rvu * rvu)811 static int rvu_fwdata_init(struct rvu *rvu)
812 {
813 	u64 fwdbase;
814 	int err;
815 
816 	/* Get firmware data base address */
817 	err = cgx_get_fwdata_base(&fwdbase);
818 	if (err)
819 		goto fail;
820 
821 	BUILD_BUG_ON(offsetof(struct rvu_fwdata, cgx_fw_data) > FWDATA_CGX_LMAC_OFFSET);
822 	rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
823 	if (!rvu->fwdata)
824 		goto fail;
825 	if (!is_rvu_fwdata_valid(rvu)) {
826 		dev_err(rvu->dev,
827 			"Mismatch in 'fwdata' struct btw kernel and firmware\n");
828 		iounmap(rvu->fwdata);
829 		rvu->fwdata = NULL;
830 		return -EINVAL;
831 	}
832 	return 0;
833 fail:
834 	dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
835 	return -EIO;
836 }
837 
rvu_fwdata_exit(struct rvu * rvu)838 static void rvu_fwdata_exit(struct rvu *rvu)
839 {
840 	if (rvu->fwdata)
841 		iounmap(rvu->fwdata);
842 }
843 
rvu_setup_nix_hw_resource(struct rvu * rvu,int blkaddr)844 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
845 {
846 	struct rvu_hwinfo *hw = rvu->hw;
847 	struct rvu_block *block;
848 	int blkid;
849 	u64 cfg;
850 
851 	/* Init NIX LF's bitmap */
852 	block = &hw->block[blkaddr];
853 	if (!block->implemented)
854 		return 0;
855 	blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
856 	cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
857 	block->lf.max = cfg & 0xFFF;
858 	block->addr = blkaddr;
859 	block->type = BLKTYPE_NIX;
860 	block->lfshift = 8;
861 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
862 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
863 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
864 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
865 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
866 	block->lfreset_reg = NIX_AF_LF_RST;
867 	block->rvu = rvu;
868 	sprintf(block->name, "NIX%d", blkid);
869 	rvu->nix_blkaddr[blkid] = blkaddr;
870 	return rvu_alloc_bitmap(&block->lf);
871 }
872 
rvu_setup_cpt_hw_resource(struct rvu * rvu,int blkaddr)873 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
874 {
875 	struct rvu_hwinfo *hw = rvu->hw;
876 	struct rvu_block *block;
877 	int blkid;
878 	u64 cfg;
879 
880 	/* Init CPT LF's bitmap */
881 	block = &hw->block[blkaddr];
882 	if (!block->implemented)
883 		return 0;
884 	blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
885 	cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
886 	block->lf.max = cfg & 0xFF;
887 	block->addr = blkaddr;
888 	block->type = BLKTYPE_CPT;
889 	block->multislot = true;
890 	block->lfshift = 3;
891 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
892 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
893 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
894 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
895 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
896 	block->lfreset_reg = CPT_AF_LF_RST;
897 	block->rvu = rvu;
898 	sprintf(block->name, "CPT%d", blkid);
899 	return rvu_alloc_bitmap(&block->lf);
900 }
901 
rvu_get_lbk_bufsize(struct rvu * rvu)902 static void rvu_get_lbk_bufsize(struct rvu *rvu)
903 {
904 	struct pci_dev *pdev = NULL;
905 	void __iomem *base;
906 	u64 lbk_const;
907 
908 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
909 			      PCI_DEVID_OCTEONTX2_LBK, pdev);
910 	if (!pdev)
911 		return;
912 
913 	base = pci_ioremap_bar(pdev, 0);
914 	if (!base)
915 		goto err_put;
916 
917 	lbk_const = readq(base + LBK_CONST);
918 
919 	/* cache fifo size */
920 	rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
921 
922 	iounmap(base);
923 err_put:
924 	pci_dev_put(pdev);
925 }
926 
rvu_setup_hw_resources(struct rvu * rvu)927 static int rvu_setup_hw_resources(struct rvu *rvu)
928 {
929 	struct rvu_hwinfo *hw = rvu->hw;
930 	struct rvu_block *block;
931 	int blkid, err;
932 	u64 cfg;
933 
934 	/* Get HW supported max RVU PF & VF count */
935 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
936 	hw->total_pfs = (cfg >> 32) & 0xFF;
937 	hw->total_vfs = (cfg >> 20) & 0xFFF;
938 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
939 
940 	if (!is_rvu_otx2(rvu))
941 		rvu_apr_block_cn10k_init(rvu);
942 
943 	/* Init NPA LF's bitmap */
944 	block = &hw->block[BLKADDR_NPA];
945 	if (!block->implemented)
946 		goto nix;
947 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
948 	block->lf.max = (cfg >> 16) & 0xFFF;
949 	block->addr = BLKADDR_NPA;
950 	block->type = BLKTYPE_NPA;
951 	block->lfshift = 8;
952 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
953 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
954 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
955 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
956 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
957 	block->lfreset_reg = NPA_AF_LF_RST;
958 	block->rvu = rvu;
959 	sprintf(block->name, "NPA");
960 	err = rvu_alloc_bitmap(&block->lf);
961 	if (err) {
962 		dev_err(rvu->dev,
963 			"%s: Failed to allocate NPA LF bitmap\n", __func__);
964 		return err;
965 	}
966 
967 nix:
968 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
969 	if (err) {
970 		dev_err(rvu->dev,
971 			"%s: Failed to allocate NIX0 LFs bitmap\n", __func__);
972 		return err;
973 	}
974 
975 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
976 	if (err) {
977 		dev_err(rvu->dev,
978 			"%s: Failed to allocate NIX1 LFs bitmap\n", __func__);
979 		return err;
980 	}
981 
982 	/* Init SSO group's bitmap */
983 	block = &hw->block[BLKADDR_SSO];
984 	if (!block->implemented)
985 		goto ssow;
986 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
987 	block->lf.max = cfg & 0xFFFF;
988 	block->addr = BLKADDR_SSO;
989 	block->type = BLKTYPE_SSO;
990 	block->multislot = true;
991 	block->lfshift = 3;
992 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
993 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
994 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
995 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
996 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
997 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
998 	block->rvu = rvu;
999 	sprintf(block->name, "SSO GROUP");
1000 	err = rvu_alloc_bitmap(&block->lf);
1001 	if (err) {
1002 		dev_err(rvu->dev,
1003 			"%s: Failed to allocate SSO LF bitmap\n", __func__);
1004 		return err;
1005 	}
1006 
1007 ssow:
1008 	/* Init SSO workslot's bitmap */
1009 	block = &hw->block[BLKADDR_SSOW];
1010 	if (!block->implemented)
1011 		goto tim;
1012 	block->lf.max = (cfg >> 56) & 0xFF;
1013 	block->addr = BLKADDR_SSOW;
1014 	block->type = BLKTYPE_SSOW;
1015 	block->multislot = true;
1016 	block->lfshift = 3;
1017 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
1018 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
1019 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
1020 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
1021 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
1022 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
1023 	block->rvu = rvu;
1024 	sprintf(block->name, "SSOWS");
1025 	err = rvu_alloc_bitmap(&block->lf);
1026 	if (err) {
1027 		dev_err(rvu->dev,
1028 			"%s: Failed to allocate SSOW LF bitmap\n", __func__);
1029 		return err;
1030 	}
1031 
1032 tim:
1033 	/* Init TIM LF's bitmap */
1034 	block = &hw->block[BLKADDR_TIM];
1035 	if (!block->implemented)
1036 		goto cpt;
1037 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
1038 	block->lf.max = cfg & 0xFFFF;
1039 	block->addr = BLKADDR_TIM;
1040 	block->type = BLKTYPE_TIM;
1041 	block->multislot = true;
1042 	block->lfshift = 3;
1043 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
1044 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
1045 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
1046 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
1047 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
1048 	block->lfreset_reg = TIM_AF_LF_RST;
1049 	block->rvu = rvu;
1050 	sprintf(block->name, "TIM");
1051 	err = rvu_alloc_bitmap(&block->lf);
1052 	if (err) {
1053 		dev_err(rvu->dev,
1054 			"%s: Failed to allocate TIM LF bitmap\n", __func__);
1055 		return err;
1056 	}
1057 
1058 cpt:
1059 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
1060 	if (err) {
1061 		dev_err(rvu->dev,
1062 			"%s: Failed to allocate CPT0 LF bitmap\n", __func__);
1063 		return err;
1064 	}
1065 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
1066 	if (err) {
1067 		dev_err(rvu->dev,
1068 			"%s: Failed to allocate CPT1 LF bitmap\n", __func__);
1069 		return err;
1070 	}
1071 
1072 	/* Allocate memory for PFVF data */
1073 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
1074 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
1075 	if (!rvu->pf) {
1076 		dev_err(rvu->dev,
1077 			"%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__);
1078 		return -ENOMEM;
1079 	}
1080 
1081 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1082 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
1083 	if (!rvu->hwvf) {
1084 		dev_err(rvu->dev,
1085 			"%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__);
1086 		return -ENOMEM;
1087 	}
1088 
1089 	mutex_init(&rvu->rsrc_lock);
1090 
1091 	rvu_fwdata_init(rvu);
1092 
1093 	err = rvu_setup_msix_resources(rvu);
1094 	if (err) {
1095 		dev_err(rvu->dev,
1096 			"%s: Failed to setup MSIX resources\n", __func__);
1097 		return err;
1098 	}
1099 
1100 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1101 		block = &hw->block[blkid];
1102 		if (!block->lf.bmap)
1103 			continue;
1104 
1105 		/* Allocate memory for block LF/slot to pcifunc mapping info */
1106 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1107 					     sizeof(u16), GFP_KERNEL);
1108 		if (!block->fn_map) {
1109 			err = -ENOMEM;
1110 			goto msix_err;
1111 		}
1112 
1113 		/* Scan all blocks to check if low level firmware has
1114 		 * already provisioned any of the resources to a PF/VF.
1115 		 */
1116 		rvu_scan_block(rvu, block);
1117 	}
1118 
1119 	err = rvu_set_channels_base(rvu);
1120 	if (err)
1121 		goto msix_err;
1122 
1123 	err = rvu_npc_init(rvu);
1124 	if (err) {
1125 		dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__);
1126 		goto npc_err;
1127 	}
1128 
1129 	err = rvu_cgx_init(rvu);
1130 	if (err) {
1131 		dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__);
1132 		goto cgx_err;
1133 	}
1134 
1135 	err = rvu_npc_exact_init(rvu);
1136 	if (err) {
1137 		dev_err(rvu->dev, "failed to initialize exact match table\n");
1138 		return err;
1139 	}
1140 
1141 	/* Assign MACs for CGX mapped functions */
1142 	rvu_setup_pfvf_macaddress(rvu);
1143 
1144 	err = rvu_npa_init(rvu);
1145 	if (err) {
1146 		dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__);
1147 		goto npa_err;
1148 	}
1149 
1150 	rvu_get_lbk_bufsize(rvu);
1151 
1152 	err = rvu_nix_init(rvu);
1153 	if (err) {
1154 		dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__);
1155 		goto nix_err;
1156 	}
1157 
1158 	err = rvu_sdp_init(rvu);
1159 	if (err) {
1160 		dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__);
1161 		goto nix_err;
1162 	}
1163 
1164 	rvu_program_channels(rvu);
1165 	cgx_start_linkup(rvu);
1166 
1167 	rvu_block_bcast_xon(rvu, BLKADDR_NIX0);
1168 	rvu_block_bcast_xon(rvu, BLKADDR_NIX1);
1169 
1170 	err = rvu_mcs_init(rvu);
1171 	if (err) {
1172 		dev_err(rvu->dev, "%s: Failed to initialize mcs\n", __func__);
1173 		goto nix_err;
1174 	}
1175 
1176 	err = rvu_cpt_init(rvu);
1177 	if (err) {
1178 		dev_err(rvu->dev, "%s: Failed to initialize cpt\n", __func__);
1179 		goto mcs_err;
1180 	}
1181 
1182 	return 0;
1183 
1184 mcs_err:
1185 	rvu_mcs_exit(rvu);
1186 nix_err:
1187 	rvu_nix_freemem(rvu);
1188 npa_err:
1189 	rvu_npa_freemem(rvu);
1190 cgx_err:
1191 	rvu_cgx_exit(rvu);
1192 npc_err:
1193 	rvu_npc_freemem(rvu);
1194 	rvu_fwdata_exit(rvu);
1195 msix_err:
1196 	rvu_reset_msix(rvu);
1197 	return err;
1198 }
1199 
1200 /* NPA and NIX admin queue APIs */
rvu_aq_free(struct rvu * rvu,struct admin_queue * aq)1201 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1202 {
1203 	if (!aq)
1204 		return;
1205 
1206 	qmem_free(rvu->dev, aq->inst);
1207 	qmem_free(rvu->dev, aq->res);
1208 	devm_kfree(rvu->dev, aq);
1209 }
1210 
rvu_aq_alloc(struct rvu * rvu,struct admin_queue ** ad_queue,int qsize,int inst_size,int res_size)1211 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1212 		 int qsize, int inst_size, int res_size)
1213 {
1214 	struct admin_queue *aq;
1215 	int err;
1216 
1217 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1218 	if (!*ad_queue)
1219 		return -ENOMEM;
1220 	aq = *ad_queue;
1221 
1222 	/* Alloc memory for instructions i.e AQ */
1223 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1224 	if (err) {
1225 		devm_kfree(rvu->dev, aq);
1226 		return err;
1227 	}
1228 
1229 	/* Alloc memory for results */
1230 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1231 	if (err) {
1232 		rvu_aq_free(rvu, aq);
1233 		return err;
1234 	}
1235 
1236 	spin_lock_init(&aq->lock);
1237 	return 0;
1238 }
1239 
rvu_mbox_handler_ready(struct rvu * rvu,struct msg_req * req,struct ready_msg_rsp * rsp)1240 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1241 			   struct ready_msg_rsp *rsp)
1242 {
1243 	if (rvu->fwdata) {
1244 		rsp->rclk_freq = rvu->fwdata->rclk;
1245 		rsp->sclk_freq = rvu->fwdata->sclk;
1246 	}
1247 	return 0;
1248 }
1249 
1250 /* Get current count of a RVU block's LF/slots
1251  * provisioned to a given RVU func.
1252  */
rvu_get_rsrc_mapcount(struct rvu_pfvf * pfvf,int blkaddr)1253 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1254 {
1255 	switch (blkaddr) {
1256 	case BLKADDR_NPA:
1257 		return pfvf->npalf ? 1 : 0;
1258 	case BLKADDR_NIX0:
1259 	case BLKADDR_NIX1:
1260 		return pfvf->nixlf ? 1 : 0;
1261 	case BLKADDR_SSO:
1262 		return pfvf->sso;
1263 	case BLKADDR_SSOW:
1264 		return pfvf->ssow;
1265 	case BLKADDR_TIM:
1266 		return pfvf->timlfs;
1267 	case BLKADDR_CPT0:
1268 		return pfvf->cptlfs;
1269 	case BLKADDR_CPT1:
1270 		return pfvf->cpt1_lfs;
1271 	}
1272 	return 0;
1273 }
1274 
1275 /* Return true if LFs of block type are attached to pcifunc */
is_blktype_attached(struct rvu_pfvf * pfvf,int blktype)1276 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1277 {
1278 	switch (blktype) {
1279 	case BLKTYPE_NPA:
1280 		return pfvf->npalf ? 1 : 0;
1281 	case BLKTYPE_NIX:
1282 		return pfvf->nixlf ? 1 : 0;
1283 	case BLKTYPE_SSO:
1284 		return !!pfvf->sso;
1285 	case BLKTYPE_SSOW:
1286 		return !!pfvf->ssow;
1287 	case BLKTYPE_TIM:
1288 		return !!pfvf->timlfs;
1289 	case BLKTYPE_CPT:
1290 		return pfvf->cptlfs || pfvf->cpt1_lfs;
1291 	}
1292 
1293 	return false;
1294 }
1295 
is_pffunc_map_valid(struct rvu * rvu,u16 pcifunc,int blktype)1296 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1297 {
1298 	struct rvu_pfvf *pfvf;
1299 
1300 	if (!is_pf_func_valid(rvu, pcifunc))
1301 		return false;
1302 
1303 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1304 
1305 	/* Check if this PFFUNC has a LF of type blktype attached */
1306 	if (!is_blktype_attached(pfvf, blktype))
1307 		return false;
1308 
1309 	return true;
1310 }
1311 
rvu_lookup_rsrc(struct rvu * rvu,struct rvu_block * block,int pcifunc,int slot)1312 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1313 			   int pcifunc, int slot)
1314 {
1315 	u64 val;
1316 
1317 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1318 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
1319 	/* Wait for the lookup to finish */
1320 	/* TODO: put some timeout here */
1321 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1322 		;
1323 
1324 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
1325 
1326 	/* Check LF valid bit */
1327 	if (!(val & (1ULL << 12)))
1328 		return -1;
1329 
1330 	return (val & 0xFFF);
1331 }
1332 
rvu_get_blkaddr_from_slot(struct rvu * rvu,int blktype,u16 pcifunc,u16 global_slot,u16 * slot_in_block)1333 int rvu_get_blkaddr_from_slot(struct rvu *rvu, int blktype, u16 pcifunc,
1334 			      u16 global_slot, u16 *slot_in_block)
1335 {
1336 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1337 	int numlfs, total_lfs = 0, nr_blocks = 0;
1338 	int i, num_blkaddr[BLK_COUNT] = { 0 };
1339 	struct rvu_block *block;
1340 	int blkaddr;
1341 	u16 start_slot;
1342 
1343 	if (!is_blktype_attached(pfvf, blktype))
1344 		return -ENODEV;
1345 
1346 	/* Get all the block addresses from which LFs are attached to
1347 	 * the given pcifunc in num_blkaddr[].
1348 	 */
1349 	for (blkaddr = BLKADDR_RVUM; blkaddr < BLK_COUNT; blkaddr++) {
1350 		block = &rvu->hw->block[blkaddr];
1351 		if (block->type != blktype)
1352 			continue;
1353 		if (!is_block_implemented(rvu->hw, blkaddr))
1354 			continue;
1355 
1356 		numlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr);
1357 		if (numlfs) {
1358 			total_lfs += numlfs;
1359 			num_blkaddr[nr_blocks] = blkaddr;
1360 			nr_blocks++;
1361 		}
1362 	}
1363 
1364 	if (global_slot >= total_lfs)
1365 		return -ENODEV;
1366 
1367 	/* Based on the given global slot number retrieve the
1368 	 * correct block address out of all attached block
1369 	 * addresses and slot number in that block.
1370 	 */
1371 	total_lfs = 0;
1372 	blkaddr = -ENODEV;
1373 	for (i = 0; i < nr_blocks; i++) {
1374 		numlfs = rvu_get_rsrc_mapcount(pfvf, num_blkaddr[i]);
1375 		total_lfs += numlfs;
1376 		if (global_slot < total_lfs) {
1377 			blkaddr = num_blkaddr[i];
1378 			start_slot = total_lfs - numlfs;
1379 			*slot_in_block = global_slot - start_slot;
1380 			break;
1381 		}
1382 	}
1383 
1384 	return blkaddr;
1385 }
1386 
rvu_detach_block(struct rvu * rvu,int pcifunc,int blktype)1387 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1388 {
1389 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1390 	struct rvu_hwinfo *hw = rvu->hw;
1391 	struct rvu_block *block;
1392 	int slot, lf, num_lfs;
1393 	int blkaddr;
1394 
1395 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1396 	if (blkaddr < 0)
1397 		return;
1398 
1399 
1400 	block = &hw->block[blkaddr];
1401 
1402 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1403 	if (!num_lfs)
1404 		return;
1405 
1406 	for (slot = 0; slot < num_lfs; slot++) {
1407 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1408 		if (lf < 0) /* This should never happen */
1409 			continue;
1410 
1411 		if (blktype == BLKTYPE_NIX) {
1412 			rvu_nix_reset_mac(pfvf, pcifunc);
1413 			rvu_npc_clear_ucast_entry(rvu, pcifunc, lf);
1414 		}
1415 		/* Disable the LF */
1416 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1417 			    (lf << block->lfshift), 0x00ULL);
1418 
1419 		/* Update SW maintained mapping info as well */
1420 		rvu_update_rsrc_map(rvu, pfvf, block,
1421 				    pcifunc, lf, false);
1422 
1423 		/* Free the resource */
1424 		rvu_free_rsrc(&block->lf, lf);
1425 
1426 		/* Clear MSIX vector offset for this LF */
1427 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
1428 	}
1429 }
1430 
rvu_detach_rsrcs(struct rvu * rvu,struct rsrc_detach * detach,u16 pcifunc)1431 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1432 			    u16 pcifunc)
1433 {
1434 	struct rvu_hwinfo *hw = rvu->hw;
1435 	bool detach_all = true;
1436 	struct rvu_block *block;
1437 	int blkid;
1438 
1439 	mutex_lock(&rvu->rsrc_lock);
1440 
1441 	/* Check for partial resource detach */
1442 	if (detach && detach->partial)
1443 		detach_all = false;
1444 
1445 	/* Check for RVU block's LFs attached to this func,
1446 	 * if so, detach them.
1447 	 */
1448 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1449 		block = &hw->block[blkid];
1450 		if (!block->lf.bmap)
1451 			continue;
1452 		if (!detach_all && detach) {
1453 			if (blkid == BLKADDR_NPA && !detach->npalf)
1454 				continue;
1455 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1456 				continue;
1457 			else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1458 				continue;
1459 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1460 				continue;
1461 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1462 				continue;
1463 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1464 				continue;
1465 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1466 				continue;
1467 			else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1468 				continue;
1469 		}
1470 		rvu_detach_block(rvu, pcifunc, block->type);
1471 	}
1472 
1473 	mutex_unlock(&rvu->rsrc_lock);
1474 	return 0;
1475 }
1476 
rvu_mbox_handler_detach_resources(struct rvu * rvu,struct rsrc_detach * detach,struct msg_rsp * rsp)1477 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1478 				      struct rsrc_detach *detach,
1479 				      struct msg_rsp *rsp)
1480 {
1481 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1482 }
1483 
rvu_get_nix_blkaddr(struct rvu * rvu,u16 pcifunc)1484 int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1485 {
1486 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1487 	int blkaddr = BLKADDR_NIX0, vf;
1488 	struct rvu_pfvf *pf;
1489 
1490 	pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1491 
1492 	/* All CGX mapped PFs are set with assigned NIX block during init */
1493 	if (is_pf_cgxmapped(rvu, rvu_get_pf(rvu->pdev, pcifunc))) {
1494 		blkaddr = pf->nix_blkaddr;
1495 	} else if (is_lbk_vf(rvu, pcifunc)) {
1496 		vf = pcifunc - 1;
1497 		/* Assign NIX based on VF number. All even numbered VFs get
1498 		 * NIX0 and odd numbered gets NIX1
1499 		 */
1500 		blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1501 		/* NIX1 is not present on all silicons */
1502 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1503 			blkaddr = BLKADDR_NIX0;
1504 	}
1505 
1506 	/* if SDP1 then the blkaddr is NIX1 */
1507 	if (is_sdp_pfvf(rvu, pcifunc) && pf->sdp_info->node_id == 1)
1508 		blkaddr = BLKADDR_NIX1;
1509 
1510 	switch (blkaddr) {
1511 	case BLKADDR_NIX1:
1512 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1513 		pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1514 		pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1515 		break;
1516 	case BLKADDR_NIX0:
1517 	default:
1518 		pfvf->nix_blkaddr = BLKADDR_NIX0;
1519 		pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1520 		pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1521 		break;
1522 	}
1523 
1524 	return pfvf->nix_blkaddr;
1525 }
1526 
rvu_get_attach_blkaddr(struct rvu * rvu,int blktype,u16 pcifunc,struct rsrc_attach * attach)1527 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1528 				  u16 pcifunc, struct rsrc_attach *attach)
1529 {
1530 	int blkaddr;
1531 
1532 	switch (blktype) {
1533 	case BLKTYPE_NIX:
1534 		blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1535 		break;
1536 	case BLKTYPE_CPT:
1537 		if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1538 			return rvu_get_blkaddr(rvu, blktype, 0);
1539 		blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1540 			  BLKADDR_CPT0;
1541 		if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1542 			return -ENODEV;
1543 		break;
1544 	default:
1545 		return rvu_get_blkaddr(rvu, blktype, 0);
1546 	}
1547 
1548 	if (is_block_implemented(rvu->hw, blkaddr))
1549 		return blkaddr;
1550 
1551 	return -ENODEV;
1552 }
1553 
rvu_attach_block(struct rvu * rvu,int pcifunc,int blktype,int num_lfs,struct rsrc_attach * attach)1554 static int rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1555 			    int num_lfs, struct rsrc_attach *attach)
1556 {
1557 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1558 	struct rvu_hwinfo *hw = rvu->hw;
1559 	struct rvu_block *block;
1560 	int slot, lf;
1561 	int blkaddr;
1562 	u64 cfg;
1563 
1564 	if (!num_lfs)
1565 		return -EINVAL;
1566 
1567 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1568 	if (blkaddr < 0)
1569 		return -EFAULT;
1570 
1571 	block = &hw->block[blkaddr];
1572 	if (!block->lf.bmap)
1573 		return -ESRCH;
1574 
1575 	for (slot = 0; slot < num_lfs; slot++) {
1576 		/* Allocate the resource */
1577 		lf = rvu_alloc_rsrc(&block->lf);
1578 		if (lf < 0)
1579 			return -EFAULT;
1580 
1581 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1582 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1583 			    (lf << block->lfshift), cfg);
1584 		rvu_update_rsrc_map(rvu, pfvf, block,
1585 				    pcifunc, lf, true);
1586 
1587 		/* Set start MSIX vector for this LF within this PF/VF */
1588 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1589 	}
1590 
1591 	return 0;
1592 }
1593 
rvu_check_rsrc_availability(struct rvu * rvu,struct rsrc_attach * req,u16 pcifunc)1594 static int rvu_check_rsrc_availability(struct rvu *rvu,
1595 				       struct rsrc_attach *req, u16 pcifunc)
1596 {
1597 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1598 	int free_lfs, mappedlfs, blkaddr;
1599 	struct rvu_hwinfo *hw = rvu->hw;
1600 	struct rvu_block *block;
1601 
1602 	/* Only one NPA LF can be attached */
1603 	if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1604 		block = &hw->block[BLKADDR_NPA];
1605 		free_lfs = rvu_rsrc_free_count(&block->lf);
1606 		if (!free_lfs)
1607 			goto fail;
1608 	} else if (req->npalf) {
1609 		dev_err(&rvu->pdev->dev,
1610 			"Func 0x%x: Invalid req, already has NPA\n",
1611 			 pcifunc);
1612 		return -EINVAL;
1613 	}
1614 
1615 	/* Only one NIX LF can be attached */
1616 	if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1617 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1618 						 pcifunc, req);
1619 		if (blkaddr < 0)
1620 			return blkaddr;
1621 		block = &hw->block[blkaddr];
1622 		free_lfs = rvu_rsrc_free_count(&block->lf);
1623 		if (!free_lfs)
1624 			goto fail;
1625 	} else if (req->nixlf) {
1626 		dev_err(&rvu->pdev->dev,
1627 			"Func 0x%x: Invalid req, already has NIX\n",
1628 			pcifunc);
1629 		return -EINVAL;
1630 	}
1631 
1632 	if (req->sso) {
1633 		block = &hw->block[BLKADDR_SSO];
1634 		/* Is request within limits ? */
1635 		if (req->sso > block->lf.max) {
1636 			dev_err(&rvu->pdev->dev,
1637 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1638 				 pcifunc, req->sso, block->lf.max);
1639 			return -EINVAL;
1640 		}
1641 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1642 		free_lfs = rvu_rsrc_free_count(&block->lf);
1643 		/* Check if additional resources are available */
1644 		if (req->sso > mappedlfs &&
1645 		    ((req->sso - mappedlfs) > free_lfs))
1646 			goto fail;
1647 	}
1648 
1649 	if (req->ssow) {
1650 		block = &hw->block[BLKADDR_SSOW];
1651 		if (req->ssow > block->lf.max) {
1652 			dev_err(&rvu->pdev->dev,
1653 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1654 				 pcifunc, req->ssow, block->lf.max);
1655 			return -EINVAL;
1656 		}
1657 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1658 		free_lfs = rvu_rsrc_free_count(&block->lf);
1659 		if (req->ssow > mappedlfs &&
1660 		    ((req->ssow - mappedlfs) > free_lfs))
1661 			goto fail;
1662 	}
1663 
1664 	if (req->timlfs) {
1665 		block = &hw->block[BLKADDR_TIM];
1666 		if (req->timlfs > block->lf.max) {
1667 			dev_err(&rvu->pdev->dev,
1668 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1669 				 pcifunc, req->timlfs, block->lf.max);
1670 			return -EINVAL;
1671 		}
1672 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1673 		free_lfs = rvu_rsrc_free_count(&block->lf);
1674 		if (req->timlfs > mappedlfs &&
1675 		    ((req->timlfs - mappedlfs) > free_lfs))
1676 			goto fail;
1677 	}
1678 
1679 	if (req->cptlfs) {
1680 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1681 						 pcifunc, req);
1682 		if (blkaddr < 0)
1683 			return blkaddr;
1684 		block = &hw->block[blkaddr];
1685 		if (req->cptlfs > block->lf.max) {
1686 			dev_err(&rvu->pdev->dev,
1687 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1688 				 pcifunc, req->cptlfs, block->lf.max);
1689 			return -EINVAL;
1690 		}
1691 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1692 		free_lfs = rvu_rsrc_free_count(&block->lf);
1693 		if (req->cptlfs > mappedlfs &&
1694 		    ((req->cptlfs - mappedlfs) > free_lfs))
1695 			goto fail;
1696 	}
1697 
1698 	return 0;
1699 
1700 fail:
1701 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1702 	return -ENOSPC;
1703 }
1704 
rvu_attach_from_same_block(struct rvu * rvu,int blktype,struct rsrc_attach * attach)1705 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1706 				       struct rsrc_attach *attach)
1707 {
1708 	int blkaddr, num_lfs;
1709 
1710 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1711 					 attach->hdr.pcifunc, attach);
1712 	if (blkaddr < 0)
1713 		return false;
1714 
1715 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1716 					blkaddr);
1717 	/* Requester already has LFs from given block ? */
1718 	return !!num_lfs;
1719 }
1720 
rvu_mbox_handler_attach_resources(struct rvu * rvu,struct rsrc_attach * attach,struct msg_rsp * rsp)1721 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1722 				      struct rsrc_attach *attach,
1723 				      struct msg_rsp *rsp)
1724 {
1725 	u16 pcifunc = attach->hdr.pcifunc;
1726 	int err;
1727 
1728 	/* If first request, detach all existing attached resources */
1729 	if (!attach->modify) {
1730 		err = rvu_detach_rsrcs(rvu, NULL, pcifunc);
1731 		if (err)
1732 			return err;
1733 	}
1734 
1735 	mutex_lock(&rvu->rsrc_lock);
1736 
1737 	/* Check if the request can be accommodated */
1738 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1739 	if (err)
1740 		goto fail1;
1741 
1742 	/* Now attach the requested resources */
1743 	if (attach->npalf) {
1744 		err = rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1745 		if (err)
1746 			goto fail1;
1747 	}
1748 
1749 	if (attach->nixlf) {
1750 		err = rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1751 		if (err)
1752 			goto fail2;
1753 	}
1754 
1755 	if (attach->sso) {
1756 		/* RVU func doesn't know which exact LF or slot is attached
1757 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1758 		 * request, simply detach all existing attached LFs/slots
1759 		 * and attach a fresh.
1760 		 */
1761 		if (attach->modify)
1762 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1763 		err = rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1764 				       attach->sso, attach);
1765 		if (err)
1766 			goto fail3;
1767 	}
1768 
1769 	if (attach->ssow) {
1770 		if (attach->modify)
1771 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1772 		err = rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1773 				       attach->ssow, attach);
1774 		if (err)
1775 			goto fail4;
1776 	}
1777 
1778 	if (attach->timlfs) {
1779 		if (attach->modify)
1780 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1781 		err = rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1782 				       attach->timlfs, attach);
1783 		if (err)
1784 			goto fail5;
1785 	}
1786 
1787 	if (attach->cptlfs) {
1788 		if (attach->modify &&
1789 		    rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1790 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1791 		err = rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1792 				       attach->cptlfs, attach);
1793 		if (err)
1794 			goto fail6;
1795 	}
1796 
1797 	mutex_unlock(&rvu->rsrc_lock);
1798 	return 0;
1799 
1800 fail6:
1801 	if (attach->timlfs)
1802 		rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1803 
1804 fail5:
1805 	if (attach->ssow)
1806 		rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1807 
1808 fail4:
1809 	if (attach->sso)
1810 		rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1811 
1812 fail3:
1813 	if (attach->nixlf)
1814 		rvu_detach_block(rvu, pcifunc, BLKTYPE_NIX);
1815 
1816 fail2:
1817 	if (attach->npalf)
1818 		rvu_detach_block(rvu, pcifunc, BLKTYPE_NPA);
1819 
1820 fail1:
1821 	mutex_unlock(&rvu->rsrc_lock);
1822 	return err;
1823 }
1824 
rvu_get_msix_offset(struct rvu * rvu,struct rvu_pfvf * pfvf,int blkaddr,int lf)1825 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1826 			       int blkaddr, int lf)
1827 {
1828 	u16 vec;
1829 
1830 	if (lf < 0)
1831 		return MSIX_VECTOR_INVALID;
1832 
1833 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1834 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1835 			return vec;
1836 	}
1837 	return MSIX_VECTOR_INVALID;
1838 }
1839 
rvu_set_msix_offset(struct rvu * rvu,struct rvu_pfvf * pfvf,struct rvu_block * block,int lf)1840 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1841 				struct rvu_block *block, int lf)
1842 {
1843 	u16 nvecs, vec, offset;
1844 	u64 cfg;
1845 
1846 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1847 			 (lf << block->lfshift));
1848 	nvecs = (cfg >> 12) & 0xFF;
1849 
1850 	/* Check and alloc MSIX vectors, must be contiguous */
1851 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1852 		return;
1853 
1854 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1855 
1856 	/* Config MSIX offset in LF */
1857 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1858 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1859 
1860 	/* Update the bitmap as well */
1861 	for (vec = 0; vec < nvecs; vec++)
1862 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1863 }
1864 
rvu_clear_msix_offset(struct rvu * rvu,struct rvu_pfvf * pfvf,struct rvu_block * block,int lf)1865 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1866 				  struct rvu_block *block, int lf)
1867 {
1868 	u16 nvecs, vec, offset;
1869 	u64 cfg;
1870 
1871 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1872 			 (lf << block->lfshift));
1873 	nvecs = (cfg >> 12) & 0xFF;
1874 
1875 	/* Clear MSIX offset in LF */
1876 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1877 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1878 
1879 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1880 
1881 	/* Update the mapping */
1882 	for (vec = 0; vec < nvecs; vec++)
1883 		pfvf->msix_lfmap[offset + vec] = 0;
1884 
1885 	/* Free the same in MSIX bitmap */
1886 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1887 }
1888 
rvu_mbox_handler_msix_offset(struct rvu * rvu,struct msg_req * req,struct msix_offset_rsp * rsp)1889 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1890 				 struct msix_offset_rsp *rsp)
1891 {
1892 	struct rvu_hwinfo *hw = rvu->hw;
1893 	u16 pcifunc = req->hdr.pcifunc;
1894 	struct rvu_pfvf *pfvf;
1895 	int lf, slot, blkaddr;
1896 
1897 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1898 	if (!pfvf->msix.bmap)
1899 		return 0;
1900 
1901 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1902 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1903 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1904 
1905 	/* Get BLKADDR from which LFs are attached to pcifunc */
1906 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1907 	if (blkaddr < 0) {
1908 		rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1909 	} else {
1910 		lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1911 		rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1912 	}
1913 
1914 	rsp->sso = pfvf->sso;
1915 	for (slot = 0; slot < rsp->sso; slot++) {
1916 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1917 		rsp->sso_msixoff[slot] =
1918 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1919 	}
1920 
1921 	rsp->ssow = pfvf->ssow;
1922 	for (slot = 0; slot < rsp->ssow; slot++) {
1923 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1924 		rsp->ssow_msixoff[slot] =
1925 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1926 	}
1927 
1928 	rsp->timlfs = pfvf->timlfs;
1929 	for (slot = 0; slot < rsp->timlfs; slot++) {
1930 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1931 		rsp->timlf_msixoff[slot] =
1932 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1933 	}
1934 
1935 	rsp->cptlfs = pfvf->cptlfs;
1936 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1937 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1938 		rsp->cptlf_msixoff[slot] =
1939 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1940 	}
1941 
1942 	rsp->cpt1_lfs = pfvf->cpt1_lfs;
1943 	for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1944 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1945 		rsp->cpt1_lf_msixoff[slot] =
1946 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1947 	}
1948 
1949 	return 0;
1950 }
1951 
rvu_mbox_handler_free_rsrc_cnt(struct rvu * rvu,struct msg_req * req,struct free_rsrcs_rsp * rsp)1952 int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req,
1953 				   struct free_rsrcs_rsp *rsp)
1954 {
1955 	struct rvu_hwinfo *hw = rvu->hw;
1956 	struct rvu_block *block;
1957 	struct nix_txsch *txsch;
1958 	struct nix_hw *nix_hw;
1959 
1960 	mutex_lock(&rvu->rsrc_lock);
1961 
1962 	block = &hw->block[BLKADDR_NPA];
1963 	rsp->npa = rvu_rsrc_free_count(&block->lf);
1964 
1965 	block = &hw->block[BLKADDR_NIX0];
1966 	rsp->nix = rvu_rsrc_free_count(&block->lf);
1967 
1968 	block = &hw->block[BLKADDR_NIX1];
1969 	rsp->nix1 = rvu_rsrc_free_count(&block->lf);
1970 
1971 	block = &hw->block[BLKADDR_SSO];
1972 	rsp->sso = rvu_rsrc_free_count(&block->lf);
1973 
1974 	block = &hw->block[BLKADDR_SSOW];
1975 	rsp->ssow = rvu_rsrc_free_count(&block->lf);
1976 
1977 	block = &hw->block[BLKADDR_TIM];
1978 	rsp->tim = rvu_rsrc_free_count(&block->lf);
1979 
1980 	block = &hw->block[BLKADDR_CPT0];
1981 	rsp->cpt = rvu_rsrc_free_count(&block->lf);
1982 
1983 	block = &hw->block[BLKADDR_CPT1];
1984 	rsp->cpt1 = rvu_rsrc_free_count(&block->lf);
1985 
1986 	if (rvu->hw->cap.nix_fixed_txschq_mapping) {
1987 		rsp->schq[NIX_TXSCH_LVL_SMQ] = 1;
1988 		rsp->schq[NIX_TXSCH_LVL_TL4] = 1;
1989 		rsp->schq[NIX_TXSCH_LVL_TL3] = 1;
1990 		rsp->schq[NIX_TXSCH_LVL_TL2] = 1;
1991 		/* NIX1 */
1992 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1993 			goto out;
1994 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1;
1995 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1;
1996 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1;
1997 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1;
1998 	} else {
1999 		nix_hw = get_nix_hw(hw, BLKADDR_NIX0);
2000 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
2001 		rsp->schq[NIX_TXSCH_LVL_SMQ] =
2002 				rvu_rsrc_free_count(&txsch->schq);
2003 
2004 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
2005 		rsp->schq[NIX_TXSCH_LVL_TL4] =
2006 				rvu_rsrc_free_count(&txsch->schq);
2007 
2008 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
2009 		rsp->schq[NIX_TXSCH_LVL_TL3] =
2010 				rvu_rsrc_free_count(&txsch->schq);
2011 
2012 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
2013 		rsp->schq[NIX_TXSCH_LVL_TL2] =
2014 				rvu_rsrc_free_count(&txsch->schq);
2015 
2016 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
2017 			goto out;
2018 
2019 		nix_hw = get_nix_hw(hw, BLKADDR_NIX1);
2020 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
2021 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] =
2022 				rvu_rsrc_free_count(&txsch->schq);
2023 
2024 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
2025 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] =
2026 				rvu_rsrc_free_count(&txsch->schq);
2027 
2028 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
2029 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] =
2030 				rvu_rsrc_free_count(&txsch->schq);
2031 
2032 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
2033 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] =
2034 				rvu_rsrc_free_count(&txsch->schq);
2035 	}
2036 
2037 	rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1;
2038 out:
2039 	rsp->schq[NIX_TXSCH_LVL_TL1] = 1;
2040 	mutex_unlock(&rvu->rsrc_lock);
2041 
2042 	return 0;
2043 }
2044 
rvu_mbox_handler_vf_flr(struct rvu * rvu,struct msg_req * req,struct msg_rsp * rsp)2045 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
2046 			    struct msg_rsp *rsp)
2047 {
2048 	u16 pcifunc = req->hdr.pcifunc;
2049 	u16 vf, numvfs;
2050 	u64 cfg;
2051 
2052 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
2053 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
2054 			 RVU_PRIV_PFX_CFG(rvu_get_pf(rvu->pdev, pcifunc)));
2055 	numvfs = (cfg >> 12) & 0xFF;
2056 
2057 	if (vf && vf <= numvfs)
2058 		__rvu_flr_handler(rvu, pcifunc);
2059 	else
2060 		return RVU_INVALID_VF_ID;
2061 
2062 	return 0;
2063 }
2064 
rvu_ndc_sync(struct rvu * rvu,int lfblkaddr,int lfidx,u64 lfoffset)2065 int rvu_ndc_sync(struct rvu *rvu, int lfblkaddr, int lfidx, u64 lfoffset)
2066 {
2067 	/* Sync cached info for this LF in NDC to LLC/DRAM */
2068 	rvu_write64(rvu, lfblkaddr, lfoffset, BIT_ULL(12) | lfidx);
2069 	return rvu_poll_reg(rvu, lfblkaddr, lfoffset, BIT_ULL(12), true);
2070 }
2071 
rvu_mbox_handler_get_hw_cap(struct rvu * rvu,struct msg_req * req,struct get_hw_cap_rsp * rsp)2072 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
2073 				struct get_hw_cap_rsp *rsp)
2074 {
2075 	struct rvu_hwinfo *hw = rvu->hw;
2076 
2077 	rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
2078 	rsp->nix_shaping = hw->cap.nix_shaping;
2079 	rsp->npc_hash_extract = hw->cap.npc_hash_extract;
2080 
2081 	if (rvu->mcs_blk_cnt)
2082 		rsp->hw_caps = HW_CAP_MACSEC;
2083 
2084 	return 0;
2085 }
2086 
rvu_mbox_handler_set_vf_perm(struct rvu * rvu,struct set_vf_perm * req,struct msg_rsp * rsp)2087 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
2088 				 struct msg_rsp *rsp)
2089 {
2090 	struct rvu_hwinfo *hw = rvu->hw;
2091 	u16 pcifunc = req->hdr.pcifunc;
2092 	struct rvu_pfvf *pfvf;
2093 	int blkaddr, nixlf;
2094 	u16 target;
2095 
2096 	/* Only PF can add VF permissions */
2097 	if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_lbk_vf(rvu, pcifunc))
2098 		return -EOPNOTSUPP;
2099 
2100 	target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
2101 	pfvf = rvu_get_pfvf(rvu, target);
2102 
2103 	if (req->flags & RESET_VF_PERM) {
2104 		pfvf->flags &= RVU_CLEAR_VF_PERM;
2105 	} else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
2106 		 (req->flags & VF_TRUSTED)) {
2107 		change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
2108 		/* disable multicast and promisc entries */
2109 		if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
2110 			blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
2111 			if (blkaddr < 0)
2112 				return 0;
2113 			nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
2114 					   target, 0);
2115 			if (nixlf < 0)
2116 				return 0;
2117 			npc_enadis_default_mce_entry(rvu, target, nixlf,
2118 						     NIXLF_ALLMULTI_ENTRY,
2119 						     false);
2120 			npc_enadis_default_mce_entry(rvu, target, nixlf,
2121 						     NIXLF_PROMISC_ENTRY,
2122 						     false);
2123 		}
2124 	}
2125 
2126 	return 0;
2127 }
2128 
rvu_mbox_handler_ndc_sync_op(struct rvu * rvu,struct ndc_sync_op * req,struct msg_rsp * rsp)2129 int rvu_mbox_handler_ndc_sync_op(struct rvu *rvu,
2130 				 struct ndc_sync_op *req,
2131 				 struct msg_rsp *rsp)
2132 {
2133 	struct rvu_hwinfo *hw = rvu->hw;
2134 	u16 pcifunc = req->hdr.pcifunc;
2135 	int err, lfidx, lfblkaddr;
2136 
2137 	if (req->npa_lf_sync) {
2138 		/* Get NPA LF data */
2139 		lfblkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPA, pcifunc);
2140 		if (lfblkaddr < 0)
2141 			return NPA_AF_ERR_AF_LF_INVALID;
2142 
2143 		lfidx = rvu_get_lf(rvu, &hw->block[lfblkaddr], pcifunc, 0);
2144 		if (lfidx < 0)
2145 			return NPA_AF_ERR_AF_LF_INVALID;
2146 
2147 		/* Sync NPA NDC */
2148 		err = rvu_ndc_sync(rvu, lfblkaddr,
2149 				   lfidx, NPA_AF_NDC_SYNC);
2150 		if (err)
2151 			dev_err(rvu->dev,
2152 				"NDC-NPA sync failed for LF %u\n", lfidx);
2153 	}
2154 
2155 	if (!req->nix_lf_tx_sync && !req->nix_lf_rx_sync)
2156 		return 0;
2157 
2158 	/* Get NIX LF data */
2159 	lfblkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
2160 	if (lfblkaddr < 0)
2161 		return NIX_AF_ERR_AF_LF_INVALID;
2162 
2163 	lfidx = rvu_get_lf(rvu, &hw->block[lfblkaddr], pcifunc, 0);
2164 	if (lfidx < 0)
2165 		return NIX_AF_ERR_AF_LF_INVALID;
2166 
2167 	if (req->nix_lf_tx_sync) {
2168 		/* Sync NIX TX NDC */
2169 		err = rvu_ndc_sync(rvu, lfblkaddr,
2170 				   lfidx, NIX_AF_NDC_TX_SYNC);
2171 		if (err)
2172 			dev_err(rvu->dev,
2173 				"NDC-NIX-TX sync fail for LF %u\n", lfidx);
2174 	}
2175 
2176 	if (req->nix_lf_rx_sync) {
2177 		/* Sync NIX RX NDC */
2178 		err = rvu_ndc_sync(rvu, lfblkaddr,
2179 				   lfidx, NIX_AF_NDC_RX_SYNC);
2180 		if (err)
2181 			dev_err(rvu->dev,
2182 				"NDC-NIX-RX sync failed for LF %u\n", lfidx);
2183 	}
2184 
2185 	return 0;
2186 }
2187 
rvu_process_mbox_msg(struct otx2_mbox * mbox,int devid,struct mbox_msghdr * req)2188 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
2189 				struct mbox_msghdr *req)
2190 {
2191 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
2192 
2193 	/* Check if valid, if not reply with a invalid msg */
2194 	if (req->sig != OTX2_MBOX_REQ_SIG)
2195 		goto bad_message;
2196 
2197 	switch (req->id) {
2198 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
2199 	case _id: {							\
2200 		struct _rsp_type *rsp;					\
2201 		int err;						\
2202 									\
2203 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
2204 			mbox, devid,					\
2205 			sizeof(struct _rsp_type));			\
2206 		/* some handlers should complete even if reply */	\
2207 		/* could not be allocated */				\
2208 		if (!rsp &&						\
2209 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
2210 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
2211 		    _id != MBOX_MSG_VF_FLR)				\
2212 			return -ENOMEM;					\
2213 		if (rsp) {						\
2214 			rsp->hdr.id = _id;				\
2215 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
2216 			rsp->hdr.pcifunc = req->pcifunc;		\
2217 			rsp->hdr.rc = 0;				\
2218 		}							\
2219 									\
2220 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
2221 						    (struct _req_type *)req, \
2222 						    rsp);		\
2223 		if (rsp && err)						\
2224 			rsp->hdr.rc = err;				\
2225 									\
2226 		trace_otx2_msg_process(mbox->pdev, _id, err, req->pcifunc); \
2227 		return rsp ? err : -ENOMEM;				\
2228 	}
2229 MBOX_MESSAGES
2230 #undef M
2231 
2232 bad_message:
2233 	default:
2234 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
2235 		return -ENODEV;
2236 	}
2237 }
2238 
__rvu_mbox_handler(struct rvu_work * mwork,int type,bool poll)2239 static void __rvu_mbox_handler(struct rvu_work *mwork, int type, bool poll)
2240 {
2241 	struct rvu *rvu = mwork->rvu;
2242 	int offset, err, id, devid;
2243 	struct otx2_mbox_dev *mdev;
2244 	struct mbox_hdr *req_hdr;
2245 	struct mbox_msghdr *msg;
2246 	struct mbox_wq_info *mw;
2247 	struct otx2_mbox *mbox;
2248 
2249 	switch (type) {
2250 	case TYPE_AFPF:
2251 		mw = &rvu->afpf_wq_info;
2252 		break;
2253 	case TYPE_AFVF:
2254 		mw = &rvu->afvf_wq_info;
2255 		break;
2256 	default:
2257 		return;
2258 	}
2259 
2260 	devid = mwork - mw->mbox_wrk;
2261 	mbox = &mw->mbox;
2262 	mdev = &mbox->dev[devid];
2263 
2264 	/* Process received mbox messages */
2265 	req_hdr = mdev->mbase + mbox->rx_start;
2266 	if (mw->mbox_wrk[devid].num_msgs == 0)
2267 		return;
2268 
2269 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
2270 
2271 	if (req_hdr->sig && !(is_rvu_otx2(rvu) || is_cn20k(rvu->pdev))) {
2272 		req_hdr->opt_msg = mw->mbox_wrk[devid].num_msgs;
2273 		rvu_write64(rvu, BLKADDR_NIX0, RVU_AF_BAR2_SEL,
2274 			    RVU_AF_BAR2_PFID);
2275 		if (type == TYPE_AFPF)
2276 			rvu_write64(rvu, BLKADDR_NIX0,
2277 				    AF_BAR2_ALIASX(0, NIX_CINTX_INT_W1S(devid)),
2278 				    0x1);
2279 		else
2280 			rvu_write64(rvu, BLKADDR_NIX0,
2281 				    AF_BAR2_ALIASX(0, NIX_QINTX_CNT(devid)),
2282 				    0x1);
2283 		usleep_range(5000, 6000);
2284 		goto done;
2285 	}
2286 
2287 	for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
2288 		msg = mdev->mbase + offset;
2289 
2290 		/* Set which PF/VF sent this message based on mbox IRQ */
2291 		switch (type) {
2292 		case TYPE_AFPF:
2293 			msg->pcifunc &= rvu_pcifunc_pf_mask(rvu->pdev);
2294 			msg->pcifunc |= rvu_make_pcifunc(rvu->pdev, devid, 0);
2295 			break;
2296 		case TYPE_AFVF:
2297 			msg->pcifunc &=
2298 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
2299 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
2300 			break;
2301 		}
2302 
2303 		err = rvu_process_mbox_msg(mbox, devid, msg);
2304 		if (!err) {
2305 			offset = mbox->rx_start + msg->next_msgoff;
2306 			continue;
2307 		}
2308 
2309 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
2310 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
2311 				 err, otx2_mbox_id2name(msg->id),
2312 				 msg->id, rvu_get_pf(rvu->pdev, msg->pcifunc),
2313 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
2314 		else
2315 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
2316 				 err, otx2_mbox_id2name(msg->id),
2317 				 msg->id, devid);
2318 	}
2319 done:
2320 	mw->mbox_wrk[devid].num_msgs = 0;
2321 
2322 	if (!is_cn20k(mbox->pdev) && poll)
2323 		otx2_mbox_wait_for_zero(mbox, devid);
2324 
2325 	/* Send mbox responses to VF/PF */
2326 	otx2_mbox_msg_send(mbox, devid);
2327 }
2328 
rvu_afpf_mbox_handler(struct work_struct * work)2329 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
2330 {
2331 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2332 	struct rvu *rvu = mwork->rvu;
2333 
2334 	mutex_lock(&rvu->mbox_lock);
2335 	__rvu_mbox_handler(mwork, TYPE_AFPF, true);
2336 	mutex_unlock(&rvu->mbox_lock);
2337 }
2338 
rvu_afvf_mbox_handler(struct work_struct * work)2339 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
2340 {
2341 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2342 
2343 	__rvu_mbox_handler(mwork, TYPE_AFVF, false);
2344 }
2345 
__rvu_mbox_up_handler(struct rvu_work * mwork,int type)2346 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
2347 {
2348 	struct rvu *rvu = mwork->rvu;
2349 	struct otx2_mbox_dev *mdev;
2350 	struct mbox_hdr *rsp_hdr;
2351 	struct mbox_msghdr *msg;
2352 	struct mbox_wq_info *mw;
2353 	struct otx2_mbox *mbox;
2354 	int offset, id, devid;
2355 
2356 	switch (type) {
2357 	case TYPE_AFPF:
2358 		mw = &rvu->afpf_wq_info;
2359 		break;
2360 	case TYPE_AFVF:
2361 		mw = &rvu->afvf_wq_info;
2362 		break;
2363 	default:
2364 		return;
2365 	}
2366 
2367 	devid = mwork - mw->mbox_wrk_up;
2368 	mbox = &mw->mbox_up;
2369 	mdev = &mbox->dev[devid];
2370 
2371 	rsp_hdr = mdev->mbase + mbox->rx_start;
2372 	if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
2373 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
2374 		return;
2375 	}
2376 
2377 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
2378 
2379 	for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
2380 		msg = mdev->mbase + offset;
2381 
2382 		if (msg->id >= MBOX_MSG_MAX) {
2383 			dev_err(rvu->dev,
2384 				"Mbox msg with unknown ID 0x%x\n", msg->id);
2385 			goto end;
2386 		}
2387 
2388 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
2389 			dev_err(rvu->dev,
2390 				"Mbox msg with wrong signature %x, ID 0x%x\n",
2391 				msg->sig, msg->id);
2392 			goto end;
2393 		}
2394 
2395 		switch (msg->id) {
2396 		case MBOX_MSG_CGX_LINK_EVENT:
2397 			break;
2398 		default:
2399 			if (msg->rc)
2400 				dev_err(rvu->dev,
2401 					"Mbox msg response has err %d, ID 0x%x\n",
2402 					msg->rc, msg->id);
2403 			break;
2404 		}
2405 end:
2406 		offset = mbox->rx_start + msg->next_msgoff;
2407 		mdev->msgs_acked++;
2408 	}
2409 	mw->mbox_wrk_up[devid].up_num_msgs = 0;
2410 
2411 	otx2_mbox_reset(mbox, devid);
2412 }
2413 
rvu_afpf_mbox_up_handler(struct work_struct * work)2414 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2415 {
2416 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2417 
2418 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
2419 }
2420 
rvu_afvf_mbox_up_handler(struct work_struct * work)2421 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2422 {
2423 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2424 
2425 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
2426 }
2427 
rvu_get_mbox_regions(struct rvu * rvu,void __iomem ** mbox_addr,int num,int type,unsigned long * pf_bmap)2428 static int rvu_get_mbox_regions(struct rvu *rvu, void __iomem **mbox_addr,
2429 				int num, int type, unsigned long *pf_bmap)
2430 {
2431 	struct rvu_hwinfo *hw = rvu->hw;
2432 	int region;
2433 	u64 bar4;
2434 
2435 	/* For cn20k platform AF mailbox region is allocated by software
2436 	 * and the corresponding IOVA is programmed in hardware unlike earlier
2437 	 * silicons where software uses the hardware region after ioremap.
2438 	 */
2439 	if (is_cn20k(rvu->pdev))
2440 		return cn20k_rvu_get_mbox_regions(rvu, (void *)mbox_addr,
2441 						  num, type, pf_bmap);
2442 
2443 	/* For cn10k platform VF mailbox regions of a PF follows after the
2444 	 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2445 	 * RVU_PF_VF_BAR4_ADDR register.
2446 	 */
2447 	if (type == TYPE_AFVF) {
2448 		for (region = 0; region < num; region++) {
2449 			if (!test_bit(region, pf_bmap))
2450 				continue;
2451 
2452 			if (hw->cap.per_pf_mbox_regs) {
2453 				bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2454 						  RVU_AF_PFX_BAR4_ADDR(0)) +
2455 						  MBOX_SIZE;
2456 				bar4 += region * MBOX_SIZE;
2457 			} else {
2458 				bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2459 				bar4 += region * MBOX_SIZE;
2460 			}
2461 			mbox_addr[region] = ioremap_wc(bar4, MBOX_SIZE);
2462 			if (!mbox_addr[region])
2463 				goto error;
2464 		}
2465 		return 0;
2466 	}
2467 
2468 	/* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2469 	 * PF registers. Whereas for Octeontx2 it is read from
2470 	 * RVU_AF_PF_BAR4_ADDR register.
2471 	 */
2472 	for (region = 0; region < num; region++) {
2473 		if (!test_bit(region, pf_bmap))
2474 			continue;
2475 
2476 		if (hw->cap.per_pf_mbox_regs) {
2477 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2478 					  RVU_AF_PFX_BAR4_ADDR(region));
2479 		} else {
2480 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2481 					  RVU_AF_PF_BAR4_ADDR);
2482 			bar4 += region * MBOX_SIZE;
2483 		}
2484 		mbox_addr[region] = ioremap_wc(bar4, MBOX_SIZE);
2485 		if (!mbox_addr[region])
2486 			goto error;
2487 	}
2488 	return 0;
2489 
2490 error:
2491 	while (region--)
2492 		iounmap(mbox_addr[region]);
2493 	return -ENOMEM;
2494 }
2495 
2496 static struct mbox_ops rvu_mbox_ops = {
2497 	.pf_intr_handler = rvu_mbox_pf_intr_handler,
2498 	.afvf_intr_handler = rvu_mbox_intr_handler,
2499 };
2500 
rvu_mbox_init(struct rvu * rvu,struct mbox_wq_info * mw,int type,int num,void (mbox_handler)(struct work_struct *),void (mbox_up_handler)(struct work_struct *))2501 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2502 			 int type, int num,
2503 			 void (mbox_handler)(struct work_struct *),
2504 			 void (mbox_up_handler)(struct work_struct *))
2505 {
2506 	void __iomem **mbox_regions;
2507 	struct ng_rvu *ng_rvu_mbox;
2508 	int err, i, dir, dir_up;
2509 	void __iomem *reg_base;
2510 	struct rvu_work *mwork;
2511 	unsigned long *pf_bmap;
2512 	const char *name;
2513 	u64 cfg;
2514 
2515 	pf_bmap = bitmap_zalloc(num, GFP_KERNEL);
2516 	if (!pf_bmap)
2517 		return -ENOMEM;
2518 
2519 	ng_rvu_mbox = kzalloc(sizeof(*ng_rvu_mbox), GFP_KERNEL);
2520 	if (!ng_rvu_mbox) {
2521 		err = -ENOMEM;
2522 		goto free_bitmap;
2523 	}
2524 
2525 	/* RVU VFs */
2526 	if (type == TYPE_AFVF)
2527 		bitmap_set(pf_bmap, 0, num);
2528 
2529 	if (type == TYPE_AFPF) {
2530 		/* Mark enabled PFs in bitmap */
2531 		for (i = 0; i < num; i++) {
2532 			cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(i));
2533 			if (cfg & BIT_ULL(20))
2534 				set_bit(i, pf_bmap);
2535 		}
2536 	}
2537 
2538 	rvu->ng_rvu = ng_rvu_mbox;
2539 
2540 	rvu->ng_rvu->rvu_mbox_ops = &rvu_mbox_ops;
2541 
2542 	err = cn20k_rvu_mbox_init(rvu, type, num);
2543 	if (err)
2544 		goto free_mem;
2545 
2546 	mutex_init(&rvu->mbox_lock);
2547 
2548 	mbox_regions = kcalloc(num, sizeof(void __iomem *), GFP_KERNEL);
2549 	if (!mbox_regions) {
2550 		err = -ENOMEM;
2551 		goto free_qmem;
2552 	}
2553 
2554 	switch (type) {
2555 	case TYPE_AFPF:
2556 		name = "rvu_afpf_mailbox";
2557 		dir = MBOX_DIR_AFPF;
2558 		dir_up = MBOX_DIR_AFPF_UP;
2559 		reg_base = rvu->afreg_base;
2560 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF, pf_bmap);
2561 		if (err)
2562 			goto free_regions;
2563 		break;
2564 	case TYPE_AFVF:
2565 		name = "rvu_afvf_mailbox";
2566 		dir = MBOX_DIR_PFVF;
2567 		dir_up = MBOX_DIR_PFVF_UP;
2568 		reg_base = rvu->pfreg_base;
2569 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF, pf_bmap);
2570 		if (err)
2571 			goto free_regions;
2572 		break;
2573 	default:
2574 		err = -EINVAL;
2575 		goto free_regions;
2576 	}
2577 
2578 	mw->mbox_wq = alloc_workqueue("%s",
2579 				      WQ_HIGHPRI | WQ_MEM_RECLAIM,
2580 				      num, name);
2581 	if (!mw->mbox_wq) {
2582 		err = -ENOMEM;
2583 		goto unmap_regions;
2584 	}
2585 
2586 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2587 				    sizeof(struct rvu_work), GFP_KERNEL);
2588 	if (!mw->mbox_wrk) {
2589 		err = -ENOMEM;
2590 		goto exit;
2591 	}
2592 
2593 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2594 				       sizeof(struct rvu_work), GFP_KERNEL);
2595 	if (!mw->mbox_wrk_up) {
2596 		err = -ENOMEM;
2597 		goto exit;
2598 	}
2599 
2600 	err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2601 				     reg_base, dir, num, pf_bmap);
2602 	if (err)
2603 		goto exit;
2604 
2605 	err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2606 				     reg_base, dir_up, num, pf_bmap);
2607 	if (err)
2608 		goto exit;
2609 
2610 	for (i = 0; i < num; i++) {
2611 		if (!test_bit(i, pf_bmap))
2612 			continue;
2613 
2614 		mwork = &mw->mbox_wrk[i];
2615 		mwork->rvu = rvu;
2616 		INIT_WORK(&mwork->work, mbox_handler);
2617 
2618 		mwork = &mw->mbox_wrk_up[i];
2619 		mwork->rvu = rvu;
2620 		INIT_WORK(&mwork->work, mbox_up_handler);
2621 	}
2622 
2623 	kfree(mbox_regions);
2624 	bitmap_free(pf_bmap);
2625 
2626 	return 0;
2627 
2628 exit:
2629 	destroy_workqueue(mw->mbox_wq);
2630 unmap_regions:
2631 	while (num--)
2632 		iounmap((void __iomem *)mbox_regions[num]);
2633 free_regions:
2634 	kfree(mbox_regions);
2635 free_qmem:
2636 	cn20k_free_mbox_memory(rvu);
2637 free_mem:
2638 	kfree(rvu->ng_rvu);
2639 free_bitmap:
2640 	bitmap_free(pf_bmap);
2641 	return err;
2642 }
2643 
rvu_mbox_destroy(struct mbox_wq_info * mw)2644 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2645 {
2646 	struct otx2_mbox *mbox = &mw->mbox;
2647 	struct otx2_mbox_dev *mdev;
2648 	int devid;
2649 
2650 	if (mw->mbox_wq) {
2651 		destroy_workqueue(mw->mbox_wq);
2652 		mw->mbox_wq = NULL;
2653 	}
2654 
2655 	for (devid = 0; devid < mbox->ndevs; devid++) {
2656 		mdev = &mbox->dev[devid];
2657 		if (mdev->hwbase)
2658 			iounmap((void __iomem *)mdev->hwbase);
2659 	}
2660 
2661 	otx2_mbox_destroy(&mw->mbox);
2662 	otx2_mbox_destroy(&mw->mbox_up);
2663 }
2664 
rvu_queue_work(struct mbox_wq_info * mw,int first,int mdevs,u64 intr)2665 void rvu_queue_work(struct mbox_wq_info *mw, int first,
2666 		    int mdevs, u64 intr)
2667 {
2668 	struct otx2_mbox_dev *mdev;
2669 	struct otx2_mbox *mbox;
2670 	struct mbox_hdr *hdr;
2671 	int i;
2672 
2673 	for (i = first; i < mdevs; i++) {
2674 		/* start from 0 */
2675 		if (!(intr & BIT_ULL(i - first)))
2676 			continue;
2677 
2678 		mbox = &mw->mbox;
2679 		mdev = &mbox->dev[i];
2680 		hdr = mdev->mbase + mbox->rx_start;
2681 
2682 		/*The hdr->num_msgs is set to zero immediately in the interrupt
2683 		 * handler to  ensure that it holds a correct value next time
2684 		 * when the interrupt handler is called.
2685 		 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2686 		 * pf>mbox.up_num_msgs holds the data for use in
2687 		 * pfaf_mbox_up_handler.
2688 		 */
2689 
2690 		if (hdr->num_msgs) {
2691 			mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2692 			hdr->num_msgs = 0;
2693 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2694 		}
2695 		mbox = &mw->mbox_up;
2696 		mdev = &mbox->dev[i];
2697 		hdr = mdev->mbase + mbox->rx_start;
2698 		if (hdr->num_msgs) {
2699 			mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2700 			hdr->num_msgs = 0;
2701 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2702 		}
2703 	}
2704 }
2705 
rvu_mbox_pf_intr_handler(int irq,void * rvu_irq)2706 static irqreturn_t rvu_mbox_pf_intr_handler(int irq, void *rvu_irq)
2707 {
2708 	struct rvu *rvu = (struct rvu *)rvu_irq;
2709 	u64 intr;
2710 
2711 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2712 	/* Clear interrupts */
2713 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2714 	if (intr)
2715 		trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2716 
2717 	/* Sync with mbox memory region */
2718 	rmb();
2719 
2720 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2721 
2722 	return IRQ_HANDLED;
2723 }
2724 
rvu_mbox_intr_handler(int irq,void * rvu_irq)2725 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2726 {
2727 	struct rvu *rvu = (struct rvu *)rvu_irq;
2728 	int vfs = rvu->vfs;
2729 	u64 intr;
2730 
2731 	/* Sync with mbox memory region */
2732 	rmb();
2733 
2734 	/* Handle VF interrupts */
2735 	if (vfs > 64) {
2736 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2737 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2738 
2739 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2740 		vfs = 64;
2741 	}
2742 
2743 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2744 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2745 	if (intr)
2746 		trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2747 
2748 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2749 
2750 	return IRQ_HANDLED;
2751 }
2752 
rvu_enable_mbox_intr(struct rvu * rvu)2753 static void rvu_enable_mbox_intr(struct rvu *rvu)
2754 {
2755 	struct rvu_hwinfo *hw = rvu->hw;
2756 
2757 	if (is_cn20k(rvu->pdev)) {
2758 		cn20k_rvu_enable_mbox_intr(rvu);
2759 		return;
2760 	}
2761 
2762 	/* Clear spurious irqs, if any */
2763 	rvu_write64(rvu, BLKADDR_RVUM,
2764 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2765 
2766 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2767 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2768 		    INTR_MASK(hw->total_pfs) & ~1ULL);
2769 }
2770 
rvu_blklf_teardown(struct rvu * rvu,u16 pcifunc,u8 blkaddr)2771 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2772 {
2773 	struct rvu_block *block;
2774 	int slot, lf, num_lfs;
2775 	int err;
2776 
2777 	block = &rvu->hw->block[blkaddr];
2778 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2779 					block->addr);
2780 	if (!num_lfs)
2781 		return;
2782 	for (slot = 0; slot < num_lfs; slot++) {
2783 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
2784 		if (lf < 0)
2785 			continue;
2786 
2787 		/* Cleanup LF and reset it */
2788 		if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2789 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2790 		else if (block->addr == BLKADDR_NPA)
2791 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
2792 		else if ((block->addr == BLKADDR_CPT0) ||
2793 			 (block->addr == BLKADDR_CPT1))
2794 			rvu_cpt_lf_teardown(rvu, pcifunc, block->addr, lf,
2795 					    slot);
2796 
2797 		err = rvu_lf_reset(rvu, block, lf);
2798 		if (err) {
2799 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2800 				block->addr, lf);
2801 		}
2802 	}
2803 }
2804 
__rvu_flr_handler(struct rvu * rvu,u16 pcifunc)2805 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2806 {
2807 	if (rvu_npc_exact_has_match_table(rvu))
2808 		rvu_npc_exact_reset(rvu, pcifunc);
2809 
2810 	mutex_lock(&rvu->flr_lock);
2811 	/* Reset order should reflect inter-block dependencies:
2812 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
2813 	 * 2. Flush and reset SSO/SSOW
2814 	 * 3. Cleanup pools (NPA)
2815 	 */
2816 
2817 	/* Free allocated BPIDs */
2818 	rvu_nix_flr_free_bpids(rvu, pcifunc);
2819 
2820 	/* Free multicast/mirror node associated with the 'pcifunc' */
2821 	rvu_nix_mcast_flr_free_entries(rvu, pcifunc);
2822 
2823 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2824 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2825 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2826 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2827 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2828 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2829 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2830 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2831 	rvu_reset_lmt_map_tbl(rvu, pcifunc);
2832 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
2833 	/* In scenarios where PF/VF drivers detach NIXLF without freeing MCAM
2834 	 * entries, check and free the MCAM entries explicitly to avoid leak.
2835 	 * Since LF is detached use LF number as -1.
2836 	 */
2837 	rvu_npc_free_mcam_entries(rvu, pcifunc, -1);
2838 	rvu_mac_reset(rvu, pcifunc);
2839 
2840 	if (rvu->mcs_blk_cnt)
2841 		rvu_mcs_flr_handler(rvu, pcifunc);
2842 
2843 	mutex_unlock(&rvu->flr_lock);
2844 }
2845 
rvu_afvf_flr_handler(struct rvu * rvu,int vf)2846 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2847 {
2848 	int reg = 0;
2849 
2850 	/* pcifunc = 0(PF0) | (vf + 1) */
2851 	__rvu_flr_handler(rvu, vf + 1);
2852 
2853 	if (vf >= 64) {
2854 		reg = 1;
2855 		vf = vf - 64;
2856 	}
2857 
2858 	/* Signal FLR finish and enable IRQ */
2859 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2860 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2861 }
2862 
rvu_flr_handler(struct work_struct * work)2863 static void rvu_flr_handler(struct work_struct *work)
2864 {
2865 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2866 	struct rvu *rvu = flrwork->rvu;
2867 	u16 pcifunc, numvfs, vf;
2868 	u64 cfg;
2869 	int pf;
2870 
2871 	pf = flrwork - rvu->flr_wrk;
2872 	if (pf >= rvu->hw->total_pfs) {
2873 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2874 		return;
2875 	}
2876 
2877 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2878 	numvfs = (cfg >> 12) & 0xFF;
2879 	pcifunc  = rvu_make_pcifunc(rvu->pdev, pf, 0);
2880 
2881 	for (vf = 0; vf < numvfs; vf++)
2882 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2883 
2884 	__rvu_flr_handler(rvu, pcifunc);
2885 
2886 	/* Signal FLR finish */
2887 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2888 
2889 	/* Enable interrupt */
2890 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2891 }
2892 
rvu_afvf_queue_flr_work(struct rvu * rvu,int start_vf,int numvfs)2893 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2894 {
2895 	int dev, vf, reg = 0;
2896 	u64 intr;
2897 
2898 	if (start_vf >= 64)
2899 		reg = 1;
2900 
2901 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2902 	if (!intr)
2903 		return;
2904 
2905 	for (vf = 0; vf < numvfs; vf++) {
2906 		if (!(intr & BIT_ULL(vf)))
2907 			continue;
2908 		/* Clear and disable the interrupt */
2909 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2910 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2911 
2912 		dev = vf + start_vf + rvu->hw->total_pfs;
2913 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2914 	}
2915 }
2916 
rvu_flr_intr_handler(int irq,void * rvu_irq)2917 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2918 {
2919 	struct rvu *rvu = (struct rvu *)rvu_irq;
2920 	u64 intr;
2921 	u8  pf;
2922 
2923 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2924 	if (!intr)
2925 		goto afvf_flr;
2926 
2927 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2928 		if (intr & (1ULL << pf)) {
2929 			/* clear interrupt */
2930 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2931 				    BIT_ULL(pf));
2932 			/* Disable the interrupt */
2933 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2934 				    BIT_ULL(pf));
2935 			/* PF is already dead do only AF related operations */
2936 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2937 		}
2938 	}
2939 
2940 afvf_flr:
2941 	rvu_afvf_queue_flr_work(rvu, 0, 64);
2942 	if (rvu->vfs > 64)
2943 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2944 
2945 	return IRQ_HANDLED;
2946 }
2947 
rvu_me_handle_vfset(struct rvu * rvu,int idx,u64 intr)2948 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2949 {
2950 	int vf;
2951 
2952 	/* Nothing to be done here other than clearing the
2953 	 * TRPEND bit.
2954 	 */
2955 	for (vf = 0; vf < 64; vf++) {
2956 		if (intr & (1ULL << vf)) {
2957 			/* clear the trpend due to ME(master enable) */
2958 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2959 			/* clear interrupt */
2960 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2961 		}
2962 	}
2963 }
2964 
2965 /* Handles ME interrupts from VFs of AF */
rvu_me_vf_intr_handler(int irq,void * rvu_irq)2966 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2967 {
2968 	struct rvu *rvu = (struct rvu *)rvu_irq;
2969 	int vfset;
2970 	u64 intr;
2971 
2972 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2973 
2974 	for (vfset = 0; vfset <= 1; vfset++) {
2975 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2976 		if (intr)
2977 			rvu_me_handle_vfset(rvu, vfset, intr);
2978 	}
2979 
2980 	return IRQ_HANDLED;
2981 }
2982 
2983 /* Handles ME interrupts from PFs */
rvu_me_pf_intr_handler(int irq,void * rvu_irq)2984 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2985 {
2986 	struct rvu *rvu = (struct rvu *)rvu_irq;
2987 	u64 intr;
2988 	u8  pf;
2989 
2990 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2991 
2992 	/* Nothing to be done here other than clearing the
2993 	 * TRPEND bit.
2994 	 */
2995 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2996 		if (intr & (1ULL << pf)) {
2997 			/* clear the trpend due to ME(master enable) */
2998 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2999 				    BIT_ULL(pf));
3000 			/* clear interrupt */
3001 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
3002 				    BIT_ULL(pf));
3003 		}
3004 	}
3005 
3006 	return IRQ_HANDLED;
3007 }
3008 
rvu_unregister_interrupts(struct rvu * rvu)3009 static void rvu_unregister_interrupts(struct rvu *rvu)
3010 {
3011 	int irq;
3012 
3013 	rvu_cpt_unregister_interrupts(rvu);
3014 
3015 	if (!is_cn20k(rvu->pdev))
3016 		/* Disable the Mbox interrupt */
3017 		rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
3018 			    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
3019 	else
3020 		cn20k_rvu_unregister_interrupts(rvu);
3021 
3022 	/* Disable the PF FLR interrupt */
3023 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
3024 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
3025 
3026 	/* Disable the PF ME interrupt */
3027 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
3028 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
3029 
3030 	for (irq = 0; irq < rvu->num_vec; irq++) {
3031 		if (rvu->irq_allocated[irq]) {
3032 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
3033 			rvu->irq_allocated[irq] = false;
3034 		}
3035 	}
3036 
3037 	pci_free_irq_vectors(rvu->pdev);
3038 	rvu->num_vec = 0;
3039 }
3040 
rvu_afvf_msix_vectors_num_ok(struct rvu * rvu)3041 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
3042 {
3043 	struct rvu_pfvf *pfvf = &rvu->pf[0];
3044 	int offset;
3045 
3046 	pfvf = &rvu->pf[0];
3047 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
3048 
3049 	/* Make sure there are enough MSIX vectors configured so that
3050 	 * VF interrupts can be handled. Offset equal to zero means
3051 	 * that PF vectors are not configured and overlapping AF vectors.
3052 	 */
3053 	if (is_cn20k(rvu->pdev))
3054 		return (pfvf->msix.max >= RVU_AF_CN20K_INT_VEC_CNT +
3055 			RVU_MBOX_PF_INT_VEC_CNT) && offset;
3056 
3057 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
3058 	       offset;
3059 }
3060 
rvu_register_interrupts(struct rvu * rvu)3061 static int rvu_register_interrupts(struct rvu *rvu)
3062 {
3063 	int ret, offset, pf_vec_start;
3064 
3065 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
3066 
3067 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
3068 					   NAME_SIZE, GFP_KERNEL);
3069 	if (!rvu->irq_name)
3070 		return -ENOMEM;
3071 
3072 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
3073 					  sizeof(bool), GFP_KERNEL);
3074 	if (!rvu->irq_allocated)
3075 		return -ENOMEM;
3076 
3077 	/* Enable MSI-X */
3078 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
3079 				    rvu->num_vec, PCI_IRQ_MSIX);
3080 	if (ret < 0) {
3081 		dev_err(rvu->dev,
3082 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
3083 			rvu->num_vec, ret);
3084 		return ret;
3085 	}
3086 
3087 	if (!is_cn20k(rvu->pdev)) {
3088 		/* Register mailbox interrupt handler */
3089 		sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE],
3090 			"RVUAF Mbox");
3091 		ret = request_irq(pci_irq_vector
3092 				  (rvu->pdev, RVU_AF_INT_VEC_MBOX),
3093 				  rvu->ng_rvu->rvu_mbox_ops->pf_intr_handler, 0,
3094 				  &rvu->irq_name[RVU_AF_INT_VEC_MBOX *
3095 				  NAME_SIZE], rvu);
3096 		if (ret) {
3097 			dev_err(rvu->dev,
3098 				"RVUAF: IRQ registration failed for mbox\n");
3099 			goto fail;
3100 		}
3101 
3102 		rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
3103 	} else {
3104 		ret = cn20k_register_afpf_mbox_intr(rvu);
3105 		if (ret) {
3106 			dev_err(rvu->dev,
3107 				"RVUAF: IRQ registration failed for mbox\n");
3108 			goto fail;
3109 		}
3110 	}
3111 
3112 	/* Enable mailbox interrupts from all PFs */
3113 	rvu_enable_mbox_intr(rvu);
3114 
3115 	/* Register FLR interrupt handler */
3116 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
3117 		"RVUAF FLR");
3118 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
3119 			  rvu_flr_intr_handler, 0,
3120 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
3121 			  rvu);
3122 	if (ret) {
3123 		dev_err(rvu->dev,
3124 			"RVUAF: IRQ registration failed for FLR\n");
3125 		goto fail;
3126 	}
3127 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
3128 
3129 	/* Enable FLR interrupt for all PFs*/
3130 	rvu_write64(rvu, BLKADDR_RVUM,
3131 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
3132 
3133 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
3134 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
3135 
3136 	/* Register ME interrupt handler */
3137 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
3138 		"RVUAF ME");
3139 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
3140 			  rvu_me_pf_intr_handler, 0,
3141 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
3142 			  rvu);
3143 	if (ret) {
3144 		dev_err(rvu->dev,
3145 			"RVUAF: IRQ registration failed for ME\n");
3146 	}
3147 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
3148 
3149 	/* Clear TRPEND bit for all PF */
3150 	rvu_write64(rvu, BLKADDR_RVUM,
3151 		    RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
3152 	/* Enable ME interrupt for all PFs*/
3153 	rvu_write64(rvu, BLKADDR_RVUM,
3154 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
3155 
3156 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
3157 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
3158 
3159 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
3160 		return 0;
3161 
3162 	/* Get PF MSIX vectors offset. */
3163 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
3164 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
3165 	if (!is_cn20k(rvu->pdev)) {
3166 		/* Register MBOX0 interrupt. */
3167 		offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
3168 		sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
3169 		ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3170 				  rvu->ng_rvu->rvu_mbox_ops->afvf_intr_handler, 0,
3171 				  &rvu->irq_name[offset * NAME_SIZE],
3172 				  rvu);
3173 		if (ret)
3174 			dev_err(rvu->dev,
3175 				"RVUAF: IRQ registration failed for Mbox0\n");
3176 
3177 		rvu->irq_allocated[offset] = true;
3178 
3179 		/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
3180 		 * simply increment current offset by 1.
3181 		 */
3182 		offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
3183 		sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
3184 		ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3185 				  rvu->ng_rvu->rvu_mbox_ops->afvf_intr_handler, 0,
3186 				  &rvu->irq_name[offset * NAME_SIZE],
3187 				  rvu);
3188 		if (ret)
3189 			dev_err(rvu->dev,
3190 				"RVUAF: IRQ registration failed for Mbox1\n");
3191 
3192 		rvu->irq_allocated[offset] = true;
3193 	} else {
3194 		ret = cn20k_register_afvf_mbox_intr(rvu, pf_vec_start);
3195 		if (ret)
3196 			dev_err(rvu->dev,
3197 				"RVUAF: IRQ registration failed for Mbox\n");
3198 	}
3199 
3200 	/* Register FLR interrupt handler for AF's VFs */
3201 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
3202 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
3203 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3204 			  rvu_flr_intr_handler, 0,
3205 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3206 	if (ret) {
3207 		dev_err(rvu->dev,
3208 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
3209 		goto fail;
3210 	}
3211 	rvu->irq_allocated[offset] = true;
3212 
3213 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
3214 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
3215 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3216 			  rvu_flr_intr_handler, 0,
3217 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3218 	if (ret) {
3219 		dev_err(rvu->dev,
3220 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
3221 		goto fail;
3222 	}
3223 	rvu->irq_allocated[offset] = true;
3224 
3225 	/* Register ME interrupt handler for AF's VFs */
3226 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
3227 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
3228 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3229 			  rvu_me_vf_intr_handler, 0,
3230 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3231 	if (ret) {
3232 		dev_err(rvu->dev,
3233 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
3234 		goto fail;
3235 	}
3236 	rvu->irq_allocated[offset] = true;
3237 
3238 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
3239 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
3240 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3241 			  rvu_me_vf_intr_handler, 0,
3242 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3243 	if (ret) {
3244 		dev_err(rvu->dev,
3245 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
3246 		goto fail;
3247 	}
3248 	rvu->irq_allocated[offset] = true;
3249 
3250 	ret = rvu_cpt_register_interrupts(rvu);
3251 	if (ret)
3252 		goto fail;
3253 
3254 	return 0;
3255 
3256 fail:
3257 	rvu_unregister_interrupts(rvu);
3258 	return ret;
3259 }
3260 
rvu_flr_wq_destroy(struct rvu * rvu)3261 static void rvu_flr_wq_destroy(struct rvu *rvu)
3262 {
3263 	if (rvu->flr_wq) {
3264 		destroy_workqueue(rvu->flr_wq);
3265 		rvu->flr_wq = NULL;
3266 	}
3267 }
3268 
rvu_flr_init(struct rvu * rvu)3269 static int rvu_flr_init(struct rvu *rvu)
3270 {
3271 	int dev, num_devs;
3272 	u64 cfg;
3273 	int pf;
3274 
3275 	/* Enable FLR for all PFs*/
3276 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
3277 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
3278 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
3279 			    cfg | BIT_ULL(22));
3280 	}
3281 
3282 	rvu->flr_wq = alloc_ordered_workqueue("rvu_afpf_flr",
3283 					      WQ_HIGHPRI | WQ_MEM_RECLAIM);
3284 	if (!rvu->flr_wq)
3285 		return -ENOMEM;
3286 
3287 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
3288 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
3289 				    sizeof(struct rvu_work), GFP_KERNEL);
3290 	if (!rvu->flr_wrk) {
3291 		destroy_workqueue(rvu->flr_wq);
3292 		return -ENOMEM;
3293 	}
3294 
3295 	for (dev = 0; dev < num_devs; dev++) {
3296 		rvu->flr_wrk[dev].rvu = rvu;
3297 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
3298 	}
3299 
3300 	mutex_init(&rvu->flr_lock);
3301 
3302 	return 0;
3303 }
3304 
rvu_disable_afvf_intr(struct rvu * rvu)3305 static void rvu_disable_afvf_intr(struct rvu *rvu)
3306 {
3307 	int vfs = rvu->vfs;
3308 
3309 	if (is_cn20k(rvu->pdev))
3310 		return cn20k_rvu_disable_afvf_intr(rvu, vfs);
3311 
3312 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
3313 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
3314 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
3315 	if (vfs <= 64)
3316 		return;
3317 
3318 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
3319 		      INTR_MASK(vfs - 64));
3320 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3321 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3322 }
3323 
rvu_enable_afvf_intr(struct rvu * rvu)3324 static void rvu_enable_afvf_intr(struct rvu *rvu)
3325 {
3326 	int vfs = rvu->vfs;
3327 
3328 	if (is_cn20k(rvu->pdev))
3329 		return cn20k_rvu_enable_afvf_intr(rvu, vfs);
3330 
3331 	/* Clear any pending interrupts and enable AF VF interrupts for
3332 	 * the first 64 VFs.
3333 	 */
3334 	/* Mbox */
3335 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
3336 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
3337 
3338 	/* FLR */
3339 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
3340 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
3341 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
3342 
3343 	/* Same for remaining VFs, if any. */
3344 	if (vfs <= 64)
3345 		return;
3346 
3347 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
3348 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
3349 		      INTR_MASK(vfs - 64));
3350 
3351 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
3352 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3353 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3354 }
3355 
rvu_get_num_lbk_chans(void)3356 int rvu_get_num_lbk_chans(void)
3357 {
3358 	struct pci_dev *pdev;
3359 	void __iomem *base;
3360 	int ret = -EIO;
3361 
3362 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
3363 			      NULL);
3364 	if (!pdev)
3365 		goto err;
3366 
3367 	base = pci_ioremap_bar(pdev, 0);
3368 	if (!base)
3369 		goto err_put;
3370 
3371 	/* Read number of available LBK channels from LBK(0)_CONST register. */
3372 	ret = (readq(base + 0x10) >> 32) & 0xffff;
3373 	iounmap(base);
3374 err_put:
3375 	pci_dev_put(pdev);
3376 err:
3377 	return ret;
3378 }
3379 
rvu_enable_sriov(struct rvu * rvu)3380 static int rvu_enable_sriov(struct rvu *rvu)
3381 {
3382 	struct pci_dev *pdev = rvu->pdev;
3383 	int err, chans, vfs;
3384 	int pos = 0;
3385 
3386 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
3387 		dev_warn(&pdev->dev,
3388 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
3389 		return 0;
3390 	}
3391 
3392 	/* Get RVU VFs device id */
3393 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
3394 	if (!pos)
3395 		return 0;
3396 	pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &rvu->vf_devid);
3397 
3398 	chans = rvu_get_num_lbk_chans();
3399 	if (chans < 0)
3400 		return chans;
3401 
3402 	vfs = pci_sriov_get_totalvfs(pdev);
3403 
3404 	/* Limit VFs in case we have more VFs than LBK channels available. */
3405 	if (vfs > chans)
3406 		vfs = chans;
3407 
3408 	if (!vfs)
3409 		return 0;
3410 
3411 	/* LBK channel number 63 is used for switching packets between
3412 	 * CGX mapped VFs. Hence limit LBK pairs till 62 only.
3413 	 */
3414 	if (vfs > 62)
3415 		vfs = 62;
3416 
3417 	/* Save VFs number for reference in VF interrupts handlers.
3418 	 * Since interrupts might start arriving during SRIOV enablement
3419 	 * ordinary API cannot be used to get number of enabled VFs.
3420 	 */
3421 	rvu->vfs = vfs;
3422 
3423 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
3424 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
3425 	if (err)
3426 		return err;
3427 
3428 	rvu_enable_afvf_intr(rvu);
3429 	/* Make sure IRQs are enabled before SRIOV. */
3430 	mb();
3431 
3432 	err = pci_enable_sriov(pdev, vfs);
3433 	if (err) {
3434 		rvu_disable_afvf_intr(rvu);
3435 		rvu_mbox_destroy(&rvu->afvf_wq_info);
3436 		return err;
3437 	}
3438 
3439 	return 0;
3440 }
3441 
rvu_disable_sriov(struct rvu * rvu)3442 static void rvu_disable_sriov(struct rvu *rvu)
3443 {
3444 	rvu_disable_afvf_intr(rvu);
3445 	rvu_mbox_destroy(&rvu->afvf_wq_info);
3446 	pci_disable_sriov(rvu->pdev);
3447 }
3448 
rvu_update_module_params(struct rvu * rvu)3449 static void rvu_update_module_params(struct rvu *rvu)
3450 {
3451 	const char *default_pfl_name = "default";
3452 
3453 	strscpy(rvu->mkex_pfl_name,
3454 		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
3455 	strscpy(rvu->kpu_pfl_name,
3456 		kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
3457 }
3458 
rvu_probe(struct pci_dev * pdev,const struct pci_device_id * id)3459 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3460 {
3461 	struct device *dev = &pdev->dev;
3462 	struct rvu *rvu;
3463 	int    err;
3464 
3465 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
3466 	if (!rvu)
3467 		return -ENOMEM;
3468 
3469 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
3470 	if (!rvu->hw) {
3471 		devm_kfree(dev, rvu);
3472 		return -ENOMEM;
3473 	}
3474 
3475 	pci_set_drvdata(pdev, rvu);
3476 	rvu->pdev = pdev;
3477 	rvu->dev = &pdev->dev;
3478 
3479 	err = pci_enable_device(pdev);
3480 	if (err) {
3481 		dev_err(dev, "Failed to enable PCI device\n");
3482 		goto err_freemem;
3483 	}
3484 
3485 	err = pci_request_regions(pdev, DRV_NAME);
3486 	if (err) {
3487 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
3488 		goto err_disable_device;
3489 	}
3490 
3491 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
3492 	if (err) {
3493 		dev_err(dev, "DMA mask config failed, abort\n");
3494 		goto err_release_regions;
3495 	}
3496 
3497 	pci_set_master(pdev);
3498 
3499 	rvu->ptp = ptp_get();
3500 	if (IS_ERR(rvu->ptp)) {
3501 		err = PTR_ERR(rvu->ptp);
3502 		if (err)
3503 			goto err_release_regions;
3504 		rvu->ptp = NULL;
3505 	}
3506 
3507 	/* Map Admin function CSRs */
3508 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
3509 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
3510 	if (!rvu->afreg_base || !rvu->pfreg_base) {
3511 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
3512 		err = -ENOMEM;
3513 		goto err_put_ptp;
3514 	}
3515 
3516 	/* Store module params in rvu structure */
3517 	rvu_update_module_params(rvu);
3518 
3519 	/* Check which blocks the HW supports */
3520 	rvu_check_block_implemented(rvu);
3521 
3522 	rvu_reset_all_blocks(rvu);
3523 
3524 	rvu_setup_hw_capabilities(rvu);
3525 
3526 	err = rvu_setup_hw_resources(rvu);
3527 	if (err)
3528 		goto err_put_ptp;
3529 
3530 	/* Init mailbox btw AF and PFs */
3531 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
3532 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
3533 			    rvu_afpf_mbox_up_handler);
3534 	if (err) {
3535 		dev_err(dev, "%s: Failed to initialize mbox\n", __func__);
3536 		goto err_hwsetup;
3537 	}
3538 
3539 	err = rvu_flr_init(rvu);
3540 	if (err) {
3541 		dev_err(dev, "%s: Failed to initialize flr\n", __func__);
3542 		goto err_mbox;
3543 	}
3544 
3545 	err = rvu_register_interrupts(rvu);
3546 	if (err) {
3547 		dev_err(dev, "%s: Failed to register interrupts\n", __func__);
3548 		goto err_flr;
3549 	}
3550 
3551 	err = rvu_register_dl(rvu);
3552 	if (err) {
3553 		dev_err(dev, "%s: Failed to register devlink\n", __func__);
3554 		goto err_irq;
3555 	}
3556 
3557 	rvu_setup_rvum_blk_revid(rvu);
3558 
3559 	/* Enable AF's VFs (if any) */
3560 	err = rvu_enable_sriov(rvu);
3561 	if (err) {
3562 		dev_err(dev, "%s: Failed to enable sriov\n", __func__);
3563 		goto err_dl;
3564 	}
3565 
3566 	/* Initialize debugfs */
3567 	rvu_dbg_init(rvu);
3568 
3569 	mutex_init(&rvu->rswitch.switch_lock);
3570 
3571 	if (rvu->fwdata)
3572 		ptp_start(rvu, rvu->fwdata->sclk, rvu->fwdata->ptp_ext_clk_rate,
3573 			  rvu->fwdata->ptp_ext_tstamp);
3574 
3575 	/* Alloc CINT and QINT memory */
3576 	rvu_alloc_cint_qint_mem(rvu, &rvu->pf[RVU_AFPF], BLKADDR_NIX0,
3577 				(rvu->hw->block[BLKADDR_NIX0].lf.max));
3578 	return 0;
3579 err_dl:
3580 	rvu_unregister_dl(rvu);
3581 err_irq:
3582 	rvu_unregister_interrupts(rvu);
3583 err_flr:
3584 	rvu_flr_wq_destroy(rvu);
3585 err_mbox:
3586 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3587 err_hwsetup:
3588 	rvu_cgx_exit(rvu);
3589 	rvu_fwdata_exit(rvu);
3590 	rvu_mcs_exit(rvu);
3591 	rvu_reset_all_blocks(rvu);
3592 	rvu_free_hw_resources(rvu);
3593 	rvu_clear_rvum_blk_revid(rvu);
3594 err_put_ptp:
3595 	ptp_put(rvu->ptp);
3596 err_release_regions:
3597 	pci_release_regions(pdev);
3598 err_disable_device:
3599 	pci_disable_device(pdev);
3600 err_freemem:
3601 	pci_set_drvdata(pdev, NULL);
3602 	devm_kfree(&pdev->dev, rvu->hw);
3603 	devm_kfree(dev, rvu);
3604 	return err;
3605 }
3606 
rvu_remove(struct pci_dev * pdev)3607 static void rvu_remove(struct pci_dev *pdev)
3608 {
3609 	struct rvu *rvu = pci_get_drvdata(pdev);
3610 
3611 	rvu_dbg_exit(rvu);
3612 	rvu_unregister_dl(rvu);
3613 	rvu_unregister_interrupts(rvu);
3614 	rvu_flr_wq_destroy(rvu);
3615 	rvu_cgx_exit(rvu);
3616 	rvu_fwdata_exit(rvu);
3617 	rvu_mcs_exit(rvu);
3618 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3619 	rvu_disable_sriov(rvu);
3620 	rvu_reset_all_blocks(rvu);
3621 	rvu_free_hw_resources(rvu);
3622 	rvu_clear_rvum_blk_revid(rvu);
3623 	ptp_put(rvu->ptp);
3624 	pci_release_regions(pdev);
3625 	pci_disable_device(pdev);
3626 	pci_set_drvdata(pdev, NULL);
3627 
3628 	devm_kfree(&pdev->dev, rvu->hw);
3629 	if (is_cn20k(rvu->pdev))
3630 		cn20k_free_mbox_memory(rvu);
3631 	kfree(rvu->ng_rvu);
3632 	devm_kfree(&pdev->dev, rvu);
3633 }
3634 
3635 static struct pci_driver rvu_driver = {
3636 	.name = DRV_NAME,
3637 	.id_table = rvu_id_table,
3638 	.probe = rvu_probe,
3639 	.remove = rvu_remove,
3640 };
3641 
rvu_init_module(void)3642 static int __init rvu_init_module(void)
3643 {
3644 	int err;
3645 
3646 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3647 
3648 	err = pci_register_driver(&cgx_driver);
3649 	if (err < 0)
3650 		return err;
3651 
3652 	err = pci_register_driver(&ptp_driver);
3653 	if (err < 0)
3654 		goto ptp_err;
3655 
3656 	err = pci_register_driver(&mcs_driver);
3657 	if (err < 0)
3658 		goto mcs_err;
3659 
3660 	err =  pci_register_driver(&rvu_driver);
3661 	if (err < 0)
3662 		goto rvu_err;
3663 
3664 	return 0;
3665 rvu_err:
3666 	pci_unregister_driver(&mcs_driver);
3667 mcs_err:
3668 	pci_unregister_driver(&ptp_driver);
3669 ptp_err:
3670 	pci_unregister_driver(&cgx_driver);
3671 
3672 	return err;
3673 }
3674 
rvu_cleanup_module(void)3675 static void __exit rvu_cleanup_module(void)
3676 {
3677 	pci_unregister_driver(&rvu_driver);
3678 	pci_unregister_driver(&mcs_driver);
3679 	pci_unregister_driver(&ptp_driver);
3680 	pci_unregister_driver(&cgx_driver);
3681 }
3682 
3683 module_init(rvu_init_module);
3684 module_exit(rvu_cleanup_module);
3685