1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
3 *
4 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28 /*
29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30 */
31
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/vmalloc.h>
35
36 #include <drm/ttm/ttm_bo.h>
37 #include <drm/ttm/ttm_placement.h>
38 #include <drm/ttm/ttm_tt.h>
39
40 #include <drm/drm_cache.h>
41
42 #include "ttm_bo_internal.h"
43
44 struct ttm_transfer_obj {
45 struct ttm_buffer_object base;
46 struct ttm_buffer_object *bo;
47 };
48
ttm_mem_io_reserve(struct ttm_device * bdev,struct ttm_resource * mem)49 int ttm_mem_io_reserve(struct ttm_device *bdev,
50 struct ttm_resource *mem)
51 {
52 if (mem->bus.offset || mem->bus.addr)
53 return 0;
54
55 mem->bus.is_iomem = false;
56 if (!bdev->funcs->io_mem_reserve)
57 return 0;
58
59 return bdev->funcs->io_mem_reserve(bdev, mem);
60 }
61
ttm_mem_io_free(struct ttm_device * bdev,struct ttm_resource * mem)62 void ttm_mem_io_free(struct ttm_device *bdev,
63 struct ttm_resource *mem)
64 {
65 if (!mem)
66 return;
67
68 if (!mem->bus.offset && !mem->bus.addr)
69 return;
70
71 if (bdev->funcs->io_mem_free)
72 bdev->funcs->io_mem_free(bdev, mem);
73
74 mem->bus.offset = 0;
75 mem->bus.addr = NULL;
76 }
77
78 /**
79 * ttm_move_memcpy - Helper to perform a memcpy ttm move operation.
80 * @clear: Whether to clear rather than copy.
81 * @num_pages: Number of pages of the operation.
82 * @dst_iter: A struct ttm_kmap_iter representing the destination resource.
83 * @src_iter: A struct ttm_kmap_iter representing the source resource.
84 *
85 * This function is intended to be able to move out async under a
86 * dma-fence if desired.
87 */
ttm_move_memcpy(bool clear,u32 num_pages,struct ttm_kmap_iter * dst_iter,struct ttm_kmap_iter * src_iter)88 void ttm_move_memcpy(bool clear,
89 u32 num_pages,
90 struct ttm_kmap_iter *dst_iter,
91 struct ttm_kmap_iter *src_iter)
92 {
93 const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops;
94 const struct ttm_kmap_iter_ops *src_ops = src_iter->ops;
95 struct iosys_map src_map, dst_map;
96 pgoff_t i;
97
98 /* Single TTM move. NOP */
99 if (dst_ops->maps_tt && src_ops->maps_tt)
100 return;
101
102 /* Don't move nonexistent data. Clear destination instead. */
103 if (clear) {
104 for (i = 0; i < num_pages; ++i) {
105 dst_ops->map_local(dst_iter, &dst_map, i);
106 if (dst_map.is_iomem)
107 memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE);
108 else
109 memset(dst_map.vaddr, 0, PAGE_SIZE);
110 if (dst_ops->unmap_local)
111 dst_ops->unmap_local(dst_iter, &dst_map);
112 }
113 return;
114 }
115
116 for (i = 0; i < num_pages; ++i) {
117 dst_ops->map_local(dst_iter, &dst_map, i);
118 src_ops->map_local(src_iter, &src_map, i);
119
120 drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE);
121
122 if (src_ops->unmap_local)
123 src_ops->unmap_local(src_iter, &src_map);
124 if (dst_ops->unmap_local)
125 dst_ops->unmap_local(dst_iter, &dst_map);
126 }
127 }
128 EXPORT_SYMBOL(ttm_move_memcpy);
129
130 /**
131 * ttm_bo_move_memcpy
132 *
133 * @bo: A pointer to a struct ttm_buffer_object.
134 * @ctx: operation context
135 * @dst_mem: struct ttm_resource indicating where to move.
136 *
137 * Fallback move function for a mappable buffer object in mappable memory.
138 * The function will, if successful,
139 * free any old aperture space, and set (@new_mem)->mm_node to NULL,
140 * and update the (@bo)->mem placement flags. If unsuccessful, the old
141 * data remains untouched, and it's up to the caller to free the
142 * memory space indicated by @new_mem.
143 * Returns:
144 * !0: Failure.
145 */
ttm_bo_move_memcpy(struct ttm_buffer_object * bo,struct ttm_operation_ctx * ctx,struct ttm_resource * dst_mem)146 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
147 struct ttm_operation_ctx *ctx,
148 struct ttm_resource *dst_mem)
149 {
150 struct ttm_device *bdev = bo->bdev;
151 struct ttm_resource_manager *dst_man =
152 ttm_manager_type(bo->bdev, dst_mem->mem_type);
153 struct ttm_tt *ttm = bo->ttm;
154 struct ttm_resource *src_mem = bo->resource;
155 struct ttm_resource_manager *src_man;
156 union {
157 struct ttm_kmap_iter_tt tt;
158 struct ttm_kmap_iter_linear_io io;
159 } _dst_iter, _src_iter;
160 struct ttm_kmap_iter *dst_iter, *src_iter;
161 bool clear;
162 int ret = 0;
163
164 if (WARN_ON(!src_mem))
165 return -EINVAL;
166
167 src_man = ttm_manager_type(bdev, src_mem->mem_type);
168 if (ttm && ((ttm->page_flags & TTM_TT_FLAG_SWAPPED) ||
169 dst_man->use_tt)) {
170 ret = ttm_bo_populate(bo, ctx);
171 if (ret)
172 return ret;
173 }
174
175 dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem);
176 if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt)
177 dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm);
178 if (IS_ERR(dst_iter))
179 return PTR_ERR(dst_iter);
180
181 src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem);
182 if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt)
183 src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm);
184 if (IS_ERR(src_iter)) {
185 ret = PTR_ERR(src_iter);
186 goto out_src_iter;
187 }
188
189 clear = src_iter->ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm));
190 if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC)))
191 ttm_move_memcpy(clear, PFN_UP(dst_mem->size), dst_iter, src_iter);
192
193 if (!src_iter->ops->maps_tt)
194 ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem);
195 ttm_bo_move_sync_cleanup(bo, dst_mem);
196
197 out_src_iter:
198 if (!dst_iter->ops->maps_tt)
199 ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem);
200
201 return ret;
202 }
203 EXPORT_SYMBOL(ttm_bo_move_memcpy);
204
ttm_transfered_destroy(struct ttm_buffer_object * bo)205 static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
206 {
207 struct ttm_transfer_obj *fbo;
208
209 fbo = container_of(bo, struct ttm_transfer_obj, base);
210 dma_resv_fini(&fbo->base.base._resv);
211 ttm_bo_put(fbo->bo);
212 kfree(fbo);
213 }
214
215 /**
216 * ttm_buffer_object_transfer
217 *
218 * @bo: A pointer to a struct ttm_buffer_object.
219 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
220 * holding the data of @bo with the old placement.
221 *
222 * This is a utility function that may be called after an accelerated move
223 * has been scheduled. A new buffer object is created as a placeholder for
224 * the old data while it's being copied. When that buffer object is idle,
225 * it can be destroyed, releasing the space of the old placement.
226 * Returns:
227 * !0: Failure.
228 */
229
ttm_buffer_object_transfer(struct ttm_buffer_object * bo,struct ttm_buffer_object ** new_obj)230 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
231 struct ttm_buffer_object **new_obj)
232 {
233 struct ttm_transfer_obj *fbo;
234 int ret;
235
236 fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
237 if (!fbo)
238 return -ENOMEM;
239
240 fbo->base = *bo;
241
242 /**
243 * Fix up members that we shouldn't copy directly:
244 * TODO: Explicit member copy would probably be better here.
245 */
246
247 atomic_inc(&ttm_glob.bo_count);
248 drm_vma_node_reset(&fbo->base.base.vma_node);
249
250 kref_init(&fbo->base.kref);
251 fbo->base.destroy = &ttm_transfered_destroy;
252 fbo->base.pin_count = 0;
253 if (bo->type != ttm_bo_type_sg)
254 fbo->base.base.resv = &fbo->base.base._resv;
255
256 dma_resv_init(&fbo->base.base._resv);
257 fbo->base.base.dev = NULL;
258 ret = dma_resv_trylock(&fbo->base.base._resv);
259 WARN_ON(!ret);
260
261 ret = dma_resv_reserve_fences(&fbo->base.base._resv, TTM_NUM_MOVE_FENCES);
262 if (ret) {
263 dma_resv_unlock(&fbo->base.base._resv);
264 kfree(fbo);
265 return ret;
266 }
267
268 if (fbo->base.resource) {
269 ttm_resource_set_bo(fbo->base.resource, &fbo->base);
270 bo->resource = NULL;
271 ttm_bo_set_bulk_move(&fbo->base, NULL);
272 } else {
273 fbo->base.bulk_move = NULL;
274 }
275
276 ttm_bo_get(bo);
277 fbo->bo = bo;
278
279 ttm_bo_move_to_lru_tail_unlocked(&fbo->base);
280
281 *new_obj = &fbo->base;
282 return 0;
283 }
284
285 /**
286 * ttm_io_prot
287 *
288 * @bo: ttm buffer object
289 * @res: ttm resource object
290 * @tmp: Page protection flag for a normal, cached mapping.
291 *
292 * Utility function that returns the pgprot_t that should be used for
293 * setting up a PTE with the caching model indicated by @c_state.
294 */
ttm_io_prot(struct ttm_buffer_object * bo,struct ttm_resource * res,pgprot_t tmp)295 pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res,
296 pgprot_t tmp)
297 {
298 struct ttm_resource_manager *man;
299 enum ttm_caching caching;
300
301 man = ttm_manager_type(bo->bdev, res->mem_type);
302 if (man->use_tt) {
303 caching = bo->ttm->caching;
304 if (bo->ttm->page_flags & TTM_TT_FLAG_DECRYPTED)
305 tmp = pgprot_decrypted(tmp);
306 } else {
307 caching = res->bus.caching;
308 }
309
310 return ttm_prot_from_caching(caching, tmp);
311 }
312 EXPORT_SYMBOL(ttm_io_prot);
313
ttm_bo_ioremap(struct ttm_buffer_object * bo,unsigned long offset,unsigned long size,struct ttm_bo_kmap_obj * map)314 static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
315 unsigned long offset,
316 unsigned long size,
317 struct ttm_bo_kmap_obj *map)
318 {
319 struct ttm_resource *mem = bo->resource;
320
321 if (bo->resource->bus.addr) {
322 map->bo_kmap_type = ttm_bo_map_premapped;
323 map->virtual = ((u8 *)bo->resource->bus.addr) + offset;
324 } else {
325 resource_size_t res = bo->resource->bus.offset + offset;
326
327 map->bo_kmap_type = ttm_bo_map_iomap;
328 if (mem->bus.caching == ttm_write_combined)
329 map->virtual = ioremap_wc(res, size);
330 #ifdef CONFIG_X86
331 else if (mem->bus.caching == ttm_cached)
332 map->virtual = ioremap_cache(res, size);
333 #endif
334 else
335 map->virtual = ioremap(res, size);
336 }
337 return (!map->virtual) ? -ENOMEM : 0;
338 }
339
ttm_bo_kmap_ttm(struct ttm_buffer_object * bo,unsigned long start_page,unsigned long num_pages,struct ttm_bo_kmap_obj * map)340 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
341 unsigned long start_page,
342 unsigned long num_pages,
343 struct ttm_bo_kmap_obj *map)
344 {
345 struct ttm_resource *mem = bo->resource;
346 struct ttm_operation_ctx ctx = {
347 .interruptible = false,
348 .no_wait_gpu = false
349 };
350 struct ttm_tt *ttm = bo->ttm;
351 struct ttm_resource_manager *man =
352 ttm_manager_type(bo->bdev, bo->resource->mem_type);
353 pgprot_t prot;
354 int ret;
355
356 BUG_ON(!ttm);
357
358 ret = ttm_bo_populate(bo, &ctx);
359 if (ret)
360 return ret;
361
362 if (num_pages == 1 && ttm->caching == ttm_cached &&
363 !(man->use_tt && (ttm->page_flags & TTM_TT_FLAG_DECRYPTED))) {
364 /*
365 * We're mapping a single page, and the desired
366 * page protection is consistent with the bo.
367 */
368
369 map->bo_kmap_type = ttm_bo_map_kmap;
370 map->page = ttm->pages[start_page];
371 map->virtual = kmap(map->page);
372 } else {
373 /*
374 * We need to use vmap to get the desired page protection
375 * or to make the buffer object look contiguous.
376 */
377 prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
378 map->bo_kmap_type = ttm_bo_map_vmap;
379 map->virtual = vmap(ttm->pages + start_page, num_pages,
380 0, prot);
381 }
382 return (!map->virtual) ? -ENOMEM : 0;
383 }
384
385 /**
386 * ttm_bo_kmap_try_from_panic
387 *
388 * @bo: The buffer object
389 * @page: The page to map
390 *
391 * Sets up a kernel virtual mapping using kmap_local_page_try_from_panic().
392 * This should only be called from the panic handler, if you make sure the bo
393 * is the one being displayed, so is properly allocated, and protected.
394 *
395 * Returns the vaddr, that you can use to write to the bo, and that you should
396 * pass to kunmap_local() when you're done with this page, or NULL if the bo
397 * is in iomem.
398 */
ttm_bo_kmap_try_from_panic(struct ttm_buffer_object * bo,unsigned long page)399 void *ttm_bo_kmap_try_from_panic(struct ttm_buffer_object *bo, unsigned long page)
400 {
401 if (page + 1 > PFN_UP(bo->resource->size))
402 return NULL;
403
404 if (!bo->resource->bus.is_iomem && bo->ttm->pages && bo->ttm->pages[page])
405 return kmap_local_page_try_from_panic(bo->ttm->pages[page]);
406
407 return NULL;
408 }
409 EXPORT_SYMBOL(ttm_bo_kmap_try_from_panic);
410
411 /**
412 * ttm_bo_kmap
413 *
414 * @bo: The buffer object.
415 * @start_page: The first page to map.
416 * @num_pages: Number of pages to map.
417 * @map: pointer to a struct ttm_bo_kmap_obj representing the map.
418 *
419 * Sets up a kernel virtual mapping, using ioremap, vmap or kmap to the
420 * data in the buffer object. The ttm_kmap_obj_virtual function can then be
421 * used to obtain a virtual address to the data.
422 *
423 * Returns
424 * -ENOMEM: Out of memory.
425 * -EINVAL: Invalid range.
426 */
ttm_bo_kmap(struct ttm_buffer_object * bo,unsigned long start_page,unsigned long num_pages,struct ttm_bo_kmap_obj * map)427 int ttm_bo_kmap(struct ttm_buffer_object *bo,
428 unsigned long start_page, unsigned long num_pages,
429 struct ttm_bo_kmap_obj *map)
430 {
431 unsigned long offset, size;
432 int ret;
433
434 map->virtual = NULL;
435 map->bo = bo;
436 if (num_pages > PFN_UP(bo->resource->size))
437 return -EINVAL;
438 if ((start_page + num_pages) > PFN_UP(bo->resource->size))
439 return -EINVAL;
440
441 ret = ttm_mem_io_reserve(bo->bdev, bo->resource);
442 if (ret)
443 return ret;
444 if (!bo->resource->bus.is_iomem) {
445 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
446 } else {
447 offset = start_page << PAGE_SHIFT;
448 size = num_pages << PAGE_SHIFT;
449 return ttm_bo_ioremap(bo, offset, size, map);
450 }
451 }
452 EXPORT_SYMBOL(ttm_bo_kmap);
453
454 /**
455 * ttm_bo_kunmap
456 *
457 * @map: Object describing the map to unmap.
458 *
459 * Unmaps a kernel map set up by ttm_bo_kmap.
460 */
ttm_bo_kunmap(struct ttm_bo_kmap_obj * map)461 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
462 {
463 if (!map->virtual)
464 return;
465 switch (map->bo_kmap_type) {
466 case ttm_bo_map_iomap:
467 iounmap(map->virtual);
468 break;
469 case ttm_bo_map_vmap:
470 vunmap(map->virtual);
471 break;
472 case ttm_bo_map_kmap:
473 kunmap(map->page);
474 break;
475 case ttm_bo_map_premapped:
476 break;
477 default:
478 BUG();
479 }
480 ttm_mem_io_free(map->bo->bdev, map->bo->resource);
481 map->virtual = NULL;
482 map->page = NULL;
483 }
484 EXPORT_SYMBOL(ttm_bo_kunmap);
485
486 /**
487 * ttm_bo_vmap
488 *
489 * @bo: The buffer object.
490 * @map: pointer to a struct iosys_map representing the map.
491 *
492 * Sets up a kernel virtual mapping, using ioremap or vmap to the
493 * data in the buffer object. The parameter @map returns the virtual
494 * address as struct iosys_map. Unmap the buffer with ttm_bo_vunmap().
495 *
496 * Returns
497 * -ENOMEM: Out of memory.
498 * -EINVAL: Invalid range.
499 */
ttm_bo_vmap(struct ttm_buffer_object * bo,struct iosys_map * map)500 int ttm_bo_vmap(struct ttm_buffer_object *bo, struct iosys_map *map)
501 {
502 struct ttm_resource *mem = bo->resource;
503 int ret;
504
505 dma_resv_assert_held(bo->base.resv);
506
507 ret = ttm_mem_io_reserve(bo->bdev, mem);
508 if (ret)
509 return ret;
510
511 if (mem->bus.is_iomem) {
512 void __iomem *vaddr_iomem;
513
514 if (mem->bus.addr)
515 vaddr_iomem = (void __iomem *)mem->bus.addr;
516 else if (mem->bus.caching == ttm_write_combined)
517 vaddr_iomem = ioremap_wc(mem->bus.offset,
518 bo->base.size);
519 #ifdef CONFIG_X86
520 else if (mem->bus.caching == ttm_cached)
521 vaddr_iomem = ioremap_cache(mem->bus.offset,
522 bo->base.size);
523 #endif
524 else
525 vaddr_iomem = ioremap(mem->bus.offset, bo->base.size);
526
527 if (!vaddr_iomem)
528 return -ENOMEM;
529
530 iosys_map_set_vaddr_iomem(map, vaddr_iomem);
531
532 } else {
533 struct ttm_operation_ctx ctx = {
534 .interruptible = false,
535 .no_wait_gpu = false
536 };
537 struct ttm_tt *ttm = bo->ttm;
538 pgprot_t prot;
539 void *vaddr;
540
541 ret = ttm_bo_populate(bo, &ctx);
542 if (ret)
543 return ret;
544
545 /*
546 * We need to use vmap to get the desired page protection
547 * or to make the buffer object look contiguous.
548 */
549 prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
550 vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot);
551 if (!vaddr)
552 return -ENOMEM;
553
554 iosys_map_set_vaddr(map, vaddr);
555 }
556
557 return 0;
558 }
559 EXPORT_SYMBOL(ttm_bo_vmap);
560
561 /**
562 * ttm_bo_vunmap
563 *
564 * @bo: The buffer object.
565 * @map: Object describing the map to unmap.
566 *
567 * Unmaps a kernel map set up by ttm_bo_vmap().
568 */
ttm_bo_vunmap(struct ttm_buffer_object * bo,struct iosys_map * map)569 void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct iosys_map *map)
570 {
571 struct ttm_resource *mem = bo->resource;
572
573 dma_resv_assert_held(bo->base.resv);
574
575 if (iosys_map_is_null(map))
576 return;
577
578 if (!map->is_iomem)
579 vunmap(map->vaddr);
580 else if (!mem->bus.addr)
581 iounmap(map->vaddr_iomem);
582 iosys_map_clear(map);
583
584 ttm_mem_io_free(bo->bdev, bo->resource);
585 }
586 EXPORT_SYMBOL(ttm_bo_vunmap);
587
ttm_bo_wait_free_node(struct ttm_buffer_object * bo,bool dst_use_tt)588 static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo,
589 bool dst_use_tt)
590 {
591 long ret;
592
593 ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
594 false, 15 * HZ);
595 if (ret == 0)
596 return -EBUSY;
597 if (ret < 0)
598 return ret;
599
600 if (!dst_use_tt)
601 ttm_bo_tt_destroy(bo);
602 ttm_resource_free(bo, &bo->resource);
603 return 0;
604 }
605
ttm_bo_move_to_ghost(struct ttm_buffer_object * bo,struct dma_fence * fence,bool dst_use_tt)606 static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo,
607 struct dma_fence *fence,
608 bool dst_use_tt)
609 {
610 struct ttm_buffer_object *ghost_obj;
611 int ret;
612
613 /**
614 * This should help pipeline ordinary buffer moves.
615 *
616 * Hang old buffer memory on a new buffer object,
617 * and leave it to be released when the GPU
618 * operation has completed.
619 */
620
621 ret = ttm_buffer_object_transfer(bo, &ghost_obj);
622 if (ret)
623 return ret;
624
625 dma_resv_add_fence(&ghost_obj->base._resv, fence,
626 DMA_RESV_USAGE_KERNEL);
627
628 /**
629 * If we're not moving to fixed memory, the TTM object
630 * needs to stay alive. Otherwhise hang it on the ghost
631 * bo to be unbound and destroyed.
632 */
633
634 if (dst_use_tt)
635 ghost_obj->ttm = NULL;
636 else
637 bo->ttm = NULL;
638
639 dma_resv_unlock(&ghost_obj->base._resv);
640 ttm_bo_put(ghost_obj);
641 return 0;
642 }
643
ttm_bo_move_pipeline_evict(struct ttm_buffer_object * bo,struct dma_fence * fence)644 static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo,
645 struct dma_fence *fence)
646 {
647 struct ttm_device *bdev = bo->bdev;
648 struct ttm_resource_manager *from;
649 struct dma_fence *tmp;
650 int i;
651
652 from = ttm_manager_type(bdev, bo->resource->mem_type);
653
654 /**
655 * BO doesn't have a TTM we need to bind/unbind. Just remember
656 * this eviction and free up the allocation.
657 * The fence will be saved in the first free slot or in the slot
658 * already used to store a fence from the same context. Since
659 * drivers can't use more than TTM_NUM_MOVE_FENCES contexts for
660 * evictions we should always find a slot to use.
661 */
662 spin_lock(&from->eviction_lock);
663 for (i = 0; i < TTM_NUM_MOVE_FENCES; i++) {
664 tmp = from->eviction_fences[i];
665 if (!tmp)
666 break;
667 if (fence->context != tmp->context)
668 continue;
669 if (dma_fence_is_later(fence, tmp)) {
670 dma_fence_put(tmp);
671 break;
672 }
673 goto unlock;
674 }
675 if (i < TTM_NUM_MOVE_FENCES) {
676 from->eviction_fences[i] = dma_fence_get(fence);
677 } else {
678 WARN(1, "not enough fence slots for all fence contexts");
679 spin_unlock(&from->eviction_lock);
680 dma_fence_wait(fence, false);
681 goto end;
682 }
683
684 unlock:
685 spin_unlock(&from->eviction_lock);
686 end:
687 ttm_resource_free(bo, &bo->resource);
688 }
689
690 /**
691 * ttm_bo_move_accel_cleanup - cleanup helper for hw copies
692 *
693 * @bo: A pointer to a struct ttm_buffer_object.
694 * @fence: A fence object that signals when moving is complete.
695 * @evict: This is an evict move. Don't return until the buffer is idle.
696 * @pipeline: evictions are to be pipelined.
697 * @new_mem: struct ttm_resource indicating where to move.
698 *
699 * Accelerated move function to be called when an accelerated move
700 * has been scheduled. The function will create a new temporary buffer object
701 * representing the old placement, and put the sync object on both buffer
702 * objects. After that the newly created buffer object is unref'd to be
703 * destroyed when the move is complete. This will help pipeline
704 * buffer moves.
705 */
ttm_bo_move_accel_cleanup(struct ttm_buffer_object * bo,struct dma_fence * fence,bool evict,bool pipeline,struct ttm_resource * new_mem)706 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
707 struct dma_fence *fence,
708 bool evict,
709 bool pipeline,
710 struct ttm_resource *new_mem)
711 {
712 struct ttm_device *bdev = bo->bdev;
713 struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type);
714 struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
715 int ret = 0;
716
717 dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL);
718 if (!evict)
719 ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt);
720 else if (!from->use_tt && pipeline)
721 ttm_bo_move_pipeline_evict(bo, fence);
722 else
723 ret = ttm_bo_wait_free_node(bo, man->use_tt);
724
725 if (ret)
726 return ret;
727
728 ttm_bo_assign_mem(bo, new_mem);
729
730 return 0;
731 }
732 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
733
734 /**
735 * ttm_bo_move_sync_cleanup - cleanup by waiting for the move to finish
736 *
737 * @bo: A pointer to a struct ttm_buffer_object.
738 * @new_mem: struct ttm_resource indicating where to move.
739 *
740 * Special case of ttm_bo_move_accel_cleanup where the bo is guaranteed
741 * by the caller to be idle. Typically used after memcpy buffer moves.
742 */
ttm_bo_move_sync_cleanup(struct ttm_buffer_object * bo,struct ttm_resource * new_mem)743 void ttm_bo_move_sync_cleanup(struct ttm_buffer_object *bo,
744 struct ttm_resource *new_mem)
745 {
746 struct ttm_device *bdev = bo->bdev;
747 struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
748 int ret;
749
750 ret = ttm_bo_wait_free_node(bo, man->use_tt);
751 if (WARN_ON(ret))
752 return;
753
754 ttm_bo_assign_mem(bo, new_mem);
755 }
756 EXPORT_SYMBOL(ttm_bo_move_sync_cleanup);
757
758 /**
759 * ttm_bo_pipeline_gutting - purge the contents of a bo
760 * @bo: The buffer object
761 *
762 * Purge the contents of a bo, async if the bo is not idle.
763 * After a successful call, the bo is left unpopulated in
764 * system placement. The function may wait uninterruptible
765 * for idle on OOM.
766 *
767 * Return: 0 if successful, negative error code on failure.
768 */
ttm_bo_pipeline_gutting(struct ttm_buffer_object * bo)769 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
770 {
771 struct ttm_buffer_object *ghost;
772 struct ttm_tt *ttm;
773 int ret;
774
775 /* If already idle, no need for ghost object dance. */
776 if (dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP)) {
777 if (!bo->ttm) {
778 /* See comment below about clearing. */
779 ret = ttm_tt_create(bo, true);
780 if (ret)
781 return ret;
782 } else {
783 ttm_tt_unpopulate(bo->bdev, bo->ttm);
784 if (bo->type == ttm_bo_type_device)
785 ttm_tt_mark_for_clear(bo->ttm);
786 }
787 ttm_resource_free(bo, &bo->resource);
788 return 0;
789 }
790
791 /*
792 * We need an unpopulated ttm_tt after giving our current one,
793 * if any, to the ghost object. And we can't afford to fail
794 * creating one *after* the operation. If the bo subsequently gets
795 * resurrected, make sure it's cleared (if ttm_bo_type_device)
796 * to avoid leaking sensitive information to user-space.
797 */
798
799 ttm = bo->ttm;
800 bo->ttm = NULL;
801 ret = ttm_tt_create(bo, true);
802 swap(bo->ttm, ttm);
803 if (ret)
804 return ret;
805
806 ret = ttm_buffer_object_transfer(bo, &ghost);
807 if (ret)
808 goto error_destroy_tt;
809
810 ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv);
811 /* Last resort, wait for the BO to be idle when we are OOM */
812 if (ret) {
813 dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
814 false, MAX_SCHEDULE_TIMEOUT);
815 }
816
817 dma_resv_unlock(&ghost->base._resv);
818 ttm_bo_put(ghost);
819 bo->ttm = ttm;
820 return 0;
821
822 error_destroy_tt:
823 ttm_tt_destroy(bo->bdev, ttm);
824 return ret;
825 }
826
ttm_lru_walk_trylock(struct ttm_bo_lru_cursor * curs,struct ttm_buffer_object * bo)827 static bool ttm_lru_walk_trylock(struct ttm_bo_lru_cursor *curs,
828 struct ttm_buffer_object *bo)
829 {
830 struct ttm_operation_ctx *ctx = curs->arg->ctx;
831
832 curs->needs_unlock = false;
833
834 if (dma_resv_trylock(bo->base.resv)) {
835 curs->needs_unlock = true;
836 return true;
837 }
838
839 if (bo->base.resv == ctx->resv && ctx->allow_res_evict) {
840 dma_resv_assert_held(bo->base.resv);
841 return true;
842 }
843
844 return false;
845 }
846
ttm_lru_walk_ticketlock(struct ttm_bo_lru_cursor * curs,struct ttm_buffer_object * bo)847 static int ttm_lru_walk_ticketlock(struct ttm_bo_lru_cursor *curs,
848 struct ttm_buffer_object *bo)
849 {
850 struct ttm_lru_walk_arg *arg = curs->arg;
851 struct dma_resv *resv = bo->base.resv;
852 int ret;
853
854 if (arg->ctx->interruptible)
855 ret = dma_resv_lock_interruptible(resv, arg->ticket);
856 else
857 ret = dma_resv_lock(resv, arg->ticket);
858
859 if (!ret) {
860 curs->needs_unlock = true;
861 /*
862 * Only a single ticketlock per loop. Ticketlocks are prone
863 * to return -EDEADLK causing the eviction to fail, so
864 * after waiting for the ticketlock, revert back to
865 * trylocking for this walk.
866 */
867 arg->ticket = NULL;
868 } else if (ret == -EDEADLK) {
869 /* Caller needs to exit the ww transaction. */
870 ret = -ENOSPC;
871 }
872
873 return ret;
874 }
875
876 /**
877 * ttm_lru_walk_for_evict() - Perform a LRU list walk, with actions taken on
878 * valid items.
879 * @walk: describe the walks and actions taken
880 * @bdev: The TTM device.
881 * @man: The struct ttm_resource manager whose LRU lists we're walking.
882 * @target: The end condition for the walk.
883 *
884 * The LRU lists of @man are walk, and for each struct ttm_resource encountered,
885 * the corresponding ttm_buffer_object is locked and taken a reference on, and
886 * the LRU lock is dropped. the LRU lock may be dropped before locking and, in
887 * that case, it's verified that the item actually remains on the LRU list after
888 * the lock, and that the buffer object didn't switch resource in between.
889 *
890 * With a locked object, the actions indicated by @walk->process_bo are
891 * performed, and after that, the bo is unlocked, the refcount dropped and the
892 * next struct ttm_resource is processed. Here, the walker relies on
893 * TTM's restartable LRU list implementation.
894 *
895 * Typically @walk->process_bo() would return the number of pages evicted,
896 * swapped or shrunken, so that when the total exceeds @target, or when the
897 * LRU list has been walked in full, iteration is terminated. It's also terminated
898 * on error. Note that the definition of @target is done by the caller, it
899 * could have a different meaning than the number of pages.
900 *
901 * Note that the way dma_resv individualization is done, locking needs to be done
902 * either with the LRU lock held (trylocking only) or with a reference on the
903 * object.
904 *
905 * Return: The progress made towards target or negative error code on error.
906 */
ttm_lru_walk_for_evict(struct ttm_lru_walk * walk,struct ttm_device * bdev,struct ttm_resource_manager * man,s64 target)907 s64 ttm_lru_walk_for_evict(struct ttm_lru_walk *walk, struct ttm_device *bdev,
908 struct ttm_resource_manager *man, s64 target)
909 {
910 struct ttm_bo_lru_cursor cursor;
911 struct ttm_buffer_object *bo;
912 s64 progress = 0;
913 s64 lret;
914
915 ttm_bo_lru_for_each_reserved_guarded(&cursor, man, &walk->arg, bo) {
916 lret = walk->ops->process_bo(walk, bo);
917 if (lret == -EBUSY || lret == -EALREADY)
918 lret = 0;
919 progress = (lret < 0) ? lret : progress + lret;
920 if (progress < 0 || progress >= target)
921 break;
922 }
923 if (IS_ERR(bo))
924 return PTR_ERR(bo);
925
926 return progress;
927 }
928 EXPORT_SYMBOL(ttm_lru_walk_for_evict);
929
ttm_bo_lru_cursor_cleanup_bo(struct ttm_bo_lru_cursor * curs)930 static void ttm_bo_lru_cursor_cleanup_bo(struct ttm_bo_lru_cursor *curs)
931 {
932 struct ttm_buffer_object *bo = curs->bo;
933
934 if (bo) {
935 if (curs->needs_unlock)
936 dma_resv_unlock(bo->base.resv);
937 ttm_bo_put(bo);
938 curs->bo = NULL;
939 }
940 }
941
942 /**
943 * ttm_bo_lru_cursor_fini() - Stop using a struct ttm_bo_lru_cursor
944 * and clean up any iteration it was used for.
945 * @curs: The cursor.
946 */
ttm_bo_lru_cursor_fini(struct ttm_bo_lru_cursor * curs)947 void ttm_bo_lru_cursor_fini(struct ttm_bo_lru_cursor *curs)
948 {
949 spinlock_t *lru_lock = &curs->res_curs.man->bdev->lru_lock;
950
951 ttm_bo_lru_cursor_cleanup_bo(curs);
952 spin_lock(lru_lock);
953 ttm_resource_cursor_fini(&curs->res_curs);
954 spin_unlock(lru_lock);
955 }
956 EXPORT_SYMBOL(ttm_bo_lru_cursor_fini);
957
958 /**
959 * ttm_bo_lru_cursor_init() - Initialize a struct ttm_bo_lru_cursor
960 * @curs: The ttm_bo_lru_cursor to initialize.
961 * @man: The ttm resource_manager whose LRU lists to iterate over.
962 * @arg: The ttm_lru_walk_arg to govern the walk.
963 *
964 * Initialize a struct ttm_bo_lru_cursor.
965 *
966 * Return: Pointer to @curs. The function does not fail.
967 */
968 struct ttm_bo_lru_cursor *
ttm_bo_lru_cursor_init(struct ttm_bo_lru_cursor * curs,struct ttm_resource_manager * man,struct ttm_lru_walk_arg * arg)969 ttm_bo_lru_cursor_init(struct ttm_bo_lru_cursor *curs,
970 struct ttm_resource_manager *man,
971 struct ttm_lru_walk_arg *arg)
972 {
973 memset(curs, 0, sizeof(*curs));
974 ttm_resource_cursor_init(&curs->res_curs, man);
975 curs->arg = arg;
976
977 return curs;
978 }
979 EXPORT_SYMBOL(ttm_bo_lru_cursor_init);
980
981 static struct ttm_buffer_object *
__ttm_bo_lru_cursor_next(struct ttm_bo_lru_cursor * curs)982 __ttm_bo_lru_cursor_next(struct ttm_bo_lru_cursor *curs)
983 {
984 spinlock_t *lru_lock = &curs->res_curs.man->bdev->lru_lock;
985 struct ttm_resource *res = NULL;
986 struct ttm_buffer_object *bo;
987 struct ttm_lru_walk_arg *arg = curs->arg;
988 bool first = !curs->bo;
989
990 ttm_bo_lru_cursor_cleanup_bo(curs);
991
992 spin_lock(lru_lock);
993 for (;;) {
994 int mem_type, ret = 0;
995 bool bo_locked = false;
996
997 if (first) {
998 res = ttm_resource_manager_first(&curs->res_curs);
999 first = false;
1000 } else {
1001 res = ttm_resource_manager_next(&curs->res_curs);
1002 }
1003 if (!res)
1004 break;
1005
1006 bo = res->bo;
1007 if (ttm_lru_walk_trylock(curs, bo))
1008 bo_locked = true;
1009 else if (!arg->ticket || arg->ctx->no_wait_gpu || arg->trylock_only)
1010 continue;
1011
1012 if (!ttm_bo_get_unless_zero(bo)) {
1013 if (curs->needs_unlock)
1014 dma_resv_unlock(bo->base.resv);
1015 continue;
1016 }
1017
1018 mem_type = res->mem_type;
1019 spin_unlock(lru_lock);
1020 if (!bo_locked)
1021 ret = ttm_lru_walk_ticketlock(curs, bo);
1022
1023 /*
1024 * Note that in between the release of the lru lock and the
1025 * ticketlock, the bo may have switched resource,
1026 * and also memory type, since the resource may have been
1027 * freed and allocated again with a different memory type.
1028 * In that case, just skip it.
1029 */
1030 curs->bo = bo;
1031 if (!ret && bo->resource && bo->resource->mem_type == mem_type)
1032 return bo;
1033
1034 ttm_bo_lru_cursor_cleanup_bo(curs);
1035 if (ret && ret != -EALREADY)
1036 return ERR_PTR(ret);
1037
1038 spin_lock(lru_lock);
1039 }
1040
1041 spin_unlock(lru_lock);
1042 return res ? bo : NULL;
1043 }
1044
1045 /**
1046 * ttm_bo_lru_cursor_next() - Continue iterating a manager's LRU lists
1047 * to find and lock buffer object.
1048 * @curs: The cursor initialized using ttm_bo_lru_cursor_init() and
1049 * ttm_bo_lru_cursor_first().
1050 *
1051 * Return: A pointer to a locked and reference-counted buffer object,
1052 * or NULL if none could be found and looping should be terminated.
1053 */
ttm_bo_lru_cursor_next(struct ttm_bo_lru_cursor * curs)1054 struct ttm_buffer_object *ttm_bo_lru_cursor_next(struct ttm_bo_lru_cursor *curs)
1055 {
1056 return __ttm_bo_lru_cursor_next(curs);
1057 }
1058 EXPORT_SYMBOL(ttm_bo_lru_cursor_next);
1059
1060 /**
1061 * ttm_bo_lru_cursor_first() - Start iterating a manager's LRU lists
1062 * to find and lock buffer object.
1063 * @curs: The cursor initialized using ttm_bo_lru_cursor_init().
1064 *
1065 * Return: A pointer to a locked and reference-counted buffer object,
1066 * or NULL if none could be found and looping should be terminated.
1067 */
ttm_bo_lru_cursor_first(struct ttm_bo_lru_cursor * curs)1068 struct ttm_buffer_object *ttm_bo_lru_cursor_first(struct ttm_bo_lru_cursor *curs)
1069 {
1070 ttm_bo_lru_cursor_cleanup_bo(curs);
1071 return __ttm_bo_lru_cursor_next(curs);
1072 }
1073 EXPORT_SYMBOL(ttm_bo_lru_cursor_first);
1074
1075 /**
1076 * ttm_bo_shrink() - Helper to shrink a ttm buffer object.
1077 * @ctx: The struct ttm_operation_ctx used for the shrinking operation.
1078 * @bo: The buffer object.
1079 * @flags: Flags governing the shrinking behaviour.
1080 *
1081 * The function uses the ttm_tt_back_up functionality to back up or
1082 * purge a struct ttm_tt. If the bo is not in system, it's first
1083 * moved there.
1084 *
1085 * Return: The number of pages shrunken or purged, or
1086 * negative error code on failure.
1087 */
ttm_bo_shrink(struct ttm_operation_ctx * ctx,struct ttm_buffer_object * bo,const struct ttm_bo_shrink_flags flags)1088 long ttm_bo_shrink(struct ttm_operation_ctx *ctx, struct ttm_buffer_object *bo,
1089 const struct ttm_bo_shrink_flags flags)
1090 {
1091 static const struct ttm_place sys_placement_flags = {
1092 .fpfn = 0,
1093 .lpfn = 0,
1094 .mem_type = TTM_PL_SYSTEM,
1095 .flags = 0,
1096 };
1097 static struct ttm_placement sys_placement = {
1098 .num_placement = 1,
1099 .placement = &sys_placement_flags,
1100 };
1101 struct ttm_tt *tt = bo->ttm;
1102 long lret;
1103
1104 dma_resv_assert_held(bo->base.resv);
1105
1106 if (flags.allow_move && bo->resource->mem_type != TTM_PL_SYSTEM) {
1107 int ret = ttm_bo_validate(bo, &sys_placement, ctx);
1108
1109 /* Consider -ENOMEM and -ENOSPC non-fatal. */
1110 if (ret) {
1111 if (ret == -ENOMEM || ret == -ENOSPC)
1112 ret = -EBUSY;
1113 return ret;
1114 }
1115 }
1116
1117 ttm_bo_unmap_virtual(bo);
1118 lret = ttm_bo_wait_ctx(bo, ctx);
1119 if (lret < 0)
1120 return lret;
1121
1122 if (bo->bulk_move) {
1123 spin_lock(&bo->bdev->lru_lock);
1124 ttm_resource_del_bulk_move(bo->resource, bo);
1125 spin_unlock(&bo->bdev->lru_lock);
1126 }
1127
1128 lret = ttm_tt_backup(bo->bdev, tt, (struct ttm_backup_flags)
1129 {.purge = flags.purge,
1130 .writeback = flags.writeback});
1131
1132 if (lret <= 0 && bo->bulk_move) {
1133 spin_lock(&bo->bdev->lru_lock);
1134 ttm_resource_add_bulk_move(bo->resource, bo);
1135 spin_unlock(&bo->bdev->lru_lock);
1136 }
1137
1138 if (lret < 0 && lret != -EINTR)
1139 return -EBUSY;
1140
1141 return lret;
1142 }
1143 EXPORT_SYMBOL(ttm_bo_shrink);
1144
1145 /**
1146 * ttm_bo_shrink_suitable() - Whether a bo is suitable for shinking
1147 * @ctx: The struct ttm_operation_ctx governing the shrinking.
1148 * @bo: The candidate for shrinking.
1149 *
1150 * Check whether the object, given the information available to TTM,
1151 * is suitable for shinking, This function can and should be used
1152 * before attempting to shrink an object.
1153 *
1154 * Return: true if suitable. false if not.
1155 */
ttm_bo_shrink_suitable(struct ttm_buffer_object * bo,struct ttm_operation_ctx * ctx)1156 bool ttm_bo_shrink_suitable(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx)
1157 {
1158 return bo->ttm && ttm_tt_is_populated(bo->ttm) && !bo->pin_count &&
1159 (!ctx->no_wait_gpu ||
1160 dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP));
1161 }
1162 EXPORT_SYMBOL(ttm_bo_shrink_suitable);
1163
1164 /**
1165 * ttm_bo_shrink_avoid_wait() - Whether to avoid waiting for GPU
1166 * during shrinking
1167 *
1168 * In some situations, like direct reclaim, waiting (in particular gpu waiting)
1169 * should be avoided since it may stall a system that could otherwise make progress
1170 * shrinking something else less time consuming.
1171 *
1172 * Return: true if gpu waiting should be avoided, false if not.
1173 */
ttm_bo_shrink_avoid_wait(void)1174 bool ttm_bo_shrink_avoid_wait(void)
1175 {
1176 return !current_is_kswapd();
1177 }
1178 EXPORT_SYMBOL(ttm_bo_shrink_avoid_wait);
1179