xref: /linux/drivers/clocksource/timer-cadence-ttc.c (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file contains driver for the Cadence Triple Timer Counter Rev 06
4  *
5  *  Copyright (C) 2011-2013 Xilinx
6  *
7  * based on arch/mips/kernel/time.c timer driver
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/interrupt.h>
12 #include <linux/clockchips.h>
13 #include <linux/clocksource.h>
14 #include <linux/of_address.h>
15 #include <linux/of_irq.h>
16 #include <linux/platform_device.h>
17 #include <linux/slab.h>
18 #include <linux/sched_clock.h>
19 #include <linux/module.h>
20 #include <linux/of_platform.h>
21 
22 /*
23  * This driver configures the 2 16/32-bit count-up timers as follows:
24  *
25  * T1: Timer 1, clocksource for generic timekeeping
26  * T2: Timer 2, clockevent source for hrtimers
27  * T3: Timer 3, <unused>
28  *
29  * The input frequency to the timer module for emulation is 2.5MHz which is
30  * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
31  * the timers are clocked at 78.125KHz (12.8 us resolution).
32 
33  * The input frequency to the timer module in silicon is configurable and
34  * obtained from device tree. The pre-scaler of 32 is used.
35  */
36 
37 /*
38  * Timer Register Offset Definitions of Timer 1, Increment base address by 4
39  * and use same offsets for Timer 2
40  */
41 #define TTC_CLK_CNTRL_OFFSET		0x00 /* Clock Control Reg, RW */
42 #define TTC_CNT_CNTRL_OFFSET		0x0C /* Counter Control Reg, RW */
43 #define TTC_COUNT_VAL_OFFSET		0x18 /* Counter Value Reg, RO */
44 #define TTC_INTR_VAL_OFFSET		0x24 /* Interval Count Reg, RW */
45 #define TTC_ISR_OFFSET		0x54 /* Interrupt Status Reg, RO */
46 #define TTC_IER_OFFSET		0x60 /* Interrupt Enable Reg, RW */
47 
48 #define TTC_CNT_CNTRL_DISABLE_MASK	0x1
49 
50 #define TTC_CLK_CNTRL_CSRC_MASK		(1 << 5)	/* clock source */
51 #define TTC_CLK_CNTRL_PSV_MASK		0x1e
52 #define TTC_CLK_CNTRL_PSV_SHIFT		1
53 
54 /*
55  * Setup the timers to use pre-scaling, using a fixed value for now that will
56  * work across most input frequency, but it may need to be more dynamic
57  */
58 #define PRESCALE_EXPONENT	11	/* 2 ^ PRESCALE_EXPONENT = PRESCALE */
59 #define PRESCALE		2048	/* The exponent must match this */
60 #define CLK_CNTRL_PRESCALE	((PRESCALE_EXPONENT - 1) << 1)
61 #define CLK_CNTRL_PRESCALE_EN	1
62 #define CNT_CNTRL_RESET		(1 << 4)
63 
64 #define MAX_F_ERR 50
65 
66 /**
67  * struct ttc_timer - This definition defines local timer structure
68  *
69  * @base_addr:	Base address of timer
70  * @freq:	Timer input clock frequency
71  * @clk:	Associated clock source
72  * @clk_rate_change_nb:	Notifier block for clock rate changes
73  */
74 struct ttc_timer {
75 	void __iomem *base_addr;
76 	unsigned long freq;
77 	struct clk *clk;
78 	struct notifier_block clk_rate_change_nb;
79 };
80 
81 #define to_ttc_timer(x) \
82 		container_of(x, struct ttc_timer, clk_rate_change_nb)
83 
84 struct ttc_timer_clocksource {
85 	u32			scale_clk_ctrl_reg_old;
86 	u32			scale_clk_ctrl_reg_new;
87 	struct ttc_timer	ttc;
88 	struct clocksource	cs;
89 };
90 
91 #define to_ttc_timer_clksrc(x) \
92 		container_of(x, struct ttc_timer_clocksource, cs)
93 
94 struct ttc_timer_clockevent {
95 	struct ttc_timer		ttc;
96 	struct clock_event_device	ce;
97 };
98 
99 #define to_ttc_timer_clkevent(x) \
100 		container_of(x, struct ttc_timer_clockevent, ce)
101 
102 static void __iomem *ttc_sched_clock_val_reg;
103 
104 /**
105  * ttc_set_interval - Set the timer interval value
106  *
107  * @timer:	Pointer to the timer instance
108  * @cycles:	Timer interval ticks
109  **/
ttc_set_interval(struct ttc_timer * timer,unsigned long cycles)110 static void ttc_set_interval(struct ttc_timer *timer,
111 					unsigned long cycles)
112 {
113 	u32 ctrl_reg;
114 
115 	/* Disable the counter, set the counter value  and re-enable counter */
116 	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
117 	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
118 	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
119 
120 	writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
121 
122 	/*
123 	 * Reset the counter (0x10) so that it starts from 0, one-shot
124 	 * mode makes this needed for timing to be right.
125 	 */
126 	ctrl_reg |= CNT_CNTRL_RESET;
127 	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
128 	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
129 }
130 
131 /**
132  * ttc_clock_event_interrupt - Clock event timer interrupt handler
133  *
134  * @irq:	IRQ number of the Timer
135  * @dev_id:	void pointer to the ttc_timer instance
136  *
137  * Returns: Always IRQ_HANDLED - success
138  **/
ttc_clock_event_interrupt(int irq,void * dev_id)139 static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
140 {
141 	struct ttc_timer_clockevent *ttce = dev_id;
142 	struct ttc_timer *timer = &ttce->ttc;
143 
144 	/* Acknowledge the interrupt and call event handler */
145 	readl_relaxed(timer->base_addr + TTC_ISR_OFFSET);
146 
147 	ttce->ce.event_handler(&ttce->ce);
148 
149 	return IRQ_HANDLED;
150 }
151 
152 /**
153  * __ttc_clocksource_read - Reads the timer counter register
154  * @cs: &clocksource to read from
155  *
156  * Returns: Current timer counter register value
157  **/
__ttc_clocksource_read(struct clocksource * cs)158 static u64 __ttc_clocksource_read(struct clocksource *cs)
159 {
160 	struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
161 
162 	return (u64)readl_relaxed(timer->base_addr +
163 				TTC_COUNT_VAL_OFFSET);
164 }
165 
ttc_sched_clock_read(void)166 static u64 notrace ttc_sched_clock_read(void)
167 {
168 	return readl_relaxed(ttc_sched_clock_val_reg);
169 }
170 
171 /**
172  * ttc_set_next_event - Sets the time interval for next event
173  *
174  * @cycles:	Timer interval ticks
175  * @evt:	Address of clock event instance
176  *
177  * Returns: Always %0 - success
178  **/
ttc_set_next_event(unsigned long cycles,struct clock_event_device * evt)179 static int ttc_set_next_event(unsigned long cycles,
180 					struct clock_event_device *evt)
181 {
182 	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
183 	struct ttc_timer *timer = &ttce->ttc;
184 
185 	ttc_set_interval(timer, cycles);
186 	return 0;
187 }
188 
189 /**
190  * ttc_shutdown - Sets the state of timer
191  * @evt:	Address of clock event instance
192  *
193  * Used for shutdown or oneshot.
194  *
195  * Returns: Always %0 - success
196  **/
ttc_shutdown(struct clock_event_device * evt)197 static int ttc_shutdown(struct clock_event_device *evt)
198 {
199 	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
200 	struct ttc_timer *timer = &ttce->ttc;
201 	u32 ctrl_reg;
202 
203 	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
204 	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
205 	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
206 	return 0;
207 }
208 
209 /**
210  * ttc_set_periodic - Sets the state of timer
211  * @evt:	Address of clock event instance
212  *
213  * Returns: Always %0 - success
214  */
ttc_set_periodic(struct clock_event_device * evt)215 static int ttc_set_periodic(struct clock_event_device *evt)
216 {
217 	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
218 	struct ttc_timer *timer = &ttce->ttc;
219 
220 	ttc_set_interval(timer,
221 			 DIV_ROUND_CLOSEST(ttce->ttc.freq, PRESCALE * HZ));
222 	return 0;
223 }
224 
ttc_resume(struct clock_event_device * evt)225 static int ttc_resume(struct clock_event_device *evt)
226 {
227 	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
228 	struct ttc_timer *timer = &ttce->ttc;
229 	u32 ctrl_reg;
230 
231 	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
232 	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
233 	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
234 	return 0;
235 }
236 
ttc_rate_change_clocksource_cb(struct notifier_block * nb,unsigned long event,void * data)237 static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
238 		unsigned long event, void *data)
239 {
240 	struct clk_notifier_data *ndata = data;
241 	struct ttc_timer *ttc = to_ttc_timer(nb);
242 	struct ttc_timer_clocksource *ttccs = container_of(ttc,
243 			struct ttc_timer_clocksource, ttc);
244 
245 	switch (event) {
246 	case PRE_RATE_CHANGE:
247 	{
248 		u32 psv;
249 		unsigned long factor, rate_low, rate_high;
250 
251 		if (ndata->new_rate > ndata->old_rate) {
252 			factor = DIV_ROUND_CLOSEST(ndata->new_rate,
253 					ndata->old_rate);
254 			rate_low = ndata->old_rate;
255 			rate_high = ndata->new_rate;
256 		} else {
257 			factor = DIV_ROUND_CLOSEST(ndata->old_rate,
258 					ndata->new_rate);
259 			rate_low = ndata->new_rate;
260 			rate_high = ndata->old_rate;
261 		}
262 
263 		if (!is_power_of_2(factor))
264 				return NOTIFY_BAD;
265 
266 		if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
267 			return NOTIFY_BAD;
268 
269 		factor = __ilog2_u32(factor);
270 
271 		/*
272 		 * store timer clock ctrl register so we can restore it in case
273 		 * of an abort.
274 		 */
275 		ttccs->scale_clk_ctrl_reg_old =
276 			readl_relaxed(ttccs->ttc.base_addr +
277 			TTC_CLK_CNTRL_OFFSET);
278 
279 		psv = (ttccs->scale_clk_ctrl_reg_old &
280 				TTC_CLK_CNTRL_PSV_MASK) >>
281 				TTC_CLK_CNTRL_PSV_SHIFT;
282 		if (ndata->new_rate < ndata->old_rate)
283 			psv -= factor;
284 		else
285 			psv += factor;
286 
287 		/* prescaler within legal range? */
288 		if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
289 			return NOTIFY_BAD;
290 
291 		ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
292 			~TTC_CLK_CNTRL_PSV_MASK;
293 		ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;
294 
295 
296 		/* scale down: adjust divider in post-change notification */
297 		if (ndata->new_rate < ndata->old_rate)
298 			return NOTIFY_DONE;
299 
300 		/* scale up: adjust divider now - before frequency change */
301 		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
302 			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
303 		break;
304 	}
305 	case POST_RATE_CHANGE:
306 		/* scale up: pre-change notification did the adjustment */
307 		if (ndata->new_rate > ndata->old_rate)
308 			return NOTIFY_OK;
309 
310 		/* scale down: adjust divider now - after frequency change */
311 		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
312 			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
313 		break;
314 
315 	case ABORT_RATE_CHANGE:
316 		/* we have to undo the adjustment in case we scale up */
317 		if (ndata->new_rate < ndata->old_rate)
318 			return NOTIFY_OK;
319 
320 		/* restore original register value */
321 		writel_relaxed(ttccs->scale_clk_ctrl_reg_old,
322 			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
323 		fallthrough;
324 	default:
325 		return NOTIFY_DONE;
326 	}
327 
328 	return NOTIFY_DONE;
329 }
330 
ttc_setup_clocksource(struct clk * clk,void __iomem * base,u32 timer_width)331 static int __init ttc_setup_clocksource(struct clk *clk, void __iomem *base,
332 					 u32 timer_width)
333 {
334 	struct ttc_timer_clocksource *ttccs;
335 	int err;
336 
337 	ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
338 	if (!ttccs)
339 		return -ENOMEM;
340 
341 	ttccs->ttc.clk = clk;
342 
343 	err = clk_prepare_enable(ttccs->ttc.clk);
344 	if (err) {
345 		kfree(ttccs);
346 		return err;
347 	}
348 
349 	ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);
350 
351 	ttccs->ttc.clk_rate_change_nb.notifier_call =
352 		ttc_rate_change_clocksource_cb;
353 	ttccs->ttc.clk_rate_change_nb.next = NULL;
354 
355 	err = clk_notifier_register(ttccs->ttc.clk,
356 				    &ttccs->ttc.clk_rate_change_nb);
357 	if (err)
358 		pr_warn("Unable to register clock notifier.\n");
359 
360 	ttccs->ttc.base_addr = base;
361 	ttccs->cs.name = "ttc_clocksource";
362 	ttccs->cs.rating = 200;
363 	ttccs->cs.read = __ttc_clocksource_read;
364 	ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width);
365 	ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
366 
367 	/*
368 	 * Setup the clock source counter to be an incrementing counter
369 	 * with no interrupt and it rolls over at 0xFFFF. Pre-scale
370 	 * it by 32 also. Let it start running now.
371 	 */
372 	writel_relaxed(0x0,  ttccs->ttc.base_addr + TTC_IER_OFFSET);
373 	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
374 		     ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
375 	writel_relaxed(CNT_CNTRL_RESET,
376 		     ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
377 
378 	err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
379 	if (err) {
380 		kfree(ttccs);
381 		return err;
382 	}
383 
384 	ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
385 	sched_clock_register(ttc_sched_clock_read, timer_width,
386 			     ttccs->ttc.freq / PRESCALE);
387 
388 	return 0;
389 }
390 
ttc_rate_change_clockevent_cb(struct notifier_block * nb,unsigned long event,void * data)391 static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
392 		unsigned long event, void *data)
393 {
394 	struct clk_notifier_data *ndata = data;
395 	struct ttc_timer *ttc = to_ttc_timer(nb);
396 	struct ttc_timer_clockevent *ttcce = container_of(ttc,
397 			struct ttc_timer_clockevent, ttc);
398 
399 	switch (event) {
400 	case POST_RATE_CHANGE:
401 		/* update cached frequency */
402 		ttc->freq = ndata->new_rate;
403 
404 		clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);
405 
406 		fallthrough;
407 	case PRE_RATE_CHANGE:
408 	case ABORT_RATE_CHANGE:
409 	default:
410 		return NOTIFY_DONE;
411 	}
412 }
413 
ttc_setup_clockevent(struct clk * clk,void __iomem * base,u32 irq)414 static int __init ttc_setup_clockevent(struct clk *clk,
415 				       void __iomem *base, u32 irq)
416 {
417 	struct ttc_timer_clockevent *ttcce;
418 	int err;
419 
420 	ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
421 	if (!ttcce)
422 		return -ENOMEM;
423 
424 	ttcce->ttc.clk = clk;
425 
426 	err = clk_prepare_enable(ttcce->ttc.clk);
427 	if (err)
428 		goto out_kfree;
429 
430 	ttcce->ttc.clk_rate_change_nb.notifier_call =
431 		ttc_rate_change_clockevent_cb;
432 	ttcce->ttc.clk_rate_change_nb.next = NULL;
433 
434 	err = clk_notifier_register(ttcce->ttc.clk,
435 				    &ttcce->ttc.clk_rate_change_nb);
436 	if (err) {
437 		pr_warn("Unable to register clock notifier.\n");
438 		goto out_clk_unprepare;
439 	}
440 
441 	ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
442 
443 	ttcce->ttc.base_addr = base;
444 	ttcce->ce.name = "ttc_clockevent";
445 	ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
446 	ttcce->ce.set_next_event = ttc_set_next_event;
447 	ttcce->ce.set_state_shutdown = ttc_shutdown;
448 	ttcce->ce.set_state_periodic = ttc_set_periodic;
449 	ttcce->ce.set_state_oneshot = ttc_shutdown;
450 	ttcce->ce.tick_resume = ttc_resume;
451 	ttcce->ce.rating = 200;
452 	ttcce->ce.irq = irq;
453 	ttcce->ce.cpumask = cpu_possible_mask;
454 
455 	/*
456 	 * Setup the clock event timer to be an interval timer which
457 	 * is prescaled by 32 using the interval interrupt. Leave it
458 	 * disabled for now.
459 	 */
460 	writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
461 	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
462 		     ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
463 	writel_relaxed(0x1,  ttcce->ttc.base_addr + TTC_IER_OFFSET);
464 
465 	err = request_irq(irq, ttc_clock_event_interrupt,
466 			  IRQF_TIMER, ttcce->ce.name, ttcce);
467 	if (err)
468 		goto out_clk_unprepare;
469 
470 	clockevents_config_and_register(&ttcce->ce,
471 			ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
472 
473 	return 0;
474 
475 out_clk_unprepare:
476 	clk_disable_unprepare(ttcce->ttc.clk);
477 out_kfree:
478 	kfree(ttcce);
479 	return err;
480 }
481 
ttc_timer_probe(struct platform_device * pdev)482 static int __init ttc_timer_probe(struct platform_device *pdev)
483 {
484 	unsigned int irq;
485 	void __iomem *timer_baseaddr;
486 	struct clk *clk_cs, *clk_ce;
487 	static int initialized;
488 	int clksel, ret;
489 	u32 timer_width = 16;
490 	struct device_node *timer = pdev->dev.of_node;
491 
492 	if (initialized)
493 		return 0;
494 
495 	initialized = 1;
496 
497 	/*
498 	 * Get the 1st Triple Timer Counter (TTC) block from the device tree
499 	 * and use it. Note that the event timer uses the interrupt and it's the
500 	 * 2nd TTC hence the irq_of_parse_and_map(,1)
501 	 */
502 	timer_baseaddr = devm_of_iomap(&pdev->dev, timer, 0, NULL);
503 	if (IS_ERR(timer_baseaddr)) {
504 		pr_err("ERROR: invalid timer base address\n");
505 		return PTR_ERR(timer_baseaddr);
506 	}
507 
508 	irq = irq_of_parse_and_map(timer, 1);
509 	if (irq <= 0) {
510 		pr_err("ERROR: invalid interrupt number\n");
511 		return -EINVAL;
512 	}
513 
514 	of_property_read_u32(timer, "timer-width", &timer_width);
515 
516 	clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
517 	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
518 	clk_cs = of_clk_get(timer, clksel);
519 	if (IS_ERR(clk_cs)) {
520 		pr_err("ERROR: timer input clock not found\n");
521 		return PTR_ERR(clk_cs);
522 	}
523 
524 	clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
525 	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
526 	clk_ce = of_clk_get(timer, clksel);
527 	if (IS_ERR(clk_ce)) {
528 		pr_err("ERROR: timer input clock not found\n");
529 		ret = PTR_ERR(clk_ce);
530 		goto put_clk_cs;
531 	}
532 
533 	ret = ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width);
534 	if (ret)
535 		goto put_clk_ce;
536 
537 	ret = ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
538 	if (ret)
539 		goto put_clk_ce;
540 
541 	pr_info("%pOFn #0 at %p, irq=%d\n", timer, timer_baseaddr, irq);
542 
543 	return 0;
544 
545 put_clk_ce:
546 	clk_put(clk_ce);
547 put_clk_cs:
548 	clk_put(clk_cs);
549 	return ret;
550 }
551 
552 static const struct of_device_id ttc_timer_of_match[] = {
553 	{.compatible = "cdns,ttc"},
554 	{},
555 };
556 
557 MODULE_DEVICE_TABLE(of, ttc_timer_of_match);
558 
559 static struct platform_driver ttc_timer_driver = {
560 	.driver = {
561 		.name	= "cdns_ttc_timer",
562 		.of_match_table = ttc_timer_of_match,
563 	},
564 };
565 builtin_platform_driver_probe(ttc_timer_driver, ttc_timer_probe);
566