xref: /linux/drivers/gpu/drm/xe/xe_bo.c (revision ca9e5115e870b9a531deb02752055a8a587904e3)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_bo.h"
7 
8 #include <linux/dma-buf.h>
9 #include <linux/nospec.h>
10 
11 #include <drm/drm_drv.h>
12 #include <drm/drm_dumb_buffers.h>
13 #include <drm/drm_gem_ttm_helper.h>
14 #include <drm/drm_managed.h>
15 #include <drm/ttm/ttm_backup.h>
16 #include <drm/ttm/ttm_device.h>
17 #include <drm/ttm/ttm_placement.h>
18 #include <drm/ttm/ttm_tt.h>
19 #include <uapi/drm/xe_drm.h>
20 
21 #include <kunit/static_stub.h>
22 
23 #include <trace/events/gpu_mem.h>
24 
25 #include "xe_device.h"
26 #include "xe_dma_buf.h"
27 #include "xe_drm_client.h"
28 #include "xe_ggtt.h"
29 #include "xe_gt.h"
30 #include "xe_map.h"
31 #include "xe_migrate.h"
32 #include "xe_pm.h"
33 #include "xe_preempt_fence.h"
34 #include "xe_pxp.h"
35 #include "xe_res_cursor.h"
36 #include "xe_shrinker.h"
37 #include "xe_sriov_vf_ccs.h"
38 #include "xe_tile.h"
39 #include "xe_trace_bo.h"
40 #include "xe_ttm_stolen_mgr.h"
41 #include "xe_vm.h"
42 #include "xe_vram_types.h"
43 
44 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES]  = {
45 	[XE_PL_SYSTEM] = "system",
46 	[XE_PL_TT] = "gtt",
47 	[XE_PL_VRAM0] = "vram0",
48 	[XE_PL_VRAM1] = "vram1",
49 	[XE_PL_STOLEN] = "stolen"
50 };
51 
52 static const struct ttm_place sys_placement_flags = {
53 	.fpfn = 0,
54 	.lpfn = 0,
55 	.mem_type = XE_PL_SYSTEM,
56 	.flags = 0,
57 };
58 
59 static struct ttm_placement sys_placement = {
60 	.num_placement = 1,
61 	.placement = &sys_placement_flags,
62 };
63 
64 static struct ttm_placement purge_placement;
65 
66 static const struct ttm_place tt_placement_flags[] = {
67 	{
68 		.fpfn = 0,
69 		.lpfn = 0,
70 		.mem_type = XE_PL_TT,
71 		.flags = TTM_PL_FLAG_DESIRED,
72 	},
73 	{
74 		.fpfn = 0,
75 		.lpfn = 0,
76 		.mem_type = XE_PL_SYSTEM,
77 		.flags = TTM_PL_FLAG_FALLBACK,
78 	}
79 };
80 
81 static struct ttm_placement tt_placement = {
82 	.num_placement = 2,
83 	.placement = tt_placement_flags,
84 };
85 
86 #define for_each_set_bo_vram_flag(bit__, bo_flags__) \
87 	for (unsigned int __bit_tmp = BIT(0); __bit_tmp <= XE_BO_FLAG_VRAM_MASK; __bit_tmp <<= 1) \
88 		for_each_if(((bit__) = __bit_tmp) & (bo_flags__) & XE_BO_FLAG_VRAM_MASK)
89 
90 bool mem_type_is_vram(u32 mem_type)
91 {
92 	return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN;
93 }
94 
95 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res)
96 {
97 	return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe);
98 }
99 
100 static bool resource_is_vram(struct ttm_resource *res)
101 {
102 	return mem_type_is_vram(res->mem_type);
103 }
104 
105 bool xe_bo_is_vram(struct xe_bo *bo)
106 {
107 	return resource_is_vram(bo->ttm.resource) ||
108 		resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource);
109 }
110 
111 bool xe_bo_is_stolen(struct xe_bo *bo)
112 {
113 	return bo->ttm.resource->mem_type == XE_PL_STOLEN;
114 }
115 
116 /**
117  * xe_bo_has_single_placement - check if BO is placed only in one memory location
118  * @bo: The BO
119  *
120  * This function checks whether a given BO is placed in only one memory location.
121  *
122  * Returns: true if the BO is placed in a single memory location, false otherwise.
123  *
124  */
125 bool xe_bo_has_single_placement(struct xe_bo *bo)
126 {
127 	return bo->placement.num_placement == 1;
128 }
129 
130 /**
131  * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR
132  * @bo: The BO
133  *
134  * The stolen memory is accessed through the PCI BAR for both DGFX and some
135  * integrated platforms that have a dedicated bit in the PTE for devmem (DM).
136  *
137  * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise.
138  */
139 bool xe_bo_is_stolen_devmem(struct xe_bo *bo)
140 {
141 	return xe_bo_is_stolen(bo) &&
142 		GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270;
143 }
144 
145 /**
146  * xe_bo_is_vm_bound - check if BO has any mappings through VM_BIND
147  * @bo: The BO
148  *
149  * Check if a given bo is bound through VM_BIND. This requires the
150  * reservation lock for the BO to be held.
151  *
152  * Returns: boolean
153  */
154 bool xe_bo_is_vm_bound(struct xe_bo *bo)
155 {
156 	xe_bo_assert_held(bo);
157 
158 	return !list_empty(&bo->ttm.base.gpuva.list);
159 }
160 
161 static bool xe_bo_is_user(struct xe_bo *bo)
162 {
163 	return bo->flags & XE_BO_FLAG_USER;
164 }
165 
166 static struct xe_migrate *
167 mem_type_to_migrate(struct xe_device *xe, u32 mem_type)
168 {
169 	struct xe_tile *tile;
170 
171 	xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type));
172 	tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)];
173 	return tile->migrate;
174 }
175 
176 static struct xe_vram_region *res_to_mem_region(struct ttm_resource *res)
177 {
178 	struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
179 	struct ttm_resource_manager *mgr;
180 	struct xe_ttm_vram_mgr *vram_mgr;
181 
182 	xe_assert(xe, resource_is_vram(res));
183 	mgr = ttm_manager_type(&xe->ttm, res->mem_type);
184 	vram_mgr = to_xe_ttm_vram_mgr(mgr);
185 
186 	return container_of(vram_mgr, struct xe_vram_region, ttm);
187 }
188 
189 static void try_add_system(struct xe_device *xe, struct xe_bo *bo,
190 			   u32 bo_flags, u32 *c)
191 {
192 	if (bo_flags & XE_BO_FLAG_SYSTEM) {
193 		xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
194 
195 		bo->placements[*c] = (struct ttm_place) {
196 			.mem_type = XE_PL_TT,
197 			.flags = (bo_flags & XE_BO_FLAG_VRAM_MASK) ?
198 			TTM_PL_FLAG_FALLBACK : 0,
199 		};
200 		*c += 1;
201 	}
202 }
203 
204 static bool force_contiguous(u32 bo_flags)
205 {
206 	if (bo_flags & XE_BO_FLAG_STOLEN)
207 		return true; /* users expect this */
208 	else if (bo_flags & XE_BO_FLAG_PINNED &&
209 		 !(bo_flags & XE_BO_FLAG_PINNED_LATE_RESTORE))
210 		return true; /* needs vmap */
211 	else if (bo_flags & XE_BO_FLAG_CPU_ADDR_MIRROR)
212 		return true;
213 
214 	/*
215 	 * For eviction / restore on suspend / resume objects pinned in VRAM
216 	 * must be contiguous, also only contiguous BOs support xe_bo_vmap.
217 	 */
218 	return bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS &&
219 	       bo_flags & XE_BO_FLAG_PINNED;
220 }
221 
222 static u8 vram_bo_flag_to_tile_id(struct xe_device *xe, u32 vram_bo_flag)
223 {
224 	xe_assert(xe, vram_bo_flag & XE_BO_FLAG_VRAM_MASK);
225 	xe_assert(xe, (vram_bo_flag & (vram_bo_flag - 1)) == 0);
226 
227 	return __ffs(vram_bo_flag >> (__ffs(XE_BO_FLAG_VRAM0) - 1)) - 1;
228 }
229 
230 static u32 bo_vram_flags_to_vram_placement(struct xe_device *xe, u32 bo_flags, u32 vram_flag,
231 					   enum ttm_bo_type type)
232 {
233 	u8 tile_id = vram_bo_flag_to_tile_id(xe, vram_flag);
234 
235 	xe_assert(xe, tile_id < xe->info.tile_count);
236 
237 	if (type == ttm_bo_type_kernel && !(bo_flags & XE_BO_FLAG_FORCE_USER_VRAM))
238 		return xe->tiles[tile_id].mem.kernel_vram->placement;
239 	else
240 		return xe->tiles[tile_id].mem.vram->placement;
241 }
242 
243 static void add_vram(struct xe_device *xe, struct xe_bo *bo,
244 		     struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c)
245 {
246 	struct ttm_place place = { .mem_type = mem_type };
247 	struct ttm_resource_manager *mgr = ttm_manager_type(&xe->ttm, mem_type);
248 	struct xe_ttm_vram_mgr *vram_mgr = to_xe_ttm_vram_mgr(mgr);
249 
250 	struct xe_vram_region *vram;
251 	u64 io_size;
252 
253 	xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
254 
255 	vram = container_of(vram_mgr, struct xe_vram_region, ttm);
256 	xe_assert(xe, vram && vram->usable_size);
257 	io_size = vram->io_size;
258 
259 	if (force_contiguous(bo_flags))
260 		place.flags |= TTM_PL_FLAG_CONTIGUOUS;
261 
262 	if (io_size < vram->usable_size) {
263 		if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) {
264 			place.fpfn = 0;
265 			place.lpfn = io_size >> PAGE_SHIFT;
266 		} else {
267 			place.flags |= TTM_PL_FLAG_TOPDOWN;
268 		}
269 	}
270 	places[*c] = place;
271 	*c += 1;
272 }
273 
274 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo,
275 			 u32 bo_flags, enum ttm_bo_type type, u32 *c)
276 {
277 	u32 vram_flag;
278 
279 	for_each_set_bo_vram_flag(vram_flag, bo_flags) {
280 		u32 pl = bo_vram_flags_to_vram_placement(xe, bo_flags, vram_flag, type);
281 
282 		add_vram(xe, bo, bo->placements, bo_flags, pl, c);
283 	}
284 }
285 
286 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo,
287 			   u32 bo_flags, u32 *c)
288 {
289 	if (bo_flags & XE_BO_FLAG_STOLEN) {
290 		xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
291 
292 		bo->placements[*c] = (struct ttm_place) {
293 			.mem_type = XE_PL_STOLEN,
294 			.flags = force_contiguous(bo_flags) ?
295 				TTM_PL_FLAG_CONTIGUOUS : 0,
296 		};
297 		*c += 1;
298 	}
299 }
300 
301 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
302 				       u32 bo_flags, enum ttm_bo_type type)
303 {
304 	u32 c = 0;
305 
306 	try_add_vram(xe, bo, bo_flags, type, &c);
307 	try_add_system(xe, bo, bo_flags, &c);
308 	try_add_stolen(xe, bo, bo_flags, &c);
309 
310 	if (!c)
311 		return -EINVAL;
312 
313 	bo->placement = (struct ttm_placement) {
314 		.num_placement = c,
315 		.placement = bo->placements,
316 	};
317 
318 	return 0;
319 }
320 
321 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
322 			      u32 bo_flags, enum ttm_bo_type type)
323 {
324 	xe_bo_assert_held(bo);
325 	return __xe_bo_placement_for_flags(xe, bo, bo_flags, type);
326 }
327 
328 static void xe_evict_flags(struct ttm_buffer_object *tbo,
329 			   struct ttm_placement *placement)
330 {
331 	struct xe_device *xe = container_of(tbo->bdev, typeof(*xe), ttm);
332 	bool device_unplugged = drm_dev_is_unplugged(&xe->drm);
333 	struct xe_bo *bo;
334 
335 	if (!xe_bo_is_xe_bo(tbo)) {
336 		/* Don't handle scatter gather BOs */
337 		if (tbo->type == ttm_bo_type_sg) {
338 			placement->num_placement = 0;
339 			return;
340 		}
341 
342 		*placement = device_unplugged ? purge_placement : sys_placement;
343 		return;
344 	}
345 
346 	bo = ttm_to_xe_bo(tbo);
347 	if (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) {
348 		*placement = sys_placement;
349 		return;
350 	}
351 
352 	if (device_unplugged && !tbo->base.dma_buf) {
353 		*placement = purge_placement;
354 		return;
355 	}
356 
357 	/*
358 	 * For xe, sg bos that are evicted to system just triggers a
359 	 * rebind of the sg list upon subsequent validation to XE_PL_TT.
360 	 */
361 	switch (tbo->resource->mem_type) {
362 	case XE_PL_VRAM0:
363 	case XE_PL_VRAM1:
364 	case XE_PL_STOLEN:
365 		*placement = tt_placement;
366 		break;
367 	case XE_PL_TT:
368 	default:
369 		*placement = sys_placement;
370 		break;
371 	}
372 }
373 
374 /* struct xe_ttm_tt - Subclassed ttm_tt for xe */
375 struct xe_ttm_tt {
376 	struct ttm_tt ttm;
377 	struct sg_table sgt;
378 	struct sg_table *sg;
379 	/** @purgeable: Whether the content of the pages of @ttm is purgeable. */
380 	bool purgeable;
381 };
382 
383 static int xe_tt_map_sg(struct xe_device *xe, struct ttm_tt *tt)
384 {
385 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
386 	unsigned long num_pages = tt->num_pages;
387 	int ret;
388 
389 	XE_WARN_ON((tt->page_flags & TTM_TT_FLAG_EXTERNAL) &&
390 		   !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE));
391 
392 	if (xe_tt->sg)
393 		return 0;
394 
395 	ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages,
396 						num_pages, 0,
397 						(u64)num_pages << PAGE_SHIFT,
398 						xe_sg_segment_size(xe->drm.dev),
399 						GFP_KERNEL);
400 	if (ret)
401 		return ret;
402 
403 	xe_tt->sg = &xe_tt->sgt;
404 	ret = dma_map_sgtable(xe->drm.dev, xe_tt->sg, DMA_BIDIRECTIONAL,
405 			      DMA_ATTR_SKIP_CPU_SYNC);
406 	if (ret) {
407 		sg_free_table(xe_tt->sg);
408 		xe_tt->sg = NULL;
409 		return ret;
410 	}
411 
412 	return 0;
413 }
414 
415 static void xe_tt_unmap_sg(struct xe_device *xe, struct ttm_tt *tt)
416 {
417 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
418 
419 	if (xe_tt->sg) {
420 		dma_unmap_sgtable(xe->drm.dev, xe_tt->sg,
421 				  DMA_BIDIRECTIONAL, 0);
422 		sg_free_table(xe_tt->sg);
423 		xe_tt->sg = NULL;
424 	}
425 }
426 
427 struct sg_table *xe_bo_sg(struct xe_bo *bo)
428 {
429 	struct ttm_tt *tt = bo->ttm.ttm;
430 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
431 
432 	return xe_tt->sg;
433 }
434 
435 /*
436  * Account ttm pages against the device shrinker's shrinkable and
437  * purgeable counts.
438  */
439 static void xe_ttm_tt_account_add(struct xe_device *xe, struct ttm_tt *tt)
440 {
441 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
442 
443 	if (xe_tt->purgeable)
444 		xe_shrinker_mod_pages(xe->mem.shrinker, 0, tt->num_pages);
445 	else
446 		xe_shrinker_mod_pages(xe->mem.shrinker, tt->num_pages, 0);
447 }
448 
449 static void xe_ttm_tt_account_subtract(struct xe_device *xe, struct ttm_tt *tt)
450 {
451 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
452 
453 	if (xe_tt->purgeable)
454 		xe_shrinker_mod_pages(xe->mem.shrinker, 0, -(long)tt->num_pages);
455 	else
456 		xe_shrinker_mod_pages(xe->mem.shrinker, -(long)tt->num_pages, 0);
457 }
458 
459 static void update_global_total_pages(struct ttm_device *ttm_dev,
460 				      long num_pages)
461 {
462 #if IS_ENABLED(CONFIG_TRACE_GPU_MEM)
463 	struct xe_device *xe = ttm_to_xe_device(ttm_dev);
464 	u64 global_total_pages =
465 		atomic64_add_return(num_pages, &xe->global_total_pages);
466 
467 	trace_gpu_mem_total(xe->drm.primary->index, 0,
468 			    global_total_pages << PAGE_SHIFT);
469 #endif
470 }
471 
472 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo,
473 				       u32 page_flags)
474 {
475 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
476 	struct xe_device *xe = xe_bo_device(bo);
477 	struct xe_ttm_tt *xe_tt;
478 	struct ttm_tt *tt;
479 	unsigned long extra_pages;
480 	enum ttm_caching caching = ttm_cached;
481 	int err;
482 
483 	xe_tt = kzalloc(sizeof(*xe_tt), GFP_KERNEL);
484 	if (!xe_tt)
485 		return NULL;
486 
487 	tt = &xe_tt->ttm;
488 
489 	extra_pages = 0;
490 	if (xe_bo_needs_ccs_pages(bo))
491 		extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, xe_bo_size(bo)),
492 					   PAGE_SIZE);
493 
494 	/*
495 	 * DGFX system memory is always WB / ttm_cached, since
496 	 * other caching modes are only supported on x86. DGFX
497 	 * GPU system memory accesses are always coherent with the
498 	 * CPU.
499 	 */
500 	if (!IS_DGFX(xe)) {
501 		switch (bo->cpu_caching) {
502 		case DRM_XE_GEM_CPU_CACHING_WC:
503 			caching = ttm_write_combined;
504 			break;
505 		default:
506 			caching = ttm_cached;
507 			break;
508 		}
509 
510 		WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching);
511 
512 		/*
513 		 * Display scanout is always non-coherent with the CPU cache.
514 		 *
515 		 * For Xe_LPG and beyond, PPGTT PTE lookups are also
516 		 * non-coherent and require a CPU:WC mapping.
517 		 */
518 		if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) ||
519 		    (xe->info.graphics_verx100 >= 1270 &&
520 		     bo->flags & XE_BO_FLAG_PAGETABLE))
521 			caching = ttm_write_combined;
522 	}
523 
524 	if (bo->flags & XE_BO_FLAG_NEEDS_UC) {
525 		/*
526 		 * Valid only for internally-created buffers only, for
527 		 * which cpu_caching is never initialized.
528 		 */
529 		xe_assert(xe, bo->cpu_caching == 0);
530 		caching = ttm_uncached;
531 	}
532 
533 	if (ttm_bo->type != ttm_bo_type_sg)
534 		page_flags |= TTM_TT_FLAG_EXTERNAL | TTM_TT_FLAG_EXTERNAL_MAPPABLE;
535 
536 	err = ttm_tt_init(tt, &bo->ttm, page_flags, caching, extra_pages);
537 	if (err) {
538 		kfree(xe_tt);
539 		return NULL;
540 	}
541 
542 	if (ttm_bo->type != ttm_bo_type_sg) {
543 		err = ttm_tt_setup_backup(tt);
544 		if (err) {
545 			ttm_tt_fini(tt);
546 			kfree(xe_tt);
547 			return NULL;
548 		}
549 	}
550 
551 	return tt;
552 }
553 
554 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt,
555 			      struct ttm_operation_ctx *ctx)
556 {
557 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
558 	int err;
559 
560 	/*
561 	 * dma-bufs are not populated with pages, and the dma-
562 	 * addresses are set up when moved to XE_PL_TT.
563 	 */
564 	if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) &&
565 	    !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE))
566 		return 0;
567 
568 	if (ttm_tt_is_backed_up(tt) && !xe_tt->purgeable) {
569 		err = ttm_tt_restore(ttm_dev, tt, ctx);
570 	} else {
571 		ttm_tt_clear_backed_up(tt);
572 		err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx);
573 	}
574 	if (err)
575 		return err;
576 
577 	xe_tt->purgeable = false;
578 	xe_ttm_tt_account_add(ttm_to_xe_device(ttm_dev), tt);
579 	update_global_total_pages(ttm_dev, tt->num_pages);
580 
581 	return 0;
582 }
583 
584 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt)
585 {
586 	struct xe_device *xe = ttm_to_xe_device(ttm_dev);
587 
588 	if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) &&
589 	    !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE))
590 		return;
591 
592 	xe_tt_unmap_sg(xe, tt);
593 
594 	ttm_pool_free(&ttm_dev->pool, tt);
595 	xe_ttm_tt_account_subtract(xe, tt);
596 	update_global_total_pages(ttm_dev, -(long)tt->num_pages);
597 }
598 
599 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt)
600 {
601 	ttm_tt_fini(tt);
602 	kfree(tt);
603 }
604 
605 static bool xe_ttm_resource_visible(struct ttm_resource *mem)
606 {
607 	struct xe_ttm_vram_mgr_resource *vres =
608 		to_xe_ttm_vram_mgr_resource(mem);
609 
610 	return vres->used_visible_size == mem->size;
611 }
612 
613 /**
614  * xe_bo_is_visible_vram - check if BO is placed entirely in visible VRAM.
615  * @bo: The BO
616  *
617  * This function checks whether a given BO resides entirely in memory visible from the CPU
618  *
619  * Returns: true if the BO is entirely visible, false otherwise.
620  *
621  */
622 bool xe_bo_is_visible_vram(struct xe_bo *bo)
623 {
624 	if (drm_WARN_ON(bo->ttm.base.dev, !xe_bo_is_vram(bo)))
625 		return false;
626 
627 	return xe_ttm_resource_visible(bo->ttm.resource);
628 }
629 
630 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev,
631 				 struct ttm_resource *mem)
632 {
633 	struct xe_device *xe = ttm_to_xe_device(bdev);
634 
635 	switch (mem->mem_type) {
636 	case XE_PL_SYSTEM:
637 	case XE_PL_TT:
638 		return 0;
639 	case XE_PL_VRAM0:
640 	case XE_PL_VRAM1: {
641 		struct xe_vram_region *vram = res_to_mem_region(mem);
642 
643 		if (!xe_ttm_resource_visible(mem))
644 			return -EINVAL;
645 
646 		mem->bus.offset = mem->start << PAGE_SHIFT;
647 
648 		if (vram->mapping &&
649 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
650 			mem->bus.addr = (u8 __force *)vram->mapping +
651 				mem->bus.offset;
652 
653 		mem->bus.offset += vram->io_start;
654 		mem->bus.is_iomem = true;
655 
656 #if  !IS_ENABLED(CONFIG_X86)
657 		mem->bus.caching = ttm_write_combined;
658 #endif
659 		return 0;
660 	} case XE_PL_STOLEN:
661 		return xe_ttm_stolen_io_mem_reserve(xe, mem);
662 	default:
663 		return -EINVAL;
664 	}
665 }
666 
667 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo,
668 				const struct ttm_operation_ctx *ctx)
669 {
670 	struct dma_resv_iter cursor;
671 	struct dma_fence *fence;
672 	struct drm_gem_object *obj = &bo->ttm.base;
673 	struct drm_gpuvm_bo *vm_bo;
674 	bool idle = false;
675 	int ret = 0;
676 
677 	dma_resv_assert_held(bo->ttm.base.resv);
678 
679 	if (!list_empty(&bo->ttm.base.gpuva.list)) {
680 		dma_resv_iter_begin(&cursor, bo->ttm.base.resv,
681 				    DMA_RESV_USAGE_BOOKKEEP);
682 		dma_resv_for_each_fence_unlocked(&cursor, fence)
683 			dma_fence_enable_sw_signaling(fence);
684 		dma_resv_iter_end(&cursor);
685 	}
686 
687 	drm_gem_for_each_gpuvm_bo(vm_bo, obj) {
688 		struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm);
689 		struct drm_gpuva *gpuva;
690 
691 		if (!xe_vm_in_fault_mode(vm)) {
692 			drm_gpuvm_bo_evict(vm_bo, true);
693 			continue;
694 		}
695 
696 		if (!idle) {
697 			long timeout;
698 
699 			if (ctx->no_wait_gpu &&
700 			    !dma_resv_test_signaled(bo->ttm.base.resv,
701 						    DMA_RESV_USAGE_BOOKKEEP))
702 				return -EBUSY;
703 
704 			timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
705 							DMA_RESV_USAGE_BOOKKEEP,
706 							ctx->interruptible,
707 							MAX_SCHEDULE_TIMEOUT);
708 			if (!timeout)
709 				return -ETIME;
710 			if (timeout < 0)
711 				return timeout;
712 
713 			idle = true;
714 		}
715 
716 		drm_gpuvm_bo_for_each_va(gpuva, vm_bo) {
717 			struct xe_vma *vma = gpuva_to_vma(gpuva);
718 
719 			trace_xe_vma_evict(vma);
720 			ret = xe_vm_invalidate_vma(vma);
721 			if (XE_WARN_ON(ret))
722 				return ret;
723 		}
724 	}
725 
726 	return ret;
727 }
728 
729 /*
730  * The dma-buf map_attachment() / unmap_attachment() is hooked up here.
731  * Note that unmapping the attachment is deferred to the next
732  * map_attachment time, or to bo destroy (after idling) whichever comes first.
733  * This is to avoid syncing before unmap_attachment(), assuming that the
734  * caller relies on idling the reservation object before moving the
735  * backing store out. Should that assumption not hold, then we will be able
736  * to unconditionally call unmap_attachment() when moving out to system.
737  */
738 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo,
739 			     struct ttm_resource *new_res)
740 {
741 	struct dma_buf_attachment *attach = ttm_bo->base.import_attach;
742 	struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt,
743 					       ttm);
744 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
745 	bool device_unplugged = drm_dev_is_unplugged(&xe->drm);
746 	struct sg_table *sg;
747 
748 	xe_assert(xe, attach);
749 	xe_assert(xe, ttm_bo->ttm);
750 
751 	if (device_unplugged && new_res->mem_type == XE_PL_SYSTEM &&
752 	    ttm_bo->sg) {
753 		dma_resv_wait_timeout(ttm_bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
754 				      false, MAX_SCHEDULE_TIMEOUT);
755 		dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL);
756 		ttm_bo->sg = NULL;
757 	}
758 
759 	if (new_res->mem_type == XE_PL_SYSTEM)
760 		goto out;
761 
762 	if (ttm_bo->sg) {
763 		dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL);
764 		ttm_bo->sg = NULL;
765 	}
766 
767 	sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
768 	if (IS_ERR(sg))
769 		return PTR_ERR(sg);
770 
771 	ttm_bo->sg = sg;
772 	xe_tt->sg = sg;
773 
774 out:
775 	ttm_bo_move_null(ttm_bo, new_res);
776 
777 	return 0;
778 }
779 
780 /**
781  * xe_bo_move_notify - Notify subsystems of a pending move
782  * @bo: The buffer object
783  * @ctx: The struct ttm_operation_ctx controlling locking and waits.
784  *
785  * This function notifies subsystems of an upcoming buffer move.
786  * Upon receiving such a notification, subsystems should schedule
787  * halting access to the underlying pages and optionally add a fence
788  * to the buffer object's dma_resv object, that signals when access is
789  * stopped. The caller will wait on all dma_resv fences before
790  * starting the move.
791  *
792  * A subsystem may commence access to the object after obtaining
793  * bindings to the new backing memory under the object lock.
794  *
795  * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode,
796  * negative error code on error.
797  */
798 static int xe_bo_move_notify(struct xe_bo *bo,
799 			     const struct ttm_operation_ctx *ctx)
800 {
801 	struct ttm_buffer_object *ttm_bo = &bo->ttm;
802 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
803 	struct ttm_resource *old_mem = ttm_bo->resource;
804 	u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
805 	int ret;
806 
807 	/*
808 	 * If this starts to call into many components, consider
809 	 * using a notification chain here.
810 	 */
811 
812 	if (xe_bo_is_pinned(bo))
813 		return -EINVAL;
814 
815 	xe_bo_vunmap(bo);
816 	ret = xe_bo_trigger_rebind(xe, bo, ctx);
817 	if (ret)
818 		return ret;
819 
820 	/* Don't call move_notify() for imported dma-bufs. */
821 	if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach)
822 		dma_buf_move_notify(ttm_bo->base.dma_buf);
823 
824 	/*
825 	 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual),
826 	 * so if we moved from VRAM make sure to unlink this from the userfault
827 	 * tracking.
828 	 */
829 	if (mem_type_is_vram(old_mem_type)) {
830 		mutex_lock(&xe->mem_access.vram_userfault.lock);
831 		if (!list_empty(&bo->vram_userfault_link))
832 			list_del_init(&bo->vram_userfault_link);
833 		mutex_unlock(&xe->mem_access.vram_userfault.lock);
834 	}
835 
836 	return 0;
837 }
838 
839 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict,
840 		      struct ttm_operation_ctx *ctx,
841 		      struct ttm_resource *new_mem,
842 		      struct ttm_place *hop)
843 {
844 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
845 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
846 	struct ttm_resource *old_mem = ttm_bo->resource;
847 	u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
848 	struct ttm_tt *ttm = ttm_bo->ttm;
849 	struct xe_migrate *migrate = NULL;
850 	struct dma_fence *fence;
851 	bool move_lacks_source;
852 	bool tt_has_data;
853 	bool needs_clear;
854 	bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) &&
855 				  ttm && ttm_tt_is_populated(ttm)) ? true : false;
856 	int ret = 0;
857 
858 	/* Bo creation path, moving to system or TT. */
859 	if ((!old_mem && ttm) && !handle_system_ccs) {
860 		if (new_mem->mem_type == XE_PL_TT)
861 			ret = xe_tt_map_sg(xe, ttm);
862 		if (!ret)
863 			ttm_bo_move_null(ttm_bo, new_mem);
864 		goto out;
865 	}
866 
867 	if (ttm_bo->type == ttm_bo_type_sg) {
868 		if (new_mem->mem_type == XE_PL_SYSTEM)
869 			ret = xe_bo_move_notify(bo, ctx);
870 		if (!ret)
871 			ret = xe_bo_move_dmabuf(ttm_bo, new_mem);
872 		return ret;
873 	}
874 
875 	tt_has_data = ttm && (ttm_tt_is_populated(ttm) || ttm_tt_is_swapped(ttm));
876 
877 	move_lacks_source = !old_mem || (handle_system_ccs ? (!bo->ccs_cleared) :
878 					 (!mem_type_is_vram(old_mem_type) && !tt_has_data));
879 
880 	needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) ||
881 		(!ttm && ttm_bo->type == ttm_bo_type_device);
882 
883 	if (new_mem->mem_type == XE_PL_TT) {
884 		ret = xe_tt_map_sg(xe, ttm);
885 		if (ret)
886 			goto out;
887 	}
888 
889 	if ((move_lacks_source && !needs_clear)) {
890 		ttm_bo_move_null(ttm_bo, new_mem);
891 		goto out;
892 	}
893 
894 	if (!move_lacks_source && (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) &&
895 	    new_mem->mem_type == XE_PL_SYSTEM) {
896 		ret = xe_svm_bo_evict(bo);
897 		if (!ret) {
898 			drm_dbg(&xe->drm, "Evict system allocator BO success\n");
899 			ttm_bo_move_null(ttm_bo, new_mem);
900 		} else {
901 			drm_dbg(&xe->drm, "Evict system allocator BO failed=%pe\n",
902 				ERR_PTR(ret));
903 		}
904 
905 		goto out;
906 	}
907 
908 	if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) {
909 		ttm_bo_move_null(ttm_bo, new_mem);
910 		goto out;
911 	}
912 
913 	/*
914 	 * Failed multi-hop where the old_mem is still marked as
915 	 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move.
916 	 */
917 	if (old_mem_type == XE_PL_TT &&
918 	    new_mem->mem_type == XE_PL_TT) {
919 		ttm_bo_move_null(ttm_bo, new_mem);
920 		goto out;
921 	}
922 
923 	if (!move_lacks_source && !xe_bo_is_pinned(bo)) {
924 		ret = xe_bo_move_notify(bo, ctx);
925 		if (ret)
926 			goto out;
927 	}
928 
929 	if (old_mem_type == XE_PL_TT &&
930 	    new_mem->mem_type == XE_PL_SYSTEM) {
931 		long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
932 						     DMA_RESV_USAGE_BOOKKEEP,
933 						     false,
934 						     MAX_SCHEDULE_TIMEOUT);
935 		if (timeout < 0) {
936 			ret = timeout;
937 			goto out;
938 		}
939 
940 		if (!handle_system_ccs) {
941 			ttm_bo_move_null(ttm_bo, new_mem);
942 			goto out;
943 		}
944 	}
945 
946 	if (!move_lacks_source &&
947 	    ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) ||
948 	     (mem_type_is_vram(old_mem_type) &&
949 	      new_mem->mem_type == XE_PL_SYSTEM))) {
950 		hop->fpfn = 0;
951 		hop->lpfn = 0;
952 		hop->mem_type = XE_PL_TT;
953 		hop->flags = TTM_PL_FLAG_TEMPORARY;
954 		ret = -EMULTIHOP;
955 		goto out;
956 	}
957 
958 	if (bo->tile)
959 		migrate = bo->tile->migrate;
960 	else if (resource_is_vram(new_mem))
961 		migrate = mem_type_to_migrate(xe, new_mem->mem_type);
962 	else if (mem_type_is_vram(old_mem_type))
963 		migrate = mem_type_to_migrate(xe, old_mem_type);
964 	else
965 		migrate = xe->tiles[0].migrate;
966 
967 	xe_assert(xe, migrate);
968 	trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source);
969 	if (xe_rpm_reclaim_safe(xe)) {
970 		/*
971 		 * We might be called through swapout in the validation path of
972 		 * another TTM device, so acquire rpm here.
973 		 */
974 		xe_pm_runtime_get(xe);
975 	} else {
976 		drm_WARN_ON(&xe->drm, handle_system_ccs);
977 		xe_pm_runtime_get_noresume(xe);
978 	}
979 
980 	if (move_lacks_source) {
981 		u32 flags = 0;
982 
983 		if (mem_type_is_vram(new_mem->mem_type))
984 			flags |= XE_MIGRATE_CLEAR_FLAG_FULL;
985 		else if (handle_system_ccs)
986 			flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA;
987 
988 		fence = xe_migrate_clear(migrate, bo, new_mem, flags);
989 	} else {
990 		fence = xe_migrate_copy(migrate, bo, bo, old_mem, new_mem,
991 					handle_system_ccs);
992 	}
993 	if (IS_ERR(fence)) {
994 		ret = PTR_ERR(fence);
995 		xe_pm_runtime_put(xe);
996 		goto out;
997 	}
998 	if (!move_lacks_source) {
999 		ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, true,
1000 						new_mem);
1001 		if (ret) {
1002 			dma_fence_wait(fence, false);
1003 			ttm_bo_move_null(ttm_bo, new_mem);
1004 			ret = 0;
1005 		}
1006 	} else {
1007 		/*
1008 		 * ttm_bo_move_accel_cleanup() may blow up if
1009 		 * bo->resource == NULL, so just attach the
1010 		 * fence and set the new resource.
1011 		 */
1012 		dma_resv_add_fence(ttm_bo->base.resv, fence,
1013 				   DMA_RESV_USAGE_KERNEL);
1014 		ttm_bo_move_null(ttm_bo, new_mem);
1015 	}
1016 
1017 	dma_fence_put(fence);
1018 	xe_pm_runtime_put(xe);
1019 
1020 	/*
1021 	 * CCS meta data is migrated from TT -> SMEM. So, let us detach the
1022 	 * BBs from BO as it is no longer needed.
1023 	 */
1024 	if (IS_VF_CCS_READY(xe) && old_mem_type == XE_PL_TT &&
1025 	    new_mem->mem_type == XE_PL_SYSTEM)
1026 		xe_sriov_vf_ccs_detach_bo(bo);
1027 
1028 	if (IS_VF_CCS_READY(xe) &&
1029 	    ((move_lacks_source && new_mem->mem_type == XE_PL_TT) ||
1030 	     (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT)) &&
1031 	    handle_system_ccs)
1032 		ret = xe_sriov_vf_ccs_attach_bo(bo);
1033 
1034 out:
1035 	if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) &&
1036 	    ttm_bo->ttm) {
1037 		long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
1038 						     DMA_RESV_USAGE_KERNEL,
1039 						     false,
1040 						     MAX_SCHEDULE_TIMEOUT);
1041 		if (timeout < 0)
1042 			ret = timeout;
1043 
1044 		if (IS_VF_CCS_READY(xe))
1045 			xe_sriov_vf_ccs_detach_bo(bo);
1046 
1047 		xe_tt_unmap_sg(xe, ttm_bo->ttm);
1048 	}
1049 
1050 	return ret;
1051 }
1052 
1053 static long xe_bo_shrink_purge(struct ttm_operation_ctx *ctx,
1054 			       struct ttm_buffer_object *bo,
1055 			       unsigned long *scanned)
1056 {
1057 	struct xe_device *xe = ttm_to_xe_device(bo->bdev);
1058 	struct ttm_tt *tt = bo->ttm;
1059 	long lret;
1060 
1061 	/* Fake move to system, without copying data. */
1062 	if (bo->resource->mem_type != XE_PL_SYSTEM) {
1063 		struct ttm_resource *new_resource;
1064 
1065 		lret = ttm_bo_wait_ctx(bo, ctx);
1066 		if (lret)
1067 			return lret;
1068 
1069 		lret = ttm_bo_mem_space(bo, &sys_placement, &new_resource, ctx);
1070 		if (lret)
1071 			return lret;
1072 
1073 		xe_tt_unmap_sg(xe, bo->ttm);
1074 		ttm_bo_move_null(bo, new_resource);
1075 	}
1076 
1077 	*scanned += bo->ttm->num_pages;
1078 	lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags)
1079 			     {.purge = true,
1080 			      .writeback = false,
1081 			      .allow_move = false});
1082 
1083 	if (lret > 0) {
1084 		xe_ttm_tt_account_subtract(xe, bo->ttm);
1085 		update_global_total_pages(bo->bdev, -(long)tt->num_pages);
1086 	}
1087 
1088 	return lret;
1089 }
1090 
1091 static bool
1092 xe_bo_eviction_valuable(struct ttm_buffer_object *bo, const struct ttm_place *place)
1093 {
1094 	struct drm_gpuvm_bo *vm_bo;
1095 
1096 	if (!ttm_bo_eviction_valuable(bo, place))
1097 		return false;
1098 
1099 	if (!xe_bo_is_xe_bo(bo))
1100 		return true;
1101 
1102 	drm_gem_for_each_gpuvm_bo(vm_bo, &bo->base) {
1103 		if (xe_vm_is_validating(gpuvm_to_vm(vm_bo->vm)))
1104 			return false;
1105 	}
1106 
1107 	return true;
1108 }
1109 
1110 /**
1111  * xe_bo_shrink() - Try to shrink an xe bo.
1112  * @ctx: The struct ttm_operation_ctx used for shrinking.
1113  * @bo: The TTM buffer object whose pages to shrink.
1114  * @flags: Flags governing the shrink behaviour.
1115  * @scanned: Pointer to a counter of the number of pages
1116  * attempted to shrink.
1117  *
1118  * Try to shrink- or purge a bo, and if it succeeds, unmap dma.
1119  * Note that we need to be able to handle also non xe bos
1120  * (ghost bos), but only if the struct ttm_tt is embedded in
1121  * a struct xe_ttm_tt. When the function attempts to shrink
1122  * the pages of a buffer object, The value pointed to by @scanned
1123  * is updated.
1124  *
1125  * Return: The number of pages shrunken or purged, or negative error
1126  * code on failure.
1127  */
1128 long xe_bo_shrink(struct ttm_operation_ctx *ctx, struct ttm_buffer_object *bo,
1129 		  const struct xe_bo_shrink_flags flags,
1130 		  unsigned long *scanned)
1131 {
1132 	struct ttm_tt *tt = bo->ttm;
1133 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
1134 	struct ttm_place place = {.mem_type = bo->resource->mem_type};
1135 	struct xe_bo *xe_bo = ttm_to_xe_bo(bo);
1136 	struct xe_device *xe = ttm_to_xe_device(bo->bdev);
1137 	bool needs_rpm;
1138 	long lret = 0L;
1139 
1140 	if (!(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE) ||
1141 	    (flags.purge && !xe_tt->purgeable))
1142 		return -EBUSY;
1143 
1144 	if (!xe_bo_eviction_valuable(bo, &place))
1145 		return -EBUSY;
1146 
1147 	if (!xe_bo_is_xe_bo(bo) || !xe_bo_get_unless_zero(xe_bo))
1148 		return xe_bo_shrink_purge(ctx, bo, scanned);
1149 
1150 	if (xe_tt->purgeable) {
1151 		if (bo->resource->mem_type != XE_PL_SYSTEM)
1152 			lret = xe_bo_move_notify(xe_bo, ctx);
1153 		if (!lret)
1154 			lret = xe_bo_shrink_purge(ctx, bo, scanned);
1155 		goto out_unref;
1156 	}
1157 
1158 	/* System CCS needs gpu copy when moving PL_TT -> PL_SYSTEM */
1159 	needs_rpm = (!IS_DGFX(xe) && bo->resource->mem_type != XE_PL_SYSTEM &&
1160 		     xe_bo_needs_ccs_pages(xe_bo));
1161 	if (needs_rpm && !xe_pm_runtime_get_if_active(xe))
1162 		goto out_unref;
1163 
1164 	*scanned += tt->num_pages;
1165 	lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags)
1166 			     {.purge = false,
1167 			      .writeback = flags.writeback,
1168 			      .allow_move = true});
1169 	if (needs_rpm)
1170 		xe_pm_runtime_put(xe);
1171 
1172 	if (lret > 0) {
1173 		xe_ttm_tt_account_subtract(xe, tt);
1174 		update_global_total_pages(bo->bdev, -(long)tt->num_pages);
1175 	}
1176 
1177 out_unref:
1178 	xe_bo_put(xe_bo);
1179 
1180 	return lret;
1181 }
1182 
1183 /**
1184  * xe_bo_notifier_prepare_pinned() - Prepare a pinned VRAM object to be backed
1185  * up in system memory.
1186  * @bo: The buffer object to prepare.
1187  *
1188  * On successful completion, the object backup pages are allocated. Expectation
1189  * is that this is called from the PM notifier, prior to suspend/hibernation.
1190  *
1191  * Return: 0 on success. Negative error code on failure.
1192  */
1193 int xe_bo_notifier_prepare_pinned(struct xe_bo *bo)
1194 {
1195 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
1196 	struct xe_validation_ctx ctx;
1197 	struct drm_exec exec;
1198 	struct xe_bo *backup;
1199 	int ret = 0;
1200 
1201 	xe_validation_guard(&ctx, &xe->val, &exec, (struct xe_val_flags) {.exclusive = true}, ret) {
1202 		ret = drm_exec_lock_obj(&exec, &bo->ttm.base);
1203 		drm_exec_retry_on_contention(&exec);
1204 		xe_assert(xe, !ret);
1205 		xe_assert(xe, !bo->backup_obj);
1206 
1207 		/*
1208 		 * Since this is called from the PM notifier we might have raced with
1209 		 * someone unpinning this after we dropped the pinned list lock and
1210 		 * grabbing the above bo lock.
1211 		 */
1212 		if (!xe_bo_is_pinned(bo))
1213 			break;
1214 
1215 		if (!xe_bo_is_vram(bo))
1216 			break;
1217 
1218 		if (bo->flags & XE_BO_FLAG_PINNED_NORESTORE)
1219 			break;
1220 
1221 		backup = xe_bo_init_locked(xe, NULL, NULL, bo->ttm.base.resv, NULL, xe_bo_size(bo),
1222 					   DRM_XE_GEM_CPU_CACHING_WB, ttm_bo_type_kernel,
1223 					   XE_BO_FLAG_SYSTEM | XE_BO_FLAG_NEEDS_CPU_ACCESS |
1224 					   XE_BO_FLAG_PINNED, &exec);
1225 		if (IS_ERR(backup)) {
1226 			drm_exec_retry_on_contention(&exec);
1227 			ret = PTR_ERR(backup);
1228 			xe_validation_retry_on_oom(&ctx, &ret);
1229 			break;
1230 		}
1231 
1232 		backup->parent_obj = xe_bo_get(bo); /* Released by bo_destroy */
1233 		ttm_bo_pin(&backup->ttm);
1234 		bo->backup_obj = backup;
1235 	}
1236 
1237 	return ret;
1238 }
1239 
1240 /**
1241  * xe_bo_notifier_unprepare_pinned() - Undo the previous prepare operation.
1242  * @bo: The buffer object to undo the prepare for.
1243  *
1244  * Always returns 0. The backup object is removed, if still present. Expectation
1245  * it that this called from the PM notifier when undoing the prepare step.
1246  *
1247  * Return: Always returns 0.
1248  */
1249 int xe_bo_notifier_unprepare_pinned(struct xe_bo *bo)
1250 {
1251 	xe_bo_lock(bo, false);
1252 	if (bo->backup_obj) {
1253 		ttm_bo_unpin(&bo->backup_obj->ttm);
1254 		xe_bo_put(bo->backup_obj);
1255 		bo->backup_obj = NULL;
1256 	}
1257 	xe_bo_unlock(bo);
1258 
1259 	return 0;
1260 }
1261 
1262 static int xe_bo_evict_pinned_copy(struct xe_bo *bo, struct xe_bo *backup)
1263 {
1264 	struct xe_device *xe = xe_bo_device(bo);
1265 	bool unmap = false;
1266 	int ret = 0;
1267 
1268 	if (xe_bo_is_user(bo) || (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) {
1269 		struct xe_migrate *migrate;
1270 		struct dma_fence *fence;
1271 
1272 		if (bo->tile)
1273 			migrate = bo->tile->migrate;
1274 		else
1275 			migrate = mem_type_to_migrate(xe, bo->ttm.resource->mem_type);
1276 
1277 		xe_assert(xe, bo->ttm.base.resv == backup->ttm.base.resv);
1278 		ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
1279 		if (ret)
1280 			goto out_backup;
1281 
1282 		fence = xe_migrate_copy(migrate, bo, backup, bo->ttm.resource,
1283 					backup->ttm.resource, false);
1284 		if (IS_ERR(fence)) {
1285 			ret = PTR_ERR(fence);
1286 			goto out_backup;
1287 		}
1288 
1289 		dma_resv_add_fence(bo->ttm.base.resv, fence,
1290 				   DMA_RESV_USAGE_KERNEL);
1291 		dma_fence_put(fence);
1292 	} else {
1293 		ret = xe_bo_vmap(backup);
1294 		if (ret)
1295 			goto out_backup;
1296 
1297 		if (iosys_map_is_null(&bo->vmap)) {
1298 			ret = xe_bo_vmap(bo);
1299 			if (ret)
1300 				goto out_vunmap;
1301 			unmap = true;
1302 		}
1303 
1304 		xe_map_memcpy_from(xe, backup->vmap.vaddr, &bo->vmap, 0,
1305 				   xe_bo_size(bo));
1306 	}
1307 
1308 	if (!bo->backup_obj)
1309 		bo->backup_obj = backup;
1310 out_vunmap:
1311 	xe_bo_vunmap(backup);
1312 out_backup:
1313 	if (unmap)
1314 		xe_bo_vunmap(bo);
1315 
1316 	return ret;
1317 }
1318 
1319 /**
1320  * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory
1321  * @bo: The buffer object to move.
1322  *
1323  * On successful completion, the object memory will be moved to system memory.
1324  *
1325  * This is needed to for special handling of pinned VRAM object during
1326  * suspend-resume.
1327  *
1328  * Return: 0 on success. Negative error code on failure.
1329  */
1330 int xe_bo_evict_pinned(struct xe_bo *bo)
1331 {
1332 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
1333 	struct xe_validation_ctx ctx;
1334 	struct drm_exec exec;
1335 	struct xe_bo *backup = bo->backup_obj;
1336 	bool backup_created = false;
1337 	int ret = 0;
1338 
1339 	xe_validation_guard(&ctx, &xe->val, &exec, (struct xe_val_flags) {.exclusive = true}, ret) {
1340 		ret = drm_exec_lock_obj(&exec, &bo->ttm.base);
1341 		drm_exec_retry_on_contention(&exec);
1342 		xe_assert(xe, !ret);
1343 
1344 		if (WARN_ON(!bo->ttm.resource)) {
1345 			ret = -EINVAL;
1346 			break;
1347 		}
1348 
1349 		if (WARN_ON(!xe_bo_is_pinned(bo))) {
1350 			ret = -EINVAL;
1351 			break;
1352 		}
1353 
1354 		if (!xe_bo_is_vram(bo))
1355 			break;
1356 
1357 		if (bo->flags & XE_BO_FLAG_PINNED_NORESTORE)
1358 			break;
1359 
1360 		if (!backup) {
1361 			backup = xe_bo_init_locked(xe, NULL, NULL, bo->ttm.base.resv, NULL,
1362 						   xe_bo_size(bo),
1363 						   DRM_XE_GEM_CPU_CACHING_WB, ttm_bo_type_kernel,
1364 						   XE_BO_FLAG_SYSTEM | XE_BO_FLAG_NEEDS_CPU_ACCESS |
1365 						   XE_BO_FLAG_PINNED, &exec);
1366 			if (IS_ERR(backup)) {
1367 				drm_exec_retry_on_contention(&exec);
1368 				ret = PTR_ERR(backup);
1369 				xe_validation_retry_on_oom(&ctx, &ret);
1370 				break;
1371 			}
1372 			backup->parent_obj = xe_bo_get(bo); /* Released by bo_destroy */
1373 			backup_created = true;
1374 		}
1375 
1376 		ret = xe_bo_evict_pinned_copy(bo, backup);
1377 	}
1378 
1379 	if (ret && backup_created)
1380 		xe_bo_put(backup);
1381 
1382 	return ret;
1383 }
1384 
1385 /**
1386  * xe_bo_restore_pinned() - Restore a pinned VRAM object
1387  * @bo: The buffer object to move.
1388  *
1389  * On successful completion, the object memory will be moved back to VRAM.
1390  *
1391  * This is needed to for special handling of pinned VRAM object during
1392  * suspend-resume.
1393  *
1394  * Return: 0 on success. Negative error code on failure.
1395  */
1396 int xe_bo_restore_pinned(struct xe_bo *bo)
1397 {
1398 	struct ttm_operation_ctx ctx = {
1399 		.interruptible = false,
1400 		.gfp_retry_mayfail = false,
1401 	};
1402 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
1403 	struct xe_bo *backup = bo->backup_obj;
1404 	bool unmap = false;
1405 	int ret;
1406 
1407 	if (!backup)
1408 		return 0;
1409 
1410 	xe_bo_lock(bo, false);
1411 
1412 	if (!xe_bo_is_pinned(backup)) {
1413 		ret = ttm_bo_validate(&backup->ttm, &backup->placement, &ctx);
1414 		if (ret)
1415 			goto out_unlock_bo;
1416 	}
1417 
1418 	if (xe_bo_is_user(bo) || (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) {
1419 		struct xe_migrate *migrate;
1420 		struct dma_fence *fence;
1421 
1422 		if (bo->tile)
1423 			migrate = bo->tile->migrate;
1424 		else
1425 			migrate = mem_type_to_migrate(xe, bo->ttm.resource->mem_type);
1426 
1427 		ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
1428 		if (ret)
1429 			goto out_unlock_bo;
1430 
1431 		fence = xe_migrate_copy(migrate, backup, bo,
1432 					backup->ttm.resource, bo->ttm.resource,
1433 					false);
1434 		if (IS_ERR(fence)) {
1435 			ret = PTR_ERR(fence);
1436 			goto out_unlock_bo;
1437 		}
1438 
1439 		dma_resv_add_fence(bo->ttm.base.resv, fence,
1440 				   DMA_RESV_USAGE_KERNEL);
1441 		dma_fence_put(fence);
1442 	} else {
1443 		ret = xe_bo_vmap(backup);
1444 		if (ret)
1445 			goto out_unlock_bo;
1446 
1447 		if (iosys_map_is_null(&bo->vmap)) {
1448 			ret = xe_bo_vmap(bo);
1449 			if (ret)
1450 				goto out_backup;
1451 			unmap = true;
1452 		}
1453 
1454 		xe_map_memcpy_to(xe, &bo->vmap, 0, backup->vmap.vaddr,
1455 				 xe_bo_size(bo));
1456 	}
1457 
1458 	bo->backup_obj = NULL;
1459 
1460 out_backup:
1461 	xe_bo_vunmap(backup);
1462 	if (!bo->backup_obj) {
1463 		if (xe_bo_is_pinned(backup))
1464 			ttm_bo_unpin(&backup->ttm);
1465 		xe_bo_put(backup);
1466 	}
1467 out_unlock_bo:
1468 	if (unmap)
1469 		xe_bo_vunmap(bo);
1470 	xe_bo_unlock(bo);
1471 	return ret;
1472 }
1473 
1474 int xe_bo_dma_unmap_pinned(struct xe_bo *bo)
1475 {
1476 	struct ttm_buffer_object *ttm_bo = &bo->ttm;
1477 	struct ttm_tt *tt = ttm_bo->ttm;
1478 
1479 	if (tt) {
1480 		struct xe_ttm_tt *xe_tt = container_of(tt, typeof(*xe_tt), ttm);
1481 
1482 		if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) {
1483 			dma_buf_unmap_attachment(ttm_bo->base.import_attach,
1484 						 ttm_bo->sg,
1485 						 DMA_BIDIRECTIONAL);
1486 			ttm_bo->sg = NULL;
1487 			xe_tt->sg = NULL;
1488 		} else if (xe_tt->sg) {
1489 			dma_unmap_sgtable(ttm_to_xe_device(ttm_bo->bdev)->drm.dev,
1490 					  xe_tt->sg,
1491 					  DMA_BIDIRECTIONAL, 0);
1492 			sg_free_table(xe_tt->sg);
1493 			xe_tt->sg = NULL;
1494 		}
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo,
1501 				       unsigned long page_offset)
1502 {
1503 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1504 	struct xe_res_cursor cursor;
1505 	struct xe_vram_region *vram;
1506 
1507 	if (ttm_bo->resource->mem_type == XE_PL_STOLEN)
1508 		return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT;
1509 
1510 	vram = res_to_mem_region(ttm_bo->resource);
1511 	xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor);
1512 	return (vram->io_start + cursor.start) >> PAGE_SHIFT;
1513 }
1514 
1515 static void __xe_bo_vunmap(struct xe_bo *bo);
1516 
1517 /*
1518  * TODO: Move this function to TTM so we don't rely on how TTM does its
1519  * locking, thereby abusing TTM internals.
1520  */
1521 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo)
1522 {
1523 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1524 	bool locked;
1525 
1526 	xe_assert(xe, !kref_read(&ttm_bo->kref));
1527 
1528 	/*
1529 	 * We can typically only race with TTM trylocking under the
1530 	 * lru_lock, which will immediately be unlocked again since
1531 	 * the ttm_bo refcount is zero at this point. So trylocking *should*
1532 	 * always succeed here, as long as we hold the lru lock.
1533 	 */
1534 	spin_lock(&ttm_bo->bdev->lru_lock);
1535 	locked = dma_resv_trylock(&ttm_bo->base._resv);
1536 	spin_unlock(&ttm_bo->bdev->lru_lock);
1537 	xe_assert(xe, locked);
1538 
1539 	return locked;
1540 }
1541 
1542 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo)
1543 {
1544 	struct dma_resv_iter cursor;
1545 	struct dma_fence *fence;
1546 	struct dma_fence *replacement = NULL;
1547 	struct xe_bo *bo;
1548 
1549 	if (!xe_bo_is_xe_bo(ttm_bo))
1550 		return;
1551 
1552 	bo = ttm_to_xe_bo(ttm_bo);
1553 	xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount)));
1554 
1555 	if (!xe_ttm_bo_lock_in_destructor(ttm_bo))
1556 		return;
1557 
1558 	/*
1559 	 * Scrub the preempt fences if any. The unbind fence is already
1560 	 * attached to the resv.
1561 	 * TODO: Don't do this for external bos once we scrub them after
1562 	 * unbind.
1563 	 */
1564 	dma_resv_for_each_fence(&cursor, &ttm_bo->base._resv,
1565 				DMA_RESV_USAGE_BOOKKEEP, fence) {
1566 		if (xe_fence_is_xe_preempt(fence) &&
1567 		    !dma_fence_is_signaled(fence)) {
1568 			if (!replacement)
1569 				replacement = dma_fence_get_stub();
1570 
1571 			dma_resv_replace_fences(&ttm_bo->base._resv,
1572 						fence->context,
1573 						replacement,
1574 						DMA_RESV_USAGE_BOOKKEEP);
1575 		}
1576 	}
1577 	dma_fence_put(replacement);
1578 
1579 	dma_resv_unlock(&ttm_bo->base._resv);
1580 }
1581 
1582 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo)
1583 {
1584 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1585 
1586 	if (!xe_bo_is_xe_bo(ttm_bo))
1587 		return;
1588 
1589 	if (IS_VF_CCS_READY(ttm_to_xe_device(ttm_bo->bdev)))
1590 		xe_sriov_vf_ccs_detach_bo(bo);
1591 
1592 	/*
1593 	 * Object is idle and about to be destroyed. Release the
1594 	 * dma-buf attachment.
1595 	 */
1596 	if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) {
1597 		struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm,
1598 						       struct xe_ttm_tt, ttm);
1599 
1600 		dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg,
1601 					 DMA_BIDIRECTIONAL);
1602 		ttm_bo->sg = NULL;
1603 		xe_tt->sg = NULL;
1604 	}
1605 }
1606 
1607 static void xe_ttm_bo_purge(struct ttm_buffer_object *ttm_bo, struct ttm_operation_ctx *ctx)
1608 {
1609 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1610 
1611 	if (ttm_bo->ttm) {
1612 		struct ttm_placement place = {};
1613 		int ret = ttm_bo_validate(ttm_bo, &place, ctx);
1614 
1615 		drm_WARN_ON(&xe->drm, ret);
1616 	}
1617 }
1618 
1619 static void xe_ttm_bo_swap_notify(struct ttm_buffer_object *ttm_bo)
1620 {
1621 	struct ttm_operation_ctx ctx = {
1622 		.interruptible = false,
1623 		.gfp_retry_mayfail = false,
1624 	};
1625 
1626 	if (ttm_bo->ttm) {
1627 		struct xe_ttm_tt *xe_tt =
1628 			container_of(ttm_bo->ttm, struct xe_ttm_tt, ttm);
1629 
1630 		if (xe_tt->purgeable)
1631 			xe_ttm_bo_purge(ttm_bo, &ctx);
1632 	}
1633 }
1634 
1635 static int xe_ttm_access_memory(struct ttm_buffer_object *ttm_bo,
1636 				unsigned long offset, void *buf, int len,
1637 				int write)
1638 {
1639 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1640 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1641 	struct iosys_map vmap;
1642 	struct xe_res_cursor cursor;
1643 	struct xe_vram_region *vram;
1644 	int bytes_left = len;
1645 	int err = 0;
1646 
1647 	xe_bo_assert_held(bo);
1648 	xe_device_assert_mem_access(xe);
1649 
1650 	if (!mem_type_is_vram(ttm_bo->resource->mem_type))
1651 		return -EIO;
1652 
1653 	if (!xe_bo_is_visible_vram(bo) || len >= SZ_16K) {
1654 		struct xe_migrate *migrate =
1655 			mem_type_to_migrate(xe, ttm_bo->resource->mem_type);
1656 
1657 		err = xe_migrate_access_memory(migrate, bo, offset, buf, len,
1658 					       write);
1659 		goto out;
1660 	}
1661 
1662 	vram = res_to_mem_region(ttm_bo->resource);
1663 	xe_res_first(ttm_bo->resource, offset & PAGE_MASK,
1664 		     xe_bo_size(bo) - (offset & PAGE_MASK), &cursor);
1665 
1666 	do {
1667 		unsigned long page_offset = (offset & ~PAGE_MASK);
1668 		int byte_count = min((int)(PAGE_SIZE - page_offset), bytes_left);
1669 
1670 		iosys_map_set_vaddr_iomem(&vmap, (u8 __iomem *)vram->mapping +
1671 					  cursor.start);
1672 		if (write)
1673 			xe_map_memcpy_to(xe, &vmap, page_offset, buf, byte_count);
1674 		else
1675 			xe_map_memcpy_from(xe, buf, &vmap, page_offset, byte_count);
1676 
1677 		buf += byte_count;
1678 		offset += byte_count;
1679 		bytes_left -= byte_count;
1680 		if (bytes_left)
1681 			xe_res_next(&cursor, PAGE_SIZE);
1682 	} while (bytes_left);
1683 
1684 out:
1685 	return err ?: len;
1686 }
1687 
1688 const struct ttm_device_funcs xe_ttm_funcs = {
1689 	.ttm_tt_create = xe_ttm_tt_create,
1690 	.ttm_tt_populate = xe_ttm_tt_populate,
1691 	.ttm_tt_unpopulate = xe_ttm_tt_unpopulate,
1692 	.ttm_tt_destroy = xe_ttm_tt_destroy,
1693 	.evict_flags = xe_evict_flags,
1694 	.move = xe_bo_move,
1695 	.io_mem_reserve = xe_ttm_io_mem_reserve,
1696 	.io_mem_pfn = xe_ttm_io_mem_pfn,
1697 	.access_memory = xe_ttm_access_memory,
1698 	.release_notify = xe_ttm_bo_release_notify,
1699 	.eviction_valuable = xe_bo_eviction_valuable,
1700 	.delete_mem_notify = xe_ttm_bo_delete_mem_notify,
1701 	.swap_notify = xe_ttm_bo_swap_notify,
1702 };
1703 
1704 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo)
1705 {
1706 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1707 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1708 	struct xe_tile *tile;
1709 	u8 id;
1710 
1711 	if (bo->ttm.base.import_attach)
1712 		drm_prime_gem_destroy(&bo->ttm.base, NULL);
1713 	drm_gem_object_release(&bo->ttm.base);
1714 
1715 	xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list));
1716 
1717 	for_each_tile(tile, xe, id)
1718 		if (bo->ggtt_node[id] && bo->ggtt_node[id]->base.size)
1719 			xe_ggtt_remove_bo(tile->mem.ggtt, bo);
1720 
1721 #ifdef CONFIG_PROC_FS
1722 	if (bo->client)
1723 		xe_drm_client_remove_bo(bo);
1724 #endif
1725 
1726 	if (bo->vm && xe_bo_is_user(bo))
1727 		xe_vm_put(bo->vm);
1728 
1729 	if (bo->parent_obj)
1730 		xe_bo_put(bo->parent_obj);
1731 
1732 	mutex_lock(&xe->mem_access.vram_userfault.lock);
1733 	if (!list_empty(&bo->vram_userfault_link))
1734 		list_del(&bo->vram_userfault_link);
1735 	mutex_unlock(&xe->mem_access.vram_userfault.lock);
1736 
1737 	kfree(bo);
1738 }
1739 
1740 static void xe_gem_object_free(struct drm_gem_object *obj)
1741 {
1742 	/* Our BO reference counting scheme works as follows:
1743 	 *
1744 	 * The gem object kref is typically used throughout the driver,
1745 	 * and the gem object holds a ttm_buffer_object refcount, so
1746 	 * that when the last gem object reference is put, which is when
1747 	 * we end up in this function, we put also that ttm_buffer_object
1748 	 * refcount. Anything using gem interfaces is then no longer
1749 	 * allowed to access the object in a way that requires a gem
1750 	 * refcount, including locking the object.
1751 	 *
1752 	 * driver ttm callbacks is allowed to use the ttm_buffer_object
1753 	 * refcount directly if needed.
1754 	 */
1755 	__xe_bo_vunmap(gem_to_xe_bo(obj));
1756 	ttm_bo_fini(container_of(obj, struct ttm_buffer_object, base));
1757 }
1758 
1759 static void xe_gem_object_close(struct drm_gem_object *obj,
1760 				struct drm_file *file_priv)
1761 {
1762 	struct xe_bo *bo = gem_to_xe_bo(obj);
1763 
1764 	if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) {
1765 		xe_assert(xe_bo_device(bo), xe_bo_is_user(bo));
1766 
1767 		xe_bo_lock(bo, false);
1768 		ttm_bo_set_bulk_move(&bo->ttm, NULL);
1769 		xe_bo_unlock(bo);
1770 	}
1771 }
1772 
1773 static bool should_migrate_to_smem(struct xe_bo *bo)
1774 {
1775 	/*
1776 	 * NOTE: The following atomic checks are platform-specific. For example,
1777 	 * if a device supports CXL atomics, these may not be necessary or
1778 	 * may behave differently.
1779 	 */
1780 
1781 	return bo->attr.atomic_access == DRM_XE_ATOMIC_GLOBAL ||
1782 	       bo->attr.atomic_access == DRM_XE_ATOMIC_CPU;
1783 }
1784 
1785 static int xe_bo_wait_usage_kernel(struct xe_bo *bo, struct ttm_operation_ctx *ctx)
1786 {
1787 	long lerr;
1788 
1789 	if (ctx->no_wait_gpu)
1790 		return dma_resv_test_signaled(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL) ?
1791 			0 : -EBUSY;
1792 
1793 	lerr = dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL,
1794 				     ctx->interruptible, MAX_SCHEDULE_TIMEOUT);
1795 	if (lerr < 0)
1796 		return lerr;
1797 	if (lerr == 0)
1798 		return -EBUSY;
1799 
1800 	return 0;
1801 }
1802 
1803 /* Populate the bo if swapped out, or migrate if the access mode requires that. */
1804 static int xe_bo_fault_migrate(struct xe_bo *bo, struct ttm_operation_ctx *ctx,
1805 			       struct drm_exec *exec)
1806 {
1807 	struct ttm_buffer_object *tbo = &bo->ttm;
1808 	int err = 0;
1809 
1810 	if (ttm_manager_type(tbo->bdev, tbo->resource->mem_type)->use_tt) {
1811 		err = xe_bo_wait_usage_kernel(bo, ctx);
1812 		if (!err)
1813 			err = ttm_bo_populate(&bo->ttm, ctx);
1814 	} else if (should_migrate_to_smem(bo)) {
1815 		xe_assert(xe_bo_device(bo), bo->flags & XE_BO_FLAG_SYSTEM);
1816 		err = xe_bo_migrate(bo, XE_PL_TT, ctx, exec);
1817 	}
1818 
1819 	return err;
1820 }
1821 
1822 /* Call into TTM to populate PTEs, and register bo for PTE removal on runtime suspend. */
1823 static vm_fault_t __xe_bo_cpu_fault(struct vm_fault *vmf, struct xe_device *xe, struct xe_bo *bo)
1824 {
1825 	vm_fault_t ret;
1826 
1827 	trace_xe_bo_cpu_fault(bo);
1828 
1829 	ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1830 				       TTM_BO_VM_NUM_PREFAULT);
1831 	/*
1832 	 * When TTM is actually called to insert PTEs, ensure no blocking conditions
1833 	 * remain, in which case TTM may drop locks and return VM_FAULT_RETRY.
1834 	 */
1835 	xe_assert(xe, ret != VM_FAULT_RETRY);
1836 
1837 	if (ret == VM_FAULT_NOPAGE &&
1838 	    mem_type_is_vram(bo->ttm.resource->mem_type)) {
1839 		mutex_lock(&xe->mem_access.vram_userfault.lock);
1840 		if (list_empty(&bo->vram_userfault_link))
1841 			list_add(&bo->vram_userfault_link,
1842 				 &xe->mem_access.vram_userfault.list);
1843 		mutex_unlock(&xe->mem_access.vram_userfault.lock);
1844 	}
1845 
1846 	return ret;
1847 }
1848 
1849 static vm_fault_t xe_err_to_fault_t(int err)
1850 {
1851 	switch (err) {
1852 	case 0:
1853 	case -EINTR:
1854 	case -ERESTARTSYS:
1855 	case -EAGAIN:
1856 		return VM_FAULT_NOPAGE;
1857 	case -ENOMEM:
1858 	case -ENOSPC:
1859 		return VM_FAULT_OOM;
1860 	default:
1861 		break;
1862 	}
1863 	return VM_FAULT_SIGBUS;
1864 }
1865 
1866 static bool xe_ttm_bo_is_imported(struct ttm_buffer_object *tbo)
1867 {
1868 	dma_resv_assert_held(tbo->base.resv);
1869 
1870 	return tbo->ttm &&
1871 		(tbo->ttm->page_flags & (TTM_TT_FLAG_EXTERNAL | TTM_TT_FLAG_EXTERNAL_MAPPABLE)) ==
1872 		TTM_TT_FLAG_EXTERNAL;
1873 }
1874 
1875 static vm_fault_t xe_bo_cpu_fault_fastpath(struct vm_fault *vmf, struct xe_device *xe,
1876 					   struct xe_bo *bo, bool needs_rpm)
1877 {
1878 	struct ttm_buffer_object *tbo = &bo->ttm;
1879 	vm_fault_t ret = VM_FAULT_RETRY;
1880 	struct xe_validation_ctx ctx;
1881 	struct ttm_operation_ctx tctx = {
1882 		.interruptible = true,
1883 		.no_wait_gpu = true,
1884 		.gfp_retry_mayfail = true,
1885 
1886 	};
1887 	int err;
1888 
1889 	if (needs_rpm && !xe_pm_runtime_get_if_active(xe))
1890 		return VM_FAULT_RETRY;
1891 
1892 	err = xe_validation_ctx_init(&ctx, &xe->val, NULL,
1893 				     (struct xe_val_flags) {
1894 					     .interruptible = true,
1895 					     .no_block = true
1896 				     });
1897 	if (err)
1898 		goto out_pm;
1899 
1900 	if (!dma_resv_trylock(tbo->base.resv))
1901 		goto out_validation;
1902 
1903 	if (xe_ttm_bo_is_imported(tbo)) {
1904 		ret = VM_FAULT_SIGBUS;
1905 		drm_dbg(&xe->drm, "CPU trying to access an imported buffer object.\n");
1906 		goto out_unlock;
1907 	}
1908 
1909 	err = xe_bo_fault_migrate(bo, &tctx, NULL);
1910 	if (err) {
1911 		/* Return VM_FAULT_RETRY on these errors. */
1912 		if (err != -ENOMEM && err != -ENOSPC && err != -EBUSY)
1913 			ret = xe_err_to_fault_t(err);
1914 		goto out_unlock;
1915 	}
1916 
1917 	if (dma_resv_test_signaled(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL))
1918 		ret = __xe_bo_cpu_fault(vmf, xe, bo);
1919 
1920 out_unlock:
1921 	dma_resv_unlock(tbo->base.resv);
1922 out_validation:
1923 	xe_validation_ctx_fini(&ctx);
1924 out_pm:
1925 	if (needs_rpm)
1926 		xe_pm_runtime_put(xe);
1927 
1928 	return ret;
1929 }
1930 
1931 static vm_fault_t xe_bo_cpu_fault(struct vm_fault *vmf)
1932 {
1933 	struct ttm_buffer_object *tbo = vmf->vma->vm_private_data;
1934 	struct drm_device *ddev = tbo->base.dev;
1935 	struct xe_device *xe = to_xe_device(ddev);
1936 	struct xe_bo *bo = ttm_to_xe_bo(tbo);
1937 	bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK;
1938 	bool retry_after_wait = false;
1939 	struct xe_validation_ctx ctx;
1940 	struct drm_exec exec;
1941 	vm_fault_t ret;
1942 	int err = 0;
1943 	int idx;
1944 
1945 	if (!drm_dev_enter(&xe->drm, &idx))
1946 		return ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1947 
1948 	ret = xe_bo_cpu_fault_fastpath(vmf, xe, bo, needs_rpm);
1949 	if (ret != VM_FAULT_RETRY)
1950 		goto out;
1951 
1952 	if (fault_flag_allow_retry_first(vmf->flags)) {
1953 		if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
1954 			goto out;
1955 		retry_after_wait = true;
1956 		xe_bo_get(bo);
1957 		mmap_read_unlock(vmf->vma->vm_mm);
1958 	} else {
1959 		ret = VM_FAULT_NOPAGE;
1960 	}
1961 
1962 	/*
1963 	 * The fastpath failed and we were not required to return and retry immediately.
1964 	 * We're now running in one of two modes:
1965 	 *
1966 	 * 1) retry_after_wait == true: The mmap_read_lock() is dropped, and we're trying
1967 	 * to resolve blocking waits. But we can't resolve the fault since the
1968 	 * mmap_read_lock() is dropped. After retrying the fault, the aim is that the fastpath
1969 	 * should succeed. But it may fail since we drop the bo lock.
1970 	 *
1971 	 * 2) retry_after_wait == false: The fastpath failed, typically even after
1972 	 * a retry. Do whatever's necessary to resolve the fault.
1973 	 *
1974 	 * This construct is recommended to avoid excessive waits under the mmap_lock.
1975 	 */
1976 
1977 	if (needs_rpm)
1978 		xe_pm_runtime_get(xe);
1979 
1980 	xe_validation_guard(&ctx, &xe->val, &exec, (struct xe_val_flags) {.interruptible = true},
1981 			    err) {
1982 		struct ttm_operation_ctx tctx = {
1983 			.interruptible = true,
1984 			.no_wait_gpu = false,
1985 			.gfp_retry_mayfail = retry_after_wait,
1986 		};
1987 
1988 		err = drm_exec_lock_obj(&exec, &tbo->base);
1989 		drm_exec_retry_on_contention(&exec);
1990 		if (err)
1991 			break;
1992 
1993 		if (xe_ttm_bo_is_imported(tbo)) {
1994 			err = -EFAULT;
1995 			drm_dbg(&xe->drm, "CPU trying to access an imported buffer object.\n");
1996 			break;
1997 		}
1998 
1999 		err = xe_bo_fault_migrate(bo, &tctx, &exec);
2000 		if (err) {
2001 			drm_exec_retry_on_contention(&exec);
2002 			xe_validation_retry_on_oom(&ctx, &err);
2003 			break;
2004 		}
2005 
2006 		err = xe_bo_wait_usage_kernel(bo, &tctx);
2007 		if (err)
2008 			break;
2009 
2010 		if (!retry_after_wait)
2011 			ret = __xe_bo_cpu_fault(vmf, xe, bo);
2012 	}
2013 	/* if retry_after_wait == true, we *must* return VM_FAULT_RETRY. */
2014 	if (err && !retry_after_wait)
2015 		ret = xe_err_to_fault_t(err);
2016 
2017 	if (needs_rpm)
2018 		xe_pm_runtime_put(xe);
2019 
2020 	if (retry_after_wait)
2021 		xe_bo_put(bo);
2022 out:
2023 	drm_dev_exit(idx);
2024 
2025 	return ret;
2026 }
2027 
2028 static int xe_bo_vm_access(struct vm_area_struct *vma, unsigned long addr,
2029 			   void *buf, int len, int write)
2030 {
2031 	struct ttm_buffer_object *ttm_bo = vma->vm_private_data;
2032 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
2033 	struct xe_device *xe = xe_bo_device(bo);
2034 	int ret;
2035 
2036 	xe_pm_runtime_get(xe);
2037 	ret = ttm_bo_vm_access(vma, addr, buf, len, write);
2038 	xe_pm_runtime_put(xe);
2039 
2040 	return ret;
2041 }
2042 
2043 /**
2044  * xe_bo_read() - Read from an xe_bo
2045  * @bo: The buffer object to read from.
2046  * @offset: The byte offset to start reading from.
2047  * @dst: Location to store the read.
2048  * @size: Size in bytes for the read.
2049  *
2050  * Read @size bytes from the @bo, starting from @offset, storing into @dst.
2051  *
2052  * Return: Zero on success, or negative error.
2053  */
2054 int xe_bo_read(struct xe_bo *bo, u64 offset, void *dst, int size)
2055 {
2056 	int ret;
2057 
2058 	ret = ttm_bo_access(&bo->ttm, offset, dst, size, 0);
2059 	if (ret >= 0 && ret != size)
2060 		ret = -EIO;
2061 	else if (ret == size)
2062 		ret = 0;
2063 
2064 	return ret;
2065 }
2066 
2067 static const struct vm_operations_struct xe_gem_vm_ops = {
2068 	.fault = xe_bo_cpu_fault,
2069 	.open = ttm_bo_vm_open,
2070 	.close = ttm_bo_vm_close,
2071 	.access = xe_bo_vm_access,
2072 };
2073 
2074 static const struct drm_gem_object_funcs xe_gem_object_funcs = {
2075 	.free = xe_gem_object_free,
2076 	.close = xe_gem_object_close,
2077 	.mmap = drm_gem_ttm_mmap,
2078 	.export = xe_gem_prime_export,
2079 	.vm_ops = &xe_gem_vm_ops,
2080 };
2081 
2082 /**
2083  * xe_bo_alloc - Allocate storage for a struct xe_bo
2084  *
2085  * This function is intended to allocate storage to be used for input
2086  * to __xe_bo_create_locked(), in the case a pointer to the bo to be
2087  * created is needed before the call to __xe_bo_create_locked().
2088  * If __xe_bo_create_locked ends up never to be called, then the
2089  * storage allocated with this function needs to be freed using
2090  * xe_bo_free().
2091  *
2092  * Return: A pointer to an uninitialized struct xe_bo on success,
2093  * ERR_PTR(-ENOMEM) on error.
2094  */
2095 struct xe_bo *xe_bo_alloc(void)
2096 {
2097 	struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL);
2098 
2099 	if (!bo)
2100 		return ERR_PTR(-ENOMEM);
2101 
2102 	return bo;
2103 }
2104 
2105 /**
2106  * xe_bo_free - Free storage allocated using xe_bo_alloc()
2107  * @bo: The buffer object storage.
2108  *
2109  * Refer to xe_bo_alloc() documentation for valid use-cases.
2110  */
2111 void xe_bo_free(struct xe_bo *bo)
2112 {
2113 	kfree(bo);
2114 }
2115 
2116 /**
2117  * xe_bo_init_locked() - Initialize or create an xe_bo.
2118  * @xe: The xe device.
2119  * @bo: An already allocated buffer object or NULL
2120  * if the function should allocate a new one.
2121  * @tile: The tile to select for migration of this bo, and the tile used for
2122  * GGTT binding if any. Only to be non-NULL for ttm_bo_type_kernel bos.
2123  * @resv: Pointer to a locked shared reservation object to use for this bo,
2124  * or NULL for the xe_bo to use its own.
2125  * @bulk: The bulk move to use for LRU bumping, or NULL for external bos.
2126  * @size: The storage size to use for the bo.
2127  * @cpu_caching: The cpu caching used for system memory backing store.
2128  * @type: The TTM buffer object type.
2129  * @flags: XE_BO_FLAG_ flags.
2130  * @exec: The drm_exec transaction to use for exhaustive eviction.
2131  *
2132  * Initialize or create an xe buffer object. On failure, any allocated buffer
2133  * object passed in @bo will have been unreferenced.
2134  *
2135  * Return: The buffer object on success. Negative error pointer on failure.
2136  */
2137 struct xe_bo *xe_bo_init_locked(struct xe_device *xe, struct xe_bo *bo,
2138 				struct xe_tile *tile, struct dma_resv *resv,
2139 				struct ttm_lru_bulk_move *bulk, size_t size,
2140 				u16 cpu_caching, enum ttm_bo_type type,
2141 				u32 flags, struct drm_exec *exec)
2142 {
2143 	struct ttm_operation_ctx ctx = {
2144 		.interruptible = true,
2145 		.no_wait_gpu = false,
2146 		.gfp_retry_mayfail = true,
2147 	};
2148 	struct ttm_placement *placement;
2149 	uint32_t alignment;
2150 	size_t aligned_size;
2151 	int err;
2152 
2153 	/* Only kernel objects should set GT */
2154 	xe_assert(xe, !tile || type == ttm_bo_type_kernel);
2155 
2156 	if (XE_WARN_ON(!size)) {
2157 		xe_bo_free(bo);
2158 		return ERR_PTR(-EINVAL);
2159 	}
2160 
2161 	/* XE_BO_FLAG_GGTTx requires XE_BO_FLAG_GGTT also be set */
2162 	if ((flags & XE_BO_FLAG_GGTT_ALL) && !(flags & XE_BO_FLAG_GGTT))
2163 		return ERR_PTR(-EINVAL);
2164 
2165 	if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) &&
2166 	    !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) &&
2167 	    ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) ||
2168 	     (flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) {
2169 		size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K;
2170 
2171 		aligned_size = ALIGN(size, align);
2172 		if (type != ttm_bo_type_device)
2173 			size = ALIGN(size, align);
2174 		flags |= XE_BO_FLAG_INTERNAL_64K;
2175 		alignment = align >> PAGE_SHIFT;
2176 	} else {
2177 		aligned_size = ALIGN(size, SZ_4K);
2178 		flags &= ~XE_BO_FLAG_INTERNAL_64K;
2179 		alignment = SZ_4K >> PAGE_SHIFT;
2180 	}
2181 
2182 	if (type == ttm_bo_type_device && aligned_size != size)
2183 		return ERR_PTR(-EINVAL);
2184 
2185 	if (!bo) {
2186 		bo = xe_bo_alloc();
2187 		if (IS_ERR(bo))
2188 			return bo;
2189 	}
2190 
2191 	bo->ccs_cleared = false;
2192 	bo->tile = tile;
2193 	bo->flags = flags;
2194 	bo->cpu_caching = cpu_caching;
2195 	bo->ttm.base.funcs = &xe_gem_object_funcs;
2196 	bo->ttm.priority = XE_BO_PRIORITY_NORMAL;
2197 	INIT_LIST_HEAD(&bo->pinned_link);
2198 #ifdef CONFIG_PROC_FS
2199 	INIT_LIST_HEAD(&bo->client_link);
2200 #endif
2201 	INIT_LIST_HEAD(&bo->vram_userfault_link);
2202 
2203 	drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size);
2204 
2205 	if (resv) {
2206 		ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT);
2207 		ctx.resv = resv;
2208 	}
2209 
2210 	xe_validation_assert_exec(xe, exec, &bo->ttm.base);
2211 	if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) {
2212 		err = __xe_bo_placement_for_flags(xe, bo, bo->flags, type);
2213 		if (WARN_ON(err)) {
2214 			xe_ttm_bo_destroy(&bo->ttm);
2215 			return ERR_PTR(err);
2216 		}
2217 	}
2218 
2219 	/* Defer populating type_sg bos */
2220 	placement = (type == ttm_bo_type_sg ||
2221 		     bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement :
2222 		&bo->placement;
2223 	err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type,
2224 				   placement, alignment,
2225 				   &ctx, NULL, resv, xe_ttm_bo_destroy);
2226 	if (err)
2227 		return ERR_PTR(err);
2228 
2229 	/*
2230 	 * The VRAM pages underneath are potentially still being accessed by the
2231 	 * GPU, as per async GPU clearing and async evictions. However TTM makes
2232 	 * sure to add any corresponding move/clear fences into the objects
2233 	 * dma-resv using the DMA_RESV_USAGE_KERNEL slot.
2234 	 *
2235 	 * For KMD internal buffers we don't care about GPU clearing, however we
2236 	 * still need to handle async evictions, where the VRAM is still being
2237 	 * accessed by the GPU. Most internal callers are not expecting this,
2238 	 * since they are missing the required synchronisation before accessing
2239 	 * the memory. To keep things simple just sync wait any kernel fences
2240 	 * here, if the buffer is designated KMD internal.
2241 	 *
2242 	 * For normal userspace objects we should already have the required
2243 	 * pipelining or sync waiting elsewhere, since we already have to deal
2244 	 * with things like async GPU clearing.
2245 	 */
2246 	if (type == ttm_bo_type_kernel) {
2247 		long timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
2248 						     DMA_RESV_USAGE_KERNEL,
2249 						     ctx.interruptible,
2250 						     MAX_SCHEDULE_TIMEOUT);
2251 
2252 		if (timeout < 0) {
2253 			if (!resv)
2254 				dma_resv_unlock(bo->ttm.base.resv);
2255 			xe_bo_put(bo);
2256 			return ERR_PTR(timeout);
2257 		}
2258 	}
2259 
2260 	bo->created = true;
2261 	if (bulk)
2262 		ttm_bo_set_bulk_move(&bo->ttm, bulk);
2263 	else
2264 		ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
2265 
2266 	return bo;
2267 }
2268 
2269 static int __xe_bo_fixed_placement(struct xe_device *xe,
2270 				   struct xe_bo *bo, enum ttm_bo_type type,
2271 				   u32 flags,
2272 				   u64 start, u64 end, u64 size)
2273 {
2274 	struct ttm_place *place = bo->placements;
2275 	u32 vram_flag, vram_stolen_flags;
2276 
2277 	/*
2278 	 * to allow fixed placement in GGTT of a VF, post-migration fixups would have to
2279 	 * include selecting a new fixed offset and shifting the page ranges for it
2280 	 */
2281 	xe_assert(xe, !IS_SRIOV_VF(xe) || !(bo->flags & XE_BO_FLAG_GGTT));
2282 
2283 	if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM))
2284 		return -EINVAL;
2285 
2286 	vram_flag = flags & XE_BO_FLAG_VRAM_MASK;
2287 	vram_stolen_flags = (flags & (XE_BO_FLAG_STOLEN)) | vram_flag;
2288 
2289 	/* check if more than one VRAM/STOLEN flag is set */
2290 	if (hweight32(vram_stolen_flags) > 1)
2291 		return -EINVAL;
2292 
2293 	place->flags = TTM_PL_FLAG_CONTIGUOUS;
2294 	place->fpfn = start >> PAGE_SHIFT;
2295 	place->lpfn = end >> PAGE_SHIFT;
2296 
2297 	if (flags & XE_BO_FLAG_STOLEN)
2298 		place->mem_type = XE_PL_STOLEN;
2299 	else
2300 		place->mem_type = bo_vram_flags_to_vram_placement(xe, flags, vram_flag, type);
2301 
2302 	bo->placement = (struct ttm_placement) {
2303 		.num_placement = 1,
2304 		.placement = place,
2305 	};
2306 
2307 	return 0;
2308 }
2309 
2310 static struct xe_bo *
2311 __xe_bo_create_locked(struct xe_device *xe,
2312 		      struct xe_tile *tile, struct xe_vm *vm,
2313 		      size_t size, u64 start, u64 end,
2314 		      u16 cpu_caching, enum ttm_bo_type type, u32 flags,
2315 		      u64 alignment, struct drm_exec *exec)
2316 {
2317 	struct xe_bo *bo = NULL;
2318 	int err;
2319 
2320 	if (vm)
2321 		xe_vm_assert_held(vm);
2322 
2323 	if (start || end != ~0ULL) {
2324 		bo = xe_bo_alloc();
2325 		if (IS_ERR(bo))
2326 			return bo;
2327 
2328 		flags |= XE_BO_FLAG_FIXED_PLACEMENT;
2329 		err = __xe_bo_fixed_placement(xe, bo, type, flags, start, end, size);
2330 		if (err) {
2331 			xe_bo_free(bo);
2332 			return ERR_PTR(err);
2333 		}
2334 	}
2335 
2336 	bo = xe_bo_init_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL,
2337 			       vm && !xe_vm_in_fault_mode(vm) &&
2338 			       flags & XE_BO_FLAG_USER ?
2339 			       &vm->lru_bulk_move : NULL, size,
2340 			       cpu_caching, type, flags, exec);
2341 	if (IS_ERR(bo))
2342 		return bo;
2343 
2344 	bo->min_align = alignment;
2345 
2346 	/*
2347 	 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(),
2348 	 * to ensure the shared resv doesn't disappear under the bo, the bo
2349 	 * will keep a reference to the vm, and avoid circular references
2350 	 * by having all the vm's bo refereferences released at vm close
2351 	 * time.
2352 	 */
2353 	if (vm && xe_bo_is_user(bo))
2354 		xe_vm_get(vm);
2355 	bo->vm = vm;
2356 
2357 	if (bo->flags & XE_BO_FLAG_GGTT) {
2358 		struct xe_tile *t;
2359 		u8 id;
2360 
2361 		if (!(bo->flags & XE_BO_FLAG_GGTT_ALL)) {
2362 			if (!tile && flags & XE_BO_FLAG_STOLEN)
2363 				tile = xe_device_get_root_tile(xe);
2364 
2365 			xe_assert(xe, tile);
2366 		}
2367 
2368 		for_each_tile(t, xe, id) {
2369 			if (t != tile && !(bo->flags & XE_BO_FLAG_GGTTx(t)))
2370 				continue;
2371 
2372 			if (flags & XE_BO_FLAG_FIXED_PLACEMENT) {
2373 				err = xe_ggtt_insert_bo_at(t->mem.ggtt, bo,
2374 							   start + xe_bo_size(bo), U64_MAX,
2375 							   exec);
2376 			} else {
2377 				err = xe_ggtt_insert_bo(t->mem.ggtt, bo, exec);
2378 			}
2379 			if (err)
2380 				goto err_unlock_put_bo;
2381 		}
2382 	}
2383 
2384 	trace_xe_bo_create(bo);
2385 	return bo;
2386 
2387 err_unlock_put_bo:
2388 	__xe_bo_unset_bulk_move(bo);
2389 	xe_bo_unlock_vm_held(bo);
2390 	xe_bo_put(bo);
2391 	return ERR_PTR(err);
2392 }
2393 
2394 /**
2395  * xe_bo_create_locked() - Create a BO
2396  * @xe: The xe device.
2397  * @tile: The tile to select for migration of this bo, and the tile used for
2398  * GGTT binding if any. Only to be non-NULL for ttm_bo_type_kernel bos.
2399  * @vm: The local vm or NULL for external objects.
2400  * @size: The storage size to use for the bo.
2401  * @type: The TTM buffer object type.
2402  * @flags: XE_BO_FLAG_ flags.
2403  * @exec: The drm_exec transaction to use for exhaustive eviction.
2404  *
2405  * Create a locked xe BO with no range- nor alignment restrictions.
2406  *
2407  * Return: The buffer object on success. Negative error pointer on failure.
2408  */
2409 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile,
2410 				  struct xe_vm *vm, size_t size,
2411 				  enum ttm_bo_type type, u32 flags,
2412 				  struct drm_exec *exec)
2413 {
2414 	return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type,
2415 				     flags, 0, exec);
2416 }
2417 
2418 static struct xe_bo *xe_bo_create_novm(struct xe_device *xe, struct xe_tile *tile,
2419 				       size_t size, u16 cpu_caching,
2420 				       enum ttm_bo_type type, u32 flags,
2421 				       u64 alignment, bool intr)
2422 {
2423 	struct xe_validation_ctx ctx;
2424 	struct drm_exec exec;
2425 	struct xe_bo *bo;
2426 	int ret = 0;
2427 
2428 	xe_validation_guard(&ctx, &xe->val, &exec, (struct xe_val_flags) {.interruptible = intr},
2429 			    ret) {
2430 		bo = __xe_bo_create_locked(xe, tile, NULL, size, 0, ~0ULL,
2431 					   cpu_caching, type, flags, alignment, &exec);
2432 		drm_exec_retry_on_contention(&exec);
2433 		if (IS_ERR(bo)) {
2434 			ret = PTR_ERR(bo);
2435 			xe_validation_retry_on_oom(&ctx, &ret);
2436 		} else {
2437 			xe_bo_unlock(bo);
2438 		}
2439 	}
2440 
2441 	return ret ? ERR_PTR(ret) : bo;
2442 }
2443 
2444 /**
2445  * xe_bo_create_user() - Create a user BO
2446  * @xe: The xe device.
2447  * @vm: The local vm or NULL for external objects.
2448  * @size: The storage size to use for the bo.
2449  * @cpu_caching: The caching mode to be used for system backing store.
2450  * @flags: XE_BO_FLAG_ flags.
2451  * @exec: The drm_exec transaction to use for exhaustive eviction, or NULL
2452  * if such a transaction should be initiated by the call.
2453  *
2454  * Create a bo on behalf of user-space.
2455  *
2456  * Return: The buffer object on success. Negative error pointer on failure.
2457  */
2458 struct xe_bo *xe_bo_create_user(struct xe_device *xe,
2459 				struct xe_vm *vm, size_t size,
2460 				u16 cpu_caching,
2461 				u32 flags, struct drm_exec *exec)
2462 {
2463 	struct xe_bo *bo;
2464 
2465 	flags |= XE_BO_FLAG_USER;
2466 
2467 	if (vm || exec) {
2468 		xe_assert(xe, exec);
2469 		bo = __xe_bo_create_locked(xe, NULL, vm, size, 0, ~0ULL,
2470 					   cpu_caching, ttm_bo_type_device,
2471 					   flags, 0, exec);
2472 		if (!IS_ERR(bo))
2473 			xe_bo_unlock_vm_held(bo);
2474 	} else {
2475 		bo = xe_bo_create_novm(xe, NULL, size, cpu_caching,
2476 				       ttm_bo_type_device, flags, 0, true);
2477 	}
2478 
2479 	return bo;
2480 }
2481 
2482 /**
2483  * xe_bo_create_pin_range_novm() - Create and pin a BO with range options.
2484  * @xe: The xe device.
2485  * @tile: The tile to select for migration of this bo, and the tile used for
2486  * GGTT binding if any. Only to be non-NULL for ttm_bo_type_kernel bos.
2487  * @size: The storage size to use for the bo.
2488  * @start: Start of fixed VRAM range or 0.
2489  * @end: End of fixed VRAM range or ~0ULL.
2490  * @type: The TTM buffer object type.
2491  * @flags: XE_BO_FLAG_ flags.
2492  *
2493  * Create an Xe BO with range- and options. If @start and @end indicate
2494  * a fixed VRAM range, this must be a ttm_bo_type_kernel bo with VRAM placement
2495  * only.
2496  *
2497  * Return: The buffer object on success. Negative error pointer on failure.
2498  */
2499 struct xe_bo *xe_bo_create_pin_range_novm(struct xe_device *xe, struct xe_tile *tile,
2500 					  size_t size, u64 start, u64 end,
2501 					  enum ttm_bo_type type, u32 flags)
2502 {
2503 	struct xe_validation_ctx ctx;
2504 	struct drm_exec exec;
2505 	struct xe_bo *bo;
2506 	int err = 0;
2507 
2508 	xe_validation_guard(&ctx, &xe->val, &exec, (struct xe_val_flags) {}, err) {
2509 		bo = __xe_bo_create_locked(xe, tile, NULL, size, start, end,
2510 					   0, type, flags, 0, &exec);
2511 		if (IS_ERR(bo)) {
2512 			drm_exec_retry_on_contention(&exec);
2513 			err = PTR_ERR(bo);
2514 			xe_validation_retry_on_oom(&ctx, &err);
2515 			break;
2516 		}
2517 
2518 		err = xe_bo_pin(bo, &exec);
2519 		xe_bo_unlock(bo);
2520 		if (err) {
2521 			xe_bo_put(bo);
2522 			drm_exec_retry_on_contention(&exec);
2523 			xe_validation_retry_on_oom(&ctx, &err);
2524 			break;
2525 		}
2526 	}
2527 
2528 	return err ? ERR_PTR(err) : bo;
2529 }
2530 
2531 static struct xe_bo *xe_bo_create_pin_map_at_aligned(struct xe_device *xe,
2532 						     struct xe_tile *tile,
2533 						     struct xe_vm *vm,
2534 						     size_t size, u64 offset,
2535 						     enum ttm_bo_type type, u32 flags,
2536 						     u64 alignment, struct drm_exec *exec)
2537 {
2538 	struct xe_bo *bo;
2539 	int err;
2540 	u64 start = offset == ~0ull ? 0 : offset;
2541 	u64 end = offset == ~0ull ? ~0ull : start + size;
2542 
2543 	if (flags & XE_BO_FLAG_STOLEN &&
2544 	    xe_ttm_stolen_cpu_access_needs_ggtt(xe))
2545 		flags |= XE_BO_FLAG_GGTT;
2546 
2547 	bo = __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type,
2548 				   flags | XE_BO_FLAG_NEEDS_CPU_ACCESS | XE_BO_FLAG_PINNED,
2549 				   alignment, exec);
2550 	if (IS_ERR(bo))
2551 		return bo;
2552 
2553 	err = xe_bo_pin(bo, exec);
2554 	if (err)
2555 		goto err_put;
2556 
2557 	err = xe_bo_vmap(bo);
2558 	if (err)
2559 		goto err_unpin;
2560 
2561 	xe_bo_unlock_vm_held(bo);
2562 
2563 	return bo;
2564 
2565 err_unpin:
2566 	xe_bo_unpin(bo);
2567 err_put:
2568 	xe_bo_unlock_vm_held(bo);
2569 	xe_bo_put(bo);
2570 	return ERR_PTR(err);
2571 }
2572 
2573 /**
2574  * xe_bo_create_pin_map_at_novm() - Create pinned and mapped bo at optional VRAM offset
2575  * @xe: The xe device.
2576  * @tile: The tile to select for migration of this bo, and the tile used for
2577  * GGTT binding if any. Only to be non-NULL for ttm_bo_type_kernel bos.
2578  * @size: The storage size to use for the bo.
2579  * @offset: Optional VRAM offset or %~0ull for don't care.
2580  * @type: The TTM buffer object type.
2581  * @flags: XE_BO_FLAG_ flags.
2582  * @alignment: GGTT alignment.
2583  * @intr: Whether to execute any waits for backing store interruptible.
2584  *
2585  * Create a pinned and optionally mapped bo with VRAM offset and GGTT alignment
2586  * options. The bo will be external and not associated with a VM.
2587  *
2588  * Return: The buffer object on success. Negative error pointer on failure.
2589  * In particular, the function may return ERR_PTR(%-EINTR) if @intr was set
2590  * to true on entry.
2591  */
2592 struct xe_bo *
2593 xe_bo_create_pin_map_at_novm(struct xe_device *xe, struct xe_tile *tile,
2594 			     size_t size, u64 offset, enum ttm_bo_type type, u32 flags,
2595 			     u64 alignment, bool intr)
2596 {
2597 	struct xe_validation_ctx ctx;
2598 	struct drm_exec exec;
2599 	struct xe_bo *bo;
2600 	int ret = 0;
2601 
2602 	xe_validation_guard(&ctx, &xe->val, &exec, (struct xe_val_flags) {.interruptible = intr},
2603 			    ret) {
2604 		bo = xe_bo_create_pin_map_at_aligned(xe, tile, NULL, size, offset,
2605 						     type, flags, alignment, &exec);
2606 		if (IS_ERR(bo)) {
2607 			drm_exec_retry_on_contention(&exec);
2608 			ret = PTR_ERR(bo);
2609 			xe_validation_retry_on_oom(&ctx, &ret);
2610 		}
2611 	}
2612 
2613 	return ret ? ERR_PTR(ret) : bo;
2614 }
2615 
2616 /**
2617  * xe_bo_create_pin_map() - Create pinned and mapped bo
2618  * @xe: The xe device.
2619  * @tile: The tile to select for migration of this bo, and the tile used for
2620  * @vm: The vm to associate the buffer object with. The vm's resv must be locked
2621  * with the transaction represented by @exec.
2622  * GGTT binding if any. Only to be non-NULL for ttm_bo_type_kernel bos.
2623  * @size: The storage size to use for the bo.
2624  * @type: The TTM buffer object type.
2625  * @flags: XE_BO_FLAG_ flags.
2626  * @exec: The drm_exec transaction to use for exhaustive eviction, and
2627  * previously used for locking @vm's resv.
2628  *
2629  * Create a pinned and mapped bo. The bo will be external and not associated
2630  * with a VM.
2631  *
2632  * Return: The buffer object on success. Negative error pointer on failure.
2633  * In particular, the function may return ERR_PTR(%-EINTR) if @exec was
2634  * configured for interruptible locking.
2635  */
2636 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
2637 				   struct xe_vm *vm, size_t size,
2638 				   enum ttm_bo_type type, u32 flags,
2639 				   struct drm_exec *exec)
2640 {
2641 	return xe_bo_create_pin_map_at_aligned(xe, tile, vm, size, ~0ull, type, flags,
2642 					       0, exec);
2643 }
2644 
2645 /**
2646  * xe_bo_create_pin_map_novm() - Create pinned and mapped bo
2647  * @xe: The xe device.
2648  * @tile: The tile to select for migration of this bo, and the tile used for
2649  * GGTT binding if any. Only to be non-NULL for ttm_bo_type_kernel bos.
2650  * @size: The storage size to use for the bo.
2651  * @type: The TTM buffer object type.
2652  * @flags: XE_BO_FLAG_ flags.
2653  * @intr: Whether to execute any waits for backing store interruptible.
2654  *
2655  * Create a pinned and mapped bo. The bo will be external and not associated
2656  * with a VM.
2657  *
2658  * Return: The buffer object on success. Negative error pointer on failure.
2659  * In particular, the function may return ERR_PTR(%-EINTR) if @intr was set
2660  * to true on entry.
2661  */
2662 struct xe_bo *xe_bo_create_pin_map_novm(struct xe_device *xe, struct xe_tile *tile,
2663 					size_t size, enum ttm_bo_type type, u32 flags,
2664 					bool intr)
2665 {
2666 	return xe_bo_create_pin_map_at_novm(xe, tile, size, ~0ull, type, flags, 0, intr);
2667 }
2668 
2669 static void __xe_bo_unpin_map_no_vm(void *arg)
2670 {
2671 	xe_bo_unpin_map_no_vm(arg);
2672 }
2673 
2674 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
2675 					   size_t size, u32 flags)
2676 {
2677 	struct xe_bo *bo;
2678 	int ret;
2679 
2680 	KUNIT_STATIC_STUB_REDIRECT(xe_managed_bo_create_pin_map, xe, tile, size, flags);
2681 	bo = xe_bo_create_pin_map_novm(xe, tile, size, ttm_bo_type_kernel, flags, true);
2682 	if (IS_ERR(bo))
2683 		return bo;
2684 
2685 	ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo);
2686 	if (ret)
2687 		return ERR_PTR(ret);
2688 
2689 	return bo;
2690 }
2691 
2692 void xe_managed_bo_unpin_map_no_vm(struct xe_bo *bo)
2693 {
2694 	devm_release_action(xe_bo_device(bo)->drm.dev, __xe_bo_unpin_map_no_vm, bo);
2695 }
2696 
2697 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
2698 					     const void *data, size_t size, u32 flags)
2699 {
2700 	struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags);
2701 
2702 	if (IS_ERR(bo))
2703 		return bo;
2704 
2705 	xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
2706 
2707 	return bo;
2708 }
2709 
2710 /**
2711  * xe_managed_bo_reinit_in_vram
2712  * @xe: xe device
2713  * @tile: Tile where the new buffer will be created
2714  * @src: Managed buffer object allocated in system memory
2715  *
2716  * Replace a managed src buffer object allocated in system memory with a new
2717  * one allocated in vram, copying the data between them.
2718  * Buffer object in VRAM is not going to have the same GGTT address, the caller
2719  * is responsible for making sure that any old references to it are updated.
2720  *
2721  * Returns 0 for success, negative error code otherwise.
2722  */
2723 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src)
2724 {
2725 	struct xe_bo *bo;
2726 	u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT;
2727 
2728 	dst_flags |= (*src)->flags & (XE_BO_FLAG_GGTT_INVALIDATE |
2729 				      XE_BO_FLAG_PINNED_NORESTORE);
2730 
2731 	xe_assert(xe, IS_DGFX(xe));
2732 	xe_assert(xe, !(*src)->vmap.is_iomem);
2733 
2734 	bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr,
2735 					    xe_bo_size(*src), dst_flags);
2736 	if (IS_ERR(bo))
2737 		return PTR_ERR(bo);
2738 
2739 	devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src);
2740 	*src = bo;
2741 
2742 	return 0;
2743 }
2744 
2745 /*
2746  * XXX: This is in the VM bind data path, likely should calculate this once and
2747  * store, with a recalculation if the BO is moved.
2748  */
2749 uint64_t vram_region_gpu_offset(struct ttm_resource *res)
2750 {
2751 	struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
2752 
2753 	switch (res->mem_type) {
2754 	case XE_PL_STOLEN:
2755 		return xe_ttm_stolen_gpu_offset(xe);
2756 	case XE_PL_TT:
2757 	case XE_PL_SYSTEM:
2758 		return 0;
2759 	default:
2760 		return res_to_mem_region(res)->dpa_base;
2761 	}
2762 	return 0;
2763 }
2764 
2765 /**
2766  * xe_bo_pin_external - pin an external BO
2767  * @bo: buffer object to be pinned
2768  * @in_place: Pin in current placement, don't attempt to migrate.
2769  * @exec: The drm_exec transaction to use for exhaustive eviction.
2770  *
2771  * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD)
2772  * BO. Unique call compared to xe_bo_pin as this function has it own set of
2773  * asserts and code to ensure evict / restore on suspend / resume.
2774  *
2775  * Returns 0 for success, negative error code otherwise.
2776  */
2777 int xe_bo_pin_external(struct xe_bo *bo, bool in_place, struct drm_exec *exec)
2778 {
2779 	struct xe_device *xe = xe_bo_device(bo);
2780 	int err;
2781 
2782 	xe_assert(xe, !bo->vm);
2783 	xe_assert(xe, xe_bo_is_user(bo));
2784 
2785 	if (!xe_bo_is_pinned(bo)) {
2786 		if (!in_place) {
2787 			err = xe_bo_validate(bo, NULL, false, exec);
2788 			if (err)
2789 				return err;
2790 		}
2791 
2792 		spin_lock(&xe->pinned.lock);
2793 		list_add_tail(&bo->pinned_link, &xe->pinned.late.external);
2794 		spin_unlock(&xe->pinned.lock);
2795 	}
2796 
2797 	ttm_bo_pin(&bo->ttm);
2798 	if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm))
2799 		xe_ttm_tt_account_subtract(xe, bo->ttm.ttm);
2800 
2801 	/*
2802 	 * FIXME: If we always use the reserve / unreserve functions for locking
2803 	 * we do not need this.
2804 	 */
2805 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
2806 
2807 	return 0;
2808 }
2809 
2810 /**
2811  * xe_bo_pin() - Pin a kernel bo after potentially migrating it
2812  * @bo: The kernel bo to pin.
2813  * @exec: The drm_exec transaction to use for exhaustive eviction.
2814  *
2815  * Attempts to migrate a bo to @bo->placement. If that succeeds,
2816  * pins the bo.
2817  *
2818  * Return: %0 on success, negative error code on migration failure.
2819  */
2820 int xe_bo_pin(struct xe_bo *bo, struct drm_exec *exec)
2821 {
2822 	struct ttm_place *place = &bo->placements[0];
2823 	struct xe_device *xe = xe_bo_device(bo);
2824 	int err;
2825 
2826 	/* We currently don't expect user BO to be pinned */
2827 	xe_assert(xe, !xe_bo_is_user(bo));
2828 
2829 	/* Pinned object must be in GGTT or have pinned flag */
2830 	xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED |
2831 				   XE_BO_FLAG_GGTT));
2832 
2833 	/*
2834 	 * No reason we can't support pinning imported dma-bufs we just don't
2835 	 * expect to pin an imported dma-buf.
2836 	 */
2837 	xe_assert(xe, !bo->ttm.base.import_attach);
2838 
2839 	/* We only expect at most 1 pin */
2840 	xe_assert(xe, !xe_bo_is_pinned(bo));
2841 
2842 	err = xe_bo_validate(bo, NULL, false, exec);
2843 	if (err)
2844 		return err;
2845 
2846 	if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) {
2847 		spin_lock(&xe->pinned.lock);
2848 		if (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)
2849 			list_add_tail(&bo->pinned_link, &xe->pinned.late.kernel_bo_present);
2850 		else
2851 			list_add_tail(&bo->pinned_link, &xe->pinned.early.kernel_bo_present);
2852 		spin_unlock(&xe->pinned.lock);
2853 	}
2854 
2855 	ttm_bo_pin(&bo->ttm);
2856 	if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm))
2857 		xe_ttm_tt_account_subtract(xe, bo->ttm.ttm);
2858 
2859 	/*
2860 	 * FIXME: If we always use the reserve / unreserve functions for locking
2861 	 * we do not need this.
2862 	 */
2863 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
2864 
2865 	return 0;
2866 }
2867 
2868 /**
2869  * xe_bo_unpin_external - unpin an external BO
2870  * @bo: buffer object to be unpinned
2871  *
2872  * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD)
2873  * BO. Unique call compared to xe_bo_unpin as this function has it own set of
2874  * asserts and code to ensure evict / restore on suspend / resume.
2875  *
2876  * Returns 0 for success, negative error code otherwise.
2877  */
2878 void xe_bo_unpin_external(struct xe_bo *bo)
2879 {
2880 	struct xe_device *xe = xe_bo_device(bo);
2881 
2882 	xe_assert(xe, !bo->vm);
2883 	xe_assert(xe, xe_bo_is_pinned(bo));
2884 	xe_assert(xe, xe_bo_is_user(bo));
2885 
2886 	spin_lock(&xe->pinned.lock);
2887 	if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link))
2888 		list_del_init(&bo->pinned_link);
2889 	spin_unlock(&xe->pinned.lock);
2890 
2891 	ttm_bo_unpin(&bo->ttm);
2892 	if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm))
2893 		xe_ttm_tt_account_add(xe, bo->ttm.ttm);
2894 
2895 	/*
2896 	 * FIXME: If we always use the reserve / unreserve functions for locking
2897 	 * we do not need this.
2898 	 */
2899 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
2900 }
2901 
2902 void xe_bo_unpin(struct xe_bo *bo)
2903 {
2904 	struct ttm_place *place = &bo->placements[0];
2905 	struct xe_device *xe = xe_bo_device(bo);
2906 
2907 	xe_assert(xe, !bo->ttm.base.import_attach);
2908 	xe_assert(xe, xe_bo_is_pinned(bo));
2909 
2910 	if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) {
2911 		spin_lock(&xe->pinned.lock);
2912 		xe_assert(xe, !list_empty(&bo->pinned_link));
2913 		list_del_init(&bo->pinned_link);
2914 		spin_unlock(&xe->pinned.lock);
2915 
2916 		if (bo->backup_obj) {
2917 			if (xe_bo_is_pinned(bo->backup_obj))
2918 				ttm_bo_unpin(&bo->backup_obj->ttm);
2919 			xe_bo_put(bo->backup_obj);
2920 			bo->backup_obj = NULL;
2921 		}
2922 	}
2923 	ttm_bo_unpin(&bo->ttm);
2924 	if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm))
2925 		xe_ttm_tt_account_add(xe, bo->ttm.ttm);
2926 }
2927 
2928 /**
2929  * xe_bo_validate() - Make sure the bo is in an allowed placement
2930  * @bo: The bo,
2931  * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or
2932  *      NULL. Used together with @allow_res_evict.
2933  * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's
2934  *                   reservation object.
2935  * @exec: The drm_exec transaction to use for exhaustive eviction.
2936  *
2937  * Make sure the bo is in allowed placement, migrating it if necessary. If
2938  * needed, other bos will be evicted. If bos selected for eviction shares
2939  * the @vm's reservation object, they can be evicted iff @allow_res_evict is
2940  * set to true, otherwise they will be bypassed.
2941  *
2942  * Return: 0 on success, negative error code on failure. May return
2943  * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal.
2944  */
2945 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict,
2946 		   struct drm_exec *exec)
2947 {
2948 	struct ttm_operation_ctx ctx = {
2949 		.interruptible = true,
2950 		.no_wait_gpu = false,
2951 		.gfp_retry_mayfail = true,
2952 	};
2953 	int ret;
2954 
2955 	if (xe_bo_is_pinned(bo))
2956 		return 0;
2957 
2958 	if (vm) {
2959 		lockdep_assert_held(&vm->lock);
2960 		xe_vm_assert_held(vm);
2961 
2962 		ctx.allow_res_evict = allow_res_evict;
2963 		ctx.resv = xe_vm_resv(vm);
2964 	}
2965 
2966 	xe_vm_set_validating(vm, allow_res_evict);
2967 	trace_xe_bo_validate(bo);
2968 	xe_validation_assert_exec(xe_bo_device(bo), exec, &bo->ttm.base);
2969 	ret = ttm_bo_validate(&bo->ttm, &bo->placement, &ctx);
2970 	xe_vm_clear_validating(vm, allow_res_evict);
2971 
2972 	return ret;
2973 }
2974 
2975 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo)
2976 {
2977 	if (bo->destroy == &xe_ttm_bo_destroy)
2978 		return true;
2979 
2980 	return false;
2981 }
2982 
2983 /*
2984  * Resolve a BO address. There is no assert to check if the proper lock is held
2985  * so it should only be used in cases where it is not fatal to get the wrong
2986  * address, such as printing debug information, but not in cases where memory is
2987  * written based on this result.
2988  */
2989 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
2990 {
2991 	struct xe_device *xe = xe_bo_device(bo);
2992 	struct xe_res_cursor cur;
2993 	u64 page;
2994 
2995 	xe_assert(xe, page_size <= PAGE_SIZE);
2996 	page = offset >> PAGE_SHIFT;
2997 	offset &= (PAGE_SIZE - 1);
2998 
2999 	if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) {
3000 		xe_assert(xe, bo->ttm.ttm);
3001 
3002 		xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT,
3003 				page_size, &cur);
3004 		return xe_res_dma(&cur) + offset;
3005 	} else {
3006 		struct xe_res_cursor cur;
3007 
3008 		xe_res_first(bo->ttm.resource, page << PAGE_SHIFT,
3009 			     page_size, &cur);
3010 		return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource);
3011 	}
3012 }
3013 
3014 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
3015 {
3016 	if (!READ_ONCE(bo->ttm.pin_count))
3017 		xe_bo_assert_held(bo);
3018 	return __xe_bo_addr(bo, offset, page_size);
3019 }
3020 
3021 int xe_bo_vmap(struct xe_bo *bo)
3022 {
3023 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
3024 	void *virtual;
3025 	bool is_iomem;
3026 	int ret;
3027 
3028 	xe_bo_assert_held(bo);
3029 
3030 	if (drm_WARN_ON(&xe->drm, !(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) ||
3031 			!force_contiguous(bo->flags)))
3032 		return -EINVAL;
3033 
3034 	if (!iosys_map_is_null(&bo->vmap))
3035 		return 0;
3036 
3037 	/*
3038 	 * We use this more or less deprecated interface for now since
3039 	 * ttm_bo_vmap() doesn't offer the optimization of kmapping
3040 	 * single page bos, which is done here.
3041 	 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap
3042 	 * to use struct iosys_map.
3043 	 */
3044 	ret = ttm_bo_kmap(&bo->ttm, 0, xe_bo_size(bo) >> PAGE_SHIFT, &bo->kmap);
3045 	if (ret)
3046 		return ret;
3047 
3048 	virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem);
3049 	if (is_iomem)
3050 		iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual);
3051 	else
3052 		iosys_map_set_vaddr(&bo->vmap, virtual);
3053 
3054 	return 0;
3055 }
3056 
3057 static void __xe_bo_vunmap(struct xe_bo *bo)
3058 {
3059 	if (!iosys_map_is_null(&bo->vmap)) {
3060 		iosys_map_clear(&bo->vmap);
3061 		ttm_bo_kunmap(&bo->kmap);
3062 	}
3063 }
3064 
3065 void xe_bo_vunmap(struct xe_bo *bo)
3066 {
3067 	xe_bo_assert_held(bo);
3068 	__xe_bo_vunmap(bo);
3069 }
3070 
3071 static int gem_create_set_pxp_type(struct xe_device *xe, struct xe_bo *bo, u64 value)
3072 {
3073 	if (value == DRM_XE_PXP_TYPE_NONE)
3074 		return 0;
3075 
3076 	/* we only support DRM_XE_PXP_TYPE_HWDRM for now */
3077 	if (XE_IOCTL_DBG(xe, value != DRM_XE_PXP_TYPE_HWDRM))
3078 		return -EINVAL;
3079 
3080 	return xe_pxp_key_assign(xe->pxp, bo);
3081 }
3082 
3083 typedef int (*xe_gem_create_set_property_fn)(struct xe_device *xe,
3084 					     struct xe_bo *bo,
3085 					     u64 value);
3086 
3087 static const xe_gem_create_set_property_fn gem_create_set_property_funcs[] = {
3088 	[DRM_XE_GEM_CREATE_SET_PROPERTY_PXP_TYPE] = gem_create_set_pxp_type,
3089 };
3090 
3091 static int gem_create_user_ext_set_property(struct xe_device *xe,
3092 					    struct xe_bo *bo,
3093 					    u64 extension)
3094 {
3095 	u64 __user *address = u64_to_user_ptr(extension);
3096 	struct drm_xe_ext_set_property ext;
3097 	int err;
3098 	u32 idx;
3099 
3100 	err = copy_from_user(&ext, address, sizeof(ext));
3101 	if (XE_IOCTL_DBG(xe, err))
3102 		return -EFAULT;
3103 
3104 	if (XE_IOCTL_DBG(xe, ext.property >=
3105 			 ARRAY_SIZE(gem_create_set_property_funcs)) ||
3106 	    XE_IOCTL_DBG(xe, ext.pad) ||
3107 	    XE_IOCTL_DBG(xe, ext.property != DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY))
3108 		return -EINVAL;
3109 
3110 	idx = array_index_nospec(ext.property, ARRAY_SIZE(gem_create_set_property_funcs));
3111 	if (!gem_create_set_property_funcs[idx])
3112 		return -EINVAL;
3113 
3114 	return gem_create_set_property_funcs[idx](xe, bo, ext.value);
3115 }
3116 
3117 typedef int (*xe_gem_create_user_extension_fn)(struct xe_device *xe,
3118 					       struct xe_bo *bo,
3119 					       u64 extension);
3120 
3121 static const xe_gem_create_user_extension_fn gem_create_user_extension_funcs[] = {
3122 	[DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY] = gem_create_user_ext_set_property,
3123 };
3124 
3125 #define MAX_USER_EXTENSIONS	16
3126 static int gem_create_user_extensions(struct xe_device *xe, struct xe_bo *bo,
3127 				      u64 extensions, int ext_number)
3128 {
3129 	u64 __user *address = u64_to_user_ptr(extensions);
3130 	struct drm_xe_user_extension ext;
3131 	int err;
3132 	u32 idx;
3133 
3134 	if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS))
3135 		return -E2BIG;
3136 
3137 	err = copy_from_user(&ext, address, sizeof(ext));
3138 	if (XE_IOCTL_DBG(xe, err))
3139 		return -EFAULT;
3140 
3141 	if (XE_IOCTL_DBG(xe, ext.pad) ||
3142 	    XE_IOCTL_DBG(xe, ext.name >= ARRAY_SIZE(gem_create_user_extension_funcs)))
3143 		return -EINVAL;
3144 
3145 	idx = array_index_nospec(ext.name,
3146 				 ARRAY_SIZE(gem_create_user_extension_funcs));
3147 	err = gem_create_user_extension_funcs[idx](xe, bo, extensions);
3148 	if (XE_IOCTL_DBG(xe, err))
3149 		return err;
3150 
3151 	if (ext.next_extension)
3152 		return gem_create_user_extensions(xe, bo, ext.next_extension,
3153 						  ++ext_number);
3154 
3155 	return 0;
3156 }
3157 
3158 int xe_gem_create_ioctl(struct drm_device *dev, void *data,
3159 			struct drm_file *file)
3160 {
3161 	struct xe_device *xe = to_xe_device(dev);
3162 	struct xe_file *xef = to_xe_file(file);
3163 	struct drm_xe_gem_create *args = data;
3164 	struct xe_validation_ctx ctx;
3165 	struct drm_exec exec;
3166 	struct xe_vm *vm = NULL;
3167 	struct xe_bo *bo;
3168 	unsigned int bo_flags;
3169 	u32 handle;
3170 	int err;
3171 
3172 	if (XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) ||
3173 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
3174 		return -EINVAL;
3175 
3176 	/* at least one valid memory placement must be specified */
3177 	if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) ||
3178 			 !args->placement))
3179 		return -EINVAL;
3180 
3181 	if (XE_IOCTL_DBG(xe, args->flags &
3182 			 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING |
3183 			   DRM_XE_GEM_CREATE_FLAG_SCANOUT |
3184 			   DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM)))
3185 		return -EINVAL;
3186 
3187 	if (XE_IOCTL_DBG(xe, args->handle))
3188 		return -EINVAL;
3189 
3190 	if (XE_IOCTL_DBG(xe, !args->size))
3191 		return -EINVAL;
3192 
3193 	if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX))
3194 		return -EINVAL;
3195 
3196 	if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK))
3197 		return -EINVAL;
3198 
3199 	bo_flags = 0;
3200 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING)
3201 		bo_flags |= XE_BO_FLAG_DEFER_BACKING;
3202 
3203 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT)
3204 		bo_flags |= XE_BO_FLAG_SCANOUT;
3205 
3206 	bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1);
3207 
3208 	/* CCS formats need physical placement at a 64K alignment in VRAM. */
3209 	if ((bo_flags & XE_BO_FLAG_VRAM_MASK) &&
3210 	    (bo_flags & XE_BO_FLAG_SCANOUT) &&
3211 	    !(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) &&
3212 	    IS_ALIGNED(args->size, SZ_64K))
3213 		bo_flags |= XE_BO_FLAG_NEEDS_64K;
3214 
3215 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) {
3216 		if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK)))
3217 			return -EINVAL;
3218 
3219 		bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS;
3220 	}
3221 
3222 	if (XE_IOCTL_DBG(xe, !args->cpu_caching ||
3223 			 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC))
3224 		return -EINVAL;
3225 
3226 	if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK &&
3227 			 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC))
3228 		return -EINVAL;
3229 
3230 	if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT &&
3231 			 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB))
3232 		return -EINVAL;
3233 
3234 	if (args->vm_id) {
3235 		vm = xe_vm_lookup(xef, args->vm_id);
3236 		if (XE_IOCTL_DBG(xe, !vm))
3237 			return -ENOENT;
3238 	}
3239 
3240 	err = 0;
3241 	xe_validation_guard(&ctx, &xe->val, &exec, (struct xe_val_flags) {.interruptible = true},
3242 			    err) {
3243 		if (vm) {
3244 			err = xe_vm_drm_exec_lock(vm, &exec);
3245 			drm_exec_retry_on_contention(&exec);
3246 			if (err)
3247 				break;
3248 		}
3249 		bo = xe_bo_create_user(xe, vm, args->size, args->cpu_caching,
3250 				       bo_flags, &exec);
3251 		drm_exec_retry_on_contention(&exec);
3252 		if (IS_ERR(bo)) {
3253 			err = PTR_ERR(bo);
3254 			xe_validation_retry_on_oom(&ctx, &err);
3255 			break;
3256 		}
3257 	}
3258 	if (err)
3259 		goto out_vm;
3260 
3261 	if (args->extensions) {
3262 		err = gem_create_user_extensions(xe, bo, args->extensions, 0);
3263 		if (err)
3264 			goto out_bulk;
3265 	}
3266 
3267 	err = drm_gem_handle_create(file, &bo->ttm.base, &handle);
3268 	if (err)
3269 		goto out_bulk;
3270 
3271 	args->handle = handle;
3272 	goto out_put;
3273 
3274 out_bulk:
3275 	if (vm && !xe_vm_in_fault_mode(vm)) {
3276 		xe_vm_lock(vm, false);
3277 		__xe_bo_unset_bulk_move(bo);
3278 		xe_vm_unlock(vm);
3279 	}
3280 out_put:
3281 	xe_bo_put(bo);
3282 out_vm:
3283 	if (vm)
3284 		xe_vm_put(vm);
3285 
3286 	return err;
3287 }
3288 
3289 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
3290 			     struct drm_file *file)
3291 {
3292 	struct xe_device *xe = to_xe_device(dev);
3293 	struct drm_xe_gem_mmap_offset *args = data;
3294 	struct drm_gem_object *gem_obj;
3295 
3296 	if (XE_IOCTL_DBG(xe, args->extensions) ||
3297 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
3298 		return -EINVAL;
3299 
3300 	if (XE_IOCTL_DBG(xe, args->flags &
3301 			 ~DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER))
3302 		return -EINVAL;
3303 
3304 	if (args->flags & DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER) {
3305 		if (XE_IOCTL_DBG(xe, !IS_DGFX(xe)))
3306 			return -EINVAL;
3307 
3308 		if (XE_IOCTL_DBG(xe, args->handle))
3309 			return -EINVAL;
3310 
3311 		if (XE_IOCTL_DBG(xe, PAGE_SIZE > SZ_4K))
3312 			return -EINVAL;
3313 
3314 		BUILD_BUG_ON(((XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT) +
3315 			      SZ_4K) >= DRM_FILE_PAGE_OFFSET_START);
3316 		args->offset = XE_PCI_BARRIER_MMAP_OFFSET;
3317 		return 0;
3318 	}
3319 
3320 	gem_obj = drm_gem_object_lookup(file, args->handle);
3321 	if (XE_IOCTL_DBG(xe, !gem_obj))
3322 		return -ENOENT;
3323 
3324 	/* The mmap offset was set up at BO allocation time. */
3325 	args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node);
3326 
3327 	xe_bo_put(gem_to_xe_bo(gem_obj));
3328 	return 0;
3329 }
3330 
3331 /**
3332  * xe_bo_lock() - Lock the buffer object's dma_resv object
3333  * @bo: The struct xe_bo whose lock is to be taken
3334  * @intr: Whether to perform any wait interruptible
3335  *
3336  * Locks the buffer object's dma_resv object. If the buffer object is
3337  * pointing to a shared dma_resv object, that shared lock is locked.
3338  *
3339  * Return: 0 on success, -EINTR if @intr is true and the wait for a
3340  * contended lock was interrupted. If @intr is set to false, the
3341  * function always returns 0.
3342  */
3343 int xe_bo_lock(struct xe_bo *bo, bool intr)
3344 {
3345 	if (intr)
3346 		return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL);
3347 
3348 	dma_resv_lock(bo->ttm.base.resv, NULL);
3349 
3350 	return 0;
3351 }
3352 
3353 /**
3354  * xe_bo_unlock() - Unlock the buffer object's dma_resv object
3355  * @bo: The struct xe_bo whose lock is to be released.
3356  *
3357  * Unlock a buffer object lock that was locked by xe_bo_lock().
3358  */
3359 void xe_bo_unlock(struct xe_bo *bo)
3360 {
3361 	dma_resv_unlock(bo->ttm.base.resv);
3362 }
3363 
3364 /**
3365  * xe_bo_can_migrate - Whether a buffer object likely can be migrated
3366  * @bo: The buffer object to migrate
3367  * @mem_type: The TTM memory type intended to migrate to
3368  *
3369  * Check whether the buffer object supports migration to the
3370  * given memory type. Note that pinning may affect the ability to migrate as
3371  * returned by this function.
3372  *
3373  * This function is primarily intended as a helper for checking the
3374  * possibility to migrate buffer objects and can be called without
3375  * the object lock held.
3376  *
3377  * Return: true if migration is possible, false otherwise.
3378  */
3379 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type)
3380 {
3381 	unsigned int cur_place;
3382 
3383 	if (bo->ttm.type == ttm_bo_type_kernel)
3384 		return true;
3385 
3386 	if (bo->ttm.type == ttm_bo_type_sg)
3387 		return false;
3388 
3389 	for (cur_place = 0; cur_place < bo->placement.num_placement;
3390 	     cur_place++) {
3391 		if (bo->placements[cur_place].mem_type == mem_type)
3392 			return true;
3393 	}
3394 
3395 	return false;
3396 }
3397 
3398 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place)
3399 {
3400 	memset(place, 0, sizeof(*place));
3401 	place->mem_type = mem_type;
3402 }
3403 
3404 /**
3405  * xe_bo_migrate - Migrate an object to the desired region id
3406  * @bo: The buffer object to migrate.
3407  * @mem_type: The TTM region type to migrate to.
3408  * @tctx: A pointer to a struct ttm_operation_ctx or NULL if
3409  * a default interruptibe ctx is to be used.
3410  * @exec: The drm_exec transaction to use for exhaustive eviction.
3411  *
3412  * Attempt to migrate the buffer object to the desired memory region. The
3413  * buffer object may not be pinned, and must be locked.
3414  * On successful completion, the object memory type will be updated,
3415  * but an async migration task may not have completed yet, and to
3416  * accomplish that, the object's kernel fences must be signaled with
3417  * the object lock held.
3418  *
3419  * Return: 0 on success. Negative error code on failure. In particular may
3420  * return -EINTR or -ERESTARTSYS if signal pending.
3421  */
3422 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type, struct ttm_operation_ctx *tctx,
3423 		  struct drm_exec *exec)
3424 {
3425 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
3426 	struct ttm_operation_ctx ctx = {
3427 		.interruptible = true,
3428 		.no_wait_gpu = false,
3429 		.gfp_retry_mayfail = true,
3430 	};
3431 	struct ttm_placement placement;
3432 	struct ttm_place requested;
3433 
3434 	xe_bo_assert_held(bo);
3435 	tctx = tctx ? tctx : &ctx;
3436 
3437 	if (bo->ttm.resource->mem_type == mem_type)
3438 		return 0;
3439 
3440 	if (xe_bo_is_pinned(bo))
3441 		return -EBUSY;
3442 
3443 	if (!xe_bo_can_migrate(bo, mem_type))
3444 		return -EINVAL;
3445 
3446 	xe_place_from_ttm_type(mem_type, &requested);
3447 	placement.num_placement = 1;
3448 	placement.placement = &requested;
3449 
3450 	/*
3451 	 * Stolen needs to be handled like below VRAM handling if we ever need
3452 	 * to support it.
3453 	 */
3454 	drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN);
3455 
3456 	if (mem_type_is_vram(mem_type)) {
3457 		u32 c = 0;
3458 
3459 		add_vram(xe, bo, &requested, bo->flags, mem_type, &c);
3460 	}
3461 
3462 	if (!tctx->no_wait_gpu)
3463 		xe_validation_assert_exec(xe_bo_device(bo), exec, &bo->ttm.base);
3464 	return ttm_bo_validate(&bo->ttm, &placement, tctx);
3465 }
3466 
3467 /**
3468  * xe_bo_evict - Evict an object to evict placement
3469  * @bo: The buffer object to migrate.
3470  * @exec: The drm_exec transaction to use for exhaustive eviction.
3471  *
3472  * On successful completion, the object memory will be moved to evict
3473  * placement. This function blocks until the object has been fully moved.
3474  *
3475  * Return: 0 on success. Negative error code on failure.
3476  */
3477 int xe_bo_evict(struct xe_bo *bo, struct drm_exec *exec)
3478 {
3479 	struct ttm_operation_ctx ctx = {
3480 		.interruptible = false,
3481 		.no_wait_gpu = false,
3482 		.gfp_retry_mayfail = true,
3483 	};
3484 	struct ttm_placement placement;
3485 	int ret;
3486 
3487 	xe_evict_flags(&bo->ttm, &placement);
3488 	ret = ttm_bo_validate(&bo->ttm, &placement, &ctx);
3489 	if (ret)
3490 		return ret;
3491 
3492 	dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL,
3493 			      false, MAX_SCHEDULE_TIMEOUT);
3494 
3495 	return 0;
3496 }
3497 
3498 /**
3499  * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when
3500  * placed in system memory.
3501  * @bo: The xe_bo
3502  *
3503  * Return: true if extra pages need to be allocated, false otherwise.
3504  */
3505 bool xe_bo_needs_ccs_pages(struct xe_bo *bo)
3506 {
3507 	struct xe_device *xe = xe_bo_device(bo);
3508 
3509 	if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe))
3510 		return false;
3511 
3512 	if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device)
3513 		return false;
3514 
3515 	/* On discrete GPUs, if the GPU can access this buffer from
3516 	 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS
3517 	 * can't be used since there's no CCS storage associated with
3518 	 * non-VRAM addresses.
3519 	 */
3520 	if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM))
3521 		return false;
3522 
3523 	/*
3524 	 * Compression implies coh_none, therefore we know for sure that WB
3525 	 * memory can't currently use compression, which is likely one of the
3526 	 * common cases.
3527 	 */
3528 	if (bo->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)
3529 		return false;
3530 
3531 	return true;
3532 }
3533 
3534 /**
3535  * __xe_bo_release_dummy() - Dummy kref release function
3536  * @kref: The embedded struct kref.
3537  *
3538  * Dummy release function for xe_bo_put_deferred(). Keep off.
3539  */
3540 void __xe_bo_release_dummy(struct kref *kref)
3541 {
3542 }
3543 
3544 /**
3545  * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred().
3546  * @deferred: The lockless list used for the call to xe_bo_put_deferred().
3547  *
3548  * Puts all bos whose put was deferred by xe_bo_put_deferred().
3549  * The @deferred list can be either an onstack local list or a global
3550  * shared list used by a workqueue.
3551  */
3552 void xe_bo_put_commit(struct llist_head *deferred)
3553 {
3554 	struct llist_node *freed;
3555 	struct xe_bo *bo, *next;
3556 
3557 	if (!deferred)
3558 		return;
3559 
3560 	freed = llist_del_all(deferred);
3561 	if (!freed)
3562 		return;
3563 
3564 	llist_for_each_entry_safe(bo, next, freed, freed)
3565 		drm_gem_object_free(&bo->ttm.base.refcount);
3566 }
3567 
3568 static void xe_bo_dev_work_func(struct work_struct *work)
3569 {
3570 	struct xe_bo_dev *bo_dev = container_of(work, typeof(*bo_dev), async_free);
3571 
3572 	xe_bo_put_commit(&bo_dev->async_list);
3573 }
3574 
3575 /**
3576  * xe_bo_dev_init() - Initialize BO dev to manage async BO freeing
3577  * @bo_dev: The BO dev structure
3578  */
3579 void xe_bo_dev_init(struct xe_bo_dev *bo_dev)
3580 {
3581 	INIT_WORK(&bo_dev->async_free, xe_bo_dev_work_func);
3582 }
3583 
3584 /**
3585  * xe_bo_dev_fini() - Finalize BO dev managing async BO freeing
3586  * @bo_dev: The BO dev structure
3587  */
3588 void xe_bo_dev_fini(struct xe_bo_dev *bo_dev)
3589 {
3590 	flush_work(&bo_dev->async_free);
3591 }
3592 
3593 void xe_bo_put(struct xe_bo *bo)
3594 {
3595 	struct xe_tile *tile;
3596 	u8 id;
3597 
3598 	might_sleep();
3599 	if (bo) {
3600 #ifdef CONFIG_PROC_FS
3601 		if (bo->client)
3602 			might_lock(&bo->client->bos_lock);
3603 #endif
3604 		for_each_tile(tile, xe_bo_device(bo), id)
3605 			if (bo->ggtt_node[id] && bo->ggtt_node[id]->ggtt)
3606 				xe_ggtt_might_lock(bo->ggtt_node[id]->ggtt);
3607 		drm_gem_object_put(&bo->ttm.base);
3608 	}
3609 }
3610 
3611 /**
3612  * xe_bo_dumb_create - Create a dumb bo as backing for a fb
3613  * @file_priv: ...
3614  * @dev: ...
3615  * @args: ...
3616  *
3617  * See dumb_create() hook in include/drm/drm_drv.h
3618  *
3619  * Return: ...
3620  */
3621 int xe_bo_dumb_create(struct drm_file *file_priv,
3622 		      struct drm_device *dev,
3623 		      struct drm_mode_create_dumb *args)
3624 {
3625 	struct xe_device *xe = to_xe_device(dev);
3626 	struct xe_bo *bo;
3627 	uint32_t handle;
3628 	int err;
3629 	u32 page_size = max_t(u32, PAGE_SIZE,
3630 		xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K);
3631 
3632 	err = drm_mode_size_dumb(dev, args, SZ_64, page_size);
3633 	if (err)
3634 		return err;
3635 
3636 	bo = xe_bo_create_user(xe, NULL, args->size,
3637 			       DRM_XE_GEM_CPU_CACHING_WC,
3638 			       XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) |
3639 			       XE_BO_FLAG_SCANOUT |
3640 			       XE_BO_FLAG_NEEDS_CPU_ACCESS, NULL);
3641 	if (IS_ERR(bo))
3642 		return PTR_ERR(bo);
3643 
3644 	err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle);
3645 	/* drop reference from allocate - handle holds it now */
3646 	drm_gem_object_put(&bo->ttm.base);
3647 	if (!err)
3648 		args->handle = handle;
3649 	return err;
3650 }
3651 
3652 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo)
3653 {
3654 	struct ttm_buffer_object *tbo = &bo->ttm;
3655 	struct ttm_device *bdev = tbo->bdev;
3656 
3657 	drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping);
3658 
3659 	list_del_init(&bo->vram_userfault_link);
3660 }
3661 
3662 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
3663 #include "tests/xe_bo.c"
3664 #endif
3665