xref: /linux/drivers/net/ethernet/engleder/tsnep_main.c (revision ef935650e044fc742b531bf85cc315ff7aa781ea)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021 Gerhard Engleder <gerhard@engleder-embedded.com> */
3 
4 /* TSN endpoint Ethernet MAC driver
5  *
6  * The TSN endpoint Ethernet MAC is a FPGA based network device for real-time
7  * communication. It is designed for endpoints within TSN (Time Sensitive
8  * Networking) networks; e.g., for PLCs in the industrial automation case.
9  *
10  * It supports multiple TX/RX queue pairs. The first TX/RX queue pair is used
11  * by the driver.
12  *
13  * More information can be found here:
14  * - www.embedded-experts.at/tsn
15  * - www.engleder-embedded.com
16  */
17 
18 #include "tsnep.h"
19 #include "tsnep_hw.h"
20 
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_net.h>
24 #include <linux/of_mdio.h>
25 #include <linux/interrupt.h>
26 #include <linux/etherdevice.h>
27 #include <linux/phy.h>
28 #include <linux/iopoll.h>
29 #include <linux/bpf.h>
30 #include <linux/bpf_trace.h>
31 #include <net/page_pool/helpers.h>
32 #include <net/xdp_sock_drv.h>
33 
34 #define TSNEP_RX_OFFSET (max(NET_SKB_PAD, XDP_PACKET_HEADROOM) + NET_IP_ALIGN)
35 #define TSNEP_HEADROOM ALIGN(TSNEP_RX_OFFSET, 4)
36 #define TSNEP_MAX_RX_BUF_SIZE (PAGE_SIZE - TSNEP_HEADROOM - \
37 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
38 /* XSK buffer shall store at least Q-in-Q frame */
39 #define TSNEP_XSK_RX_BUF_SIZE (ALIGN(TSNEP_RX_INLINE_METADATA_SIZE + \
40 				     ETH_FRAME_LEN + ETH_FCS_LEN + \
41 				     VLAN_HLEN * 2, 4))
42 
43 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
44 #define DMA_ADDR_HIGH(dma_addr) ((u32)(((dma_addr) >> 32) & 0xFFFFFFFF))
45 #else
46 #define DMA_ADDR_HIGH(dma_addr) ((u32)(0))
47 #endif
48 #define DMA_ADDR_LOW(dma_addr) ((u32)((dma_addr) & 0xFFFFFFFF))
49 
50 #define TSNEP_COALESCE_USECS_DEFAULT 64
51 #define TSNEP_COALESCE_USECS_MAX     ((ECM_INT_DELAY_MASK >> ECM_INT_DELAY_SHIFT) * \
52 				      ECM_INT_DELAY_BASE_US + ECM_INT_DELAY_BASE_US - 1)
53 
54 /* mapping type */
55 #define TSNEP_TX_TYPE_MAP		BIT(0)
56 #define TSNEP_TX_TYPE_MAP_PAGE		BIT(1)
57 #define TSNEP_TX_TYPE_INLINE		BIT(2)
58 /* buffer type */
59 #define TSNEP_TX_TYPE_SKB		BIT(8)
60 #define TSNEP_TX_TYPE_SKB_MAP		(TSNEP_TX_TYPE_SKB | TSNEP_TX_TYPE_MAP)
61 #define TSNEP_TX_TYPE_SKB_INLINE	(TSNEP_TX_TYPE_SKB | TSNEP_TX_TYPE_INLINE)
62 #define TSNEP_TX_TYPE_SKB_FRAG		BIT(9)
63 #define TSNEP_TX_TYPE_SKB_FRAG_MAP_PAGE	(TSNEP_TX_TYPE_SKB_FRAG | TSNEP_TX_TYPE_MAP_PAGE)
64 #define TSNEP_TX_TYPE_SKB_FRAG_INLINE	(TSNEP_TX_TYPE_SKB_FRAG | TSNEP_TX_TYPE_INLINE)
65 #define TSNEP_TX_TYPE_XDP_TX		BIT(10)
66 #define TSNEP_TX_TYPE_XDP_NDO		BIT(11)
67 #define TSNEP_TX_TYPE_XDP_NDO_MAP_PAGE	(TSNEP_TX_TYPE_XDP_NDO | TSNEP_TX_TYPE_MAP_PAGE)
68 #define TSNEP_TX_TYPE_XDP		(TSNEP_TX_TYPE_XDP_TX | TSNEP_TX_TYPE_XDP_NDO)
69 #define TSNEP_TX_TYPE_XSK		BIT(12)
70 #define TSNEP_TX_TYPE_TSTAMP		BIT(13)
71 #define TSNEP_TX_TYPE_SKB_TSTAMP	(TSNEP_TX_TYPE_SKB | TSNEP_TX_TYPE_TSTAMP)
72 
73 #define TSNEP_XDP_TX		BIT(0)
74 #define TSNEP_XDP_REDIRECT	BIT(1)
75 
tsnep_enable_irq(struct tsnep_adapter * adapter,u32 mask)76 static void tsnep_enable_irq(struct tsnep_adapter *adapter, u32 mask)
77 {
78 	iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
79 }
80 
tsnep_disable_irq(struct tsnep_adapter * adapter,u32 mask)81 static void tsnep_disable_irq(struct tsnep_adapter *adapter, u32 mask)
82 {
83 	mask |= ECM_INT_DISABLE;
84 	iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
85 }
86 
tsnep_irq(int irq,void * arg)87 static irqreturn_t tsnep_irq(int irq, void *arg)
88 {
89 	struct tsnep_adapter *adapter = arg;
90 	u32 active = ioread32(adapter->addr + ECM_INT_ACTIVE);
91 
92 	/* acknowledge interrupt */
93 	if (active != 0)
94 		iowrite32(active, adapter->addr + ECM_INT_ACKNOWLEDGE);
95 
96 	/* handle link interrupt */
97 	if ((active & ECM_INT_LINK) != 0)
98 		phy_mac_interrupt(adapter->netdev->phydev);
99 
100 	/* handle TX/RX queue 0 interrupt */
101 	if ((active & adapter->queue[0].irq_mask) != 0) {
102 		if (napi_schedule_prep(&adapter->queue[0].napi)) {
103 			tsnep_disable_irq(adapter, adapter->queue[0].irq_mask);
104 			/* schedule after masking to avoid races */
105 			__napi_schedule(&adapter->queue[0].napi);
106 		}
107 	}
108 
109 	return IRQ_HANDLED;
110 }
111 
tsnep_irq_txrx(int irq,void * arg)112 static irqreturn_t tsnep_irq_txrx(int irq, void *arg)
113 {
114 	struct tsnep_queue *queue = arg;
115 
116 	/* handle TX/RX queue interrupt */
117 	if (napi_schedule_prep(&queue->napi)) {
118 		tsnep_disable_irq(queue->adapter, queue->irq_mask);
119 		/* schedule after masking to avoid races */
120 		__napi_schedule(&queue->napi);
121 	}
122 
123 	return IRQ_HANDLED;
124 }
125 
tsnep_set_irq_coalesce(struct tsnep_queue * queue,u32 usecs)126 int tsnep_set_irq_coalesce(struct tsnep_queue *queue, u32 usecs)
127 {
128 	if (usecs > TSNEP_COALESCE_USECS_MAX)
129 		return -ERANGE;
130 
131 	usecs /= ECM_INT_DELAY_BASE_US;
132 	usecs <<= ECM_INT_DELAY_SHIFT;
133 	usecs &= ECM_INT_DELAY_MASK;
134 
135 	queue->irq_delay &= ~ECM_INT_DELAY_MASK;
136 	queue->irq_delay |= usecs;
137 	iowrite8(queue->irq_delay, queue->irq_delay_addr);
138 
139 	return 0;
140 }
141 
tsnep_get_irq_coalesce(struct tsnep_queue * queue)142 u32 tsnep_get_irq_coalesce(struct tsnep_queue *queue)
143 {
144 	u32 usecs;
145 
146 	usecs = (queue->irq_delay & ECM_INT_DELAY_MASK);
147 	usecs >>= ECM_INT_DELAY_SHIFT;
148 	usecs *= ECM_INT_DELAY_BASE_US;
149 
150 	return usecs;
151 }
152 
tsnep_mdiobus_read(struct mii_bus * bus,int addr,int regnum)153 static int tsnep_mdiobus_read(struct mii_bus *bus, int addr, int regnum)
154 {
155 	struct tsnep_adapter *adapter = bus->priv;
156 	u32 md;
157 	int retval;
158 
159 	md = ECM_MD_READ;
160 	if (!adapter->suppress_preamble)
161 		md |= ECM_MD_PREAMBLE;
162 	md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
163 	md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
164 	iowrite32(md, adapter->addr + ECM_MD_CONTROL);
165 	retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
166 					   !(md & ECM_MD_BUSY), 16, 1000);
167 	if (retval != 0)
168 		return retval;
169 
170 	return (md & ECM_MD_DATA_MASK) >> ECM_MD_DATA_SHIFT;
171 }
172 
tsnep_mdiobus_write(struct mii_bus * bus,int addr,int regnum,u16 val)173 static int tsnep_mdiobus_write(struct mii_bus *bus, int addr, int regnum,
174 			       u16 val)
175 {
176 	struct tsnep_adapter *adapter = bus->priv;
177 	u32 md;
178 	int retval;
179 
180 	md = ECM_MD_WRITE;
181 	if (!adapter->suppress_preamble)
182 		md |= ECM_MD_PREAMBLE;
183 	md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
184 	md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
185 	md |= ((u32)val << ECM_MD_DATA_SHIFT) & ECM_MD_DATA_MASK;
186 	iowrite32(md, adapter->addr + ECM_MD_CONTROL);
187 	retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
188 					   !(md & ECM_MD_BUSY), 16, 1000);
189 	if (retval != 0)
190 		return retval;
191 
192 	return 0;
193 }
194 
tsnep_set_link_mode(struct tsnep_adapter * adapter)195 static void tsnep_set_link_mode(struct tsnep_adapter *adapter)
196 {
197 	u32 mode;
198 
199 	switch (adapter->phydev->speed) {
200 	case SPEED_100:
201 		mode = ECM_LINK_MODE_100;
202 		break;
203 	case SPEED_1000:
204 		mode = ECM_LINK_MODE_1000;
205 		break;
206 	default:
207 		mode = ECM_LINK_MODE_OFF;
208 		break;
209 	}
210 	iowrite32(mode, adapter->addr + ECM_STATUS);
211 }
212 
tsnep_phy_link_status_change(struct net_device * netdev)213 static void tsnep_phy_link_status_change(struct net_device *netdev)
214 {
215 	struct tsnep_adapter *adapter = netdev_priv(netdev);
216 	struct phy_device *phydev = netdev->phydev;
217 
218 	if (phydev->link)
219 		tsnep_set_link_mode(adapter);
220 
221 	phy_print_status(netdev->phydev);
222 }
223 
tsnep_phy_loopback(struct tsnep_adapter * adapter,bool enable)224 static int tsnep_phy_loopback(struct tsnep_adapter *adapter, bool enable)
225 {
226 	int speed;
227 
228 	if (enable) {
229 		if (adapter->phydev->autoneg == AUTONEG_DISABLE &&
230 		    adapter->phydev->speed == SPEED_100)
231 			speed = SPEED_100;
232 		else
233 			speed = SPEED_1000;
234 	} else {
235 		speed = 0;
236 	}
237 
238 	return phy_loopback(adapter->phydev, enable, speed);
239 }
240 
tsnep_phy_open(struct tsnep_adapter * adapter)241 static int tsnep_phy_open(struct tsnep_adapter *adapter)
242 {
243 	struct phy_device *phydev;
244 	struct ethtool_keee ethtool_keee;
245 	int retval;
246 
247 	retval = phy_connect_direct(adapter->netdev, adapter->phydev,
248 				    tsnep_phy_link_status_change,
249 				    adapter->phy_mode);
250 	if (retval)
251 		return retval;
252 	phydev = adapter->netdev->phydev;
253 
254 	/* MAC supports only 100Mbps|1000Mbps full duplex
255 	 * SPE (Single Pair Ethernet) is also an option but not implemented yet
256 	 */
257 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
258 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
259 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
260 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
261 
262 	/* disable EEE autoneg, EEE not supported by TSNEP */
263 	memset(&ethtool_keee, 0, sizeof(ethtool_keee));
264 	phy_ethtool_set_eee(adapter->phydev, &ethtool_keee);
265 
266 	adapter->phydev->irq = PHY_MAC_INTERRUPT;
267 	phy_start(adapter->phydev);
268 
269 	return 0;
270 }
271 
tsnep_phy_close(struct tsnep_adapter * adapter)272 static void tsnep_phy_close(struct tsnep_adapter *adapter)
273 {
274 	phy_stop(adapter->netdev->phydev);
275 	phy_disconnect(adapter->netdev->phydev);
276 }
277 
tsnep_tx_ring_cleanup(struct tsnep_tx * tx)278 static void tsnep_tx_ring_cleanup(struct tsnep_tx *tx)
279 {
280 	struct device *dmadev = tx->adapter->dmadev;
281 	int i;
282 
283 	memset(tx->entry, 0, sizeof(tx->entry));
284 
285 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
286 		if (tx->page[i]) {
287 			dma_free_coherent(dmadev, PAGE_SIZE, tx->page[i],
288 					  tx->page_dma[i]);
289 			tx->page[i] = NULL;
290 			tx->page_dma[i] = 0;
291 		}
292 	}
293 }
294 
tsnep_tx_ring_create(struct tsnep_tx * tx)295 static int tsnep_tx_ring_create(struct tsnep_tx *tx)
296 {
297 	struct device *dmadev = tx->adapter->dmadev;
298 	struct tsnep_tx_entry *entry;
299 	struct tsnep_tx_entry *next_entry;
300 	int i, j;
301 	int retval;
302 
303 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
304 		tx->page[i] =
305 			dma_alloc_coherent(dmadev, PAGE_SIZE, &tx->page_dma[i],
306 					   GFP_KERNEL);
307 		if (!tx->page[i]) {
308 			retval = -ENOMEM;
309 			goto alloc_failed;
310 		}
311 		for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
312 			entry = &tx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
313 			entry->desc_wb = (struct tsnep_tx_desc_wb *)
314 				(((u8 *)tx->page[i]) + TSNEP_DESC_SIZE * j);
315 			entry->desc = (struct tsnep_tx_desc *)
316 				(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
317 			entry->desc_dma = tx->page_dma[i] + TSNEP_DESC_SIZE * j;
318 			entry->owner_user_flag = false;
319 		}
320 	}
321 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
322 		entry = &tx->entry[i];
323 		next_entry = &tx->entry[(i + 1) & TSNEP_RING_MASK];
324 		entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
325 	}
326 
327 	return 0;
328 
329 alloc_failed:
330 	tsnep_tx_ring_cleanup(tx);
331 	return retval;
332 }
333 
tsnep_tx_init(struct tsnep_tx * tx)334 static void tsnep_tx_init(struct tsnep_tx *tx)
335 {
336 	dma_addr_t dma;
337 
338 	dma = tx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
339 	iowrite32(DMA_ADDR_LOW(dma), tx->addr + TSNEP_TX_DESC_ADDR_LOW);
340 	iowrite32(DMA_ADDR_HIGH(dma), tx->addr + TSNEP_TX_DESC_ADDR_HIGH);
341 	tx->write = 0;
342 	tx->read = 0;
343 	tx->owner_counter = 1;
344 	tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
345 }
346 
tsnep_tx_enable(struct tsnep_tx * tx)347 static void tsnep_tx_enable(struct tsnep_tx *tx)
348 {
349 	struct netdev_queue *nq;
350 
351 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
352 
353 	__netif_tx_lock_bh(nq);
354 	netif_tx_wake_queue(nq);
355 	__netif_tx_unlock_bh(nq);
356 }
357 
tsnep_tx_disable(struct tsnep_tx * tx,struct napi_struct * napi)358 static void tsnep_tx_disable(struct tsnep_tx *tx, struct napi_struct *napi)
359 {
360 	struct netdev_queue *nq;
361 	u32 val;
362 
363 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
364 
365 	__netif_tx_lock_bh(nq);
366 	netif_tx_stop_queue(nq);
367 	__netif_tx_unlock_bh(nq);
368 
369 	/* wait until TX is done in hardware */
370 	readx_poll_timeout(ioread32, tx->addr + TSNEP_CONTROL, val,
371 			   ((val & TSNEP_CONTROL_TX_ENABLE) == 0), 10000,
372 			   1000000);
373 
374 	/* wait until TX is also done in software */
375 	while (READ_ONCE(tx->read) != tx->write) {
376 		napi_schedule(napi);
377 		napi_synchronize(napi);
378 	}
379 }
380 
tsnep_tx_activate(struct tsnep_tx * tx,int index,int length,bool last)381 static void tsnep_tx_activate(struct tsnep_tx *tx, int index, int length,
382 			      bool last)
383 {
384 	struct tsnep_tx_entry *entry = &tx->entry[index];
385 
386 	entry->properties = 0;
387 	/* xdpf and zc are union with skb */
388 	if (entry->skb) {
389 		entry->properties = length & TSNEP_DESC_LENGTH_MASK;
390 		entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
391 		if ((entry->type & TSNEP_TX_TYPE_SKB_TSTAMP) == TSNEP_TX_TYPE_SKB_TSTAMP)
392 			entry->properties |= TSNEP_DESC_EXTENDED_WRITEBACK_FLAG;
393 
394 		/* toggle user flag to prevent false acknowledge
395 		 *
396 		 * Only the first fragment is acknowledged. For all other
397 		 * fragments no acknowledge is done and the last written owner
398 		 * counter stays in the writeback descriptor. Therefore, it is
399 		 * possible that the last written owner counter is identical to
400 		 * the new incremented owner counter and a false acknowledge is
401 		 * detected before the real acknowledge has been done by
402 		 * hardware.
403 		 *
404 		 * The user flag is used to prevent this situation. The user
405 		 * flag is copied to the writeback descriptor by the hardware
406 		 * and is used as additional acknowledge data. By toggeling the
407 		 * user flag only for the first fragment (which is
408 		 * acknowledged), it is guaranteed that the last acknowledge
409 		 * done for this descriptor has used a different user flag and
410 		 * cannot be detected as false acknowledge.
411 		 */
412 		entry->owner_user_flag = !entry->owner_user_flag;
413 	}
414 	if (last)
415 		entry->properties |= TSNEP_TX_DESC_LAST_FRAGMENT_FLAG;
416 	if (index == tx->increment_owner_counter) {
417 		tx->owner_counter++;
418 		if (tx->owner_counter == 4)
419 			tx->owner_counter = 1;
420 		tx->increment_owner_counter--;
421 		if (tx->increment_owner_counter < 0)
422 			tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
423 	}
424 	entry->properties |=
425 		(tx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
426 		TSNEP_DESC_OWNER_COUNTER_MASK;
427 	if (entry->owner_user_flag)
428 		entry->properties |= TSNEP_TX_DESC_OWNER_USER_FLAG;
429 	entry->desc->more_properties =
430 		__cpu_to_le32(entry->len & TSNEP_DESC_LENGTH_MASK);
431 	if (entry->type & TSNEP_TX_TYPE_INLINE)
432 		entry->properties |= TSNEP_TX_DESC_DATA_AFTER_DESC_FLAG;
433 
434 	/* descriptor properties shall be written last, because valid data is
435 	 * signaled there
436 	 */
437 	dma_wmb();
438 
439 	entry->desc->properties = __cpu_to_le32(entry->properties);
440 }
441 
tsnep_tx_desc_available(struct tsnep_tx * tx)442 static int tsnep_tx_desc_available(struct tsnep_tx *tx)
443 {
444 	if (tx->read <= tx->write)
445 		return TSNEP_RING_SIZE - tx->write + tx->read - 1;
446 	else
447 		return tx->read - tx->write - 1;
448 }
449 
tsnep_tx_map_frag(skb_frag_t * frag,struct tsnep_tx_entry * entry,struct device * dmadev,dma_addr_t * dma)450 static int tsnep_tx_map_frag(skb_frag_t *frag, struct tsnep_tx_entry *entry,
451 			     struct device *dmadev, dma_addr_t *dma)
452 {
453 	unsigned int len;
454 	int mapped;
455 
456 	len = skb_frag_size(frag);
457 	if (likely(len > TSNEP_DESC_SIZE_DATA_AFTER_INLINE)) {
458 		*dma = skb_frag_dma_map(dmadev, frag, 0, len, DMA_TO_DEVICE);
459 		if (dma_mapping_error(dmadev, *dma))
460 			return -ENOMEM;
461 		entry->type = TSNEP_TX_TYPE_SKB_FRAG_MAP_PAGE;
462 		mapped = 1;
463 	} else {
464 		void *fragdata = skb_frag_address_safe(frag);
465 
466 		if (likely(fragdata)) {
467 			memcpy(&entry->desc->tx, fragdata, len);
468 		} else {
469 			struct page *page = skb_frag_page(frag);
470 
471 			fragdata = kmap_local_page(page);
472 			memcpy(&entry->desc->tx, fragdata + skb_frag_off(frag),
473 			       len);
474 			kunmap_local(fragdata);
475 		}
476 		entry->type = TSNEP_TX_TYPE_SKB_FRAG_INLINE;
477 		mapped = 0;
478 	}
479 
480 	return mapped;
481 }
482 
tsnep_tx_map(struct sk_buff * skb,struct tsnep_tx * tx,int count,bool do_tstamp)483 static int tsnep_tx_map(struct sk_buff *skb, struct tsnep_tx *tx, int count,
484 			bool do_tstamp)
485 {
486 	struct device *dmadev = tx->adapter->dmadev;
487 	struct tsnep_tx_entry *entry;
488 	unsigned int len;
489 	int map_len = 0;
490 	dma_addr_t dma;
491 	int i, mapped;
492 
493 	for (i = 0; i < count; i++) {
494 		entry = &tx->entry[(tx->write + i) & TSNEP_RING_MASK];
495 
496 		if (!i) {
497 			len = skb_headlen(skb);
498 			if (likely(len > TSNEP_DESC_SIZE_DATA_AFTER_INLINE)) {
499 				dma = dma_map_single(dmadev, skb->data, len,
500 						     DMA_TO_DEVICE);
501 				if (dma_mapping_error(dmadev, dma))
502 					return -ENOMEM;
503 				entry->type = TSNEP_TX_TYPE_SKB_MAP;
504 				mapped = 1;
505 			} else {
506 				memcpy(&entry->desc->tx, skb->data, len);
507 				entry->type = TSNEP_TX_TYPE_SKB_INLINE;
508 				mapped = 0;
509 			}
510 
511 			if (do_tstamp)
512 				entry->type |= TSNEP_TX_TYPE_TSTAMP;
513 		} else {
514 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
515 
516 			len = skb_frag_size(frag);
517 			mapped = tsnep_tx_map_frag(frag, entry, dmadev, &dma);
518 			if (mapped < 0)
519 				return mapped;
520 		}
521 
522 		entry->len = len;
523 		if (likely(mapped)) {
524 			dma_unmap_addr_set(entry, dma, dma);
525 			entry->desc->tx = __cpu_to_le64(dma);
526 		}
527 
528 		map_len += len;
529 	}
530 
531 	return map_len;
532 }
533 
tsnep_tx_unmap(struct tsnep_tx * tx,int index,int count)534 static int tsnep_tx_unmap(struct tsnep_tx *tx, int index, int count)
535 {
536 	struct device *dmadev = tx->adapter->dmadev;
537 	struct tsnep_tx_entry *entry;
538 	int map_len = 0;
539 	int i;
540 
541 	for (i = 0; i < count; i++) {
542 		entry = &tx->entry[(index + i) & TSNEP_RING_MASK];
543 
544 		if (entry->len) {
545 			if (entry->type & TSNEP_TX_TYPE_MAP)
546 				dma_unmap_single(dmadev,
547 						 dma_unmap_addr(entry, dma),
548 						 dma_unmap_len(entry, len),
549 						 DMA_TO_DEVICE);
550 			else if (entry->type & TSNEP_TX_TYPE_MAP_PAGE)
551 				dma_unmap_page(dmadev,
552 					       dma_unmap_addr(entry, dma),
553 					       dma_unmap_len(entry, len),
554 					       DMA_TO_DEVICE);
555 			map_len += entry->len;
556 			entry->len = 0;
557 		}
558 	}
559 
560 	return map_len;
561 }
562 
tsnep_xmit_frame_ring(struct sk_buff * skb,struct tsnep_tx * tx)563 static netdev_tx_t tsnep_xmit_frame_ring(struct sk_buff *skb,
564 					 struct tsnep_tx *tx)
565 {
566 	struct tsnep_tx_entry *entry;
567 	bool do_tstamp = false;
568 	int count = 1;
569 	int length;
570 	int retval;
571 	int i;
572 
573 	if (skb_shinfo(skb)->nr_frags > 0)
574 		count += skb_shinfo(skb)->nr_frags;
575 
576 	if (tsnep_tx_desc_available(tx) < count) {
577 		/* ring full, shall not happen because queue is stopped if full
578 		 * below
579 		 */
580 		netif_stop_subqueue(tx->adapter->netdev, tx->queue_index);
581 
582 		return NETDEV_TX_BUSY;
583 	}
584 
585 	entry = &tx->entry[tx->write];
586 	entry->skb = skb;
587 
588 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
589 	    tx->adapter->hwtstamp_config.tx_type == HWTSTAMP_TX_ON) {
590 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
591 		do_tstamp = true;
592 	}
593 
594 	retval = tsnep_tx_map(skb, tx, count, do_tstamp);
595 	if (retval < 0) {
596 		tsnep_tx_unmap(tx, tx->write, count);
597 		dev_kfree_skb_any(entry->skb);
598 		entry->skb = NULL;
599 
600 		tx->dropped++;
601 
602 		return NETDEV_TX_OK;
603 	}
604 	length = retval;
605 
606 	for (i = 0; i < count; i++)
607 		tsnep_tx_activate(tx, (tx->write + i) & TSNEP_RING_MASK, length,
608 				  i == count - 1);
609 	tx->write = (tx->write + count) & TSNEP_RING_MASK;
610 
611 	skb_tx_timestamp(skb);
612 
613 	/* descriptor properties shall be valid before hardware is notified */
614 	dma_wmb();
615 
616 	iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
617 
618 	if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1)) {
619 		/* ring can get full with next frame */
620 		netif_stop_subqueue(tx->adapter->netdev, tx->queue_index);
621 	}
622 
623 	return NETDEV_TX_OK;
624 }
625 
tsnep_xdp_tx_map(struct xdp_frame * xdpf,struct tsnep_tx * tx,struct skb_shared_info * shinfo,int count,u32 type)626 static int tsnep_xdp_tx_map(struct xdp_frame *xdpf, struct tsnep_tx *tx,
627 			    struct skb_shared_info *shinfo, int count, u32 type)
628 {
629 	struct device *dmadev = tx->adapter->dmadev;
630 	struct tsnep_tx_entry *entry;
631 	struct page *page;
632 	skb_frag_t *frag;
633 	unsigned int len;
634 	int map_len = 0;
635 	dma_addr_t dma;
636 	void *data;
637 	int i;
638 
639 	frag = NULL;
640 	len = xdpf->len;
641 	for (i = 0; i < count; i++) {
642 		entry = &tx->entry[(tx->write + i) & TSNEP_RING_MASK];
643 		if (type & TSNEP_TX_TYPE_XDP_NDO) {
644 			data = unlikely(frag) ? skb_frag_address(frag) :
645 						xdpf->data;
646 			dma = dma_map_single(dmadev, data, len, DMA_TO_DEVICE);
647 			if (dma_mapping_error(dmadev, dma))
648 				return -ENOMEM;
649 
650 			entry->type = TSNEP_TX_TYPE_XDP_NDO_MAP_PAGE;
651 		} else {
652 			page = unlikely(frag) ? skb_frag_page(frag) :
653 						virt_to_page(xdpf->data);
654 			dma = page_pool_get_dma_addr(page);
655 			if (unlikely(frag))
656 				dma += skb_frag_off(frag);
657 			else
658 				dma += sizeof(*xdpf) + xdpf->headroom;
659 			dma_sync_single_for_device(dmadev, dma, len,
660 						   DMA_BIDIRECTIONAL);
661 
662 			entry->type = TSNEP_TX_TYPE_XDP_TX;
663 		}
664 
665 		entry->len = len;
666 		dma_unmap_addr_set(entry, dma, dma);
667 
668 		entry->desc->tx = __cpu_to_le64(dma);
669 
670 		map_len += len;
671 
672 		if (i + 1 < count) {
673 			frag = &shinfo->frags[i];
674 			len = skb_frag_size(frag);
675 		}
676 	}
677 
678 	return map_len;
679 }
680 
681 /* This function requires __netif_tx_lock is held by the caller. */
tsnep_xdp_xmit_frame_ring(struct xdp_frame * xdpf,struct tsnep_tx * tx,u32 type)682 static bool tsnep_xdp_xmit_frame_ring(struct xdp_frame *xdpf,
683 				      struct tsnep_tx *tx, u32 type)
684 {
685 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_frame(xdpf);
686 	struct tsnep_tx_entry *entry;
687 	int count, length, retval, i;
688 
689 	count = 1;
690 	if (unlikely(xdp_frame_has_frags(xdpf)))
691 		count += shinfo->nr_frags;
692 
693 	/* ensure that TX ring is not filled up by XDP, always MAX_SKB_FRAGS
694 	 * will be available for normal TX path and queue is stopped there if
695 	 * necessary
696 	 */
697 	if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1 + count))
698 		return false;
699 
700 	entry = &tx->entry[tx->write];
701 	entry->xdpf = xdpf;
702 
703 	retval = tsnep_xdp_tx_map(xdpf, tx, shinfo, count, type);
704 	if (retval < 0) {
705 		tsnep_tx_unmap(tx, tx->write, count);
706 		entry->xdpf = NULL;
707 
708 		tx->dropped++;
709 
710 		return false;
711 	}
712 	length = retval;
713 
714 	for (i = 0; i < count; i++)
715 		tsnep_tx_activate(tx, (tx->write + i) & TSNEP_RING_MASK, length,
716 				  i == count - 1);
717 	tx->write = (tx->write + count) & TSNEP_RING_MASK;
718 
719 	/* descriptor properties shall be valid before hardware is notified */
720 	dma_wmb();
721 
722 	return true;
723 }
724 
tsnep_xdp_xmit_flush(struct tsnep_tx * tx)725 static void tsnep_xdp_xmit_flush(struct tsnep_tx *tx)
726 {
727 	iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
728 }
729 
tsnep_xdp_xmit_back(struct tsnep_adapter * adapter,struct xdp_buff * xdp,struct netdev_queue * tx_nq,struct tsnep_tx * tx,bool zc)730 static bool tsnep_xdp_xmit_back(struct tsnep_adapter *adapter,
731 				struct xdp_buff *xdp,
732 				struct netdev_queue *tx_nq, struct tsnep_tx *tx,
733 				bool zc)
734 {
735 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
736 	bool xmit;
737 	u32 type;
738 
739 	if (unlikely(!xdpf))
740 		return false;
741 
742 	/* no page pool for zero copy */
743 	if (zc)
744 		type = TSNEP_TX_TYPE_XDP_NDO;
745 	else
746 		type = TSNEP_TX_TYPE_XDP_TX;
747 
748 	__netif_tx_lock(tx_nq, smp_processor_id());
749 
750 	xmit = tsnep_xdp_xmit_frame_ring(xdpf, tx, type);
751 
752 	/* Avoid transmit queue timeout since we share it with the slow path */
753 	if (xmit)
754 		txq_trans_cond_update(tx_nq);
755 
756 	__netif_tx_unlock(tx_nq);
757 
758 	return xmit;
759 }
760 
tsnep_xdp_tx_map_zc(struct xdp_desc * xdpd,struct tsnep_tx * tx)761 static int tsnep_xdp_tx_map_zc(struct xdp_desc *xdpd, struct tsnep_tx *tx)
762 {
763 	struct tsnep_tx_entry *entry;
764 	dma_addr_t dma;
765 
766 	entry = &tx->entry[tx->write];
767 	entry->zc = true;
768 
769 	dma = xsk_buff_raw_get_dma(tx->xsk_pool, xdpd->addr);
770 	xsk_buff_raw_dma_sync_for_device(tx->xsk_pool, dma, xdpd->len);
771 
772 	entry->type = TSNEP_TX_TYPE_XSK;
773 	entry->len = xdpd->len;
774 
775 	entry->desc->tx = __cpu_to_le64(dma);
776 
777 	return xdpd->len;
778 }
779 
tsnep_xdp_xmit_frame_ring_zc(struct xdp_desc * xdpd,struct tsnep_tx * tx)780 static void tsnep_xdp_xmit_frame_ring_zc(struct xdp_desc *xdpd,
781 					 struct tsnep_tx *tx)
782 {
783 	int length;
784 
785 	length = tsnep_xdp_tx_map_zc(xdpd, tx);
786 
787 	tsnep_tx_activate(tx, tx->write, length, true);
788 	tx->write = (tx->write + 1) & TSNEP_RING_MASK;
789 }
790 
tsnep_xdp_xmit_zc(struct tsnep_tx * tx)791 static void tsnep_xdp_xmit_zc(struct tsnep_tx *tx)
792 {
793 	int desc_available = tsnep_tx_desc_available(tx);
794 	struct xdp_desc *descs = tx->xsk_pool->tx_descs;
795 	int batch, i;
796 
797 	/* ensure that TX ring is not filled up by XDP, always MAX_SKB_FRAGS
798 	 * will be available for normal TX path and queue is stopped there if
799 	 * necessary
800 	 */
801 	if (desc_available <= (MAX_SKB_FRAGS + 1))
802 		return;
803 	desc_available -= MAX_SKB_FRAGS + 1;
804 
805 	batch = xsk_tx_peek_release_desc_batch(tx->xsk_pool, desc_available);
806 	for (i = 0; i < batch; i++)
807 		tsnep_xdp_xmit_frame_ring_zc(&descs[i], tx);
808 
809 	if (batch) {
810 		/* descriptor properties shall be valid before hardware is
811 		 * notified
812 		 */
813 		dma_wmb();
814 
815 		tsnep_xdp_xmit_flush(tx);
816 	}
817 }
818 
tsnep_tx_poll(struct tsnep_tx * tx,int napi_budget)819 static bool tsnep_tx_poll(struct tsnep_tx *tx, int napi_budget)
820 {
821 	struct tsnep_tx_entry *entry;
822 	struct netdev_queue *nq;
823 	int xsk_frames = 0;
824 	int budget = 128;
825 	int length;
826 	int count;
827 
828 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
829 	__netif_tx_lock(nq, smp_processor_id());
830 
831 	do {
832 		if (tx->read == tx->write)
833 			break;
834 
835 		entry = &tx->entry[tx->read];
836 		if ((__le32_to_cpu(entry->desc_wb->properties) &
837 		     TSNEP_TX_DESC_OWNER_MASK) !=
838 		    (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
839 			break;
840 
841 		/* descriptor properties shall be read first, because valid data
842 		 * is signaled there
843 		 */
844 		dma_rmb();
845 
846 		count = 1;
847 		if ((entry->type & TSNEP_TX_TYPE_SKB) &&
848 		    skb_shinfo(entry->skb)->nr_frags > 0)
849 			count += skb_shinfo(entry->skb)->nr_frags;
850 		else if ((entry->type & TSNEP_TX_TYPE_XDP) &&
851 			 xdp_frame_has_frags(entry->xdpf))
852 			count += xdp_get_shared_info_from_frame(entry->xdpf)->nr_frags;
853 
854 		length = tsnep_tx_unmap(tx, tx->read, count);
855 
856 		if (((entry->type & TSNEP_TX_TYPE_SKB_TSTAMP) == TSNEP_TX_TYPE_SKB_TSTAMP) &&
857 		    (__le32_to_cpu(entry->desc_wb->properties) &
858 		     TSNEP_DESC_EXTENDED_WRITEBACK_FLAG)) {
859 			struct skb_shared_hwtstamps hwtstamps;
860 			u64 timestamp;
861 
862 			if (entry->skb->sk &&
863 			    READ_ONCE(entry->skb->sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC)
864 				timestamp =
865 					__le64_to_cpu(entry->desc_wb->counter);
866 			else
867 				timestamp =
868 					__le64_to_cpu(entry->desc_wb->timestamp);
869 
870 			memset(&hwtstamps, 0, sizeof(hwtstamps));
871 			hwtstamps.hwtstamp = ns_to_ktime(timestamp);
872 
873 			skb_tstamp_tx(entry->skb, &hwtstamps);
874 		}
875 
876 		if (entry->type & TSNEP_TX_TYPE_SKB)
877 			napi_consume_skb(entry->skb, napi_budget);
878 		else if (entry->type & TSNEP_TX_TYPE_XDP)
879 			xdp_return_frame_rx_napi(entry->xdpf);
880 		else
881 			xsk_frames++;
882 		/* xdpf and zc are union with skb */
883 		entry->skb = NULL;
884 
885 		tx->read = (tx->read + count) & TSNEP_RING_MASK;
886 
887 		tx->packets++;
888 		tx->bytes += length + ETH_FCS_LEN;
889 
890 		budget--;
891 	} while (likely(budget));
892 
893 	if (tx->xsk_pool) {
894 		if (xsk_frames)
895 			xsk_tx_completed(tx->xsk_pool, xsk_frames);
896 		if (xsk_uses_need_wakeup(tx->xsk_pool))
897 			xsk_set_tx_need_wakeup(tx->xsk_pool);
898 		tsnep_xdp_xmit_zc(tx);
899 	}
900 
901 	if ((tsnep_tx_desc_available(tx) >= ((MAX_SKB_FRAGS + 1) * 2)) &&
902 	    netif_tx_queue_stopped(nq)) {
903 		netif_tx_wake_queue(nq);
904 	}
905 
906 	__netif_tx_unlock(nq);
907 
908 	return budget != 0;
909 }
910 
tsnep_tx_pending(struct tsnep_tx * tx)911 static bool tsnep_tx_pending(struct tsnep_tx *tx)
912 {
913 	struct tsnep_tx_entry *entry;
914 	struct netdev_queue *nq;
915 	bool pending = false;
916 
917 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
918 	__netif_tx_lock(nq, smp_processor_id());
919 
920 	if (tx->read != tx->write) {
921 		entry = &tx->entry[tx->read];
922 		if ((__le32_to_cpu(entry->desc_wb->properties) &
923 		     TSNEP_TX_DESC_OWNER_MASK) ==
924 		    (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
925 			pending = true;
926 	}
927 
928 	__netif_tx_unlock(nq);
929 
930 	return pending;
931 }
932 
tsnep_tx_open(struct tsnep_tx * tx)933 static int tsnep_tx_open(struct tsnep_tx *tx)
934 {
935 	int retval;
936 
937 	retval = tsnep_tx_ring_create(tx);
938 	if (retval)
939 		return retval;
940 
941 	tsnep_tx_init(tx);
942 
943 	return 0;
944 }
945 
tsnep_tx_close(struct tsnep_tx * tx)946 static void tsnep_tx_close(struct tsnep_tx *tx)
947 {
948 	tsnep_tx_ring_cleanup(tx);
949 }
950 
tsnep_rx_ring_cleanup(struct tsnep_rx * rx)951 static void tsnep_rx_ring_cleanup(struct tsnep_rx *rx)
952 {
953 	struct device *dmadev = rx->adapter->dmadev;
954 	struct tsnep_rx_entry *entry;
955 	int i;
956 
957 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
958 		entry = &rx->entry[i];
959 		if (!rx->xsk_pool && entry->page)
960 			page_pool_put_full_page(rx->page_pool, entry->page,
961 						false);
962 		if (rx->xsk_pool && entry->xdp)
963 			xsk_buff_free(entry->xdp);
964 		/* xdp is union with page */
965 		entry->page = NULL;
966 	}
967 
968 	if (rx->page_pool)
969 		page_pool_destroy(rx->page_pool);
970 
971 	memset(rx->entry, 0, sizeof(rx->entry));
972 
973 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
974 		if (rx->page[i]) {
975 			dma_free_coherent(dmadev, PAGE_SIZE, rx->page[i],
976 					  rx->page_dma[i]);
977 			rx->page[i] = NULL;
978 			rx->page_dma[i] = 0;
979 		}
980 	}
981 }
982 
tsnep_rx_ring_create(struct tsnep_rx * rx)983 static int tsnep_rx_ring_create(struct tsnep_rx *rx)
984 {
985 	struct device *dmadev = rx->adapter->dmadev;
986 	struct tsnep_rx_entry *entry;
987 	struct page_pool_params pp_params = { 0 };
988 	struct tsnep_rx_entry *next_entry;
989 	int i, j;
990 	int retval;
991 
992 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
993 		rx->page[i] =
994 			dma_alloc_coherent(dmadev, PAGE_SIZE, &rx->page_dma[i],
995 					   GFP_KERNEL);
996 		if (!rx->page[i]) {
997 			retval = -ENOMEM;
998 			goto failed;
999 		}
1000 		for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
1001 			entry = &rx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
1002 			entry->desc_wb = (struct tsnep_rx_desc_wb *)
1003 				(((u8 *)rx->page[i]) + TSNEP_DESC_SIZE * j);
1004 			entry->desc = (struct tsnep_rx_desc *)
1005 				(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
1006 			entry->desc_dma = rx->page_dma[i] + TSNEP_DESC_SIZE * j;
1007 		}
1008 	}
1009 
1010 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
1011 	pp_params.order = 0;
1012 	pp_params.pool_size = TSNEP_RING_SIZE;
1013 	pp_params.nid = dev_to_node(dmadev);
1014 	pp_params.dev = dmadev;
1015 	pp_params.dma_dir = DMA_BIDIRECTIONAL;
1016 	pp_params.max_len = TSNEP_MAX_RX_BUF_SIZE;
1017 	pp_params.offset = TSNEP_RX_OFFSET;
1018 	rx->page_pool = page_pool_create(&pp_params);
1019 	if (IS_ERR(rx->page_pool)) {
1020 		retval = PTR_ERR(rx->page_pool);
1021 		rx->page_pool = NULL;
1022 		goto failed;
1023 	}
1024 
1025 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1026 		entry = &rx->entry[i];
1027 		next_entry = &rx->entry[(i + 1) & TSNEP_RING_MASK];
1028 		entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
1029 	}
1030 
1031 	return 0;
1032 
1033 failed:
1034 	tsnep_rx_ring_cleanup(rx);
1035 	return retval;
1036 }
1037 
tsnep_rx_init(struct tsnep_rx * rx)1038 static void tsnep_rx_init(struct tsnep_rx *rx)
1039 {
1040 	dma_addr_t dma;
1041 
1042 	dma = rx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
1043 	iowrite32(DMA_ADDR_LOW(dma), rx->addr + TSNEP_RX_DESC_ADDR_LOW);
1044 	iowrite32(DMA_ADDR_HIGH(dma), rx->addr + TSNEP_RX_DESC_ADDR_HIGH);
1045 	rx->write = 0;
1046 	rx->read = 0;
1047 	rx->owner_counter = 1;
1048 	rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
1049 }
1050 
tsnep_rx_enable(struct tsnep_rx * rx)1051 static void tsnep_rx_enable(struct tsnep_rx *rx)
1052 {
1053 	/* descriptor properties shall be valid before hardware is notified */
1054 	dma_wmb();
1055 
1056 	iowrite32(TSNEP_CONTROL_RX_ENABLE, rx->addr + TSNEP_CONTROL);
1057 }
1058 
tsnep_rx_disable(struct tsnep_rx * rx)1059 static void tsnep_rx_disable(struct tsnep_rx *rx)
1060 {
1061 	u32 val;
1062 
1063 	iowrite32(TSNEP_CONTROL_RX_DISABLE, rx->addr + TSNEP_CONTROL);
1064 	readx_poll_timeout(ioread32, rx->addr + TSNEP_CONTROL, val,
1065 			   ((val & TSNEP_CONTROL_RX_ENABLE) == 0), 10000,
1066 			   1000000);
1067 }
1068 
tsnep_rx_desc_available(struct tsnep_rx * rx)1069 static int tsnep_rx_desc_available(struct tsnep_rx *rx)
1070 {
1071 	if (rx->read <= rx->write)
1072 		return TSNEP_RING_SIZE - rx->write + rx->read - 1;
1073 	else
1074 		return rx->read - rx->write - 1;
1075 }
1076 
tsnep_rx_free_page_buffer(struct tsnep_rx * rx)1077 static void tsnep_rx_free_page_buffer(struct tsnep_rx *rx)
1078 {
1079 	struct page **page;
1080 
1081 	/* last entry of page_buffer is always zero, because ring cannot be
1082 	 * filled completely
1083 	 */
1084 	page = rx->page_buffer;
1085 	while (*page) {
1086 		page_pool_put_full_page(rx->page_pool, *page, false);
1087 		*page = NULL;
1088 		page++;
1089 	}
1090 }
1091 
tsnep_rx_alloc_page_buffer(struct tsnep_rx * rx)1092 static int tsnep_rx_alloc_page_buffer(struct tsnep_rx *rx)
1093 {
1094 	int i;
1095 
1096 	/* alloc for all ring entries except the last one, because ring cannot
1097 	 * be filled completely
1098 	 */
1099 	for (i = 0; i < TSNEP_RING_SIZE - 1; i++) {
1100 		rx->page_buffer[i] = page_pool_dev_alloc_pages(rx->page_pool);
1101 		if (!rx->page_buffer[i]) {
1102 			tsnep_rx_free_page_buffer(rx);
1103 
1104 			return -ENOMEM;
1105 		}
1106 	}
1107 
1108 	return 0;
1109 }
1110 
tsnep_rx_set_page(struct tsnep_rx * rx,struct tsnep_rx_entry * entry,struct page * page)1111 static void tsnep_rx_set_page(struct tsnep_rx *rx, struct tsnep_rx_entry *entry,
1112 			      struct page *page)
1113 {
1114 	entry->page = page;
1115 	entry->len = TSNEP_MAX_RX_BUF_SIZE;
1116 	entry->dma = page_pool_get_dma_addr(entry->page);
1117 	entry->desc->rx = __cpu_to_le64(entry->dma + TSNEP_RX_OFFSET);
1118 }
1119 
tsnep_rx_alloc_buffer(struct tsnep_rx * rx,int index)1120 static int tsnep_rx_alloc_buffer(struct tsnep_rx *rx, int index)
1121 {
1122 	struct tsnep_rx_entry *entry = &rx->entry[index];
1123 	struct page *page;
1124 
1125 	page = page_pool_dev_alloc_pages(rx->page_pool);
1126 	if (unlikely(!page))
1127 		return -ENOMEM;
1128 	tsnep_rx_set_page(rx, entry, page);
1129 
1130 	return 0;
1131 }
1132 
tsnep_rx_reuse_buffer(struct tsnep_rx * rx,int index)1133 static void tsnep_rx_reuse_buffer(struct tsnep_rx *rx, int index)
1134 {
1135 	struct tsnep_rx_entry *entry = &rx->entry[index];
1136 	struct tsnep_rx_entry *read = &rx->entry[rx->read];
1137 
1138 	tsnep_rx_set_page(rx, entry, read->page);
1139 	read->page = NULL;
1140 }
1141 
tsnep_rx_activate(struct tsnep_rx * rx,int index)1142 static void tsnep_rx_activate(struct tsnep_rx *rx, int index)
1143 {
1144 	struct tsnep_rx_entry *entry = &rx->entry[index];
1145 
1146 	/* TSNEP_MAX_RX_BUF_SIZE and TSNEP_XSK_RX_BUF_SIZE are multiple of 4 */
1147 	entry->properties = entry->len & TSNEP_DESC_LENGTH_MASK;
1148 	entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
1149 	if (index == rx->increment_owner_counter) {
1150 		rx->owner_counter++;
1151 		if (rx->owner_counter == 4)
1152 			rx->owner_counter = 1;
1153 		rx->increment_owner_counter--;
1154 		if (rx->increment_owner_counter < 0)
1155 			rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
1156 	}
1157 	entry->properties |=
1158 		(rx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
1159 		TSNEP_DESC_OWNER_COUNTER_MASK;
1160 
1161 	/* descriptor properties shall be written last, because valid data is
1162 	 * signaled there
1163 	 */
1164 	dma_wmb();
1165 
1166 	entry->desc->properties = __cpu_to_le32(entry->properties);
1167 }
1168 
tsnep_rx_alloc(struct tsnep_rx * rx,int count,bool reuse)1169 static int tsnep_rx_alloc(struct tsnep_rx *rx, int count, bool reuse)
1170 {
1171 	bool alloc_failed = false;
1172 	int i, index;
1173 
1174 	for (i = 0; i < count && !alloc_failed; i++) {
1175 		index = (rx->write + i) & TSNEP_RING_MASK;
1176 
1177 		if (unlikely(tsnep_rx_alloc_buffer(rx, index))) {
1178 			rx->alloc_failed++;
1179 			alloc_failed = true;
1180 
1181 			/* reuse only if no other allocation was successful */
1182 			if (i == 0 && reuse)
1183 				tsnep_rx_reuse_buffer(rx, index);
1184 			else
1185 				break;
1186 		}
1187 
1188 		tsnep_rx_activate(rx, index);
1189 	}
1190 
1191 	if (i)
1192 		rx->write = (rx->write + i) & TSNEP_RING_MASK;
1193 
1194 	return i;
1195 }
1196 
tsnep_rx_refill(struct tsnep_rx * rx,int count,bool reuse)1197 static int tsnep_rx_refill(struct tsnep_rx *rx, int count, bool reuse)
1198 {
1199 	int desc_refilled;
1200 
1201 	desc_refilled = tsnep_rx_alloc(rx, count, reuse);
1202 	if (desc_refilled)
1203 		tsnep_rx_enable(rx);
1204 
1205 	return desc_refilled;
1206 }
1207 
tsnep_rx_set_xdp(struct tsnep_rx * rx,struct tsnep_rx_entry * entry,struct xdp_buff * xdp)1208 static void tsnep_rx_set_xdp(struct tsnep_rx *rx, struct tsnep_rx_entry *entry,
1209 			     struct xdp_buff *xdp)
1210 {
1211 	entry->xdp = xdp;
1212 	entry->len = TSNEP_XSK_RX_BUF_SIZE;
1213 	entry->dma = xsk_buff_xdp_get_dma(entry->xdp);
1214 	entry->desc->rx = __cpu_to_le64(entry->dma);
1215 }
1216 
tsnep_rx_reuse_buffer_zc(struct tsnep_rx * rx,int index)1217 static void tsnep_rx_reuse_buffer_zc(struct tsnep_rx *rx, int index)
1218 {
1219 	struct tsnep_rx_entry *entry = &rx->entry[index];
1220 	struct tsnep_rx_entry *read = &rx->entry[rx->read];
1221 
1222 	tsnep_rx_set_xdp(rx, entry, read->xdp);
1223 	read->xdp = NULL;
1224 }
1225 
tsnep_rx_alloc_zc(struct tsnep_rx * rx,int count,bool reuse)1226 static int tsnep_rx_alloc_zc(struct tsnep_rx *rx, int count, bool reuse)
1227 {
1228 	u32 allocated;
1229 	int i;
1230 
1231 	allocated = xsk_buff_alloc_batch(rx->xsk_pool, rx->xdp_batch, count);
1232 	for (i = 0; i < allocated; i++) {
1233 		int index = (rx->write + i) & TSNEP_RING_MASK;
1234 		struct tsnep_rx_entry *entry = &rx->entry[index];
1235 
1236 		tsnep_rx_set_xdp(rx, entry, rx->xdp_batch[i]);
1237 		tsnep_rx_activate(rx, index);
1238 	}
1239 	if (i == 0) {
1240 		rx->alloc_failed++;
1241 
1242 		if (reuse) {
1243 			tsnep_rx_reuse_buffer_zc(rx, rx->write);
1244 			tsnep_rx_activate(rx, rx->write);
1245 		}
1246 	}
1247 
1248 	if (i)
1249 		rx->write = (rx->write + i) & TSNEP_RING_MASK;
1250 
1251 	return i;
1252 }
1253 
tsnep_rx_free_zc(struct tsnep_rx * rx)1254 static void tsnep_rx_free_zc(struct tsnep_rx *rx)
1255 {
1256 	int i;
1257 
1258 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1259 		struct tsnep_rx_entry *entry = &rx->entry[i];
1260 
1261 		if (entry->xdp)
1262 			xsk_buff_free(entry->xdp);
1263 		entry->xdp = NULL;
1264 	}
1265 }
1266 
tsnep_rx_refill_zc(struct tsnep_rx * rx,int count,bool reuse)1267 static int tsnep_rx_refill_zc(struct tsnep_rx *rx, int count, bool reuse)
1268 {
1269 	int desc_refilled;
1270 
1271 	desc_refilled = tsnep_rx_alloc_zc(rx, count, reuse);
1272 	if (desc_refilled)
1273 		tsnep_rx_enable(rx);
1274 
1275 	return desc_refilled;
1276 }
1277 
tsnep_xsk_rx_need_wakeup(struct tsnep_rx * rx,int desc_available)1278 static void tsnep_xsk_rx_need_wakeup(struct tsnep_rx *rx, int desc_available)
1279 {
1280 	if (desc_available)
1281 		xsk_set_rx_need_wakeup(rx->xsk_pool);
1282 	else
1283 		xsk_clear_rx_need_wakeup(rx->xsk_pool);
1284 }
1285 
tsnep_xdp_run_prog(struct tsnep_rx * rx,struct bpf_prog * prog,struct xdp_buff * xdp,int * status,struct netdev_queue * tx_nq,struct tsnep_tx * tx)1286 static bool tsnep_xdp_run_prog(struct tsnep_rx *rx, struct bpf_prog *prog,
1287 			       struct xdp_buff *xdp, int *status,
1288 			       struct netdev_queue *tx_nq, struct tsnep_tx *tx)
1289 {
1290 	unsigned int length;
1291 	unsigned int sync;
1292 	u32 act;
1293 
1294 	length = xdp->data_end - xdp->data_hard_start - XDP_PACKET_HEADROOM;
1295 
1296 	act = bpf_prog_run_xdp(prog, xdp);
1297 	switch (act) {
1298 	case XDP_PASS:
1299 		return false;
1300 	case XDP_TX:
1301 		if (!tsnep_xdp_xmit_back(rx->adapter, xdp, tx_nq, tx, false))
1302 			goto out_failure;
1303 		*status |= TSNEP_XDP_TX;
1304 		return true;
1305 	case XDP_REDIRECT:
1306 		if (xdp_do_redirect(rx->adapter->netdev, xdp, prog) < 0)
1307 			goto out_failure;
1308 		*status |= TSNEP_XDP_REDIRECT;
1309 		return true;
1310 	default:
1311 		bpf_warn_invalid_xdp_action(rx->adapter->netdev, prog, act);
1312 		fallthrough;
1313 	case XDP_ABORTED:
1314 out_failure:
1315 		trace_xdp_exception(rx->adapter->netdev, prog, act);
1316 		fallthrough;
1317 	case XDP_DROP:
1318 		/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU
1319 		 * touch
1320 		 */
1321 		sync = xdp->data_end - xdp->data_hard_start -
1322 		       XDP_PACKET_HEADROOM;
1323 		sync = max(sync, length);
1324 		page_pool_put_page(rx->page_pool, virt_to_head_page(xdp->data),
1325 				   sync, true);
1326 		return true;
1327 	}
1328 }
1329 
tsnep_xdp_run_prog_zc(struct tsnep_rx * rx,struct bpf_prog * prog,struct xdp_buff * xdp,int * status,struct netdev_queue * tx_nq,struct tsnep_tx * tx)1330 static bool tsnep_xdp_run_prog_zc(struct tsnep_rx *rx, struct bpf_prog *prog,
1331 				  struct xdp_buff *xdp, int *status,
1332 				  struct netdev_queue *tx_nq,
1333 				  struct tsnep_tx *tx)
1334 {
1335 	u32 act;
1336 
1337 	act = bpf_prog_run_xdp(prog, xdp);
1338 
1339 	/* XDP_REDIRECT is the main action for zero-copy */
1340 	if (likely(act == XDP_REDIRECT)) {
1341 		if (xdp_do_redirect(rx->adapter->netdev, xdp, prog) < 0)
1342 			goto out_failure;
1343 		*status |= TSNEP_XDP_REDIRECT;
1344 		return true;
1345 	}
1346 
1347 	switch (act) {
1348 	case XDP_PASS:
1349 		return false;
1350 	case XDP_TX:
1351 		if (!tsnep_xdp_xmit_back(rx->adapter, xdp, tx_nq, tx, true))
1352 			goto out_failure;
1353 		*status |= TSNEP_XDP_TX;
1354 		return true;
1355 	default:
1356 		bpf_warn_invalid_xdp_action(rx->adapter->netdev, prog, act);
1357 		fallthrough;
1358 	case XDP_ABORTED:
1359 out_failure:
1360 		trace_xdp_exception(rx->adapter->netdev, prog, act);
1361 		fallthrough;
1362 	case XDP_DROP:
1363 		xsk_buff_free(xdp);
1364 		return true;
1365 	}
1366 }
1367 
tsnep_finalize_xdp(struct tsnep_adapter * adapter,int status,struct netdev_queue * tx_nq,struct tsnep_tx * tx)1368 static void tsnep_finalize_xdp(struct tsnep_adapter *adapter, int status,
1369 			       struct netdev_queue *tx_nq, struct tsnep_tx *tx)
1370 {
1371 	if (status & TSNEP_XDP_TX) {
1372 		__netif_tx_lock(tx_nq, smp_processor_id());
1373 		tsnep_xdp_xmit_flush(tx);
1374 		__netif_tx_unlock(tx_nq);
1375 	}
1376 
1377 	if (status & TSNEP_XDP_REDIRECT)
1378 		xdp_do_flush();
1379 }
1380 
tsnep_build_skb(struct tsnep_rx * rx,struct page * page,int length)1381 static struct sk_buff *tsnep_build_skb(struct tsnep_rx *rx, struct page *page,
1382 				       int length)
1383 {
1384 	struct sk_buff *skb;
1385 
1386 	skb = napi_build_skb(page_address(page), PAGE_SIZE);
1387 	if (unlikely(!skb))
1388 		return NULL;
1389 
1390 	/* update pointers within the skb to store the data */
1391 	skb_reserve(skb, TSNEP_RX_OFFSET + TSNEP_RX_INLINE_METADATA_SIZE);
1392 	__skb_put(skb, length - ETH_FCS_LEN);
1393 
1394 	if (rx->adapter->hwtstamp_config.rx_filter == HWTSTAMP_FILTER_ALL) {
1395 		struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1396 		struct tsnep_rx_inline *rx_inline =
1397 			(struct tsnep_rx_inline *)(page_address(page) +
1398 						   TSNEP_RX_OFFSET);
1399 
1400 		skb_shinfo(skb)->tx_flags |=
1401 			SKBTX_HW_TSTAMP_NETDEV;
1402 		memset(hwtstamps, 0, sizeof(*hwtstamps));
1403 		hwtstamps->netdev_data = rx_inline;
1404 	}
1405 
1406 	skb_record_rx_queue(skb, rx->queue_index);
1407 	skb->protocol = eth_type_trans(skb, rx->adapter->netdev);
1408 
1409 	return skb;
1410 }
1411 
tsnep_rx_page(struct tsnep_rx * rx,struct napi_struct * napi,struct page * page,int length)1412 static void tsnep_rx_page(struct tsnep_rx *rx, struct napi_struct *napi,
1413 			  struct page *page, int length)
1414 {
1415 	struct sk_buff *skb;
1416 
1417 	skb = tsnep_build_skb(rx, page, length);
1418 	if (skb) {
1419 		skb_mark_for_recycle(skb);
1420 
1421 		rx->packets++;
1422 		rx->bytes += length;
1423 		if (skb->pkt_type == PACKET_MULTICAST)
1424 			rx->multicast++;
1425 
1426 		napi_gro_receive(napi, skb);
1427 	} else {
1428 		page_pool_recycle_direct(rx->page_pool, page);
1429 
1430 		rx->dropped++;
1431 	}
1432 }
1433 
tsnep_rx_poll(struct tsnep_rx * rx,struct napi_struct * napi,int budget)1434 static int tsnep_rx_poll(struct tsnep_rx *rx, struct napi_struct *napi,
1435 			 int budget)
1436 {
1437 	struct device *dmadev = rx->adapter->dmadev;
1438 	enum dma_data_direction dma_dir;
1439 	struct tsnep_rx_entry *entry;
1440 	struct netdev_queue *tx_nq;
1441 	struct bpf_prog *prog;
1442 	struct xdp_buff xdp;
1443 	struct tsnep_tx *tx;
1444 	int desc_available;
1445 	int xdp_status = 0;
1446 	int done = 0;
1447 	int length;
1448 
1449 	desc_available = tsnep_rx_desc_available(rx);
1450 	dma_dir = page_pool_get_dma_dir(rx->page_pool);
1451 	prog = READ_ONCE(rx->adapter->xdp_prog);
1452 	if (prog) {
1453 		tx_nq = netdev_get_tx_queue(rx->adapter->netdev,
1454 					    rx->tx_queue_index);
1455 		tx = &rx->adapter->tx[rx->tx_queue_index];
1456 
1457 		xdp_init_buff(&xdp, PAGE_SIZE, &rx->xdp_rxq);
1458 	}
1459 
1460 	while (likely(done < budget) && (rx->read != rx->write)) {
1461 		entry = &rx->entry[rx->read];
1462 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1463 		     TSNEP_DESC_OWNER_COUNTER_MASK) !=
1464 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1465 			break;
1466 		done++;
1467 
1468 		if (desc_available >= TSNEP_RING_RX_REFILL) {
1469 			bool reuse = desc_available >= TSNEP_RING_RX_REUSE;
1470 
1471 			desc_available -= tsnep_rx_refill(rx, desc_available,
1472 							  reuse);
1473 			if (!entry->page) {
1474 				/* buffer has been reused for refill to prevent
1475 				 * empty RX ring, thus buffer cannot be used for
1476 				 * RX processing
1477 				 */
1478 				rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1479 				desc_available++;
1480 
1481 				rx->dropped++;
1482 
1483 				continue;
1484 			}
1485 		}
1486 
1487 		/* descriptor properties shall be read first, because valid data
1488 		 * is signaled there
1489 		 */
1490 		dma_rmb();
1491 
1492 		prefetch(page_address(entry->page) + TSNEP_RX_OFFSET);
1493 		length = __le32_to_cpu(entry->desc_wb->properties) &
1494 			 TSNEP_DESC_LENGTH_MASK;
1495 		dma_sync_single_range_for_cpu(dmadev, entry->dma,
1496 					      TSNEP_RX_OFFSET, length, dma_dir);
1497 
1498 		/* RX metadata with timestamps is in front of actual data,
1499 		 * subtract metadata size to get length of actual data and
1500 		 * consider metadata size as offset of actual data during RX
1501 		 * processing
1502 		 */
1503 		length -= TSNEP_RX_INLINE_METADATA_SIZE;
1504 
1505 		rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1506 		desc_available++;
1507 
1508 		if (prog) {
1509 			bool consume;
1510 
1511 			xdp_prepare_buff(&xdp, page_address(entry->page),
1512 					 XDP_PACKET_HEADROOM + TSNEP_RX_INLINE_METADATA_SIZE,
1513 					 length - ETH_FCS_LEN, false);
1514 
1515 			consume = tsnep_xdp_run_prog(rx, prog, &xdp,
1516 						     &xdp_status, tx_nq, tx);
1517 			if (consume) {
1518 				rx->packets++;
1519 				rx->bytes += length;
1520 
1521 				entry->page = NULL;
1522 
1523 				continue;
1524 			}
1525 		}
1526 
1527 		tsnep_rx_page(rx, napi, entry->page, length);
1528 		entry->page = NULL;
1529 	}
1530 
1531 	if (xdp_status)
1532 		tsnep_finalize_xdp(rx->adapter, xdp_status, tx_nq, tx);
1533 
1534 	if (desc_available)
1535 		tsnep_rx_refill(rx, desc_available, false);
1536 
1537 	return done;
1538 }
1539 
tsnep_rx_poll_zc(struct tsnep_rx * rx,struct napi_struct * napi,int budget)1540 static int tsnep_rx_poll_zc(struct tsnep_rx *rx, struct napi_struct *napi,
1541 			    int budget)
1542 {
1543 	struct tsnep_rx_entry *entry;
1544 	struct netdev_queue *tx_nq;
1545 	struct bpf_prog *prog;
1546 	struct tsnep_tx *tx;
1547 	int desc_available;
1548 	int xdp_status = 0;
1549 	struct page *page;
1550 	int done = 0;
1551 	int length;
1552 
1553 	desc_available = tsnep_rx_desc_available(rx);
1554 	prog = READ_ONCE(rx->adapter->xdp_prog);
1555 	if (prog) {
1556 		tx_nq = netdev_get_tx_queue(rx->adapter->netdev,
1557 					    rx->tx_queue_index);
1558 		tx = &rx->adapter->tx[rx->tx_queue_index];
1559 	}
1560 
1561 	while (likely(done < budget) && (rx->read != rx->write)) {
1562 		entry = &rx->entry[rx->read];
1563 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1564 		     TSNEP_DESC_OWNER_COUNTER_MASK) !=
1565 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1566 			break;
1567 		done++;
1568 
1569 		if (desc_available >= TSNEP_RING_RX_REFILL) {
1570 			bool reuse = desc_available >= TSNEP_RING_RX_REUSE;
1571 
1572 			desc_available -= tsnep_rx_refill_zc(rx, desc_available,
1573 							     reuse);
1574 			if (!entry->xdp) {
1575 				/* buffer has been reused for refill to prevent
1576 				 * empty RX ring, thus buffer cannot be used for
1577 				 * RX processing
1578 				 */
1579 				rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1580 				desc_available++;
1581 
1582 				rx->dropped++;
1583 
1584 				continue;
1585 			}
1586 		}
1587 
1588 		/* descriptor properties shall be read first, because valid data
1589 		 * is signaled there
1590 		 */
1591 		dma_rmb();
1592 
1593 		prefetch(entry->xdp->data);
1594 		length = __le32_to_cpu(entry->desc_wb->properties) &
1595 			 TSNEP_DESC_LENGTH_MASK;
1596 		xsk_buff_set_size(entry->xdp, length - ETH_FCS_LEN);
1597 		xsk_buff_dma_sync_for_cpu(entry->xdp);
1598 
1599 		/* RX metadata with timestamps is in front of actual data,
1600 		 * subtract metadata size to get length of actual data and
1601 		 * consider metadata size as offset of actual data during RX
1602 		 * processing
1603 		 */
1604 		length -= TSNEP_RX_INLINE_METADATA_SIZE;
1605 
1606 		rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1607 		desc_available++;
1608 
1609 		if (prog) {
1610 			bool consume;
1611 
1612 			entry->xdp->data += TSNEP_RX_INLINE_METADATA_SIZE;
1613 			entry->xdp->data_meta += TSNEP_RX_INLINE_METADATA_SIZE;
1614 
1615 			consume = tsnep_xdp_run_prog_zc(rx, prog, entry->xdp,
1616 							&xdp_status, tx_nq, tx);
1617 			if (consume) {
1618 				rx->packets++;
1619 				rx->bytes += length;
1620 
1621 				entry->xdp = NULL;
1622 
1623 				continue;
1624 			}
1625 		}
1626 
1627 		page = page_pool_dev_alloc_pages(rx->page_pool);
1628 		if (page) {
1629 			memcpy(page_address(page) + TSNEP_RX_OFFSET,
1630 			       entry->xdp->data - TSNEP_RX_INLINE_METADATA_SIZE,
1631 			       length + TSNEP_RX_INLINE_METADATA_SIZE);
1632 			tsnep_rx_page(rx, napi, page, length);
1633 		} else {
1634 			rx->dropped++;
1635 		}
1636 		xsk_buff_free(entry->xdp);
1637 		entry->xdp = NULL;
1638 	}
1639 
1640 	if (xdp_status)
1641 		tsnep_finalize_xdp(rx->adapter, xdp_status, tx_nq, tx);
1642 
1643 	if (desc_available)
1644 		desc_available -= tsnep_rx_refill_zc(rx, desc_available, false);
1645 
1646 	if (xsk_uses_need_wakeup(rx->xsk_pool)) {
1647 		tsnep_xsk_rx_need_wakeup(rx, desc_available);
1648 
1649 		return done;
1650 	}
1651 
1652 	return desc_available ? budget : done;
1653 }
1654 
tsnep_rx_pending(struct tsnep_rx * rx)1655 static bool tsnep_rx_pending(struct tsnep_rx *rx)
1656 {
1657 	struct tsnep_rx_entry *entry;
1658 
1659 	if (rx->read != rx->write) {
1660 		entry = &rx->entry[rx->read];
1661 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1662 		     TSNEP_DESC_OWNER_COUNTER_MASK) ==
1663 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1664 			return true;
1665 	}
1666 
1667 	return false;
1668 }
1669 
tsnep_rx_open(struct tsnep_rx * rx)1670 static int tsnep_rx_open(struct tsnep_rx *rx)
1671 {
1672 	int desc_available;
1673 	int retval;
1674 
1675 	retval = tsnep_rx_ring_create(rx);
1676 	if (retval)
1677 		return retval;
1678 
1679 	tsnep_rx_init(rx);
1680 
1681 	desc_available = tsnep_rx_desc_available(rx);
1682 	if (rx->xsk_pool)
1683 		retval = tsnep_rx_alloc_zc(rx, desc_available, false);
1684 	else
1685 		retval = tsnep_rx_alloc(rx, desc_available, false);
1686 	if (retval != desc_available) {
1687 		retval = -ENOMEM;
1688 
1689 		goto alloc_failed;
1690 	}
1691 
1692 	/* prealloc pages to prevent allocation failures when XSK pool is
1693 	 * disabled at runtime
1694 	 */
1695 	if (rx->xsk_pool) {
1696 		retval = tsnep_rx_alloc_page_buffer(rx);
1697 		if (retval)
1698 			goto alloc_failed;
1699 	}
1700 
1701 	return 0;
1702 
1703 alloc_failed:
1704 	tsnep_rx_ring_cleanup(rx);
1705 	return retval;
1706 }
1707 
tsnep_rx_close(struct tsnep_rx * rx)1708 static void tsnep_rx_close(struct tsnep_rx *rx)
1709 {
1710 	if (rx->xsk_pool)
1711 		tsnep_rx_free_page_buffer(rx);
1712 
1713 	tsnep_rx_ring_cleanup(rx);
1714 }
1715 
tsnep_rx_reopen(struct tsnep_rx * rx)1716 static void tsnep_rx_reopen(struct tsnep_rx *rx)
1717 {
1718 	struct page **page = rx->page_buffer;
1719 	int i;
1720 
1721 	tsnep_rx_init(rx);
1722 
1723 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1724 		struct tsnep_rx_entry *entry = &rx->entry[i];
1725 
1726 		/* defined initial values for properties are required for
1727 		 * correct owner counter checking
1728 		 */
1729 		entry->desc->properties = 0;
1730 		entry->desc_wb->properties = 0;
1731 
1732 		/* prevent allocation failures by reusing kept pages */
1733 		if (*page) {
1734 			tsnep_rx_set_page(rx, entry, *page);
1735 			tsnep_rx_activate(rx, rx->write);
1736 			rx->write++;
1737 
1738 			*page = NULL;
1739 			page++;
1740 		}
1741 	}
1742 }
1743 
tsnep_rx_reopen_xsk(struct tsnep_rx * rx)1744 static void tsnep_rx_reopen_xsk(struct tsnep_rx *rx)
1745 {
1746 	struct page **page = rx->page_buffer;
1747 	u32 allocated;
1748 	int i;
1749 
1750 	tsnep_rx_init(rx);
1751 
1752 	/* alloc all ring entries except the last one, because ring cannot be
1753 	 * filled completely, as many buffers as possible is enough as wakeup is
1754 	 * done if new buffers are available
1755 	 */
1756 	allocated = xsk_buff_alloc_batch(rx->xsk_pool, rx->xdp_batch,
1757 					 TSNEP_RING_SIZE - 1);
1758 
1759 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1760 		struct tsnep_rx_entry *entry = &rx->entry[i];
1761 
1762 		/* keep pages to prevent allocation failures when xsk is
1763 		 * disabled
1764 		 */
1765 		if (entry->page) {
1766 			*page = entry->page;
1767 			entry->page = NULL;
1768 
1769 			page++;
1770 		}
1771 
1772 		/* defined initial values for properties are required for
1773 		 * correct owner counter checking
1774 		 */
1775 		entry->desc->properties = 0;
1776 		entry->desc_wb->properties = 0;
1777 
1778 		if (allocated) {
1779 			tsnep_rx_set_xdp(rx, entry,
1780 					 rx->xdp_batch[allocated - 1]);
1781 			tsnep_rx_activate(rx, rx->write);
1782 			rx->write++;
1783 
1784 			allocated--;
1785 		}
1786 	}
1787 
1788 	/* set need wakeup flag immediately if ring is not filled completely,
1789 	 * first polling would be too late as need wakeup signalisation would
1790 	 * be delayed for an indefinite time
1791 	 */
1792 	if (xsk_uses_need_wakeup(rx->xsk_pool))
1793 		tsnep_xsk_rx_need_wakeup(rx, tsnep_rx_desc_available(rx));
1794 }
1795 
tsnep_pending(struct tsnep_queue * queue)1796 static bool tsnep_pending(struct tsnep_queue *queue)
1797 {
1798 	if (queue->tx && tsnep_tx_pending(queue->tx))
1799 		return true;
1800 
1801 	if (queue->rx && tsnep_rx_pending(queue->rx))
1802 		return true;
1803 
1804 	return false;
1805 }
1806 
tsnep_poll(struct napi_struct * napi,int budget)1807 static int tsnep_poll(struct napi_struct *napi, int budget)
1808 {
1809 	struct tsnep_queue *queue = container_of(napi, struct tsnep_queue,
1810 						 napi);
1811 	bool complete = true;
1812 	int done = 0;
1813 
1814 	if (queue->tx)
1815 		complete = tsnep_tx_poll(queue->tx, budget);
1816 
1817 	/* handle case where we are called by netpoll with a budget of 0 */
1818 	if (unlikely(budget <= 0))
1819 		return budget;
1820 
1821 	if (queue->rx) {
1822 		done = queue->rx->xsk_pool ?
1823 		       tsnep_rx_poll_zc(queue->rx, napi, budget) :
1824 		       tsnep_rx_poll(queue->rx, napi, budget);
1825 		if (done >= budget)
1826 			complete = false;
1827 	}
1828 
1829 	/* if all work not completed, return budget and keep polling */
1830 	if (!complete)
1831 		return budget;
1832 
1833 	if (likely(napi_complete_done(napi, done))) {
1834 		tsnep_enable_irq(queue->adapter, queue->irq_mask);
1835 
1836 		/* reschedule if work is already pending, prevent rotten packets
1837 		 * which are transmitted or received after polling but before
1838 		 * interrupt enable
1839 		 */
1840 		if (tsnep_pending(queue)) {
1841 			tsnep_disable_irq(queue->adapter, queue->irq_mask);
1842 			napi_schedule(napi);
1843 		}
1844 	}
1845 
1846 	return min(done, budget - 1);
1847 }
1848 
tsnep_request_irq(struct tsnep_queue * queue,bool first)1849 static int tsnep_request_irq(struct tsnep_queue *queue, bool first)
1850 {
1851 	const char *name = netdev_name(queue->adapter->netdev);
1852 	irq_handler_t handler;
1853 	void *dev;
1854 	int retval;
1855 
1856 	if (first) {
1857 		sprintf(queue->name, "%s-mac", name);
1858 		handler = tsnep_irq;
1859 		dev = queue->adapter;
1860 	} else {
1861 		if (queue->tx && queue->rx)
1862 			snprintf(queue->name, sizeof(queue->name), "%s-txrx-%d",
1863 				 name, queue->rx->queue_index);
1864 		else if (queue->tx)
1865 			snprintf(queue->name, sizeof(queue->name), "%s-tx-%d",
1866 				 name, queue->tx->queue_index);
1867 		else
1868 			snprintf(queue->name, sizeof(queue->name), "%s-rx-%d",
1869 				 name, queue->rx->queue_index);
1870 		handler = tsnep_irq_txrx;
1871 		dev = queue;
1872 	}
1873 
1874 	retval = request_irq(queue->irq, handler, 0, queue->name, dev);
1875 	if (retval) {
1876 		/* if name is empty, then interrupt won't be freed */
1877 		memset(queue->name, 0, sizeof(queue->name));
1878 	}
1879 
1880 	return retval;
1881 }
1882 
tsnep_free_irq(struct tsnep_queue * queue,bool first)1883 static void tsnep_free_irq(struct tsnep_queue *queue, bool first)
1884 {
1885 	void *dev;
1886 
1887 	if (!strlen(queue->name))
1888 		return;
1889 
1890 	if (first)
1891 		dev = queue->adapter;
1892 	else
1893 		dev = queue;
1894 
1895 	free_irq(queue->irq, dev);
1896 	memset(queue->name, 0, sizeof(queue->name));
1897 }
1898 
tsnep_queue_close(struct tsnep_queue * queue,bool first)1899 static void tsnep_queue_close(struct tsnep_queue *queue, bool first)
1900 {
1901 	struct tsnep_rx *rx = queue->rx;
1902 
1903 	tsnep_free_irq(queue, first);
1904 
1905 	if (rx) {
1906 		if (xdp_rxq_info_is_reg(&rx->xdp_rxq))
1907 			xdp_rxq_info_unreg(&rx->xdp_rxq);
1908 		if (xdp_rxq_info_is_reg(&rx->xdp_rxq_zc))
1909 			xdp_rxq_info_unreg(&rx->xdp_rxq_zc);
1910 	}
1911 
1912 	netif_napi_del(&queue->napi);
1913 }
1914 
tsnep_queue_open(struct tsnep_adapter * adapter,struct tsnep_queue * queue,bool first)1915 static int tsnep_queue_open(struct tsnep_adapter *adapter,
1916 			    struct tsnep_queue *queue, bool first)
1917 {
1918 	struct tsnep_rx *rx = queue->rx;
1919 	struct tsnep_tx *tx = queue->tx;
1920 	int retval;
1921 
1922 	netif_napi_add(adapter->netdev, &queue->napi, tsnep_poll);
1923 
1924 	if (rx) {
1925 		/* choose TX queue for XDP_TX */
1926 		if (tx)
1927 			rx->tx_queue_index = tx->queue_index;
1928 		else if (rx->queue_index < adapter->num_tx_queues)
1929 			rx->tx_queue_index = rx->queue_index;
1930 		else
1931 			rx->tx_queue_index = 0;
1932 
1933 		/* prepare both memory models to eliminate possible registration
1934 		 * errors when memory model is switched between page pool and
1935 		 * XSK pool during runtime
1936 		 */
1937 		retval = xdp_rxq_info_reg(&rx->xdp_rxq, adapter->netdev,
1938 					  rx->queue_index, queue->napi.napi_id);
1939 		if (retval)
1940 			goto failed;
1941 		retval = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq,
1942 						    MEM_TYPE_PAGE_POOL,
1943 						    rx->page_pool);
1944 		if (retval)
1945 			goto failed;
1946 		retval = xdp_rxq_info_reg(&rx->xdp_rxq_zc, adapter->netdev,
1947 					  rx->queue_index, queue->napi.napi_id);
1948 		if (retval)
1949 			goto failed;
1950 		retval = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq_zc,
1951 						    MEM_TYPE_XSK_BUFF_POOL,
1952 						    NULL);
1953 		if (retval)
1954 			goto failed;
1955 		if (rx->xsk_pool)
1956 			xsk_pool_set_rxq_info(rx->xsk_pool, &rx->xdp_rxq_zc);
1957 	}
1958 
1959 	retval = tsnep_request_irq(queue, first);
1960 	if (retval) {
1961 		netif_err(adapter, drv, adapter->netdev,
1962 			  "can't get assigned irq %d.\n", queue->irq);
1963 		goto failed;
1964 	}
1965 
1966 	return 0;
1967 
1968 failed:
1969 	tsnep_queue_close(queue, first);
1970 
1971 	return retval;
1972 }
1973 
tsnep_queue_enable(struct tsnep_queue * queue)1974 static void tsnep_queue_enable(struct tsnep_queue *queue)
1975 {
1976 	struct tsnep_adapter *adapter = queue->adapter;
1977 
1978 	netif_napi_set_irq(&queue->napi, queue->irq);
1979 	napi_enable(&queue->napi);
1980 	tsnep_enable_irq(adapter, queue->irq_mask);
1981 
1982 	if (queue->tx) {
1983 		netif_queue_set_napi(adapter->netdev, queue->tx->queue_index,
1984 				     NETDEV_QUEUE_TYPE_TX, &queue->napi);
1985 		tsnep_tx_enable(queue->tx);
1986 	}
1987 
1988 	if (queue->rx) {
1989 		netif_queue_set_napi(adapter->netdev, queue->rx->queue_index,
1990 				     NETDEV_QUEUE_TYPE_RX, &queue->napi);
1991 		tsnep_rx_enable(queue->rx);
1992 	}
1993 }
1994 
tsnep_queue_disable(struct tsnep_queue * queue)1995 static void tsnep_queue_disable(struct tsnep_queue *queue)
1996 {
1997 	struct tsnep_adapter *adapter = queue->adapter;
1998 
1999 	if (queue->rx)
2000 		netif_queue_set_napi(adapter->netdev, queue->rx->queue_index,
2001 				     NETDEV_QUEUE_TYPE_RX, NULL);
2002 
2003 	if (queue->tx) {
2004 		tsnep_tx_disable(queue->tx, &queue->napi);
2005 		netif_queue_set_napi(adapter->netdev, queue->tx->queue_index,
2006 				     NETDEV_QUEUE_TYPE_TX, NULL);
2007 	}
2008 
2009 	napi_disable(&queue->napi);
2010 	tsnep_disable_irq(adapter, queue->irq_mask);
2011 
2012 	/* disable RX after NAPI polling has been disabled, because RX can be
2013 	 * enabled during NAPI polling
2014 	 */
2015 	if (queue->rx)
2016 		tsnep_rx_disable(queue->rx);
2017 }
2018 
tsnep_netdev_open(struct net_device * netdev)2019 static int tsnep_netdev_open(struct net_device *netdev)
2020 {
2021 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2022 	int i, retval;
2023 
2024 	for (i = 0; i < adapter->num_queues; i++) {
2025 		if (adapter->queue[i].tx) {
2026 			retval = tsnep_tx_open(adapter->queue[i].tx);
2027 			if (retval)
2028 				goto failed;
2029 		}
2030 		if (adapter->queue[i].rx) {
2031 			retval = tsnep_rx_open(adapter->queue[i].rx);
2032 			if (retval)
2033 				goto failed;
2034 		}
2035 
2036 		retval = tsnep_queue_open(adapter, &adapter->queue[i], i == 0);
2037 		if (retval)
2038 			goto failed;
2039 	}
2040 
2041 	retval = netif_set_real_num_tx_queues(adapter->netdev,
2042 					      adapter->num_tx_queues);
2043 	if (retval)
2044 		goto failed;
2045 	retval = netif_set_real_num_rx_queues(adapter->netdev,
2046 					      adapter->num_rx_queues);
2047 	if (retval)
2048 		goto failed;
2049 
2050 	tsnep_enable_irq(adapter, ECM_INT_LINK);
2051 	retval = tsnep_phy_open(adapter);
2052 	if (retval)
2053 		goto phy_failed;
2054 
2055 	for (i = 0; i < adapter->num_queues; i++)
2056 		tsnep_queue_enable(&adapter->queue[i]);
2057 
2058 	return 0;
2059 
2060 phy_failed:
2061 	tsnep_disable_irq(adapter, ECM_INT_LINK);
2062 failed:
2063 	for (i = 0; i < adapter->num_queues; i++) {
2064 		tsnep_queue_close(&adapter->queue[i], i == 0);
2065 
2066 		if (adapter->queue[i].rx)
2067 			tsnep_rx_close(adapter->queue[i].rx);
2068 		if (adapter->queue[i].tx)
2069 			tsnep_tx_close(adapter->queue[i].tx);
2070 	}
2071 	return retval;
2072 }
2073 
tsnep_netdev_close(struct net_device * netdev)2074 static int tsnep_netdev_close(struct net_device *netdev)
2075 {
2076 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2077 	int i;
2078 
2079 	tsnep_disable_irq(adapter, ECM_INT_LINK);
2080 	tsnep_phy_close(adapter);
2081 
2082 	for (i = 0; i < adapter->num_queues; i++) {
2083 		tsnep_queue_disable(&adapter->queue[i]);
2084 
2085 		tsnep_queue_close(&adapter->queue[i], i == 0);
2086 
2087 		if (adapter->queue[i].rx)
2088 			tsnep_rx_close(adapter->queue[i].rx);
2089 		if (adapter->queue[i].tx)
2090 			tsnep_tx_close(adapter->queue[i].tx);
2091 	}
2092 
2093 	return 0;
2094 }
2095 
tsnep_enable_xsk(struct tsnep_queue * queue,struct xsk_buff_pool * pool)2096 int tsnep_enable_xsk(struct tsnep_queue *queue, struct xsk_buff_pool *pool)
2097 {
2098 	bool running = netif_running(queue->adapter->netdev);
2099 	u32 frame_size;
2100 
2101 	frame_size = xsk_pool_get_rx_frame_size(pool);
2102 	if (frame_size < TSNEP_XSK_RX_BUF_SIZE)
2103 		return -EOPNOTSUPP;
2104 
2105 	queue->rx->page_buffer = kcalloc(TSNEP_RING_SIZE,
2106 					 sizeof(*queue->rx->page_buffer),
2107 					 GFP_KERNEL);
2108 	if (!queue->rx->page_buffer)
2109 		return -ENOMEM;
2110 	queue->rx->xdp_batch = kcalloc(TSNEP_RING_SIZE,
2111 				       sizeof(*queue->rx->xdp_batch),
2112 				       GFP_KERNEL);
2113 	if (!queue->rx->xdp_batch) {
2114 		kfree(queue->rx->page_buffer);
2115 		queue->rx->page_buffer = NULL;
2116 
2117 		return -ENOMEM;
2118 	}
2119 
2120 	xsk_pool_set_rxq_info(pool, &queue->rx->xdp_rxq_zc);
2121 
2122 	if (running)
2123 		tsnep_queue_disable(queue);
2124 
2125 	queue->tx->xsk_pool = pool;
2126 	queue->rx->xsk_pool = pool;
2127 
2128 	if (running) {
2129 		tsnep_rx_reopen_xsk(queue->rx);
2130 		tsnep_queue_enable(queue);
2131 	}
2132 
2133 	return 0;
2134 }
2135 
tsnep_disable_xsk(struct tsnep_queue * queue)2136 void tsnep_disable_xsk(struct tsnep_queue *queue)
2137 {
2138 	bool running = netif_running(queue->adapter->netdev);
2139 
2140 	if (running)
2141 		tsnep_queue_disable(queue);
2142 
2143 	tsnep_rx_free_zc(queue->rx);
2144 
2145 	queue->rx->xsk_pool = NULL;
2146 	queue->tx->xsk_pool = NULL;
2147 
2148 	if (running) {
2149 		tsnep_rx_reopen(queue->rx);
2150 		tsnep_queue_enable(queue);
2151 	}
2152 
2153 	kfree(queue->rx->xdp_batch);
2154 	queue->rx->xdp_batch = NULL;
2155 	kfree(queue->rx->page_buffer);
2156 	queue->rx->page_buffer = NULL;
2157 }
2158 
tsnep_netdev_xmit_frame(struct sk_buff * skb,struct net_device * netdev)2159 static netdev_tx_t tsnep_netdev_xmit_frame(struct sk_buff *skb,
2160 					   struct net_device *netdev)
2161 {
2162 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2163 	u16 queue_mapping = skb_get_queue_mapping(skb);
2164 
2165 	if (queue_mapping >= adapter->num_tx_queues)
2166 		queue_mapping = 0;
2167 
2168 	return tsnep_xmit_frame_ring(skb, &adapter->tx[queue_mapping]);
2169 }
2170 
tsnep_netdev_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)2171 static int tsnep_netdev_ioctl(struct net_device *netdev, struct ifreq *ifr,
2172 			      int cmd)
2173 {
2174 	if (!netif_running(netdev))
2175 		return -EINVAL;
2176 	if (cmd == SIOCSHWTSTAMP || cmd == SIOCGHWTSTAMP)
2177 		return tsnep_ptp_ioctl(netdev, ifr, cmd);
2178 	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
2179 }
2180 
tsnep_netdev_set_multicast(struct net_device * netdev)2181 static void tsnep_netdev_set_multicast(struct net_device *netdev)
2182 {
2183 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2184 
2185 	u16 rx_filter = 0;
2186 
2187 	/* configured MAC address and broadcasts are never filtered */
2188 	if (netdev->flags & IFF_PROMISC) {
2189 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
2190 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_UNICASTS;
2191 	} else if (!netdev_mc_empty(netdev) || (netdev->flags & IFF_ALLMULTI)) {
2192 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
2193 	}
2194 	iowrite16(rx_filter, adapter->addr + TSNEP_RX_FILTER);
2195 }
2196 
tsnep_netdev_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)2197 static void tsnep_netdev_get_stats64(struct net_device *netdev,
2198 				     struct rtnl_link_stats64 *stats)
2199 {
2200 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2201 	u32 reg;
2202 	u32 val;
2203 	int i;
2204 
2205 	for (i = 0; i < adapter->num_tx_queues; i++) {
2206 		stats->tx_packets += adapter->tx[i].packets;
2207 		stats->tx_bytes += adapter->tx[i].bytes;
2208 		stats->tx_dropped += adapter->tx[i].dropped;
2209 	}
2210 	for (i = 0; i < adapter->num_rx_queues; i++) {
2211 		stats->rx_packets += adapter->rx[i].packets;
2212 		stats->rx_bytes += adapter->rx[i].bytes;
2213 		stats->rx_dropped += adapter->rx[i].dropped;
2214 		stats->multicast += adapter->rx[i].multicast;
2215 
2216 		reg = ioread32(adapter->addr + TSNEP_QUEUE(i) +
2217 			       TSNEP_RX_STATISTIC);
2218 		val = (reg & TSNEP_RX_STATISTIC_NO_DESC_MASK) >>
2219 		      TSNEP_RX_STATISTIC_NO_DESC_SHIFT;
2220 		stats->rx_dropped += val;
2221 		val = (reg & TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_MASK) >>
2222 		      TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_SHIFT;
2223 		stats->rx_dropped += val;
2224 		val = (reg & TSNEP_RX_STATISTIC_FIFO_OVERFLOW_MASK) >>
2225 		      TSNEP_RX_STATISTIC_FIFO_OVERFLOW_SHIFT;
2226 		stats->rx_errors += val;
2227 		stats->rx_fifo_errors += val;
2228 		val = (reg & TSNEP_RX_STATISTIC_INVALID_FRAME_MASK) >>
2229 		      TSNEP_RX_STATISTIC_INVALID_FRAME_SHIFT;
2230 		stats->rx_errors += val;
2231 		stats->rx_frame_errors += val;
2232 	}
2233 
2234 	reg = ioread32(adapter->addr + ECM_STAT);
2235 	val = (reg & ECM_STAT_RX_ERR_MASK) >> ECM_STAT_RX_ERR_SHIFT;
2236 	stats->rx_errors += val;
2237 	val = (reg & ECM_STAT_INV_FRM_MASK) >> ECM_STAT_INV_FRM_SHIFT;
2238 	stats->rx_errors += val;
2239 	stats->rx_crc_errors += val;
2240 	val = (reg & ECM_STAT_FWD_RX_ERR_MASK) >> ECM_STAT_FWD_RX_ERR_SHIFT;
2241 	stats->rx_errors += val;
2242 }
2243 
tsnep_mac_set_address(struct tsnep_adapter * adapter,u8 * addr)2244 static void tsnep_mac_set_address(struct tsnep_adapter *adapter, u8 *addr)
2245 {
2246 	iowrite32(*(u32 *)addr, adapter->addr + TSNEP_MAC_ADDRESS_LOW);
2247 	iowrite16(*(u16 *)(addr + sizeof(u32)),
2248 		  adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
2249 
2250 	ether_addr_copy(adapter->mac_address, addr);
2251 	netif_info(adapter, drv, adapter->netdev, "MAC address set to %pM\n",
2252 		   addr);
2253 }
2254 
tsnep_netdev_set_mac_address(struct net_device * netdev,void * addr)2255 static int tsnep_netdev_set_mac_address(struct net_device *netdev, void *addr)
2256 {
2257 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2258 	struct sockaddr *sock_addr = addr;
2259 	int retval;
2260 
2261 	retval = eth_prepare_mac_addr_change(netdev, sock_addr);
2262 	if (retval)
2263 		return retval;
2264 	eth_hw_addr_set(netdev, sock_addr->sa_data);
2265 	tsnep_mac_set_address(adapter, sock_addr->sa_data);
2266 
2267 	return 0;
2268 }
2269 
tsnep_netdev_set_features(struct net_device * netdev,netdev_features_t features)2270 static int tsnep_netdev_set_features(struct net_device *netdev,
2271 				     netdev_features_t features)
2272 {
2273 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2274 	netdev_features_t changed = netdev->features ^ features;
2275 	bool enable;
2276 	int retval = 0;
2277 
2278 	if (changed & NETIF_F_LOOPBACK) {
2279 		enable = !!(features & NETIF_F_LOOPBACK);
2280 		retval = tsnep_phy_loopback(adapter, enable);
2281 	}
2282 
2283 	return retval;
2284 }
2285 
tsnep_netdev_get_tstamp(struct net_device * netdev,const struct skb_shared_hwtstamps * hwtstamps,bool cycles)2286 static ktime_t tsnep_netdev_get_tstamp(struct net_device *netdev,
2287 				       const struct skb_shared_hwtstamps *hwtstamps,
2288 				       bool cycles)
2289 {
2290 	struct tsnep_rx_inline *rx_inline = hwtstamps->netdev_data;
2291 	u64 timestamp;
2292 
2293 	if (cycles)
2294 		timestamp = __le64_to_cpu(rx_inline->counter);
2295 	else
2296 		timestamp = __le64_to_cpu(rx_inline->timestamp);
2297 
2298 	return ns_to_ktime(timestamp);
2299 }
2300 
tsnep_netdev_bpf(struct net_device * dev,struct netdev_bpf * bpf)2301 static int tsnep_netdev_bpf(struct net_device *dev, struct netdev_bpf *bpf)
2302 {
2303 	struct tsnep_adapter *adapter = netdev_priv(dev);
2304 
2305 	switch (bpf->command) {
2306 	case XDP_SETUP_PROG:
2307 		return tsnep_xdp_setup_prog(adapter, bpf->prog, bpf->extack);
2308 	case XDP_SETUP_XSK_POOL:
2309 		return tsnep_xdp_setup_pool(adapter, bpf->xsk.pool,
2310 					    bpf->xsk.queue_id);
2311 	default:
2312 		return -EOPNOTSUPP;
2313 	}
2314 }
2315 
tsnep_xdp_get_tx(struct tsnep_adapter * adapter,u32 cpu)2316 static struct tsnep_tx *tsnep_xdp_get_tx(struct tsnep_adapter *adapter, u32 cpu)
2317 {
2318 	if (cpu >= TSNEP_MAX_QUEUES)
2319 		cpu &= TSNEP_MAX_QUEUES - 1;
2320 
2321 	while (cpu >= adapter->num_tx_queues)
2322 		cpu -= adapter->num_tx_queues;
2323 
2324 	return &adapter->tx[cpu];
2325 }
2326 
tsnep_netdev_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** xdp,u32 flags)2327 static int tsnep_netdev_xdp_xmit(struct net_device *dev, int n,
2328 				 struct xdp_frame **xdp, u32 flags)
2329 {
2330 	struct tsnep_adapter *adapter = netdev_priv(dev);
2331 	u32 cpu = smp_processor_id();
2332 	struct netdev_queue *nq;
2333 	struct tsnep_tx *tx;
2334 	int nxmit;
2335 	bool xmit;
2336 
2337 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2338 		return -EINVAL;
2339 
2340 	tx = tsnep_xdp_get_tx(adapter, cpu);
2341 	nq = netdev_get_tx_queue(adapter->netdev, tx->queue_index);
2342 
2343 	__netif_tx_lock(nq, cpu);
2344 
2345 	for (nxmit = 0; nxmit < n; nxmit++) {
2346 		xmit = tsnep_xdp_xmit_frame_ring(xdp[nxmit], tx,
2347 						 TSNEP_TX_TYPE_XDP_NDO);
2348 		if (!xmit)
2349 			break;
2350 
2351 		/* avoid transmit queue timeout since we share it with the slow
2352 		 * path
2353 		 */
2354 		txq_trans_cond_update(nq);
2355 	}
2356 
2357 	if (flags & XDP_XMIT_FLUSH)
2358 		tsnep_xdp_xmit_flush(tx);
2359 
2360 	__netif_tx_unlock(nq);
2361 
2362 	return nxmit;
2363 }
2364 
tsnep_netdev_xsk_wakeup(struct net_device * dev,u32 queue_id,u32 flags)2365 static int tsnep_netdev_xsk_wakeup(struct net_device *dev, u32 queue_id,
2366 				   u32 flags)
2367 {
2368 	struct tsnep_adapter *adapter = netdev_priv(dev);
2369 	struct tsnep_queue *queue;
2370 
2371 	if (queue_id >= adapter->num_rx_queues ||
2372 	    queue_id >= adapter->num_tx_queues)
2373 		return -EINVAL;
2374 
2375 	queue = &adapter->queue[queue_id];
2376 
2377 	if (!napi_if_scheduled_mark_missed(&queue->napi))
2378 		napi_schedule(&queue->napi);
2379 
2380 	return 0;
2381 }
2382 
2383 static const struct net_device_ops tsnep_netdev_ops = {
2384 	.ndo_open = tsnep_netdev_open,
2385 	.ndo_stop = tsnep_netdev_close,
2386 	.ndo_start_xmit = tsnep_netdev_xmit_frame,
2387 	.ndo_eth_ioctl = tsnep_netdev_ioctl,
2388 	.ndo_set_rx_mode = tsnep_netdev_set_multicast,
2389 	.ndo_get_stats64 = tsnep_netdev_get_stats64,
2390 	.ndo_set_mac_address = tsnep_netdev_set_mac_address,
2391 	.ndo_set_features = tsnep_netdev_set_features,
2392 	.ndo_get_tstamp = tsnep_netdev_get_tstamp,
2393 	.ndo_setup_tc = tsnep_tc_setup,
2394 	.ndo_bpf = tsnep_netdev_bpf,
2395 	.ndo_xdp_xmit = tsnep_netdev_xdp_xmit,
2396 	.ndo_xsk_wakeup = tsnep_netdev_xsk_wakeup,
2397 };
2398 
tsnep_mac_init(struct tsnep_adapter * adapter)2399 static int tsnep_mac_init(struct tsnep_adapter *adapter)
2400 {
2401 	int retval;
2402 
2403 	/* initialize RX filtering, at least configured MAC address and
2404 	 * broadcast are not filtered
2405 	 */
2406 	iowrite16(0, adapter->addr + TSNEP_RX_FILTER);
2407 
2408 	/* try to get MAC address in the following order:
2409 	 * - device tree
2410 	 * - valid MAC address already set
2411 	 * - MAC address register if valid
2412 	 * - random MAC address
2413 	 */
2414 	retval = of_get_mac_address(adapter->pdev->dev.of_node,
2415 				    adapter->mac_address);
2416 	if (retval == -EPROBE_DEFER)
2417 		return retval;
2418 	if (retval && !is_valid_ether_addr(adapter->mac_address)) {
2419 		*(u32 *)adapter->mac_address =
2420 			ioread32(adapter->addr + TSNEP_MAC_ADDRESS_LOW);
2421 		*(u16 *)(adapter->mac_address + sizeof(u32)) =
2422 			ioread16(adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
2423 		if (!is_valid_ether_addr(adapter->mac_address))
2424 			eth_random_addr(adapter->mac_address);
2425 	}
2426 
2427 	tsnep_mac_set_address(adapter, adapter->mac_address);
2428 	eth_hw_addr_set(adapter->netdev, adapter->mac_address);
2429 
2430 	return 0;
2431 }
2432 
tsnep_mdio_init(struct tsnep_adapter * adapter)2433 static int tsnep_mdio_init(struct tsnep_adapter *adapter)
2434 {
2435 	struct device_node *np = adapter->pdev->dev.of_node;
2436 	int retval;
2437 
2438 	if (np) {
2439 		np = of_get_child_by_name(np, "mdio");
2440 		if (!np)
2441 			return 0;
2442 
2443 		adapter->suppress_preamble =
2444 			of_property_read_bool(np, "suppress-preamble");
2445 	}
2446 
2447 	adapter->mdiobus = devm_mdiobus_alloc(&adapter->pdev->dev);
2448 	if (!adapter->mdiobus) {
2449 		retval = -ENOMEM;
2450 
2451 		goto out;
2452 	}
2453 
2454 	adapter->mdiobus->priv = (void *)adapter;
2455 	adapter->mdiobus->parent = &adapter->pdev->dev;
2456 	adapter->mdiobus->read = tsnep_mdiobus_read;
2457 	adapter->mdiobus->write = tsnep_mdiobus_write;
2458 	adapter->mdiobus->name = TSNEP "-mdiobus";
2459 	snprintf(adapter->mdiobus->id, MII_BUS_ID_SIZE, "%s",
2460 		 adapter->pdev->name);
2461 
2462 	/* do not scan broadcast address */
2463 	adapter->mdiobus->phy_mask = 0x0000001;
2464 
2465 	retval = of_mdiobus_register(adapter->mdiobus, np);
2466 
2467 out:
2468 	of_node_put(np);
2469 
2470 	return retval;
2471 }
2472 
tsnep_phy_init(struct tsnep_adapter * adapter)2473 static int tsnep_phy_init(struct tsnep_adapter *adapter)
2474 {
2475 	struct device_node *phy_node;
2476 	int retval;
2477 
2478 	retval = of_get_phy_mode(adapter->pdev->dev.of_node,
2479 				 &adapter->phy_mode);
2480 	if (retval)
2481 		adapter->phy_mode = PHY_INTERFACE_MODE_GMII;
2482 
2483 	phy_node = of_parse_phandle(adapter->pdev->dev.of_node, "phy-handle",
2484 				    0);
2485 	adapter->phydev = of_phy_find_device(phy_node);
2486 	of_node_put(phy_node);
2487 	if (!adapter->phydev && adapter->mdiobus)
2488 		adapter->phydev = phy_find_first(adapter->mdiobus);
2489 	if (!adapter->phydev)
2490 		return -EIO;
2491 
2492 	return 0;
2493 }
2494 
tsnep_queue_init(struct tsnep_adapter * adapter,int queue_count)2495 static int tsnep_queue_init(struct tsnep_adapter *adapter, int queue_count)
2496 {
2497 	u32 irq_mask = ECM_INT_TX_0 | ECM_INT_RX_0;
2498 	char name[8];
2499 	int i;
2500 	int retval;
2501 
2502 	/* one TX/RX queue pair for netdev is mandatory */
2503 	if (platform_irq_count(adapter->pdev) == 1)
2504 		retval = platform_get_irq(adapter->pdev, 0);
2505 	else
2506 		retval = platform_get_irq_byname(adapter->pdev, "mac");
2507 	if (retval < 0)
2508 		return retval;
2509 	adapter->num_tx_queues = 1;
2510 	adapter->num_rx_queues = 1;
2511 	adapter->num_queues = 1;
2512 	adapter->queue[0].adapter = adapter;
2513 	adapter->queue[0].irq = retval;
2514 	adapter->queue[0].tx = &adapter->tx[0];
2515 	adapter->queue[0].tx->adapter = adapter;
2516 	adapter->queue[0].tx->addr = adapter->addr + TSNEP_QUEUE(0);
2517 	adapter->queue[0].tx->queue_index = 0;
2518 	adapter->queue[0].rx = &adapter->rx[0];
2519 	adapter->queue[0].rx->adapter = adapter;
2520 	adapter->queue[0].rx->addr = adapter->addr + TSNEP_QUEUE(0);
2521 	adapter->queue[0].rx->queue_index = 0;
2522 	adapter->queue[0].irq_mask = irq_mask;
2523 	adapter->queue[0].irq_delay_addr = adapter->addr + ECM_INT_DELAY;
2524 	retval = tsnep_set_irq_coalesce(&adapter->queue[0],
2525 					TSNEP_COALESCE_USECS_DEFAULT);
2526 	if (retval < 0)
2527 		return retval;
2528 
2529 	adapter->netdev->irq = adapter->queue[0].irq;
2530 
2531 	/* add additional TX/RX queue pairs only if dedicated interrupt is
2532 	 * available
2533 	 */
2534 	for (i = 1; i < queue_count; i++) {
2535 		sprintf(name, "txrx-%d", i);
2536 		retval = platform_get_irq_byname_optional(adapter->pdev, name);
2537 		if (retval < 0)
2538 			break;
2539 
2540 		adapter->num_tx_queues++;
2541 		adapter->num_rx_queues++;
2542 		adapter->num_queues++;
2543 		adapter->queue[i].adapter = adapter;
2544 		adapter->queue[i].irq = retval;
2545 		adapter->queue[i].tx = &adapter->tx[i];
2546 		adapter->queue[i].tx->adapter = adapter;
2547 		adapter->queue[i].tx->addr = adapter->addr + TSNEP_QUEUE(i);
2548 		adapter->queue[i].tx->queue_index = i;
2549 		adapter->queue[i].rx = &adapter->rx[i];
2550 		adapter->queue[i].rx->adapter = adapter;
2551 		adapter->queue[i].rx->addr = adapter->addr + TSNEP_QUEUE(i);
2552 		adapter->queue[i].rx->queue_index = i;
2553 		adapter->queue[i].irq_mask =
2554 			irq_mask << (ECM_INT_TXRX_SHIFT * i);
2555 		adapter->queue[i].irq_delay_addr =
2556 			adapter->addr + ECM_INT_DELAY + ECM_INT_DELAY_OFFSET * i;
2557 		retval = tsnep_set_irq_coalesce(&adapter->queue[i],
2558 						TSNEP_COALESCE_USECS_DEFAULT);
2559 		if (retval < 0)
2560 			return retval;
2561 	}
2562 
2563 	return 0;
2564 }
2565 
tsnep_probe(struct platform_device * pdev)2566 static int tsnep_probe(struct platform_device *pdev)
2567 {
2568 	struct tsnep_adapter *adapter;
2569 	struct net_device *netdev;
2570 	struct resource *io;
2571 	u32 type;
2572 	int revision;
2573 	int version;
2574 	int queue_count;
2575 	int retval;
2576 
2577 	netdev = devm_alloc_etherdev_mqs(&pdev->dev,
2578 					 sizeof(struct tsnep_adapter),
2579 					 TSNEP_MAX_QUEUES, TSNEP_MAX_QUEUES);
2580 	if (!netdev)
2581 		return -ENODEV;
2582 	SET_NETDEV_DEV(netdev, &pdev->dev);
2583 	adapter = netdev_priv(netdev);
2584 	platform_set_drvdata(pdev, adapter);
2585 	adapter->pdev = pdev;
2586 	adapter->dmadev = &pdev->dev;
2587 	adapter->netdev = netdev;
2588 	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE |
2589 			      NETIF_MSG_LINK | NETIF_MSG_IFUP |
2590 			      NETIF_MSG_IFDOWN | NETIF_MSG_TX_QUEUED;
2591 
2592 	netdev->min_mtu = ETH_MIN_MTU;
2593 	netdev->max_mtu = TSNEP_MAX_FRAME_SIZE;
2594 
2595 	mutex_init(&adapter->gate_control_lock);
2596 	mutex_init(&adapter->rxnfc_lock);
2597 	INIT_LIST_HEAD(&adapter->rxnfc_rules);
2598 
2599 	adapter->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &io);
2600 	if (IS_ERR(adapter->addr))
2601 		return PTR_ERR(adapter->addr);
2602 	netdev->mem_start = io->start;
2603 	netdev->mem_end = io->end;
2604 
2605 	type = ioread32(adapter->addr + ECM_TYPE);
2606 	revision = (type & ECM_REVISION_MASK) >> ECM_REVISION_SHIFT;
2607 	version = (type & ECM_VERSION_MASK) >> ECM_VERSION_SHIFT;
2608 	queue_count = (type & ECM_QUEUE_COUNT_MASK) >> ECM_QUEUE_COUNT_SHIFT;
2609 	adapter->gate_control = type & ECM_GATE_CONTROL;
2610 	adapter->rxnfc_max = TSNEP_RX_ASSIGN_ETHER_TYPE_COUNT;
2611 
2612 	tsnep_disable_irq(adapter, ECM_INT_ALL);
2613 
2614 	retval = tsnep_queue_init(adapter, queue_count);
2615 	if (retval)
2616 		return retval;
2617 
2618 	retval = dma_set_mask_and_coherent(&adapter->pdev->dev,
2619 					   DMA_BIT_MASK(64));
2620 	if (retval) {
2621 		dev_err(&adapter->pdev->dev, "no usable DMA configuration.\n");
2622 		return retval;
2623 	}
2624 
2625 	retval = tsnep_mac_init(adapter);
2626 	if (retval)
2627 		return retval;
2628 
2629 	retval = tsnep_mdio_init(adapter);
2630 	if (retval)
2631 		goto mdio_init_failed;
2632 
2633 	retval = tsnep_phy_init(adapter);
2634 	if (retval)
2635 		goto phy_init_failed;
2636 
2637 	retval = tsnep_ptp_init(adapter);
2638 	if (retval)
2639 		goto ptp_init_failed;
2640 
2641 	retval = tsnep_tc_init(adapter);
2642 	if (retval)
2643 		goto tc_init_failed;
2644 
2645 	retval = tsnep_rxnfc_init(adapter);
2646 	if (retval)
2647 		goto rxnfc_init_failed;
2648 
2649 	netdev->netdev_ops = &tsnep_netdev_ops;
2650 	netdev->ethtool_ops = &tsnep_ethtool_ops;
2651 	netdev->features = NETIF_F_SG;
2652 	netdev->hw_features = netdev->features | NETIF_F_LOOPBACK;
2653 
2654 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
2655 			       NETDEV_XDP_ACT_NDO_XMIT |
2656 			       NETDEV_XDP_ACT_NDO_XMIT_SG |
2657 			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
2658 
2659 	/* carrier off reporting is important to ethtool even BEFORE open */
2660 	netif_carrier_off(netdev);
2661 
2662 	retval = register_netdev(netdev);
2663 	if (retval)
2664 		goto register_failed;
2665 
2666 	dev_info(&adapter->pdev->dev, "device version %d.%02d\n", version,
2667 		 revision);
2668 	if (adapter->gate_control)
2669 		dev_info(&adapter->pdev->dev, "gate control detected\n");
2670 
2671 	return 0;
2672 
2673 register_failed:
2674 	tsnep_rxnfc_cleanup(adapter);
2675 rxnfc_init_failed:
2676 	tsnep_tc_cleanup(adapter);
2677 tc_init_failed:
2678 	tsnep_ptp_cleanup(adapter);
2679 ptp_init_failed:
2680 phy_init_failed:
2681 	if (adapter->mdiobus)
2682 		mdiobus_unregister(adapter->mdiobus);
2683 mdio_init_failed:
2684 	return retval;
2685 }
2686 
tsnep_remove(struct platform_device * pdev)2687 static void tsnep_remove(struct platform_device *pdev)
2688 {
2689 	struct tsnep_adapter *adapter = platform_get_drvdata(pdev);
2690 
2691 	unregister_netdev(adapter->netdev);
2692 
2693 	tsnep_rxnfc_cleanup(adapter);
2694 
2695 	tsnep_tc_cleanup(adapter);
2696 
2697 	tsnep_ptp_cleanup(adapter);
2698 
2699 	if (adapter->mdiobus)
2700 		mdiobus_unregister(adapter->mdiobus);
2701 
2702 	tsnep_disable_irq(adapter, ECM_INT_ALL);
2703 }
2704 
2705 static const struct of_device_id tsnep_of_match[] = {
2706 	{ .compatible = "engleder,tsnep", },
2707 { },
2708 };
2709 MODULE_DEVICE_TABLE(of, tsnep_of_match);
2710 
2711 static struct platform_driver tsnep_driver = {
2712 	.driver = {
2713 		.name = TSNEP,
2714 		.of_match_table = tsnep_of_match,
2715 	},
2716 	.probe = tsnep_probe,
2717 	.remove = tsnep_remove,
2718 };
2719 module_platform_driver(tsnep_driver);
2720 
2721 MODULE_AUTHOR("Gerhard Engleder <gerhard@engleder-embedded.com>");
2722 MODULE_DESCRIPTION("TSN endpoint Ethernet MAC driver");
2723 MODULE_LICENSE("GPL");
2724