1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi-mem.h>
31 #include <linux/timer.h>
32
33 #define CQSPI_NAME "cadence-qspi"
34 #define CQSPI_MAX_CHIPSELECT 4
35
36 static_assert(CQSPI_MAX_CHIPSELECT <= SPI_CS_CNT_MAX);
37
38 /* Quirks */
39 #define CQSPI_NEEDS_WR_DELAY BIT(0)
40 #define CQSPI_DISABLE_DAC_MODE BIT(1)
41 #define CQSPI_SUPPORT_EXTERNAL_DMA BIT(2)
42 #define CQSPI_NO_SUPPORT_WR_COMPLETION BIT(3)
43 #define CQSPI_SLOW_SRAM BIT(4)
44 #define CQSPI_NEEDS_APB_AHB_HAZARD_WAR BIT(5)
45 #define CQSPI_RD_NO_IRQ BIT(6)
46 #define CQSPI_DMA_SET_MASK BIT(7)
47 #define CQSPI_SUPPORT_DEVICE_RESET BIT(8)
48 #define CQSPI_DISABLE_STIG_MODE BIT(9)
49
50 /* Capabilities */
51 #define CQSPI_SUPPORTS_OCTAL BIT(0)
52 #define CQSPI_SUPPORTS_QUAD BIT(1)
53
54 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
55
56 enum {
57 CLK_QSPI_APB = 0,
58 CLK_QSPI_AHB,
59 CLK_QSPI_NUM,
60 };
61
62 struct cqspi_st;
63
64 struct cqspi_flash_pdata {
65 struct cqspi_st *cqspi;
66 u32 clk_rate;
67 u32 read_delay;
68 u32 tshsl_ns;
69 u32 tsd2d_ns;
70 u32 tchsh_ns;
71 u32 tslch_ns;
72 u8 cs;
73 };
74
75 struct cqspi_st {
76 struct platform_device *pdev;
77 struct spi_controller *host;
78 struct clk *clk;
79 struct clk *clks[CLK_QSPI_NUM];
80 unsigned int sclk;
81
82 void __iomem *iobase;
83 void __iomem *ahb_base;
84 resource_size_t ahb_size;
85 struct completion transfer_complete;
86
87 struct dma_chan *rx_chan;
88 struct completion rx_dma_complete;
89 dma_addr_t mmap_phys_base;
90
91 int current_cs;
92 unsigned long master_ref_clk_hz;
93 bool is_decoded_cs;
94 u32 fifo_depth;
95 u32 fifo_width;
96 u32 num_chipselect;
97 bool rclk_en;
98 u32 trigger_address;
99 u32 wr_delay;
100 bool use_direct_mode;
101 bool use_direct_mode_wr;
102 struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
103 bool use_dma_read;
104 u32 pd_dev_id;
105 bool wr_completion;
106 bool slow_sram;
107 bool apb_ahb_hazard;
108
109 bool is_jh7110; /* Flag for StarFive JH7110 SoC */
110 bool disable_stig_mode;
111
112 const struct cqspi_driver_platdata *ddata;
113 };
114
115 struct cqspi_driver_platdata {
116 u32 hwcaps_mask;
117 u16 quirks;
118 int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
119 u_char *rxbuf, loff_t from_addr, size_t n_rx);
120 u32 (*get_dma_status)(struct cqspi_st *cqspi);
121 int (*jh7110_clk_init)(struct platform_device *pdev,
122 struct cqspi_st *cqspi);
123 };
124
125 /* Operation timeout value */
126 #define CQSPI_TIMEOUT_MS 500
127 #define CQSPI_READ_TIMEOUT_MS 10
128 #define CQSPI_BUSYWAIT_TIMEOUT_US 500
129
130 /* Runtime_pm autosuspend delay */
131 #define CQSPI_AUTOSUSPEND_TIMEOUT 2000
132
133 #define CQSPI_DUMMY_CLKS_PER_BYTE 8
134 #define CQSPI_DUMMY_BYTES_MAX 4
135 #define CQSPI_DUMMY_CLKS_MAX 31
136
137 #define CQSPI_STIG_DATA_LEN_MAX 8
138
139 /* Register map */
140 #define CQSPI_REG_CONFIG 0x00
141 #define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
142 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
143 #define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
144 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
145 #define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
146 #define CQSPI_REG_CONFIG_BAUD_LSB 19
147 #define CQSPI_REG_CONFIG_DTR_PROTO BIT(24)
148 #define CQSPI_REG_CONFIG_DUAL_OPCODE BIT(30)
149 #define CQSPI_REG_CONFIG_IDLE_LSB 31
150 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
151 #define CQSPI_REG_CONFIG_BAUD_MASK 0xF
152 #define CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK BIT(5)
153 #define CQSPI_REG_CONFIG_RESET_CFG_FLD_MASK BIT(6)
154
155 #define CQSPI_REG_RD_INSTR 0x04
156 #define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
157 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
158 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
159 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
160 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
161 #define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
162 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
163 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
164 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
165 #define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
166
167 #define CQSPI_REG_WR_INSTR 0x08
168 #define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
169 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
170 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
171
172 #define CQSPI_REG_DELAY 0x0C
173 #define CQSPI_REG_DELAY_TSLCH_LSB 0
174 #define CQSPI_REG_DELAY_TCHSH_LSB 8
175 #define CQSPI_REG_DELAY_TSD2D_LSB 16
176 #define CQSPI_REG_DELAY_TSHSL_LSB 24
177 #define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
178 #define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
179 #define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
180 #define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
181
182 #define CQSPI_REG_READCAPTURE 0x10
183 #define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
184 #define CQSPI_REG_READCAPTURE_DELAY_LSB 1
185 #define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
186
187 #define CQSPI_REG_SIZE 0x14
188 #define CQSPI_REG_SIZE_ADDRESS_LSB 0
189 #define CQSPI_REG_SIZE_PAGE_LSB 4
190 #define CQSPI_REG_SIZE_BLOCK_LSB 16
191 #define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
192 #define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
193 #define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
194
195 #define CQSPI_REG_SRAMPARTITION 0x18
196 #define CQSPI_REG_INDIRECTTRIGGER 0x1C
197
198 #define CQSPI_REG_DMA 0x20
199 #define CQSPI_REG_DMA_SINGLE_LSB 0
200 #define CQSPI_REG_DMA_BURST_LSB 8
201 #define CQSPI_REG_DMA_SINGLE_MASK 0xFF
202 #define CQSPI_REG_DMA_BURST_MASK 0xFF
203
204 #define CQSPI_REG_REMAP 0x24
205 #define CQSPI_REG_MODE_BIT 0x28
206
207 #define CQSPI_REG_SDRAMLEVEL 0x2C
208 #define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
209 #define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
210 #define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
211 #define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
212
213 #define CQSPI_REG_WR_COMPLETION_CTRL 0x38
214 #define CQSPI_REG_WR_DISABLE_AUTO_POLL BIT(14)
215
216 #define CQSPI_REG_IRQSTATUS 0x40
217 #define CQSPI_REG_IRQMASK 0x44
218
219 #define CQSPI_REG_INDIRECTRD 0x60
220 #define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
221 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
222 #define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
223
224 #define CQSPI_REG_INDIRECTRDWATERMARK 0x64
225 #define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
226 #define CQSPI_REG_INDIRECTRDBYTES 0x6C
227
228 #define CQSPI_REG_CMDCTRL 0x90
229 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
230 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
231 #define CQSPI_REG_CMDCTRL_DUMMY_LSB 7
232 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
233 #define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
234 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
235 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
236 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
237 #define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
238 #define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
239 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
240 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
241 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
242 #define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F
243
244 #define CQSPI_REG_INDIRECTWR 0x70
245 #define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
246 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
247 #define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
248
249 #define CQSPI_REG_INDIRECTWRWATERMARK 0x74
250 #define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
251 #define CQSPI_REG_INDIRECTWRBYTES 0x7C
252
253 #define CQSPI_REG_INDTRIG_ADDRRANGE 0x80
254
255 #define CQSPI_REG_CMDADDRESS 0x94
256 #define CQSPI_REG_CMDREADDATALOWER 0xA0
257 #define CQSPI_REG_CMDREADDATAUPPER 0xA4
258 #define CQSPI_REG_CMDWRITEDATALOWER 0xA8
259 #define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
260
261 #define CQSPI_REG_POLLING_STATUS 0xB0
262 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB 16
263
264 #define CQSPI_REG_OP_EXT_LOWER 0xE0
265 #define CQSPI_REG_OP_EXT_READ_LSB 24
266 #define CQSPI_REG_OP_EXT_WRITE_LSB 16
267 #define CQSPI_REG_OP_EXT_STIG_LSB 0
268
269 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR 0x1000
270
271 #define CQSPI_REG_VERSAL_DMA_DST_ADDR 0x1800
272 #define CQSPI_REG_VERSAL_DMA_DST_SIZE 0x1804
273
274 #define CQSPI_REG_VERSAL_DMA_DST_CTRL 0x180C
275
276 #define CQSPI_REG_VERSAL_DMA_DST_I_STS 0x1814
277 #define CQSPI_REG_VERSAL_DMA_DST_I_EN 0x1818
278 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS 0x181C
279 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK BIT(1)
280
281 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB 0x1828
282
283 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL 0xF43FFA00
284 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL 0x6
285
286 /* Interrupt status bits */
287 #define CQSPI_REG_IRQ_MODE_ERR BIT(0)
288 #define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
289 #define CQSPI_REG_IRQ_IND_COMP BIT(2)
290 #define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
291 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
292 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
293 #define CQSPI_REG_IRQ_WATERMARK BIT(6)
294 #define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
295
296 #define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
297 CQSPI_REG_IRQ_IND_SRAM_FULL | \
298 CQSPI_REG_IRQ_IND_COMP)
299
300 #define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
301 CQSPI_REG_IRQ_WATERMARK | \
302 CQSPI_REG_IRQ_UNDERFLOW)
303
304 #define CQSPI_IRQ_STATUS_MASK 0x1FFFF
305 #define CQSPI_DMA_UNALIGN 0x3
306
307 #define CQSPI_REG_VERSAL_DMA_VAL 0x602
308
cqspi_wait_for_bit(const struct cqspi_driver_platdata * ddata,void __iomem * reg,const u32 mask,bool clr,bool busywait)309 static int cqspi_wait_for_bit(const struct cqspi_driver_platdata *ddata,
310 void __iomem *reg, const u32 mask, bool clr,
311 bool busywait)
312 {
313 u64 timeout_us = CQSPI_TIMEOUT_MS * USEC_PER_MSEC;
314 u32 val;
315
316 if (busywait) {
317 int ret = readl_relaxed_poll_timeout(reg, val,
318 (((clr ? ~val : val) & mask) == mask),
319 0, CQSPI_BUSYWAIT_TIMEOUT_US);
320
321 if (ret != -ETIMEDOUT)
322 return ret;
323
324 timeout_us -= CQSPI_BUSYWAIT_TIMEOUT_US;
325 }
326
327 return readl_relaxed_poll_timeout(reg, val,
328 (((clr ? ~val : val) & mask) == mask),
329 10, timeout_us);
330 }
331
cqspi_is_idle(struct cqspi_st * cqspi)332 static bool cqspi_is_idle(struct cqspi_st *cqspi)
333 {
334 u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
335
336 return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
337 }
338
cqspi_get_rd_sram_level(struct cqspi_st * cqspi)339 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
340 {
341 u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
342
343 reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
344 return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
345 }
346
cqspi_get_versal_dma_status(struct cqspi_st * cqspi)347 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
348 {
349 u32 dma_status;
350
351 dma_status = readl(cqspi->iobase +
352 CQSPI_REG_VERSAL_DMA_DST_I_STS);
353 writel(dma_status, cqspi->iobase +
354 CQSPI_REG_VERSAL_DMA_DST_I_STS);
355
356 return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
357 }
358
cqspi_irq_handler(int this_irq,void * dev)359 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
360 {
361 struct cqspi_st *cqspi = dev;
362 const struct cqspi_driver_platdata *ddata = cqspi->ddata;
363 unsigned int irq_status;
364
365 /* Read interrupt status */
366 irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
367
368 /* Clear interrupt */
369 writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
370
371 if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
372 if (ddata->get_dma_status(cqspi)) {
373 complete(&cqspi->transfer_complete);
374 return IRQ_HANDLED;
375 }
376 }
377
378 else if (!cqspi->slow_sram)
379 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
380 else
381 irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
382
383 if (irq_status)
384 complete(&cqspi->transfer_complete);
385
386 return IRQ_HANDLED;
387 }
388
cqspi_calc_rdreg(const struct spi_mem_op * op)389 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
390 {
391 u32 rdreg = 0;
392
393 rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
394 rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
395 rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
396
397 return rdreg;
398 }
399
cqspi_calc_dummy(const struct spi_mem_op * op)400 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
401 {
402 unsigned int dummy_clk;
403
404 if (!op->dummy.nbytes)
405 return 0;
406
407 dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
408 if (op->cmd.dtr)
409 dummy_clk /= 2;
410
411 return dummy_clk;
412 }
413
cqspi_wait_idle(struct cqspi_st * cqspi)414 static int cqspi_wait_idle(struct cqspi_st *cqspi)
415 {
416 const unsigned int poll_idle_retry = 3;
417 unsigned int count = 0;
418 unsigned long timeout;
419
420 timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
421 while (1) {
422 /*
423 * Read few times in succession to ensure the controller
424 * is indeed idle, that is, the bit does not transition
425 * low again.
426 */
427 if (cqspi_is_idle(cqspi))
428 count++;
429 else
430 count = 0;
431
432 if (count >= poll_idle_retry)
433 return 0;
434
435 if (time_after(jiffies, timeout)) {
436 /* Timeout, in busy mode. */
437 dev_err(&cqspi->pdev->dev,
438 "QSPI is still busy after %dms timeout.\n",
439 CQSPI_TIMEOUT_MS);
440 return -ETIMEDOUT;
441 }
442
443 cpu_relax();
444 }
445 }
446
cqspi_exec_flash_cmd(struct cqspi_st * cqspi,unsigned int reg)447 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
448 {
449 void __iomem *reg_base = cqspi->iobase;
450 int ret;
451
452 /* Write the CMDCTRL without start execution. */
453 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
454 /* Start execute */
455 reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
456 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
457
458 /* Polling for completion. */
459 ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_CMDCTRL,
460 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1, true);
461 if (ret) {
462 dev_err(&cqspi->pdev->dev,
463 "Flash command execution timed out.\n");
464 return ret;
465 }
466
467 /* Polling QSPI idle status. */
468 return cqspi_wait_idle(cqspi);
469 }
470
cqspi_setup_opcode_ext(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op,unsigned int shift)471 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
472 const struct spi_mem_op *op,
473 unsigned int shift)
474 {
475 struct cqspi_st *cqspi = f_pdata->cqspi;
476 void __iomem *reg_base = cqspi->iobase;
477 unsigned int reg;
478 u8 ext;
479
480 if (op->cmd.nbytes != 2)
481 return -EINVAL;
482
483 /* Opcode extension is the LSB. */
484 ext = op->cmd.opcode & 0xff;
485
486 reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
487 reg &= ~(0xff << shift);
488 reg |= ext << shift;
489 writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
490
491 return 0;
492 }
493
cqspi_enable_dtr(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op,unsigned int shift)494 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
495 const struct spi_mem_op *op, unsigned int shift)
496 {
497 struct cqspi_st *cqspi = f_pdata->cqspi;
498 void __iomem *reg_base = cqspi->iobase;
499 unsigned int reg;
500 int ret;
501
502 reg = readl(reg_base + CQSPI_REG_CONFIG);
503
504 /*
505 * We enable dual byte opcode here. The callers have to set up the
506 * extension opcode based on which type of operation it is.
507 */
508 if (op->cmd.dtr) {
509 reg |= CQSPI_REG_CONFIG_DTR_PROTO;
510 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
511
512 /* Set up command opcode extension. */
513 ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
514 if (ret)
515 return ret;
516 } else {
517 unsigned int mask = CQSPI_REG_CONFIG_DTR_PROTO | CQSPI_REG_CONFIG_DUAL_OPCODE;
518 /* Shortcut if DTR is already disabled. */
519 if ((reg & mask) == 0)
520 return 0;
521 reg &= ~mask;
522 }
523
524 writel(reg, reg_base + CQSPI_REG_CONFIG);
525
526 return cqspi_wait_idle(cqspi);
527 }
528
cqspi_command_read(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)529 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
530 const struct spi_mem_op *op)
531 {
532 struct cqspi_st *cqspi = f_pdata->cqspi;
533 void __iomem *reg_base = cqspi->iobase;
534 u8 *rxbuf = op->data.buf.in;
535 u8 opcode;
536 size_t n_rx = op->data.nbytes;
537 unsigned int rdreg;
538 unsigned int reg;
539 unsigned int dummy_clk;
540 size_t read_len;
541 int status;
542
543 status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
544 if (status)
545 return status;
546
547 if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
548 dev_err(&cqspi->pdev->dev,
549 "Invalid input argument, len %zu rxbuf 0x%p\n",
550 n_rx, rxbuf);
551 return -EINVAL;
552 }
553
554 if (op->cmd.dtr)
555 opcode = op->cmd.opcode >> 8;
556 else
557 opcode = op->cmd.opcode;
558
559 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
560
561 rdreg = cqspi_calc_rdreg(op);
562 writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
563
564 dummy_clk = cqspi_calc_dummy(op);
565 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
566 return -EOPNOTSUPP;
567
568 if (dummy_clk)
569 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
570 << CQSPI_REG_CMDCTRL_DUMMY_LSB;
571
572 reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
573
574 /* 0 means 1 byte. */
575 reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
576 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
577
578 /* setup ADDR BIT field */
579 if (op->addr.nbytes) {
580 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
581 reg |= ((op->addr.nbytes - 1) &
582 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
583 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
584
585 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
586 }
587
588 status = cqspi_exec_flash_cmd(cqspi, reg);
589 if (status)
590 return status;
591
592 reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
593
594 /* Put the read value into rx_buf */
595 read_len = (n_rx > 4) ? 4 : n_rx;
596 memcpy(rxbuf, ®, read_len);
597 rxbuf += read_len;
598
599 if (n_rx > 4) {
600 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
601
602 read_len = n_rx - read_len;
603 memcpy(rxbuf, ®, read_len);
604 }
605
606 /* Reset CMD_CTRL Reg once command read completes */
607 writel(0, reg_base + CQSPI_REG_CMDCTRL);
608
609 return 0;
610 }
611
cqspi_command_write(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)612 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
613 const struct spi_mem_op *op)
614 {
615 struct cqspi_st *cqspi = f_pdata->cqspi;
616 void __iomem *reg_base = cqspi->iobase;
617 u8 opcode;
618 const u8 *txbuf = op->data.buf.out;
619 size_t n_tx = op->data.nbytes;
620 unsigned int reg;
621 unsigned int data;
622 size_t write_len;
623 int ret;
624
625 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
626 if (ret)
627 return ret;
628
629 if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
630 dev_err(&cqspi->pdev->dev,
631 "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
632 n_tx, txbuf);
633 return -EINVAL;
634 }
635
636 reg = cqspi_calc_rdreg(op);
637 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
638
639 if (op->cmd.dtr)
640 opcode = op->cmd.opcode >> 8;
641 else
642 opcode = op->cmd.opcode;
643
644 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
645
646 if (op->addr.nbytes) {
647 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
648 reg |= ((op->addr.nbytes - 1) &
649 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
650 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
651
652 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
653 }
654
655 if (n_tx) {
656 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
657 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
658 << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
659 data = 0;
660 write_len = (n_tx > 4) ? 4 : n_tx;
661 memcpy(&data, txbuf, write_len);
662 txbuf += write_len;
663 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
664
665 if (n_tx > 4) {
666 data = 0;
667 write_len = n_tx - 4;
668 memcpy(&data, txbuf, write_len);
669 writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
670 }
671 }
672
673 ret = cqspi_exec_flash_cmd(cqspi, reg);
674
675 /* Reset CMD_CTRL Reg once command write completes */
676 writel(0, reg_base + CQSPI_REG_CMDCTRL);
677
678 return ret;
679 }
680
cqspi_read_setup(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)681 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
682 const struct spi_mem_op *op)
683 {
684 struct cqspi_st *cqspi = f_pdata->cqspi;
685 void __iomem *reg_base = cqspi->iobase;
686 unsigned int dummy_clk = 0;
687 unsigned int reg;
688 int ret;
689 u8 opcode;
690
691 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
692 if (ret)
693 return ret;
694
695 if (op->cmd.dtr)
696 opcode = op->cmd.opcode >> 8;
697 else
698 opcode = op->cmd.opcode;
699
700 reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
701 reg |= cqspi_calc_rdreg(op);
702
703 /* Setup dummy clock cycles */
704 dummy_clk = cqspi_calc_dummy(op);
705
706 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
707 return -EOPNOTSUPP;
708
709 if (dummy_clk)
710 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
711 << CQSPI_REG_RD_INSTR_DUMMY_LSB;
712
713 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
714
715 /* Set address width */
716 reg = readl(reg_base + CQSPI_REG_SIZE);
717 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
718 reg |= (op->addr.nbytes - 1);
719 writel(reg, reg_base + CQSPI_REG_SIZE);
720 return 0;
721 }
722
cqspi_indirect_read_execute(struct cqspi_flash_pdata * f_pdata,u8 * rxbuf,loff_t from_addr,const size_t n_rx)723 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
724 u8 *rxbuf, loff_t from_addr,
725 const size_t n_rx)
726 {
727 struct cqspi_st *cqspi = f_pdata->cqspi;
728 bool use_irq = !(cqspi->ddata && cqspi->ddata->quirks & CQSPI_RD_NO_IRQ);
729 struct device *dev = &cqspi->pdev->dev;
730 void __iomem *reg_base = cqspi->iobase;
731 void __iomem *ahb_base = cqspi->ahb_base;
732 unsigned int remaining = n_rx;
733 unsigned int mod_bytes = n_rx % 4;
734 unsigned int bytes_to_read = 0;
735 u8 *rxbuf_end = rxbuf + n_rx;
736 int ret = 0;
737
738 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
739 writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
740
741 /* Clear all interrupts. */
742 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
743
744 /*
745 * On SoCFPGA platform reading the SRAM is slow due to
746 * hardware limitation and causing read interrupt storm to CPU,
747 * so enabling only watermark interrupt to disable all read
748 * interrupts later as we want to run "bytes to read" loop with
749 * all the read interrupts disabled for max performance.
750 */
751
752 if (use_irq && cqspi->slow_sram)
753 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
754 else if (use_irq)
755 writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
756 else
757 writel(0, reg_base + CQSPI_REG_IRQMASK);
758
759 reinit_completion(&cqspi->transfer_complete);
760 writel(CQSPI_REG_INDIRECTRD_START_MASK,
761 reg_base + CQSPI_REG_INDIRECTRD);
762
763 while (remaining > 0) {
764 if (use_irq &&
765 !wait_for_completion_timeout(&cqspi->transfer_complete,
766 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
767 ret = -ETIMEDOUT;
768
769 /*
770 * Disable all read interrupts until
771 * we are out of "bytes to read"
772 */
773 if (cqspi->slow_sram)
774 writel(0x0, reg_base + CQSPI_REG_IRQMASK);
775
776 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
777
778 if (ret && bytes_to_read == 0) {
779 dev_err(dev, "Indirect read timeout, no bytes\n");
780 goto failrd;
781 }
782
783 while (bytes_to_read != 0) {
784 unsigned int word_remain = round_down(remaining, 4);
785
786 bytes_to_read *= cqspi->fifo_width;
787 bytes_to_read = bytes_to_read > remaining ?
788 remaining : bytes_to_read;
789 bytes_to_read = round_down(bytes_to_read, 4);
790 /* Read 4 byte word chunks then single bytes */
791 if (bytes_to_read) {
792 ioread32_rep(ahb_base, rxbuf,
793 (bytes_to_read / 4));
794 } else if (!word_remain && mod_bytes) {
795 unsigned int temp = ioread32(ahb_base);
796
797 bytes_to_read = mod_bytes;
798 memcpy(rxbuf, &temp, min((unsigned int)
799 (rxbuf_end - rxbuf),
800 bytes_to_read));
801 }
802 rxbuf += bytes_to_read;
803 remaining -= bytes_to_read;
804 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
805 }
806
807 if (use_irq && remaining > 0) {
808 reinit_completion(&cqspi->transfer_complete);
809 if (cqspi->slow_sram)
810 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
811 }
812 }
813
814 /* Check indirect done status */
815 ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTRD,
816 CQSPI_REG_INDIRECTRD_DONE_MASK, 0, true);
817 if (ret) {
818 dev_err(dev, "Indirect read completion error (%i)\n", ret);
819 goto failrd;
820 }
821
822 /* Disable interrupt */
823 writel(0, reg_base + CQSPI_REG_IRQMASK);
824
825 /* Clear indirect completion status */
826 writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
827
828 return 0;
829
830 failrd:
831 /* Disable interrupt */
832 writel(0, reg_base + CQSPI_REG_IRQMASK);
833
834 /* Cancel the indirect read */
835 writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
836 reg_base + CQSPI_REG_INDIRECTRD);
837 return ret;
838 }
839
cqspi_device_reset(struct cqspi_st * cqspi)840 static void cqspi_device_reset(struct cqspi_st *cqspi)
841 {
842 u32 reg;
843
844 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
845 reg |= CQSPI_REG_CONFIG_RESET_CFG_FLD_MASK;
846 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
847 /*
848 * NOTE: Delay timing implementation is derived from
849 * spi_nor_hw_reset()
850 */
851 writel(reg & ~CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK, cqspi->iobase + CQSPI_REG_CONFIG);
852 usleep_range(1, 5);
853 writel(reg | CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK, cqspi->iobase + CQSPI_REG_CONFIG);
854 usleep_range(100, 150);
855 writel(reg & ~CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK, cqspi->iobase + CQSPI_REG_CONFIG);
856 usleep_range(1000, 1200);
857 }
858
cqspi_controller_enable(struct cqspi_st * cqspi,bool enable)859 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
860 {
861 void __iomem *reg_base = cqspi->iobase;
862 unsigned int reg;
863
864 reg = readl(reg_base + CQSPI_REG_CONFIG);
865
866 if (enable)
867 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
868 else
869 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
870
871 writel(reg, reg_base + CQSPI_REG_CONFIG);
872 }
873
cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata * f_pdata,u_char * rxbuf,loff_t from_addr,size_t n_rx)874 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
875 u_char *rxbuf, loff_t from_addr,
876 size_t n_rx)
877 {
878 struct cqspi_st *cqspi = f_pdata->cqspi;
879 struct device *dev = &cqspi->pdev->dev;
880 void __iomem *reg_base = cqspi->iobase;
881 u32 reg, bytes_to_dma;
882 loff_t addr = from_addr;
883 void *buf = rxbuf;
884 dma_addr_t dma_addr;
885 u8 bytes_rem;
886 int ret = 0;
887
888 bytes_rem = n_rx % 4;
889 bytes_to_dma = (n_rx - bytes_rem);
890
891 if (!bytes_to_dma)
892 goto nondmard;
893
894 ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
895 if (ret)
896 return ret;
897
898 cqspi_controller_enable(cqspi, 0);
899
900 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
901 reg |= CQSPI_REG_CONFIG_DMA_MASK;
902 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
903
904 cqspi_controller_enable(cqspi, 1);
905
906 dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
907 if (dma_mapping_error(dev, dma_addr)) {
908 dev_err(dev, "dma mapping failed\n");
909 return -ENOMEM;
910 }
911
912 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
913 writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
914 writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
915 reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
916
917 /* Clear all interrupts. */
918 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
919
920 /* Enable DMA done interrupt */
921 writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
922 reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
923
924 /* Default DMA periph configuration */
925 writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
926
927 /* Configure DMA Dst address */
928 writel(lower_32_bits(dma_addr),
929 reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
930 writel(upper_32_bits(dma_addr),
931 reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
932
933 /* Configure DMA Src address */
934 writel(cqspi->trigger_address, reg_base +
935 CQSPI_REG_VERSAL_DMA_SRC_ADDR);
936
937 /* Set DMA destination size */
938 writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
939
940 /* Set DMA destination control */
941 writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
942 reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
943
944 writel(CQSPI_REG_INDIRECTRD_START_MASK,
945 reg_base + CQSPI_REG_INDIRECTRD);
946
947 reinit_completion(&cqspi->transfer_complete);
948
949 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
950 msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
951 ret = -ETIMEDOUT;
952 goto failrd;
953 }
954
955 /* Disable DMA interrupt */
956 writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
957
958 /* Clear indirect completion status */
959 writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
960 cqspi->iobase + CQSPI_REG_INDIRECTRD);
961 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
962
963 cqspi_controller_enable(cqspi, 0);
964
965 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
966 reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
967 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
968
969 cqspi_controller_enable(cqspi, 1);
970
971 ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
972 PM_OSPI_MUX_SEL_LINEAR);
973 if (ret)
974 return ret;
975
976 nondmard:
977 if (bytes_rem) {
978 addr += bytes_to_dma;
979 buf += bytes_to_dma;
980 ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
981 bytes_rem);
982 if (ret)
983 return ret;
984 }
985
986 return 0;
987
988 failrd:
989 /* Disable DMA interrupt */
990 writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
991
992 /* Cancel the indirect read */
993 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
994 reg_base + CQSPI_REG_INDIRECTRD);
995
996 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
997
998 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
999 reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
1000 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1001
1002 zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
1003
1004 return ret;
1005 }
1006
cqspi_write_setup(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1007 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
1008 const struct spi_mem_op *op)
1009 {
1010 unsigned int reg;
1011 int ret;
1012 struct cqspi_st *cqspi = f_pdata->cqspi;
1013 void __iomem *reg_base = cqspi->iobase;
1014 u8 opcode;
1015
1016 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
1017 if (ret)
1018 return ret;
1019
1020 if (op->cmd.dtr)
1021 opcode = op->cmd.opcode >> 8;
1022 else
1023 opcode = op->cmd.opcode;
1024
1025 /* Set opcode. */
1026 reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
1027 reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
1028 reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
1029 writel(reg, reg_base + CQSPI_REG_WR_INSTR);
1030 reg = cqspi_calc_rdreg(op);
1031 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
1032
1033 /*
1034 * SPI NAND flashes require the address of the status register to be
1035 * passed in the Read SR command. Also, some SPI NOR flashes like the
1036 * cypress Semper flash expect a 4-byte dummy address in the Read SR
1037 * command in DTR mode.
1038 *
1039 * But this controller does not support address phase in the Read SR
1040 * command when doing auto-HW polling. So, disable write completion
1041 * polling on the controller's side. spinand and spi-nor will take
1042 * care of polling the status register.
1043 */
1044 if (cqspi->wr_completion) {
1045 reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1046 reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
1047 writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1048 /*
1049 * DAC mode require auto polling as flash needs to be polled
1050 * for write completion in case of bubble in SPI transaction
1051 * due to slow CPU/DMA master.
1052 */
1053 cqspi->use_direct_mode_wr = false;
1054 }
1055
1056 reg = readl(reg_base + CQSPI_REG_SIZE);
1057 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1058 reg |= (op->addr.nbytes - 1);
1059 writel(reg, reg_base + CQSPI_REG_SIZE);
1060 return 0;
1061 }
1062
cqspi_indirect_write_execute(struct cqspi_flash_pdata * f_pdata,loff_t to_addr,const u8 * txbuf,const size_t n_tx)1063 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1064 loff_t to_addr, const u8 *txbuf,
1065 const size_t n_tx)
1066 {
1067 struct cqspi_st *cqspi = f_pdata->cqspi;
1068 struct device *dev = &cqspi->pdev->dev;
1069 void __iomem *reg_base = cqspi->iobase;
1070 unsigned int remaining = n_tx;
1071 unsigned int write_bytes;
1072 int ret;
1073
1074 writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1075 writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1076
1077 /* Clear all interrupts. */
1078 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1079
1080 writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1081
1082 reinit_completion(&cqspi->transfer_complete);
1083 writel(CQSPI_REG_INDIRECTWR_START_MASK,
1084 reg_base + CQSPI_REG_INDIRECTWR);
1085 /*
1086 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1087 * Controller programming sequence, couple of cycles of
1088 * QSPI_REF_CLK delay is required for the above bit to
1089 * be internally synchronized by the QSPI module. Provide 5
1090 * cycles of delay.
1091 */
1092 if (cqspi->wr_delay)
1093 ndelay(cqspi->wr_delay);
1094
1095 /*
1096 * If a hazard exists between the APB and AHB interfaces, perform a
1097 * dummy readback from the controller to ensure synchronization.
1098 */
1099 if (cqspi->apb_ahb_hazard)
1100 readl(reg_base + CQSPI_REG_INDIRECTWR);
1101
1102 while (remaining > 0) {
1103 size_t write_words, mod_bytes;
1104
1105 write_bytes = remaining;
1106 write_words = write_bytes / 4;
1107 mod_bytes = write_bytes % 4;
1108 /* Write 4 bytes at a time then single bytes. */
1109 if (write_words) {
1110 iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1111 txbuf += (write_words * 4);
1112 }
1113 if (mod_bytes) {
1114 unsigned int temp = 0xFFFFFFFF;
1115
1116 memcpy(&temp, txbuf, mod_bytes);
1117 iowrite32(temp, cqspi->ahb_base);
1118 txbuf += mod_bytes;
1119 }
1120
1121 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1122 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1123 dev_err(dev, "Indirect write timeout\n");
1124 ret = -ETIMEDOUT;
1125 goto failwr;
1126 }
1127
1128 remaining -= write_bytes;
1129
1130 if (remaining > 0)
1131 reinit_completion(&cqspi->transfer_complete);
1132 }
1133
1134 /* Check indirect done status */
1135 ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTWR,
1136 CQSPI_REG_INDIRECTWR_DONE_MASK, 0, false);
1137 if (ret) {
1138 dev_err(dev, "Indirect write completion error (%i)\n", ret);
1139 goto failwr;
1140 }
1141
1142 /* Disable interrupt. */
1143 writel(0, reg_base + CQSPI_REG_IRQMASK);
1144
1145 /* Clear indirect completion status */
1146 writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1147
1148 cqspi_wait_idle(cqspi);
1149
1150 return 0;
1151
1152 failwr:
1153 /* Disable interrupt. */
1154 writel(0, reg_base + CQSPI_REG_IRQMASK);
1155
1156 /* Cancel the indirect write */
1157 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1158 reg_base + CQSPI_REG_INDIRECTWR);
1159 return ret;
1160 }
1161
cqspi_chipselect(struct cqspi_flash_pdata * f_pdata)1162 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1163 {
1164 struct cqspi_st *cqspi = f_pdata->cqspi;
1165 void __iomem *reg_base = cqspi->iobase;
1166 unsigned int chip_select = f_pdata->cs;
1167 unsigned int reg;
1168
1169 reg = readl(reg_base + CQSPI_REG_CONFIG);
1170 if (cqspi->is_decoded_cs) {
1171 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1172 } else {
1173 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1174
1175 /* Convert CS if without decoder.
1176 * CS0 to 4b'1110
1177 * CS1 to 4b'1101
1178 * CS2 to 4b'1011
1179 * CS3 to 4b'0111
1180 */
1181 chip_select = 0xF & ~(1 << chip_select);
1182 }
1183
1184 reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1185 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1186 reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1187 << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1188 writel(reg, reg_base + CQSPI_REG_CONFIG);
1189 }
1190
calculate_ticks_for_ns(const unsigned int ref_clk_hz,const unsigned int ns_val)1191 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1192 const unsigned int ns_val)
1193 {
1194 unsigned int ticks;
1195
1196 ticks = ref_clk_hz / 1000; /* kHz */
1197 ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1198
1199 return ticks;
1200 }
1201
cqspi_delay(struct cqspi_flash_pdata * f_pdata)1202 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1203 {
1204 struct cqspi_st *cqspi = f_pdata->cqspi;
1205 void __iomem *iobase = cqspi->iobase;
1206 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1207 unsigned int tshsl, tchsh, tslch, tsd2d;
1208 unsigned int reg;
1209 unsigned int tsclk;
1210
1211 /* calculate the number of ref ticks for one sclk tick */
1212 tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1213
1214 tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1215 /* this particular value must be at least one sclk */
1216 if (tshsl < tsclk)
1217 tshsl = tsclk;
1218
1219 tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1220 tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1221 tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1222
1223 reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1224 << CQSPI_REG_DELAY_TSHSL_LSB;
1225 reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1226 << CQSPI_REG_DELAY_TCHSH_LSB;
1227 reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1228 << CQSPI_REG_DELAY_TSLCH_LSB;
1229 reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1230 << CQSPI_REG_DELAY_TSD2D_LSB;
1231 writel(reg, iobase + CQSPI_REG_DELAY);
1232 }
1233
cqspi_config_baudrate_div(struct cqspi_st * cqspi)1234 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1235 {
1236 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1237 void __iomem *reg_base = cqspi->iobase;
1238 u32 reg, div;
1239
1240 /* Recalculate the baudrate divisor based on QSPI specification. */
1241 div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1242
1243 /* Maximum baud divisor */
1244 if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1245 div = CQSPI_REG_CONFIG_BAUD_MASK;
1246 dev_warn(&cqspi->pdev->dev,
1247 "Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1248 cqspi->sclk, ref_clk_hz/((div+1)*2));
1249 }
1250
1251 reg = readl(reg_base + CQSPI_REG_CONFIG);
1252 reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1253 reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1254 writel(reg, reg_base + CQSPI_REG_CONFIG);
1255 }
1256
cqspi_readdata_capture(struct cqspi_st * cqspi,const bool bypass,const unsigned int delay)1257 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1258 const bool bypass,
1259 const unsigned int delay)
1260 {
1261 void __iomem *reg_base = cqspi->iobase;
1262 unsigned int reg;
1263
1264 reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1265
1266 if (bypass)
1267 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1268 else
1269 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1270
1271 reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1272 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1273
1274 reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1275 << CQSPI_REG_READCAPTURE_DELAY_LSB;
1276
1277 writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1278 }
1279
cqspi_configure(struct cqspi_flash_pdata * f_pdata,unsigned long sclk)1280 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1281 unsigned long sclk)
1282 {
1283 struct cqspi_st *cqspi = f_pdata->cqspi;
1284 int switch_cs = (cqspi->current_cs != f_pdata->cs);
1285 int switch_ck = (cqspi->sclk != sclk);
1286
1287 if (switch_cs || switch_ck)
1288 cqspi_controller_enable(cqspi, 0);
1289
1290 /* Switch chip select. */
1291 if (switch_cs) {
1292 cqspi->current_cs = f_pdata->cs;
1293 cqspi_chipselect(f_pdata);
1294 }
1295
1296 /* Setup baudrate divisor and delays */
1297 if (switch_ck) {
1298 cqspi->sclk = sclk;
1299 cqspi_config_baudrate_div(cqspi);
1300 cqspi_delay(f_pdata);
1301 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1302 f_pdata->read_delay);
1303 }
1304
1305 if (switch_cs || switch_ck)
1306 cqspi_controller_enable(cqspi, 1);
1307 }
1308
cqspi_write(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1309 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1310 const struct spi_mem_op *op)
1311 {
1312 struct cqspi_st *cqspi = f_pdata->cqspi;
1313 loff_t to = op->addr.val;
1314 size_t len = op->data.nbytes;
1315 const u_char *buf = op->data.buf.out;
1316 int ret;
1317
1318 ret = cqspi_write_setup(f_pdata, op);
1319 if (ret)
1320 return ret;
1321
1322 /*
1323 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1324 * address (all 0s) with the read status register command in DTR mode.
1325 * But this controller does not support sending dummy address bytes to
1326 * the flash when it is polling the write completion register in DTR
1327 * mode. So, we can not use direct mode when in DTR mode for writing
1328 * data.
1329 */
1330 if (!op->cmd.dtr && cqspi->use_direct_mode &&
1331 cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1332 memcpy_toio(cqspi->ahb_base + to, buf, len);
1333 return cqspi_wait_idle(cqspi);
1334 }
1335
1336 return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1337 }
1338
cqspi_rx_dma_callback(void * param)1339 static void cqspi_rx_dma_callback(void *param)
1340 {
1341 struct cqspi_st *cqspi = param;
1342
1343 complete(&cqspi->rx_dma_complete);
1344 }
1345
cqspi_direct_read_execute(struct cqspi_flash_pdata * f_pdata,u_char * buf,loff_t from,size_t len)1346 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1347 u_char *buf, loff_t from, size_t len)
1348 {
1349 struct cqspi_st *cqspi = f_pdata->cqspi;
1350 struct device *dev = &cqspi->pdev->dev;
1351 enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1352 dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1353 int ret = 0;
1354 struct dma_async_tx_descriptor *tx;
1355 dma_cookie_t cookie;
1356 dma_addr_t dma_dst;
1357 struct device *ddev;
1358
1359 if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1360 memcpy_fromio(buf, cqspi->ahb_base + from, len);
1361 return 0;
1362 }
1363
1364 ddev = cqspi->rx_chan->device->dev;
1365 dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1366 if (dma_mapping_error(ddev, dma_dst)) {
1367 dev_err(dev, "dma mapping failed\n");
1368 return -ENOMEM;
1369 }
1370 tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1371 len, flags);
1372 if (!tx) {
1373 dev_err(dev, "device_prep_dma_memcpy error\n");
1374 ret = -EIO;
1375 goto err_unmap;
1376 }
1377
1378 tx->callback = cqspi_rx_dma_callback;
1379 tx->callback_param = cqspi;
1380 cookie = tx->tx_submit(tx);
1381 reinit_completion(&cqspi->rx_dma_complete);
1382
1383 ret = dma_submit_error(cookie);
1384 if (ret) {
1385 dev_err(dev, "dma_submit_error %d\n", cookie);
1386 ret = -EIO;
1387 goto err_unmap;
1388 }
1389
1390 dma_async_issue_pending(cqspi->rx_chan);
1391 if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1392 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1393 dmaengine_terminate_sync(cqspi->rx_chan);
1394 dev_err(dev, "DMA wait_for_completion_timeout\n");
1395 ret = -ETIMEDOUT;
1396 goto err_unmap;
1397 }
1398
1399 err_unmap:
1400 dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1401
1402 return ret;
1403 }
1404
cqspi_read(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1405 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1406 const struct spi_mem_op *op)
1407 {
1408 struct cqspi_st *cqspi = f_pdata->cqspi;
1409 const struct cqspi_driver_platdata *ddata = cqspi->ddata;
1410 loff_t from = op->addr.val;
1411 size_t len = op->data.nbytes;
1412 u_char *buf = op->data.buf.in;
1413 u64 dma_align = (u64)(uintptr_t)buf;
1414 int ret;
1415
1416 ret = cqspi_read_setup(f_pdata, op);
1417 if (ret)
1418 return ret;
1419
1420 if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1421 return cqspi_direct_read_execute(f_pdata, buf, from, len);
1422
1423 if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1424 virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1425 return ddata->indirect_read_dma(f_pdata, buf, from, len);
1426
1427 return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1428 }
1429
cqspi_mem_process(struct spi_mem * mem,const struct spi_mem_op * op)1430 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1431 {
1432 struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1433 struct cqspi_flash_pdata *f_pdata;
1434
1435 f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1436 cqspi_configure(f_pdata, op->max_freq);
1437
1438 if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1439 /*
1440 * Performing reads in DAC mode forces to read minimum 4 bytes
1441 * which is unsupported on some flash devices during register
1442 * reads, prefer STIG mode for such small reads.
1443 */
1444 if (!op->addr.nbytes ||
1445 (op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX &&
1446 !cqspi->disable_stig_mode))
1447 return cqspi_command_read(f_pdata, op);
1448
1449 return cqspi_read(f_pdata, op);
1450 }
1451
1452 if (!op->addr.nbytes || !op->data.buf.out)
1453 return cqspi_command_write(f_pdata, op);
1454
1455 return cqspi_write(f_pdata, op);
1456 }
1457
cqspi_exec_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)1458 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1459 {
1460 int ret;
1461 struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1462 struct device *dev = &cqspi->pdev->dev;
1463
1464 ret = pm_runtime_resume_and_get(dev);
1465 if (ret) {
1466 dev_err(&mem->spi->dev, "resume failed with %d\n", ret);
1467 return ret;
1468 }
1469
1470 ret = cqspi_mem_process(mem, op);
1471
1472 pm_runtime_mark_last_busy(dev);
1473 pm_runtime_put_autosuspend(dev);
1474
1475 if (ret)
1476 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1477
1478 return ret;
1479 }
1480
cqspi_supports_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)1481 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1482 const struct spi_mem_op *op)
1483 {
1484 bool all_true, all_false;
1485
1486 /*
1487 * op->dummy.dtr is required for converting nbytes into ncycles.
1488 * Also, don't check the dtr field of the op phase having zero nbytes.
1489 */
1490 all_true = op->cmd.dtr &&
1491 (!op->addr.nbytes || op->addr.dtr) &&
1492 (!op->dummy.nbytes || op->dummy.dtr) &&
1493 (!op->data.nbytes || op->data.dtr);
1494
1495 all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1496 !op->data.dtr;
1497
1498 if (all_true) {
1499 /* Right now we only support 8-8-8 DTR mode. */
1500 if (op->cmd.nbytes && op->cmd.buswidth != 8)
1501 return false;
1502 if (op->addr.nbytes && op->addr.buswidth != 8)
1503 return false;
1504 if (op->data.nbytes && op->data.buswidth != 8)
1505 return false;
1506 } else if (!all_false) {
1507 /* Mixed DTR modes are not supported. */
1508 return false;
1509 }
1510
1511 return spi_mem_default_supports_op(mem, op);
1512 }
1513
cqspi_of_get_flash_pdata(struct platform_device * pdev,struct cqspi_flash_pdata * f_pdata,struct device_node * np)1514 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1515 struct cqspi_flash_pdata *f_pdata,
1516 struct device_node *np)
1517 {
1518 if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1519 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1520 return -ENXIO;
1521 }
1522
1523 if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1524 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1525 return -ENXIO;
1526 }
1527
1528 if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1529 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1530 return -ENXIO;
1531 }
1532
1533 if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1534 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1535 return -ENXIO;
1536 }
1537
1538 if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1539 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1540 return -ENXIO;
1541 }
1542
1543 if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1544 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1545 return -ENXIO;
1546 }
1547
1548 return 0;
1549 }
1550
cqspi_of_get_pdata(struct cqspi_st * cqspi)1551 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1552 {
1553 struct device *dev = &cqspi->pdev->dev;
1554 struct device_node *np = dev->of_node;
1555 u32 id[2];
1556
1557 cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1558
1559 if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1560 /* Zero signals FIFO depth should be runtime detected. */
1561 cqspi->fifo_depth = 0;
1562 }
1563
1564 if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1565 dev_err(dev, "couldn't determine fifo-width\n");
1566 return -ENXIO;
1567 }
1568
1569 if (of_property_read_u32(np, "cdns,trigger-address",
1570 &cqspi->trigger_address)) {
1571 dev_err(dev, "couldn't determine trigger-address\n");
1572 return -ENXIO;
1573 }
1574
1575 if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1576 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1577
1578 cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1579
1580 if (!of_property_read_u32_array(np, "power-domains", id,
1581 ARRAY_SIZE(id)))
1582 cqspi->pd_dev_id = id[1];
1583
1584 return 0;
1585 }
1586
cqspi_controller_init(struct cqspi_st * cqspi)1587 static void cqspi_controller_init(struct cqspi_st *cqspi)
1588 {
1589 u32 reg;
1590
1591 /* Configure the remap address register, no remap */
1592 writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1593
1594 /* Disable all interrupts. */
1595 writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1596
1597 /* Configure the SRAM split to 1:1 . */
1598 writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1599
1600 /* Load indirect trigger address. */
1601 writel(cqspi->trigger_address,
1602 cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1603
1604 /* Program read watermark -- 1/2 of the FIFO. */
1605 writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1606 cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1607 /* Program write watermark -- 1/8 of the FIFO. */
1608 writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1609 cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1610
1611 /* Disable direct access controller */
1612 if (!cqspi->use_direct_mode) {
1613 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1614 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1615 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1616 }
1617
1618 /* Enable DMA interface */
1619 if (cqspi->use_dma_read) {
1620 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1621 reg |= CQSPI_REG_CONFIG_DMA_MASK;
1622 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1623 }
1624 }
1625
cqspi_controller_detect_fifo_depth(struct cqspi_st * cqspi)1626 static void cqspi_controller_detect_fifo_depth(struct cqspi_st *cqspi)
1627 {
1628 struct device *dev = &cqspi->pdev->dev;
1629 u32 reg, fifo_depth;
1630
1631 /*
1632 * Bits N-1:0 are writable while bits 31:N are read as zero, with 2^N
1633 * the FIFO depth.
1634 */
1635 writel(U32_MAX, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1636 reg = readl(cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1637 fifo_depth = reg + 1;
1638
1639 /* FIFO depth of zero means no value from devicetree was provided. */
1640 if (cqspi->fifo_depth == 0) {
1641 cqspi->fifo_depth = fifo_depth;
1642 dev_dbg(dev, "using FIFO depth of %u\n", fifo_depth);
1643 } else if (fifo_depth != cqspi->fifo_depth) {
1644 dev_warn(dev, "detected FIFO depth (%u) different from config (%u)\n",
1645 fifo_depth, cqspi->fifo_depth);
1646 }
1647 }
1648
cqspi_request_mmap_dma(struct cqspi_st * cqspi)1649 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1650 {
1651 dma_cap_mask_t mask;
1652
1653 dma_cap_zero(mask);
1654 dma_cap_set(DMA_MEMCPY, mask);
1655
1656 cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1657 if (IS_ERR(cqspi->rx_chan)) {
1658 int ret = PTR_ERR(cqspi->rx_chan);
1659
1660 cqspi->rx_chan = NULL;
1661 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1662 }
1663 init_completion(&cqspi->rx_dma_complete);
1664
1665 return 0;
1666 }
1667
cqspi_get_name(struct spi_mem * mem)1668 static const char *cqspi_get_name(struct spi_mem *mem)
1669 {
1670 struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1671 struct device *dev = &cqspi->pdev->dev;
1672
1673 return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1674 spi_get_chipselect(mem->spi, 0));
1675 }
1676
1677 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1678 .exec_op = cqspi_exec_mem_op,
1679 .get_name = cqspi_get_name,
1680 .supports_op = cqspi_supports_mem_op,
1681 };
1682
1683 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1684 .dtr = true,
1685 .per_op_freq = true,
1686 };
1687
cqspi_setup_flash(struct cqspi_st * cqspi)1688 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1689 {
1690 unsigned int max_cs = cqspi->num_chipselect - 1;
1691 struct platform_device *pdev = cqspi->pdev;
1692 struct device *dev = &pdev->dev;
1693 struct cqspi_flash_pdata *f_pdata;
1694 unsigned int cs;
1695 int ret;
1696
1697 /* Get flash device data */
1698 for_each_available_child_of_node_scoped(dev->of_node, np) {
1699 ret = of_property_read_u32(np, "reg", &cs);
1700 if (ret) {
1701 dev_err(dev, "Couldn't determine chip select.\n");
1702 return ret;
1703 }
1704
1705 if (cs >= cqspi->num_chipselect) {
1706 dev_err(dev, "Chip select %d out of range.\n", cs);
1707 return -EINVAL;
1708 } else if (cs < max_cs) {
1709 max_cs = cs;
1710 }
1711
1712 f_pdata = &cqspi->f_pdata[cs];
1713 f_pdata->cqspi = cqspi;
1714 f_pdata->cs = cs;
1715
1716 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1717 if (ret)
1718 return ret;
1719 }
1720
1721 cqspi->num_chipselect = max_cs + 1;
1722 return 0;
1723 }
1724
cqspi_jh7110_clk_init(struct platform_device * pdev,struct cqspi_st * cqspi)1725 static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi)
1726 {
1727 static struct clk_bulk_data qspiclk[] = {
1728 { .id = "apb" },
1729 { .id = "ahb" },
1730 };
1731
1732 int ret = 0;
1733
1734 ret = devm_clk_bulk_get(&pdev->dev, ARRAY_SIZE(qspiclk), qspiclk);
1735 if (ret) {
1736 dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__);
1737 return ret;
1738 }
1739
1740 cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk;
1741 cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk;
1742
1743 ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_APB]);
1744 if (ret) {
1745 dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__);
1746 return ret;
1747 }
1748
1749 ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_AHB]);
1750 if (ret) {
1751 dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__);
1752 goto disable_apb_clk;
1753 }
1754
1755 cqspi->is_jh7110 = true;
1756
1757 return 0;
1758
1759 disable_apb_clk:
1760 clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1761
1762 return ret;
1763 }
1764
cqspi_jh7110_disable_clk(struct platform_device * pdev,struct cqspi_st * cqspi)1765 static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi)
1766 {
1767 clk_disable_unprepare(cqspi->clks[CLK_QSPI_AHB]);
1768 clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1769 }
cqspi_probe(struct platform_device * pdev)1770 static int cqspi_probe(struct platform_device *pdev)
1771 {
1772 const struct cqspi_driver_platdata *ddata;
1773 struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1774 struct device *dev = &pdev->dev;
1775 struct spi_controller *host;
1776 struct resource *res_ahb;
1777 struct cqspi_st *cqspi;
1778 int ret;
1779 int irq;
1780
1781 host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
1782 if (!host)
1783 return -ENOMEM;
1784
1785 host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1786 host->mem_ops = &cqspi_mem_ops;
1787 host->mem_caps = &cqspi_mem_caps;
1788 host->dev.of_node = pdev->dev.of_node;
1789
1790 cqspi = spi_controller_get_devdata(host);
1791
1792 cqspi->pdev = pdev;
1793 cqspi->host = host;
1794 cqspi->is_jh7110 = false;
1795 cqspi->ddata = ddata = of_device_get_match_data(dev);
1796 platform_set_drvdata(pdev, cqspi);
1797
1798 /* Obtain configuration from OF. */
1799 ret = cqspi_of_get_pdata(cqspi);
1800 if (ret) {
1801 dev_err(dev, "Cannot get mandatory OF data.\n");
1802 return -ENODEV;
1803 }
1804
1805 /* Obtain QSPI clock. */
1806 cqspi->clk = devm_clk_get(dev, NULL);
1807 if (IS_ERR(cqspi->clk)) {
1808 dev_err(dev, "Cannot claim QSPI clock.\n");
1809 ret = PTR_ERR(cqspi->clk);
1810 return ret;
1811 }
1812
1813 /* Obtain and remap controller address. */
1814 cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1815 if (IS_ERR(cqspi->iobase)) {
1816 dev_err(dev, "Cannot remap controller address.\n");
1817 ret = PTR_ERR(cqspi->iobase);
1818 return ret;
1819 }
1820
1821 /* Obtain and remap AHB address. */
1822 cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1823 if (IS_ERR(cqspi->ahb_base)) {
1824 dev_err(dev, "Cannot remap AHB address.\n");
1825 ret = PTR_ERR(cqspi->ahb_base);
1826 return ret;
1827 }
1828 cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1829 cqspi->ahb_size = resource_size(res_ahb);
1830
1831 init_completion(&cqspi->transfer_complete);
1832
1833 /* Obtain IRQ line. */
1834 irq = platform_get_irq(pdev, 0);
1835 if (irq < 0)
1836 return -ENXIO;
1837
1838 ret = pm_runtime_set_active(dev);
1839 if (ret)
1840 return ret;
1841
1842
1843 ret = clk_prepare_enable(cqspi->clk);
1844 if (ret) {
1845 dev_err(dev, "Cannot enable QSPI clock.\n");
1846 goto probe_clk_failed;
1847 }
1848
1849 /* Obtain QSPI reset control */
1850 rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1851 if (IS_ERR(rstc)) {
1852 ret = PTR_ERR(rstc);
1853 dev_err(dev, "Cannot get QSPI reset.\n");
1854 goto probe_reset_failed;
1855 }
1856
1857 rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1858 if (IS_ERR(rstc_ocp)) {
1859 ret = PTR_ERR(rstc_ocp);
1860 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1861 goto probe_reset_failed;
1862 }
1863
1864 if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1865 rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1866 if (IS_ERR(rstc_ref)) {
1867 ret = PTR_ERR(rstc_ref);
1868 dev_err(dev, "Cannot get QSPI REF reset.\n");
1869 goto probe_reset_failed;
1870 }
1871 reset_control_assert(rstc_ref);
1872 reset_control_deassert(rstc_ref);
1873 }
1874
1875 reset_control_assert(rstc);
1876 reset_control_deassert(rstc);
1877
1878 reset_control_assert(rstc_ocp);
1879 reset_control_deassert(rstc_ocp);
1880
1881 cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1882 host->max_speed_hz = cqspi->master_ref_clk_hz;
1883
1884 /* write completion is supported by default */
1885 cqspi->wr_completion = true;
1886
1887 if (ddata) {
1888 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1889 cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1890 cqspi->master_ref_clk_hz);
1891 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1892 host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1893 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_QUAD)
1894 host->mode_bits |= SPI_TX_QUAD;
1895 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1896 cqspi->use_direct_mode = true;
1897 cqspi->use_direct_mode_wr = true;
1898 }
1899 if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1900 cqspi->use_dma_read = true;
1901 if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1902 cqspi->wr_completion = false;
1903 if (ddata->quirks & CQSPI_SLOW_SRAM)
1904 cqspi->slow_sram = true;
1905 if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1906 cqspi->apb_ahb_hazard = true;
1907
1908 if (ddata->jh7110_clk_init) {
1909 ret = cqspi_jh7110_clk_init(pdev, cqspi);
1910 if (ret)
1911 goto probe_reset_failed;
1912 }
1913 if (ddata->quirks & CQSPI_DISABLE_STIG_MODE)
1914 cqspi->disable_stig_mode = true;
1915
1916 if (ddata->quirks & CQSPI_DMA_SET_MASK) {
1917 ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1918 if (ret)
1919 goto probe_reset_failed;
1920 }
1921 }
1922
1923 ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1924 pdev->name, cqspi);
1925 if (ret) {
1926 dev_err(dev, "Cannot request IRQ.\n");
1927 goto probe_reset_failed;
1928 }
1929
1930 cqspi_wait_idle(cqspi);
1931 cqspi_controller_enable(cqspi, 0);
1932 cqspi_controller_detect_fifo_depth(cqspi);
1933 cqspi_controller_init(cqspi);
1934 cqspi_controller_enable(cqspi, 1);
1935 cqspi->current_cs = -1;
1936 cqspi->sclk = 0;
1937
1938 ret = cqspi_setup_flash(cqspi);
1939 if (ret) {
1940 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1941 goto probe_setup_failed;
1942 }
1943
1944 host->num_chipselect = cqspi->num_chipselect;
1945
1946 if (ddata->quirks & CQSPI_SUPPORT_DEVICE_RESET)
1947 cqspi_device_reset(cqspi);
1948
1949 if (cqspi->use_direct_mode) {
1950 ret = cqspi_request_mmap_dma(cqspi);
1951 if (ret == -EPROBE_DEFER)
1952 goto probe_setup_failed;
1953 }
1954
1955 ret = devm_pm_runtime_enable(dev);
1956 if (ret) {
1957 if (cqspi->rx_chan)
1958 dma_release_channel(cqspi->rx_chan);
1959 goto probe_setup_failed;
1960 }
1961
1962 pm_runtime_set_autosuspend_delay(dev, CQSPI_AUTOSUSPEND_TIMEOUT);
1963 pm_runtime_use_autosuspend(dev);
1964 pm_runtime_get_noresume(dev);
1965
1966 ret = spi_register_controller(host);
1967 if (ret) {
1968 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1969 goto probe_setup_failed;
1970 }
1971
1972 pm_runtime_mark_last_busy(dev);
1973 pm_runtime_put_autosuspend(dev);
1974
1975 return 0;
1976 probe_setup_failed:
1977 cqspi_controller_enable(cqspi, 0);
1978 probe_reset_failed:
1979 if (cqspi->is_jh7110)
1980 cqspi_jh7110_disable_clk(pdev, cqspi);
1981 clk_disable_unprepare(cqspi->clk);
1982 probe_clk_failed:
1983 return ret;
1984 }
1985
cqspi_remove(struct platform_device * pdev)1986 static void cqspi_remove(struct platform_device *pdev)
1987 {
1988 struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1989
1990 spi_unregister_controller(cqspi->host);
1991 cqspi_controller_enable(cqspi, 0);
1992
1993 if (cqspi->rx_chan)
1994 dma_release_channel(cqspi->rx_chan);
1995
1996 clk_disable_unprepare(cqspi->clk);
1997
1998 if (cqspi->is_jh7110)
1999 cqspi_jh7110_disable_clk(pdev, cqspi);
2000
2001 pm_runtime_put_sync(&pdev->dev);
2002 pm_runtime_disable(&pdev->dev);
2003 }
2004
cqspi_runtime_suspend(struct device * dev)2005 static int cqspi_runtime_suspend(struct device *dev)
2006 {
2007 struct cqspi_st *cqspi = dev_get_drvdata(dev);
2008
2009 cqspi_controller_enable(cqspi, 0);
2010 clk_disable_unprepare(cqspi->clk);
2011 return 0;
2012 }
2013
cqspi_runtime_resume(struct device * dev)2014 static int cqspi_runtime_resume(struct device *dev)
2015 {
2016 struct cqspi_st *cqspi = dev_get_drvdata(dev);
2017
2018 clk_prepare_enable(cqspi->clk);
2019 cqspi_wait_idle(cqspi);
2020 cqspi_controller_enable(cqspi, 0);
2021 cqspi_controller_init(cqspi);
2022 cqspi_controller_enable(cqspi, 1);
2023
2024 cqspi->current_cs = -1;
2025 cqspi->sclk = 0;
2026 return 0;
2027 }
2028
cqspi_suspend(struct device * dev)2029 static int cqspi_suspend(struct device *dev)
2030 {
2031 struct cqspi_st *cqspi = dev_get_drvdata(dev);
2032 int ret;
2033
2034 ret = spi_controller_suspend(cqspi->host);
2035 if (ret)
2036 return ret;
2037
2038 return pm_runtime_force_suspend(dev);
2039 }
2040
cqspi_resume(struct device * dev)2041 static int cqspi_resume(struct device *dev)
2042 {
2043 struct cqspi_st *cqspi = dev_get_drvdata(dev);
2044 int ret;
2045
2046 ret = pm_runtime_force_resume(dev);
2047 if (ret) {
2048 dev_err(dev, "pm_runtime_force_resume failed on resume\n");
2049 return ret;
2050 }
2051
2052 return spi_controller_resume(cqspi->host);
2053 }
2054
2055 static const struct dev_pm_ops cqspi_dev_pm_ops = {
2056 RUNTIME_PM_OPS(cqspi_runtime_suspend, cqspi_runtime_resume, NULL)
2057 SYSTEM_SLEEP_PM_OPS(cqspi_suspend, cqspi_resume)
2058 };
2059
2060 static const struct cqspi_driver_platdata cdns_qspi = {
2061 .quirks = CQSPI_DISABLE_DAC_MODE,
2062 };
2063
2064 static const struct cqspi_driver_platdata k2g_qspi = {
2065 .quirks = CQSPI_NEEDS_WR_DELAY,
2066 };
2067
2068 static const struct cqspi_driver_platdata am654_ospi = {
2069 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL | CQSPI_SUPPORTS_QUAD,
2070 .quirks = CQSPI_NEEDS_WR_DELAY,
2071 };
2072
2073 static const struct cqspi_driver_platdata intel_lgm_qspi = {
2074 .quirks = CQSPI_DISABLE_DAC_MODE,
2075 };
2076
2077 static const struct cqspi_driver_platdata socfpga_qspi = {
2078 .quirks = CQSPI_DISABLE_DAC_MODE
2079 | CQSPI_NO_SUPPORT_WR_COMPLETION
2080 | CQSPI_SLOW_SRAM
2081 | CQSPI_DISABLE_STIG_MODE,
2082 };
2083
2084 static const struct cqspi_driver_platdata versal_ospi = {
2085 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2086 .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA
2087 | CQSPI_DMA_SET_MASK,
2088 .indirect_read_dma = cqspi_versal_indirect_read_dma,
2089 .get_dma_status = cqspi_get_versal_dma_status,
2090 };
2091
2092 static const struct cqspi_driver_platdata versal2_ospi = {
2093 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2094 .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA
2095 | CQSPI_DMA_SET_MASK
2096 | CQSPI_SUPPORT_DEVICE_RESET,
2097 .indirect_read_dma = cqspi_versal_indirect_read_dma,
2098 .get_dma_status = cqspi_get_versal_dma_status,
2099 };
2100
2101 static const struct cqspi_driver_platdata jh7110_qspi = {
2102 .quirks = CQSPI_DISABLE_DAC_MODE,
2103 .jh7110_clk_init = cqspi_jh7110_clk_init,
2104 };
2105
2106 static const struct cqspi_driver_platdata pensando_cdns_qspi = {
2107 .quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
2108 };
2109
2110 static const struct cqspi_driver_platdata mobileye_eyeq5_ospi = {
2111 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2112 .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_NO_SUPPORT_WR_COMPLETION |
2113 CQSPI_RD_NO_IRQ,
2114 };
2115
2116 static const struct of_device_id cqspi_dt_ids[] = {
2117 {
2118 .compatible = "cdns,qspi-nor",
2119 .data = &cdns_qspi,
2120 },
2121 {
2122 .compatible = "ti,k2g-qspi",
2123 .data = &k2g_qspi,
2124 },
2125 {
2126 .compatible = "ti,am654-ospi",
2127 .data = &am654_ospi,
2128 },
2129 {
2130 .compatible = "intel,lgm-qspi",
2131 .data = &intel_lgm_qspi,
2132 },
2133 {
2134 .compatible = "xlnx,versal-ospi-1.0",
2135 .data = &versal_ospi,
2136 },
2137 {
2138 .compatible = "intel,socfpga-qspi",
2139 .data = &socfpga_qspi,
2140 },
2141 {
2142 .compatible = "starfive,jh7110-qspi",
2143 .data = &jh7110_qspi,
2144 },
2145 {
2146 .compatible = "amd,pensando-elba-qspi",
2147 .data = &pensando_cdns_qspi,
2148 },
2149 {
2150 .compatible = "mobileye,eyeq5-ospi",
2151 .data = &mobileye_eyeq5_ospi,
2152 },
2153 {
2154 .compatible = "amd,versal2-ospi",
2155 .data = &versal2_ospi,
2156 },
2157 { /* end of table */ }
2158 };
2159
2160 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
2161
2162 static struct platform_driver cqspi_platform_driver = {
2163 .probe = cqspi_probe,
2164 .remove = cqspi_remove,
2165 .driver = {
2166 .name = CQSPI_NAME,
2167 .pm = pm_ptr(&cqspi_dev_pm_ops),
2168 .of_match_table = cqspi_dt_ids,
2169 },
2170 };
2171
2172 module_platform_driver(cqspi_platform_driver);
2173
2174 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
2175 MODULE_LICENSE("GPL v2");
2176 MODULE_ALIAS("platform:" CQSPI_NAME);
2177 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
2178 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
2179 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
2180 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
2181 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
2182