1 // SPDX-License-Identifier: GPL-2.0 2 #include <fcntl.h> 3 #include <stdio.h> 4 #include <errno.h> 5 #include <stdlib.h> 6 #include <string.h> 7 #include <unistd.h> 8 #include <inttypes.h> 9 10 #include "dso.h" 11 #include "map.h" 12 #include "maps.h" 13 #include "symbol.h" 14 #include "symsrc.h" 15 #include "demangle-cxx.h" 16 #include "demangle-ocaml.h" 17 #include "demangle-java.h" 18 #include "demangle-rust.h" 19 #include "machine.h" 20 #include "vdso.h" 21 #include "debug.h" 22 #include "util/copyfile.h" 23 #include <linux/ctype.h> 24 #include <linux/kernel.h> 25 #include <linux/zalloc.h> 26 #include <linux/string.h> 27 #include <symbol/kallsyms.h> 28 #include <internal/lib.h> 29 30 #ifdef HAVE_LIBBFD_SUPPORT 31 #define PACKAGE 'perf' 32 #include <bfd.h> 33 #endif 34 35 #if defined(HAVE_LIBBFD_SUPPORT) || defined(HAVE_CPLUS_DEMANGLE_SUPPORT) 36 #ifndef DMGL_PARAMS 37 #define DMGL_PARAMS (1 << 0) /* Include function args */ 38 #define DMGL_ANSI (1 << 1) /* Include const, volatile, etc */ 39 #endif 40 #endif 41 42 #ifndef EM_AARCH64 43 #define EM_AARCH64 183 /* ARM 64 bit */ 44 #endif 45 46 #ifndef EM_LOONGARCH 47 #define EM_LOONGARCH 258 48 #endif 49 50 #ifndef ELF32_ST_VISIBILITY 51 #define ELF32_ST_VISIBILITY(o) ((o) & 0x03) 52 #endif 53 54 /* For ELF64 the definitions are the same. */ 55 #ifndef ELF64_ST_VISIBILITY 56 #define ELF64_ST_VISIBILITY(o) ELF32_ST_VISIBILITY (o) 57 #endif 58 59 /* How to extract information held in the st_other field. */ 60 #ifndef GELF_ST_VISIBILITY 61 #define GELF_ST_VISIBILITY(val) ELF64_ST_VISIBILITY (val) 62 #endif 63 64 typedef Elf64_Nhdr GElf_Nhdr; 65 66 67 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT 68 static int elf_getphdrnum(Elf *elf, size_t *dst) 69 { 70 GElf_Ehdr gehdr; 71 GElf_Ehdr *ehdr; 72 73 ehdr = gelf_getehdr(elf, &gehdr); 74 if (!ehdr) 75 return -1; 76 77 *dst = ehdr->e_phnum; 78 79 return 0; 80 } 81 #endif 82 83 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT 84 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused) 85 { 86 pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__); 87 return -1; 88 } 89 #endif 90 91 #ifndef NT_GNU_BUILD_ID 92 #define NT_GNU_BUILD_ID 3 93 #endif 94 95 /** 96 * elf_symtab__for_each_symbol - iterate thru all the symbols 97 * 98 * @syms: struct elf_symtab instance to iterate 99 * @idx: uint32_t idx 100 * @sym: GElf_Sym iterator 101 */ 102 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \ 103 for (idx = 0, gelf_getsym(syms, idx, &sym);\ 104 idx < nr_syms; \ 105 idx++, gelf_getsym(syms, idx, &sym)) 106 107 static inline uint8_t elf_sym__type(const GElf_Sym *sym) 108 { 109 return GELF_ST_TYPE(sym->st_info); 110 } 111 112 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym) 113 { 114 return GELF_ST_VISIBILITY(sym->st_other); 115 } 116 117 #ifndef STT_GNU_IFUNC 118 #define STT_GNU_IFUNC 10 119 #endif 120 121 static inline int elf_sym__is_function(const GElf_Sym *sym) 122 { 123 return (elf_sym__type(sym) == STT_FUNC || 124 elf_sym__type(sym) == STT_GNU_IFUNC) && 125 sym->st_name != 0 && 126 sym->st_shndx != SHN_UNDEF; 127 } 128 129 static inline bool elf_sym__is_object(const GElf_Sym *sym) 130 { 131 return elf_sym__type(sym) == STT_OBJECT && 132 sym->st_name != 0 && 133 sym->st_shndx != SHN_UNDEF; 134 } 135 136 static inline int elf_sym__is_label(const GElf_Sym *sym) 137 { 138 return elf_sym__type(sym) == STT_NOTYPE && 139 sym->st_name != 0 && 140 sym->st_shndx != SHN_UNDEF && 141 sym->st_shndx != SHN_ABS && 142 elf_sym__visibility(sym) != STV_HIDDEN && 143 elf_sym__visibility(sym) != STV_INTERNAL; 144 } 145 146 static bool elf_sym__filter(GElf_Sym *sym) 147 { 148 return elf_sym__is_function(sym) || elf_sym__is_object(sym); 149 } 150 151 static inline const char *elf_sym__name(const GElf_Sym *sym, 152 const Elf_Data *symstrs) 153 { 154 return symstrs->d_buf + sym->st_name; 155 } 156 157 static inline const char *elf_sec__name(const GElf_Shdr *shdr, 158 const Elf_Data *secstrs) 159 { 160 return secstrs->d_buf + shdr->sh_name; 161 } 162 163 static inline int elf_sec__is_text(const GElf_Shdr *shdr, 164 const Elf_Data *secstrs) 165 { 166 return strstr(elf_sec__name(shdr, secstrs), "text") != NULL; 167 } 168 169 static inline bool elf_sec__is_data(const GElf_Shdr *shdr, 170 const Elf_Data *secstrs) 171 { 172 return strstr(elf_sec__name(shdr, secstrs), "data") != NULL; 173 } 174 175 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs) 176 { 177 return elf_sec__is_text(shdr, secstrs) || 178 elf_sec__is_data(shdr, secstrs); 179 } 180 181 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr) 182 { 183 Elf_Scn *sec = NULL; 184 GElf_Shdr shdr; 185 size_t cnt = 1; 186 187 while ((sec = elf_nextscn(elf, sec)) != NULL) { 188 gelf_getshdr(sec, &shdr); 189 190 if ((addr >= shdr.sh_addr) && 191 (addr < (shdr.sh_addr + shdr.sh_size))) 192 return cnt; 193 194 ++cnt; 195 } 196 197 return -1; 198 } 199 200 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep, 201 GElf_Shdr *shp, const char *name, size_t *idx) 202 { 203 Elf_Scn *sec = NULL; 204 size_t cnt = 1; 205 206 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 207 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL)) 208 return NULL; 209 210 while ((sec = elf_nextscn(elf, sec)) != NULL) { 211 char *str; 212 213 gelf_getshdr(sec, shp); 214 str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name); 215 if (str && !strcmp(name, str)) { 216 if (idx) 217 *idx = cnt; 218 return sec; 219 } 220 ++cnt; 221 } 222 223 return NULL; 224 } 225 226 bool filename__has_section(const char *filename, const char *sec) 227 { 228 int fd; 229 Elf *elf; 230 GElf_Ehdr ehdr; 231 GElf_Shdr shdr; 232 bool found = false; 233 234 fd = open(filename, O_RDONLY); 235 if (fd < 0) 236 return false; 237 238 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 239 if (elf == NULL) 240 goto out; 241 242 if (gelf_getehdr(elf, &ehdr) == NULL) 243 goto elf_out; 244 245 found = !!elf_section_by_name(elf, &ehdr, &shdr, sec, NULL); 246 247 elf_out: 248 elf_end(elf); 249 out: 250 close(fd); 251 return found; 252 } 253 254 static int elf_read_program_header(Elf *elf, u64 vaddr, GElf_Phdr *phdr) 255 { 256 size_t i, phdrnum; 257 u64 sz; 258 259 if (elf_getphdrnum(elf, &phdrnum)) 260 return -1; 261 262 for (i = 0; i < phdrnum; i++) { 263 if (gelf_getphdr(elf, i, phdr) == NULL) 264 return -1; 265 266 if (phdr->p_type != PT_LOAD) 267 continue; 268 269 sz = max(phdr->p_memsz, phdr->p_filesz); 270 if (!sz) 271 continue; 272 273 if (vaddr >= phdr->p_vaddr && (vaddr < phdr->p_vaddr + sz)) 274 return 0; 275 } 276 277 /* Not found any valid program header */ 278 return -1; 279 } 280 281 static bool want_demangle(bool is_kernel_sym) 282 { 283 return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle; 284 } 285 286 /* 287 * Demangle C++ function signature, typically replaced by demangle-cxx.cpp 288 * version. 289 */ 290 #ifndef HAVE_CXA_DEMANGLE_SUPPORT 291 char *cxx_demangle_sym(const char *str __maybe_unused, bool params __maybe_unused, 292 bool modifiers __maybe_unused) 293 { 294 #ifdef HAVE_LIBBFD_SUPPORT 295 int flags = (params ? DMGL_PARAMS : 0) | (modifiers ? DMGL_ANSI : 0); 296 297 return bfd_demangle(NULL, str, flags); 298 #elif defined(HAVE_CPLUS_DEMANGLE_SUPPORT) 299 int flags = (params ? DMGL_PARAMS : 0) | (modifiers ? DMGL_ANSI : 0); 300 301 return cplus_demangle(str, flags); 302 #else 303 return NULL; 304 #endif 305 } 306 #endif /* !HAVE_CXA_DEMANGLE_SUPPORT */ 307 308 static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name) 309 { 310 char *demangled = NULL; 311 312 /* 313 * We need to figure out if the object was created from C++ sources 314 * DWARF DW_compile_unit has this, but we don't always have access 315 * to it... 316 */ 317 if (!want_demangle(dso__kernel(dso) || kmodule)) 318 return demangled; 319 320 demangled = cxx_demangle_sym(elf_name, verbose > 0, verbose > 0); 321 if (demangled == NULL) { 322 demangled = ocaml_demangle_sym(elf_name); 323 if (demangled == NULL) { 324 demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET); 325 } 326 } 327 else if (rust_is_mangled(demangled)) 328 /* 329 * Input to Rust demangling is the BFD-demangled 330 * name which it Rust-demangles in place. 331 */ 332 rust_demangle_sym(demangled); 333 334 return demangled; 335 } 336 337 struct rel_info { 338 u32 nr_entries; 339 u32 *sorted; 340 bool is_rela; 341 Elf_Data *reldata; 342 GElf_Rela rela; 343 GElf_Rel rel; 344 }; 345 346 static u32 get_rel_symidx(struct rel_info *ri, u32 idx) 347 { 348 idx = ri->sorted ? ri->sorted[idx] : idx; 349 if (ri->is_rela) { 350 gelf_getrela(ri->reldata, idx, &ri->rela); 351 return GELF_R_SYM(ri->rela.r_info); 352 } 353 gelf_getrel(ri->reldata, idx, &ri->rel); 354 return GELF_R_SYM(ri->rel.r_info); 355 } 356 357 static u64 get_rel_offset(struct rel_info *ri, u32 x) 358 { 359 if (ri->is_rela) { 360 GElf_Rela rela; 361 362 gelf_getrela(ri->reldata, x, &rela); 363 return rela.r_offset; 364 } else { 365 GElf_Rel rel; 366 367 gelf_getrel(ri->reldata, x, &rel); 368 return rel.r_offset; 369 } 370 } 371 372 static int rel_cmp(const void *a, const void *b, void *r) 373 { 374 struct rel_info *ri = r; 375 u64 a_offset = get_rel_offset(ri, *(const u32 *)a); 376 u64 b_offset = get_rel_offset(ri, *(const u32 *)b); 377 378 return a_offset < b_offset ? -1 : (a_offset > b_offset ? 1 : 0); 379 } 380 381 static int sort_rel(struct rel_info *ri) 382 { 383 size_t sz = sizeof(ri->sorted[0]); 384 u32 i; 385 386 ri->sorted = calloc(ri->nr_entries, sz); 387 if (!ri->sorted) 388 return -1; 389 for (i = 0; i < ri->nr_entries; i++) 390 ri->sorted[i] = i; 391 qsort_r(ri->sorted, ri->nr_entries, sz, rel_cmp, ri); 392 return 0; 393 } 394 395 /* 396 * For x86_64, the GNU linker is putting IFUNC information in the relocation 397 * addend. 398 */ 399 static bool addend_may_be_ifunc(GElf_Ehdr *ehdr, struct rel_info *ri) 400 { 401 return ehdr->e_machine == EM_X86_64 && ri->is_rela && 402 GELF_R_TYPE(ri->rela.r_info) == R_X86_64_IRELATIVE; 403 } 404 405 static bool get_ifunc_name(Elf *elf, struct dso *dso, GElf_Ehdr *ehdr, 406 struct rel_info *ri, char *buf, size_t buf_sz) 407 { 408 u64 addr = ri->rela.r_addend; 409 struct symbol *sym; 410 GElf_Phdr phdr; 411 412 if (!addend_may_be_ifunc(ehdr, ri)) 413 return false; 414 415 if (elf_read_program_header(elf, addr, &phdr)) 416 return false; 417 418 addr -= phdr.p_vaddr - phdr.p_offset; 419 420 sym = dso__find_symbol_nocache(dso, addr); 421 422 /* Expecting the address to be an IFUNC or IFUNC alias */ 423 if (!sym || sym->start != addr || (sym->type != STT_GNU_IFUNC && !sym->ifunc_alias)) 424 return false; 425 426 snprintf(buf, buf_sz, "%s@plt", sym->name); 427 428 return true; 429 } 430 431 static void exit_rel(struct rel_info *ri) 432 { 433 zfree(&ri->sorted); 434 } 435 436 static bool get_plt_sizes(struct dso *dso, GElf_Ehdr *ehdr, GElf_Shdr *shdr_plt, 437 u64 *plt_header_size, u64 *plt_entry_size) 438 { 439 switch (ehdr->e_machine) { 440 case EM_ARM: 441 *plt_header_size = 20; 442 *plt_entry_size = 12; 443 return true; 444 case EM_AARCH64: 445 *plt_header_size = 32; 446 *plt_entry_size = 16; 447 return true; 448 case EM_LOONGARCH: 449 *plt_header_size = 32; 450 *plt_entry_size = 16; 451 return true; 452 case EM_SPARC: 453 *plt_header_size = 48; 454 *plt_entry_size = 12; 455 return true; 456 case EM_SPARCV9: 457 *plt_header_size = 128; 458 *plt_entry_size = 32; 459 return true; 460 case EM_386: 461 case EM_X86_64: 462 *plt_entry_size = shdr_plt->sh_entsize; 463 /* Size is 8 or 16, if not, assume alignment indicates size */ 464 if (*plt_entry_size != 8 && *plt_entry_size != 16) 465 *plt_entry_size = shdr_plt->sh_addralign == 8 ? 8 : 16; 466 *plt_header_size = *plt_entry_size; 467 break; 468 default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */ 469 *plt_header_size = shdr_plt->sh_entsize; 470 *plt_entry_size = shdr_plt->sh_entsize; 471 break; 472 } 473 if (*plt_entry_size) 474 return true; 475 pr_debug("Missing PLT entry size for %s\n", dso__long_name(dso)); 476 return false; 477 } 478 479 static bool machine_is_x86(GElf_Half e_machine) 480 { 481 return e_machine == EM_386 || e_machine == EM_X86_64; 482 } 483 484 struct rela_dyn { 485 GElf_Addr offset; 486 u32 sym_idx; 487 }; 488 489 struct rela_dyn_info { 490 struct dso *dso; 491 Elf_Data *plt_got_data; 492 u32 nr_entries; 493 struct rela_dyn *sorted; 494 Elf_Data *dynsym_data; 495 Elf_Data *dynstr_data; 496 Elf_Data *rela_dyn_data; 497 }; 498 499 static void exit_rela_dyn(struct rela_dyn_info *di) 500 { 501 zfree(&di->sorted); 502 } 503 504 static int cmp_offset(const void *a, const void *b) 505 { 506 const struct rela_dyn *va = a; 507 const struct rela_dyn *vb = b; 508 509 return va->offset < vb->offset ? -1 : (va->offset > vb->offset ? 1 : 0); 510 } 511 512 static int sort_rela_dyn(struct rela_dyn_info *di) 513 { 514 u32 i, n; 515 516 di->sorted = calloc(di->nr_entries, sizeof(di->sorted[0])); 517 if (!di->sorted) 518 return -1; 519 520 /* Get data for sorting: the offset and symbol index */ 521 for (i = 0, n = 0; i < di->nr_entries; i++) { 522 GElf_Rela rela; 523 u32 sym_idx; 524 525 gelf_getrela(di->rela_dyn_data, i, &rela); 526 sym_idx = GELF_R_SYM(rela.r_info); 527 if (sym_idx) { 528 di->sorted[n].sym_idx = sym_idx; 529 di->sorted[n].offset = rela.r_offset; 530 n += 1; 531 } 532 } 533 534 /* Sort by offset */ 535 di->nr_entries = n; 536 qsort(di->sorted, n, sizeof(di->sorted[0]), cmp_offset); 537 538 return 0; 539 } 540 541 static void get_rela_dyn_info(Elf *elf, GElf_Ehdr *ehdr, struct rela_dyn_info *di, Elf_Scn *scn) 542 { 543 GElf_Shdr rela_dyn_shdr; 544 GElf_Shdr shdr; 545 546 di->plt_got_data = elf_getdata(scn, NULL); 547 548 scn = elf_section_by_name(elf, ehdr, &rela_dyn_shdr, ".rela.dyn", NULL); 549 if (!scn || !rela_dyn_shdr.sh_link || !rela_dyn_shdr.sh_entsize) 550 return; 551 552 di->nr_entries = rela_dyn_shdr.sh_size / rela_dyn_shdr.sh_entsize; 553 di->rela_dyn_data = elf_getdata(scn, NULL); 554 555 scn = elf_getscn(elf, rela_dyn_shdr.sh_link); 556 if (!scn || !gelf_getshdr(scn, &shdr) || !shdr.sh_link) 557 return; 558 559 di->dynsym_data = elf_getdata(scn, NULL); 560 di->dynstr_data = elf_getdata(elf_getscn(elf, shdr.sh_link), NULL); 561 562 if (!di->plt_got_data || !di->dynstr_data || !di->dynsym_data || !di->rela_dyn_data) 563 return; 564 565 /* Sort into offset order */ 566 sort_rela_dyn(di); 567 } 568 569 /* Get instruction displacement from a plt entry for x86_64 */ 570 static u32 get_x86_64_plt_disp(const u8 *p) 571 { 572 u8 endbr64[] = {0xf3, 0x0f, 0x1e, 0xfa}; 573 int n = 0; 574 575 /* Skip endbr64 */ 576 if (!memcmp(p, endbr64, sizeof(endbr64))) 577 n += sizeof(endbr64); 578 /* Skip bnd prefix */ 579 if (p[n] == 0xf2) 580 n += 1; 581 /* jmp with 4-byte displacement */ 582 if (p[n] == 0xff && p[n + 1] == 0x25) { 583 u32 disp; 584 585 n += 2; 586 /* Also add offset from start of entry to end of instruction */ 587 memcpy(&disp, p + n, sizeof(disp)); 588 return n + 4 + le32toh(disp); 589 } 590 return 0; 591 } 592 593 static bool get_plt_got_name(GElf_Shdr *shdr, size_t i, 594 struct rela_dyn_info *di, 595 char *buf, size_t buf_sz) 596 { 597 struct rela_dyn vi, *vr; 598 const char *sym_name; 599 char *demangled; 600 GElf_Sym sym; 601 bool result; 602 u32 disp; 603 604 if (!di->sorted) 605 return false; 606 607 disp = get_x86_64_plt_disp(di->plt_got_data->d_buf + i); 608 if (!disp) 609 return false; 610 611 /* Compute target offset of the .plt.got entry */ 612 vi.offset = shdr->sh_offset + di->plt_got_data->d_off + i + disp; 613 614 /* Find that offset in .rela.dyn (sorted by offset) */ 615 vr = bsearch(&vi, di->sorted, di->nr_entries, sizeof(di->sorted[0]), cmp_offset); 616 if (!vr) 617 return false; 618 619 /* Get the associated symbol */ 620 gelf_getsym(di->dynsym_data, vr->sym_idx, &sym); 621 sym_name = elf_sym__name(&sym, di->dynstr_data); 622 demangled = demangle_sym(di->dso, 0, sym_name); 623 if (demangled != NULL) 624 sym_name = demangled; 625 626 snprintf(buf, buf_sz, "%s@plt", sym_name); 627 628 result = *sym_name; 629 630 free(demangled); 631 632 return result; 633 } 634 635 static int dso__synthesize_plt_got_symbols(struct dso *dso, Elf *elf, 636 GElf_Ehdr *ehdr, 637 char *buf, size_t buf_sz) 638 { 639 struct rela_dyn_info di = { .dso = dso }; 640 struct symbol *sym; 641 GElf_Shdr shdr; 642 Elf_Scn *scn; 643 int err = -1; 644 size_t i; 645 646 scn = elf_section_by_name(elf, ehdr, &shdr, ".plt.got", NULL); 647 if (!scn || !shdr.sh_entsize) 648 return 0; 649 650 if (ehdr->e_machine == EM_X86_64) 651 get_rela_dyn_info(elf, ehdr, &di, scn); 652 653 for (i = 0; i < shdr.sh_size; i += shdr.sh_entsize) { 654 if (!get_plt_got_name(&shdr, i, &di, buf, buf_sz)) 655 snprintf(buf, buf_sz, "offset_%#" PRIx64 "@plt", (u64)shdr.sh_offset + i); 656 sym = symbol__new(shdr.sh_offset + i, shdr.sh_entsize, STB_GLOBAL, STT_FUNC, buf); 657 if (!sym) 658 goto out; 659 symbols__insert(dso__symbols(dso), sym); 660 } 661 err = 0; 662 out: 663 exit_rela_dyn(&di); 664 return err; 665 } 666 667 /* 668 * We need to check if we have a .dynsym, so that we can handle the 669 * .plt, synthesizing its symbols, that aren't on the symtabs (be it 670 * .dynsym or .symtab). 671 * And always look at the original dso, not at debuginfo packages, that 672 * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS). 673 */ 674 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss) 675 { 676 uint32_t idx; 677 GElf_Sym sym; 678 u64 plt_offset, plt_header_size, plt_entry_size; 679 GElf_Shdr shdr_plt, plt_sec_shdr; 680 struct symbol *f, *plt_sym; 681 GElf_Shdr shdr_rel_plt, shdr_dynsym; 682 Elf_Data *syms, *symstrs; 683 Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym; 684 GElf_Ehdr ehdr; 685 char sympltname[1024]; 686 Elf *elf; 687 int nr = 0, err = -1; 688 struct rel_info ri = { .is_rela = false }; 689 bool lazy_plt; 690 691 elf = ss->elf; 692 ehdr = ss->ehdr; 693 694 if (!elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL)) 695 return 0; 696 697 /* 698 * A symbol from a previous section (e.g. .init) can have been expanded 699 * by symbols__fixup_end() to overlap .plt. Truncate it before adding 700 * a symbol for .plt header. 701 */ 702 f = dso__find_symbol_nocache(dso, shdr_plt.sh_offset); 703 if (f && f->start < shdr_plt.sh_offset && f->end > shdr_plt.sh_offset) 704 f->end = shdr_plt.sh_offset; 705 706 if (!get_plt_sizes(dso, &ehdr, &shdr_plt, &plt_header_size, &plt_entry_size)) 707 return 0; 708 709 /* Add a symbol for .plt header */ 710 plt_sym = symbol__new(shdr_plt.sh_offset, plt_header_size, STB_GLOBAL, STT_FUNC, ".plt"); 711 if (!plt_sym) 712 goto out_elf_end; 713 symbols__insert(dso__symbols(dso), plt_sym); 714 715 /* Only x86 has .plt.got */ 716 if (machine_is_x86(ehdr.e_machine) && 717 dso__synthesize_plt_got_symbols(dso, elf, &ehdr, sympltname, sizeof(sympltname))) 718 goto out_elf_end; 719 720 /* Only x86 has .plt.sec */ 721 if (machine_is_x86(ehdr.e_machine) && 722 elf_section_by_name(elf, &ehdr, &plt_sec_shdr, ".plt.sec", NULL)) { 723 if (!get_plt_sizes(dso, &ehdr, &plt_sec_shdr, &plt_header_size, &plt_entry_size)) 724 return 0; 725 /* Extend .plt symbol to entire .plt */ 726 plt_sym->end = plt_sym->start + shdr_plt.sh_size; 727 /* Use .plt.sec offset */ 728 plt_offset = plt_sec_shdr.sh_offset; 729 lazy_plt = false; 730 } else { 731 plt_offset = shdr_plt.sh_offset; 732 lazy_plt = true; 733 } 734 735 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 736 ".rela.plt", NULL); 737 if (scn_plt_rel == NULL) { 738 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 739 ".rel.plt", NULL); 740 if (scn_plt_rel == NULL) 741 return 0; 742 } 743 744 if (shdr_rel_plt.sh_type != SHT_RELA && 745 shdr_rel_plt.sh_type != SHT_REL) 746 return 0; 747 748 if (!shdr_rel_plt.sh_link) 749 return 0; 750 751 if (shdr_rel_plt.sh_link == ss->dynsym_idx) { 752 scn_dynsym = ss->dynsym; 753 shdr_dynsym = ss->dynshdr; 754 } else if (shdr_rel_plt.sh_link == ss->symtab_idx) { 755 /* 756 * A static executable can have a .plt due to IFUNCs, in which 757 * case .symtab is used not .dynsym. 758 */ 759 scn_dynsym = ss->symtab; 760 shdr_dynsym = ss->symshdr; 761 } else { 762 goto out_elf_end; 763 } 764 765 if (!scn_dynsym) 766 return 0; 767 768 /* 769 * Fetch the relocation section to find the idxes to the GOT 770 * and the symbols in the .dynsym they refer to. 771 */ 772 ri.reldata = elf_getdata(scn_plt_rel, NULL); 773 if (!ri.reldata) 774 goto out_elf_end; 775 776 syms = elf_getdata(scn_dynsym, NULL); 777 if (syms == NULL) 778 goto out_elf_end; 779 780 scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link); 781 if (scn_symstrs == NULL) 782 goto out_elf_end; 783 784 symstrs = elf_getdata(scn_symstrs, NULL); 785 if (symstrs == NULL) 786 goto out_elf_end; 787 788 if (symstrs->d_size == 0) 789 goto out_elf_end; 790 791 ri.nr_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize; 792 793 ri.is_rela = shdr_rel_plt.sh_type == SHT_RELA; 794 795 if (lazy_plt) { 796 /* 797 * Assume a .plt with the same number of entries as the number 798 * of relocation entries is not lazy and does not have a header. 799 */ 800 if (ri.nr_entries * plt_entry_size == shdr_plt.sh_size) 801 dso__delete_symbol(dso, plt_sym); 802 else 803 plt_offset += plt_header_size; 804 } 805 806 /* 807 * x86 doesn't insert IFUNC relocations in .plt order, so sort to get 808 * back in order. 809 */ 810 if (machine_is_x86(ehdr.e_machine) && sort_rel(&ri)) 811 goto out_elf_end; 812 813 for (idx = 0; idx < ri.nr_entries; idx++) { 814 const char *elf_name = NULL; 815 char *demangled = NULL; 816 817 gelf_getsym(syms, get_rel_symidx(&ri, idx), &sym); 818 819 elf_name = elf_sym__name(&sym, symstrs); 820 demangled = demangle_sym(dso, 0, elf_name); 821 if (demangled) 822 elf_name = demangled; 823 if (*elf_name) 824 snprintf(sympltname, sizeof(sympltname), "%s@plt", elf_name); 825 else if (!get_ifunc_name(elf, dso, &ehdr, &ri, sympltname, sizeof(sympltname))) 826 snprintf(sympltname, sizeof(sympltname), 827 "offset_%#" PRIx64 "@plt", plt_offset); 828 free(demangled); 829 830 f = symbol__new(plt_offset, plt_entry_size, STB_GLOBAL, STT_FUNC, sympltname); 831 if (!f) 832 goto out_elf_end; 833 834 plt_offset += plt_entry_size; 835 symbols__insert(dso__symbols(dso), f); 836 ++nr; 837 } 838 839 err = 0; 840 out_elf_end: 841 exit_rel(&ri); 842 if (err == 0) 843 return nr; 844 pr_debug("%s: problems reading %s PLT info.\n", 845 __func__, dso__long_name(dso)); 846 return 0; 847 } 848 849 char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name) 850 { 851 return demangle_sym(dso, kmodule, elf_name); 852 } 853 854 /* 855 * Align offset to 4 bytes as needed for note name and descriptor data. 856 */ 857 #define NOTE_ALIGN(n) (((n) + 3) & -4U) 858 859 static int elf_read_build_id(Elf *elf, void *bf, size_t size) 860 { 861 int err = -1; 862 GElf_Ehdr ehdr; 863 GElf_Shdr shdr; 864 Elf_Data *data; 865 Elf_Scn *sec; 866 Elf_Kind ek; 867 void *ptr; 868 869 if (size < BUILD_ID_SIZE) 870 goto out; 871 872 ek = elf_kind(elf); 873 if (ek != ELF_K_ELF) 874 goto out; 875 876 if (gelf_getehdr(elf, &ehdr) == NULL) { 877 pr_err("%s: cannot get elf header.\n", __func__); 878 goto out; 879 } 880 881 /* 882 * Check following sections for notes: 883 * '.note.gnu.build-id' 884 * '.notes' 885 * '.note' (VDSO specific) 886 */ 887 do { 888 sec = elf_section_by_name(elf, &ehdr, &shdr, 889 ".note.gnu.build-id", NULL); 890 if (sec) 891 break; 892 893 sec = elf_section_by_name(elf, &ehdr, &shdr, 894 ".notes", NULL); 895 if (sec) 896 break; 897 898 sec = elf_section_by_name(elf, &ehdr, &shdr, 899 ".note", NULL); 900 if (sec) 901 break; 902 903 return err; 904 905 } while (0); 906 907 data = elf_getdata(sec, NULL); 908 if (data == NULL) 909 goto out; 910 911 ptr = data->d_buf; 912 while (ptr < (data->d_buf + data->d_size)) { 913 GElf_Nhdr *nhdr = ptr; 914 size_t namesz = NOTE_ALIGN(nhdr->n_namesz), 915 descsz = NOTE_ALIGN(nhdr->n_descsz); 916 const char *name; 917 918 ptr += sizeof(*nhdr); 919 name = ptr; 920 ptr += namesz; 921 if (nhdr->n_type == NT_GNU_BUILD_ID && 922 nhdr->n_namesz == sizeof("GNU")) { 923 if (memcmp(name, "GNU", sizeof("GNU")) == 0) { 924 size_t sz = min(size, descsz); 925 memcpy(bf, ptr, sz); 926 memset(bf + sz, 0, size - sz); 927 err = sz; 928 break; 929 } 930 } 931 ptr += descsz; 932 } 933 934 out: 935 return err; 936 } 937 938 #ifdef HAVE_LIBBFD_BUILDID_SUPPORT 939 940 static int read_build_id(const char *filename, struct build_id *bid) 941 { 942 size_t size = sizeof(bid->data); 943 int err = -1; 944 bfd *abfd; 945 946 abfd = bfd_openr(filename, NULL); 947 if (!abfd) 948 return -1; 949 950 if (!bfd_check_format(abfd, bfd_object)) { 951 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename); 952 goto out_close; 953 } 954 955 if (!abfd->build_id || abfd->build_id->size > size) 956 goto out_close; 957 958 memcpy(bid->data, abfd->build_id->data, abfd->build_id->size); 959 memset(bid->data + abfd->build_id->size, 0, size - abfd->build_id->size); 960 err = bid->size = abfd->build_id->size; 961 962 out_close: 963 bfd_close(abfd); 964 return err; 965 } 966 967 #else // HAVE_LIBBFD_BUILDID_SUPPORT 968 969 static int read_build_id(const char *filename, struct build_id *bid) 970 { 971 size_t size = sizeof(bid->data); 972 int fd, err = -1; 973 Elf *elf; 974 975 if (size < BUILD_ID_SIZE) 976 goto out; 977 978 fd = open(filename, O_RDONLY); 979 if (fd < 0) 980 goto out; 981 982 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 983 if (elf == NULL) { 984 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 985 goto out_close; 986 } 987 988 err = elf_read_build_id(elf, bid->data, size); 989 if (err > 0) 990 bid->size = err; 991 992 elf_end(elf); 993 out_close: 994 close(fd); 995 out: 996 return err; 997 } 998 999 #endif // HAVE_LIBBFD_BUILDID_SUPPORT 1000 1001 int filename__read_build_id(const char *filename, struct build_id *bid) 1002 { 1003 struct kmod_path m = { .name = NULL, }; 1004 char path[PATH_MAX]; 1005 int err; 1006 1007 if (!filename) 1008 return -EFAULT; 1009 1010 err = kmod_path__parse(&m, filename); 1011 if (err) 1012 return -1; 1013 1014 if (m.comp) { 1015 int error = 0, fd; 1016 1017 fd = filename__decompress(filename, path, sizeof(path), m.comp, &error); 1018 if (fd < 0) { 1019 pr_debug("Failed to decompress (error %d) %s\n", 1020 error, filename); 1021 return -1; 1022 } 1023 close(fd); 1024 filename = path; 1025 } 1026 1027 err = read_build_id(filename, bid); 1028 1029 if (m.comp) 1030 unlink(filename); 1031 return err; 1032 } 1033 1034 int sysfs__read_build_id(const char *filename, struct build_id *bid) 1035 { 1036 size_t size = sizeof(bid->data); 1037 int fd, err = -1; 1038 1039 fd = open(filename, O_RDONLY); 1040 if (fd < 0) 1041 goto out; 1042 1043 while (1) { 1044 char bf[BUFSIZ]; 1045 GElf_Nhdr nhdr; 1046 size_t namesz, descsz; 1047 1048 if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr)) 1049 break; 1050 1051 namesz = NOTE_ALIGN(nhdr.n_namesz); 1052 descsz = NOTE_ALIGN(nhdr.n_descsz); 1053 if (nhdr.n_type == NT_GNU_BUILD_ID && 1054 nhdr.n_namesz == sizeof("GNU")) { 1055 if (read(fd, bf, namesz) != (ssize_t)namesz) 1056 break; 1057 if (memcmp(bf, "GNU", sizeof("GNU")) == 0) { 1058 size_t sz = min(descsz, size); 1059 if (read(fd, bid->data, sz) == (ssize_t)sz) { 1060 memset(bid->data + sz, 0, size - sz); 1061 bid->size = sz; 1062 err = 0; 1063 break; 1064 } 1065 } else if (read(fd, bf, descsz) != (ssize_t)descsz) 1066 break; 1067 } else { 1068 int n = namesz + descsz; 1069 1070 if (n > (int)sizeof(bf)) { 1071 n = sizeof(bf); 1072 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n", 1073 __func__, filename, nhdr.n_namesz, nhdr.n_descsz); 1074 } 1075 if (read(fd, bf, n) != n) 1076 break; 1077 } 1078 } 1079 close(fd); 1080 out: 1081 return err; 1082 } 1083 1084 #ifdef HAVE_LIBBFD_SUPPORT 1085 1086 int filename__read_debuglink(const char *filename, char *debuglink, 1087 size_t size) 1088 { 1089 int err = -1; 1090 asection *section; 1091 bfd *abfd; 1092 1093 abfd = bfd_openr(filename, NULL); 1094 if (!abfd) 1095 return -1; 1096 1097 if (!bfd_check_format(abfd, bfd_object)) { 1098 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename); 1099 goto out_close; 1100 } 1101 1102 section = bfd_get_section_by_name(abfd, ".gnu_debuglink"); 1103 if (!section) 1104 goto out_close; 1105 1106 if (section->size > size) 1107 goto out_close; 1108 1109 if (!bfd_get_section_contents(abfd, section, debuglink, 0, 1110 section->size)) 1111 goto out_close; 1112 1113 err = 0; 1114 1115 out_close: 1116 bfd_close(abfd); 1117 return err; 1118 } 1119 1120 #else 1121 1122 int filename__read_debuglink(const char *filename, char *debuglink, 1123 size_t size) 1124 { 1125 int fd, err = -1; 1126 Elf *elf; 1127 GElf_Ehdr ehdr; 1128 GElf_Shdr shdr; 1129 Elf_Data *data; 1130 Elf_Scn *sec; 1131 Elf_Kind ek; 1132 1133 fd = open(filename, O_RDONLY); 1134 if (fd < 0) 1135 goto out; 1136 1137 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1138 if (elf == NULL) { 1139 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 1140 goto out_close; 1141 } 1142 1143 ek = elf_kind(elf); 1144 if (ek != ELF_K_ELF) 1145 goto out_elf_end; 1146 1147 if (gelf_getehdr(elf, &ehdr) == NULL) { 1148 pr_err("%s: cannot get elf header.\n", __func__); 1149 goto out_elf_end; 1150 } 1151 1152 sec = elf_section_by_name(elf, &ehdr, &shdr, 1153 ".gnu_debuglink", NULL); 1154 if (sec == NULL) 1155 goto out_elf_end; 1156 1157 data = elf_getdata(sec, NULL); 1158 if (data == NULL) 1159 goto out_elf_end; 1160 1161 /* the start of this section is a zero-terminated string */ 1162 strncpy(debuglink, data->d_buf, size); 1163 1164 err = 0; 1165 1166 out_elf_end: 1167 elf_end(elf); 1168 out_close: 1169 close(fd); 1170 out: 1171 return err; 1172 } 1173 1174 #endif 1175 1176 static int dso__swap_init(struct dso *dso, unsigned char eidata) 1177 { 1178 static unsigned int const endian = 1; 1179 1180 dso__set_needs_swap(dso, DSO_SWAP__NO); 1181 1182 switch (eidata) { 1183 case ELFDATA2LSB: 1184 /* We are big endian, DSO is little endian. */ 1185 if (*(unsigned char const *)&endian != 1) 1186 dso__set_needs_swap(dso, DSO_SWAP__YES); 1187 break; 1188 1189 case ELFDATA2MSB: 1190 /* We are little endian, DSO is big endian. */ 1191 if (*(unsigned char const *)&endian != 0) 1192 dso__set_needs_swap(dso, DSO_SWAP__YES); 1193 break; 1194 1195 default: 1196 pr_err("unrecognized DSO data encoding %d\n", eidata); 1197 return -EINVAL; 1198 } 1199 1200 return 0; 1201 } 1202 1203 bool symsrc__possibly_runtime(struct symsrc *ss) 1204 { 1205 return ss->dynsym || ss->opdsec; 1206 } 1207 1208 bool symsrc__has_symtab(struct symsrc *ss) 1209 { 1210 return ss->symtab != NULL; 1211 } 1212 1213 void symsrc__destroy(struct symsrc *ss) 1214 { 1215 zfree(&ss->name); 1216 elf_end(ss->elf); 1217 close(ss->fd); 1218 } 1219 1220 bool elf__needs_adjust_symbols(GElf_Ehdr ehdr) 1221 { 1222 /* 1223 * Usually vmlinux is an ELF file with type ET_EXEC for most 1224 * architectures; except Arm64 kernel is linked with option 1225 * '-share', so need to check type ET_DYN. 1226 */ 1227 return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL || 1228 ehdr.e_type == ET_DYN; 1229 } 1230 1231 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name, 1232 enum dso_binary_type type) 1233 { 1234 GElf_Ehdr ehdr; 1235 Elf *elf; 1236 int fd; 1237 1238 if (dso__needs_decompress(dso)) { 1239 fd = dso__decompress_kmodule_fd(dso, name); 1240 if (fd < 0) 1241 return -1; 1242 1243 type = dso__symtab_type(dso); 1244 } else { 1245 fd = open(name, O_RDONLY); 1246 if (fd < 0) { 1247 *dso__load_errno(dso) = errno; 1248 return -1; 1249 } 1250 } 1251 1252 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1253 if (elf == NULL) { 1254 pr_debug("%s: cannot read %s ELF file.\n", __func__, name); 1255 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF; 1256 goto out_close; 1257 } 1258 1259 if (gelf_getehdr(elf, &ehdr) == NULL) { 1260 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF; 1261 pr_debug("%s: cannot get elf header.\n", __func__); 1262 goto out_elf_end; 1263 } 1264 1265 if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) { 1266 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INTERNAL_ERROR; 1267 goto out_elf_end; 1268 } 1269 1270 /* Always reject images with a mismatched build-id: */ 1271 if (dso__has_build_id(dso) && !symbol_conf.ignore_vmlinux_buildid) { 1272 u8 build_id[BUILD_ID_SIZE]; 1273 struct build_id bid; 1274 int size; 1275 1276 size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE); 1277 if (size <= 0) { 1278 *dso__load_errno(dso) = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID; 1279 goto out_elf_end; 1280 } 1281 1282 build_id__init(&bid, build_id, size); 1283 if (!dso__build_id_equal(dso, &bid)) { 1284 pr_debug("%s: build id mismatch for %s.\n", __func__, name); 1285 *dso__load_errno(dso) = DSO_LOAD_ERRNO__MISMATCHING_BUILDID; 1286 goto out_elf_end; 1287 } 1288 } 1289 1290 ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 1291 1292 ss->symtab_idx = 0; 1293 ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab", 1294 &ss->symtab_idx); 1295 if (ss->symshdr.sh_type != SHT_SYMTAB) 1296 ss->symtab = NULL; 1297 1298 ss->dynsym_idx = 0; 1299 ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym", 1300 &ss->dynsym_idx); 1301 if (ss->dynshdr.sh_type != SHT_DYNSYM) 1302 ss->dynsym = NULL; 1303 1304 ss->opdidx = 0; 1305 ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd", 1306 &ss->opdidx); 1307 if (ss->opdshdr.sh_type != SHT_PROGBITS) 1308 ss->opdsec = NULL; 1309 1310 if (dso__kernel(dso) == DSO_SPACE__USER) 1311 ss->adjust_symbols = true; 1312 else 1313 ss->adjust_symbols = elf__needs_adjust_symbols(ehdr); 1314 1315 ss->name = strdup(name); 1316 if (!ss->name) { 1317 *dso__load_errno(dso) = errno; 1318 goto out_elf_end; 1319 } 1320 1321 ss->elf = elf; 1322 ss->fd = fd; 1323 ss->ehdr = ehdr; 1324 ss->type = type; 1325 1326 return 0; 1327 1328 out_elf_end: 1329 elf_end(elf); 1330 out_close: 1331 close(fd); 1332 return -1; 1333 } 1334 1335 static bool is_exe_text(int flags) 1336 { 1337 return (flags & (SHF_ALLOC | SHF_EXECINSTR)) == (SHF_ALLOC | SHF_EXECINSTR); 1338 } 1339 1340 /* 1341 * Some executable module sections like .noinstr.text might be laid out with 1342 * .text so they can use the same mapping (memory address to file offset). 1343 * Check if that is the case. Refer to kernel layout_sections(). Return the 1344 * maximum offset. 1345 */ 1346 static u64 max_text_section(Elf *elf, GElf_Ehdr *ehdr) 1347 { 1348 Elf_Scn *sec = NULL; 1349 GElf_Shdr shdr; 1350 u64 offs = 0; 1351 1352 /* Doesn't work for some arch */ 1353 if (ehdr->e_machine == EM_PARISC || 1354 ehdr->e_machine == EM_ALPHA) 1355 return 0; 1356 1357 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1358 if (!elf_rawdata(elf_getscn(elf, ehdr->e_shstrndx), NULL)) 1359 return 0; 1360 1361 while ((sec = elf_nextscn(elf, sec)) != NULL) { 1362 char *sec_name; 1363 1364 if (!gelf_getshdr(sec, &shdr)) 1365 break; 1366 1367 if (!is_exe_text(shdr.sh_flags)) 1368 continue; 1369 1370 /* .init and .exit sections are not placed with .text */ 1371 sec_name = elf_strptr(elf, ehdr->e_shstrndx, shdr.sh_name); 1372 if (!sec_name || 1373 strstarts(sec_name, ".init") || 1374 strstarts(sec_name, ".exit")) 1375 break; 1376 1377 /* Must be next to previous, assumes .text is first */ 1378 if (offs && PERF_ALIGN(offs, shdr.sh_addralign ?: 1) != shdr.sh_offset) 1379 break; 1380 1381 offs = shdr.sh_offset + shdr.sh_size; 1382 } 1383 1384 return offs; 1385 } 1386 1387 /** 1388 * ref_reloc_sym_not_found - has kernel relocation symbol been found. 1389 * @kmap: kernel maps and relocation reference symbol 1390 * 1391 * This function returns %true if we are dealing with the kernel maps and the 1392 * relocation reference symbol has not yet been found. Otherwise %false is 1393 * returned. 1394 */ 1395 static bool ref_reloc_sym_not_found(struct kmap *kmap) 1396 { 1397 return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name && 1398 !kmap->ref_reloc_sym->unrelocated_addr; 1399 } 1400 1401 /** 1402 * ref_reloc - kernel relocation offset. 1403 * @kmap: kernel maps and relocation reference symbol 1404 * 1405 * This function returns the offset of kernel addresses as determined by using 1406 * the relocation reference symbol i.e. if the kernel has not been relocated 1407 * then the return value is zero. 1408 */ 1409 static u64 ref_reloc(struct kmap *kmap) 1410 { 1411 if (kmap && kmap->ref_reloc_sym && 1412 kmap->ref_reloc_sym->unrelocated_addr) 1413 return kmap->ref_reloc_sym->addr - 1414 kmap->ref_reloc_sym->unrelocated_addr; 1415 return 0; 1416 } 1417 1418 void __weak arch__sym_update(struct symbol *s __maybe_unused, 1419 GElf_Sym *sym __maybe_unused) { } 1420 1421 static int dso__process_kernel_symbol(struct dso *dso, struct map *map, 1422 GElf_Sym *sym, GElf_Shdr *shdr, 1423 struct maps *kmaps, struct kmap *kmap, 1424 struct dso **curr_dsop, 1425 const char *section_name, 1426 bool adjust_kernel_syms, bool kmodule, bool *remap_kernel, 1427 u64 max_text_sh_offset) 1428 { 1429 struct dso *curr_dso = *curr_dsop; 1430 struct map *curr_map; 1431 char dso_name[PATH_MAX]; 1432 1433 /* Adjust symbol to map to file offset */ 1434 if (adjust_kernel_syms) 1435 sym->st_value -= shdr->sh_addr - shdr->sh_offset; 1436 1437 if (strcmp(section_name, (dso__short_name(curr_dso) + dso__short_name_len(dso))) == 0) 1438 return 0; 1439 1440 if (strcmp(section_name, ".text") == 0) { 1441 /* 1442 * The initial kernel mapping is based on 1443 * kallsyms and identity maps. Overwrite it to 1444 * map to the kernel dso. 1445 */ 1446 if (*remap_kernel && dso__kernel(dso) && !kmodule) { 1447 *remap_kernel = false; 1448 map__set_start(map, shdr->sh_addr + ref_reloc(kmap)); 1449 map__set_end(map, map__start(map) + shdr->sh_size); 1450 map__set_pgoff(map, shdr->sh_offset); 1451 map__set_mapping_type(map, MAPPING_TYPE__DSO); 1452 /* Ensure maps are correctly ordered */ 1453 if (kmaps) { 1454 int err; 1455 struct map *tmp = map__get(map); 1456 1457 maps__remove(kmaps, map); 1458 err = maps__insert(kmaps, map); 1459 map__put(tmp); 1460 if (err) 1461 return err; 1462 } 1463 } 1464 1465 /* 1466 * The initial module mapping is based on 1467 * /proc/modules mapped to offset zero. 1468 * Overwrite it to map to the module dso. 1469 */ 1470 if (*remap_kernel && kmodule) { 1471 *remap_kernel = false; 1472 map__set_pgoff(map, shdr->sh_offset); 1473 } 1474 1475 dso__put(*curr_dsop); 1476 *curr_dsop = dso__get(dso); 1477 return 0; 1478 } 1479 1480 if (!kmap) 1481 return 0; 1482 1483 /* 1484 * perf does not record module section addresses except for .text, but 1485 * some sections can use the same mapping as .text. 1486 */ 1487 if (kmodule && adjust_kernel_syms && is_exe_text(shdr->sh_flags) && 1488 shdr->sh_offset <= max_text_sh_offset) { 1489 dso__put(*curr_dsop); 1490 *curr_dsop = dso__get(dso); 1491 return 0; 1492 } 1493 1494 snprintf(dso_name, sizeof(dso_name), "%s%s", dso__short_name(dso), section_name); 1495 1496 curr_map = maps__find_by_name(kmaps, dso_name); 1497 if (curr_map == NULL) { 1498 u64 start = sym->st_value; 1499 1500 if (kmodule) 1501 start += map__start(map) + shdr->sh_offset; 1502 1503 curr_dso = dso__new(dso_name); 1504 if (curr_dso == NULL) 1505 return -1; 1506 dso__set_kernel(curr_dso, dso__kernel(dso)); 1507 RC_CHK_ACCESS(curr_dso)->long_name = dso__long_name(dso); 1508 RC_CHK_ACCESS(curr_dso)->long_name_len = dso__long_name_len(dso); 1509 dso__set_binary_type(curr_dso, dso__binary_type(dso)); 1510 dso__set_adjust_symbols(curr_dso, dso__adjust_symbols(dso)); 1511 curr_map = map__new2(start, curr_dso); 1512 if (curr_map == NULL) { 1513 dso__put(curr_dso); 1514 return -1; 1515 } 1516 if (dso__kernel(curr_dso)) 1517 map__kmap(curr_map)->kmaps = kmaps; 1518 1519 if (adjust_kernel_syms) { 1520 map__set_start(curr_map, shdr->sh_addr + ref_reloc(kmap)); 1521 map__set_end(curr_map, map__start(curr_map) + shdr->sh_size); 1522 map__set_pgoff(curr_map, shdr->sh_offset); 1523 } else { 1524 map__set_mapping_type(curr_map, MAPPING_TYPE__IDENTITY); 1525 } 1526 dso__set_symtab_type(curr_dso, dso__symtab_type(dso)); 1527 if (maps__insert(kmaps, curr_map)) 1528 return -1; 1529 dsos__add(&maps__machine(kmaps)->dsos, curr_dso); 1530 dso__set_loaded(curr_dso); 1531 dso__put(*curr_dsop); 1532 *curr_dsop = curr_dso; 1533 } else { 1534 dso__put(*curr_dsop); 1535 *curr_dsop = dso__get(map__dso(curr_map)); 1536 } 1537 map__put(curr_map); 1538 1539 return 0; 1540 } 1541 1542 static int 1543 dso__load_sym_internal(struct dso *dso, struct map *map, struct symsrc *syms_ss, 1544 struct symsrc *runtime_ss, int kmodule, int dynsym) 1545 { 1546 struct kmap *kmap = dso__kernel(dso) ? map__kmap(map) : NULL; 1547 struct maps *kmaps = kmap ? map__kmaps(map) : NULL; 1548 struct dso *curr_dso = NULL; 1549 Elf_Data *symstrs, *secstrs, *secstrs_run, *secstrs_sym; 1550 uint32_t nr_syms; 1551 uint32_t idx; 1552 GElf_Ehdr ehdr; 1553 GElf_Shdr shdr; 1554 GElf_Shdr tshdr; 1555 Elf_Data *syms, *opddata = NULL; 1556 GElf_Sym sym; 1557 Elf_Scn *sec, *sec_strndx; 1558 Elf *elf; 1559 int nr = 0; 1560 bool remap_kernel = false, adjust_kernel_syms = false; 1561 u64 max_text_sh_offset = 0; 1562 1563 if (kmap && !kmaps) 1564 return -1; 1565 1566 elf = syms_ss->elf; 1567 ehdr = syms_ss->ehdr; 1568 if (dynsym) { 1569 sec = syms_ss->dynsym; 1570 shdr = syms_ss->dynshdr; 1571 } else { 1572 sec = syms_ss->symtab; 1573 shdr = syms_ss->symshdr; 1574 } 1575 1576 if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr, 1577 ".text", NULL)) { 1578 dso__set_text_offset(dso, tshdr.sh_addr - tshdr.sh_offset); 1579 dso__set_text_end(dso, tshdr.sh_offset + tshdr.sh_size); 1580 } 1581 1582 if (runtime_ss->opdsec) 1583 opddata = elf_rawdata(runtime_ss->opdsec, NULL); 1584 1585 syms = elf_getdata(sec, NULL); 1586 if (syms == NULL) 1587 goto out_elf_end; 1588 1589 sec = elf_getscn(elf, shdr.sh_link); 1590 if (sec == NULL) 1591 goto out_elf_end; 1592 1593 symstrs = elf_getdata(sec, NULL); 1594 if (symstrs == NULL) 1595 goto out_elf_end; 1596 1597 sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx); 1598 if (sec_strndx == NULL) 1599 goto out_elf_end; 1600 1601 secstrs_run = elf_getdata(sec_strndx, NULL); 1602 if (secstrs_run == NULL) 1603 goto out_elf_end; 1604 1605 sec_strndx = elf_getscn(elf, ehdr.e_shstrndx); 1606 if (sec_strndx == NULL) 1607 goto out_elf_end; 1608 1609 secstrs_sym = elf_getdata(sec_strndx, NULL); 1610 if (secstrs_sym == NULL) 1611 goto out_elf_end; 1612 1613 nr_syms = shdr.sh_size / shdr.sh_entsize; 1614 1615 memset(&sym, 0, sizeof(sym)); 1616 1617 /* 1618 * The kernel relocation symbol is needed in advance in order to adjust 1619 * kernel maps correctly. 1620 */ 1621 if (ref_reloc_sym_not_found(kmap)) { 1622 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1623 const char *elf_name = elf_sym__name(&sym, symstrs); 1624 1625 if (strcmp(elf_name, kmap->ref_reloc_sym->name)) 1626 continue; 1627 kmap->ref_reloc_sym->unrelocated_addr = sym.st_value; 1628 map__set_reloc(map, kmap->ref_reloc_sym->addr - kmap->ref_reloc_sym->unrelocated_addr); 1629 break; 1630 } 1631 } 1632 1633 /* 1634 * Handle any relocation of vdso necessary because older kernels 1635 * attempted to prelink vdso to its virtual address. 1636 */ 1637 if (dso__is_vdso(dso)) 1638 map__set_reloc(map, map__start(map) - dso__text_offset(dso)); 1639 1640 dso__set_adjust_symbols(dso, runtime_ss->adjust_symbols || ref_reloc(kmap)); 1641 /* 1642 * Initial kernel and module mappings do not map to the dso. 1643 * Flag the fixups. 1644 */ 1645 if (dso__kernel(dso)) { 1646 remap_kernel = true; 1647 adjust_kernel_syms = dso__adjust_symbols(dso); 1648 } 1649 1650 if (kmodule && adjust_kernel_syms) 1651 max_text_sh_offset = max_text_section(runtime_ss->elf, &runtime_ss->ehdr); 1652 1653 curr_dso = dso__get(dso); 1654 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1655 struct symbol *f; 1656 const char *elf_name = elf_sym__name(&sym, symstrs); 1657 char *demangled = NULL; 1658 int is_label = elf_sym__is_label(&sym); 1659 const char *section_name; 1660 bool used_opd = false; 1661 1662 if (!is_label && !elf_sym__filter(&sym)) 1663 continue; 1664 1665 /* Reject ARM ELF "mapping symbols": these aren't unique and 1666 * don't identify functions, so will confuse the profile 1667 * output: */ 1668 if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) { 1669 if (elf_name[0] == '$' && strchr("adtx", elf_name[1]) 1670 && (elf_name[2] == '\0' || elf_name[2] == '.')) 1671 continue; 1672 } 1673 1674 if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) { 1675 u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr; 1676 u64 *opd = opddata->d_buf + offset; 1677 sym.st_value = DSO__SWAP(dso, u64, *opd); 1678 sym.st_shndx = elf_addr_to_index(runtime_ss->elf, 1679 sym.st_value); 1680 used_opd = true; 1681 } 1682 1683 /* 1684 * When loading symbols in a data mapping, ABS symbols (which 1685 * has a value of SHN_ABS in its st_shndx) failed at 1686 * elf_getscn(). And it marks the loading as a failure so 1687 * already loaded symbols cannot be fixed up. 1688 * 1689 * I'm not sure what should be done. Just ignore them for now. 1690 * - Namhyung Kim 1691 */ 1692 if (sym.st_shndx == SHN_ABS) 1693 continue; 1694 1695 sec = elf_getscn(syms_ss->elf, sym.st_shndx); 1696 if (!sec) 1697 goto out_elf_end; 1698 1699 gelf_getshdr(sec, &shdr); 1700 1701 /* 1702 * If the attribute bit SHF_ALLOC is not set, the section 1703 * doesn't occupy memory during process execution. 1704 * E.g. ".gnu.warning.*" section is used by linker to generate 1705 * warnings when calling deprecated functions, the symbols in 1706 * the section aren't loaded to memory during process execution, 1707 * so skip them. 1708 */ 1709 if (!(shdr.sh_flags & SHF_ALLOC)) 1710 continue; 1711 1712 secstrs = secstrs_sym; 1713 1714 /* 1715 * We have to fallback to runtime when syms' section header has 1716 * NOBITS set. NOBITS results in file offset (sh_offset) not 1717 * being incremented. So sh_offset used below has different 1718 * values for syms (invalid) and runtime (valid). 1719 */ 1720 if (shdr.sh_type == SHT_NOBITS) { 1721 sec = elf_getscn(runtime_ss->elf, sym.st_shndx); 1722 if (!sec) 1723 goto out_elf_end; 1724 1725 gelf_getshdr(sec, &shdr); 1726 secstrs = secstrs_run; 1727 } 1728 1729 if (is_label && !elf_sec__filter(&shdr, secstrs)) 1730 continue; 1731 1732 section_name = elf_sec__name(&shdr, secstrs); 1733 1734 /* On ARM, symbols for thumb functions have 1 added to 1735 * the symbol address as a flag - remove it */ 1736 if ((ehdr.e_machine == EM_ARM) && 1737 (GELF_ST_TYPE(sym.st_info) == STT_FUNC) && 1738 (sym.st_value & 1)) 1739 --sym.st_value; 1740 1741 if (dso__kernel(dso)) { 1742 if (dso__process_kernel_symbol(dso, map, &sym, &shdr, 1743 kmaps, kmap, &curr_dso, 1744 section_name, 1745 adjust_kernel_syms, 1746 kmodule, 1747 &remap_kernel, 1748 max_text_sh_offset)) 1749 goto out_elf_end; 1750 } else if ((used_opd && runtime_ss->adjust_symbols) || 1751 (!used_opd && syms_ss->adjust_symbols)) { 1752 GElf_Phdr phdr; 1753 1754 if (elf_read_program_header(runtime_ss->elf, 1755 (u64)sym.st_value, &phdr)) { 1756 pr_debug4("%s: failed to find program header for " 1757 "symbol: %s st_value: %#" PRIx64 "\n", 1758 __func__, elf_name, (u64)sym.st_value); 1759 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1760 "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n", 1761 __func__, (u64)sym.st_value, (u64)shdr.sh_addr, 1762 (u64)shdr.sh_offset); 1763 /* 1764 * Fail to find program header, let's rollback 1765 * to use shdr.sh_addr and shdr.sh_offset to 1766 * calibrate symbol's file address, though this 1767 * is not necessary for normal C ELF file, we 1768 * still need to handle java JIT symbols in this 1769 * case. 1770 */ 1771 sym.st_value -= shdr.sh_addr - shdr.sh_offset; 1772 } else { 1773 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1774 "p_vaddr: %#" PRIx64 " p_offset: %#" PRIx64 "\n", 1775 __func__, (u64)sym.st_value, (u64)phdr.p_vaddr, 1776 (u64)phdr.p_offset); 1777 sym.st_value -= phdr.p_vaddr - phdr.p_offset; 1778 } 1779 } 1780 1781 demangled = demangle_sym(dso, kmodule, elf_name); 1782 if (demangled != NULL) 1783 elf_name = demangled; 1784 1785 f = symbol__new(sym.st_value, sym.st_size, 1786 GELF_ST_BIND(sym.st_info), 1787 GELF_ST_TYPE(sym.st_info), elf_name); 1788 free(demangled); 1789 if (!f) 1790 goto out_elf_end; 1791 1792 arch__sym_update(f, &sym); 1793 1794 __symbols__insert(dso__symbols(curr_dso), f, dso__kernel(dso)); 1795 nr++; 1796 } 1797 dso__put(curr_dso); 1798 1799 /* 1800 * For misannotated, zeroed, ASM function sizes. 1801 */ 1802 if (nr > 0) { 1803 symbols__fixup_end(dso__symbols(dso), false); 1804 symbols__fixup_duplicate(dso__symbols(dso)); 1805 if (kmap) { 1806 /* 1807 * We need to fixup this here too because we create new 1808 * maps here, for things like vsyscall sections. 1809 */ 1810 maps__fixup_end(kmaps); 1811 } 1812 } 1813 return nr; 1814 out_elf_end: 1815 dso__put(curr_dso); 1816 return -1; 1817 } 1818 1819 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss, 1820 struct symsrc *runtime_ss, int kmodule) 1821 { 1822 int nr = 0; 1823 int err = -1; 1824 1825 dso__set_symtab_type(dso, syms_ss->type); 1826 dso__set_is_64_bit(dso, syms_ss->is_64_bit); 1827 dso__set_rel(dso, syms_ss->ehdr.e_type == ET_REL); 1828 1829 /* 1830 * Modules may already have symbols from kallsyms, but those symbols 1831 * have the wrong values for the dso maps, so remove them. 1832 */ 1833 if (kmodule && syms_ss->symtab) 1834 symbols__delete(dso__symbols(dso)); 1835 1836 if (!syms_ss->symtab) { 1837 /* 1838 * If the vmlinux is stripped, fail so we will fall back 1839 * to using kallsyms. The vmlinux runtime symbols aren't 1840 * of much use. 1841 */ 1842 if (dso__kernel(dso)) 1843 return err; 1844 } else { 1845 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss, 1846 kmodule, 0); 1847 if (err < 0) 1848 return err; 1849 nr = err; 1850 } 1851 1852 if (syms_ss->dynsym) { 1853 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss, 1854 kmodule, 1); 1855 if (err < 0) 1856 return err; 1857 err += nr; 1858 } 1859 1860 return err; 1861 } 1862 1863 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data) 1864 { 1865 GElf_Phdr phdr; 1866 size_t i, phdrnum; 1867 int err; 1868 u64 sz; 1869 1870 if (elf_getphdrnum(elf, &phdrnum)) 1871 return -1; 1872 1873 for (i = 0; i < phdrnum; i++) { 1874 if (gelf_getphdr(elf, i, &phdr) == NULL) 1875 return -1; 1876 if (phdr.p_type != PT_LOAD) 1877 continue; 1878 if (exe) { 1879 if (!(phdr.p_flags & PF_X)) 1880 continue; 1881 } else { 1882 if (!(phdr.p_flags & PF_R)) 1883 continue; 1884 } 1885 sz = min(phdr.p_memsz, phdr.p_filesz); 1886 if (!sz) 1887 continue; 1888 err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data); 1889 if (err) 1890 return err; 1891 } 1892 return 0; 1893 } 1894 1895 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data, 1896 bool *is_64_bit) 1897 { 1898 int err; 1899 Elf *elf; 1900 1901 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1902 if (elf == NULL) 1903 return -1; 1904 1905 if (is_64_bit) 1906 *is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 1907 1908 err = elf_read_maps(elf, exe, mapfn, data); 1909 1910 elf_end(elf); 1911 return err; 1912 } 1913 1914 enum dso_type dso__type_fd(int fd) 1915 { 1916 enum dso_type dso_type = DSO__TYPE_UNKNOWN; 1917 GElf_Ehdr ehdr; 1918 Elf_Kind ek; 1919 Elf *elf; 1920 1921 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1922 if (elf == NULL) 1923 goto out; 1924 1925 ek = elf_kind(elf); 1926 if (ek != ELF_K_ELF) 1927 goto out_end; 1928 1929 if (gelf_getclass(elf) == ELFCLASS64) { 1930 dso_type = DSO__TYPE_64BIT; 1931 goto out_end; 1932 } 1933 1934 if (gelf_getehdr(elf, &ehdr) == NULL) 1935 goto out_end; 1936 1937 if (ehdr.e_machine == EM_X86_64) 1938 dso_type = DSO__TYPE_X32BIT; 1939 else 1940 dso_type = DSO__TYPE_32BIT; 1941 out_end: 1942 elf_end(elf); 1943 out: 1944 return dso_type; 1945 } 1946 1947 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len) 1948 { 1949 ssize_t r; 1950 size_t n; 1951 int err = -1; 1952 char *buf = malloc(page_size); 1953 1954 if (buf == NULL) 1955 return -1; 1956 1957 if (lseek(to, to_offs, SEEK_SET) != to_offs) 1958 goto out; 1959 1960 if (lseek(from, from_offs, SEEK_SET) != from_offs) 1961 goto out; 1962 1963 while (len) { 1964 n = page_size; 1965 if (len < n) 1966 n = len; 1967 /* Use read because mmap won't work on proc files */ 1968 r = read(from, buf, n); 1969 if (r < 0) 1970 goto out; 1971 if (!r) 1972 break; 1973 n = r; 1974 r = write(to, buf, n); 1975 if (r < 0) 1976 goto out; 1977 if ((size_t)r != n) 1978 goto out; 1979 len -= n; 1980 } 1981 1982 err = 0; 1983 out: 1984 free(buf); 1985 return err; 1986 } 1987 1988 struct kcore { 1989 int fd; 1990 int elfclass; 1991 Elf *elf; 1992 GElf_Ehdr ehdr; 1993 }; 1994 1995 static int kcore__open(struct kcore *kcore, const char *filename) 1996 { 1997 GElf_Ehdr *ehdr; 1998 1999 kcore->fd = open(filename, O_RDONLY); 2000 if (kcore->fd == -1) 2001 return -1; 2002 2003 kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL); 2004 if (!kcore->elf) 2005 goto out_close; 2006 2007 kcore->elfclass = gelf_getclass(kcore->elf); 2008 if (kcore->elfclass == ELFCLASSNONE) 2009 goto out_end; 2010 2011 ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr); 2012 if (!ehdr) 2013 goto out_end; 2014 2015 return 0; 2016 2017 out_end: 2018 elf_end(kcore->elf); 2019 out_close: 2020 close(kcore->fd); 2021 return -1; 2022 } 2023 2024 static int kcore__init(struct kcore *kcore, char *filename, int elfclass, 2025 bool temp) 2026 { 2027 kcore->elfclass = elfclass; 2028 2029 if (temp) 2030 kcore->fd = mkstemp(filename); 2031 else 2032 kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400); 2033 if (kcore->fd == -1) 2034 return -1; 2035 2036 kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL); 2037 if (!kcore->elf) 2038 goto out_close; 2039 2040 if (!gelf_newehdr(kcore->elf, elfclass)) 2041 goto out_end; 2042 2043 memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr)); 2044 2045 return 0; 2046 2047 out_end: 2048 elf_end(kcore->elf); 2049 out_close: 2050 close(kcore->fd); 2051 unlink(filename); 2052 return -1; 2053 } 2054 2055 static void kcore__close(struct kcore *kcore) 2056 { 2057 elf_end(kcore->elf); 2058 close(kcore->fd); 2059 } 2060 2061 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count) 2062 { 2063 GElf_Ehdr *ehdr = &to->ehdr; 2064 GElf_Ehdr *kehdr = &from->ehdr; 2065 2066 memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT); 2067 ehdr->e_type = kehdr->e_type; 2068 ehdr->e_machine = kehdr->e_machine; 2069 ehdr->e_version = kehdr->e_version; 2070 ehdr->e_entry = 0; 2071 ehdr->e_shoff = 0; 2072 ehdr->e_flags = kehdr->e_flags; 2073 ehdr->e_phnum = count; 2074 ehdr->e_shentsize = 0; 2075 ehdr->e_shnum = 0; 2076 ehdr->e_shstrndx = 0; 2077 2078 if (from->elfclass == ELFCLASS32) { 2079 ehdr->e_phoff = sizeof(Elf32_Ehdr); 2080 ehdr->e_ehsize = sizeof(Elf32_Ehdr); 2081 ehdr->e_phentsize = sizeof(Elf32_Phdr); 2082 } else { 2083 ehdr->e_phoff = sizeof(Elf64_Ehdr); 2084 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 2085 ehdr->e_phentsize = sizeof(Elf64_Phdr); 2086 } 2087 2088 if (!gelf_update_ehdr(to->elf, ehdr)) 2089 return -1; 2090 2091 if (!gelf_newphdr(to->elf, count)) 2092 return -1; 2093 2094 return 0; 2095 } 2096 2097 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset, 2098 u64 addr, u64 len) 2099 { 2100 GElf_Phdr phdr = { 2101 .p_type = PT_LOAD, 2102 .p_flags = PF_R | PF_W | PF_X, 2103 .p_offset = offset, 2104 .p_vaddr = addr, 2105 .p_paddr = 0, 2106 .p_filesz = len, 2107 .p_memsz = len, 2108 .p_align = page_size, 2109 }; 2110 2111 if (!gelf_update_phdr(kcore->elf, idx, &phdr)) 2112 return -1; 2113 2114 return 0; 2115 } 2116 2117 static off_t kcore__write(struct kcore *kcore) 2118 { 2119 return elf_update(kcore->elf, ELF_C_WRITE); 2120 } 2121 2122 struct phdr_data { 2123 off_t offset; 2124 off_t rel; 2125 u64 addr; 2126 u64 len; 2127 struct list_head node; 2128 struct phdr_data *remaps; 2129 }; 2130 2131 struct sym_data { 2132 u64 addr; 2133 struct list_head node; 2134 }; 2135 2136 struct kcore_copy_info { 2137 u64 stext; 2138 u64 etext; 2139 u64 first_symbol; 2140 u64 last_symbol; 2141 u64 first_module; 2142 u64 first_module_symbol; 2143 u64 last_module_symbol; 2144 size_t phnum; 2145 struct list_head phdrs; 2146 struct list_head syms; 2147 }; 2148 2149 #define kcore_copy__for_each_phdr(k, p) \ 2150 list_for_each_entry((p), &(k)->phdrs, node) 2151 2152 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset) 2153 { 2154 struct phdr_data *p = zalloc(sizeof(*p)); 2155 2156 if (p) { 2157 p->addr = addr; 2158 p->len = len; 2159 p->offset = offset; 2160 } 2161 2162 return p; 2163 } 2164 2165 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci, 2166 u64 addr, u64 len, 2167 off_t offset) 2168 { 2169 struct phdr_data *p = phdr_data__new(addr, len, offset); 2170 2171 if (p) 2172 list_add_tail(&p->node, &kci->phdrs); 2173 2174 return p; 2175 } 2176 2177 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci) 2178 { 2179 struct phdr_data *p, *tmp; 2180 2181 list_for_each_entry_safe(p, tmp, &kci->phdrs, node) { 2182 list_del_init(&p->node); 2183 free(p); 2184 } 2185 } 2186 2187 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci, 2188 u64 addr) 2189 { 2190 struct sym_data *s = zalloc(sizeof(*s)); 2191 2192 if (s) { 2193 s->addr = addr; 2194 list_add_tail(&s->node, &kci->syms); 2195 } 2196 2197 return s; 2198 } 2199 2200 static void kcore_copy__free_syms(struct kcore_copy_info *kci) 2201 { 2202 struct sym_data *s, *tmp; 2203 2204 list_for_each_entry_safe(s, tmp, &kci->syms, node) { 2205 list_del_init(&s->node); 2206 free(s); 2207 } 2208 } 2209 2210 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type, 2211 u64 start) 2212 { 2213 struct kcore_copy_info *kci = arg; 2214 2215 if (!kallsyms__is_function(type)) 2216 return 0; 2217 2218 if (strchr(name, '[')) { 2219 if (!kci->first_module_symbol || start < kci->first_module_symbol) 2220 kci->first_module_symbol = start; 2221 if (start > kci->last_module_symbol) 2222 kci->last_module_symbol = start; 2223 return 0; 2224 } 2225 2226 if (!kci->first_symbol || start < kci->first_symbol) 2227 kci->first_symbol = start; 2228 2229 if (!kci->last_symbol || start > kci->last_symbol) 2230 kci->last_symbol = start; 2231 2232 if (!strcmp(name, "_stext")) { 2233 kci->stext = start; 2234 return 0; 2235 } 2236 2237 if (!strcmp(name, "_etext")) { 2238 kci->etext = start; 2239 return 0; 2240 } 2241 2242 if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start)) 2243 return -1; 2244 2245 return 0; 2246 } 2247 2248 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci, 2249 const char *dir) 2250 { 2251 char kallsyms_filename[PATH_MAX]; 2252 2253 scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir); 2254 2255 if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms")) 2256 return -1; 2257 2258 if (kallsyms__parse(kallsyms_filename, kci, 2259 kcore_copy__process_kallsyms) < 0) 2260 return -1; 2261 2262 return 0; 2263 } 2264 2265 static int kcore_copy__process_modules(void *arg, 2266 const char *name __maybe_unused, 2267 u64 start, u64 size __maybe_unused) 2268 { 2269 struct kcore_copy_info *kci = arg; 2270 2271 if (!kci->first_module || start < kci->first_module) 2272 kci->first_module = start; 2273 2274 return 0; 2275 } 2276 2277 static int kcore_copy__parse_modules(struct kcore_copy_info *kci, 2278 const char *dir) 2279 { 2280 char modules_filename[PATH_MAX]; 2281 2282 scnprintf(modules_filename, PATH_MAX, "%s/modules", dir); 2283 2284 if (symbol__restricted_filename(modules_filename, "/proc/modules")) 2285 return -1; 2286 2287 if (modules__parse(modules_filename, kci, 2288 kcore_copy__process_modules) < 0) 2289 return -1; 2290 2291 return 0; 2292 } 2293 2294 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end, 2295 u64 pgoff, u64 s, u64 e) 2296 { 2297 u64 len, offset; 2298 2299 if (s < start || s >= end) 2300 return 0; 2301 2302 offset = (s - start) + pgoff; 2303 len = e < end ? e - s : end - s; 2304 2305 return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1; 2306 } 2307 2308 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data) 2309 { 2310 struct kcore_copy_info *kci = data; 2311 u64 end = start + len; 2312 struct sym_data *sdat; 2313 2314 if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext)) 2315 return -1; 2316 2317 if (kcore_copy__map(kci, start, end, pgoff, kci->first_module, 2318 kci->last_module_symbol)) 2319 return -1; 2320 2321 list_for_each_entry(sdat, &kci->syms, node) { 2322 u64 s = round_down(sdat->addr, page_size); 2323 2324 if (kcore_copy__map(kci, start, end, pgoff, s, s + len)) 2325 return -1; 2326 } 2327 2328 return 0; 2329 } 2330 2331 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf) 2332 { 2333 if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0) 2334 return -1; 2335 2336 return 0; 2337 } 2338 2339 static void kcore_copy__find_remaps(struct kcore_copy_info *kci) 2340 { 2341 struct phdr_data *p, *k = NULL; 2342 u64 kend; 2343 2344 if (!kci->stext) 2345 return; 2346 2347 /* Find phdr that corresponds to the kernel map (contains stext) */ 2348 kcore_copy__for_each_phdr(kci, p) { 2349 u64 pend = p->addr + p->len - 1; 2350 2351 if (p->addr <= kci->stext && pend >= kci->stext) { 2352 k = p; 2353 break; 2354 } 2355 } 2356 2357 if (!k) 2358 return; 2359 2360 kend = k->offset + k->len; 2361 2362 /* Find phdrs that remap the kernel */ 2363 kcore_copy__for_each_phdr(kci, p) { 2364 u64 pend = p->offset + p->len; 2365 2366 if (p == k) 2367 continue; 2368 2369 if (p->offset >= k->offset && pend <= kend) 2370 p->remaps = k; 2371 } 2372 } 2373 2374 static void kcore_copy__layout(struct kcore_copy_info *kci) 2375 { 2376 struct phdr_data *p; 2377 off_t rel = 0; 2378 2379 kcore_copy__find_remaps(kci); 2380 2381 kcore_copy__for_each_phdr(kci, p) { 2382 if (!p->remaps) { 2383 p->rel = rel; 2384 rel += p->len; 2385 } 2386 kci->phnum += 1; 2387 } 2388 2389 kcore_copy__for_each_phdr(kci, p) { 2390 struct phdr_data *k = p->remaps; 2391 2392 if (k) 2393 p->rel = p->offset - k->offset + k->rel; 2394 } 2395 } 2396 2397 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir, 2398 Elf *elf) 2399 { 2400 if (kcore_copy__parse_kallsyms(kci, dir)) 2401 return -1; 2402 2403 if (kcore_copy__parse_modules(kci, dir)) 2404 return -1; 2405 2406 if (kci->stext) 2407 kci->stext = round_down(kci->stext, page_size); 2408 else 2409 kci->stext = round_down(kci->first_symbol, page_size); 2410 2411 if (kci->etext) { 2412 kci->etext = round_up(kci->etext, page_size); 2413 } else if (kci->last_symbol) { 2414 kci->etext = round_up(kci->last_symbol, page_size); 2415 kci->etext += page_size; 2416 } 2417 2418 if (kci->first_module_symbol && 2419 (!kci->first_module || kci->first_module_symbol < kci->first_module)) 2420 kci->first_module = kci->first_module_symbol; 2421 2422 kci->first_module = round_down(kci->first_module, page_size); 2423 2424 if (kci->last_module_symbol) { 2425 kci->last_module_symbol = round_up(kci->last_module_symbol, 2426 page_size); 2427 kci->last_module_symbol += page_size; 2428 } 2429 2430 if (!kci->stext || !kci->etext) 2431 return -1; 2432 2433 if (kci->first_module && !kci->last_module_symbol) 2434 return -1; 2435 2436 if (kcore_copy__read_maps(kci, elf)) 2437 return -1; 2438 2439 kcore_copy__layout(kci); 2440 2441 return 0; 2442 } 2443 2444 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir, 2445 const char *name) 2446 { 2447 char from_filename[PATH_MAX]; 2448 char to_filename[PATH_MAX]; 2449 2450 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 2451 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 2452 2453 return copyfile_mode(from_filename, to_filename, 0400); 2454 } 2455 2456 static int kcore_copy__unlink(const char *dir, const char *name) 2457 { 2458 char filename[PATH_MAX]; 2459 2460 scnprintf(filename, PATH_MAX, "%s/%s", dir, name); 2461 2462 return unlink(filename); 2463 } 2464 2465 static int kcore_copy__compare_fds(int from, int to) 2466 { 2467 char *buf_from; 2468 char *buf_to; 2469 ssize_t ret; 2470 size_t len; 2471 int err = -1; 2472 2473 buf_from = malloc(page_size); 2474 buf_to = malloc(page_size); 2475 if (!buf_from || !buf_to) 2476 goto out; 2477 2478 while (1) { 2479 /* Use read because mmap won't work on proc files */ 2480 ret = read(from, buf_from, page_size); 2481 if (ret < 0) 2482 goto out; 2483 2484 if (!ret) 2485 break; 2486 2487 len = ret; 2488 2489 if (readn(to, buf_to, len) != (int)len) 2490 goto out; 2491 2492 if (memcmp(buf_from, buf_to, len)) 2493 goto out; 2494 } 2495 2496 err = 0; 2497 out: 2498 free(buf_to); 2499 free(buf_from); 2500 return err; 2501 } 2502 2503 static int kcore_copy__compare_files(const char *from_filename, 2504 const char *to_filename) 2505 { 2506 int from, to, err = -1; 2507 2508 from = open(from_filename, O_RDONLY); 2509 if (from < 0) 2510 return -1; 2511 2512 to = open(to_filename, O_RDONLY); 2513 if (to < 0) 2514 goto out_close_from; 2515 2516 err = kcore_copy__compare_fds(from, to); 2517 2518 close(to); 2519 out_close_from: 2520 close(from); 2521 return err; 2522 } 2523 2524 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir, 2525 const char *name) 2526 { 2527 char from_filename[PATH_MAX]; 2528 char to_filename[PATH_MAX]; 2529 2530 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 2531 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 2532 2533 return kcore_copy__compare_files(from_filename, to_filename); 2534 } 2535 2536 /** 2537 * kcore_copy - copy kallsyms, modules and kcore from one directory to another. 2538 * @from_dir: from directory 2539 * @to_dir: to directory 2540 * 2541 * This function copies kallsyms, modules and kcore files from one directory to 2542 * another. kallsyms and modules are copied entirely. Only code segments are 2543 * copied from kcore. It is assumed that two segments suffice: one for the 2544 * kernel proper and one for all the modules. The code segments are determined 2545 * from kallsyms and modules files. The kernel map starts at _stext or the 2546 * lowest function symbol, and ends at _etext or the highest function symbol. 2547 * The module map starts at the lowest module address and ends at the highest 2548 * module symbol. Start addresses are rounded down to the nearest page. End 2549 * addresses are rounded up to the nearest page. An extra page is added to the 2550 * highest kernel symbol and highest module symbol to, hopefully, encompass that 2551 * symbol too. Because it contains only code sections, the resulting kcore is 2552 * unusual. One significant peculiarity is that the mapping (start -> pgoff) 2553 * is not the same for the kernel map and the modules map. That happens because 2554 * the data is copied adjacently whereas the original kcore has gaps. Finally, 2555 * kallsyms file is compared with its copy to check that modules have not been 2556 * loaded or unloaded while the copies were taking place. 2557 * 2558 * Return: %0 on success, %-1 on failure. 2559 */ 2560 int kcore_copy(const char *from_dir, const char *to_dir) 2561 { 2562 struct kcore kcore; 2563 struct kcore extract; 2564 int idx = 0, err = -1; 2565 off_t offset, sz; 2566 struct kcore_copy_info kci = { .stext = 0, }; 2567 char kcore_filename[PATH_MAX]; 2568 char extract_filename[PATH_MAX]; 2569 struct phdr_data *p; 2570 2571 INIT_LIST_HEAD(&kci.phdrs); 2572 INIT_LIST_HEAD(&kci.syms); 2573 2574 if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms")) 2575 return -1; 2576 2577 if (kcore_copy__copy_file(from_dir, to_dir, "modules")) 2578 goto out_unlink_kallsyms; 2579 2580 scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir); 2581 scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir); 2582 2583 if (kcore__open(&kcore, kcore_filename)) 2584 goto out_unlink_modules; 2585 2586 if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf)) 2587 goto out_kcore_close; 2588 2589 if (kcore__init(&extract, extract_filename, kcore.elfclass, false)) 2590 goto out_kcore_close; 2591 2592 if (kcore__copy_hdr(&kcore, &extract, kci.phnum)) 2593 goto out_extract_close; 2594 2595 offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) + 2596 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT); 2597 offset = round_up(offset, page_size); 2598 2599 kcore_copy__for_each_phdr(&kci, p) { 2600 off_t offs = p->rel + offset; 2601 2602 if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len)) 2603 goto out_extract_close; 2604 } 2605 2606 sz = kcore__write(&extract); 2607 if (sz < 0 || sz > offset) 2608 goto out_extract_close; 2609 2610 kcore_copy__for_each_phdr(&kci, p) { 2611 off_t offs = p->rel + offset; 2612 2613 if (p->remaps) 2614 continue; 2615 if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len)) 2616 goto out_extract_close; 2617 } 2618 2619 if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms")) 2620 goto out_extract_close; 2621 2622 err = 0; 2623 2624 out_extract_close: 2625 kcore__close(&extract); 2626 if (err) 2627 unlink(extract_filename); 2628 out_kcore_close: 2629 kcore__close(&kcore); 2630 out_unlink_modules: 2631 if (err) 2632 kcore_copy__unlink(to_dir, "modules"); 2633 out_unlink_kallsyms: 2634 if (err) 2635 kcore_copy__unlink(to_dir, "kallsyms"); 2636 2637 kcore_copy__free_phdrs(&kci); 2638 kcore_copy__free_syms(&kci); 2639 2640 return err; 2641 } 2642 2643 int kcore_extract__create(struct kcore_extract *kce) 2644 { 2645 struct kcore kcore; 2646 struct kcore extract; 2647 size_t count = 1; 2648 int idx = 0, err = -1; 2649 off_t offset = page_size, sz; 2650 2651 if (kcore__open(&kcore, kce->kcore_filename)) 2652 return -1; 2653 2654 strcpy(kce->extract_filename, PERF_KCORE_EXTRACT); 2655 if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true)) 2656 goto out_kcore_close; 2657 2658 if (kcore__copy_hdr(&kcore, &extract, count)) 2659 goto out_extract_close; 2660 2661 if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len)) 2662 goto out_extract_close; 2663 2664 sz = kcore__write(&extract); 2665 if (sz < 0 || sz > offset) 2666 goto out_extract_close; 2667 2668 if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len)) 2669 goto out_extract_close; 2670 2671 err = 0; 2672 2673 out_extract_close: 2674 kcore__close(&extract); 2675 if (err) 2676 unlink(kce->extract_filename); 2677 out_kcore_close: 2678 kcore__close(&kcore); 2679 2680 return err; 2681 } 2682 2683 void kcore_extract__delete(struct kcore_extract *kce) 2684 { 2685 unlink(kce->extract_filename); 2686 } 2687 2688 #ifdef HAVE_GELF_GETNOTE_SUPPORT 2689 2690 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off) 2691 { 2692 if (!base_off) 2693 return; 2694 2695 if (tmp->bit32) 2696 tmp->addr.a32[SDT_NOTE_IDX_LOC] = 2697 tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off - 2698 tmp->addr.a32[SDT_NOTE_IDX_BASE]; 2699 else 2700 tmp->addr.a64[SDT_NOTE_IDX_LOC] = 2701 tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off - 2702 tmp->addr.a64[SDT_NOTE_IDX_BASE]; 2703 } 2704 2705 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr, 2706 GElf_Addr base_off) 2707 { 2708 if (!base_off) 2709 return; 2710 2711 if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR]) 2712 tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2713 else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR]) 2714 tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2715 } 2716 2717 /** 2718 * populate_sdt_note : Parse raw data and identify SDT note 2719 * @elf: elf of the opened file 2720 * @data: raw data of a section with description offset applied 2721 * @len: note description size 2722 * @type: type of the note 2723 * @sdt_notes: List to add the SDT note 2724 * 2725 * Responsible for parsing the @data in section .note.stapsdt in @elf and 2726 * if its an SDT note, it appends to @sdt_notes list. 2727 */ 2728 static int populate_sdt_note(Elf **elf, const char *data, size_t len, 2729 struct list_head *sdt_notes) 2730 { 2731 const char *provider, *name, *args; 2732 struct sdt_note *tmp = NULL; 2733 GElf_Ehdr ehdr; 2734 GElf_Shdr shdr; 2735 int ret = -EINVAL; 2736 2737 union { 2738 Elf64_Addr a64[NR_ADDR]; 2739 Elf32_Addr a32[NR_ADDR]; 2740 } buf; 2741 2742 Elf_Data dst = { 2743 .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT, 2744 .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT), 2745 .d_off = 0, .d_align = 0 2746 }; 2747 Elf_Data src = { 2748 .d_buf = (void *) data, .d_type = ELF_T_ADDR, 2749 .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0, 2750 .d_align = 0 2751 }; 2752 2753 tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note)); 2754 if (!tmp) { 2755 ret = -ENOMEM; 2756 goto out_err; 2757 } 2758 2759 INIT_LIST_HEAD(&tmp->note_list); 2760 2761 if (len < dst.d_size + 3) 2762 goto out_free_note; 2763 2764 /* Translation from file representation to memory representation */ 2765 if (gelf_xlatetom(*elf, &dst, &src, 2766 elf_getident(*elf, NULL)[EI_DATA]) == NULL) { 2767 pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1)); 2768 goto out_free_note; 2769 } 2770 2771 /* Populate the fields of sdt_note */ 2772 provider = data + dst.d_size; 2773 2774 name = (const char *)memchr(provider, '\0', data + len - provider); 2775 if (name++ == NULL) 2776 goto out_free_note; 2777 2778 tmp->provider = strdup(provider); 2779 if (!tmp->provider) { 2780 ret = -ENOMEM; 2781 goto out_free_note; 2782 } 2783 tmp->name = strdup(name); 2784 if (!tmp->name) { 2785 ret = -ENOMEM; 2786 goto out_free_prov; 2787 } 2788 2789 args = memchr(name, '\0', data + len - name); 2790 2791 /* 2792 * There is no argument if: 2793 * - We reached the end of the note; 2794 * - There is not enough room to hold a potential string; 2795 * - The argument string is empty or just contains ':'. 2796 */ 2797 if (args == NULL || data + len - args < 2 || 2798 args[1] == ':' || args[1] == '\0') 2799 tmp->args = NULL; 2800 else { 2801 tmp->args = strdup(++args); 2802 if (!tmp->args) { 2803 ret = -ENOMEM; 2804 goto out_free_name; 2805 } 2806 } 2807 2808 if (gelf_getclass(*elf) == ELFCLASS32) { 2809 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr)); 2810 tmp->bit32 = true; 2811 } else { 2812 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr)); 2813 tmp->bit32 = false; 2814 } 2815 2816 if (!gelf_getehdr(*elf, &ehdr)) { 2817 pr_debug("%s : cannot get elf header.\n", __func__); 2818 ret = -EBADF; 2819 goto out_free_args; 2820 } 2821 2822 /* Adjust the prelink effect : 2823 * Find out the .stapsdt.base section. 2824 * This scn will help us to handle prelinking (if present). 2825 * Compare the retrieved file offset of the base section with the 2826 * base address in the description of the SDT note. If its different, 2827 * then accordingly, adjust the note location. 2828 */ 2829 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL)) 2830 sdt_adjust_loc(tmp, shdr.sh_offset); 2831 2832 /* Adjust reference counter offset */ 2833 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL)) 2834 sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset); 2835 2836 list_add_tail(&tmp->note_list, sdt_notes); 2837 return 0; 2838 2839 out_free_args: 2840 zfree(&tmp->args); 2841 out_free_name: 2842 zfree(&tmp->name); 2843 out_free_prov: 2844 zfree(&tmp->provider); 2845 out_free_note: 2846 free(tmp); 2847 out_err: 2848 return ret; 2849 } 2850 2851 /** 2852 * construct_sdt_notes_list : constructs a list of SDT notes 2853 * @elf : elf to look into 2854 * @sdt_notes : empty list_head 2855 * 2856 * Scans the sections in 'elf' for the section 2857 * .note.stapsdt. It, then calls populate_sdt_note to find 2858 * out the SDT events and populates the 'sdt_notes'. 2859 */ 2860 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes) 2861 { 2862 GElf_Ehdr ehdr; 2863 Elf_Scn *scn = NULL; 2864 Elf_Data *data; 2865 GElf_Shdr shdr; 2866 size_t shstrndx, next; 2867 GElf_Nhdr nhdr; 2868 size_t name_off, desc_off, offset; 2869 int ret = 0; 2870 2871 if (gelf_getehdr(elf, &ehdr) == NULL) { 2872 ret = -EBADF; 2873 goto out_ret; 2874 } 2875 if (elf_getshdrstrndx(elf, &shstrndx) != 0) { 2876 ret = -EBADF; 2877 goto out_ret; 2878 } 2879 2880 /* Look for the required section */ 2881 scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL); 2882 if (!scn) { 2883 ret = -ENOENT; 2884 goto out_ret; 2885 } 2886 2887 if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) { 2888 ret = -ENOENT; 2889 goto out_ret; 2890 } 2891 2892 data = elf_getdata(scn, NULL); 2893 2894 /* Get the SDT notes */ 2895 for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off, 2896 &desc_off)) > 0; offset = next) { 2897 if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) && 2898 !memcmp(data->d_buf + name_off, SDT_NOTE_NAME, 2899 sizeof(SDT_NOTE_NAME))) { 2900 /* Check the type of the note */ 2901 if (nhdr.n_type != SDT_NOTE_TYPE) 2902 goto out_ret; 2903 2904 ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off), 2905 nhdr.n_descsz, sdt_notes); 2906 if (ret < 0) 2907 goto out_ret; 2908 } 2909 } 2910 if (list_empty(sdt_notes)) 2911 ret = -ENOENT; 2912 2913 out_ret: 2914 return ret; 2915 } 2916 2917 /** 2918 * get_sdt_note_list : Wrapper to construct a list of sdt notes 2919 * @head : empty list_head 2920 * @target : file to find SDT notes from 2921 * 2922 * This opens the file, initializes 2923 * the ELF and then calls construct_sdt_notes_list. 2924 */ 2925 int get_sdt_note_list(struct list_head *head, const char *target) 2926 { 2927 Elf *elf; 2928 int fd, ret; 2929 2930 fd = open(target, O_RDONLY); 2931 if (fd < 0) 2932 return -EBADF; 2933 2934 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 2935 if (!elf) { 2936 ret = -EBADF; 2937 goto out_close; 2938 } 2939 ret = construct_sdt_notes_list(elf, head); 2940 elf_end(elf); 2941 out_close: 2942 close(fd); 2943 return ret; 2944 } 2945 2946 /** 2947 * cleanup_sdt_note_list : free the sdt notes' list 2948 * @sdt_notes: sdt notes' list 2949 * 2950 * Free up the SDT notes in @sdt_notes. 2951 * Returns the number of SDT notes free'd. 2952 */ 2953 int cleanup_sdt_note_list(struct list_head *sdt_notes) 2954 { 2955 struct sdt_note *tmp, *pos; 2956 int nr_free = 0; 2957 2958 list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) { 2959 list_del_init(&pos->note_list); 2960 zfree(&pos->args); 2961 zfree(&pos->name); 2962 zfree(&pos->provider); 2963 free(pos); 2964 nr_free++; 2965 } 2966 return nr_free; 2967 } 2968 2969 /** 2970 * sdt_notes__get_count: Counts the number of sdt events 2971 * @start: list_head to sdt_notes list 2972 * 2973 * Returns the number of SDT notes in a list 2974 */ 2975 int sdt_notes__get_count(struct list_head *start) 2976 { 2977 struct sdt_note *sdt_ptr; 2978 int count = 0; 2979 2980 list_for_each_entry(sdt_ptr, start, note_list) 2981 count++; 2982 return count; 2983 } 2984 #endif 2985 2986 void symbol__elf_init(void) 2987 { 2988 elf_version(EV_CURRENT); 2989 } 2990