xref: /linux/io_uring/io_uring.c (revision f679ebf6aa9b42d0edb5b261e16dc7b1e3c3550e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/mm.h>
55 #include <linux/mman.h>
56 #include <linux/percpu.h>
57 #include <linux/slab.h>
58 #include <linux/bvec.h>
59 #include <linux/net.h>
60 #include <net/sock.h>
61 #include <linux/anon_inodes.h>
62 #include <linux/sched/mm.h>
63 #include <linux/uaccess.h>
64 #include <linux/nospec.h>
65 #include <linux/fsnotify.h>
66 #include <linux/fadvise.h>
67 #include <linux/task_work.h>
68 #include <linux/io_uring.h>
69 #include <linux/io_uring/cmd.h>
70 #include <linux/audit.h>
71 #include <linux/security.h>
72 #include <linux/jump_label.h>
73 #include <asm/shmparam.h>
74 
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
77 
78 #include <uapi/linux/io_uring.h>
79 
80 #include "io-wq.h"
81 
82 #include "io_uring.h"
83 #include "opdef.h"
84 #include "refs.h"
85 #include "tctx.h"
86 #include "register.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 #include "waitid.h"
95 #include "futex.h"
96 #include "napi.h"
97 #include "uring_cmd.h"
98 #include "msg_ring.h"
99 #include "memmap.h"
100 
101 #include "timeout.h"
102 #include "poll.h"
103 #include "rw.h"
104 #include "alloc_cache.h"
105 #include "eventfd.h"
106 
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109 
110 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112 
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 				REQ_F_ASYNC_DATA)
116 
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 				 REQ_F_REISSUE | IO_REQ_CLEAN_FLAGS)
119 
120 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
121 
122 #define IO_COMPL_BATCH			32
123 #define IO_REQ_ALLOC_BATCH		8
124 #define IO_LOCAL_TW_DEFAULT_MAX		20
125 
126 struct io_defer_entry {
127 	struct list_head	list;
128 	struct io_kiocb		*req;
129 	u32			seq;
130 };
131 
132 /* requests with any of those set should undergo io_disarm_next() */
133 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
134 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
135 
136 /*
137  * No waiters. It's larger than any valid value of the tw counter
138  * so that tests against ->cq_wait_nr would fail and skip wake_up().
139  */
140 #define IO_CQ_WAKE_INIT		(-1U)
141 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
142 #define IO_CQ_WAKE_FORCE	(IO_CQ_WAKE_INIT >> 1)
143 
144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
145 					 struct io_uring_task *tctx,
146 					 bool cancel_all,
147 					 bool is_sqpoll_thread);
148 
149 static void io_queue_sqe(struct io_kiocb *req);
150 
151 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
152 
153 struct kmem_cache *req_cachep;
154 static struct workqueue_struct *iou_wq __ro_after_init;
155 
156 static int __read_mostly sysctl_io_uring_disabled;
157 static int __read_mostly sysctl_io_uring_group = -1;
158 
159 #ifdef CONFIG_SYSCTL
160 static const struct ctl_table kernel_io_uring_disabled_table[] = {
161 	{
162 		.procname	= "io_uring_disabled",
163 		.data		= &sysctl_io_uring_disabled,
164 		.maxlen		= sizeof(sysctl_io_uring_disabled),
165 		.mode		= 0644,
166 		.proc_handler	= proc_dointvec_minmax,
167 		.extra1		= SYSCTL_ZERO,
168 		.extra2		= SYSCTL_TWO,
169 	},
170 	{
171 		.procname	= "io_uring_group",
172 		.data		= &sysctl_io_uring_group,
173 		.maxlen		= sizeof(gid_t),
174 		.mode		= 0644,
175 		.proc_handler	= proc_dointvec,
176 	},
177 };
178 #endif
179 
__io_cqring_events(struct io_ring_ctx * ctx)180 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
181 {
182 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
183 }
184 
__io_cqring_events_user(struct io_ring_ctx * ctx)185 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
186 {
187 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
188 }
189 
io_match_linked(struct io_kiocb * head)190 static bool io_match_linked(struct io_kiocb *head)
191 {
192 	struct io_kiocb *req;
193 
194 	io_for_each_link(req, head) {
195 		if (req->flags & REQ_F_INFLIGHT)
196 			return true;
197 	}
198 	return false;
199 }
200 
201 /*
202  * As io_match_task() but protected against racing with linked timeouts.
203  * User must not hold timeout_lock.
204  */
io_match_task_safe(struct io_kiocb * head,struct io_uring_task * tctx,bool cancel_all)205 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
206 			bool cancel_all)
207 {
208 	bool matched;
209 
210 	if (tctx && head->tctx != tctx)
211 		return false;
212 	if (cancel_all)
213 		return true;
214 
215 	if (head->flags & REQ_F_LINK_TIMEOUT) {
216 		struct io_ring_ctx *ctx = head->ctx;
217 
218 		/* protect against races with linked timeouts */
219 		raw_spin_lock_irq(&ctx->timeout_lock);
220 		matched = io_match_linked(head);
221 		raw_spin_unlock_irq(&ctx->timeout_lock);
222 	} else {
223 		matched = io_match_linked(head);
224 	}
225 	return matched;
226 }
227 
req_fail_link_node(struct io_kiocb * req,int res)228 static inline void req_fail_link_node(struct io_kiocb *req, int res)
229 {
230 	req_set_fail(req);
231 	io_req_set_res(req, res, 0);
232 }
233 
io_req_add_to_cache(struct io_kiocb * req,struct io_ring_ctx * ctx)234 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
235 {
236 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
237 }
238 
io_ring_ctx_ref_free(struct percpu_ref * ref)239 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
240 {
241 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
242 
243 	complete(&ctx->ref_comp);
244 }
245 
io_fallback_req_func(struct work_struct * work)246 static __cold void io_fallback_req_func(struct work_struct *work)
247 {
248 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
249 						fallback_work.work);
250 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
251 	struct io_kiocb *req, *tmp;
252 	struct io_tw_state ts = {};
253 
254 	percpu_ref_get(&ctx->refs);
255 	mutex_lock(&ctx->uring_lock);
256 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
257 		req->io_task_work.func(req, &ts);
258 	io_submit_flush_completions(ctx);
259 	mutex_unlock(&ctx->uring_lock);
260 	percpu_ref_put(&ctx->refs);
261 }
262 
io_alloc_hash_table(struct io_hash_table * table,unsigned bits)263 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
264 {
265 	unsigned int hash_buckets;
266 	int i;
267 
268 	do {
269 		hash_buckets = 1U << bits;
270 		table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
271 						GFP_KERNEL_ACCOUNT);
272 		if (table->hbs)
273 			break;
274 		if (bits == 1)
275 			return -ENOMEM;
276 		bits--;
277 	} while (1);
278 
279 	table->hash_bits = bits;
280 	for (i = 0; i < hash_buckets; i++)
281 		INIT_HLIST_HEAD(&table->hbs[i].list);
282 	return 0;
283 }
284 
io_ring_ctx_alloc(struct io_uring_params * p)285 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
286 {
287 	struct io_ring_ctx *ctx;
288 	int hash_bits;
289 	bool ret;
290 
291 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
292 	if (!ctx)
293 		return NULL;
294 
295 	xa_init(&ctx->io_bl_xa);
296 
297 	/*
298 	 * Use 5 bits less than the max cq entries, that should give us around
299 	 * 32 entries per hash list if totally full and uniformly spread, but
300 	 * don't keep too many buckets to not overconsume memory.
301 	 */
302 	hash_bits = ilog2(p->cq_entries) - 5;
303 	hash_bits = clamp(hash_bits, 1, 8);
304 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
305 		goto err;
306 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
307 			    0, GFP_KERNEL))
308 		goto err;
309 
310 	ctx->flags = p->flags;
311 	ctx->hybrid_poll_time = LLONG_MAX;
312 	atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
313 	init_waitqueue_head(&ctx->sqo_sq_wait);
314 	INIT_LIST_HEAD(&ctx->sqd_list);
315 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
316 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
317 	ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
318 			    sizeof(struct async_poll), 0);
319 	ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
320 			    sizeof(struct io_async_msghdr),
321 			    offsetof(struct io_async_msghdr, clear));
322 	ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
323 			    sizeof(struct io_async_rw),
324 			    offsetof(struct io_async_rw, clear));
325 	ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX,
326 			    sizeof(struct io_uring_cmd_data), 0);
327 	spin_lock_init(&ctx->msg_lock);
328 	ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX,
329 			    sizeof(struct io_kiocb), 0);
330 	ret |= io_futex_cache_init(ctx);
331 	if (ret)
332 		goto free_ref;
333 	init_completion(&ctx->ref_comp);
334 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
335 	mutex_init(&ctx->uring_lock);
336 	init_waitqueue_head(&ctx->cq_wait);
337 	init_waitqueue_head(&ctx->poll_wq);
338 	spin_lock_init(&ctx->completion_lock);
339 	raw_spin_lock_init(&ctx->timeout_lock);
340 	INIT_WQ_LIST(&ctx->iopoll_list);
341 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
342 	INIT_LIST_HEAD(&ctx->defer_list);
343 	INIT_LIST_HEAD(&ctx->timeout_list);
344 	INIT_LIST_HEAD(&ctx->ltimeout_list);
345 	init_llist_head(&ctx->work_llist);
346 	INIT_LIST_HEAD(&ctx->tctx_list);
347 	ctx->submit_state.free_list.next = NULL;
348 	INIT_HLIST_HEAD(&ctx->waitid_list);
349 #ifdef CONFIG_FUTEX
350 	INIT_HLIST_HEAD(&ctx->futex_list);
351 #endif
352 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
353 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
354 	INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
355 	io_napi_init(ctx);
356 	mutex_init(&ctx->mmap_lock);
357 
358 	return ctx;
359 
360 free_ref:
361 	percpu_ref_exit(&ctx->refs);
362 err:
363 	io_alloc_cache_free(&ctx->apoll_cache, kfree);
364 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
365 	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
366 	io_alloc_cache_free(&ctx->uring_cache, kfree);
367 	io_alloc_cache_free(&ctx->msg_cache, kfree);
368 	io_futex_cache_free(ctx);
369 	kvfree(ctx->cancel_table.hbs);
370 	xa_destroy(&ctx->io_bl_xa);
371 	kfree(ctx);
372 	return NULL;
373 }
374 
io_account_cq_overflow(struct io_ring_ctx * ctx)375 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
376 {
377 	struct io_rings *r = ctx->rings;
378 
379 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
380 	ctx->cq_extra--;
381 }
382 
req_need_defer(struct io_kiocb * req,u32 seq)383 static bool req_need_defer(struct io_kiocb *req, u32 seq)
384 {
385 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
386 		struct io_ring_ctx *ctx = req->ctx;
387 
388 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
389 	}
390 
391 	return false;
392 }
393 
io_clean_op(struct io_kiocb * req)394 static void io_clean_op(struct io_kiocb *req)
395 {
396 	if (req->flags & REQ_F_BUFFER_SELECTED) {
397 		spin_lock(&req->ctx->completion_lock);
398 		io_kbuf_drop(req);
399 		spin_unlock(&req->ctx->completion_lock);
400 	}
401 
402 	if (req->flags & REQ_F_NEED_CLEANUP) {
403 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
404 
405 		if (def->cleanup)
406 			def->cleanup(req);
407 	}
408 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
409 		kfree(req->apoll->double_poll);
410 		kfree(req->apoll);
411 		req->apoll = NULL;
412 	}
413 	if (req->flags & REQ_F_INFLIGHT)
414 		atomic_dec(&req->tctx->inflight_tracked);
415 	if (req->flags & REQ_F_CREDS)
416 		put_cred(req->creds);
417 	if (req->flags & REQ_F_ASYNC_DATA) {
418 		kfree(req->async_data);
419 		req->async_data = NULL;
420 	}
421 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
422 }
423 
io_req_track_inflight(struct io_kiocb * req)424 static inline void io_req_track_inflight(struct io_kiocb *req)
425 {
426 	if (!(req->flags & REQ_F_INFLIGHT)) {
427 		req->flags |= REQ_F_INFLIGHT;
428 		atomic_inc(&req->tctx->inflight_tracked);
429 	}
430 }
431 
__io_prep_linked_timeout(struct io_kiocb * req)432 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
433 {
434 	if (WARN_ON_ONCE(!req->link))
435 		return NULL;
436 
437 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
438 	req->flags |= REQ_F_LINK_TIMEOUT;
439 
440 	/* linked timeouts should have two refs once prep'ed */
441 	io_req_set_refcount(req);
442 	__io_req_set_refcount(req->link, 2);
443 	return req->link;
444 }
445 
io_prep_linked_timeout(struct io_kiocb * req)446 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
447 {
448 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
449 		return NULL;
450 	return __io_prep_linked_timeout(req);
451 }
452 
__io_arm_ltimeout(struct io_kiocb * req)453 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
454 {
455 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
456 }
457 
io_arm_ltimeout(struct io_kiocb * req)458 static inline void io_arm_ltimeout(struct io_kiocb *req)
459 {
460 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
461 		__io_arm_ltimeout(req);
462 }
463 
io_prep_async_work(struct io_kiocb * req)464 static void io_prep_async_work(struct io_kiocb *req)
465 {
466 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
467 	struct io_ring_ctx *ctx = req->ctx;
468 
469 	if (!(req->flags & REQ_F_CREDS)) {
470 		req->flags |= REQ_F_CREDS;
471 		req->creds = get_current_cred();
472 	}
473 
474 	req->work.list.next = NULL;
475 	atomic_set(&req->work.flags, 0);
476 	if (req->flags & REQ_F_FORCE_ASYNC)
477 		atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
478 
479 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
480 		req->flags |= io_file_get_flags(req->file);
481 
482 	if (req->file && (req->flags & REQ_F_ISREG)) {
483 		bool should_hash = def->hash_reg_file;
484 
485 		/* don't serialize this request if the fs doesn't need it */
486 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
487 		    (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
488 			should_hash = false;
489 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
490 			io_wq_hash_work(&req->work, file_inode(req->file));
491 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
492 		if (def->unbound_nonreg_file)
493 			atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
494 	}
495 }
496 
io_prep_async_link(struct io_kiocb * req)497 static void io_prep_async_link(struct io_kiocb *req)
498 {
499 	struct io_kiocb *cur;
500 
501 	if (req->flags & REQ_F_LINK_TIMEOUT) {
502 		struct io_ring_ctx *ctx = req->ctx;
503 
504 		raw_spin_lock_irq(&ctx->timeout_lock);
505 		io_for_each_link(cur, req)
506 			io_prep_async_work(cur);
507 		raw_spin_unlock_irq(&ctx->timeout_lock);
508 	} else {
509 		io_for_each_link(cur, req)
510 			io_prep_async_work(cur);
511 	}
512 }
513 
io_queue_iowq(struct io_kiocb * req)514 static void io_queue_iowq(struct io_kiocb *req)
515 {
516 	struct io_kiocb *link = io_prep_linked_timeout(req);
517 	struct io_uring_task *tctx = req->tctx;
518 
519 	BUG_ON(!tctx);
520 
521 	if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
522 		io_req_task_queue_fail(req, -ECANCELED);
523 		return;
524 	}
525 
526 	/* init ->work of the whole link before punting */
527 	io_prep_async_link(req);
528 
529 	/*
530 	 * Not expected to happen, but if we do have a bug where this _can_
531 	 * happen, catch it here and ensure the request is marked as
532 	 * canceled. That will make io-wq go through the usual work cancel
533 	 * procedure rather than attempt to run this request (or create a new
534 	 * worker for it).
535 	 */
536 	if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
537 		atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
538 
539 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
540 	io_wq_enqueue(tctx->io_wq, &req->work);
541 	if (link)
542 		io_queue_linked_timeout(link);
543 }
544 
io_req_queue_iowq_tw(struct io_kiocb * req,struct io_tw_state * ts)545 static void io_req_queue_iowq_tw(struct io_kiocb *req, struct io_tw_state *ts)
546 {
547 	io_queue_iowq(req);
548 }
549 
io_req_queue_iowq(struct io_kiocb * req)550 void io_req_queue_iowq(struct io_kiocb *req)
551 {
552 	req->io_task_work.func = io_req_queue_iowq_tw;
553 	io_req_task_work_add(req);
554 }
555 
io_queue_deferred(struct io_ring_ctx * ctx)556 static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx)
557 {
558 	spin_lock(&ctx->completion_lock);
559 	while (!list_empty(&ctx->defer_list)) {
560 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
561 						struct io_defer_entry, list);
562 
563 		if (req_need_defer(de->req, de->seq))
564 			break;
565 		list_del_init(&de->list);
566 		io_req_task_queue(de->req);
567 		kfree(de);
568 	}
569 	spin_unlock(&ctx->completion_lock);
570 }
571 
__io_commit_cqring_flush(struct io_ring_ctx * ctx)572 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
573 {
574 	if (ctx->poll_activated)
575 		io_poll_wq_wake(ctx);
576 	if (ctx->off_timeout_used)
577 		io_flush_timeouts(ctx);
578 	if (ctx->drain_active)
579 		io_queue_deferred(ctx);
580 	if (ctx->has_evfd)
581 		io_eventfd_flush_signal(ctx);
582 }
583 
__io_cq_lock(struct io_ring_ctx * ctx)584 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
585 {
586 	if (!ctx->lockless_cq)
587 		spin_lock(&ctx->completion_lock);
588 }
589 
io_cq_lock(struct io_ring_ctx * ctx)590 static inline void io_cq_lock(struct io_ring_ctx *ctx)
591 	__acquires(ctx->completion_lock)
592 {
593 	spin_lock(&ctx->completion_lock);
594 }
595 
__io_cq_unlock_post(struct io_ring_ctx * ctx)596 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
597 {
598 	io_commit_cqring(ctx);
599 	if (!ctx->task_complete) {
600 		if (!ctx->lockless_cq)
601 			spin_unlock(&ctx->completion_lock);
602 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
603 		if (!ctx->syscall_iopoll)
604 			io_cqring_wake(ctx);
605 	}
606 	io_commit_cqring_flush(ctx);
607 }
608 
io_cq_unlock_post(struct io_ring_ctx * ctx)609 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
610 	__releases(ctx->completion_lock)
611 {
612 	io_commit_cqring(ctx);
613 	spin_unlock(&ctx->completion_lock);
614 	io_cqring_wake(ctx);
615 	io_commit_cqring_flush(ctx);
616 }
617 
__io_cqring_overflow_flush(struct io_ring_ctx * ctx,bool dying)618 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
619 {
620 	size_t cqe_size = sizeof(struct io_uring_cqe);
621 
622 	lockdep_assert_held(&ctx->uring_lock);
623 
624 	/* don't abort if we're dying, entries must get freed */
625 	if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
626 		return;
627 
628 	if (ctx->flags & IORING_SETUP_CQE32)
629 		cqe_size <<= 1;
630 
631 	io_cq_lock(ctx);
632 	while (!list_empty(&ctx->cq_overflow_list)) {
633 		struct io_uring_cqe *cqe;
634 		struct io_overflow_cqe *ocqe;
635 
636 		ocqe = list_first_entry(&ctx->cq_overflow_list,
637 					struct io_overflow_cqe, list);
638 
639 		if (!dying) {
640 			if (!io_get_cqe_overflow(ctx, &cqe, true))
641 				break;
642 			memcpy(cqe, &ocqe->cqe, cqe_size);
643 		}
644 		list_del(&ocqe->list);
645 		kfree(ocqe);
646 
647 		/*
648 		 * For silly syzbot cases that deliberately overflow by huge
649 		 * amounts, check if we need to resched and drop and
650 		 * reacquire the locks if so. Nothing real would ever hit this.
651 		 * Ideally we'd have a non-posting unlock for this, but hard
652 		 * to care for a non-real case.
653 		 */
654 		if (need_resched()) {
655 			io_cq_unlock_post(ctx);
656 			mutex_unlock(&ctx->uring_lock);
657 			cond_resched();
658 			mutex_lock(&ctx->uring_lock);
659 			io_cq_lock(ctx);
660 		}
661 	}
662 
663 	if (list_empty(&ctx->cq_overflow_list)) {
664 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
665 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
666 	}
667 	io_cq_unlock_post(ctx);
668 }
669 
io_cqring_overflow_kill(struct io_ring_ctx * ctx)670 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
671 {
672 	if (ctx->rings)
673 		__io_cqring_overflow_flush(ctx, true);
674 }
675 
io_cqring_do_overflow_flush(struct io_ring_ctx * ctx)676 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
677 {
678 	mutex_lock(&ctx->uring_lock);
679 	__io_cqring_overflow_flush(ctx, false);
680 	mutex_unlock(&ctx->uring_lock);
681 }
682 
683 /* must to be called somewhat shortly after putting a request */
io_put_task(struct io_kiocb * req)684 static inline void io_put_task(struct io_kiocb *req)
685 {
686 	struct io_uring_task *tctx = req->tctx;
687 
688 	if (likely(tctx->task == current)) {
689 		tctx->cached_refs++;
690 	} else {
691 		percpu_counter_sub(&tctx->inflight, 1);
692 		if (unlikely(atomic_read(&tctx->in_cancel)))
693 			wake_up(&tctx->wait);
694 		put_task_struct(tctx->task);
695 	}
696 }
697 
io_task_refs_refill(struct io_uring_task * tctx)698 void io_task_refs_refill(struct io_uring_task *tctx)
699 {
700 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
701 
702 	percpu_counter_add(&tctx->inflight, refill);
703 	refcount_add(refill, &current->usage);
704 	tctx->cached_refs += refill;
705 }
706 
io_uring_drop_tctx_refs(struct task_struct * task)707 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
708 {
709 	struct io_uring_task *tctx = task->io_uring;
710 	unsigned int refs = tctx->cached_refs;
711 
712 	if (refs) {
713 		tctx->cached_refs = 0;
714 		percpu_counter_sub(&tctx->inflight, refs);
715 		put_task_struct_many(task, refs);
716 	}
717 }
718 
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,u64 extra1,u64 extra2)719 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
720 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
721 {
722 	struct io_overflow_cqe *ocqe;
723 	size_t ocq_size = sizeof(struct io_overflow_cqe);
724 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
725 
726 	lockdep_assert_held(&ctx->completion_lock);
727 
728 	if (is_cqe32)
729 		ocq_size += sizeof(struct io_uring_cqe);
730 
731 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
732 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
733 	if (!ocqe) {
734 		/*
735 		 * If we're in ring overflow flush mode, or in task cancel mode,
736 		 * or cannot allocate an overflow entry, then we need to drop it
737 		 * on the floor.
738 		 */
739 		io_account_cq_overflow(ctx);
740 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
741 		return false;
742 	}
743 	if (list_empty(&ctx->cq_overflow_list)) {
744 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
745 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
746 
747 	}
748 	ocqe->cqe.user_data = user_data;
749 	ocqe->cqe.res = res;
750 	ocqe->cqe.flags = cflags;
751 	if (is_cqe32) {
752 		ocqe->cqe.big_cqe[0] = extra1;
753 		ocqe->cqe.big_cqe[1] = extra2;
754 	}
755 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
756 	return true;
757 }
758 
io_req_cqe_overflow(struct io_kiocb * req)759 static void io_req_cqe_overflow(struct io_kiocb *req)
760 {
761 	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
762 				req->cqe.res, req->cqe.flags,
763 				req->big_cqe.extra1, req->big_cqe.extra2);
764 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
765 }
766 
767 /*
768  * writes to the cq entry need to come after reading head; the
769  * control dependency is enough as we're using WRITE_ONCE to
770  * fill the cq entry
771  */
io_cqe_cache_refill(struct io_ring_ctx * ctx,bool overflow)772 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
773 {
774 	struct io_rings *rings = ctx->rings;
775 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
776 	unsigned int free, queued, len;
777 
778 	/*
779 	 * Posting into the CQ when there are pending overflowed CQEs may break
780 	 * ordering guarantees, which will affect links, F_MORE users and more.
781 	 * Force overflow the completion.
782 	 */
783 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
784 		return false;
785 
786 	/* userspace may cheat modifying the tail, be safe and do min */
787 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
788 	free = ctx->cq_entries - queued;
789 	/* we need a contiguous range, limit based on the current array offset */
790 	len = min(free, ctx->cq_entries - off);
791 	if (!len)
792 		return false;
793 
794 	if (ctx->flags & IORING_SETUP_CQE32) {
795 		off <<= 1;
796 		len <<= 1;
797 	}
798 
799 	ctx->cqe_cached = &rings->cqes[off];
800 	ctx->cqe_sentinel = ctx->cqe_cached + len;
801 	return true;
802 }
803 
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)804 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
805 			      u32 cflags)
806 {
807 	struct io_uring_cqe *cqe;
808 
809 	ctx->cq_extra++;
810 
811 	/*
812 	 * If we can't get a cq entry, userspace overflowed the
813 	 * submission (by quite a lot). Increment the overflow count in
814 	 * the ring.
815 	 */
816 	if (likely(io_get_cqe(ctx, &cqe))) {
817 		WRITE_ONCE(cqe->user_data, user_data);
818 		WRITE_ONCE(cqe->res, res);
819 		WRITE_ONCE(cqe->flags, cflags);
820 
821 		if (ctx->flags & IORING_SETUP_CQE32) {
822 			WRITE_ONCE(cqe->big_cqe[0], 0);
823 			WRITE_ONCE(cqe->big_cqe[1], 0);
824 		}
825 
826 		trace_io_uring_complete(ctx, NULL, cqe);
827 		return true;
828 	}
829 	return false;
830 }
831 
__io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)832 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res,
833 			      u32 cflags)
834 {
835 	bool filled;
836 
837 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
838 	if (!filled)
839 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
840 
841 	return filled;
842 }
843 
io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)844 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
845 {
846 	bool filled;
847 
848 	io_cq_lock(ctx);
849 	filled = __io_post_aux_cqe(ctx, user_data, res, cflags);
850 	io_cq_unlock_post(ctx);
851 	return filled;
852 }
853 
854 /*
855  * Must be called from inline task_work so we now a flush will happen later,
856  * and obviously with ctx->uring_lock held (tw always has that).
857  */
io_add_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)858 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
859 {
860 	if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
861 		spin_lock(&ctx->completion_lock);
862 		io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
863 		spin_unlock(&ctx->completion_lock);
864 	}
865 	ctx->submit_state.cq_flush = true;
866 }
867 
868 /*
869  * A helper for multishot requests posting additional CQEs.
870  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
871  */
io_req_post_cqe(struct io_kiocb * req,s32 res,u32 cflags)872 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
873 {
874 	struct io_ring_ctx *ctx = req->ctx;
875 	bool posted;
876 
877 	lockdep_assert(!io_wq_current_is_worker());
878 	lockdep_assert_held(&ctx->uring_lock);
879 
880 	__io_cq_lock(ctx);
881 	posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
882 	ctx->submit_state.cq_flush = true;
883 	__io_cq_unlock_post(ctx);
884 	return posted;
885 }
886 
io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)887 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
888 {
889 	struct io_ring_ctx *ctx = req->ctx;
890 
891 	/*
892 	 * All execution paths but io-wq use the deferred completions by
893 	 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
894 	 */
895 	if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
896 		return;
897 
898 	/*
899 	 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
900 	 * the submitter task context, IOPOLL protects with uring_lock.
901 	 */
902 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) {
903 		req->io_task_work.func = io_req_task_complete;
904 		io_req_task_work_add(req);
905 		return;
906 	}
907 
908 	io_cq_lock(ctx);
909 	if (!(req->flags & REQ_F_CQE_SKIP)) {
910 		if (!io_fill_cqe_req(ctx, req))
911 			io_req_cqe_overflow(req);
912 	}
913 	io_cq_unlock_post(ctx);
914 
915 	/*
916 	 * We don't free the request here because we know it's called from
917 	 * io-wq only, which holds a reference, so it cannot be the last put.
918 	 */
919 	req_ref_put(req);
920 }
921 
io_req_defer_failed(struct io_kiocb * req,s32 res)922 void io_req_defer_failed(struct io_kiocb *req, s32 res)
923 	__must_hold(&ctx->uring_lock)
924 {
925 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
926 
927 	lockdep_assert_held(&req->ctx->uring_lock);
928 
929 	req_set_fail(req);
930 	io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED));
931 	if (def->fail)
932 		def->fail(req);
933 	io_req_complete_defer(req);
934 }
935 
936 /*
937  * Don't initialise the fields below on every allocation, but do that in
938  * advance and keep them valid across allocations.
939  */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)940 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
941 {
942 	req->ctx = ctx;
943 	req->buf_node = NULL;
944 	req->file_node = NULL;
945 	req->link = NULL;
946 	req->async_data = NULL;
947 	/* not necessary, but safer to zero */
948 	memset(&req->cqe, 0, sizeof(req->cqe));
949 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
950 }
951 
952 /*
953  * A request might get retired back into the request caches even before opcode
954  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
955  * Because of that, io_alloc_req() should be called only under ->uring_lock
956  * and with extra caution to not get a request that is still worked on.
957  */
__io_alloc_req_refill(struct io_ring_ctx * ctx)958 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
959 	__must_hold(&ctx->uring_lock)
960 {
961 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
962 	void *reqs[IO_REQ_ALLOC_BATCH];
963 	int ret;
964 
965 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
966 
967 	/*
968 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
969 	 * retry single alloc to be on the safe side.
970 	 */
971 	if (unlikely(ret <= 0)) {
972 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
973 		if (!reqs[0])
974 			return false;
975 		ret = 1;
976 	}
977 
978 	percpu_ref_get_many(&ctx->refs, ret);
979 	while (ret--) {
980 		struct io_kiocb *req = reqs[ret];
981 
982 		io_preinit_req(req, ctx);
983 		io_req_add_to_cache(req, ctx);
984 	}
985 	return true;
986 }
987 
io_free_req(struct io_kiocb * req)988 __cold void io_free_req(struct io_kiocb *req)
989 {
990 	/* refs were already put, restore them for io_req_task_complete() */
991 	req->flags &= ~REQ_F_REFCOUNT;
992 	/* we only want to free it, don't post CQEs */
993 	req->flags |= REQ_F_CQE_SKIP;
994 	req->io_task_work.func = io_req_task_complete;
995 	io_req_task_work_add(req);
996 }
997 
__io_req_find_next_prep(struct io_kiocb * req)998 static void __io_req_find_next_prep(struct io_kiocb *req)
999 {
1000 	struct io_ring_ctx *ctx = req->ctx;
1001 
1002 	spin_lock(&ctx->completion_lock);
1003 	io_disarm_next(req);
1004 	spin_unlock(&ctx->completion_lock);
1005 }
1006 
io_req_find_next(struct io_kiocb * req)1007 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1008 {
1009 	struct io_kiocb *nxt;
1010 
1011 	/*
1012 	 * If LINK is set, we have dependent requests in this chain. If we
1013 	 * didn't fail this request, queue the first one up, moving any other
1014 	 * dependencies to the next request. In case of failure, fail the rest
1015 	 * of the chain.
1016 	 */
1017 	if (unlikely(req->flags & IO_DISARM_MASK))
1018 		__io_req_find_next_prep(req);
1019 	nxt = req->link;
1020 	req->link = NULL;
1021 	return nxt;
1022 }
1023 
ctx_flush_and_put(struct io_ring_ctx * ctx,struct io_tw_state * ts)1024 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1025 {
1026 	if (!ctx)
1027 		return;
1028 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1029 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1030 
1031 	io_submit_flush_completions(ctx);
1032 	mutex_unlock(&ctx->uring_lock);
1033 	percpu_ref_put(&ctx->refs);
1034 }
1035 
1036 /*
1037  * Run queued task_work, returning the number of entries processed in *count.
1038  * If more entries than max_entries are available, stop processing once this
1039  * is reached and return the rest of the list.
1040  */
io_handle_tw_list(struct llist_node * node,unsigned int * count,unsigned int max_entries)1041 struct llist_node *io_handle_tw_list(struct llist_node *node,
1042 				     unsigned int *count,
1043 				     unsigned int max_entries)
1044 {
1045 	struct io_ring_ctx *ctx = NULL;
1046 	struct io_tw_state ts = { };
1047 
1048 	do {
1049 		struct llist_node *next = node->next;
1050 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1051 						    io_task_work.node);
1052 
1053 		if (req->ctx != ctx) {
1054 			ctx_flush_and_put(ctx, &ts);
1055 			ctx = req->ctx;
1056 			mutex_lock(&ctx->uring_lock);
1057 			percpu_ref_get(&ctx->refs);
1058 		}
1059 		INDIRECT_CALL_2(req->io_task_work.func,
1060 				io_poll_task_func, io_req_rw_complete,
1061 				req, &ts);
1062 		node = next;
1063 		(*count)++;
1064 		if (unlikely(need_resched())) {
1065 			ctx_flush_and_put(ctx, &ts);
1066 			ctx = NULL;
1067 			cond_resched();
1068 		}
1069 	} while (node && *count < max_entries);
1070 
1071 	ctx_flush_and_put(ctx, &ts);
1072 	return node;
1073 }
1074 
__io_fallback_tw(struct llist_node * node,bool sync)1075 static __cold void __io_fallback_tw(struct llist_node *node, bool sync)
1076 {
1077 	struct io_ring_ctx *last_ctx = NULL;
1078 	struct io_kiocb *req;
1079 
1080 	while (node) {
1081 		req = container_of(node, struct io_kiocb, io_task_work.node);
1082 		node = node->next;
1083 		if (sync && last_ctx != req->ctx) {
1084 			if (last_ctx) {
1085 				flush_delayed_work(&last_ctx->fallback_work);
1086 				percpu_ref_put(&last_ctx->refs);
1087 			}
1088 			last_ctx = req->ctx;
1089 			percpu_ref_get(&last_ctx->refs);
1090 		}
1091 		if (llist_add(&req->io_task_work.node,
1092 			      &req->ctx->fallback_llist))
1093 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1094 	}
1095 
1096 	if (last_ctx) {
1097 		flush_delayed_work(&last_ctx->fallback_work);
1098 		percpu_ref_put(&last_ctx->refs);
1099 	}
1100 }
1101 
io_fallback_tw(struct io_uring_task * tctx,bool sync)1102 static void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1103 {
1104 	struct llist_node *node = llist_del_all(&tctx->task_list);
1105 
1106 	__io_fallback_tw(node, sync);
1107 }
1108 
tctx_task_work_run(struct io_uring_task * tctx,unsigned int max_entries,unsigned int * count)1109 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1110 				      unsigned int max_entries,
1111 				      unsigned int *count)
1112 {
1113 	struct llist_node *node;
1114 
1115 	if (unlikely(current->flags & PF_EXITING)) {
1116 		io_fallback_tw(tctx, true);
1117 		return NULL;
1118 	}
1119 
1120 	node = llist_del_all(&tctx->task_list);
1121 	if (node) {
1122 		node = llist_reverse_order(node);
1123 		node = io_handle_tw_list(node, count, max_entries);
1124 	}
1125 
1126 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1127 	if (unlikely(atomic_read(&tctx->in_cancel)))
1128 		io_uring_drop_tctx_refs(current);
1129 
1130 	trace_io_uring_task_work_run(tctx, *count);
1131 	return node;
1132 }
1133 
tctx_task_work(struct callback_head * cb)1134 void tctx_task_work(struct callback_head *cb)
1135 {
1136 	struct io_uring_task *tctx;
1137 	struct llist_node *ret;
1138 	unsigned int count = 0;
1139 
1140 	tctx = container_of(cb, struct io_uring_task, task_work);
1141 	ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1142 	/* can't happen */
1143 	WARN_ON_ONCE(ret);
1144 }
1145 
io_req_local_work_add(struct io_kiocb * req,struct io_ring_ctx * ctx,unsigned flags)1146 static inline void io_req_local_work_add(struct io_kiocb *req,
1147 					 struct io_ring_ctx *ctx,
1148 					 unsigned flags)
1149 {
1150 	unsigned nr_wait, nr_tw, nr_tw_prev;
1151 	struct llist_node *head;
1152 
1153 	/* See comment above IO_CQ_WAKE_INIT */
1154 	BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1155 
1156 	/*
1157 	 * We don't know how many reuqests is there in the link and whether
1158 	 * they can even be queued lazily, fall back to non-lazy.
1159 	 */
1160 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1161 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1162 
1163 	guard(rcu)();
1164 
1165 	head = READ_ONCE(ctx->work_llist.first);
1166 	do {
1167 		nr_tw_prev = 0;
1168 		if (head) {
1169 			struct io_kiocb *first_req = container_of(head,
1170 							struct io_kiocb,
1171 							io_task_work.node);
1172 			/*
1173 			 * Might be executed at any moment, rely on
1174 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1175 			 */
1176 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1177 		}
1178 
1179 		/*
1180 		 * Theoretically, it can overflow, but that's fine as one of
1181 		 * previous adds should've tried to wake the task.
1182 		 */
1183 		nr_tw = nr_tw_prev + 1;
1184 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1185 			nr_tw = IO_CQ_WAKE_FORCE;
1186 
1187 		req->nr_tw = nr_tw;
1188 		req->io_task_work.node.next = head;
1189 	} while (!try_cmpxchg(&ctx->work_llist.first, &head,
1190 			      &req->io_task_work.node));
1191 
1192 	/*
1193 	 * cmpxchg implies a full barrier, which pairs with the barrier
1194 	 * in set_current_state() on the io_cqring_wait() side. It's used
1195 	 * to ensure that either we see updated ->cq_wait_nr, or waiters
1196 	 * going to sleep will observe the work added to the list, which
1197 	 * is similar to the wait/wawke task state sync.
1198 	 */
1199 
1200 	if (!head) {
1201 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1202 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1203 		if (ctx->has_evfd)
1204 			io_eventfd_signal(ctx);
1205 	}
1206 
1207 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1208 	/* not enough or no one is waiting */
1209 	if (nr_tw < nr_wait)
1210 		return;
1211 	/* the previous add has already woken it up */
1212 	if (nr_tw_prev >= nr_wait)
1213 		return;
1214 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1215 }
1216 
io_req_normal_work_add(struct io_kiocb * req)1217 static void io_req_normal_work_add(struct io_kiocb *req)
1218 {
1219 	struct io_uring_task *tctx = req->tctx;
1220 	struct io_ring_ctx *ctx = req->ctx;
1221 
1222 	/* task_work already pending, we're done */
1223 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1224 		return;
1225 
1226 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1227 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1228 
1229 	/* SQPOLL doesn't need the task_work added, it'll run it itself */
1230 	if (ctx->flags & IORING_SETUP_SQPOLL) {
1231 		__set_notify_signal(tctx->task);
1232 		return;
1233 	}
1234 
1235 	if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method)))
1236 		return;
1237 
1238 	io_fallback_tw(tctx, false);
1239 }
1240 
__io_req_task_work_add(struct io_kiocb * req,unsigned flags)1241 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1242 {
1243 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1244 		io_req_local_work_add(req, req->ctx, flags);
1245 	else
1246 		io_req_normal_work_add(req);
1247 }
1248 
io_req_task_work_add_remote(struct io_kiocb * req,struct io_ring_ctx * ctx,unsigned flags)1249 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx,
1250 				 unsigned flags)
1251 {
1252 	if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1253 		return;
1254 	io_req_local_work_add(req, ctx, flags);
1255 }
1256 
io_move_task_work_from_local(struct io_ring_ctx * ctx)1257 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1258 {
1259 	struct llist_node *node = llist_del_all(&ctx->work_llist);
1260 
1261 	__io_fallback_tw(node, false);
1262 	node = llist_del_all(&ctx->retry_llist);
1263 	__io_fallback_tw(node, false);
1264 }
1265 
io_run_local_work_continue(struct io_ring_ctx * ctx,int events,int min_events)1266 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1267 				       int min_events)
1268 {
1269 	if (!io_local_work_pending(ctx))
1270 		return false;
1271 	if (events < min_events)
1272 		return true;
1273 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1274 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1275 	return false;
1276 }
1277 
__io_run_local_work_loop(struct llist_node ** node,struct io_tw_state * ts,int events)1278 static int __io_run_local_work_loop(struct llist_node **node,
1279 				    struct io_tw_state *ts,
1280 				    int events)
1281 {
1282 	int ret = 0;
1283 
1284 	while (*node) {
1285 		struct llist_node *next = (*node)->next;
1286 		struct io_kiocb *req = container_of(*node, struct io_kiocb,
1287 						    io_task_work.node);
1288 		INDIRECT_CALL_2(req->io_task_work.func,
1289 				io_poll_task_func, io_req_rw_complete,
1290 				req, ts);
1291 		*node = next;
1292 		if (++ret >= events)
1293 			break;
1294 	}
1295 
1296 	return ret;
1297 }
1298 
__io_run_local_work(struct io_ring_ctx * ctx,struct io_tw_state * ts,int min_events,int max_events)1299 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1300 			       int min_events, int max_events)
1301 {
1302 	struct llist_node *node;
1303 	unsigned int loops = 0;
1304 	int ret = 0;
1305 
1306 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1307 		return -EEXIST;
1308 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1309 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1310 again:
1311 	min_events -= ret;
1312 	ret = __io_run_local_work_loop(&ctx->retry_llist.first, ts, max_events);
1313 	if (ctx->retry_llist.first)
1314 		goto retry_done;
1315 
1316 	/*
1317 	 * llists are in reverse order, flip it back the right way before
1318 	 * running the pending items.
1319 	 */
1320 	node = llist_reverse_order(llist_del_all(&ctx->work_llist));
1321 	ret += __io_run_local_work_loop(&node, ts, max_events - ret);
1322 	ctx->retry_llist.first = node;
1323 	loops++;
1324 
1325 	if (io_run_local_work_continue(ctx, ret, min_events))
1326 		goto again;
1327 retry_done:
1328 	io_submit_flush_completions(ctx);
1329 	if (io_run_local_work_continue(ctx, ret, min_events))
1330 		goto again;
1331 
1332 	trace_io_uring_local_work_run(ctx, ret, loops);
1333 	return ret;
1334 }
1335 
io_run_local_work_locked(struct io_ring_ctx * ctx,int min_events)1336 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1337 					   int min_events)
1338 {
1339 	struct io_tw_state ts = {};
1340 
1341 	if (!io_local_work_pending(ctx))
1342 		return 0;
1343 	return __io_run_local_work(ctx, &ts, min_events,
1344 					max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
1345 }
1346 
io_run_local_work(struct io_ring_ctx * ctx,int min_events,int max_events)1347 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events,
1348 			     int max_events)
1349 {
1350 	struct io_tw_state ts = {};
1351 	int ret;
1352 
1353 	mutex_lock(&ctx->uring_lock);
1354 	ret = __io_run_local_work(ctx, &ts, min_events, max_events);
1355 	mutex_unlock(&ctx->uring_lock);
1356 	return ret;
1357 }
1358 
io_req_task_cancel(struct io_kiocb * req,struct io_tw_state * ts)1359 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1360 {
1361 	io_tw_lock(req->ctx, ts);
1362 	io_req_defer_failed(req, req->cqe.res);
1363 }
1364 
io_req_task_submit(struct io_kiocb * req,struct io_tw_state * ts)1365 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1366 {
1367 	io_tw_lock(req->ctx, ts);
1368 	if (unlikely(io_should_terminate_tw()))
1369 		io_req_defer_failed(req, -EFAULT);
1370 	else if (req->flags & REQ_F_FORCE_ASYNC)
1371 		io_queue_iowq(req);
1372 	else
1373 		io_queue_sqe(req);
1374 }
1375 
io_req_task_queue_fail(struct io_kiocb * req,int ret)1376 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1377 {
1378 	io_req_set_res(req, ret, 0);
1379 	req->io_task_work.func = io_req_task_cancel;
1380 	io_req_task_work_add(req);
1381 }
1382 
io_req_task_queue(struct io_kiocb * req)1383 void io_req_task_queue(struct io_kiocb *req)
1384 {
1385 	req->io_task_work.func = io_req_task_submit;
1386 	io_req_task_work_add(req);
1387 }
1388 
io_queue_next(struct io_kiocb * req)1389 void io_queue_next(struct io_kiocb *req)
1390 {
1391 	struct io_kiocb *nxt = io_req_find_next(req);
1392 
1393 	if (nxt)
1394 		io_req_task_queue(nxt);
1395 }
1396 
io_free_batch_list(struct io_ring_ctx * ctx,struct io_wq_work_node * node)1397 static void io_free_batch_list(struct io_ring_ctx *ctx,
1398 			       struct io_wq_work_node *node)
1399 	__must_hold(&ctx->uring_lock)
1400 {
1401 	do {
1402 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1403 						    comp_list);
1404 
1405 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1406 			if (req->flags & REQ_F_REISSUE) {
1407 				node = req->comp_list.next;
1408 				req->flags &= ~REQ_F_REISSUE;
1409 				io_queue_iowq(req);
1410 				continue;
1411 			}
1412 			if (req->flags & REQ_F_REFCOUNT) {
1413 				node = req->comp_list.next;
1414 				if (!req_ref_put_and_test(req))
1415 					continue;
1416 			}
1417 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1418 				struct async_poll *apoll = req->apoll;
1419 
1420 				if (apoll->double_poll)
1421 					kfree(apoll->double_poll);
1422 				if (!io_alloc_cache_put(&ctx->apoll_cache, apoll))
1423 					kfree(apoll);
1424 				req->flags &= ~REQ_F_POLLED;
1425 			}
1426 			if (req->flags & IO_REQ_LINK_FLAGS)
1427 				io_queue_next(req);
1428 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1429 				io_clean_op(req);
1430 		}
1431 		io_put_file(req);
1432 		io_req_put_rsrc_nodes(req);
1433 		io_put_task(req);
1434 
1435 		node = req->comp_list.next;
1436 		io_req_add_to_cache(req, ctx);
1437 	} while (node);
1438 }
1439 
__io_submit_flush_completions(struct io_ring_ctx * ctx)1440 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1441 	__must_hold(&ctx->uring_lock)
1442 {
1443 	struct io_submit_state *state = &ctx->submit_state;
1444 	struct io_wq_work_node *node;
1445 
1446 	__io_cq_lock(ctx);
1447 	__wq_list_for_each(node, &state->compl_reqs) {
1448 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1449 					    comp_list);
1450 
1451 		/*
1452 		 * Requests marked with REQUEUE should not post a CQE, they
1453 		 * will go through the io-wq retry machinery and post one
1454 		 * later.
1455 		 */
1456 		if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) &&
1457 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1458 			if (ctx->lockless_cq) {
1459 				spin_lock(&ctx->completion_lock);
1460 				io_req_cqe_overflow(req);
1461 				spin_unlock(&ctx->completion_lock);
1462 			} else {
1463 				io_req_cqe_overflow(req);
1464 			}
1465 		}
1466 	}
1467 	__io_cq_unlock_post(ctx);
1468 
1469 	if (!wq_list_empty(&state->compl_reqs)) {
1470 		io_free_batch_list(ctx, state->compl_reqs.first);
1471 		INIT_WQ_LIST(&state->compl_reqs);
1472 	}
1473 	ctx->submit_state.cq_flush = false;
1474 }
1475 
io_cqring_events(struct io_ring_ctx * ctx)1476 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1477 {
1478 	/* See comment at the top of this file */
1479 	smp_rmb();
1480 	return __io_cqring_events(ctx);
1481 }
1482 
1483 /*
1484  * We can't just wait for polled events to come to us, we have to actively
1485  * find and complete them.
1486  */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)1487 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1488 {
1489 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1490 		return;
1491 
1492 	mutex_lock(&ctx->uring_lock);
1493 	while (!wq_list_empty(&ctx->iopoll_list)) {
1494 		/* let it sleep and repeat later if can't complete a request */
1495 		if (io_do_iopoll(ctx, true) == 0)
1496 			break;
1497 		/*
1498 		 * Ensure we allow local-to-the-cpu processing to take place,
1499 		 * in this case we need to ensure that we reap all events.
1500 		 * Also let task_work, etc. to progress by releasing the mutex
1501 		 */
1502 		if (need_resched()) {
1503 			mutex_unlock(&ctx->uring_lock);
1504 			cond_resched();
1505 			mutex_lock(&ctx->uring_lock);
1506 		}
1507 	}
1508 	mutex_unlock(&ctx->uring_lock);
1509 }
1510 
io_iopoll_check(struct io_ring_ctx * ctx,long min)1511 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1512 {
1513 	unsigned int nr_events = 0;
1514 	unsigned long check_cq;
1515 
1516 	lockdep_assert_held(&ctx->uring_lock);
1517 
1518 	if (!io_allowed_run_tw(ctx))
1519 		return -EEXIST;
1520 
1521 	check_cq = READ_ONCE(ctx->check_cq);
1522 	if (unlikely(check_cq)) {
1523 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1524 			__io_cqring_overflow_flush(ctx, false);
1525 		/*
1526 		 * Similarly do not spin if we have not informed the user of any
1527 		 * dropped CQE.
1528 		 */
1529 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1530 			return -EBADR;
1531 	}
1532 	/*
1533 	 * Don't enter poll loop if we already have events pending.
1534 	 * If we do, we can potentially be spinning for commands that
1535 	 * already triggered a CQE (eg in error).
1536 	 */
1537 	if (io_cqring_events(ctx))
1538 		return 0;
1539 
1540 	do {
1541 		int ret = 0;
1542 
1543 		/*
1544 		 * If a submit got punted to a workqueue, we can have the
1545 		 * application entering polling for a command before it gets
1546 		 * issued. That app will hold the uring_lock for the duration
1547 		 * of the poll right here, so we need to take a breather every
1548 		 * now and then to ensure that the issue has a chance to add
1549 		 * the poll to the issued list. Otherwise we can spin here
1550 		 * forever, while the workqueue is stuck trying to acquire the
1551 		 * very same mutex.
1552 		 */
1553 		if (wq_list_empty(&ctx->iopoll_list) ||
1554 		    io_task_work_pending(ctx)) {
1555 			u32 tail = ctx->cached_cq_tail;
1556 
1557 			(void) io_run_local_work_locked(ctx, min);
1558 
1559 			if (task_work_pending(current) ||
1560 			    wq_list_empty(&ctx->iopoll_list)) {
1561 				mutex_unlock(&ctx->uring_lock);
1562 				io_run_task_work();
1563 				mutex_lock(&ctx->uring_lock);
1564 			}
1565 			/* some requests don't go through iopoll_list */
1566 			if (tail != ctx->cached_cq_tail ||
1567 			    wq_list_empty(&ctx->iopoll_list))
1568 				break;
1569 		}
1570 		ret = io_do_iopoll(ctx, !min);
1571 		if (unlikely(ret < 0))
1572 			return ret;
1573 
1574 		if (task_sigpending(current))
1575 			return -EINTR;
1576 		if (need_resched())
1577 			break;
1578 
1579 		nr_events += ret;
1580 	} while (nr_events < min);
1581 
1582 	return 0;
1583 }
1584 
io_req_task_complete(struct io_kiocb * req,struct io_tw_state * ts)1585 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1586 {
1587 	io_req_complete_defer(req);
1588 }
1589 
1590 /*
1591  * After the iocb has been issued, it's safe to be found on the poll list.
1592  * Adding the kiocb to the list AFTER submission ensures that we don't
1593  * find it from a io_do_iopoll() thread before the issuer is done
1594  * accessing the kiocb cookie.
1595  */
io_iopoll_req_issued(struct io_kiocb * req,unsigned int issue_flags)1596 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1597 {
1598 	struct io_ring_ctx *ctx = req->ctx;
1599 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1600 
1601 	/* workqueue context doesn't hold uring_lock, grab it now */
1602 	if (unlikely(needs_lock))
1603 		mutex_lock(&ctx->uring_lock);
1604 
1605 	/*
1606 	 * Track whether we have multiple files in our lists. This will impact
1607 	 * how we do polling eventually, not spinning if we're on potentially
1608 	 * different devices.
1609 	 */
1610 	if (wq_list_empty(&ctx->iopoll_list)) {
1611 		ctx->poll_multi_queue = false;
1612 	} else if (!ctx->poll_multi_queue) {
1613 		struct io_kiocb *list_req;
1614 
1615 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1616 					comp_list);
1617 		if (list_req->file != req->file)
1618 			ctx->poll_multi_queue = true;
1619 	}
1620 
1621 	/*
1622 	 * For fast devices, IO may have already completed. If it has, add
1623 	 * it to the front so we find it first.
1624 	 */
1625 	if (READ_ONCE(req->iopoll_completed))
1626 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1627 	else
1628 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1629 
1630 	if (unlikely(needs_lock)) {
1631 		/*
1632 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1633 		 * in sq thread task context or in io worker task context. If
1634 		 * current task context is sq thread, we don't need to check
1635 		 * whether should wake up sq thread.
1636 		 */
1637 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1638 		    wq_has_sleeper(&ctx->sq_data->wait))
1639 			wake_up(&ctx->sq_data->wait);
1640 
1641 		mutex_unlock(&ctx->uring_lock);
1642 	}
1643 }
1644 
io_file_get_flags(struct file * file)1645 io_req_flags_t io_file_get_flags(struct file *file)
1646 {
1647 	io_req_flags_t res = 0;
1648 
1649 	if (S_ISREG(file_inode(file)->i_mode))
1650 		res |= REQ_F_ISREG;
1651 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1652 		res |= REQ_F_SUPPORT_NOWAIT;
1653 	return res;
1654 }
1655 
io_get_sequence(struct io_kiocb * req)1656 static u32 io_get_sequence(struct io_kiocb *req)
1657 {
1658 	u32 seq = req->ctx->cached_sq_head;
1659 	struct io_kiocb *cur;
1660 
1661 	/* need original cached_sq_head, but it was increased for each req */
1662 	io_for_each_link(cur, req)
1663 		seq--;
1664 	return seq;
1665 }
1666 
io_drain_req(struct io_kiocb * req)1667 static __cold void io_drain_req(struct io_kiocb *req)
1668 	__must_hold(&ctx->uring_lock)
1669 {
1670 	struct io_ring_ctx *ctx = req->ctx;
1671 	struct io_defer_entry *de;
1672 	int ret;
1673 	u32 seq = io_get_sequence(req);
1674 
1675 	/* Still need defer if there is pending req in defer list. */
1676 	spin_lock(&ctx->completion_lock);
1677 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1678 		spin_unlock(&ctx->completion_lock);
1679 queue:
1680 		ctx->drain_active = false;
1681 		io_req_task_queue(req);
1682 		return;
1683 	}
1684 	spin_unlock(&ctx->completion_lock);
1685 
1686 	io_prep_async_link(req);
1687 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1688 	if (!de) {
1689 		ret = -ENOMEM;
1690 		io_req_defer_failed(req, ret);
1691 		return;
1692 	}
1693 
1694 	spin_lock(&ctx->completion_lock);
1695 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1696 		spin_unlock(&ctx->completion_lock);
1697 		kfree(de);
1698 		goto queue;
1699 	}
1700 
1701 	trace_io_uring_defer(req);
1702 	de->req = req;
1703 	de->seq = seq;
1704 	list_add_tail(&de->list, &ctx->defer_list);
1705 	spin_unlock(&ctx->completion_lock);
1706 }
1707 
io_assign_file(struct io_kiocb * req,const struct io_issue_def * def,unsigned int issue_flags)1708 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1709 			   unsigned int issue_flags)
1710 {
1711 	if (req->file || !def->needs_file)
1712 		return true;
1713 
1714 	if (req->flags & REQ_F_FIXED_FILE)
1715 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1716 	else
1717 		req->file = io_file_get_normal(req, req->cqe.fd);
1718 
1719 	return !!req->file;
1720 }
1721 
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)1722 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1723 {
1724 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1725 	const struct cred *creds = NULL;
1726 	int ret;
1727 
1728 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1729 		return -EBADF;
1730 
1731 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1732 		creds = override_creds(req->creds);
1733 
1734 	if (!def->audit_skip)
1735 		audit_uring_entry(req->opcode);
1736 
1737 	ret = def->issue(req, issue_flags);
1738 
1739 	if (!def->audit_skip)
1740 		audit_uring_exit(!ret, ret);
1741 
1742 	if (creds)
1743 		revert_creds(creds);
1744 
1745 	if (ret == IOU_OK) {
1746 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1747 			io_req_complete_defer(req);
1748 		else
1749 			io_req_complete_post(req, issue_flags);
1750 
1751 		return 0;
1752 	}
1753 
1754 	if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1755 		ret = 0;
1756 		io_arm_ltimeout(req);
1757 
1758 		/* If the op doesn't have a file, we're not polling for it */
1759 		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1760 			io_iopoll_req_issued(req, issue_flags);
1761 	}
1762 	return ret;
1763 }
1764 
io_poll_issue(struct io_kiocb * req,struct io_tw_state * ts)1765 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1766 {
1767 	io_tw_lock(req->ctx, ts);
1768 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1769 				 IO_URING_F_COMPLETE_DEFER);
1770 }
1771 
io_wq_free_work(struct io_wq_work * work)1772 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1773 {
1774 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1775 	struct io_kiocb *nxt = NULL;
1776 
1777 	if (req_ref_put_and_test(req)) {
1778 		if (req->flags & IO_REQ_LINK_FLAGS)
1779 			nxt = io_req_find_next(req);
1780 		io_free_req(req);
1781 	}
1782 	return nxt ? &nxt->work : NULL;
1783 }
1784 
io_wq_submit_work(struct io_wq_work * work)1785 void io_wq_submit_work(struct io_wq_work *work)
1786 {
1787 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1788 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1789 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1790 	bool needs_poll = false;
1791 	int ret = 0, err = -ECANCELED;
1792 
1793 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1794 	if (!(req->flags & REQ_F_REFCOUNT))
1795 		__io_req_set_refcount(req, 2);
1796 	else
1797 		req_ref_get(req);
1798 
1799 	io_arm_ltimeout(req);
1800 
1801 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1802 	if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1803 fail:
1804 		io_req_task_queue_fail(req, err);
1805 		return;
1806 	}
1807 	if (!io_assign_file(req, def, issue_flags)) {
1808 		err = -EBADF;
1809 		atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1810 		goto fail;
1811 	}
1812 
1813 	/*
1814 	 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1815 	 * submitter task context. Final request completions are handed to the
1816 	 * right context, however this is not the case of auxiliary CQEs,
1817 	 * which is the main mean of operation for multishot requests.
1818 	 * Don't allow any multishot execution from io-wq. It's more restrictive
1819 	 * than necessary and also cleaner.
1820 	 */
1821 	if (req->flags & REQ_F_APOLL_MULTISHOT) {
1822 		err = -EBADFD;
1823 		if (!io_file_can_poll(req))
1824 			goto fail;
1825 		if (req->file->f_flags & O_NONBLOCK ||
1826 		    req->file->f_mode & FMODE_NOWAIT) {
1827 			err = -ECANCELED;
1828 			if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1829 				goto fail;
1830 			return;
1831 		} else {
1832 			req->flags &= ~REQ_F_APOLL_MULTISHOT;
1833 		}
1834 	}
1835 
1836 	if (req->flags & REQ_F_FORCE_ASYNC) {
1837 		bool opcode_poll = def->pollin || def->pollout;
1838 
1839 		if (opcode_poll && io_file_can_poll(req)) {
1840 			needs_poll = true;
1841 			issue_flags |= IO_URING_F_NONBLOCK;
1842 		}
1843 	}
1844 
1845 	do {
1846 		ret = io_issue_sqe(req, issue_flags);
1847 		if (ret != -EAGAIN)
1848 			break;
1849 
1850 		/*
1851 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1852 		 * poll. -EAGAIN is final for that case.
1853 		 */
1854 		if (req->flags & REQ_F_NOWAIT)
1855 			break;
1856 
1857 		/*
1858 		 * We can get EAGAIN for iopolled IO even though we're
1859 		 * forcing a sync submission from here, since we can't
1860 		 * wait for request slots on the block side.
1861 		 */
1862 		if (!needs_poll) {
1863 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1864 				break;
1865 			if (io_wq_worker_stopped())
1866 				break;
1867 			cond_resched();
1868 			continue;
1869 		}
1870 
1871 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1872 			return;
1873 		/* aborted or ready, in either case retry blocking */
1874 		needs_poll = false;
1875 		issue_flags &= ~IO_URING_F_NONBLOCK;
1876 	} while (1);
1877 
1878 	/* avoid locking problems by failing it from a clean context */
1879 	if (ret)
1880 		io_req_task_queue_fail(req, ret);
1881 }
1882 
io_file_get_fixed(struct io_kiocb * req,int fd,unsigned int issue_flags)1883 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1884 				      unsigned int issue_flags)
1885 {
1886 	struct io_ring_ctx *ctx = req->ctx;
1887 	struct io_rsrc_node *node;
1888 	struct file *file = NULL;
1889 
1890 	io_ring_submit_lock(ctx, issue_flags);
1891 	node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
1892 	if (node) {
1893 		io_req_assign_rsrc_node(&req->file_node, node);
1894 		req->flags |= io_slot_flags(node);
1895 		file = io_slot_file(node);
1896 	}
1897 	io_ring_submit_unlock(ctx, issue_flags);
1898 	return file;
1899 }
1900 
io_file_get_normal(struct io_kiocb * req,int fd)1901 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1902 {
1903 	struct file *file = fget(fd);
1904 
1905 	trace_io_uring_file_get(req, fd);
1906 
1907 	/* we don't allow fixed io_uring files */
1908 	if (file && io_is_uring_fops(file))
1909 		io_req_track_inflight(req);
1910 	return file;
1911 }
1912 
io_queue_async(struct io_kiocb * req,int ret)1913 static void io_queue_async(struct io_kiocb *req, int ret)
1914 	__must_hold(&req->ctx->uring_lock)
1915 {
1916 	struct io_kiocb *linked_timeout;
1917 
1918 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1919 		io_req_defer_failed(req, ret);
1920 		return;
1921 	}
1922 
1923 	linked_timeout = io_prep_linked_timeout(req);
1924 
1925 	switch (io_arm_poll_handler(req, 0)) {
1926 	case IO_APOLL_READY:
1927 		io_kbuf_recycle(req, 0);
1928 		io_req_task_queue(req);
1929 		break;
1930 	case IO_APOLL_ABORTED:
1931 		io_kbuf_recycle(req, 0);
1932 		io_queue_iowq(req);
1933 		break;
1934 	case IO_APOLL_OK:
1935 		break;
1936 	}
1937 
1938 	if (linked_timeout)
1939 		io_queue_linked_timeout(linked_timeout);
1940 }
1941 
io_queue_sqe(struct io_kiocb * req)1942 static inline void io_queue_sqe(struct io_kiocb *req)
1943 	__must_hold(&req->ctx->uring_lock)
1944 {
1945 	int ret;
1946 
1947 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1948 
1949 	/*
1950 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
1951 	 * doesn't support non-blocking read/write attempts
1952 	 */
1953 	if (unlikely(ret))
1954 		io_queue_async(req, ret);
1955 }
1956 
io_queue_sqe_fallback(struct io_kiocb * req)1957 static void io_queue_sqe_fallback(struct io_kiocb *req)
1958 	__must_hold(&req->ctx->uring_lock)
1959 {
1960 	if (unlikely(req->flags & REQ_F_FAIL)) {
1961 		/*
1962 		 * We don't submit, fail them all, for that replace hardlinks
1963 		 * with normal links. Extra REQ_F_LINK is tolerated.
1964 		 */
1965 		req->flags &= ~REQ_F_HARDLINK;
1966 		req->flags |= REQ_F_LINK;
1967 		io_req_defer_failed(req, req->cqe.res);
1968 	} else {
1969 		if (unlikely(req->ctx->drain_active))
1970 			io_drain_req(req);
1971 		else
1972 			io_queue_iowq(req);
1973 	}
1974 }
1975 
1976 /*
1977  * Check SQE restrictions (opcode and flags).
1978  *
1979  * Returns 'true' if SQE is allowed, 'false' otherwise.
1980  */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)1981 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1982 					struct io_kiocb *req,
1983 					unsigned int sqe_flags)
1984 {
1985 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1986 		return false;
1987 
1988 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1989 	    ctx->restrictions.sqe_flags_required)
1990 		return false;
1991 
1992 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1993 			  ctx->restrictions.sqe_flags_required))
1994 		return false;
1995 
1996 	return true;
1997 }
1998 
io_init_req_drain(struct io_kiocb * req)1999 static void io_init_req_drain(struct io_kiocb *req)
2000 {
2001 	struct io_ring_ctx *ctx = req->ctx;
2002 	struct io_kiocb *head = ctx->submit_state.link.head;
2003 
2004 	ctx->drain_active = true;
2005 	if (head) {
2006 		/*
2007 		 * If we need to drain a request in the middle of a link, drain
2008 		 * the head request and the next request/link after the current
2009 		 * link. Considering sequential execution of links,
2010 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2011 		 * link.
2012 		 */
2013 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2014 		ctx->drain_next = true;
2015 	}
2016 }
2017 
io_init_fail_req(struct io_kiocb * req,int err)2018 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2019 {
2020 	/* ensure per-opcode data is cleared if we fail before prep */
2021 	memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2022 	return err;
2023 }
2024 
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2025 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2026 		       const struct io_uring_sqe *sqe)
2027 	__must_hold(&ctx->uring_lock)
2028 {
2029 	const struct io_issue_def *def;
2030 	unsigned int sqe_flags;
2031 	int personality;
2032 	u8 opcode;
2033 
2034 	/* req is partially pre-initialised, see io_preinit_req() */
2035 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2036 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2037 	sqe_flags = READ_ONCE(sqe->flags);
2038 	req->flags = (__force io_req_flags_t) sqe_flags;
2039 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2040 	req->file = NULL;
2041 	req->tctx = current->io_uring;
2042 	req->cancel_seq_set = false;
2043 
2044 	if (unlikely(opcode >= IORING_OP_LAST)) {
2045 		req->opcode = 0;
2046 		return io_init_fail_req(req, -EINVAL);
2047 	}
2048 	opcode = array_index_nospec(opcode, IORING_OP_LAST);
2049 
2050 	def = &io_issue_defs[opcode];
2051 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2052 		/* enforce forwards compatibility on users */
2053 		if (sqe_flags & ~SQE_VALID_FLAGS)
2054 			return io_init_fail_req(req, -EINVAL);
2055 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2056 			if (!def->buffer_select)
2057 				return io_init_fail_req(req, -EOPNOTSUPP);
2058 			req->buf_index = READ_ONCE(sqe->buf_group);
2059 		}
2060 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2061 			ctx->drain_disabled = true;
2062 		if (sqe_flags & IOSQE_IO_DRAIN) {
2063 			if (ctx->drain_disabled)
2064 				return io_init_fail_req(req, -EOPNOTSUPP);
2065 			io_init_req_drain(req);
2066 		}
2067 	}
2068 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2069 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2070 			return io_init_fail_req(req, -EACCES);
2071 		/* knock it to the slow queue path, will be drained there */
2072 		if (ctx->drain_active)
2073 			req->flags |= REQ_F_FORCE_ASYNC;
2074 		/* if there is no link, we're at "next" request and need to drain */
2075 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2076 			ctx->drain_next = false;
2077 			ctx->drain_active = true;
2078 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2079 		}
2080 	}
2081 
2082 	if (!def->ioprio && sqe->ioprio)
2083 		return io_init_fail_req(req, -EINVAL);
2084 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2085 		return io_init_fail_req(req, -EINVAL);
2086 
2087 	if (def->needs_file) {
2088 		struct io_submit_state *state = &ctx->submit_state;
2089 
2090 		req->cqe.fd = READ_ONCE(sqe->fd);
2091 
2092 		/*
2093 		 * Plug now if we have more than 2 IO left after this, and the
2094 		 * target is potentially a read/write to block based storage.
2095 		 */
2096 		if (state->need_plug && def->plug) {
2097 			state->plug_started = true;
2098 			state->need_plug = false;
2099 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2100 		}
2101 	}
2102 
2103 	personality = READ_ONCE(sqe->personality);
2104 	if (personality) {
2105 		int ret;
2106 
2107 		req->creds = xa_load(&ctx->personalities, personality);
2108 		if (!req->creds)
2109 			return io_init_fail_req(req, -EINVAL);
2110 		get_cred(req->creds);
2111 		ret = security_uring_override_creds(req->creds);
2112 		if (ret) {
2113 			put_cred(req->creds);
2114 			return io_init_fail_req(req, ret);
2115 		}
2116 		req->flags |= REQ_F_CREDS;
2117 	}
2118 
2119 	return def->prep(req, sqe);
2120 }
2121 
io_submit_fail_init(const struct io_uring_sqe * sqe,struct io_kiocb * req,int ret)2122 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2123 				      struct io_kiocb *req, int ret)
2124 {
2125 	struct io_ring_ctx *ctx = req->ctx;
2126 	struct io_submit_link *link = &ctx->submit_state.link;
2127 	struct io_kiocb *head = link->head;
2128 
2129 	trace_io_uring_req_failed(sqe, req, ret);
2130 
2131 	/*
2132 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2133 	 * unusable. Instead of failing eagerly, continue assembling the link if
2134 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2135 	 * should find the flag and handle the rest.
2136 	 */
2137 	req_fail_link_node(req, ret);
2138 	if (head && !(head->flags & REQ_F_FAIL))
2139 		req_fail_link_node(head, -ECANCELED);
2140 
2141 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2142 		if (head) {
2143 			link->last->link = req;
2144 			link->head = NULL;
2145 			req = head;
2146 		}
2147 		io_queue_sqe_fallback(req);
2148 		return ret;
2149 	}
2150 
2151 	if (head)
2152 		link->last->link = req;
2153 	else
2154 		link->head = req;
2155 	link->last = req;
2156 	return 0;
2157 }
2158 
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2159 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2160 			 const struct io_uring_sqe *sqe)
2161 	__must_hold(&ctx->uring_lock)
2162 {
2163 	struct io_submit_link *link = &ctx->submit_state.link;
2164 	int ret;
2165 
2166 	ret = io_init_req(ctx, req, sqe);
2167 	if (unlikely(ret))
2168 		return io_submit_fail_init(sqe, req, ret);
2169 
2170 	trace_io_uring_submit_req(req);
2171 
2172 	/*
2173 	 * If we already have a head request, queue this one for async
2174 	 * submittal once the head completes. If we don't have a head but
2175 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2176 	 * submitted sync once the chain is complete. If none of those
2177 	 * conditions are true (normal request), then just queue it.
2178 	 */
2179 	if (unlikely(link->head)) {
2180 		trace_io_uring_link(req, link->last);
2181 		link->last->link = req;
2182 		link->last = req;
2183 
2184 		if (req->flags & IO_REQ_LINK_FLAGS)
2185 			return 0;
2186 		/* last request of the link, flush it */
2187 		req = link->head;
2188 		link->head = NULL;
2189 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2190 			goto fallback;
2191 
2192 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2193 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2194 		if (req->flags & IO_REQ_LINK_FLAGS) {
2195 			link->head = req;
2196 			link->last = req;
2197 		} else {
2198 fallback:
2199 			io_queue_sqe_fallback(req);
2200 		}
2201 		return 0;
2202 	}
2203 
2204 	io_queue_sqe(req);
2205 	return 0;
2206 }
2207 
2208 /*
2209  * Batched submission is done, ensure local IO is flushed out.
2210  */
io_submit_state_end(struct io_ring_ctx * ctx)2211 static void io_submit_state_end(struct io_ring_ctx *ctx)
2212 {
2213 	struct io_submit_state *state = &ctx->submit_state;
2214 
2215 	if (unlikely(state->link.head))
2216 		io_queue_sqe_fallback(state->link.head);
2217 	/* flush only after queuing links as they can generate completions */
2218 	io_submit_flush_completions(ctx);
2219 	if (state->plug_started)
2220 		blk_finish_plug(&state->plug);
2221 }
2222 
2223 /*
2224  * Start submission side cache.
2225  */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)2226 static void io_submit_state_start(struct io_submit_state *state,
2227 				  unsigned int max_ios)
2228 {
2229 	state->plug_started = false;
2230 	state->need_plug = max_ios > 2;
2231 	state->submit_nr = max_ios;
2232 	/* set only head, no need to init link_last in advance */
2233 	state->link.head = NULL;
2234 }
2235 
io_commit_sqring(struct io_ring_ctx * ctx)2236 static void io_commit_sqring(struct io_ring_ctx *ctx)
2237 {
2238 	struct io_rings *rings = ctx->rings;
2239 
2240 	/*
2241 	 * Ensure any loads from the SQEs are done at this point,
2242 	 * since once we write the new head, the application could
2243 	 * write new data to them.
2244 	 */
2245 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2246 }
2247 
2248 /*
2249  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2250  * that is mapped by userspace. This means that care needs to be taken to
2251  * ensure that reads are stable, as we cannot rely on userspace always
2252  * being a good citizen. If members of the sqe are validated and then later
2253  * used, it's important that those reads are done through READ_ONCE() to
2254  * prevent a re-load down the line.
2255  */
io_get_sqe(struct io_ring_ctx * ctx,const struct io_uring_sqe ** sqe)2256 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2257 {
2258 	unsigned mask = ctx->sq_entries - 1;
2259 	unsigned head = ctx->cached_sq_head++ & mask;
2260 
2261 	if (static_branch_unlikely(&io_key_has_sqarray) &&
2262 	    (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
2263 		head = READ_ONCE(ctx->sq_array[head]);
2264 		if (unlikely(head >= ctx->sq_entries)) {
2265 			/* drop invalid entries */
2266 			spin_lock(&ctx->completion_lock);
2267 			ctx->cq_extra--;
2268 			spin_unlock(&ctx->completion_lock);
2269 			WRITE_ONCE(ctx->rings->sq_dropped,
2270 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2271 			return false;
2272 		}
2273 		head = array_index_nospec(head, ctx->sq_entries);
2274 	}
2275 
2276 	/*
2277 	 * The cached sq head (or cq tail) serves two purposes:
2278 	 *
2279 	 * 1) allows us to batch the cost of updating the user visible
2280 	 *    head updates.
2281 	 * 2) allows the kernel side to track the head on its own, even
2282 	 *    though the application is the one updating it.
2283 	 */
2284 
2285 	/* double index for 128-byte SQEs, twice as long */
2286 	if (ctx->flags & IORING_SETUP_SQE128)
2287 		head <<= 1;
2288 	*sqe = &ctx->sq_sqes[head];
2289 	return true;
2290 }
2291 
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)2292 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2293 	__must_hold(&ctx->uring_lock)
2294 {
2295 	unsigned int entries = io_sqring_entries(ctx);
2296 	unsigned int left;
2297 	int ret;
2298 
2299 	if (unlikely(!entries))
2300 		return 0;
2301 	/* make sure SQ entry isn't read before tail */
2302 	ret = left = min(nr, entries);
2303 	io_get_task_refs(left);
2304 	io_submit_state_start(&ctx->submit_state, left);
2305 
2306 	do {
2307 		const struct io_uring_sqe *sqe;
2308 		struct io_kiocb *req;
2309 
2310 		if (unlikely(!io_alloc_req(ctx, &req)))
2311 			break;
2312 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2313 			io_req_add_to_cache(req, ctx);
2314 			break;
2315 		}
2316 
2317 		/*
2318 		 * Continue submitting even for sqe failure if the
2319 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2320 		 */
2321 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2322 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2323 			left--;
2324 			break;
2325 		}
2326 	} while (--left);
2327 
2328 	if (unlikely(left)) {
2329 		ret -= left;
2330 		/* try again if it submitted nothing and can't allocate a req */
2331 		if (!ret && io_req_cache_empty(ctx))
2332 			ret = -EAGAIN;
2333 		current->io_uring->cached_refs += left;
2334 	}
2335 
2336 	io_submit_state_end(ctx);
2337 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2338 	io_commit_sqring(ctx);
2339 	return ret;
2340 }
2341 
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)2342 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2343 			    int wake_flags, void *key)
2344 {
2345 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2346 
2347 	/*
2348 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2349 	 * the task, and the next invocation will do it.
2350 	 */
2351 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2352 		return autoremove_wake_function(curr, mode, wake_flags, key);
2353 	return -1;
2354 }
2355 
io_run_task_work_sig(struct io_ring_ctx * ctx)2356 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2357 {
2358 	if (io_local_work_pending(ctx)) {
2359 		__set_current_state(TASK_RUNNING);
2360 		if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0)
2361 			return 0;
2362 	}
2363 	if (io_run_task_work() > 0)
2364 		return 0;
2365 	if (task_sigpending(current))
2366 		return -EINTR;
2367 	return 0;
2368 }
2369 
current_pending_io(void)2370 static bool current_pending_io(void)
2371 {
2372 	struct io_uring_task *tctx = current->io_uring;
2373 
2374 	if (!tctx)
2375 		return false;
2376 	return percpu_counter_read_positive(&tctx->inflight);
2377 }
2378 
io_cqring_timer_wakeup(struct hrtimer * timer)2379 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2380 {
2381 	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2382 
2383 	WRITE_ONCE(iowq->hit_timeout, 1);
2384 	iowq->min_timeout = 0;
2385 	wake_up_process(iowq->wq.private);
2386 	return HRTIMER_NORESTART;
2387 }
2388 
2389 /*
2390  * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2391  * wake up. If not, and we have a normal timeout, switch to that and keep
2392  * sleeping.
2393  */
io_cqring_min_timer_wakeup(struct hrtimer * timer)2394 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2395 {
2396 	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2397 	struct io_ring_ctx *ctx = iowq->ctx;
2398 
2399 	/* no general timeout, or shorter (or equal), we are done */
2400 	if (iowq->timeout == KTIME_MAX ||
2401 	    ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2402 		goto out_wake;
2403 	/* work we may need to run, wake function will see if we need to wake */
2404 	if (io_has_work(ctx))
2405 		goto out_wake;
2406 	/* got events since we started waiting, min timeout is done */
2407 	if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2408 		goto out_wake;
2409 	/* if we have any events and min timeout expired, we're done */
2410 	if (io_cqring_events(ctx))
2411 		goto out_wake;
2412 
2413 	/*
2414 	 * If using deferred task_work running and application is waiting on
2415 	 * more than one request, ensure we reset it now where we are switching
2416 	 * to normal sleeps. Any request completion post min_wait should wake
2417 	 * the task and return.
2418 	 */
2419 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2420 		atomic_set(&ctx->cq_wait_nr, 1);
2421 		smp_mb();
2422 		if (!llist_empty(&ctx->work_llist))
2423 			goto out_wake;
2424 	}
2425 
2426 	iowq->t.function = io_cqring_timer_wakeup;
2427 	hrtimer_set_expires(timer, iowq->timeout);
2428 	return HRTIMER_RESTART;
2429 out_wake:
2430 	return io_cqring_timer_wakeup(timer);
2431 }
2432 
io_cqring_schedule_timeout(struct io_wait_queue * iowq,clockid_t clock_id,ktime_t start_time)2433 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2434 				      clockid_t clock_id, ktime_t start_time)
2435 {
2436 	ktime_t timeout;
2437 
2438 	if (iowq->min_timeout) {
2439 		timeout = ktime_add_ns(iowq->min_timeout, start_time);
2440 		hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id,
2441 				       HRTIMER_MODE_ABS);
2442 	} else {
2443 		timeout = iowq->timeout;
2444 		hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id,
2445 				       HRTIMER_MODE_ABS);
2446 	}
2447 
2448 	hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2449 	hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2450 
2451 	if (!READ_ONCE(iowq->hit_timeout))
2452 		schedule();
2453 
2454 	hrtimer_cancel(&iowq->t);
2455 	destroy_hrtimer_on_stack(&iowq->t);
2456 	__set_current_state(TASK_RUNNING);
2457 
2458 	return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2459 }
2460 
__io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,ktime_t start_time)2461 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2462 				     struct io_wait_queue *iowq,
2463 				     ktime_t start_time)
2464 {
2465 	int ret = 0;
2466 
2467 	/*
2468 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2469 	 * can take into account that the task is waiting for IO - turns out
2470 	 * to be important for low QD IO.
2471 	 */
2472 	if (current_pending_io())
2473 		current->in_iowait = 1;
2474 	if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2475 		ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2476 	else
2477 		schedule();
2478 	current->in_iowait = 0;
2479 	return ret;
2480 }
2481 
2482 /* If this returns > 0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,ktime_t start_time)2483 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2484 					  struct io_wait_queue *iowq,
2485 					  ktime_t start_time)
2486 {
2487 	if (unlikely(READ_ONCE(ctx->check_cq)))
2488 		return 1;
2489 	if (unlikely(io_local_work_pending(ctx)))
2490 		return 1;
2491 	if (unlikely(task_work_pending(current)))
2492 		return 1;
2493 	if (unlikely(task_sigpending(current)))
2494 		return -EINTR;
2495 	if (unlikely(io_should_wake(iowq)))
2496 		return 0;
2497 
2498 	return __io_cqring_wait_schedule(ctx, iowq, start_time);
2499 }
2500 
2501 struct ext_arg {
2502 	size_t argsz;
2503 	struct timespec64 ts;
2504 	const sigset_t __user *sig;
2505 	ktime_t min_time;
2506 	bool ts_set;
2507 };
2508 
2509 /*
2510  * Wait until events become available, if we don't already have some. The
2511  * application must reap them itself, as they reside on the shared cq ring.
2512  */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,u32 flags,struct ext_arg * ext_arg)2513 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2514 			  struct ext_arg *ext_arg)
2515 {
2516 	struct io_wait_queue iowq;
2517 	struct io_rings *rings = ctx->rings;
2518 	ktime_t start_time;
2519 	int ret;
2520 
2521 	if (!io_allowed_run_tw(ctx))
2522 		return -EEXIST;
2523 	if (io_local_work_pending(ctx))
2524 		io_run_local_work(ctx, min_events,
2525 				  max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
2526 	io_run_task_work();
2527 
2528 	if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2529 		io_cqring_do_overflow_flush(ctx);
2530 	if (__io_cqring_events_user(ctx) >= min_events)
2531 		return 0;
2532 
2533 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2534 	iowq.wq.private = current;
2535 	INIT_LIST_HEAD(&iowq.wq.entry);
2536 	iowq.ctx = ctx;
2537 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2538 	iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2539 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2540 	iowq.hit_timeout = 0;
2541 	iowq.min_timeout = ext_arg->min_time;
2542 	iowq.timeout = KTIME_MAX;
2543 	start_time = io_get_time(ctx);
2544 
2545 	if (ext_arg->ts_set) {
2546 		iowq.timeout = timespec64_to_ktime(ext_arg->ts);
2547 		if (!(flags & IORING_ENTER_ABS_TIMER))
2548 			iowq.timeout = ktime_add(iowq.timeout, start_time);
2549 	}
2550 
2551 	if (ext_arg->sig) {
2552 #ifdef CONFIG_COMPAT
2553 		if (in_compat_syscall())
2554 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2555 						      ext_arg->argsz);
2556 		else
2557 #endif
2558 			ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2559 
2560 		if (ret)
2561 			return ret;
2562 	}
2563 
2564 	io_napi_busy_loop(ctx, &iowq);
2565 
2566 	trace_io_uring_cqring_wait(ctx, min_events);
2567 	do {
2568 		unsigned long check_cq;
2569 		int nr_wait;
2570 
2571 		/* if min timeout has been hit, don't reset wait count */
2572 		if (!iowq.hit_timeout)
2573 			nr_wait = (int) iowq.cq_tail -
2574 					READ_ONCE(ctx->rings->cq.tail);
2575 		else
2576 			nr_wait = 1;
2577 
2578 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2579 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2580 			set_current_state(TASK_INTERRUPTIBLE);
2581 		} else {
2582 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2583 							TASK_INTERRUPTIBLE);
2584 		}
2585 
2586 		ret = io_cqring_wait_schedule(ctx, &iowq, start_time);
2587 		__set_current_state(TASK_RUNNING);
2588 		atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2589 
2590 		/*
2591 		 * Run task_work after scheduling and before io_should_wake().
2592 		 * If we got woken because of task_work being processed, run it
2593 		 * now rather than let the caller do another wait loop.
2594 		 */
2595 		if (io_local_work_pending(ctx))
2596 			io_run_local_work(ctx, nr_wait, nr_wait);
2597 		io_run_task_work();
2598 
2599 		/*
2600 		 * Non-local task_work will be run on exit to userspace, but
2601 		 * if we're using DEFER_TASKRUN, then we could have waited
2602 		 * with a timeout for a number of requests. If the timeout
2603 		 * hits, we could have some requests ready to process. Ensure
2604 		 * this break is _after_ we have run task_work, to avoid
2605 		 * deferring running potentially pending requests until the
2606 		 * next time we wait for events.
2607 		 */
2608 		if (ret < 0)
2609 			break;
2610 
2611 		check_cq = READ_ONCE(ctx->check_cq);
2612 		if (unlikely(check_cq)) {
2613 			/* let the caller flush overflows, retry */
2614 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2615 				io_cqring_do_overflow_flush(ctx);
2616 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2617 				ret = -EBADR;
2618 				break;
2619 			}
2620 		}
2621 
2622 		if (io_should_wake(&iowq)) {
2623 			ret = 0;
2624 			break;
2625 		}
2626 		cond_resched();
2627 	} while (1);
2628 
2629 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2630 		finish_wait(&ctx->cq_wait, &iowq.wq);
2631 	restore_saved_sigmask_unless(ret == -EINTR);
2632 
2633 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2634 }
2635 
io_rings_free(struct io_ring_ctx * ctx)2636 static void io_rings_free(struct io_ring_ctx *ctx)
2637 {
2638 	io_free_region(ctx, &ctx->sq_region);
2639 	io_free_region(ctx, &ctx->ring_region);
2640 	ctx->rings = NULL;
2641 	ctx->sq_sqes = NULL;
2642 }
2643 
rings_size(unsigned int flags,unsigned int sq_entries,unsigned int cq_entries,size_t * sq_offset)2644 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
2645 			 unsigned int cq_entries, size_t *sq_offset)
2646 {
2647 	struct io_rings *rings;
2648 	size_t off, sq_array_size;
2649 
2650 	off = struct_size(rings, cqes, cq_entries);
2651 	if (off == SIZE_MAX)
2652 		return SIZE_MAX;
2653 	if (flags & IORING_SETUP_CQE32) {
2654 		if (check_shl_overflow(off, 1, &off))
2655 			return SIZE_MAX;
2656 	}
2657 
2658 #ifdef CONFIG_SMP
2659 	off = ALIGN(off, SMP_CACHE_BYTES);
2660 	if (off == 0)
2661 		return SIZE_MAX;
2662 #endif
2663 
2664 	if (flags & IORING_SETUP_NO_SQARRAY) {
2665 		*sq_offset = SIZE_MAX;
2666 		return off;
2667 	}
2668 
2669 	*sq_offset = off;
2670 
2671 	sq_array_size = array_size(sizeof(u32), sq_entries);
2672 	if (sq_array_size == SIZE_MAX)
2673 		return SIZE_MAX;
2674 
2675 	if (check_add_overflow(off, sq_array_size, &off))
2676 		return SIZE_MAX;
2677 
2678 	return off;
2679 }
2680 
io_req_caches_free(struct io_ring_ctx * ctx)2681 static void io_req_caches_free(struct io_ring_ctx *ctx)
2682 {
2683 	struct io_kiocb *req;
2684 	int nr = 0;
2685 
2686 	mutex_lock(&ctx->uring_lock);
2687 
2688 	while (!io_req_cache_empty(ctx)) {
2689 		req = io_extract_req(ctx);
2690 		kmem_cache_free(req_cachep, req);
2691 		nr++;
2692 	}
2693 	if (nr)
2694 		percpu_ref_put_many(&ctx->refs, nr);
2695 	mutex_unlock(&ctx->uring_lock);
2696 }
2697 
io_ring_ctx_free(struct io_ring_ctx * ctx)2698 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2699 {
2700 	io_sq_thread_finish(ctx);
2701 
2702 	mutex_lock(&ctx->uring_lock);
2703 	io_sqe_buffers_unregister(ctx);
2704 	io_sqe_files_unregister(ctx);
2705 	io_cqring_overflow_kill(ctx);
2706 	io_eventfd_unregister(ctx);
2707 	io_alloc_cache_free(&ctx->apoll_cache, kfree);
2708 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2709 	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
2710 	io_alloc_cache_free(&ctx->uring_cache, kfree);
2711 	io_alloc_cache_free(&ctx->msg_cache, kfree);
2712 	io_futex_cache_free(ctx);
2713 	io_destroy_buffers(ctx);
2714 	io_free_region(ctx, &ctx->param_region);
2715 	mutex_unlock(&ctx->uring_lock);
2716 	if (ctx->sq_creds)
2717 		put_cred(ctx->sq_creds);
2718 	if (ctx->submitter_task)
2719 		put_task_struct(ctx->submitter_task);
2720 
2721 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2722 
2723 	if (ctx->mm_account) {
2724 		mmdrop(ctx->mm_account);
2725 		ctx->mm_account = NULL;
2726 	}
2727 	io_rings_free(ctx);
2728 
2729 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2730 		static_branch_dec(&io_key_has_sqarray);
2731 
2732 	percpu_ref_exit(&ctx->refs);
2733 	free_uid(ctx->user);
2734 	io_req_caches_free(ctx);
2735 	if (ctx->hash_map)
2736 		io_wq_put_hash(ctx->hash_map);
2737 	io_napi_free(ctx);
2738 	kvfree(ctx->cancel_table.hbs);
2739 	xa_destroy(&ctx->io_bl_xa);
2740 	kfree(ctx);
2741 }
2742 
io_activate_pollwq_cb(struct callback_head * cb)2743 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2744 {
2745 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2746 					       poll_wq_task_work);
2747 
2748 	mutex_lock(&ctx->uring_lock);
2749 	ctx->poll_activated = true;
2750 	mutex_unlock(&ctx->uring_lock);
2751 
2752 	/*
2753 	 * Wake ups for some events between start of polling and activation
2754 	 * might've been lost due to loose synchronisation.
2755 	 */
2756 	wake_up_all(&ctx->poll_wq);
2757 	percpu_ref_put(&ctx->refs);
2758 }
2759 
io_activate_pollwq(struct io_ring_ctx * ctx)2760 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2761 {
2762 	spin_lock(&ctx->completion_lock);
2763 	/* already activated or in progress */
2764 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2765 		goto out;
2766 	if (WARN_ON_ONCE(!ctx->task_complete))
2767 		goto out;
2768 	if (!ctx->submitter_task)
2769 		goto out;
2770 	/*
2771 	 * with ->submitter_task only the submitter task completes requests, we
2772 	 * only need to sync with it, which is done by injecting a tw
2773 	 */
2774 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2775 	percpu_ref_get(&ctx->refs);
2776 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2777 		percpu_ref_put(&ctx->refs);
2778 out:
2779 	spin_unlock(&ctx->completion_lock);
2780 }
2781 
io_uring_poll(struct file * file,poll_table * wait)2782 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2783 {
2784 	struct io_ring_ctx *ctx = file->private_data;
2785 	__poll_t mask = 0;
2786 
2787 	if (unlikely(!ctx->poll_activated))
2788 		io_activate_pollwq(ctx);
2789 	/*
2790 	 * provides mb() which pairs with barrier from wq_has_sleeper
2791 	 * call in io_commit_cqring
2792 	 */
2793 	poll_wait(file, &ctx->poll_wq, wait);
2794 
2795 	if (!io_sqring_full(ctx))
2796 		mask |= EPOLLOUT | EPOLLWRNORM;
2797 
2798 	/*
2799 	 * Don't flush cqring overflow list here, just do a simple check.
2800 	 * Otherwise there could possible be ABBA deadlock:
2801 	 *      CPU0                    CPU1
2802 	 *      ----                    ----
2803 	 * lock(&ctx->uring_lock);
2804 	 *                              lock(&ep->mtx);
2805 	 *                              lock(&ctx->uring_lock);
2806 	 * lock(&ep->mtx);
2807 	 *
2808 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2809 	 * pushes them to do the flush.
2810 	 */
2811 
2812 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2813 		mask |= EPOLLIN | EPOLLRDNORM;
2814 
2815 	return mask;
2816 }
2817 
2818 struct io_tctx_exit {
2819 	struct callback_head		task_work;
2820 	struct completion		completion;
2821 	struct io_ring_ctx		*ctx;
2822 };
2823 
io_tctx_exit_cb(struct callback_head * cb)2824 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2825 {
2826 	struct io_uring_task *tctx = current->io_uring;
2827 	struct io_tctx_exit *work;
2828 
2829 	work = container_of(cb, struct io_tctx_exit, task_work);
2830 	/*
2831 	 * When @in_cancel, we're in cancellation and it's racy to remove the
2832 	 * node. It'll be removed by the end of cancellation, just ignore it.
2833 	 * tctx can be NULL if the queueing of this task_work raced with
2834 	 * work cancelation off the exec path.
2835 	 */
2836 	if (tctx && !atomic_read(&tctx->in_cancel))
2837 		io_uring_del_tctx_node((unsigned long)work->ctx);
2838 	complete(&work->completion);
2839 }
2840 
io_cancel_ctx_cb(struct io_wq_work * work,void * data)2841 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2842 {
2843 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2844 
2845 	return req->ctx == data;
2846 }
2847 
io_ring_exit_work(struct work_struct * work)2848 static __cold void io_ring_exit_work(struct work_struct *work)
2849 {
2850 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2851 	unsigned long timeout = jiffies + HZ * 60 * 5;
2852 	unsigned long interval = HZ / 20;
2853 	struct io_tctx_exit exit;
2854 	struct io_tctx_node *node;
2855 	int ret;
2856 
2857 	/*
2858 	 * If we're doing polled IO and end up having requests being
2859 	 * submitted async (out-of-line), then completions can come in while
2860 	 * we're waiting for refs to drop. We need to reap these manually,
2861 	 * as nobody else will be looking for them.
2862 	 */
2863 	do {
2864 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2865 			mutex_lock(&ctx->uring_lock);
2866 			io_cqring_overflow_kill(ctx);
2867 			mutex_unlock(&ctx->uring_lock);
2868 		}
2869 
2870 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2871 			io_move_task_work_from_local(ctx);
2872 
2873 		/* The SQPOLL thread never reaches this path */
2874 		while (io_uring_try_cancel_requests(ctx, NULL, true, false))
2875 			cond_resched();
2876 
2877 		if (ctx->sq_data) {
2878 			struct io_sq_data *sqd = ctx->sq_data;
2879 			struct task_struct *tsk;
2880 
2881 			io_sq_thread_park(sqd);
2882 			tsk = sqd->thread;
2883 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2884 				io_wq_cancel_cb(tsk->io_uring->io_wq,
2885 						io_cancel_ctx_cb, ctx, true);
2886 			io_sq_thread_unpark(sqd);
2887 		}
2888 
2889 		io_req_caches_free(ctx);
2890 
2891 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2892 			/* there is little hope left, don't run it too often */
2893 			interval = HZ * 60;
2894 		}
2895 		/*
2896 		 * This is really an uninterruptible wait, as it has to be
2897 		 * complete. But it's also run from a kworker, which doesn't
2898 		 * take signals, so it's fine to make it interruptible. This
2899 		 * avoids scenarios where we knowingly can wait much longer
2900 		 * on completions, for example if someone does a SIGSTOP on
2901 		 * a task that needs to finish task_work to make this loop
2902 		 * complete. That's a synthetic situation that should not
2903 		 * cause a stuck task backtrace, and hence a potential panic
2904 		 * on stuck tasks if that is enabled.
2905 		 */
2906 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2907 
2908 	init_completion(&exit.completion);
2909 	init_task_work(&exit.task_work, io_tctx_exit_cb);
2910 	exit.ctx = ctx;
2911 
2912 	mutex_lock(&ctx->uring_lock);
2913 	while (!list_empty(&ctx->tctx_list)) {
2914 		WARN_ON_ONCE(time_after(jiffies, timeout));
2915 
2916 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2917 					ctx_node);
2918 		/* don't spin on a single task if cancellation failed */
2919 		list_rotate_left(&ctx->tctx_list);
2920 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2921 		if (WARN_ON_ONCE(ret))
2922 			continue;
2923 
2924 		mutex_unlock(&ctx->uring_lock);
2925 		/*
2926 		 * See comment above for
2927 		 * wait_for_completion_interruptible_timeout() on why this
2928 		 * wait is marked as interruptible.
2929 		 */
2930 		wait_for_completion_interruptible(&exit.completion);
2931 		mutex_lock(&ctx->uring_lock);
2932 	}
2933 	mutex_unlock(&ctx->uring_lock);
2934 	spin_lock(&ctx->completion_lock);
2935 	spin_unlock(&ctx->completion_lock);
2936 
2937 	/* pairs with RCU read section in io_req_local_work_add() */
2938 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2939 		synchronize_rcu();
2940 
2941 	io_ring_ctx_free(ctx);
2942 }
2943 
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)2944 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2945 {
2946 	unsigned long index;
2947 	struct creds *creds;
2948 
2949 	mutex_lock(&ctx->uring_lock);
2950 	percpu_ref_kill(&ctx->refs);
2951 	xa_for_each(&ctx->personalities, index, creds)
2952 		io_unregister_personality(ctx, index);
2953 	mutex_unlock(&ctx->uring_lock);
2954 
2955 	flush_delayed_work(&ctx->fallback_work);
2956 
2957 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2958 	/*
2959 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
2960 	 * if we're exiting a ton of rings at the same time. It just adds
2961 	 * noise and overhead, there's no discernable change in runtime
2962 	 * over using system_wq.
2963 	 */
2964 	queue_work(iou_wq, &ctx->exit_work);
2965 }
2966 
io_uring_release(struct inode * inode,struct file * file)2967 static int io_uring_release(struct inode *inode, struct file *file)
2968 {
2969 	struct io_ring_ctx *ctx = file->private_data;
2970 
2971 	file->private_data = NULL;
2972 	io_ring_ctx_wait_and_kill(ctx);
2973 	return 0;
2974 }
2975 
2976 struct io_task_cancel {
2977 	struct io_uring_task *tctx;
2978 	bool all;
2979 };
2980 
io_cancel_task_cb(struct io_wq_work * work,void * data)2981 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
2982 {
2983 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2984 	struct io_task_cancel *cancel = data;
2985 
2986 	return io_match_task_safe(req, cancel->tctx, cancel->all);
2987 }
2988 
io_cancel_defer_files(struct io_ring_ctx * ctx,struct io_uring_task * tctx,bool cancel_all)2989 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
2990 					 struct io_uring_task *tctx,
2991 					 bool cancel_all)
2992 {
2993 	struct io_defer_entry *de;
2994 	LIST_HEAD(list);
2995 
2996 	spin_lock(&ctx->completion_lock);
2997 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
2998 		if (io_match_task_safe(de->req, tctx, cancel_all)) {
2999 			list_cut_position(&list, &ctx->defer_list, &de->list);
3000 			break;
3001 		}
3002 	}
3003 	spin_unlock(&ctx->completion_lock);
3004 	if (list_empty(&list))
3005 		return false;
3006 
3007 	while (!list_empty(&list)) {
3008 		de = list_first_entry(&list, struct io_defer_entry, list);
3009 		list_del_init(&de->list);
3010 		io_req_task_queue_fail(de->req, -ECANCELED);
3011 		kfree(de);
3012 	}
3013 	return true;
3014 }
3015 
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)3016 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3017 {
3018 	struct io_tctx_node *node;
3019 	enum io_wq_cancel cret;
3020 	bool ret = false;
3021 
3022 	mutex_lock(&ctx->uring_lock);
3023 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3024 		struct io_uring_task *tctx = node->task->io_uring;
3025 
3026 		/*
3027 		 * io_wq will stay alive while we hold uring_lock, because it's
3028 		 * killed after ctx nodes, which requires to take the lock.
3029 		 */
3030 		if (!tctx || !tctx->io_wq)
3031 			continue;
3032 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3033 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3034 	}
3035 	mutex_unlock(&ctx->uring_lock);
3036 
3037 	return ret;
3038 }
3039 
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct io_uring_task * tctx,bool cancel_all,bool is_sqpoll_thread)3040 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3041 						struct io_uring_task *tctx,
3042 						bool cancel_all,
3043 						bool is_sqpoll_thread)
3044 {
3045 	struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, };
3046 	enum io_wq_cancel cret;
3047 	bool ret = false;
3048 
3049 	/* set it so io_req_local_work_add() would wake us up */
3050 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3051 		atomic_set(&ctx->cq_wait_nr, 1);
3052 		smp_mb();
3053 	}
3054 
3055 	/* failed during ring init, it couldn't have issued any requests */
3056 	if (!ctx->rings)
3057 		return false;
3058 
3059 	if (!tctx) {
3060 		ret |= io_uring_try_cancel_iowq(ctx);
3061 	} else if (tctx->io_wq) {
3062 		/*
3063 		 * Cancels requests of all rings, not only @ctx, but
3064 		 * it's fine as the task is in exit/exec.
3065 		 */
3066 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3067 				       &cancel, true);
3068 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3069 	}
3070 
3071 	/* SQPOLL thread does its own polling */
3072 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3073 	    is_sqpoll_thread) {
3074 		while (!wq_list_empty(&ctx->iopoll_list)) {
3075 			io_iopoll_try_reap_events(ctx);
3076 			ret = true;
3077 			cond_resched();
3078 		}
3079 	}
3080 
3081 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3082 	    io_allowed_defer_tw_run(ctx))
3083 		ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0;
3084 	ret |= io_cancel_defer_files(ctx, tctx, cancel_all);
3085 	mutex_lock(&ctx->uring_lock);
3086 	ret |= io_poll_remove_all(ctx, tctx, cancel_all);
3087 	ret |= io_waitid_remove_all(ctx, tctx, cancel_all);
3088 	ret |= io_futex_remove_all(ctx, tctx, cancel_all);
3089 	ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all);
3090 	mutex_unlock(&ctx->uring_lock);
3091 	ret |= io_kill_timeouts(ctx, tctx, cancel_all);
3092 	if (tctx)
3093 		ret |= io_run_task_work() > 0;
3094 	else
3095 		ret |= flush_delayed_work(&ctx->fallback_work);
3096 	return ret;
3097 }
3098 
tctx_inflight(struct io_uring_task * tctx,bool tracked)3099 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3100 {
3101 	if (tracked)
3102 		return atomic_read(&tctx->inflight_tracked);
3103 	return percpu_counter_sum(&tctx->inflight);
3104 }
3105 
3106 /*
3107  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3108  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3109  */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)3110 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3111 {
3112 	struct io_uring_task *tctx = current->io_uring;
3113 	struct io_ring_ctx *ctx;
3114 	struct io_tctx_node *node;
3115 	unsigned long index;
3116 	s64 inflight;
3117 	DEFINE_WAIT(wait);
3118 
3119 	WARN_ON_ONCE(sqd && sqd->thread != current);
3120 
3121 	if (!current->io_uring)
3122 		return;
3123 	if (tctx->io_wq)
3124 		io_wq_exit_start(tctx->io_wq);
3125 
3126 	atomic_inc(&tctx->in_cancel);
3127 	do {
3128 		bool loop = false;
3129 
3130 		io_uring_drop_tctx_refs(current);
3131 		if (!tctx_inflight(tctx, !cancel_all))
3132 			break;
3133 
3134 		/* read completions before cancelations */
3135 		inflight = tctx_inflight(tctx, false);
3136 		if (!inflight)
3137 			break;
3138 
3139 		if (!sqd) {
3140 			xa_for_each(&tctx->xa, index, node) {
3141 				/* sqpoll task will cancel all its requests */
3142 				if (node->ctx->sq_data)
3143 					continue;
3144 				loop |= io_uring_try_cancel_requests(node->ctx,
3145 							current->io_uring,
3146 							cancel_all,
3147 							false);
3148 			}
3149 		} else {
3150 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3151 				loop |= io_uring_try_cancel_requests(ctx,
3152 								     current->io_uring,
3153 								     cancel_all,
3154 								     true);
3155 		}
3156 
3157 		if (loop) {
3158 			cond_resched();
3159 			continue;
3160 		}
3161 
3162 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3163 		io_run_task_work();
3164 		io_uring_drop_tctx_refs(current);
3165 		xa_for_each(&tctx->xa, index, node) {
3166 			if (io_local_work_pending(node->ctx)) {
3167 				WARN_ON_ONCE(node->ctx->submitter_task &&
3168 					     node->ctx->submitter_task != current);
3169 				goto end_wait;
3170 			}
3171 		}
3172 		/*
3173 		 * If we've seen completions, retry without waiting. This
3174 		 * avoids a race where a completion comes in before we did
3175 		 * prepare_to_wait().
3176 		 */
3177 		if (inflight == tctx_inflight(tctx, !cancel_all))
3178 			schedule();
3179 end_wait:
3180 		finish_wait(&tctx->wait, &wait);
3181 	} while (1);
3182 
3183 	io_uring_clean_tctx(tctx);
3184 	if (cancel_all) {
3185 		/*
3186 		 * We shouldn't run task_works after cancel, so just leave
3187 		 * ->in_cancel set for normal exit.
3188 		 */
3189 		atomic_dec(&tctx->in_cancel);
3190 		/* for exec all current's requests should be gone, kill tctx */
3191 		__io_uring_free(current);
3192 	}
3193 }
3194 
__io_uring_cancel(bool cancel_all)3195 void __io_uring_cancel(bool cancel_all)
3196 {
3197 	io_uring_unreg_ringfd();
3198 	io_uring_cancel_generic(cancel_all, NULL);
3199 }
3200 
io_get_ext_arg_reg(struct io_ring_ctx * ctx,const struct io_uring_getevents_arg __user * uarg)3201 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
3202 			const struct io_uring_getevents_arg __user *uarg)
3203 {
3204 	unsigned long size = sizeof(struct io_uring_reg_wait);
3205 	unsigned long offset = (uintptr_t)uarg;
3206 	unsigned long end;
3207 
3208 	if (unlikely(offset % sizeof(long)))
3209 		return ERR_PTR(-EFAULT);
3210 
3211 	/* also protects from NULL ->cq_wait_arg as the size would be 0 */
3212 	if (unlikely(check_add_overflow(offset, size, &end) ||
3213 		     end > ctx->cq_wait_size))
3214 		return ERR_PTR(-EFAULT);
3215 
3216 	offset = array_index_nospec(offset, ctx->cq_wait_size - size);
3217 	return ctx->cq_wait_arg + offset;
3218 }
3219 
io_validate_ext_arg(struct io_ring_ctx * ctx,unsigned flags,const void __user * argp,size_t argsz)3220 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3221 			       const void __user *argp, size_t argsz)
3222 {
3223 	struct io_uring_getevents_arg arg;
3224 
3225 	if (!(flags & IORING_ENTER_EXT_ARG))
3226 		return 0;
3227 	if (flags & IORING_ENTER_EXT_ARG_REG)
3228 		return -EINVAL;
3229 	if (argsz != sizeof(arg))
3230 		return -EINVAL;
3231 	if (copy_from_user(&arg, argp, sizeof(arg)))
3232 		return -EFAULT;
3233 	return 0;
3234 }
3235 
io_get_ext_arg(struct io_ring_ctx * ctx,unsigned flags,const void __user * argp,struct ext_arg * ext_arg)3236 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3237 			  const void __user *argp, struct ext_arg *ext_arg)
3238 {
3239 	const struct io_uring_getevents_arg __user *uarg = argp;
3240 	struct io_uring_getevents_arg arg;
3241 
3242 	/*
3243 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3244 	 * is just a pointer to the sigset_t.
3245 	 */
3246 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3247 		ext_arg->sig = (const sigset_t __user *) argp;
3248 		return 0;
3249 	}
3250 
3251 	if (flags & IORING_ENTER_EXT_ARG_REG) {
3252 		struct io_uring_reg_wait *w;
3253 
3254 		if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
3255 			return -EINVAL;
3256 		w = io_get_ext_arg_reg(ctx, argp);
3257 		if (IS_ERR(w))
3258 			return PTR_ERR(w);
3259 
3260 		if (w->flags & ~IORING_REG_WAIT_TS)
3261 			return -EINVAL;
3262 		ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
3263 		ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
3264 		ext_arg->argsz = READ_ONCE(w->sigmask_sz);
3265 		if (w->flags & IORING_REG_WAIT_TS) {
3266 			ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
3267 			ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
3268 			ext_arg->ts_set = true;
3269 		}
3270 		return 0;
3271 	}
3272 
3273 	/*
3274 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3275 	 * timespec and sigset_t pointers if good.
3276 	 */
3277 	if (ext_arg->argsz != sizeof(arg))
3278 		return -EINVAL;
3279 #ifdef CONFIG_64BIT
3280 	if (!user_access_begin(uarg, sizeof(*uarg)))
3281 		return -EFAULT;
3282 	unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
3283 	unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
3284 	unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
3285 	unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
3286 	user_access_end();
3287 #else
3288 	if (copy_from_user(&arg, uarg, sizeof(arg)))
3289 		return -EFAULT;
3290 #endif
3291 	ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3292 	ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3293 	ext_arg->argsz = arg.sigmask_sz;
3294 	if (arg.ts) {
3295 		if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
3296 			return -EFAULT;
3297 		ext_arg->ts_set = true;
3298 	}
3299 	return 0;
3300 #ifdef CONFIG_64BIT
3301 uaccess_end:
3302 	user_access_end();
3303 	return -EFAULT;
3304 #endif
3305 }
3306 
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)3307 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3308 		u32, min_complete, u32, flags, const void __user *, argp,
3309 		size_t, argsz)
3310 {
3311 	struct io_ring_ctx *ctx;
3312 	struct file *file;
3313 	long ret;
3314 
3315 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3316 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3317 			       IORING_ENTER_REGISTERED_RING |
3318 			       IORING_ENTER_ABS_TIMER |
3319 			       IORING_ENTER_EXT_ARG_REG)))
3320 		return -EINVAL;
3321 
3322 	/*
3323 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3324 	 * need only dereference our task private array to find it.
3325 	 */
3326 	if (flags & IORING_ENTER_REGISTERED_RING) {
3327 		struct io_uring_task *tctx = current->io_uring;
3328 
3329 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3330 			return -EINVAL;
3331 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3332 		file = tctx->registered_rings[fd];
3333 		if (unlikely(!file))
3334 			return -EBADF;
3335 	} else {
3336 		file = fget(fd);
3337 		if (unlikely(!file))
3338 			return -EBADF;
3339 		ret = -EOPNOTSUPP;
3340 		if (unlikely(!io_is_uring_fops(file)))
3341 			goto out;
3342 	}
3343 
3344 	ctx = file->private_data;
3345 	ret = -EBADFD;
3346 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3347 		goto out;
3348 
3349 	/*
3350 	 * For SQ polling, the thread will do all submissions and completions.
3351 	 * Just return the requested submit count, and wake the thread if
3352 	 * we were asked to.
3353 	 */
3354 	ret = 0;
3355 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3356 		if (unlikely(ctx->sq_data->thread == NULL)) {
3357 			ret = -EOWNERDEAD;
3358 			goto out;
3359 		}
3360 		if (flags & IORING_ENTER_SQ_WAKEUP)
3361 			wake_up(&ctx->sq_data->wait);
3362 		if (flags & IORING_ENTER_SQ_WAIT)
3363 			io_sqpoll_wait_sq(ctx);
3364 
3365 		ret = to_submit;
3366 	} else if (to_submit) {
3367 		ret = io_uring_add_tctx_node(ctx);
3368 		if (unlikely(ret))
3369 			goto out;
3370 
3371 		mutex_lock(&ctx->uring_lock);
3372 		ret = io_submit_sqes(ctx, to_submit);
3373 		if (ret != to_submit) {
3374 			mutex_unlock(&ctx->uring_lock);
3375 			goto out;
3376 		}
3377 		if (flags & IORING_ENTER_GETEVENTS) {
3378 			if (ctx->syscall_iopoll)
3379 				goto iopoll_locked;
3380 			/*
3381 			 * Ignore errors, we'll soon call io_cqring_wait() and
3382 			 * it should handle ownership problems if any.
3383 			 */
3384 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3385 				(void)io_run_local_work_locked(ctx, min_complete);
3386 		}
3387 		mutex_unlock(&ctx->uring_lock);
3388 	}
3389 
3390 	if (flags & IORING_ENTER_GETEVENTS) {
3391 		int ret2;
3392 
3393 		if (ctx->syscall_iopoll) {
3394 			/*
3395 			 * We disallow the app entering submit/complete with
3396 			 * polling, but we still need to lock the ring to
3397 			 * prevent racing with polled issue that got punted to
3398 			 * a workqueue.
3399 			 */
3400 			mutex_lock(&ctx->uring_lock);
3401 iopoll_locked:
3402 			ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
3403 			if (likely(!ret2)) {
3404 				min_complete = min(min_complete,
3405 						   ctx->cq_entries);
3406 				ret2 = io_iopoll_check(ctx, min_complete);
3407 			}
3408 			mutex_unlock(&ctx->uring_lock);
3409 		} else {
3410 			struct ext_arg ext_arg = { .argsz = argsz };
3411 
3412 			ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
3413 			if (likely(!ret2)) {
3414 				min_complete = min(min_complete,
3415 						   ctx->cq_entries);
3416 				ret2 = io_cqring_wait(ctx, min_complete, flags,
3417 						      &ext_arg);
3418 			}
3419 		}
3420 
3421 		if (!ret) {
3422 			ret = ret2;
3423 
3424 			/*
3425 			 * EBADR indicates that one or more CQE were dropped.
3426 			 * Once the user has been informed we can clear the bit
3427 			 * as they are obviously ok with those drops.
3428 			 */
3429 			if (unlikely(ret2 == -EBADR))
3430 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3431 					  &ctx->check_cq);
3432 		}
3433 	}
3434 out:
3435 	if (!(flags & IORING_ENTER_REGISTERED_RING))
3436 		fput(file);
3437 	return ret;
3438 }
3439 
3440 static const struct file_operations io_uring_fops = {
3441 	.release	= io_uring_release,
3442 	.mmap		= io_uring_mmap,
3443 	.get_unmapped_area = io_uring_get_unmapped_area,
3444 #ifndef CONFIG_MMU
3445 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3446 #endif
3447 	.poll		= io_uring_poll,
3448 #ifdef CONFIG_PROC_FS
3449 	.show_fdinfo	= io_uring_show_fdinfo,
3450 #endif
3451 };
3452 
io_is_uring_fops(struct file * file)3453 bool io_is_uring_fops(struct file *file)
3454 {
3455 	return file->f_op == &io_uring_fops;
3456 }
3457 
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)3458 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3459 					 struct io_uring_params *p)
3460 {
3461 	struct io_uring_region_desc rd;
3462 	struct io_rings *rings;
3463 	size_t size, sq_array_offset;
3464 	int ret;
3465 
3466 	/* make sure these are sane, as we already accounted them */
3467 	ctx->sq_entries = p->sq_entries;
3468 	ctx->cq_entries = p->cq_entries;
3469 
3470 	size = rings_size(ctx->flags, p->sq_entries, p->cq_entries,
3471 			  &sq_array_offset);
3472 	if (size == SIZE_MAX)
3473 		return -EOVERFLOW;
3474 
3475 	memset(&rd, 0, sizeof(rd));
3476 	rd.size = PAGE_ALIGN(size);
3477 	if (ctx->flags & IORING_SETUP_NO_MMAP) {
3478 		rd.user_addr = p->cq_off.user_addr;
3479 		rd.flags |= IORING_MEM_REGION_TYPE_USER;
3480 	}
3481 	ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING);
3482 	if (ret)
3483 		return ret;
3484 	ctx->rings = rings = io_region_get_ptr(&ctx->ring_region);
3485 
3486 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3487 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3488 	rings->sq_ring_mask = p->sq_entries - 1;
3489 	rings->cq_ring_mask = p->cq_entries - 1;
3490 	rings->sq_ring_entries = p->sq_entries;
3491 	rings->cq_ring_entries = p->cq_entries;
3492 
3493 	if (p->flags & IORING_SETUP_SQE128)
3494 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3495 	else
3496 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3497 	if (size == SIZE_MAX) {
3498 		io_rings_free(ctx);
3499 		return -EOVERFLOW;
3500 	}
3501 
3502 	memset(&rd, 0, sizeof(rd));
3503 	rd.size = PAGE_ALIGN(size);
3504 	if (ctx->flags & IORING_SETUP_NO_MMAP) {
3505 		rd.user_addr = p->sq_off.user_addr;
3506 		rd.flags |= IORING_MEM_REGION_TYPE_USER;
3507 	}
3508 	ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES);
3509 	if (ret) {
3510 		io_rings_free(ctx);
3511 		return ret;
3512 	}
3513 	ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region);
3514 	return 0;
3515 }
3516 
io_uring_install_fd(struct file * file)3517 static int io_uring_install_fd(struct file *file)
3518 {
3519 	int fd;
3520 
3521 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3522 	if (fd < 0)
3523 		return fd;
3524 	fd_install(fd, file);
3525 	return fd;
3526 }
3527 
3528 /*
3529  * Allocate an anonymous fd, this is what constitutes the application
3530  * visible backing of an io_uring instance. The application mmaps this
3531  * fd to gain access to the SQ/CQ ring details.
3532  */
io_uring_get_file(struct io_ring_ctx * ctx)3533 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3534 {
3535 	/* Create a new inode so that the LSM can block the creation.  */
3536 	return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3537 					 O_RDWR | O_CLOEXEC, NULL);
3538 }
3539 
io_uring_fill_params(unsigned entries,struct io_uring_params * p)3540 int io_uring_fill_params(unsigned entries, struct io_uring_params *p)
3541 {
3542 	if (!entries)
3543 		return -EINVAL;
3544 	if (entries > IORING_MAX_ENTRIES) {
3545 		if (!(p->flags & IORING_SETUP_CLAMP))
3546 			return -EINVAL;
3547 		entries = IORING_MAX_ENTRIES;
3548 	}
3549 
3550 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3551 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3552 		return -EINVAL;
3553 
3554 	/*
3555 	 * Use twice as many entries for the CQ ring. It's possible for the
3556 	 * application to drive a higher depth than the size of the SQ ring,
3557 	 * since the sqes are only used at submission time. This allows for
3558 	 * some flexibility in overcommitting a bit. If the application has
3559 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3560 	 * of CQ ring entries manually.
3561 	 */
3562 	p->sq_entries = roundup_pow_of_two(entries);
3563 	if (p->flags & IORING_SETUP_CQSIZE) {
3564 		/*
3565 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3566 		 * to a power-of-two, if it isn't already. We do NOT impose
3567 		 * any cq vs sq ring sizing.
3568 		 */
3569 		if (!p->cq_entries)
3570 			return -EINVAL;
3571 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3572 			if (!(p->flags & IORING_SETUP_CLAMP))
3573 				return -EINVAL;
3574 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3575 		}
3576 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3577 		if (p->cq_entries < p->sq_entries)
3578 			return -EINVAL;
3579 	} else {
3580 		p->cq_entries = 2 * p->sq_entries;
3581 	}
3582 
3583 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3584 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3585 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3586 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3587 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3588 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3589 	p->sq_off.resv1 = 0;
3590 	if (!(p->flags & IORING_SETUP_NO_MMAP))
3591 		p->sq_off.user_addr = 0;
3592 
3593 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3594 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3595 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3596 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3597 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3598 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3599 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3600 	p->cq_off.resv1 = 0;
3601 	if (!(p->flags & IORING_SETUP_NO_MMAP))
3602 		p->cq_off.user_addr = 0;
3603 
3604 	return 0;
3605 }
3606 
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)3607 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3608 				  struct io_uring_params __user *params)
3609 {
3610 	struct io_ring_ctx *ctx;
3611 	struct io_uring_task *tctx;
3612 	struct file *file;
3613 	int ret;
3614 
3615 	ret = io_uring_fill_params(entries, p);
3616 	if (unlikely(ret))
3617 		return ret;
3618 
3619 	ctx = io_ring_ctx_alloc(p);
3620 	if (!ctx)
3621 		return -ENOMEM;
3622 
3623 	ctx->clockid = CLOCK_MONOTONIC;
3624 	ctx->clock_offset = 0;
3625 
3626 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3627 		static_branch_inc(&io_key_has_sqarray);
3628 
3629 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3630 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3631 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3632 		ctx->task_complete = true;
3633 
3634 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3635 		ctx->lockless_cq = true;
3636 
3637 	/*
3638 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3639 	 * purposes, see io_activate_pollwq()
3640 	 */
3641 	if (!ctx->task_complete)
3642 		ctx->poll_activated = true;
3643 
3644 	/*
3645 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3646 	 * space applications don't need to do io completion events
3647 	 * polling again, they can rely on io_sq_thread to do polling
3648 	 * work, which can reduce cpu usage and uring_lock contention.
3649 	 */
3650 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3651 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3652 		ctx->syscall_iopoll = 1;
3653 
3654 	ctx->compat = in_compat_syscall();
3655 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3656 		ctx->user = get_uid(current_user());
3657 
3658 	/*
3659 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3660 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3661 	 */
3662 	ret = -EINVAL;
3663 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3664 		/* IPI related flags don't make sense with SQPOLL */
3665 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3666 				  IORING_SETUP_TASKRUN_FLAG |
3667 				  IORING_SETUP_DEFER_TASKRUN))
3668 			goto err;
3669 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3670 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3671 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3672 	} else {
3673 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3674 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3675 			goto err;
3676 		ctx->notify_method = TWA_SIGNAL;
3677 	}
3678 
3679 	/* HYBRID_IOPOLL only valid with IOPOLL */
3680 	if ((ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_HYBRID_IOPOLL)) ==
3681 			IORING_SETUP_HYBRID_IOPOLL)
3682 		goto err;
3683 
3684 	/*
3685 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3686 	 * submission task. This implies that there is only one submitter, so enforce
3687 	 * that.
3688 	 */
3689 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3690 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3691 		goto err;
3692 	}
3693 
3694 	/*
3695 	 * This is just grabbed for accounting purposes. When a process exits,
3696 	 * the mm is exited and dropped before the files, hence we need to hang
3697 	 * on to this mm purely for the purposes of being able to unaccount
3698 	 * memory (locked/pinned vm). It's not used for anything else.
3699 	 */
3700 	mmgrab(current->mm);
3701 	ctx->mm_account = current->mm;
3702 
3703 	ret = io_allocate_scq_urings(ctx, p);
3704 	if (ret)
3705 		goto err;
3706 
3707 	if (!(p->flags & IORING_SETUP_NO_SQARRAY))
3708 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3709 
3710 	ret = io_sq_offload_create(ctx, p);
3711 	if (ret)
3712 		goto err;
3713 
3714 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3715 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3716 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3717 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3718 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3719 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3720 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3721 			IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT |
3722 			IORING_FEAT_RW_ATTR;
3723 
3724 	if (copy_to_user(params, p, sizeof(*p))) {
3725 		ret = -EFAULT;
3726 		goto err;
3727 	}
3728 
3729 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3730 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3731 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3732 
3733 	file = io_uring_get_file(ctx);
3734 	if (IS_ERR(file)) {
3735 		ret = PTR_ERR(file);
3736 		goto err;
3737 	}
3738 
3739 	ret = __io_uring_add_tctx_node(ctx);
3740 	if (ret)
3741 		goto err_fput;
3742 	tctx = current->io_uring;
3743 
3744 	/*
3745 	 * Install ring fd as the very last thing, so we don't risk someone
3746 	 * having closed it before we finish setup
3747 	 */
3748 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3749 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3750 	else
3751 		ret = io_uring_install_fd(file);
3752 	if (ret < 0)
3753 		goto err_fput;
3754 
3755 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3756 	return ret;
3757 err:
3758 	io_ring_ctx_wait_and_kill(ctx);
3759 	return ret;
3760 err_fput:
3761 	fput(file);
3762 	return ret;
3763 }
3764 
3765 /*
3766  * Sets up an aio uring context, and returns the fd. Applications asks for a
3767  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3768  * params structure passed in.
3769  */
io_uring_setup(u32 entries,struct io_uring_params __user * params)3770 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3771 {
3772 	struct io_uring_params p;
3773 	int i;
3774 
3775 	if (copy_from_user(&p, params, sizeof(p)))
3776 		return -EFAULT;
3777 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3778 		if (p.resv[i])
3779 			return -EINVAL;
3780 	}
3781 
3782 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3783 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3784 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3785 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3786 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3787 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3788 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3789 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3790 			IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL))
3791 		return -EINVAL;
3792 
3793 	return io_uring_create(entries, &p, params);
3794 }
3795 
io_uring_allowed(void)3796 static inline bool io_uring_allowed(void)
3797 {
3798 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
3799 	kgid_t io_uring_group;
3800 
3801 	if (disabled == 2)
3802 		return false;
3803 
3804 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
3805 		return true;
3806 
3807 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3808 	if (!gid_valid(io_uring_group))
3809 		return false;
3810 
3811 	return in_group_p(io_uring_group);
3812 }
3813 
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)3814 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3815 		struct io_uring_params __user *, params)
3816 {
3817 	if (!io_uring_allowed())
3818 		return -EPERM;
3819 
3820 	return io_uring_setup(entries, params);
3821 }
3822 
io_uring_init(void)3823 static int __init io_uring_init(void)
3824 {
3825 	struct kmem_cache_args kmem_args = {
3826 		.useroffset = offsetof(struct io_kiocb, cmd.data),
3827 		.usersize = sizeof_field(struct io_kiocb, cmd.data),
3828 		.freeptr_offset = offsetof(struct io_kiocb, work),
3829 		.use_freeptr_offset = true,
3830 	};
3831 
3832 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3833 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3834 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3835 } while (0)
3836 
3837 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3838 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3839 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3840 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3841 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3842 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
3843 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
3844 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
3845 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
3846 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
3847 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
3848 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
3849 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3850 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
3851 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
3852 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
3853 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
3854 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
3855 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3856 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
3857 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
3858 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
3859 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
3860 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
3861 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
3862 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
3863 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
3864 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
3865 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
3866 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
3867 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
3868 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
3869 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
3870 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
3871 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
3872 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
3873 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
3874 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
3875 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
3876 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
3877 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
3878 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
3879 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
3880 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
3881 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
3882 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3883 	BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr);
3884 	BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask);
3885 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
3886 
3887 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3888 		     sizeof(struct io_uring_rsrc_update));
3889 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3890 		     sizeof(struct io_uring_rsrc_update2));
3891 
3892 	/* ->buf_index is u16 */
3893 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3894 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3895 		     offsetof(struct io_uring_buf_ring, tail));
3896 
3897 	/* should fit into one byte */
3898 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3899 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3900 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3901 
3902 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3903 
3904 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3905 
3906 	/* top 8bits are for internal use */
3907 	BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3908 
3909 	io_uring_optable_init();
3910 
3911 	/*
3912 	 * Allow user copy in the per-command field, which starts after the
3913 	 * file in io_kiocb and until the opcode field. The openat2 handling
3914 	 * requires copying in user memory into the io_kiocb object in that
3915 	 * range, and HARDENED_USERCOPY will complain if we haven't
3916 	 * correctly annotated this range.
3917 	 */
3918 	req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3919 				SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3920 				SLAB_TYPESAFE_BY_RCU);
3921 	io_buf_cachep = KMEM_CACHE(io_buffer,
3922 					  SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
3923 
3924 	iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3925 
3926 #ifdef CONFIG_SYSCTL
3927 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3928 #endif
3929 
3930 	return 0;
3931 };
3932 __initcall(io_uring_init);
3933