1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/mm.h>
55 #include <linux/mman.h>
56 #include <linux/percpu.h>
57 #include <linux/slab.h>
58 #include <linux/bvec.h>
59 #include <linux/net.h>
60 #include <net/sock.h>
61 #include <linux/anon_inodes.h>
62 #include <linux/sched/mm.h>
63 #include <linux/uaccess.h>
64 #include <linux/nospec.h>
65 #include <linux/fsnotify.h>
66 #include <linux/fadvise.h>
67 #include <linux/task_work.h>
68 #include <linux/io_uring.h>
69 #include <linux/io_uring/cmd.h>
70 #include <linux/audit.h>
71 #include <linux/security.h>
72 #include <linux/jump_label.h>
73 #include <asm/shmparam.h>
74
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
77
78 #include <uapi/linux/io_uring.h>
79
80 #include "io-wq.h"
81
82 #include "io_uring.h"
83 #include "opdef.h"
84 #include "refs.h"
85 #include "tctx.h"
86 #include "register.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 #include "waitid.h"
95 #include "futex.h"
96 #include "napi.h"
97 #include "uring_cmd.h"
98 #include "msg_ring.h"
99 #include "memmap.h"
100
101 #include "timeout.h"
102 #include "poll.h"
103 #include "rw.h"
104 #include "alloc_cache.h"
105 #include "eventfd.h"
106
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109
110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 REQ_F_ASYNC_DATA)
116
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 REQ_F_REISSUE | IO_REQ_CLEAN_FLAGS)
119
120 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
121
122 #define IO_COMPL_BATCH 32
123 #define IO_REQ_ALLOC_BATCH 8
124 #define IO_LOCAL_TW_DEFAULT_MAX 20
125
126 struct io_defer_entry {
127 struct list_head list;
128 struct io_kiocb *req;
129 u32 seq;
130 };
131
132 /* requests with any of those set should undergo io_disarm_next() */
133 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
134 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
135
136 /*
137 * No waiters. It's larger than any valid value of the tw counter
138 * so that tests against ->cq_wait_nr would fail and skip wake_up().
139 */
140 #define IO_CQ_WAKE_INIT (-1U)
141 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
142 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1)
143
144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
145 struct io_uring_task *tctx,
146 bool cancel_all,
147 bool is_sqpoll_thread);
148
149 static void io_queue_sqe(struct io_kiocb *req);
150
151 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
152
153 struct kmem_cache *req_cachep;
154 static struct workqueue_struct *iou_wq __ro_after_init;
155
156 static int __read_mostly sysctl_io_uring_disabled;
157 static int __read_mostly sysctl_io_uring_group = -1;
158
159 #ifdef CONFIG_SYSCTL
160 static const struct ctl_table kernel_io_uring_disabled_table[] = {
161 {
162 .procname = "io_uring_disabled",
163 .data = &sysctl_io_uring_disabled,
164 .maxlen = sizeof(sysctl_io_uring_disabled),
165 .mode = 0644,
166 .proc_handler = proc_dointvec_minmax,
167 .extra1 = SYSCTL_ZERO,
168 .extra2 = SYSCTL_TWO,
169 },
170 {
171 .procname = "io_uring_group",
172 .data = &sysctl_io_uring_group,
173 .maxlen = sizeof(gid_t),
174 .mode = 0644,
175 .proc_handler = proc_dointvec,
176 },
177 };
178 #endif
179
__io_cqring_events(struct io_ring_ctx * ctx)180 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
181 {
182 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
183 }
184
__io_cqring_events_user(struct io_ring_ctx * ctx)185 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
186 {
187 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
188 }
189
io_match_linked(struct io_kiocb * head)190 static bool io_match_linked(struct io_kiocb *head)
191 {
192 struct io_kiocb *req;
193
194 io_for_each_link(req, head) {
195 if (req->flags & REQ_F_INFLIGHT)
196 return true;
197 }
198 return false;
199 }
200
201 /*
202 * As io_match_task() but protected against racing with linked timeouts.
203 * User must not hold timeout_lock.
204 */
io_match_task_safe(struct io_kiocb * head,struct io_uring_task * tctx,bool cancel_all)205 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
206 bool cancel_all)
207 {
208 bool matched;
209
210 if (tctx && head->tctx != tctx)
211 return false;
212 if (cancel_all)
213 return true;
214
215 if (head->flags & REQ_F_LINK_TIMEOUT) {
216 struct io_ring_ctx *ctx = head->ctx;
217
218 /* protect against races with linked timeouts */
219 raw_spin_lock_irq(&ctx->timeout_lock);
220 matched = io_match_linked(head);
221 raw_spin_unlock_irq(&ctx->timeout_lock);
222 } else {
223 matched = io_match_linked(head);
224 }
225 return matched;
226 }
227
req_fail_link_node(struct io_kiocb * req,int res)228 static inline void req_fail_link_node(struct io_kiocb *req, int res)
229 {
230 req_set_fail(req);
231 io_req_set_res(req, res, 0);
232 }
233
io_req_add_to_cache(struct io_kiocb * req,struct io_ring_ctx * ctx)234 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
235 {
236 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
237 }
238
io_ring_ctx_ref_free(struct percpu_ref * ref)239 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
240 {
241 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
242
243 complete(&ctx->ref_comp);
244 }
245
io_fallback_req_func(struct work_struct * work)246 static __cold void io_fallback_req_func(struct work_struct *work)
247 {
248 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
249 fallback_work.work);
250 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
251 struct io_kiocb *req, *tmp;
252 struct io_tw_state ts = {};
253
254 percpu_ref_get(&ctx->refs);
255 mutex_lock(&ctx->uring_lock);
256 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
257 req->io_task_work.func(req, &ts);
258 io_submit_flush_completions(ctx);
259 mutex_unlock(&ctx->uring_lock);
260 percpu_ref_put(&ctx->refs);
261 }
262
io_alloc_hash_table(struct io_hash_table * table,unsigned bits)263 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
264 {
265 unsigned int hash_buckets;
266 int i;
267
268 do {
269 hash_buckets = 1U << bits;
270 table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
271 GFP_KERNEL_ACCOUNT);
272 if (table->hbs)
273 break;
274 if (bits == 1)
275 return -ENOMEM;
276 bits--;
277 } while (1);
278
279 table->hash_bits = bits;
280 for (i = 0; i < hash_buckets; i++)
281 INIT_HLIST_HEAD(&table->hbs[i].list);
282 return 0;
283 }
284
io_ring_ctx_alloc(struct io_uring_params * p)285 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
286 {
287 struct io_ring_ctx *ctx;
288 int hash_bits;
289 bool ret;
290
291 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
292 if (!ctx)
293 return NULL;
294
295 xa_init(&ctx->io_bl_xa);
296
297 /*
298 * Use 5 bits less than the max cq entries, that should give us around
299 * 32 entries per hash list if totally full and uniformly spread, but
300 * don't keep too many buckets to not overconsume memory.
301 */
302 hash_bits = ilog2(p->cq_entries) - 5;
303 hash_bits = clamp(hash_bits, 1, 8);
304 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
305 goto err;
306 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
307 0, GFP_KERNEL))
308 goto err;
309
310 ctx->flags = p->flags;
311 ctx->hybrid_poll_time = LLONG_MAX;
312 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
313 init_waitqueue_head(&ctx->sqo_sq_wait);
314 INIT_LIST_HEAD(&ctx->sqd_list);
315 INIT_LIST_HEAD(&ctx->cq_overflow_list);
316 INIT_LIST_HEAD(&ctx->io_buffers_cache);
317 ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
318 sizeof(struct async_poll), 0);
319 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
320 sizeof(struct io_async_msghdr),
321 offsetof(struct io_async_msghdr, clear));
322 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
323 sizeof(struct io_async_rw),
324 offsetof(struct io_async_rw, clear));
325 ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX,
326 sizeof(struct io_uring_cmd_data), 0);
327 spin_lock_init(&ctx->msg_lock);
328 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX,
329 sizeof(struct io_kiocb), 0);
330 ret |= io_futex_cache_init(ctx);
331 if (ret)
332 goto free_ref;
333 init_completion(&ctx->ref_comp);
334 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
335 mutex_init(&ctx->uring_lock);
336 init_waitqueue_head(&ctx->cq_wait);
337 init_waitqueue_head(&ctx->poll_wq);
338 spin_lock_init(&ctx->completion_lock);
339 raw_spin_lock_init(&ctx->timeout_lock);
340 INIT_WQ_LIST(&ctx->iopoll_list);
341 INIT_LIST_HEAD(&ctx->io_buffers_comp);
342 INIT_LIST_HEAD(&ctx->defer_list);
343 INIT_LIST_HEAD(&ctx->timeout_list);
344 INIT_LIST_HEAD(&ctx->ltimeout_list);
345 init_llist_head(&ctx->work_llist);
346 INIT_LIST_HEAD(&ctx->tctx_list);
347 ctx->submit_state.free_list.next = NULL;
348 INIT_HLIST_HEAD(&ctx->waitid_list);
349 #ifdef CONFIG_FUTEX
350 INIT_HLIST_HEAD(&ctx->futex_list);
351 #endif
352 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
353 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
354 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
355 io_napi_init(ctx);
356 mutex_init(&ctx->mmap_lock);
357
358 return ctx;
359
360 free_ref:
361 percpu_ref_exit(&ctx->refs);
362 err:
363 io_alloc_cache_free(&ctx->apoll_cache, kfree);
364 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
365 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
366 io_alloc_cache_free(&ctx->uring_cache, kfree);
367 io_alloc_cache_free(&ctx->msg_cache, kfree);
368 io_futex_cache_free(ctx);
369 kvfree(ctx->cancel_table.hbs);
370 xa_destroy(&ctx->io_bl_xa);
371 kfree(ctx);
372 return NULL;
373 }
374
io_account_cq_overflow(struct io_ring_ctx * ctx)375 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
376 {
377 struct io_rings *r = ctx->rings;
378
379 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
380 ctx->cq_extra--;
381 }
382
req_need_defer(struct io_kiocb * req,u32 seq)383 static bool req_need_defer(struct io_kiocb *req, u32 seq)
384 {
385 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
386 struct io_ring_ctx *ctx = req->ctx;
387
388 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
389 }
390
391 return false;
392 }
393
io_clean_op(struct io_kiocb * req)394 static void io_clean_op(struct io_kiocb *req)
395 {
396 if (req->flags & REQ_F_BUFFER_SELECTED) {
397 spin_lock(&req->ctx->completion_lock);
398 io_kbuf_drop(req);
399 spin_unlock(&req->ctx->completion_lock);
400 }
401
402 if (req->flags & REQ_F_NEED_CLEANUP) {
403 const struct io_cold_def *def = &io_cold_defs[req->opcode];
404
405 if (def->cleanup)
406 def->cleanup(req);
407 }
408 if ((req->flags & REQ_F_POLLED) && req->apoll) {
409 kfree(req->apoll->double_poll);
410 kfree(req->apoll);
411 req->apoll = NULL;
412 }
413 if (req->flags & REQ_F_INFLIGHT)
414 atomic_dec(&req->tctx->inflight_tracked);
415 if (req->flags & REQ_F_CREDS)
416 put_cred(req->creds);
417 if (req->flags & REQ_F_ASYNC_DATA) {
418 kfree(req->async_data);
419 req->async_data = NULL;
420 }
421 req->flags &= ~IO_REQ_CLEAN_FLAGS;
422 }
423
io_req_track_inflight(struct io_kiocb * req)424 static inline void io_req_track_inflight(struct io_kiocb *req)
425 {
426 if (!(req->flags & REQ_F_INFLIGHT)) {
427 req->flags |= REQ_F_INFLIGHT;
428 atomic_inc(&req->tctx->inflight_tracked);
429 }
430 }
431
__io_prep_linked_timeout(struct io_kiocb * req)432 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
433 {
434 if (WARN_ON_ONCE(!req->link))
435 return NULL;
436
437 req->flags &= ~REQ_F_ARM_LTIMEOUT;
438 req->flags |= REQ_F_LINK_TIMEOUT;
439
440 /* linked timeouts should have two refs once prep'ed */
441 io_req_set_refcount(req);
442 __io_req_set_refcount(req->link, 2);
443 return req->link;
444 }
445
io_prep_linked_timeout(struct io_kiocb * req)446 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
447 {
448 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
449 return NULL;
450 return __io_prep_linked_timeout(req);
451 }
452
__io_arm_ltimeout(struct io_kiocb * req)453 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
454 {
455 io_queue_linked_timeout(__io_prep_linked_timeout(req));
456 }
457
io_arm_ltimeout(struct io_kiocb * req)458 static inline void io_arm_ltimeout(struct io_kiocb *req)
459 {
460 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
461 __io_arm_ltimeout(req);
462 }
463
io_prep_async_work(struct io_kiocb * req)464 static void io_prep_async_work(struct io_kiocb *req)
465 {
466 const struct io_issue_def *def = &io_issue_defs[req->opcode];
467 struct io_ring_ctx *ctx = req->ctx;
468
469 if (!(req->flags & REQ_F_CREDS)) {
470 req->flags |= REQ_F_CREDS;
471 req->creds = get_current_cred();
472 }
473
474 req->work.list.next = NULL;
475 atomic_set(&req->work.flags, 0);
476 if (req->flags & REQ_F_FORCE_ASYNC)
477 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
478
479 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
480 req->flags |= io_file_get_flags(req->file);
481
482 if (req->file && (req->flags & REQ_F_ISREG)) {
483 bool should_hash = def->hash_reg_file;
484
485 /* don't serialize this request if the fs doesn't need it */
486 if (should_hash && (req->file->f_flags & O_DIRECT) &&
487 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
488 should_hash = false;
489 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
490 io_wq_hash_work(&req->work, file_inode(req->file));
491 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
492 if (def->unbound_nonreg_file)
493 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
494 }
495 }
496
io_prep_async_link(struct io_kiocb * req)497 static void io_prep_async_link(struct io_kiocb *req)
498 {
499 struct io_kiocb *cur;
500
501 if (req->flags & REQ_F_LINK_TIMEOUT) {
502 struct io_ring_ctx *ctx = req->ctx;
503
504 raw_spin_lock_irq(&ctx->timeout_lock);
505 io_for_each_link(cur, req)
506 io_prep_async_work(cur);
507 raw_spin_unlock_irq(&ctx->timeout_lock);
508 } else {
509 io_for_each_link(cur, req)
510 io_prep_async_work(cur);
511 }
512 }
513
io_queue_iowq(struct io_kiocb * req)514 static void io_queue_iowq(struct io_kiocb *req)
515 {
516 struct io_kiocb *link = io_prep_linked_timeout(req);
517 struct io_uring_task *tctx = req->tctx;
518
519 BUG_ON(!tctx);
520
521 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
522 io_req_task_queue_fail(req, -ECANCELED);
523 return;
524 }
525
526 /* init ->work of the whole link before punting */
527 io_prep_async_link(req);
528
529 /*
530 * Not expected to happen, but if we do have a bug where this _can_
531 * happen, catch it here and ensure the request is marked as
532 * canceled. That will make io-wq go through the usual work cancel
533 * procedure rather than attempt to run this request (or create a new
534 * worker for it).
535 */
536 if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
537 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
538
539 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
540 io_wq_enqueue(tctx->io_wq, &req->work);
541 if (link)
542 io_queue_linked_timeout(link);
543 }
544
io_req_queue_iowq_tw(struct io_kiocb * req,struct io_tw_state * ts)545 static void io_req_queue_iowq_tw(struct io_kiocb *req, struct io_tw_state *ts)
546 {
547 io_queue_iowq(req);
548 }
549
io_req_queue_iowq(struct io_kiocb * req)550 void io_req_queue_iowq(struct io_kiocb *req)
551 {
552 req->io_task_work.func = io_req_queue_iowq_tw;
553 io_req_task_work_add(req);
554 }
555
io_queue_deferred(struct io_ring_ctx * ctx)556 static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx)
557 {
558 spin_lock(&ctx->completion_lock);
559 while (!list_empty(&ctx->defer_list)) {
560 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
561 struct io_defer_entry, list);
562
563 if (req_need_defer(de->req, de->seq))
564 break;
565 list_del_init(&de->list);
566 io_req_task_queue(de->req);
567 kfree(de);
568 }
569 spin_unlock(&ctx->completion_lock);
570 }
571
__io_commit_cqring_flush(struct io_ring_ctx * ctx)572 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
573 {
574 if (ctx->poll_activated)
575 io_poll_wq_wake(ctx);
576 if (ctx->off_timeout_used)
577 io_flush_timeouts(ctx);
578 if (ctx->drain_active)
579 io_queue_deferred(ctx);
580 if (ctx->has_evfd)
581 io_eventfd_flush_signal(ctx);
582 }
583
__io_cq_lock(struct io_ring_ctx * ctx)584 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
585 {
586 if (!ctx->lockless_cq)
587 spin_lock(&ctx->completion_lock);
588 }
589
io_cq_lock(struct io_ring_ctx * ctx)590 static inline void io_cq_lock(struct io_ring_ctx *ctx)
591 __acquires(ctx->completion_lock)
592 {
593 spin_lock(&ctx->completion_lock);
594 }
595
__io_cq_unlock_post(struct io_ring_ctx * ctx)596 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
597 {
598 io_commit_cqring(ctx);
599 if (!ctx->task_complete) {
600 if (!ctx->lockless_cq)
601 spin_unlock(&ctx->completion_lock);
602 /* IOPOLL rings only need to wake up if it's also SQPOLL */
603 if (!ctx->syscall_iopoll)
604 io_cqring_wake(ctx);
605 }
606 io_commit_cqring_flush(ctx);
607 }
608
io_cq_unlock_post(struct io_ring_ctx * ctx)609 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
610 __releases(ctx->completion_lock)
611 {
612 io_commit_cqring(ctx);
613 spin_unlock(&ctx->completion_lock);
614 io_cqring_wake(ctx);
615 io_commit_cqring_flush(ctx);
616 }
617
__io_cqring_overflow_flush(struct io_ring_ctx * ctx,bool dying)618 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
619 {
620 size_t cqe_size = sizeof(struct io_uring_cqe);
621
622 lockdep_assert_held(&ctx->uring_lock);
623
624 /* don't abort if we're dying, entries must get freed */
625 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
626 return;
627
628 if (ctx->flags & IORING_SETUP_CQE32)
629 cqe_size <<= 1;
630
631 io_cq_lock(ctx);
632 while (!list_empty(&ctx->cq_overflow_list)) {
633 struct io_uring_cqe *cqe;
634 struct io_overflow_cqe *ocqe;
635
636 ocqe = list_first_entry(&ctx->cq_overflow_list,
637 struct io_overflow_cqe, list);
638
639 if (!dying) {
640 if (!io_get_cqe_overflow(ctx, &cqe, true))
641 break;
642 memcpy(cqe, &ocqe->cqe, cqe_size);
643 }
644 list_del(&ocqe->list);
645 kfree(ocqe);
646
647 /*
648 * For silly syzbot cases that deliberately overflow by huge
649 * amounts, check if we need to resched and drop and
650 * reacquire the locks if so. Nothing real would ever hit this.
651 * Ideally we'd have a non-posting unlock for this, but hard
652 * to care for a non-real case.
653 */
654 if (need_resched()) {
655 io_cq_unlock_post(ctx);
656 mutex_unlock(&ctx->uring_lock);
657 cond_resched();
658 mutex_lock(&ctx->uring_lock);
659 io_cq_lock(ctx);
660 }
661 }
662
663 if (list_empty(&ctx->cq_overflow_list)) {
664 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
665 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
666 }
667 io_cq_unlock_post(ctx);
668 }
669
io_cqring_overflow_kill(struct io_ring_ctx * ctx)670 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
671 {
672 if (ctx->rings)
673 __io_cqring_overflow_flush(ctx, true);
674 }
675
io_cqring_do_overflow_flush(struct io_ring_ctx * ctx)676 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
677 {
678 mutex_lock(&ctx->uring_lock);
679 __io_cqring_overflow_flush(ctx, false);
680 mutex_unlock(&ctx->uring_lock);
681 }
682
683 /* must to be called somewhat shortly after putting a request */
io_put_task(struct io_kiocb * req)684 static inline void io_put_task(struct io_kiocb *req)
685 {
686 struct io_uring_task *tctx = req->tctx;
687
688 if (likely(tctx->task == current)) {
689 tctx->cached_refs++;
690 } else {
691 percpu_counter_sub(&tctx->inflight, 1);
692 if (unlikely(atomic_read(&tctx->in_cancel)))
693 wake_up(&tctx->wait);
694 put_task_struct(tctx->task);
695 }
696 }
697
io_task_refs_refill(struct io_uring_task * tctx)698 void io_task_refs_refill(struct io_uring_task *tctx)
699 {
700 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
701
702 percpu_counter_add(&tctx->inflight, refill);
703 refcount_add(refill, ¤t->usage);
704 tctx->cached_refs += refill;
705 }
706
io_uring_drop_tctx_refs(struct task_struct * task)707 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
708 {
709 struct io_uring_task *tctx = task->io_uring;
710 unsigned int refs = tctx->cached_refs;
711
712 if (refs) {
713 tctx->cached_refs = 0;
714 percpu_counter_sub(&tctx->inflight, refs);
715 put_task_struct_many(task, refs);
716 }
717 }
718
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,u64 extra1,u64 extra2)719 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
720 s32 res, u32 cflags, u64 extra1, u64 extra2)
721 {
722 struct io_overflow_cqe *ocqe;
723 size_t ocq_size = sizeof(struct io_overflow_cqe);
724 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
725
726 lockdep_assert_held(&ctx->completion_lock);
727
728 if (is_cqe32)
729 ocq_size += sizeof(struct io_uring_cqe);
730
731 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
732 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
733 if (!ocqe) {
734 /*
735 * If we're in ring overflow flush mode, or in task cancel mode,
736 * or cannot allocate an overflow entry, then we need to drop it
737 * on the floor.
738 */
739 io_account_cq_overflow(ctx);
740 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
741 return false;
742 }
743 if (list_empty(&ctx->cq_overflow_list)) {
744 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
745 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
746
747 }
748 ocqe->cqe.user_data = user_data;
749 ocqe->cqe.res = res;
750 ocqe->cqe.flags = cflags;
751 if (is_cqe32) {
752 ocqe->cqe.big_cqe[0] = extra1;
753 ocqe->cqe.big_cqe[1] = extra2;
754 }
755 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
756 return true;
757 }
758
io_req_cqe_overflow(struct io_kiocb * req)759 static void io_req_cqe_overflow(struct io_kiocb *req)
760 {
761 io_cqring_event_overflow(req->ctx, req->cqe.user_data,
762 req->cqe.res, req->cqe.flags,
763 req->big_cqe.extra1, req->big_cqe.extra2);
764 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
765 }
766
767 /*
768 * writes to the cq entry need to come after reading head; the
769 * control dependency is enough as we're using WRITE_ONCE to
770 * fill the cq entry
771 */
io_cqe_cache_refill(struct io_ring_ctx * ctx,bool overflow)772 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
773 {
774 struct io_rings *rings = ctx->rings;
775 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
776 unsigned int free, queued, len;
777
778 /*
779 * Posting into the CQ when there are pending overflowed CQEs may break
780 * ordering guarantees, which will affect links, F_MORE users and more.
781 * Force overflow the completion.
782 */
783 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
784 return false;
785
786 /* userspace may cheat modifying the tail, be safe and do min */
787 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
788 free = ctx->cq_entries - queued;
789 /* we need a contiguous range, limit based on the current array offset */
790 len = min(free, ctx->cq_entries - off);
791 if (!len)
792 return false;
793
794 if (ctx->flags & IORING_SETUP_CQE32) {
795 off <<= 1;
796 len <<= 1;
797 }
798
799 ctx->cqe_cached = &rings->cqes[off];
800 ctx->cqe_sentinel = ctx->cqe_cached + len;
801 return true;
802 }
803
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)804 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
805 u32 cflags)
806 {
807 struct io_uring_cqe *cqe;
808
809 ctx->cq_extra++;
810
811 /*
812 * If we can't get a cq entry, userspace overflowed the
813 * submission (by quite a lot). Increment the overflow count in
814 * the ring.
815 */
816 if (likely(io_get_cqe(ctx, &cqe))) {
817 WRITE_ONCE(cqe->user_data, user_data);
818 WRITE_ONCE(cqe->res, res);
819 WRITE_ONCE(cqe->flags, cflags);
820
821 if (ctx->flags & IORING_SETUP_CQE32) {
822 WRITE_ONCE(cqe->big_cqe[0], 0);
823 WRITE_ONCE(cqe->big_cqe[1], 0);
824 }
825
826 trace_io_uring_complete(ctx, NULL, cqe);
827 return true;
828 }
829 return false;
830 }
831
__io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)832 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res,
833 u32 cflags)
834 {
835 bool filled;
836
837 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
838 if (!filled)
839 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
840
841 return filled;
842 }
843
io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)844 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
845 {
846 bool filled;
847
848 io_cq_lock(ctx);
849 filled = __io_post_aux_cqe(ctx, user_data, res, cflags);
850 io_cq_unlock_post(ctx);
851 return filled;
852 }
853
854 /*
855 * Must be called from inline task_work so we now a flush will happen later,
856 * and obviously with ctx->uring_lock held (tw always has that).
857 */
io_add_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)858 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
859 {
860 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
861 spin_lock(&ctx->completion_lock);
862 io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
863 spin_unlock(&ctx->completion_lock);
864 }
865 ctx->submit_state.cq_flush = true;
866 }
867
868 /*
869 * A helper for multishot requests posting additional CQEs.
870 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
871 */
io_req_post_cqe(struct io_kiocb * req,s32 res,u32 cflags)872 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
873 {
874 struct io_ring_ctx *ctx = req->ctx;
875 bool posted;
876
877 lockdep_assert(!io_wq_current_is_worker());
878 lockdep_assert_held(&ctx->uring_lock);
879
880 __io_cq_lock(ctx);
881 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
882 ctx->submit_state.cq_flush = true;
883 __io_cq_unlock_post(ctx);
884 return posted;
885 }
886
io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)887 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
888 {
889 struct io_ring_ctx *ctx = req->ctx;
890
891 /*
892 * All execution paths but io-wq use the deferred completions by
893 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
894 */
895 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
896 return;
897
898 /*
899 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
900 * the submitter task context, IOPOLL protects with uring_lock.
901 */
902 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) {
903 req->io_task_work.func = io_req_task_complete;
904 io_req_task_work_add(req);
905 return;
906 }
907
908 io_cq_lock(ctx);
909 if (!(req->flags & REQ_F_CQE_SKIP)) {
910 if (!io_fill_cqe_req(ctx, req))
911 io_req_cqe_overflow(req);
912 }
913 io_cq_unlock_post(ctx);
914
915 /*
916 * We don't free the request here because we know it's called from
917 * io-wq only, which holds a reference, so it cannot be the last put.
918 */
919 req_ref_put(req);
920 }
921
io_req_defer_failed(struct io_kiocb * req,s32 res)922 void io_req_defer_failed(struct io_kiocb *req, s32 res)
923 __must_hold(&ctx->uring_lock)
924 {
925 const struct io_cold_def *def = &io_cold_defs[req->opcode];
926
927 lockdep_assert_held(&req->ctx->uring_lock);
928
929 req_set_fail(req);
930 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED));
931 if (def->fail)
932 def->fail(req);
933 io_req_complete_defer(req);
934 }
935
936 /*
937 * Don't initialise the fields below on every allocation, but do that in
938 * advance and keep them valid across allocations.
939 */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)940 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
941 {
942 req->ctx = ctx;
943 req->buf_node = NULL;
944 req->file_node = NULL;
945 req->link = NULL;
946 req->async_data = NULL;
947 /* not necessary, but safer to zero */
948 memset(&req->cqe, 0, sizeof(req->cqe));
949 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
950 }
951
952 /*
953 * A request might get retired back into the request caches even before opcode
954 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
955 * Because of that, io_alloc_req() should be called only under ->uring_lock
956 * and with extra caution to not get a request that is still worked on.
957 */
__io_alloc_req_refill(struct io_ring_ctx * ctx)958 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
959 __must_hold(&ctx->uring_lock)
960 {
961 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
962 void *reqs[IO_REQ_ALLOC_BATCH];
963 int ret;
964
965 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
966
967 /*
968 * Bulk alloc is all-or-nothing. If we fail to get a batch,
969 * retry single alloc to be on the safe side.
970 */
971 if (unlikely(ret <= 0)) {
972 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
973 if (!reqs[0])
974 return false;
975 ret = 1;
976 }
977
978 percpu_ref_get_many(&ctx->refs, ret);
979 while (ret--) {
980 struct io_kiocb *req = reqs[ret];
981
982 io_preinit_req(req, ctx);
983 io_req_add_to_cache(req, ctx);
984 }
985 return true;
986 }
987
io_free_req(struct io_kiocb * req)988 __cold void io_free_req(struct io_kiocb *req)
989 {
990 /* refs were already put, restore them for io_req_task_complete() */
991 req->flags &= ~REQ_F_REFCOUNT;
992 /* we only want to free it, don't post CQEs */
993 req->flags |= REQ_F_CQE_SKIP;
994 req->io_task_work.func = io_req_task_complete;
995 io_req_task_work_add(req);
996 }
997
__io_req_find_next_prep(struct io_kiocb * req)998 static void __io_req_find_next_prep(struct io_kiocb *req)
999 {
1000 struct io_ring_ctx *ctx = req->ctx;
1001
1002 spin_lock(&ctx->completion_lock);
1003 io_disarm_next(req);
1004 spin_unlock(&ctx->completion_lock);
1005 }
1006
io_req_find_next(struct io_kiocb * req)1007 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1008 {
1009 struct io_kiocb *nxt;
1010
1011 /*
1012 * If LINK is set, we have dependent requests in this chain. If we
1013 * didn't fail this request, queue the first one up, moving any other
1014 * dependencies to the next request. In case of failure, fail the rest
1015 * of the chain.
1016 */
1017 if (unlikely(req->flags & IO_DISARM_MASK))
1018 __io_req_find_next_prep(req);
1019 nxt = req->link;
1020 req->link = NULL;
1021 return nxt;
1022 }
1023
ctx_flush_and_put(struct io_ring_ctx * ctx,struct io_tw_state * ts)1024 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1025 {
1026 if (!ctx)
1027 return;
1028 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1029 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1030
1031 io_submit_flush_completions(ctx);
1032 mutex_unlock(&ctx->uring_lock);
1033 percpu_ref_put(&ctx->refs);
1034 }
1035
1036 /*
1037 * Run queued task_work, returning the number of entries processed in *count.
1038 * If more entries than max_entries are available, stop processing once this
1039 * is reached and return the rest of the list.
1040 */
io_handle_tw_list(struct llist_node * node,unsigned int * count,unsigned int max_entries)1041 struct llist_node *io_handle_tw_list(struct llist_node *node,
1042 unsigned int *count,
1043 unsigned int max_entries)
1044 {
1045 struct io_ring_ctx *ctx = NULL;
1046 struct io_tw_state ts = { };
1047
1048 do {
1049 struct llist_node *next = node->next;
1050 struct io_kiocb *req = container_of(node, struct io_kiocb,
1051 io_task_work.node);
1052
1053 if (req->ctx != ctx) {
1054 ctx_flush_and_put(ctx, &ts);
1055 ctx = req->ctx;
1056 mutex_lock(&ctx->uring_lock);
1057 percpu_ref_get(&ctx->refs);
1058 }
1059 INDIRECT_CALL_2(req->io_task_work.func,
1060 io_poll_task_func, io_req_rw_complete,
1061 req, &ts);
1062 node = next;
1063 (*count)++;
1064 if (unlikely(need_resched())) {
1065 ctx_flush_and_put(ctx, &ts);
1066 ctx = NULL;
1067 cond_resched();
1068 }
1069 } while (node && *count < max_entries);
1070
1071 ctx_flush_and_put(ctx, &ts);
1072 return node;
1073 }
1074
__io_fallback_tw(struct llist_node * node,bool sync)1075 static __cold void __io_fallback_tw(struct llist_node *node, bool sync)
1076 {
1077 struct io_ring_ctx *last_ctx = NULL;
1078 struct io_kiocb *req;
1079
1080 while (node) {
1081 req = container_of(node, struct io_kiocb, io_task_work.node);
1082 node = node->next;
1083 if (sync && last_ctx != req->ctx) {
1084 if (last_ctx) {
1085 flush_delayed_work(&last_ctx->fallback_work);
1086 percpu_ref_put(&last_ctx->refs);
1087 }
1088 last_ctx = req->ctx;
1089 percpu_ref_get(&last_ctx->refs);
1090 }
1091 if (llist_add(&req->io_task_work.node,
1092 &req->ctx->fallback_llist))
1093 schedule_delayed_work(&req->ctx->fallback_work, 1);
1094 }
1095
1096 if (last_ctx) {
1097 flush_delayed_work(&last_ctx->fallback_work);
1098 percpu_ref_put(&last_ctx->refs);
1099 }
1100 }
1101
io_fallback_tw(struct io_uring_task * tctx,bool sync)1102 static void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1103 {
1104 struct llist_node *node = llist_del_all(&tctx->task_list);
1105
1106 __io_fallback_tw(node, sync);
1107 }
1108
tctx_task_work_run(struct io_uring_task * tctx,unsigned int max_entries,unsigned int * count)1109 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1110 unsigned int max_entries,
1111 unsigned int *count)
1112 {
1113 struct llist_node *node;
1114
1115 if (unlikely(current->flags & PF_EXITING)) {
1116 io_fallback_tw(tctx, true);
1117 return NULL;
1118 }
1119
1120 node = llist_del_all(&tctx->task_list);
1121 if (node) {
1122 node = llist_reverse_order(node);
1123 node = io_handle_tw_list(node, count, max_entries);
1124 }
1125
1126 /* relaxed read is enough as only the task itself sets ->in_cancel */
1127 if (unlikely(atomic_read(&tctx->in_cancel)))
1128 io_uring_drop_tctx_refs(current);
1129
1130 trace_io_uring_task_work_run(tctx, *count);
1131 return node;
1132 }
1133
tctx_task_work(struct callback_head * cb)1134 void tctx_task_work(struct callback_head *cb)
1135 {
1136 struct io_uring_task *tctx;
1137 struct llist_node *ret;
1138 unsigned int count = 0;
1139
1140 tctx = container_of(cb, struct io_uring_task, task_work);
1141 ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1142 /* can't happen */
1143 WARN_ON_ONCE(ret);
1144 }
1145
io_req_local_work_add(struct io_kiocb * req,struct io_ring_ctx * ctx,unsigned flags)1146 static inline void io_req_local_work_add(struct io_kiocb *req,
1147 struct io_ring_ctx *ctx,
1148 unsigned flags)
1149 {
1150 unsigned nr_wait, nr_tw, nr_tw_prev;
1151 struct llist_node *head;
1152
1153 /* See comment above IO_CQ_WAKE_INIT */
1154 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1155
1156 /*
1157 * We don't know how many reuqests is there in the link and whether
1158 * they can even be queued lazily, fall back to non-lazy.
1159 */
1160 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1161 flags &= ~IOU_F_TWQ_LAZY_WAKE;
1162
1163 guard(rcu)();
1164
1165 head = READ_ONCE(ctx->work_llist.first);
1166 do {
1167 nr_tw_prev = 0;
1168 if (head) {
1169 struct io_kiocb *first_req = container_of(head,
1170 struct io_kiocb,
1171 io_task_work.node);
1172 /*
1173 * Might be executed at any moment, rely on
1174 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1175 */
1176 nr_tw_prev = READ_ONCE(first_req->nr_tw);
1177 }
1178
1179 /*
1180 * Theoretically, it can overflow, but that's fine as one of
1181 * previous adds should've tried to wake the task.
1182 */
1183 nr_tw = nr_tw_prev + 1;
1184 if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1185 nr_tw = IO_CQ_WAKE_FORCE;
1186
1187 req->nr_tw = nr_tw;
1188 req->io_task_work.node.next = head;
1189 } while (!try_cmpxchg(&ctx->work_llist.first, &head,
1190 &req->io_task_work.node));
1191
1192 /*
1193 * cmpxchg implies a full barrier, which pairs with the barrier
1194 * in set_current_state() on the io_cqring_wait() side. It's used
1195 * to ensure that either we see updated ->cq_wait_nr, or waiters
1196 * going to sleep will observe the work added to the list, which
1197 * is similar to the wait/wawke task state sync.
1198 */
1199
1200 if (!head) {
1201 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1202 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1203 if (ctx->has_evfd)
1204 io_eventfd_signal(ctx);
1205 }
1206
1207 nr_wait = atomic_read(&ctx->cq_wait_nr);
1208 /* not enough or no one is waiting */
1209 if (nr_tw < nr_wait)
1210 return;
1211 /* the previous add has already woken it up */
1212 if (nr_tw_prev >= nr_wait)
1213 return;
1214 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1215 }
1216
io_req_normal_work_add(struct io_kiocb * req)1217 static void io_req_normal_work_add(struct io_kiocb *req)
1218 {
1219 struct io_uring_task *tctx = req->tctx;
1220 struct io_ring_ctx *ctx = req->ctx;
1221
1222 /* task_work already pending, we're done */
1223 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1224 return;
1225
1226 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1227 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1228
1229 /* SQPOLL doesn't need the task_work added, it'll run it itself */
1230 if (ctx->flags & IORING_SETUP_SQPOLL) {
1231 __set_notify_signal(tctx->task);
1232 return;
1233 }
1234
1235 if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method)))
1236 return;
1237
1238 io_fallback_tw(tctx, false);
1239 }
1240
__io_req_task_work_add(struct io_kiocb * req,unsigned flags)1241 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1242 {
1243 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1244 io_req_local_work_add(req, req->ctx, flags);
1245 else
1246 io_req_normal_work_add(req);
1247 }
1248
io_req_task_work_add_remote(struct io_kiocb * req,struct io_ring_ctx * ctx,unsigned flags)1249 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx,
1250 unsigned flags)
1251 {
1252 if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1253 return;
1254 io_req_local_work_add(req, ctx, flags);
1255 }
1256
io_move_task_work_from_local(struct io_ring_ctx * ctx)1257 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1258 {
1259 struct llist_node *node = llist_del_all(&ctx->work_llist);
1260
1261 __io_fallback_tw(node, false);
1262 node = llist_del_all(&ctx->retry_llist);
1263 __io_fallback_tw(node, false);
1264 }
1265
io_run_local_work_continue(struct io_ring_ctx * ctx,int events,int min_events)1266 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1267 int min_events)
1268 {
1269 if (!io_local_work_pending(ctx))
1270 return false;
1271 if (events < min_events)
1272 return true;
1273 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1274 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1275 return false;
1276 }
1277
__io_run_local_work_loop(struct llist_node ** node,struct io_tw_state * ts,int events)1278 static int __io_run_local_work_loop(struct llist_node **node,
1279 struct io_tw_state *ts,
1280 int events)
1281 {
1282 int ret = 0;
1283
1284 while (*node) {
1285 struct llist_node *next = (*node)->next;
1286 struct io_kiocb *req = container_of(*node, struct io_kiocb,
1287 io_task_work.node);
1288 INDIRECT_CALL_2(req->io_task_work.func,
1289 io_poll_task_func, io_req_rw_complete,
1290 req, ts);
1291 *node = next;
1292 if (++ret >= events)
1293 break;
1294 }
1295
1296 return ret;
1297 }
1298
__io_run_local_work(struct io_ring_ctx * ctx,struct io_tw_state * ts,int min_events,int max_events)1299 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1300 int min_events, int max_events)
1301 {
1302 struct llist_node *node;
1303 unsigned int loops = 0;
1304 int ret = 0;
1305
1306 if (WARN_ON_ONCE(ctx->submitter_task != current))
1307 return -EEXIST;
1308 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1309 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1310 again:
1311 min_events -= ret;
1312 ret = __io_run_local_work_loop(&ctx->retry_llist.first, ts, max_events);
1313 if (ctx->retry_llist.first)
1314 goto retry_done;
1315
1316 /*
1317 * llists are in reverse order, flip it back the right way before
1318 * running the pending items.
1319 */
1320 node = llist_reverse_order(llist_del_all(&ctx->work_llist));
1321 ret += __io_run_local_work_loop(&node, ts, max_events - ret);
1322 ctx->retry_llist.first = node;
1323 loops++;
1324
1325 if (io_run_local_work_continue(ctx, ret, min_events))
1326 goto again;
1327 retry_done:
1328 io_submit_flush_completions(ctx);
1329 if (io_run_local_work_continue(ctx, ret, min_events))
1330 goto again;
1331
1332 trace_io_uring_local_work_run(ctx, ret, loops);
1333 return ret;
1334 }
1335
io_run_local_work_locked(struct io_ring_ctx * ctx,int min_events)1336 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1337 int min_events)
1338 {
1339 struct io_tw_state ts = {};
1340
1341 if (!io_local_work_pending(ctx))
1342 return 0;
1343 return __io_run_local_work(ctx, &ts, min_events,
1344 max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
1345 }
1346
io_run_local_work(struct io_ring_ctx * ctx,int min_events,int max_events)1347 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events,
1348 int max_events)
1349 {
1350 struct io_tw_state ts = {};
1351 int ret;
1352
1353 mutex_lock(&ctx->uring_lock);
1354 ret = __io_run_local_work(ctx, &ts, min_events, max_events);
1355 mutex_unlock(&ctx->uring_lock);
1356 return ret;
1357 }
1358
io_req_task_cancel(struct io_kiocb * req,struct io_tw_state * ts)1359 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1360 {
1361 io_tw_lock(req->ctx, ts);
1362 io_req_defer_failed(req, req->cqe.res);
1363 }
1364
io_req_task_submit(struct io_kiocb * req,struct io_tw_state * ts)1365 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1366 {
1367 io_tw_lock(req->ctx, ts);
1368 if (unlikely(io_should_terminate_tw()))
1369 io_req_defer_failed(req, -EFAULT);
1370 else if (req->flags & REQ_F_FORCE_ASYNC)
1371 io_queue_iowq(req);
1372 else
1373 io_queue_sqe(req);
1374 }
1375
io_req_task_queue_fail(struct io_kiocb * req,int ret)1376 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1377 {
1378 io_req_set_res(req, ret, 0);
1379 req->io_task_work.func = io_req_task_cancel;
1380 io_req_task_work_add(req);
1381 }
1382
io_req_task_queue(struct io_kiocb * req)1383 void io_req_task_queue(struct io_kiocb *req)
1384 {
1385 req->io_task_work.func = io_req_task_submit;
1386 io_req_task_work_add(req);
1387 }
1388
io_queue_next(struct io_kiocb * req)1389 void io_queue_next(struct io_kiocb *req)
1390 {
1391 struct io_kiocb *nxt = io_req_find_next(req);
1392
1393 if (nxt)
1394 io_req_task_queue(nxt);
1395 }
1396
io_free_batch_list(struct io_ring_ctx * ctx,struct io_wq_work_node * node)1397 static void io_free_batch_list(struct io_ring_ctx *ctx,
1398 struct io_wq_work_node *node)
1399 __must_hold(&ctx->uring_lock)
1400 {
1401 do {
1402 struct io_kiocb *req = container_of(node, struct io_kiocb,
1403 comp_list);
1404
1405 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1406 if (req->flags & REQ_F_REISSUE) {
1407 node = req->comp_list.next;
1408 req->flags &= ~REQ_F_REISSUE;
1409 io_queue_iowq(req);
1410 continue;
1411 }
1412 if (req->flags & REQ_F_REFCOUNT) {
1413 node = req->comp_list.next;
1414 if (!req_ref_put_and_test(req))
1415 continue;
1416 }
1417 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1418 struct async_poll *apoll = req->apoll;
1419
1420 if (apoll->double_poll)
1421 kfree(apoll->double_poll);
1422 if (!io_alloc_cache_put(&ctx->apoll_cache, apoll))
1423 kfree(apoll);
1424 req->flags &= ~REQ_F_POLLED;
1425 }
1426 if (req->flags & IO_REQ_LINK_FLAGS)
1427 io_queue_next(req);
1428 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1429 io_clean_op(req);
1430 }
1431 io_put_file(req);
1432 io_req_put_rsrc_nodes(req);
1433 io_put_task(req);
1434
1435 node = req->comp_list.next;
1436 io_req_add_to_cache(req, ctx);
1437 } while (node);
1438 }
1439
__io_submit_flush_completions(struct io_ring_ctx * ctx)1440 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1441 __must_hold(&ctx->uring_lock)
1442 {
1443 struct io_submit_state *state = &ctx->submit_state;
1444 struct io_wq_work_node *node;
1445
1446 __io_cq_lock(ctx);
1447 __wq_list_for_each(node, &state->compl_reqs) {
1448 struct io_kiocb *req = container_of(node, struct io_kiocb,
1449 comp_list);
1450
1451 /*
1452 * Requests marked with REQUEUE should not post a CQE, they
1453 * will go through the io-wq retry machinery and post one
1454 * later.
1455 */
1456 if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) &&
1457 unlikely(!io_fill_cqe_req(ctx, req))) {
1458 if (ctx->lockless_cq) {
1459 spin_lock(&ctx->completion_lock);
1460 io_req_cqe_overflow(req);
1461 spin_unlock(&ctx->completion_lock);
1462 } else {
1463 io_req_cqe_overflow(req);
1464 }
1465 }
1466 }
1467 __io_cq_unlock_post(ctx);
1468
1469 if (!wq_list_empty(&state->compl_reqs)) {
1470 io_free_batch_list(ctx, state->compl_reqs.first);
1471 INIT_WQ_LIST(&state->compl_reqs);
1472 }
1473 ctx->submit_state.cq_flush = false;
1474 }
1475
io_cqring_events(struct io_ring_ctx * ctx)1476 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1477 {
1478 /* See comment at the top of this file */
1479 smp_rmb();
1480 return __io_cqring_events(ctx);
1481 }
1482
1483 /*
1484 * We can't just wait for polled events to come to us, we have to actively
1485 * find and complete them.
1486 */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)1487 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1488 {
1489 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1490 return;
1491
1492 mutex_lock(&ctx->uring_lock);
1493 while (!wq_list_empty(&ctx->iopoll_list)) {
1494 /* let it sleep and repeat later if can't complete a request */
1495 if (io_do_iopoll(ctx, true) == 0)
1496 break;
1497 /*
1498 * Ensure we allow local-to-the-cpu processing to take place,
1499 * in this case we need to ensure that we reap all events.
1500 * Also let task_work, etc. to progress by releasing the mutex
1501 */
1502 if (need_resched()) {
1503 mutex_unlock(&ctx->uring_lock);
1504 cond_resched();
1505 mutex_lock(&ctx->uring_lock);
1506 }
1507 }
1508 mutex_unlock(&ctx->uring_lock);
1509 }
1510
io_iopoll_check(struct io_ring_ctx * ctx,long min)1511 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1512 {
1513 unsigned int nr_events = 0;
1514 unsigned long check_cq;
1515
1516 lockdep_assert_held(&ctx->uring_lock);
1517
1518 if (!io_allowed_run_tw(ctx))
1519 return -EEXIST;
1520
1521 check_cq = READ_ONCE(ctx->check_cq);
1522 if (unlikely(check_cq)) {
1523 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1524 __io_cqring_overflow_flush(ctx, false);
1525 /*
1526 * Similarly do not spin if we have not informed the user of any
1527 * dropped CQE.
1528 */
1529 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1530 return -EBADR;
1531 }
1532 /*
1533 * Don't enter poll loop if we already have events pending.
1534 * If we do, we can potentially be spinning for commands that
1535 * already triggered a CQE (eg in error).
1536 */
1537 if (io_cqring_events(ctx))
1538 return 0;
1539
1540 do {
1541 int ret = 0;
1542
1543 /*
1544 * If a submit got punted to a workqueue, we can have the
1545 * application entering polling for a command before it gets
1546 * issued. That app will hold the uring_lock for the duration
1547 * of the poll right here, so we need to take a breather every
1548 * now and then to ensure that the issue has a chance to add
1549 * the poll to the issued list. Otherwise we can spin here
1550 * forever, while the workqueue is stuck trying to acquire the
1551 * very same mutex.
1552 */
1553 if (wq_list_empty(&ctx->iopoll_list) ||
1554 io_task_work_pending(ctx)) {
1555 u32 tail = ctx->cached_cq_tail;
1556
1557 (void) io_run_local_work_locked(ctx, min);
1558
1559 if (task_work_pending(current) ||
1560 wq_list_empty(&ctx->iopoll_list)) {
1561 mutex_unlock(&ctx->uring_lock);
1562 io_run_task_work();
1563 mutex_lock(&ctx->uring_lock);
1564 }
1565 /* some requests don't go through iopoll_list */
1566 if (tail != ctx->cached_cq_tail ||
1567 wq_list_empty(&ctx->iopoll_list))
1568 break;
1569 }
1570 ret = io_do_iopoll(ctx, !min);
1571 if (unlikely(ret < 0))
1572 return ret;
1573
1574 if (task_sigpending(current))
1575 return -EINTR;
1576 if (need_resched())
1577 break;
1578
1579 nr_events += ret;
1580 } while (nr_events < min);
1581
1582 return 0;
1583 }
1584
io_req_task_complete(struct io_kiocb * req,struct io_tw_state * ts)1585 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1586 {
1587 io_req_complete_defer(req);
1588 }
1589
1590 /*
1591 * After the iocb has been issued, it's safe to be found on the poll list.
1592 * Adding the kiocb to the list AFTER submission ensures that we don't
1593 * find it from a io_do_iopoll() thread before the issuer is done
1594 * accessing the kiocb cookie.
1595 */
io_iopoll_req_issued(struct io_kiocb * req,unsigned int issue_flags)1596 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1597 {
1598 struct io_ring_ctx *ctx = req->ctx;
1599 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1600
1601 /* workqueue context doesn't hold uring_lock, grab it now */
1602 if (unlikely(needs_lock))
1603 mutex_lock(&ctx->uring_lock);
1604
1605 /*
1606 * Track whether we have multiple files in our lists. This will impact
1607 * how we do polling eventually, not spinning if we're on potentially
1608 * different devices.
1609 */
1610 if (wq_list_empty(&ctx->iopoll_list)) {
1611 ctx->poll_multi_queue = false;
1612 } else if (!ctx->poll_multi_queue) {
1613 struct io_kiocb *list_req;
1614
1615 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1616 comp_list);
1617 if (list_req->file != req->file)
1618 ctx->poll_multi_queue = true;
1619 }
1620
1621 /*
1622 * For fast devices, IO may have already completed. If it has, add
1623 * it to the front so we find it first.
1624 */
1625 if (READ_ONCE(req->iopoll_completed))
1626 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1627 else
1628 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1629
1630 if (unlikely(needs_lock)) {
1631 /*
1632 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1633 * in sq thread task context or in io worker task context. If
1634 * current task context is sq thread, we don't need to check
1635 * whether should wake up sq thread.
1636 */
1637 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1638 wq_has_sleeper(&ctx->sq_data->wait))
1639 wake_up(&ctx->sq_data->wait);
1640
1641 mutex_unlock(&ctx->uring_lock);
1642 }
1643 }
1644
io_file_get_flags(struct file * file)1645 io_req_flags_t io_file_get_flags(struct file *file)
1646 {
1647 io_req_flags_t res = 0;
1648
1649 if (S_ISREG(file_inode(file)->i_mode))
1650 res |= REQ_F_ISREG;
1651 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1652 res |= REQ_F_SUPPORT_NOWAIT;
1653 return res;
1654 }
1655
io_get_sequence(struct io_kiocb * req)1656 static u32 io_get_sequence(struct io_kiocb *req)
1657 {
1658 u32 seq = req->ctx->cached_sq_head;
1659 struct io_kiocb *cur;
1660
1661 /* need original cached_sq_head, but it was increased for each req */
1662 io_for_each_link(cur, req)
1663 seq--;
1664 return seq;
1665 }
1666
io_drain_req(struct io_kiocb * req)1667 static __cold void io_drain_req(struct io_kiocb *req)
1668 __must_hold(&ctx->uring_lock)
1669 {
1670 struct io_ring_ctx *ctx = req->ctx;
1671 struct io_defer_entry *de;
1672 int ret;
1673 u32 seq = io_get_sequence(req);
1674
1675 /* Still need defer if there is pending req in defer list. */
1676 spin_lock(&ctx->completion_lock);
1677 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1678 spin_unlock(&ctx->completion_lock);
1679 queue:
1680 ctx->drain_active = false;
1681 io_req_task_queue(req);
1682 return;
1683 }
1684 spin_unlock(&ctx->completion_lock);
1685
1686 io_prep_async_link(req);
1687 de = kmalloc(sizeof(*de), GFP_KERNEL);
1688 if (!de) {
1689 ret = -ENOMEM;
1690 io_req_defer_failed(req, ret);
1691 return;
1692 }
1693
1694 spin_lock(&ctx->completion_lock);
1695 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1696 spin_unlock(&ctx->completion_lock);
1697 kfree(de);
1698 goto queue;
1699 }
1700
1701 trace_io_uring_defer(req);
1702 de->req = req;
1703 de->seq = seq;
1704 list_add_tail(&de->list, &ctx->defer_list);
1705 spin_unlock(&ctx->completion_lock);
1706 }
1707
io_assign_file(struct io_kiocb * req,const struct io_issue_def * def,unsigned int issue_flags)1708 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1709 unsigned int issue_flags)
1710 {
1711 if (req->file || !def->needs_file)
1712 return true;
1713
1714 if (req->flags & REQ_F_FIXED_FILE)
1715 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1716 else
1717 req->file = io_file_get_normal(req, req->cqe.fd);
1718
1719 return !!req->file;
1720 }
1721
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)1722 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1723 {
1724 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1725 const struct cred *creds = NULL;
1726 int ret;
1727
1728 if (unlikely(!io_assign_file(req, def, issue_flags)))
1729 return -EBADF;
1730
1731 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1732 creds = override_creds(req->creds);
1733
1734 if (!def->audit_skip)
1735 audit_uring_entry(req->opcode);
1736
1737 ret = def->issue(req, issue_flags);
1738
1739 if (!def->audit_skip)
1740 audit_uring_exit(!ret, ret);
1741
1742 if (creds)
1743 revert_creds(creds);
1744
1745 if (ret == IOU_OK) {
1746 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1747 io_req_complete_defer(req);
1748 else
1749 io_req_complete_post(req, issue_flags);
1750
1751 return 0;
1752 }
1753
1754 if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1755 ret = 0;
1756 io_arm_ltimeout(req);
1757
1758 /* If the op doesn't have a file, we're not polling for it */
1759 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1760 io_iopoll_req_issued(req, issue_flags);
1761 }
1762 return ret;
1763 }
1764
io_poll_issue(struct io_kiocb * req,struct io_tw_state * ts)1765 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1766 {
1767 io_tw_lock(req->ctx, ts);
1768 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1769 IO_URING_F_COMPLETE_DEFER);
1770 }
1771
io_wq_free_work(struct io_wq_work * work)1772 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1773 {
1774 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1775 struct io_kiocb *nxt = NULL;
1776
1777 if (req_ref_put_and_test(req)) {
1778 if (req->flags & IO_REQ_LINK_FLAGS)
1779 nxt = io_req_find_next(req);
1780 io_free_req(req);
1781 }
1782 return nxt ? &nxt->work : NULL;
1783 }
1784
io_wq_submit_work(struct io_wq_work * work)1785 void io_wq_submit_work(struct io_wq_work *work)
1786 {
1787 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1788 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1789 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1790 bool needs_poll = false;
1791 int ret = 0, err = -ECANCELED;
1792
1793 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1794 if (!(req->flags & REQ_F_REFCOUNT))
1795 __io_req_set_refcount(req, 2);
1796 else
1797 req_ref_get(req);
1798
1799 io_arm_ltimeout(req);
1800
1801 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1802 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1803 fail:
1804 io_req_task_queue_fail(req, err);
1805 return;
1806 }
1807 if (!io_assign_file(req, def, issue_flags)) {
1808 err = -EBADF;
1809 atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1810 goto fail;
1811 }
1812
1813 /*
1814 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1815 * submitter task context. Final request completions are handed to the
1816 * right context, however this is not the case of auxiliary CQEs,
1817 * which is the main mean of operation for multishot requests.
1818 * Don't allow any multishot execution from io-wq. It's more restrictive
1819 * than necessary and also cleaner.
1820 */
1821 if (req->flags & REQ_F_APOLL_MULTISHOT) {
1822 err = -EBADFD;
1823 if (!io_file_can_poll(req))
1824 goto fail;
1825 if (req->file->f_flags & O_NONBLOCK ||
1826 req->file->f_mode & FMODE_NOWAIT) {
1827 err = -ECANCELED;
1828 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1829 goto fail;
1830 return;
1831 } else {
1832 req->flags &= ~REQ_F_APOLL_MULTISHOT;
1833 }
1834 }
1835
1836 if (req->flags & REQ_F_FORCE_ASYNC) {
1837 bool opcode_poll = def->pollin || def->pollout;
1838
1839 if (opcode_poll && io_file_can_poll(req)) {
1840 needs_poll = true;
1841 issue_flags |= IO_URING_F_NONBLOCK;
1842 }
1843 }
1844
1845 do {
1846 ret = io_issue_sqe(req, issue_flags);
1847 if (ret != -EAGAIN)
1848 break;
1849
1850 /*
1851 * If REQ_F_NOWAIT is set, then don't wait or retry with
1852 * poll. -EAGAIN is final for that case.
1853 */
1854 if (req->flags & REQ_F_NOWAIT)
1855 break;
1856
1857 /*
1858 * We can get EAGAIN for iopolled IO even though we're
1859 * forcing a sync submission from here, since we can't
1860 * wait for request slots on the block side.
1861 */
1862 if (!needs_poll) {
1863 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1864 break;
1865 if (io_wq_worker_stopped())
1866 break;
1867 cond_resched();
1868 continue;
1869 }
1870
1871 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1872 return;
1873 /* aborted or ready, in either case retry blocking */
1874 needs_poll = false;
1875 issue_flags &= ~IO_URING_F_NONBLOCK;
1876 } while (1);
1877
1878 /* avoid locking problems by failing it from a clean context */
1879 if (ret)
1880 io_req_task_queue_fail(req, ret);
1881 }
1882
io_file_get_fixed(struct io_kiocb * req,int fd,unsigned int issue_flags)1883 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1884 unsigned int issue_flags)
1885 {
1886 struct io_ring_ctx *ctx = req->ctx;
1887 struct io_rsrc_node *node;
1888 struct file *file = NULL;
1889
1890 io_ring_submit_lock(ctx, issue_flags);
1891 node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
1892 if (node) {
1893 io_req_assign_rsrc_node(&req->file_node, node);
1894 req->flags |= io_slot_flags(node);
1895 file = io_slot_file(node);
1896 }
1897 io_ring_submit_unlock(ctx, issue_flags);
1898 return file;
1899 }
1900
io_file_get_normal(struct io_kiocb * req,int fd)1901 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1902 {
1903 struct file *file = fget(fd);
1904
1905 trace_io_uring_file_get(req, fd);
1906
1907 /* we don't allow fixed io_uring files */
1908 if (file && io_is_uring_fops(file))
1909 io_req_track_inflight(req);
1910 return file;
1911 }
1912
io_queue_async(struct io_kiocb * req,int ret)1913 static void io_queue_async(struct io_kiocb *req, int ret)
1914 __must_hold(&req->ctx->uring_lock)
1915 {
1916 struct io_kiocb *linked_timeout;
1917
1918 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1919 io_req_defer_failed(req, ret);
1920 return;
1921 }
1922
1923 linked_timeout = io_prep_linked_timeout(req);
1924
1925 switch (io_arm_poll_handler(req, 0)) {
1926 case IO_APOLL_READY:
1927 io_kbuf_recycle(req, 0);
1928 io_req_task_queue(req);
1929 break;
1930 case IO_APOLL_ABORTED:
1931 io_kbuf_recycle(req, 0);
1932 io_queue_iowq(req);
1933 break;
1934 case IO_APOLL_OK:
1935 break;
1936 }
1937
1938 if (linked_timeout)
1939 io_queue_linked_timeout(linked_timeout);
1940 }
1941
io_queue_sqe(struct io_kiocb * req)1942 static inline void io_queue_sqe(struct io_kiocb *req)
1943 __must_hold(&req->ctx->uring_lock)
1944 {
1945 int ret;
1946
1947 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1948
1949 /*
1950 * We async punt it if the file wasn't marked NOWAIT, or if the file
1951 * doesn't support non-blocking read/write attempts
1952 */
1953 if (unlikely(ret))
1954 io_queue_async(req, ret);
1955 }
1956
io_queue_sqe_fallback(struct io_kiocb * req)1957 static void io_queue_sqe_fallback(struct io_kiocb *req)
1958 __must_hold(&req->ctx->uring_lock)
1959 {
1960 if (unlikely(req->flags & REQ_F_FAIL)) {
1961 /*
1962 * We don't submit, fail them all, for that replace hardlinks
1963 * with normal links. Extra REQ_F_LINK is tolerated.
1964 */
1965 req->flags &= ~REQ_F_HARDLINK;
1966 req->flags |= REQ_F_LINK;
1967 io_req_defer_failed(req, req->cqe.res);
1968 } else {
1969 if (unlikely(req->ctx->drain_active))
1970 io_drain_req(req);
1971 else
1972 io_queue_iowq(req);
1973 }
1974 }
1975
1976 /*
1977 * Check SQE restrictions (opcode and flags).
1978 *
1979 * Returns 'true' if SQE is allowed, 'false' otherwise.
1980 */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)1981 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1982 struct io_kiocb *req,
1983 unsigned int sqe_flags)
1984 {
1985 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1986 return false;
1987
1988 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1989 ctx->restrictions.sqe_flags_required)
1990 return false;
1991
1992 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1993 ctx->restrictions.sqe_flags_required))
1994 return false;
1995
1996 return true;
1997 }
1998
io_init_req_drain(struct io_kiocb * req)1999 static void io_init_req_drain(struct io_kiocb *req)
2000 {
2001 struct io_ring_ctx *ctx = req->ctx;
2002 struct io_kiocb *head = ctx->submit_state.link.head;
2003
2004 ctx->drain_active = true;
2005 if (head) {
2006 /*
2007 * If we need to drain a request in the middle of a link, drain
2008 * the head request and the next request/link after the current
2009 * link. Considering sequential execution of links,
2010 * REQ_F_IO_DRAIN will be maintained for every request of our
2011 * link.
2012 */
2013 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2014 ctx->drain_next = true;
2015 }
2016 }
2017
io_init_fail_req(struct io_kiocb * req,int err)2018 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2019 {
2020 /* ensure per-opcode data is cleared if we fail before prep */
2021 memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2022 return err;
2023 }
2024
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2025 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2026 const struct io_uring_sqe *sqe)
2027 __must_hold(&ctx->uring_lock)
2028 {
2029 const struct io_issue_def *def;
2030 unsigned int sqe_flags;
2031 int personality;
2032 u8 opcode;
2033
2034 /* req is partially pre-initialised, see io_preinit_req() */
2035 req->opcode = opcode = READ_ONCE(sqe->opcode);
2036 /* same numerical values with corresponding REQ_F_*, safe to copy */
2037 sqe_flags = READ_ONCE(sqe->flags);
2038 req->flags = (__force io_req_flags_t) sqe_flags;
2039 req->cqe.user_data = READ_ONCE(sqe->user_data);
2040 req->file = NULL;
2041 req->tctx = current->io_uring;
2042 req->cancel_seq_set = false;
2043
2044 if (unlikely(opcode >= IORING_OP_LAST)) {
2045 req->opcode = 0;
2046 return io_init_fail_req(req, -EINVAL);
2047 }
2048 opcode = array_index_nospec(opcode, IORING_OP_LAST);
2049
2050 def = &io_issue_defs[opcode];
2051 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2052 /* enforce forwards compatibility on users */
2053 if (sqe_flags & ~SQE_VALID_FLAGS)
2054 return io_init_fail_req(req, -EINVAL);
2055 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2056 if (!def->buffer_select)
2057 return io_init_fail_req(req, -EOPNOTSUPP);
2058 req->buf_index = READ_ONCE(sqe->buf_group);
2059 }
2060 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2061 ctx->drain_disabled = true;
2062 if (sqe_flags & IOSQE_IO_DRAIN) {
2063 if (ctx->drain_disabled)
2064 return io_init_fail_req(req, -EOPNOTSUPP);
2065 io_init_req_drain(req);
2066 }
2067 }
2068 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2069 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2070 return io_init_fail_req(req, -EACCES);
2071 /* knock it to the slow queue path, will be drained there */
2072 if (ctx->drain_active)
2073 req->flags |= REQ_F_FORCE_ASYNC;
2074 /* if there is no link, we're at "next" request and need to drain */
2075 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2076 ctx->drain_next = false;
2077 ctx->drain_active = true;
2078 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2079 }
2080 }
2081
2082 if (!def->ioprio && sqe->ioprio)
2083 return io_init_fail_req(req, -EINVAL);
2084 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2085 return io_init_fail_req(req, -EINVAL);
2086
2087 if (def->needs_file) {
2088 struct io_submit_state *state = &ctx->submit_state;
2089
2090 req->cqe.fd = READ_ONCE(sqe->fd);
2091
2092 /*
2093 * Plug now if we have more than 2 IO left after this, and the
2094 * target is potentially a read/write to block based storage.
2095 */
2096 if (state->need_plug && def->plug) {
2097 state->plug_started = true;
2098 state->need_plug = false;
2099 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2100 }
2101 }
2102
2103 personality = READ_ONCE(sqe->personality);
2104 if (personality) {
2105 int ret;
2106
2107 req->creds = xa_load(&ctx->personalities, personality);
2108 if (!req->creds)
2109 return io_init_fail_req(req, -EINVAL);
2110 get_cred(req->creds);
2111 ret = security_uring_override_creds(req->creds);
2112 if (ret) {
2113 put_cred(req->creds);
2114 return io_init_fail_req(req, ret);
2115 }
2116 req->flags |= REQ_F_CREDS;
2117 }
2118
2119 return def->prep(req, sqe);
2120 }
2121
io_submit_fail_init(const struct io_uring_sqe * sqe,struct io_kiocb * req,int ret)2122 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2123 struct io_kiocb *req, int ret)
2124 {
2125 struct io_ring_ctx *ctx = req->ctx;
2126 struct io_submit_link *link = &ctx->submit_state.link;
2127 struct io_kiocb *head = link->head;
2128
2129 trace_io_uring_req_failed(sqe, req, ret);
2130
2131 /*
2132 * Avoid breaking links in the middle as it renders links with SQPOLL
2133 * unusable. Instead of failing eagerly, continue assembling the link if
2134 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2135 * should find the flag and handle the rest.
2136 */
2137 req_fail_link_node(req, ret);
2138 if (head && !(head->flags & REQ_F_FAIL))
2139 req_fail_link_node(head, -ECANCELED);
2140
2141 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2142 if (head) {
2143 link->last->link = req;
2144 link->head = NULL;
2145 req = head;
2146 }
2147 io_queue_sqe_fallback(req);
2148 return ret;
2149 }
2150
2151 if (head)
2152 link->last->link = req;
2153 else
2154 link->head = req;
2155 link->last = req;
2156 return 0;
2157 }
2158
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2159 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2160 const struct io_uring_sqe *sqe)
2161 __must_hold(&ctx->uring_lock)
2162 {
2163 struct io_submit_link *link = &ctx->submit_state.link;
2164 int ret;
2165
2166 ret = io_init_req(ctx, req, sqe);
2167 if (unlikely(ret))
2168 return io_submit_fail_init(sqe, req, ret);
2169
2170 trace_io_uring_submit_req(req);
2171
2172 /*
2173 * If we already have a head request, queue this one for async
2174 * submittal once the head completes. If we don't have a head but
2175 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2176 * submitted sync once the chain is complete. If none of those
2177 * conditions are true (normal request), then just queue it.
2178 */
2179 if (unlikely(link->head)) {
2180 trace_io_uring_link(req, link->last);
2181 link->last->link = req;
2182 link->last = req;
2183
2184 if (req->flags & IO_REQ_LINK_FLAGS)
2185 return 0;
2186 /* last request of the link, flush it */
2187 req = link->head;
2188 link->head = NULL;
2189 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2190 goto fallback;
2191
2192 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2193 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2194 if (req->flags & IO_REQ_LINK_FLAGS) {
2195 link->head = req;
2196 link->last = req;
2197 } else {
2198 fallback:
2199 io_queue_sqe_fallback(req);
2200 }
2201 return 0;
2202 }
2203
2204 io_queue_sqe(req);
2205 return 0;
2206 }
2207
2208 /*
2209 * Batched submission is done, ensure local IO is flushed out.
2210 */
io_submit_state_end(struct io_ring_ctx * ctx)2211 static void io_submit_state_end(struct io_ring_ctx *ctx)
2212 {
2213 struct io_submit_state *state = &ctx->submit_state;
2214
2215 if (unlikely(state->link.head))
2216 io_queue_sqe_fallback(state->link.head);
2217 /* flush only after queuing links as they can generate completions */
2218 io_submit_flush_completions(ctx);
2219 if (state->plug_started)
2220 blk_finish_plug(&state->plug);
2221 }
2222
2223 /*
2224 * Start submission side cache.
2225 */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)2226 static void io_submit_state_start(struct io_submit_state *state,
2227 unsigned int max_ios)
2228 {
2229 state->plug_started = false;
2230 state->need_plug = max_ios > 2;
2231 state->submit_nr = max_ios;
2232 /* set only head, no need to init link_last in advance */
2233 state->link.head = NULL;
2234 }
2235
io_commit_sqring(struct io_ring_ctx * ctx)2236 static void io_commit_sqring(struct io_ring_ctx *ctx)
2237 {
2238 struct io_rings *rings = ctx->rings;
2239
2240 /*
2241 * Ensure any loads from the SQEs are done at this point,
2242 * since once we write the new head, the application could
2243 * write new data to them.
2244 */
2245 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2246 }
2247
2248 /*
2249 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2250 * that is mapped by userspace. This means that care needs to be taken to
2251 * ensure that reads are stable, as we cannot rely on userspace always
2252 * being a good citizen. If members of the sqe are validated and then later
2253 * used, it's important that those reads are done through READ_ONCE() to
2254 * prevent a re-load down the line.
2255 */
io_get_sqe(struct io_ring_ctx * ctx,const struct io_uring_sqe ** sqe)2256 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2257 {
2258 unsigned mask = ctx->sq_entries - 1;
2259 unsigned head = ctx->cached_sq_head++ & mask;
2260
2261 if (static_branch_unlikely(&io_key_has_sqarray) &&
2262 (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
2263 head = READ_ONCE(ctx->sq_array[head]);
2264 if (unlikely(head >= ctx->sq_entries)) {
2265 /* drop invalid entries */
2266 spin_lock(&ctx->completion_lock);
2267 ctx->cq_extra--;
2268 spin_unlock(&ctx->completion_lock);
2269 WRITE_ONCE(ctx->rings->sq_dropped,
2270 READ_ONCE(ctx->rings->sq_dropped) + 1);
2271 return false;
2272 }
2273 head = array_index_nospec(head, ctx->sq_entries);
2274 }
2275
2276 /*
2277 * The cached sq head (or cq tail) serves two purposes:
2278 *
2279 * 1) allows us to batch the cost of updating the user visible
2280 * head updates.
2281 * 2) allows the kernel side to track the head on its own, even
2282 * though the application is the one updating it.
2283 */
2284
2285 /* double index for 128-byte SQEs, twice as long */
2286 if (ctx->flags & IORING_SETUP_SQE128)
2287 head <<= 1;
2288 *sqe = &ctx->sq_sqes[head];
2289 return true;
2290 }
2291
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)2292 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2293 __must_hold(&ctx->uring_lock)
2294 {
2295 unsigned int entries = io_sqring_entries(ctx);
2296 unsigned int left;
2297 int ret;
2298
2299 if (unlikely(!entries))
2300 return 0;
2301 /* make sure SQ entry isn't read before tail */
2302 ret = left = min(nr, entries);
2303 io_get_task_refs(left);
2304 io_submit_state_start(&ctx->submit_state, left);
2305
2306 do {
2307 const struct io_uring_sqe *sqe;
2308 struct io_kiocb *req;
2309
2310 if (unlikely(!io_alloc_req(ctx, &req)))
2311 break;
2312 if (unlikely(!io_get_sqe(ctx, &sqe))) {
2313 io_req_add_to_cache(req, ctx);
2314 break;
2315 }
2316
2317 /*
2318 * Continue submitting even for sqe failure if the
2319 * ring was setup with IORING_SETUP_SUBMIT_ALL
2320 */
2321 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2322 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2323 left--;
2324 break;
2325 }
2326 } while (--left);
2327
2328 if (unlikely(left)) {
2329 ret -= left;
2330 /* try again if it submitted nothing and can't allocate a req */
2331 if (!ret && io_req_cache_empty(ctx))
2332 ret = -EAGAIN;
2333 current->io_uring->cached_refs += left;
2334 }
2335
2336 io_submit_state_end(ctx);
2337 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2338 io_commit_sqring(ctx);
2339 return ret;
2340 }
2341
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)2342 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2343 int wake_flags, void *key)
2344 {
2345 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2346
2347 /*
2348 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2349 * the task, and the next invocation will do it.
2350 */
2351 if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2352 return autoremove_wake_function(curr, mode, wake_flags, key);
2353 return -1;
2354 }
2355
io_run_task_work_sig(struct io_ring_ctx * ctx)2356 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2357 {
2358 if (io_local_work_pending(ctx)) {
2359 __set_current_state(TASK_RUNNING);
2360 if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0)
2361 return 0;
2362 }
2363 if (io_run_task_work() > 0)
2364 return 0;
2365 if (task_sigpending(current))
2366 return -EINTR;
2367 return 0;
2368 }
2369
current_pending_io(void)2370 static bool current_pending_io(void)
2371 {
2372 struct io_uring_task *tctx = current->io_uring;
2373
2374 if (!tctx)
2375 return false;
2376 return percpu_counter_read_positive(&tctx->inflight);
2377 }
2378
io_cqring_timer_wakeup(struct hrtimer * timer)2379 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2380 {
2381 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2382
2383 WRITE_ONCE(iowq->hit_timeout, 1);
2384 iowq->min_timeout = 0;
2385 wake_up_process(iowq->wq.private);
2386 return HRTIMER_NORESTART;
2387 }
2388
2389 /*
2390 * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2391 * wake up. If not, and we have a normal timeout, switch to that and keep
2392 * sleeping.
2393 */
io_cqring_min_timer_wakeup(struct hrtimer * timer)2394 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2395 {
2396 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2397 struct io_ring_ctx *ctx = iowq->ctx;
2398
2399 /* no general timeout, or shorter (or equal), we are done */
2400 if (iowq->timeout == KTIME_MAX ||
2401 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2402 goto out_wake;
2403 /* work we may need to run, wake function will see if we need to wake */
2404 if (io_has_work(ctx))
2405 goto out_wake;
2406 /* got events since we started waiting, min timeout is done */
2407 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2408 goto out_wake;
2409 /* if we have any events and min timeout expired, we're done */
2410 if (io_cqring_events(ctx))
2411 goto out_wake;
2412
2413 /*
2414 * If using deferred task_work running and application is waiting on
2415 * more than one request, ensure we reset it now where we are switching
2416 * to normal sleeps. Any request completion post min_wait should wake
2417 * the task and return.
2418 */
2419 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2420 atomic_set(&ctx->cq_wait_nr, 1);
2421 smp_mb();
2422 if (!llist_empty(&ctx->work_llist))
2423 goto out_wake;
2424 }
2425
2426 iowq->t.function = io_cqring_timer_wakeup;
2427 hrtimer_set_expires(timer, iowq->timeout);
2428 return HRTIMER_RESTART;
2429 out_wake:
2430 return io_cqring_timer_wakeup(timer);
2431 }
2432
io_cqring_schedule_timeout(struct io_wait_queue * iowq,clockid_t clock_id,ktime_t start_time)2433 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2434 clockid_t clock_id, ktime_t start_time)
2435 {
2436 ktime_t timeout;
2437
2438 if (iowq->min_timeout) {
2439 timeout = ktime_add_ns(iowq->min_timeout, start_time);
2440 hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id,
2441 HRTIMER_MODE_ABS);
2442 } else {
2443 timeout = iowq->timeout;
2444 hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id,
2445 HRTIMER_MODE_ABS);
2446 }
2447
2448 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2449 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2450
2451 if (!READ_ONCE(iowq->hit_timeout))
2452 schedule();
2453
2454 hrtimer_cancel(&iowq->t);
2455 destroy_hrtimer_on_stack(&iowq->t);
2456 __set_current_state(TASK_RUNNING);
2457
2458 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2459 }
2460
__io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,ktime_t start_time)2461 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2462 struct io_wait_queue *iowq,
2463 ktime_t start_time)
2464 {
2465 int ret = 0;
2466
2467 /*
2468 * Mark us as being in io_wait if we have pending requests, so cpufreq
2469 * can take into account that the task is waiting for IO - turns out
2470 * to be important for low QD IO.
2471 */
2472 if (current_pending_io())
2473 current->in_iowait = 1;
2474 if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2475 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2476 else
2477 schedule();
2478 current->in_iowait = 0;
2479 return ret;
2480 }
2481
2482 /* If this returns > 0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,ktime_t start_time)2483 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2484 struct io_wait_queue *iowq,
2485 ktime_t start_time)
2486 {
2487 if (unlikely(READ_ONCE(ctx->check_cq)))
2488 return 1;
2489 if (unlikely(io_local_work_pending(ctx)))
2490 return 1;
2491 if (unlikely(task_work_pending(current)))
2492 return 1;
2493 if (unlikely(task_sigpending(current)))
2494 return -EINTR;
2495 if (unlikely(io_should_wake(iowq)))
2496 return 0;
2497
2498 return __io_cqring_wait_schedule(ctx, iowq, start_time);
2499 }
2500
2501 struct ext_arg {
2502 size_t argsz;
2503 struct timespec64 ts;
2504 const sigset_t __user *sig;
2505 ktime_t min_time;
2506 bool ts_set;
2507 };
2508
2509 /*
2510 * Wait until events become available, if we don't already have some. The
2511 * application must reap them itself, as they reside on the shared cq ring.
2512 */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,u32 flags,struct ext_arg * ext_arg)2513 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2514 struct ext_arg *ext_arg)
2515 {
2516 struct io_wait_queue iowq;
2517 struct io_rings *rings = ctx->rings;
2518 ktime_t start_time;
2519 int ret;
2520
2521 if (!io_allowed_run_tw(ctx))
2522 return -EEXIST;
2523 if (io_local_work_pending(ctx))
2524 io_run_local_work(ctx, min_events,
2525 max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
2526 io_run_task_work();
2527
2528 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2529 io_cqring_do_overflow_flush(ctx);
2530 if (__io_cqring_events_user(ctx) >= min_events)
2531 return 0;
2532
2533 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2534 iowq.wq.private = current;
2535 INIT_LIST_HEAD(&iowq.wq.entry);
2536 iowq.ctx = ctx;
2537 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2538 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2539 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2540 iowq.hit_timeout = 0;
2541 iowq.min_timeout = ext_arg->min_time;
2542 iowq.timeout = KTIME_MAX;
2543 start_time = io_get_time(ctx);
2544
2545 if (ext_arg->ts_set) {
2546 iowq.timeout = timespec64_to_ktime(ext_arg->ts);
2547 if (!(flags & IORING_ENTER_ABS_TIMER))
2548 iowq.timeout = ktime_add(iowq.timeout, start_time);
2549 }
2550
2551 if (ext_arg->sig) {
2552 #ifdef CONFIG_COMPAT
2553 if (in_compat_syscall())
2554 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2555 ext_arg->argsz);
2556 else
2557 #endif
2558 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2559
2560 if (ret)
2561 return ret;
2562 }
2563
2564 io_napi_busy_loop(ctx, &iowq);
2565
2566 trace_io_uring_cqring_wait(ctx, min_events);
2567 do {
2568 unsigned long check_cq;
2569 int nr_wait;
2570
2571 /* if min timeout has been hit, don't reset wait count */
2572 if (!iowq.hit_timeout)
2573 nr_wait = (int) iowq.cq_tail -
2574 READ_ONCE(ctx->rings->cq.tail);
2575 else
2576 nr_wait = 1;
2577
2578 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2579 atomic_set(&ctx->cq_wait_nr, nr_wait);
2580 set_current_state(TASK_INTERRUPTIBLE);
2581 } else {
2582 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2583 TASK_INTERRUPTIBLE);
2584 }
2585
2586 ret = io_cqring_wait_schedule(ctx, &iowq, start_time);
2587 __set_current_state(TASK_RUNNING);
2588 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2589
2590 /*
2591 * Run task_work after scheduling and before io_should_wake().
2592 * If we got woken because of task_work being processed, run it
2593 * now rather than let the caller do another wait loop.
2594 */
2595 if (io_local_work_pending(ctx))
2596 io_run_local_work(ctx, nr_wait, nr_wait);
2597 io_run_task_work();
2598
2599 /*
2600 * Non-local task_work will be run on exit to userspace, but
2601 * if we're using DEFER_TASKRUN, then we could have waited
2602 * with a timeout for a number of requests. If the timeout
2603 * hits, we could have some requests ready to process. Ensure
2604 * this break is _after_ we have run task_work, to avoid
2605 * deferring running potentially pending requests until the
2606 * next time we wait for events.
2607 */
2608 if (ret < 0)
2609 break;
2610
2611 check_cq = READ_ONCE(ctx->check_cq);
2612 if (unlikely(check_cq)) {
2613 /* let the caller flush overflows, retry */
2614 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2615 io_cqring_do_overflow_flush(ctx);
2616 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2617 ret = -EBADR;
2618 break;
2619 }
2620 }
2621
2622 if (io_should_wake(&iowq)) {
2623 ret = 0;
2624 break;
2625 }
2626 cond_resched();
2627 } while (1);
2628
2629 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2630 finish_wait(&ctx->cq_wait, &iowq.wq);
2631 restore_saved_sigmask_unless(ret == -EINTR);
2632
2633 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2634 }
2635
io_rings_free(struct io_ring_ctx * ctx)2636 static void io_rings_free(struct io_ring_ctx *ctx)
2637 {
2638 io_free_region(ctx, &ctx->sq_region);
2639 io_free_region(ctx, &ctx->ring_region);
2640 ctx->rings = NULL;
2641 ctx->sq_sqes = NULL;
2642 }
2643
rings_size(unsigned int flags,unsigned int sq_entries,unsigned int cq_entries,size_t * sq_offset)2644 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
2645 unsigned int cq_entries, size_t *sq_offset)
2646 {
2647 struct io_rings *rings;
2648 size_t off, sq_array_size;
2649
2650 off = struct_size(rings, cqes, cq_entries);
2651 if (off == SIZE_MAX)
2652 return SIZE_MAX;
2653 if (flags & IORING_SETUP_CQE32) {
2654 if (check_shl_overflow(off, 1, &off))
2655 return SIZE_MAX;
2656 }
2657
2658 #ifdef CONFIG_SMP
2659 off = ALIGN(off, SMP_CACHE_BYTES);
2660 if (off == 0)
2661 return SIZE_MAX;
2662 #endif
2663
2664 if (flags & IORING_SETUP_NO_SQARRAY) {
2665 *sq_offset = SIZE_MAX;
2666 return off;
2667 }
2668
2669 *sq_offset = off;
2670
2671 sq_array_size = array_size(sizeof(u32), sq_entries);
2672 if (sq_array_size == SIZE_MAX)
2673 return SIZE_MAX;
2674
2675 if (check_add_overflow(off, sq_array_size, &off))
2676 return SIZE_MAX;
2677
2678 return off;
2679 }
2680
io_req_caches_free(struct io_ring_ctx * ctx)2681 static void io_req_caches_free(struct io_ring_ctx *ctx)
2682 {
2683 struct io_kiocb *req;
2684 int nr = 0;
2685
2686 mutex_lock(&ctx->uring_lock);
2687
2688 while (!io_req_cache_empty(ctx)) {
2689 req = io_extract_req(ctx);
2690 kmem_cache_free(req_cachep, req);
2691 nr++;
2692 }
2693 if (nr)
2694 percpu_ref_put_many(&ctx->refs, nr);
2695 mutex_unlock(&ctx->uring_lock);
2696 }
2697
io_ring_ctx_free(struct io_ring_ctx * ctx)2698 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2699 {
2700 io_sq_thread_finish(ctx);
2701
2702 mutex_lock(&ctx->uring_lock);
2703 io_sqe_buffers_unregister(ctx);
2704 io_sqe_files_unregister(ctx);
2705 io_cqring_overflow_kill(ctx);
2706 io_eventfd_unregister(ctx);
2707 io_alloc_cache_free(&ctx->apoll_cache, kfree);
2708 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2709 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
2710 io_alloc_cache_free(&ctx->uring_cache, kfree);
2711 io_alloc_cache_free(&ctx->msg_cache, kfree);
2712 io_futex_cache_free(ctx);
2713 io_destroy_buffers(ctx);
2714 io_free_region(ctx, &ctx->param_region);
2715 mutex_unlock(&ctx->uring_lock);
2716 if (ctx->sq_creds)
2717 put_cred(ctx->sq_creds);
2718 if (ctx->submitter_task)
2719 put_task_struct(ctx->submitter_task);
2720
2721 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2722
2723 if (ctx->mm_account) {
2724 mmdrop(ctx->mm_account);
2725 ctx->mm_account = NULL;
2726 }
2727 io_rings_free(ctx);
2728
2729 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2730 static_branch_dec(&io_key_has_sqarray);
2731
2732 percpu_ref_exit(&ctx->refs);
2733 free_uid(ctx->user);
2734 io_req_caches_free(ctx);
2735 if (ctx->hash_map)
2736 io_wq_put_hash(ctx->hash_map);
2737 io_napi_free(ctx);
2738 kvfree(ctx->cancel_table.hbs);
2739 xa_destroy(&ctx->io_bl_xa);
2740 kfree(ctx);
2741 }
2742
io_activate_pollwq_cb(struct callback_head * cb)2743 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2744 {
2745 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2746 poll_wq_task_work);
2747
2748 mutex_lock(&ctx->uring_lock);
2749 ctx->poll_activated = true;
2750 mutex_unlock(&ctx->uring_lock);
2751
2752 /*
2753 * Wake ups for some events between start of polling and activation
2754 * might've been lost due to loose synchronisation.
2755 */
2756 wake_up_all(&ctx->poll_wq);
2757 percpu_ref_put(&ctx->refs);
2758 }
2759
io_activate_pollwq(struct io_ring_ctx * ctx)2760 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2761 {
2762 spin_lock(&ctx->completion_lock);
2763 /* already activated or in progress */
2764 if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2765 goto out;
2766 if (WARN_ON_ONCE(!ctx->task_complete))
2767 goto out;
2768 if (!ctx->submitter_task)
2769 goto out;
2770 /*
2771 * with ->submitter_task only the submitter task completes requests, we
2772 * only need to sync with it, which is done by injecting a tw
2773 */
2774 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2775 percpu_ref_get(&ctx->refs);
2776 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2777 percpu_ref_put(&ctx->refs);
2778 out:
2779 spin_unlock(&ctx->completion_lock);
2780 }
2781
io_uring_poll(struct file * file,poll_table * wait)2782 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2783 {
2784 struct io_ring_ctx *ctx = file->private_data;
2785 __poll_t mask = 0;
2786
2787 if (unlikely(!ctx->poll_activated))
2788 io_activate_pollwq(ctx);
2789 /*
2790 * provides mb() which pairs with barrier from wq_has_sleeper
2791 * call in io_commit_cqring
2792 */
2793 poll_wait(file, &ctx->poll_wq, wait);
2794
2795 if (!io_sqring_full(ctx))
2796 mask |= EPOLLOUT | EPOLLWRNORM;
2797
2798 /*
2799 * Don't flush cqring overflow list here, just do a simple check.
2800 * Otherwise there could possible be ABBA deadlock:
2801 * CPU0 CPU1
2802 * ---- ----
2803 * lock(&ctx->uring_lock);
2804 * lock(&ep->mtx);
2805 * lock(&ctx->uring_lock);
2806 * lock(&ep->mtx);
2807 *
2808 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2809 * pushes them to do the flush.
2810 */
2811
2812 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2813 mask |= EPOLLIN | EPOLLRDNORM;
2814
2815 return mask;
2816 }
2817
2818 struct io_tctx_exit {
2819 struct callback_head task_work;
2820 struct completion completion;
2821 struct io_ring_ctx *ctx;
2822 };
2823
io_tctx_exit_cb(struct callback_head * cb)2824 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2825 {
2826 struct io_uring_task *tctx = current->io_uring;
2827 struct io_tctx_exit *work;
2828
2829 work = container_of(cb, struct io_tctx_exit, task_work);
2830 /*
2831 * When @in_cancel, we're in cancellation and it's racy to remove the
2832 * node. It'll be removed by the end of cancellation, just ignore it.
2833 * tctx can be NULL if the queueing of this task_work raced with
2834 * work cancelation off the exec path.
2835 */
2836 if (tctx && !atomic_read(&tctx->in_cancel))
2837 io_uring_del_tctx_node((unsigned long)work->ctx);
2838 complete(&work->completion);
2839 }
2840
io_cancel_ctx_cb(struct io_wq_work * work,void * data)2841 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2842 {
2843 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2844
2845 return req->ctx == data;
2846 }
2847
io_ring_exit_work(struct work_struct * work)2848 static __cold void io_ring_exit_work(struct work_struct *work)
2849 {
2850 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2851 unsigned long timeout = jiffies + HZ * 60 * 5;
2852 unsigned long interval = HZ / 20;
2853 struct io_tctx_exit exit;
2854 struct io_tctx_node *node;
2855 int ret;
2856
2857 /*
2858 * If we're doing polled IO and end up having requests being
2859 * submitted async (out-of-line), then completions can come in while
2860 * we're waiting for refs to drop. We need to reap these manually,
2861 * as nobody else will be looking for them.
2862 */
2863 do {
2864 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2865 mutex_lock(&ctx->uring_lock);
2866 io_cqring_overflow_kill(ctx);
2867 mutex_unlock(&ctx->uring_lock);
2868 }
2869
2870 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2871 io_move_task_work_from_local(ctx);
2872
2873 /* The SQPOLL thread never reaches this path */
2874 while (io_uring_try_cancel_requests(ctx, NULL, true, false))
2875 cond_resched();
2876
2877 if (ctx->sq_data) {
2878 struct io_sq_data *sqd = ctx->sq_data;
2879 struct task_struct *tsk;
2880
2881 io_sq_thread_park(sqd);
2882 tsk = sqd->thread;
2883 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2884 io_wq_cancel_cb(tsk->io_uring->io_wq,
2885 io_cancel_ctx_cb, ctx, true);
2886 io_sq_thread_unpark(sqd);
2887 }
2888
2889 io_req_caches_free(ctx);
2890
2891 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2892 /* there is little hope left, don't run it too often */
2893 interval = HZ * 60;
2894 }
2895 /*
2896 * This is really an uninterruptible wait, as it has to be
2897 * complete. But it's also run from a kworker, which doesn't
2898 * take signals, so it's fine to make it interruptible. This
2899 * avoids scenarios where we knowingly can wait much longer
2900 * on completions, for example if someone does a SIGSTOP on
2901 * a task that needs to finish task_work to make this loop
2902 * complete. That's a synthetic situation that should not
2903 * cause a stuck task backtrace, and hence a potential panic
2904 * on stuck tasks if that is enabled.
2905 */
2906 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2907
2908 init_completion(&exit.completion);
2909 init_task_work(&exit.task_work, io_tctx_exit_cb);
2910 exit.ctx = ctx;
2911
2912 mutex_lock(&ctx->uring_lock);
2913 while (!list_empty(&ctx->tctx_list)) {
2914 WARN_ON_ONCE(time_after(jiffies, timeout));
2915
2916 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2917 ctx_node);
2918 /* don't spin on a single task if cancellation failed */
2919 list_rotate_left(&ctx->tctx_list);
2920 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2921 if (WARN_ON_ONCE(ret))
2922 continue;
2923
2924 mutex_unlock(&ctx->uring_lock);
2925 /*
2926 * See comment above for
2927 * wait_for_completion_interruptible_timeout() on why this
2928 * wait is marked as interruptible.
2929 */
2930 wait_for_completion_interruptible(&exit.completion);
2931 mutex_lock(&ctx->uring_lock);
2932 }
2933 mutex_unlock(&ctx->uring_lock);
2934 spin_lock(&ctx->completion_lock);
2935 spin_unlock(&ctx->completion_lock);
2936
2937 /* pairs with RCU read section in io_req_local_work_add() */
2938 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2939 synchronize_rcu();
2940
2941 io_ring_ctx_free(ctx);
2942 }
2943
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)2944 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2945 {
2946 unsigned long index;
2947 struct creds *creds;
2948
2949 mutex_lock(&ctx->uring_lock);
2950 percpu_ref_kill(&ctx->refs);
2951 xa_for_each(&ctx->personalities, index, creds)
2952 io_unregister_personality(ctx, index);
2953 mutex_unlock(&ctx->uring_lock);
2954
2955 flush_delayed_work(&ctx->fallback_work);
2956
2957 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2958 /*
2959 * Use system_unbound_wq to avoid spawning tons of event kworkers
2960 * if we're exiting a ton of rings at the same time. It just adds
2961 * noise and overhead, there's no discernable change in runtime
2962 * over using system_wq.
2963 */
2964 queue_work(iou_wq, &ctx->exit_work);
2965 }
2966
io_uring_release(struct inode * inode,struct file * file)2967 static int io_uring_release(struct inode *inode, struct file *file)
2968 {
2969 struct io_ring_ctx *ctx = file->private_data;
2970
2971 file->private_data = NULL;
2972 io_ring_ctx_wait_and_kill(ctx);
2973 return 0;
2974 }
2975
2976 struct io_task_cancel {
2977 struct io_uring_task *tctx;
2978 bool all;
2979 };
2980
io_cancel_task_cb(struct io_wq_work * work,void * data)2981 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
2982 {
2983 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2984 struct io_task_cancel *cancel = data;
2985
2986 return io_match_task_safe(req, cancel->tctx, cancel->all);
2987 }
2988
io_cancel_defer_files(struct io_ring_ctx * ctx,struct io_uring_task * tctx,bool cancel_all)2989 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
2990 struct io_uring_task *tctx,
2991 bool cancel_all)
2992 {
2993 struct io_defer_entry *de;
2994 LIST_HEAD(list);
2995
2996 spin_lock(&ctx->completion_lock);
2997 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
2998 if (io_match_task_safe(de->req, tctx, cancel_all)) {
2999 list_cut_position(&list, &ctx->defer_list, &de->list);
3000 break;
3001 }
3002 }
3003 spin_unlock(&ctx->completion_lock);
3004 if (list_empty(&list))
3005 return false;
3006
3007 while (!list_empty(&list)) {
3008 de = list_first_entry(&list, struct io_defer_entry, list);
3009 list_del_init(&de->list);
3010 io_req_task_queue_fail(de->req, -ECANCELED);
3011 kfree(de);
3012 }
3013 return true;
3014 }
3015
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)3016 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3017 {
3018 struct io_tctx_node *node;
3019 enum io_wq_cancel cret;
3020 bool ret = false;
3021
3022 mutex_lock(&ctx->uring_lock);
3023 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3024 struct io_uring_task *tctx = node->task->io_uring;
3025
3026 /*
3027 * io_wq will stay alive while we hold uring_lock, because it's
3028 * killed after ctx nodes, which requires to take the lock.
3029 */
3030 if (!tctx || !tctx->io_wq)
3031 continue;
3032 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3033 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3034 }
3035 mutex_unlock(&ctx->uring_lock);
3036
3037 return ret;
3038 }
3039
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct io_uring_task * tctx,bool cancel_all,bool is_sqpoll_thread)3040 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3041 struct io_uring_task *tctx,
3042 bool cancel_all,
3043 bool is_sqpoll_thread)
3044 {
3045 struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, };
3046 enum io_wq_cancel cret;
3047 bool ret = false;
3048
3049 /* set it so io_req_local_work_add() would wake us up */
3050 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3051 atomic_set(&ctx->cq_wait_nr, 1);
3052 smp_mb();
3053 }
3054
3055 /* failed during ring init, it couldn't have issued any requests */
3056 if (!ctx->rings)
3057 return false;
3058
3059 if (!tctx) {
3060 ret |= io_uring_try_cancel_iowq(ctx);
3061 } else if (tctx->io_wq) {
3062 /*
3063 * Cancels requests of all rings, not only @ctx, but
3064 * it's fine as the task is in exit/exec.
3065 */
3066 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3067 &cancel, true);
3068 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3069 }
3070
3071 /* SQPOLL thread does its own polling */
3072 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3073 is_sqpoll_thread) {
3074 while (!wq_list_empty(&ctx->iopoll_list)) {
3075 io_iopoll_try_reap_events(ctx);
3076 ret = true;
3077 cond_resched();
3078 }
3079 }
3080
3081 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3082 io_allowed_defer_tw_run(ctx))
3083 ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0;
3084 ret |= io_cancel_defer_files(ctx, tctx, cancel_all);
3085 mutex_lock(&ctx->uring_lock);
3086 ret |= io_poll_remove_all(ctx, tctx, cancel_all);
3087 ret |= io_waitid_remove_all(ctx, tctx, cancel_all);
3088 ret |= io_futex_remove_all(ctx, tctx, cancel_all);
3089 ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all);
3090 mutex_unlock(&ctx->uring_lock);
3091 ret |= io_kill_timeouts(ctx, tctx, cancel_all);
3092 if (tctx)
3093 ret |= io_run_task_work() > 0;
3094 else
3095 ret |= flush_delayed_work(&ctx->fallback_work);
3096 return ret;
3097 }
3098
tctx_inflight(struct io_uring_task * tctx,bool tracked)3099 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3100 {
3101 if (tracked)
3102 return atomic_read(&tctx->inflight_tracked);
3103 return percpu_counter_sum(&tctx->inflight);
3104 }
3105
3106 /*
3107 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3108 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3109 */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)3110 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3111 {
3112 struct io_uring_task *tctx = current->io_uring;
3113 struct io_ring_ctx *ctx;
3114 struct io_tctx_node *node;
3115 unsigned long index;
3116 s64 inflight;
3117 DEFINE_WAIT(wait);
3118
3119 WARN_ON_ONCE(sqd && sqd->thread != current);
3120
3121 if (!current->io_uring)
3122 return;
3123 if (tctx->io_wq)
3124 io_wq_exit_start(tctx->io_wq);
3125
3126 atomic_inc(&tctx->in_cancel);
3127 do {
3128 bool loop = false;
3129
3130 io_uring_drop_tctx_refs(current);
3131 if (!tctx_inflight(tctx, !cancel_all))
3132 break;
3133
3134 /* read completions before cancelations */
3135 inflight = tctx_inflight(tctx, false);
3136 if (!inflight)
3137 break;
3138
3139 if (!sqd) {
3140 xa_for_each(&tctx->xa, index, node) {
3141 /* sqpoll task will cancel all its requests */
3142 if (node->ctx->sq_data)
3143 continue;
3144 loop |= io_uring_try_cancel_requests(node->ctx,
3145 current->io_uring,
3146 cancel_all,
3147 false);
3148 }
3149 } else {
3150 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3151 loop |= io_uring_try_cancel_requests(ctx,
3152 current->io_uring,
3153 cancel_all,
3154 true);
3155 }
3156
3157 if (loop) {
3158 cond_resched();
3159 continue;
3160 }
3161
3162 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3163 io_run_task_work();
3164 io_uring_drop_tctx_refs(current);
3165 xa_for_each(&tctx->xa, index, node) {
3166 if (io_local_work_pending(node->ctx)) {
3167 WARN_ON_ONCE(node->ctx->submitter_task &&
3168 node->ctx->submitter_task != current);
3169 goto end_wait;
3170 }
3171 }
3172 /*
3173 * If we've seen completions, retry without waiting. This
3174 * avoids a race where a completion comes in before we did
3175 * prepare_to_wait().
3176 */
3177 if (inflight == tctx_inflight(tctx, !cancel_all))
3178 schedule();
3179 end_wait:
3180 finish_wait(&tctx->wait, &wait);
3181 } while (1);
3182
3183 io_uring_clean_tctx(tctx);
3184 if (cancel_all) {
3185 /*
3186 * We shouldn't run task_works after cancel, so just leave
3187 * ->in_cancel set for normal exit.
3188 */
3189 atomic_dec(&tctx->in_cancel);
3190 /* for exec all current's requests should be gone, kill tctx */
3191 __io_uring_free(current);
3192 }
3193 }
3194
__io_uring_cancel(bool cancel_all)3195 void __io_uring_cancel(bool cancel_all)
3196 {
3197 io_uring_unreg_ringfd();
3198 io_uring_cancel_generic(cancel_all, NULL);
3199 }
3200
io_get_ext_arg_reg(struct io_ring_ctx * ctx,const struct io_uring_getevents_arg __user * uarg)3201 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
3202 const struct io_uring_getevents_arg __user *uarg)
3203 {
3204 unsigned long size = sizeof(struct io_uring_reg_wait);
3205 unsigned long offset = (uintptr_t)uarg;
3206 unsigned long end;
3207
3208 if (unlikely(offset % sizeof(long)))
3209 return ERR_PTR(-EFAULT);
3210
3211 /* also protects from NULL ->cq_wait_arg as the size would be 0 */
3212 if (unlikely(check_add_overflow(offset, size, &end) ||
3213 end > ctx->cq_wait_size))
3214 return ERR_PTR(-EFAULT);
3215
3216 offset = array_index_nospec(offset, ctx->cq_wait_size - size);
3217 return ctx->cq_wait_arg + offset;
3218 }
3219
io_validate_ext_arg(struct io_ring_ctx * ctx,unsigned flags,const void __user * argp,size_t argsz)3220 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3221 const void __user *argp, size_t argsz)
3222 {
3223 struct io_uring_getevents_arg arg;
3224
3225 if (!(flags & IORING_ENTER_EXT_ARG))
3226 return 0;
3227 if (flags & IORING_ENTER_EXT_ARG_REG)
3228 return -EINVAL;
3229 if (argsz != sizeof(arg))
3230 return -EINVAL;
3231 if (copy_from_user(&arg, argp, sizeof(arg)))
3232 return -EFAULT;
3233 return 0;
3234 }
3235
io_get_ext_arg(struct io_ring_ctx * ctx,unsigned flags,const void __user * argp,struct ext_arg * ext_arg)3236 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3237 const void __user *argp, struct ext_arg *ext_arg)
3238 {
3239 const struct io_uring_getevents_arg __user *uarg = argp;
3240 struct io_uring_getevents_arg arg;
3241
3242 /*
3243 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3244 * is just a pointer to the sigset_t.
3245 */
3246 if (!(flags & IORING_ENTER_EXT_ARG)) {
3247 ext_arg->sig = (const sigset_t __user *) argp;
3248 return 0;
3249 }
3250
3251 if (flags & IORING_ENTER_EXT_ARG_REG) {
3252 struct io_uring_reg_wait *w;
3253
3254 if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
3255 return -EINVAL;
3256 w = io_get_ext_arg_reg(ctx, argp);
3257 if (IS_ERR(w))
3258 return PTR_ERR(w);
3259
3260 if (w->flags & ~IORING_REG_WAIT_TS)
3261 return -EINVAL;
3262 ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
3263 ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
3264 ext_arg->argsz = READ_ONCE(w->sigmask_sz);
3265 if (w->flags & IORING_REG_WAIT_TS) {
3266 ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
3267 ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
3268 ext_arg->ts_set = true;
3269 }
3270 return 0;
3271 }
3272
3273 /*
3274 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3275 * timespec and sigset_t pointers if good.
3276 */
3277 if (ext_arg->argsz != sizeof(arg))
3278 return -EINVAL;
3279 #ifdef CONFIG_64BIT
3280 if (!user_access_begin(uarg, sizeof(*uarg)))
3281 return -EFAULT;
3282 unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
3283 unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
3284 unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
3285 unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
3286 user_access_end();
3287 #else
3288 if (copy_from_user(&arg, uarg, sizeof(arg)))
3289 return -EFAULT;
3290 #endif
3291 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3292 ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3293 ext_arg->argsz = arg.sigmask_sz;
3294 if (arg.ts) {
3295 if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
3296 return -EFAULT;
3297 ext_arg->ts_set = true;
3298 }
3299 return 0;
3300 #ifdef CONFIG_64BIT
3301 uaccess_end:
3302 user_access_end();
3303 return -EFAULT;
3304 #endif
3305 }
3306
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)3307 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3308 u32, min_complete, u32, flags, const void __user *, argp,
3309 size_t, argsz)
3310 {
3311 struct io_ring_ctx *ctx;
3312 struct file *file;
3313 long ret;
3314
3315 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3316 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3317 IORING_ENTER_REGISTERED_RING |
3318 IORING_ENTER_ABS_TIMER |
3319 IORING_ENTER_EXT_ARG_REG)))
3320 return -EINVAL;
3321
3322 /*
3323 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3324 * need only dereference our task private array to find it.
3325 */
3326 if (flags & IORING_ENTER_REGISTERED_RING) {
3327 struct io_uring_task *tctx = current->io_uring;
3328
3329 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3330 return -EINVAL;
3331 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3332 file = tctx->registered_rings[fd];
3333 if (unlikely(!file))
3334 return -EBADF;
3335 } else {
3336 file = fget(fd);
3337 if (unlikely(!file))
3338 return -EBADF;
3339 ret = -EOPNOTSUPP;
3340 if (unlikely(!io_is_uring_fops(file)))
3341 goto out;
3342 }
3343
3344 ctx = file->private_data;
3345 ret = -EBADFD;
3346 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3347 goto out;
3348
3349 /*
3350 * For SQ polling, the thread will do all submissions and completions.
3351 * Just return the requested submit count, and wake the thread if
3352 * we were asked to.
3353 */
3354 ret = 0;
3355 if (ctx->flags & IORING_SETUP_SQPOLL) {
3356 if (unlikely(ctx->sq_data->thread == NULL)) {
3357 ret = -EOWNERDEAD;
3358 goto out;
3359 }
3360 if (flags & IORING_ENTER_SQ_WAKEUP)
3361 wake_up(&ctx->sq_data->wait);
3362 if (flags & IORING_ENTER_SQ_WAIT)
3363 io_sqpoll_wait_sq(ctx);
3364
3365 ret = to_submit;
3366 } else if (to_submit) {
3367 ret = io_uring_add_tctx_node(ctx);
3368 if (unlikely(ret))
3369 goto out;
3370
3371 mutex_lock(&ctx->uring_lock);
3372 ret = io_submit_sqes(ctx, to_submit);
3373 if (ret != to_submit) {
3374 mutex_unlock(&ctx->uring_lock);
3375 goto out;
3376 }
3377 if (flags & IORING_ENTER_GETEVENTS) {
3378 if (ctx->syscall_iopoll)
3379 goto iopoll_locked;
3380 /*
3381 * Ignore errors, we'll soon call io_cqring_wait() and
3382 * it should handle ownership problems if any.
3383 */
3384 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3385 (void)io_run_local_work_locked(ctx, min_complete);
3386 }
3387 mutex_unlock(&ctx->uring_lock);
3388 }
3389
3390 if (flags & IORING_ENTER_GETEVENTS) {
3391 int ret2;
3392
3393 if (ctx->syscall_iopoll) {
3394 /*
3395 * We disallow the app entering submit/complete with
3396 * polling, but we still need to lock the ring to
3397 * prevent racing with polled issue that got punted to
3398 * a workqueue.
3399 */
3400 mutex_lock(&ctx->uring_lock);
3401 iopoll_locked:
3402 ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
3403 if (likely(!ret2)) {
3404 min_complete = min(min_complete,
3405 ctx->cq_entries);
3406 ret2 = io_iopoll_check(ctx, min_complete);
3407 }
3408 mutex_unlock(&ctx->uring_lock);
3409 } else {
3410 struct ext_arg ext_arg = { .argsz = argsz };
3411
3412 ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
3413 if (likely(!ret2)) {
3414 min_complete = min(min_complete,
3415 ctx->cq_entries);
3416 ret2 = io_cqring_wait(ctx, min_complete, flags,
3417 &ext_arg);
3418 }
3419 }
3420
3421 if (!ret) {
3422 ret = ret2;
3423
3424 /*
3425 * EBADR indicates that one or more CQE were dropped.
3426 * Once the user has been informed we can clear the bit
3427 * as they are obviously ok with those drops.
3428 */
3429 if (unlikely(ret2 == -EBADR))
3430 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3431 &ctx->check_cq);
3432 }
3433 }
3434 out:
3435 if (!(flags & IORING_ENTER_REGISTERED_RING))
3436 fput(file);
3437 return ret;
3438 }
3439
3440 static const struct file_operations io_uring_fops = {
3441 .release = io_uring_release,
3442 .mmap = io_uring_mmap,
3443 .get_unmapped_area = io_uring_get_unmapped_area,
3444 #ifndef CONFIG_MMU
3445 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3446 #endif
3447 .poll = io_uring_poll,
3448 #ifdef CONFIG_PROC_FS
3449 .show_fdinfo = io_uring_show_fdinfo,
3450 #endif
3451 };
3452
io_is_uring_fops(struct file * file)3453 bool io_is_uring_fops(struct file *file)
3454 {
3455 return file->f_op == &io_uring_fops;
3456 }
3457
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)3458 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3459 struct io_uring_params *p)
3460 {
3461 struct io_uring_region_desc rd;
3462 struct io_rings *rings;
3463 size_t size, sq_array_offset;
3464 int ret;
3465
3466 /* make sure these are sane, as we already accounted them */
3467 ctx->sq_entries = p->sq_entries;
3468 ctx->cq_entries = p->cq_entries;
3469
3470 size = rings_size(ctx->flags, p->sq_entries, p->cq_entries,
3471 &sq_array_offset);
3472 if (size == SIZE_MAX)
3473 return -EOVERFLOW;
3474
3475 memset(&rd, 0, sizeof(rd));
3476 rd.size = PAGE_ALIGN(size);
3477 if (ctx->flags & IORING_SETUP_NO_MMAP) {
3478 rd.user_addr = p->cq_off.user_addr;
3479 rd.flags |= IORING_MEM_REGION_TYPE_USER;
3480 }
3481 ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING);
3482 if (ret)
3483 return ret;
3484 ctx->rings = rings = io_region_get_ptr(&ctx->ring_region);
3485
3486 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3487 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3488 rings->sq_ring_mask = p->sq_entries - 1;
3489 rings->cq_ring_mask = p->cq_entries - 1;
3490 rings->sq_ring_entries = p->sq_entries;
3491 rings->cq_ring_entries = p->cq_entries;
3492
3493 if (p->flags & IORING_SETUP_SQE128)
3494 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3495 else
3496 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3497 if (size == SIZE_MAX) {
3498 io_rings_free(ctx);
3499 return -EOVERFLOW;
3500 }
3501
3502 memset(&rd, 0, sizeof(rd));
3503 rd.size = PAGE_ALIGN(size);
3504 if (ctx->flags & IORING_SETUP_NO_MMAP) {
3505 rd.user_addr = p->sq_off.user_addr;
3506 rd.flags |= IORING_MEM_REGION_TYPE_USER;
3507 }
3508 ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES);
3509 if (ret) {
3510 io_rings_free(ctx);
3511 return ret;
3512 }
3513 ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region);
3514 return 0;
3515 }
3516
io_uring_install_fd(struct file * file)3517 static int io_uring_install_fd(struct file *file)
3518 {
3519 int fd;
3520
3521 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3522 if (fd < 0)
3523 return fd;
3524 fd_install(fd, file);
3525 return fd;
3526 }
3527
3528 /*
3529 * Allocate an anonymous fd, this is what constitutes the application
3530 * visible backing of an io_uring instance. The application mmaps this
3531 * fd to gain access to the SQ/CQ ring details.
3532 */
io_uring_get_file(struct io_ring_ctx * ctx)3533 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3534 {
3535 /* Create a new inode so that the LSM can block the creation. */
3536 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3537 O_RDWR | O_CLOEXEC, NULL);
3538 }
3539
io_uring_fill_params(unsigned entries,struct io_uring_params * p)3540 int io_uring_fill_params(unsigned entries, struct io_uring_params *p)
3541 {
3542 if (!entries)
3543 return -EINVAL;
3544 if (entries > IORING_MAX_ENTRIES) {
3545 if (!(p->flags & IORING_SETUP_CLAMP))
3546 return -EINVAL;
3547 entries = IORING_MAX_ENTRIES;
3548 }
3549
3550 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3551 && !(p->flags & IORING_SETUP_NO_MMAP))
3552 return -EINVAL;
3553
3554 /*
3555 * Use twice as many entries for the CQ ring. It's possible for the
3556 * application to drive a higher depth than the size of the SQ ring,
3557 * since the sqes are only used at submission time. This allows for
3558 * some flexibility in overcommitting a bit. If the application has
3559 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3560 * of CQ ring entries manually.
3561 */
3562 p->sq_entries = roundup_pow_of_two(entries);
3563 if (p->flags & IORING_SETUP_CQSIZE) {
3564 /*
3565 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3566 * to a power-of-two, if it isn't already. We do NOT impose
3567 * any cq vs sq ring sizing.
3568 */
3569 if (!p->cq_entries)
3570 return -EINVAL;
3571 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3572 if (!(p->flags & IORING_SETUP_CLAMP))
3573 return -EINVAL;
3574 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3575 }
3576 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3577 if (p->cq_entries < p->sq_entries)
3578 return -EINVAL;
3579 } else {
3580 p->cq_entries = 2 * p->sq_entries;
3581 }
3582
3583 p->sq_off.head = offsetof(struct io_rings, sq.head);
3584 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3585 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3586 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3587 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3588 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3589 p->sq_off.resv1 = 0;
3590 if (!(p->flags & IORING_SETUP_NO_MMAP))
3591 p->sq_off.user_addr = 0;
3592
3593 p->cq_off.head = offsetof(struct io_rings, cq.head);
3594 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3595 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3596 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3597 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3598 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3599 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3600 p->cq_off.resv1 = 0;
3601 if (!(p->flags & IORING_SETUP_NO_MMAP))
3602 p->cq_off.user_addr = 0;
3603
3604 return 0;
3605 }
3606
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)3607 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3608 struct io_uring_params __user *params)
3609 {
3610 struct io_ring_ctx *ctx;
3611 struct io_uring_task *tctx;
3612 struct file *file;
3613 int ret;
3614
3615 ret = io_uring_fill_params(entries, p);
3616 if (unlikely(ret))
3617 return ret;
3618
3619 ctx = io_ring_ctx_alloc(p);
3620 if (!ctx)
3621 return -ENOMEM;
3622
3623 ctx->clockid = CLOCK_MONOTONIC;
3624 ctx->clock_offset = 0;
3625
3626 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3627 static_branch_inc(&io_key_has_sqarray);
3628
3629 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3630 !(ctx->flags & IORING_SETUP_IOPOLL) &&
3631 !(ctx->flags & IORING_SETUP_SQPOLL))
3632 ctx->task_complete = true;
3633
3634 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3635 ctx->lockless_cq = true;
3636
3637 /*
3638 * lazy poll_wq activation relies on ->task_complete for synchronisation
3639 * purposes, see io_activate_pollwq()
3640 */
3641 if (!ctx->task_complete)
3642 ctx->poll_activated = true;
3643
3644 /*
3645 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3646 * space applications don't need to do io completion events
3647 * polling again, they can rely on io_sq_thread to do polling
3648 * work, which can reduce cpu usage and uring_lock contention.
3649 */
3650 if (ctx->flags & IORING_SETUP_IOPOLL &&
3651 !(ctx->flags & IORING_SETUP_SQPOLL))
3652 ctx->syscall_iopoll = 1;
3653
3654 ctx->compat = in_compat_syscall();
3655 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3656 ctx->user = get_uid(current_user());
3657
3658 /*
3659 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3660 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3661 */
3662 ret = -EINVAL;
3663 if (ctx->flags & IORING_SETUP_SQPOLL) {
3664 /* IPI related flags don't make sense with SQPOLL */
3665 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3666 IORING_SETUP_TASKRUN_FLAG |
3667 IORING_SETUP_DEFER_TASKRUN))
3668 goto err;
3669 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3670 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3671 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3672 } else {
3673 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3674 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3675 goto err;
3676 ctx->notify_method = TWA_SIGNAL;
3677 }
3678
3679 /* HYBRID_IOPOLL only valid with IOPOLL */
3680 if ((ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_HYBRID_IOPOLL)) ==
3681 IORING_SETUP_HYBRID_IOPOLL)
3682 goto err;
3683
3684 /*
3685 * For DEFER_TASKRUN we require the completion task to be the same as the
3686 * submission task. This implies that there is only one submitter, so enforce
3687 * that.
3688 */
3689 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3690 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3691 goto err;
3692 }
3693
3694 /*
3695 * This is just grabbed for accounting purposes. When a process exits,
3696 * the mm is exited and dropped before the files, hence we need to hang
3697 * on to this mm purely for the purposes of being able to unaccount
3698 * memory (locked/pinned vm). It's not used for anything else.
3699 */
3700 mmgrab(current->mm);
3701 ctx->mm_account = current->mm;
3702
3703 ret = io_allocate_scq_urings(ctx, p);
3704 if (ret)
3705 goto err;
3706
3707 if (!(p->flags & IORING_SETUP_NO_SQARRAY))
3708 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3709
3710 ret = io_sq_offload_create(ctx, p);
3711 if (ret)
3712 goto err;
3713
3714 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3715 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3716 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3717 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3718 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3719 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3720 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3721 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT |
3722 IORING_FEAT_RW_ATTR;
3723
3724 if (copy_to_user(params, p, sizeof(*p))) {
3725 ret = -EFAULT;
3726 goto err;
3727 }
3728
3729 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3730 && !(ctx->flags & IORING_SETUP_R_DISABLED))
3731 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3732
3733 file = io_uring_get_file(ctx);
3734 if (IS_ERR(file)) {
3735 ret = PTR_ERR(file);
3736 goto err;
3737 }
3738
3739 ret = __io_uring_add_tctx_node(ctx);
3740 if (ret)
3741 goto err_fput;
3742 tctx = current->io_uring;
3743
3744 /*
3745 * Install ring fd as the very last thing, so we don't risk someone
3746 * having closed it before we finish setup
3747 */
3748 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3749 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3750 else
3751 ret = io_uring_install_fd(file);
3752 if (ret < 0)
3753 goto err_fput;
3754
3755 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3756 return ret;
3757 err:
3758 io_ring_ctx_wait_and_kill(ctx);
3759 return ret;
3760 err_fput:
3761 fput(file);
3762 return ret;
3763 }
3764
3765 /*
3766 * Sets up an aio uring context, and returns the fd. Applications asks for a
3767 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3768 * params structure passed in.
3769 */
io_uring_setup(u32 entries,struct io_uring_params __user * params)3770 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3771 {
3772 struct io_uring_params p;
3773 int i;
3774
3775 if (copy_from_user(&p, params, sizeof(p)))
3776 return -EFAULT;
3777 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3778 if (p.resv[i])
3779 return -EINVAL;
3780 }
3781
3782 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3783 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3784 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3785 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3786 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3787 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3788 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3789 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3790 IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL))
3791 return -EINVAL;
3792
3793 return io_uring_create(entries, &p, params);
3794 }
3795
io_uring_allowed(void)3796 static inline bool io_uring_allowed(void)
3797 {
3798 int disabled = READ_ONCE(sysctl_io_uring_disabled);
3799 kgid_t io_uring_group;
3800
3801 if (disabled == 2)
3802 return false;
3803
3804 if (disabled == 0 || capable(CAP_SYS_ADMIN))
3805 return true;
3806
3807 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3808 if (!gid_valid(io_uring_group))
3809 return false;
3810
3811 return in_group_p(io_uring_group);
3812 }
3813
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)3814 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3815 struct io_uring_params __user *, params)
3816 {
3817 if (!io_uring_allowed())
3818 return -EPERM;
3819
3820 return io_uring_setup(entries, params);
3821 }
3822
io_uring_init(void)3823 static int __init io_uring_init(void)
3824 {
3825 struct kmem_cache_args kmem_args = {
3826 .useroffset = offsetof(struct io_kiocb, cmd.data),
3827 .usersize = sizeof_field(struct io_kiocb, cmd.data),
3828 .freeptr_offset = offsetof(struct io_kiocb, work),
3829 .use_freeptr_offset = true,
3830 };
3831
3832 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3833 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3834 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3835 } while (0)
3836
3837 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3838 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3839 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3840 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3841 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3842 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
3843 BUILD_BUG_SQE_ELEM(1, __u8, flags);
3844 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
3845 BUILD_BUG_SQE_ELEM(4, __s32, fd);
3846 BUILD_BUG_SQE_ELEM(8, __u64, off);
3847 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
3848 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
3849 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3850 BUILD_BUG_SQE_ELEM(16, __u64, addr);
3851 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
3852 BUILD_BUG_SQE_ELEM(24, __u32, len);
3853 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
3854 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
3855 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3856 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
3857 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
3858 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
3859 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
3860 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
3861 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
3862 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
3863 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
3864 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
3865 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
3866 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
3867 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
3868 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
3869 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
3870 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
3871 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
3872 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
3873 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
3874 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
3875 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
3876 BUILD_BUG_SQE_ELEM(42, __u16, personality);
3877 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
3878 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
3879 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
3880 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
3881 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
3882 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3883 BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr);
3884 BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask);
3885 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
3886
3887 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3888 sizeof(struct io_uring_rsrc_update));
3889 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3890 sizeof(struct io_uring_rsrc_update2));
3891
3892 /* ->buf_index is u16 */
3893 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3894 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3895 offsetof(struct io_uring_buf_ring, tail));
3896
3897 /* should fit into one byte */
3898 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3899 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3900 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3901
3902 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3903
3904 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3905
3906 /* top 8bits are for internal use */
3907 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3908
3909 io_uring_optable_init();
3910
3911 /*
3912 * Allow user copy in the per-command field, which starts after the
3913 * file in io_kiocb and until the opcode field. The openat2 handling
3914 * requires copying in user memory into the io_kiocb object in that
3915 * range, and HARDENED_USERCOPY will complain if we haven't
3916 * correctly annotated this range.
3917 */
3918 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3919 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3920 SLAB_TYPESAFE_BY_RCU);
3921 io_buf_cachep = KMEM_CACHE(io_buffer,
3922 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
3923
3924 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3925
3926 #ifdef CONFIG_SYSCTL
3927 register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3928 #endif
3929
3930 return 0;
3931 };
3932 __initcall(io_uring_init);
3933