1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
3
4 #include <linux/module.h>
5 #include <linux/device.h>
6 #include <linux/pci.h>
7 #include <linux/ptp_classify.h>
8
9 #include "igb.h"
10
11 #define INCVALUE_MASK 0x7fffffff
12 #define ISGN 0x80000000
13
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15 * and this update value cannot be reprogrammed.
16 *
17 * Neither the 82576 nor the 82580 offer registers wide enough to hold
18 * nanoseconds time values for very long. For the 82580, SYSTIM always
19 * counts nanoseconds, but the upper 24 bits are not available. The
20 * frequency is adjusted by changing the 32 bit fractional nanoseconds
21 * register, TIMINCA.
22 *
23 * For the 82576, the SYSTIM register time unit is affect by the
24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25 * field are needed to provide the nominal 16 nanosecond period,
26 * leaving 19 bits for fractional nanoseconds.
27 *
28 * We scale the NIC clock cycle by a large factor so that relatively
29 * small clock corrections can be added or subtracted at each clock
30 * tick. The drawbacks of a large factor are a) that the clock
31 * register overflows more quickly (not such a big deal) and b) that
32 * the increment per tick has to fit into 24 bits. As a result we
33 * need to use a shift of 19 so we can fit a value of 16 into the
34 * TIMINCA register.
35 *
36 *
37 * SYSTIMH SYSTIML
38 * +--------------+ +---+---+------+
39 * 82576 | 32 | | 8 | 5 | 19 |
40 * +--------------+ +---+---+------+
41 * \________ 45 bits _______/ fract
42 *
43 * +----------+---+ +--------------+
44 * 82580 | 24 | 8 | | 32 |
45 * +----------+---+ +--------------+
46 * reserved \______ 40 bits _____/
47 *
48 *
49 * The 45 bit 82576 SYSTIM overflows every
50 * 2^45 * 10^-9 / 3600 = 9.77 hours.
51 *
52 * The 40 bit 82580 SYSTIM overflows every
53 * 2^40 * 10^-9 / 60 = 18.3 minutes.
54 *
55 * SYSTIM is converted to real time using a timecounter. As
56 * timecounter_cyc2time() allows old timestamps, the timecounter needs
57 * to be updated at least once per half of the SYSTIM interval.
58 * Scheduling of delayed work is not very accurate, and also the NIC
59 * clock can be adjusted to run up to 6% faster and the system clock
60 * up to 10% slower, so we aim for 6 minutes to be sure the actual
61 * interval in the NIC time is shorter than 9.16 minutes.
62 */
63
64 #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 6)
65 #define IGB_PTP_TX_TIMEOUT (HZ * 15)
66 #define INCPERIOD_82576 BIT(E1000_TIMINCA_16NS_SHIFT)
67 #define INCVALUE_82576_MASK GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
68 #define INCVALUE_82576 (16u << IGB_82576_TSYNC_SHIFT)
69 #define IGB_NBITS_82580 40
70 #define IGB_82580_BASE_PERIOD 0x800000000
71
72 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
73 static void igb_ptp_sdp_init(struct igb_adapter *adapter);
74
75 /* SYSTIM read access for the 82576 */
igb_ptp_read_82576(struct cyclecounter * cc)76 static u64 igb_ptp_read_82576(struct cyclecounter *cc)
77 {
78 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
79 struct e1000_hw *hw = &igb->hw;
80 u64 val;
81 u32 lo, hi;
82
83 lo = rd32(E1000_SYSTIML);
84 hi = rd32(E1000_SYSTIMH);
85
86 val = ((u64) hi) << 32;
87 val |= lo;
88
89 return val;
90 }
91
92 /* SYSTIM read access for the 82580 */
igb_ptp_read_82580(struct cyclecounter * cc)93 static u64 igb_ptp_read_82580(struct cyclecounter *cc)
94 {
95 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
96 struct e1000_hw *hw = &igb->hw;
97 u32 lo, hi;
98 u64 val;
99
100 /* The timestamp latches on lowest register read. For the 82580
101 * the lowest register is SYSTIMR instead of SYSTIML. However we only
102 * need to provide nanosecond resolution, so we just ignore it.
103 */
104 rd32(E1000_SYSTIMR);
105 lo = rd32(E1000_SYSTIML);
106 hi = rd32(E1000_SYSTIMH);
107
108 val = ((u64) hi) << 32;
109 val |= lo;
110
111 return val;
112 }
113
114 /* SYSTIM read access for I210/I211 */
igb_ptp_read_i210(struct igb_adapter * adapter,struct timespec64 * ts)115 static void igb_ptp_read_i210(struct igb_adapter *adapter,
116 struct timespec64 *ts)
117 {
118 struct e1000_hw *hw = &adapter->hw;
119 u32 sec, nsec;
120
121 /* The timestamp latches on lowest register read. For I210/I211, the
122 * lowest register is SYSTIMR. Since we only need to provide nanosecond
123 * resolution, we can ignore it.
124 */
125 rd32(E1000_SYSTIMR);
126 nsec = rd32(E1000_SYSTIML);
127 sec = rd32(E1000_SYSTIMH);
128
129 ts->tv_sec = sec;
130 ts->tv_nsec = nsec;
131 }
132
igb_ptp_write_i210(struct igb_adapter * adapter,const struct timespec64 * ts)133 static void igb_ptp_write_i210(struct igb_adapter *adapter,
134 const struct timespec64 *ts)
135 {
136 struct e1000_hw *hw = &adapter->hw;
137
138 /* Writing the SYSTIMR register is not necessary as it only provides
139 * sub-nanosecond resolution.
140 */
141 wr32(E1000_SYSTIML, ts->tv_nsec);
142 wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
143 }
144
145 /**
146 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
147 * @adapter: board private structure
148 * @hwtstamps: timestamp structure to update
149 * @systim: unsigned 64bit system time value.
150 *
151 * We need to convert the system time value stored in the RX/TXSTMP registers
152 * into a hwtstamp which can be used by the upper level timestamping functions.
153 *
154 * The 'tmreg_lock' spinlock is used to protect the consistency of the
155 * system time value. This is needed because reading the 64 bit time
156 * value involves reading two (or three) 32 bit registers. The first
157 * read latches the value. Ditto for writing.
158 *
159 * In addition, here have extended the system time with an overflow
160 * counter in software.
161 **/
igb_ptp_systim_to_hwtstamp(struct igb_adapter * adapter,struct skb_shared_hwtstamps * hwtstamps,u64 systim)162 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
163 struct skb_shared_hwtstamps *hwtstamps,
164 u64 systim)
165 {
166 unsigned long flags;
167 u64 ns;
168
169 memset(hwtstamps, 0, sizeof(*hwtstamps));
170
171 switch (adapter->hw.mac.type) {
172 case e1000_82576:
173 case e1000_82580:
174 case e1000_i354:
175 case e1000_i350:
176 spin_lock_irqsave(&adapter->tmreg_lock, flags);
177 ns = timecounter_cyc2time(&adapter->tc, systim);
178 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
179
180 hwtstamps->hwtstamp = ns_to_ktime(ns);
181 break;
182 case e1000_i210:
183 case e1000_i211:
184 /* Upper 32 bits contain s, lower 32 bits contain ns. */
185 hwtstamps->hwtstamp = ktime_set(systim >> 32,
186 systim & 0xFFFFFFFF);
187 break;
188 default:
189 break;
190 }
191 }
192
193 /* PTP clock operations */
igb_ptp_adjfine_82576(struct ptp_clock_info * ptp,long scaled_ppm)194 static int igb_ptp_adjfine_82576(struct ptp_clock_info *ptp, long scaled_ppm)
195 {
196 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
197 ptp_caps);
198 struct e1000_hw *hw = &igb->hw;
199 u64 incvalue;
200
201 incvalue = adjust_by_scaled_ppm(INCVALUE_82576, scaled_ppm);
202
203 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
204
205 return 0;
206 }
207
igb_ptp_adjfine_82580(struct ptp_clock_info * ptp,long scaled_ppm)208 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
209 {
210 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
211 ptp_caps);
212 struct e1000_hw *hw = &igb->hw;
213 bool neg_adj;
214 u64 rate;
215 u32 inca;
216
217 neg_adj = diff_by_scaled_ppm(IGB_82580_BASE_PERIOD, scaled_ppm, &rate);
218
219 inca = rate & INCVALUE_MASK;
220 if (neg_adj)
221 inca |= ISGN;
222
223 wr32(E1000_TIMINCA, inca);
224
225 return 0;
226 }
227
igb_ptp_adjtime_82576(struct ptp_clock_info * ptp,s64 delta)228 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
229 {
230 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
231 ptp_caps);
232 unsigned long flags;
233
234 spin_lock_irqsave(&igb->tmreg_lock, flags);
235 timecounter_adjtime(&igb->tc, delta);
236 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
237
238 return 0;
239 }
240
igb_ptp_adjtime_i210(struct ptp_clock_info * ptp,s64 delta)241 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
242 {
243 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
244 ptp_caps);
245 unsigned long flags;
246 struct timespec64 now, then = ns_to_timespec64(delta);
247
248 spin_lock_irqsave(&igb->tmreg_lock, flags);
249
250 igb_ptp_read_i210(igb, &now);
251 now = timespec64_add(now, then);
252 igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
253
254 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
255
256 return 0;
257 }
258
igb_ptp_gettimex_82576(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)259 static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
260 struct timespec64 *ts,
261 struct ptp_system_timestamp *sts)
262 {
263 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
264 ptp_caps);
265 struct e1000_hw *hw = &igb->hw;
266 unsigned long flags;
267 u32 lo, hi;
268 u64 ns;
269
270 spin_lock_irqsave(&igb->tmreg_lock, flags);
271
272 ptp_read_system_prets(sts);
273 lo = rd32(E1000_SYSTIML);
274 ptp_read_system_postts(sts);
275 hi = rd32(E1000_SYSTIMH);
276
277 ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
278
279 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
280
281 *ts = ns_to_timespec64(ns);
282
283 return 0;
284 }
285
igb_ptp_gettimex_82580(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)286 static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
287 struct timespec64 *ts,
288 struct ptp_system_timestamp *sts)
289 {
290 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
291 ptp_caps);
292 struct e1000_hw *hw = &igb->hw;
293 unsigned long flags;
294 u32 lo, hi;
295 u64 ns;
296
297 spin_lock_irqsave(&igb->tmreg_lock, flags);
298
299 ptp_read_system_prets(sts);
300 rd32(E1000_SYSTIMR);
301 ptp_read_system_postts(sts);
302 lo = rd32(E1000_SYSTIML);
303 hi = rd32(E1000_SYSTIMH);
304
305 ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
306
307 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
308
309 *ts = ns_to_timespec64(ns);
310
311 return 0;
312 }
313
igb_ptp_gettimex_i210(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)314 static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
315 struct timespec64 *ts,
316 struct ptp_system_timestamp *sts)
317 {
318 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
319 ptp_caps);
320 struct e1000_hw *hw = &igb->hw;
321 unsigned long flags;
322
323 spin_lock_irqsave(&igb->tmreg_lock, flags);
324
325 ptp_read_system_prets(sts);
326 rd32(E1000_SYSTIMR);
327 ptp_read_system_postts(sts);
328 ts->tv_nsec = rd32(E1000_SYSTIML);
329 ts->tv_sec = rd32(E1000_SYSTIMH);
330
331 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
332
333 return 0;
334 }
335
igb_ptp_settime_82576(struct ptp_clock_info * ptp,const struct timespec64 * ts)336 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
337 const struct timespec64 *ts)
338 {
339 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
340 ptp_caps);
341 unsigned long flags;
342 u64 ns;
343
344 ns = timespec64_to_ns(ts);
345
346 spin_lock_irqsave(&igb->tmreg_lock, flags);
347
348 timecounter_init(&igb->tc, &igb->cc, ns);
349
350 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
351
352 return 0;
353 }
354
igb_ptp_settime_i210(struct ptp_clock_info * ptp,const struct timespec64 * ts)355 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
356 const struct timespec64 *ts)
357 {
358 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
359 ptp_caps);
360 unsigned long flags;
361
362 spin_lock_irqsave(&igb->tmreg_lock, flags);
363
364 igb_ptp_write_i210(igb, ts);
365
366 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
367
368 return 0;
369 }
370
igb_pin_direction(int pin,int input,u32 * ctrl,u32 * ctrl_ext)371 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
372 {
373 u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
374 static const u32 mask[IGB_N_SDP] = {
375 E1000_CTRL_SDP0_DIR,
376 E1000_CTRL_SDP1_DIR,
377 E1000_CTRL_EXT_SDP2_DIR,
378 E1000_CTRL_EXT_SDP3_DIR,
379 };
380
381 if (input)
382 *ptr &= ~mask[pin];
383 else
384 *ptr |= mask[pin];
385 }
386
igb_pin_extts(struct igb_adapter * igb,int chan,int pin)387 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
388 {
389 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
390 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
391 };
392 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
393 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
394 };
395 static const u32 ts_sdp_en[IGB_N_SDP] = {
396 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
397 };
398 struct e1000_hw *hw = &igb->hw;
399 u32 ctrl, ctrl_ext, tssdp = 0;
400
401 ctrl = rd32(E1000_CTRL);
402 ctrl_ext = rd32(E1000_CTRL_EXT);
403 tssdp = rd32(E1000_TSSDP);
404
405 igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
406
407 /* Make sure this pin is not enabled as an output. */
408 tssdp &= ~ts_sdp_en[pin];
409
410 if (chan == 1) {
411 tssdp &= ~AUX1_SEL_SDP3;
412 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
413 } else {
414 tssdp &= ~AUX0_SEL_SDP3;
415 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
416 }
417
418 wr32(E1000_TSSDP, tssdp);
419 wr32(E1000_CTRL, ctrl);
420 wr32(E1000_CTRL_EXT, ctrl_ext);
421 }
422
igb_pin_perout(struct igb_adapter * igb,int chan,int pin,int freq)423 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
424 {
425 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
426 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
427 };
428 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
429 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
430 };
431 static const u32 ts_sdp_en[IGB_N_SDP] = {
432 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
433 };
434 static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
435 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
436 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
437 };
438 static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
439 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
440 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
441 };
442 static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
443 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
444 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
445 };
446 static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
447 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
448 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
449 };
450 static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
451 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
452 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
453 };
454 struct e1000_hw *hw = &igb->hw;
455 u32 ctrl, ctrl_ext, tssdp = 0;
456
457 ctrl = rd32(E1000_CTRL);
458 ctrl_ext = rd32(E1000_CTRL_EXT);
459 tssdp = rd32(E1000_TSSDP);
460
461 igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
462
463 /* Make sure this pin is not enabled as an input. */
464 if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
465 tssdp &= ~AUX0_TS_SDP_EN;
466
467 if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
468 tssdp &= ~AUX1_TS_SDP_EN;
469
470 tssdp &= ~ts_sdp_sel_clr[pin];
471 if (freq) {
472 if (chan == 1)
473 tssdp |= ts_sdp_sel_fc1[pin];
474 else
475 tssdp |= ts_sdp_sel_fc0[pin];
476 } else {
477 if (chan == 1)
478 tssdp |= ts_sdp_sel_tt1[pin];
479 else
480 tssdp |= ts_sdp_sel_tt0[pin];
481 }
482 tssdp |= ts_sdp_en[pin];
483
484 wr32(E1000_TSSDP, tssdp);
485 wr32(E1000_CTRL, ctrl);
486 wr32(E1000_CTRL_EXT, ctrl_ext);
487 }
488
igb_ptp_feature_enable_82580(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)489 static int igb_ptp_feature_enable_82580(struct ptp_clock_info *ptp,
490 struct ptp_clock_request *rq, int on)
491 {
492 struct igb_adapter *igb =
493 container_of(ptp, struct igb_adapter, ptp_caps);
494 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, systiml,
495 systimh, level_mask, level, rem;
496 struct e1000_hw *hw = &igb->hw;
497 struct timespec64 ts, start;
498 unsigned long flags;
499 u64 systim, now;
500 int pin = -1;
501 s64 ns;
502
503 switch (rq->type) {
504 case PTP_CLK_REQ_EXTTS:
505 /* Both the rising and falling edge are timestamped */
506 if (rq->extts.flags & PTP_STRICT_FLAGS &&
507 (rq->extts.flags & PTP_ENABLE_FEATURE) &&
508 (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
509 return -EOPNOTSUPP;
510
511 if (on) {
512 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
513 rq->extts.index);
514 if (pin < 0)
515 return -EBUSY;
516 }
517 if (rq->extts.index == 1) {
518 tsauxc_mask = TSAUXC_EN_TS1;
519 tsim_mask = TSINTR_AUTT1;
520 } else {
521 tsauxc_mask = TSAUXC_EN_TS0;
522 tsim_mask = TSINTR_AUTT0;
523 }
524 spin_lock_irqsave(&igb->tmreg_lock, flags);
525 tsauxc = rd32(E1000_TSAUXC);
526 tsim = rd32(E1000_TSIM);
527 if (on) {
528 igb_pin_extts(igb, rq->extts.index, pin);
529 tsauxc |= tsauxc_mask;
530 tsim |= tsim_mask;
531 } else {
532 tsauxc &= ~tsauxc_mask;
533 tsim &= ~tsim_mask;
534 }
535 wr32(E1000_TSAUXC, tsauxc);
536 wr32(E1000_TSIM, tsim);
537 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
538 return 0;
539
540 case PTP_CLK_REQ_PEROUT:
541 /* Reject requests with unsupported flags */
542 if (rq->perout.flags)
543 return -EOPNOTSUPP;
544
545 if (on) {
546 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
547 rq->perout.index);
548 if (pin < 0)
549 return -EBUSY;
550 }
551 ts.tv_sec = rq->perout.period.sec;
552 ts.tv_nsec = rq->perout.period.nsec;
553 ns = timespec64_to_ns(&ts);
554 ns = ns >> 1;
555 if (on && ns < 8LL)
556 return -EINVAL;
557 ts = ns_to_timespec64(ns);
558 if (rq->perout.index == 1) {
559 tsauxc_mask = TSAUXC_EN_TT1;
560 tsim_mask = TSINTR_TT1;
561 trgttiml = E1000_TRGTTIML1;
562 trgttimh = E1000_TRGTTIMH1;
563 } else {
564 tsauxc_mask = TSAUXC_EN_TT0;
565 tsim_mask = TSINTR_TT0;
566 trgttiml = E1000_TRGTTIML0;
567 trgttimh = E1000_TRGTTIMH0;
568 }
569 spin_lock_irqsave(&igb->tmreg_lock, flags);
570 tsauxc = rd32(E1000_TSAUXC);
571 tsim = rd32(E1000_TSIM);
572 if (rq->perout.index == 1) {
573 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
574 tsim &= ~TSINTR_TT1;
575 } else {
576 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
577 tsim &= ~TSINTR_TT0;
578 }
579 if (on) {
580 int i = rq->perout.index;
581
582 /* read systim registers in sequence */
583 rd32(E1000_SYSTIMR);
584 systiml = rd32(E1000_SYSTIML);
585 systimh = rd32(E1000_SYSTIMH);
586 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
587 now = timecounter_cyc2time(&igb->tc, systim);
588
589 if (pin < 2) {
590 level_mask = (i == 1) ? 0x80000 : 0x40000;
591 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
592 } else {
593 level_mask = (i == 1) ? 0x80 : 0x40;
594 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
595 }
596
597 div_u64_rem(now, ns, &rem);
598 systim = systim + (ns - rem);
599
600 /* synchronize pin level with rising/falling edges */
601 div_u64_rem(now, ns << 1, &rem);
602 if (rem < ns) {
603 /* first half of period */
604 if (level == 0) {
605 /* output is already low, skip this period */
606 systim += ns;
607 }
608 } else {
609 /* second half of period */
610 if (level == 1) {
611 /* output is already high, skip this period */
612 systim += ns;
613 }
614 }
615
616 start = ns_to_timespec64(systim + (ns - rem));
617 igb_pin_perout(igb, i, pin, 0);
618 igb->perout[i].start.tv_sec = start.tv_sec;
619 igb->perout[i].start.tv_nsec = start.tv_nsec;
620 igb->perout[i].period.tv_sec = ts.tv_sec;
621 igb->perout[i].period.tv_nsec = ts.tv_nsec;
622
623 wr32(trgttiml, (u32)systim);
624 wr32(trgttimh, ((u32)(systim >> 32)) & 0xFF);
625 tsauxc |= tsauxc_mask;
626 tsim |= tsim_mask;
627 }
628 wr32(E1000_TSAUXC, tsauxc);
629 wr32(E1000_TSIM, tsim);
630 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
631 return 0;
632
633 case PTP_CLK_REQ_PPS:
634 return -EOPNOTSUPP;
635 }
636
637 return -EOPNOTSUPP;
638 }
639
igb_ptp_feature_enable_i210(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)640 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
641 struct ptp_clock_request *rq, int on)
642 {
643 struct igb_adapter *igb =
644 container_of(ptp, struct igb_adapter, ptp_caps);
645 struct e1000_hw *hw = &igb->hw;
646 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
647 unsigned long flags;
648 struct timespec64 ts;
649 int use_freq = 0, pin = -1;
650 s64 ns;
651
652 switch (rq->type) {
653 case PTP_CLK_REQ_EXTTS:
654 /* Reject requests failing to enable both edges. */
655 if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
656 (rq->extts.flags & PTP_ENABLE_FEATURE) &&
657 (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
658 return -EOPNOTSUPP;
659
660 if (on) {
661 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
662 rq->extts.index);
663 if (pin < 0)
664 return -EBUSY;
665 }
666 if (rq->extts.index == 1) {
667 tsauxc_mask = TSAUXC_EN_TS1;
668 tsim_mask = TSINTR_AUTT1;
669 } else {
670 tsauxc_mask = TSAUXC_EN_TS0;
671 tsim_mask = TSINTR_AUTT0;
672 }
673 spin_lock_irqsave(&igb->tmreg_lock, flags);
674 tsauxc = rd32(E1000_TSAUXC);
675 tsim = rd32(E1000_TSIM);
676 if (on) {
677 igb_pin_extts(igb, rq->extts.index, pin);
678 tsauxc |= tsauxc_mask;
679 tsim |= tsim_mask;
680 } else {
681 tsauxc &= ~tsauxc_mask;
682 tsim &= ~tsim_mask;
683 }
684 wr32(E1000_TSAUXC, tsauxc);
685 wr32(E1000_TSIM, tsim);
686 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
687 return 0;
688
689 case PTP_CLK_REQ_PEROUT:
690 /* Reject requests with unsupported flags */
691 if (rq->perout.flags)
692 return -EOPNOTSUPP;
693
694 if (on) {
695 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
696 rq->perout.index);
697 if (pin < 0)
698 return -EBUSY;
699 }
700 ts.tv_sec = rq->perout.period.sec;
701 ts.tv_nsec = rq->perout.period.nsec;
702 ns = timespec64_to_ns(&ts);
703 ns = ns >> 1;
704 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
705 (ns == 250000000LL) || (ns == 500000000LL))) {
706 if (ns < 8LL)
707 return -EINVAL;
708 use_freq = 1;
709 }
710 ts = ns_to_timespec64(ns);
711 if (rq->perout.index == 1) {
712 if (use_freq) {
713 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
714 tsim_mask = 0;
715 } else {
716 tsauxc_mask = TSAUXC_EN_TT1;
717 tsim_mask = TSINTR_TT1;
718 }
719 trgttiml = E1000_TRGTTIML1;
720 trgttimh = E1000_TRGTTIMH1;
721 freqout = E1000_FREQOUT1;
722 } else {
723 if (use_freq) {
724 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
725 tsim_mask = 0;
726 } else {
727 tsauxc_mask = TSAUXC_EN_TT0;
728 tsim_mask = TSINTR_TT0;
729 }
730 trgttiml = E1000_TRGTTIML0;
731 trgttimh = E1000_TRGTTIMH0;
732 freqout = E1000_FREQOUT0;
733 }
734 spin_lock_irqsave(&igb->tmreg_lock, flags);
735 tsauxc = rd32(E1000_TSAUXC);
736 tsim = rd32(E1000_TSIM);
737 if (rq->perout.index == 1) {
738 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
739 tsim &= ~TSINTR_TT1;
740 } else {
741 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
742 tsim &= ~TSINTR_TT0;
743 }
744 if (on) {
745 int i = rq->perout.index;
746 igb_pin_perout(igb, i, pin, use_freq);
747 igb->perout[i].start.tv_sec = rq->perout.start.sec;
748 igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
749 igb->perout[i].period.tv_sec = ts.tv_sec;
750 igb->perout[i].period.tv_nsec = ts.tv_nsec;
751 wr32(trgttimh, rq->perout.start.sec);
752 wr32(trgttiml, rq->perout.start.nsec);
753 if (use_freq)
754 wr32(freqout, ns);
755 tsauxc |= tsauxc_mask;
756 tsim |= tsim_mask;
757 }
758 wr32(E1000_TSAUXC, tsauxc);
759 wr32(E1000_TSIM, tsim);
760 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
761 return 0;
762
763 case PTP_CLK_REQ_PPS:
764 spin_lock_irqsave(&igb->tmreg_lock, flags);
765 tsim = rd32(E1000_TSIM);
766 if (on)
767 tsim |= TSINTR_SYS_WRAP;
768 else
769 tsim &= ~TSINTR_SYS_WRAP;
770 igb->pps_sys_wrap_on = !!on;
771 wr32(E1000_TSIM, tsim);
772 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
773 return 0;
774 }
775
776 return -EOPNOTSUPP;
777 }
778
igb_ptp_feature_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)779 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
780 struct ptp_clock_request *rq, int on)
781 {
782 return -EOPNOTSUPP;
783 }
784
igb_ptp_verify_pin(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)785 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
786 enum ptp_pin_function func, unsigned int chan)
787 {
788 switch (func) {
789 case PTP_PF_NONE:
790 case PTP_PF_EXTTS:
791 case PTP_PF_PEROUT:
792 break;
793 case PTP_PF_PHYSYNC:
794 return -1;
795 }
796 return 0;
797 }
798
799 /**
800 * igb_ptp_tx_work
801 * @work: pointer to work struct
802 *
803 * This work function polls the TSYNCTXCTL valid bit to determine when a
804 * timestamp has been taken for the current stored skb.
805 **/
igb_ptp_tx_work(struct work_struct * work)806 static void igb_ptp_tx_work(struct work_struct *work)
807 {
808 struct igb_adapter *adapter = container_of(work, struct igb_adapter,
809 ptp_tx_work);
810 struct e1000_hw *hw = &adapter->hw;
811 u32 tsynctxctl;
812
813 if (!adapter->ptp_tx_skb)
814 return;
815
816 if (time_is_before_jiffies(adapter->ptp_tx_start +
817 IGB_PTP_TX_TIMEOUT)) {
818 dev_kfree_skb_any(adapter->ptp_tx_skb);
819 adapter->ptp_tx_skb = NULL;
820 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
821 adapter->tx_hwtstamp_timeouts++;
822 /* Clear the tx valid bit in TSYNCTXCTL register to enable
823 * interrupt
824 */
825 rd32(E1000_TXSTMPH);
826 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
827 return;
828 }
829
830 tsynctxctl = rd32(E1000_TSYNCTXCTL);
831 if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
832 igb_ptp_tx_hwtstamp(adapter);
833 else
834 /* reschedule to check later */
835 schedule_work(&adapter->ptp_tx_work);
836 }
837
igb_ptp_overflow_check(struct work_struct * work)838 static void igb_ptp_overflow_check(struct work_struct *work)
839 {
840 struct igb_adapter *igb =
841 container_of(work, struct igb_adapter, ptp_overflow_work.work);
842 struct timespec64 ts;
843 u64 ns;
844
845 /* Update the timecounter */
846 ns = timecounter_read(&igb->tc);
847
848 ts = ns_to_timespec64(ns);
849 pr_debug("igb overflow check at %lld.%09lu\n",
850 (long long) ts.tv_sec, ts.tv_nsec);
851
852 schedule_delayed_work(&igb->ptp_overflow_work,
853 IGB_SYSTIM_OVERFLOW_PERIOD);
854 }
855
856 /**
857 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
858 * @adapter: private network adapter structure
859 *
860 * This watchdog task is scheduled to detect error case where hardware has
861 * dropped an Rx packet that was timestamped when the ring is full. The
862 * particular error is rare but leaves the device in a state unable to timestamp
863 * any future packets.
864 **/
igb_ptp_rx_hang(struct igb_adapter * adapter)865 void igb_ptp_rx_hang(struct igb_adapter *adapter)
866 {
867 struct e1000_hw *hw = &adapter->hw;
868 u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
869 unsigned long rx_event;
870
871 /* Other hardware uses per-packet timestamps */
872 if (hw->mac.type != e1000_82576)
873 return;
874
875 /* If we don't have a valid timestamp in the registers, just update the
876 * timeout counter and exit
877 */
878 if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
879 adapter->last_rx_ptp_check = jiffies;
880 return;
881 }
882
883 /* Determine the most recent watchdog or rx_timestamp event */
884 rx_event = adapter->last_rx_ptp_check;
885 if (time_after(adapter->last_rx_timestamp, rx_event))
886 rx_event = adapter->last_rx_timestamp;
887
888 /* Only need to read the high RXSTMP register to clear the lock */
889 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
890 rd32(E1000_RXSTMPH);
891 adapter->last_rx_ptp_check = jiffies;
892 adapter->rx_hwtstamp_cleared++;
893 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
894 }
895 }
896
897 /**
898 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
899 * @adapter: private network adapter structure
900 */
igb_ptp_tx_hang(struct igb_adapter * adapter)901 void igb_ptp_tx_hang(struct igb_adapter *adapter)
902 {
903 struct e1000_hw *hw = &adapter->hw;
904 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
905 IGB_PTP_TX_TIMEOUT);
906
907 if (!adapter->ptp_tx_skb)
908 return;
909
910 if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
911 return;
912
913 /* If we haven't received a timestamp within the timeout, it is
914 * reasonable to assume that it will never occur, so we can unlock the
915 * timestamp bit when this occurs.
916 */
917 if (timeout) {
918 cancel_work_sync(&adapter->ptp_tx_work);
919 dev_kfree_skb_any(adapter->ptp_tx_skb);
920 adapter->ptp_tx_skb = NULL;
921 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
922 adapter->tx_hwtstamp_timeouts++;
923 /* Clear the tx valid bit in TSYNCTXCTL register to enable
924 * interrupt
925 */
926 rd32(E1000_TXSTMPH);
927 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
928 }
929 }
930
931 /**
932 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
933 * @adapter: Board private structure.
934 *
935 * If we were asked to do hardware stamping and such a time stamp is
936 * available, then it must have been for this skb here because we only
937 * allow only one such packet into the queue.
938 **/
igb_ptp_tx_hwtstamp(struct igb_adapter * adapter)939 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
940 {
941 struct sk_buff *skb = adapter->ptp_tx_skb;
942 struct e1000_hw *hw = &adapter->hw;
943 struct skb_shared_hwtstamps shhwtstamps;
944 u64 regval;
945 int adjust = 0;
946
947 regval = rd32(E1000_TXSTMPL);
948 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
949
950 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
951 /* adjust timestamp for the TX latency based on link speed */
952 if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
953 switch (adapter->link_speed) {
954 case SPEED_10:
955 adjust = IGB_I210_TX_LATENCY_10;
956 break;
957 case SPEED_100:
958 adjust = IGB_I210_TX_LATENCY_100;
959 break;
960 case SPEED_1000:
961 adjust = IGB_I210_TX_LATENCY_1000;
962 break;
963 }
964 }
965
966 shhwtstamps.hwtstamp =
967 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
968
969 /* Clear the lock early before calling skb_tstamp_tx so that
970 * applications are not woken up before the lock bit is clear. We use
971 * a copy of the skb pointer to ensure other threads can't change it
972 * while we're notifying the stack.
973 */
974 adapter->ptp_tx_skb = NULL;
975 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
976
977 /* Notify the stack and free the skb after we've unlocked */
978 skb_tstamp_tx(skb, &shhwtstamps);
979 dev_kfree_skb_any(skb);
980 }
981
982 /**
983 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
984 * @q_vector: Pointer to interrupt specific structure
985 * @va: Pointer to address containing Rx buffer
986 * @timestamp: Pointer where timestamp will be stored
987 *
988 * This function is meant to retrieve a timestamp from the first buffer of an
989 * incoming frame. The value is stored in little endian format starting on
990 * byte 8
991 *
992 * Returns: The timestamp header length or 0 if not available
993 **/
igb_ptp_rx_pktstamp(struct igb_q_vector * q_vector,void * va,ktime_t * timestamp)994 int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
995 ktime_t *timestamp)
996 {
997 struct igb_adapter *adapter = q_vector->adapter;
998 struct e1000_hw *hw = &adapter->hw;
999 struct skb_shared_hwtstamps ts;
1000 __le64 *regval = (__le64 *)va;
1001 int adjust = 0;
1002
1003 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1004 return 0;
1005
1006 /* The timestamp is recorded in little endian format.
1007 * DWORD: 0 1 2 3
1008 * Field: Reserved Reserved SYSTIML SYSTIMH
1009 */
1010
1011 /* check reserved dwords are zero, be/le doesn't matter for zero */
1012 if (regval[0])
1013 return 0;
1014
1015 igb_ptp_systim_to_hwtstamp(adapter, &ts, le64_to_cpu(regval[1]));
1016
1017 /* adjust timestamp for the RX latency based on link speed */
1018 if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1019 switch (adapter->link_speed) {
1020 case SPEED_10:
1021 adjust = IGB_I210_RX_LATENCY_10;
1022 break;
1023 case SPEED_100:
1024 adjust = IGB_I210_RX_LATENCY_100;
1025 break;
1026 case SPEED_1000:
1027 adjust = IGB_I210_RX_LATENCY_1000;
1028 break;
1029 }
1030 }
1031
1032 *timestamp = ktime_sub_ns(ts.hwtstamp, adjust);
1033
1034 return IGB_TS_HDR_LEN;
1035 }
1036
1037 /**
1038 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
1039 * @q_vector: Pointer to interrupt specific structure
1040 * @skb: Buffer containing timestamp and packet
1041 *
1042 * This function is meant to retrieve a timestamp from the internal registers
1043 * of the adapter and store it in the skb.
1044 **/
igb_ptp_rx_rgtstamp(struct igb_q_vector * q_vector,struct sk_buff * skb)1045 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
1046 {
1047 struct igb_adapter *adapter = q_vector->adapter;
1048 struct e1000_hw *hw = &adapter->hw;
1049 int adjust = 0;
1050 u64 regval;
1051
1052 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1053 return;
1054
1055 /* If this bit is set, then the RX registers contain the time stamp. No
1056 * other packet will be time stamped until we read these registers, so
1057 * read the registers to make them available again. Because only one
1058 * packet can be time stamped at a time, we know that the register
1059 * values must belong to this one here and therefore we don't need to
1060 * compare any of the additional attributes stored for it.
1061 *
1062 * If nothing went wrong, then it should have a shared tx_flags that we
1063 * can turn into a skb_shared_hwtstamps.
1064 */
1065 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
1066 return;
1067
1068 regval = rd32(E1000_RXSTMPL);
1069 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
1070
1071 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
1072
1073 /* adjust timestamp for the RX latency based on link speed */
1074 if (adapter->hw.mac.type == e1000_i210) {
1075 switch (adapter->link_speed) {
1076 case SPEED_10:
1077 adjust = IGB_I210_RX_LATENCY_10;
1078 break;
1079 case SPEED_100:
1080 adjust = IGB_I210_RX_LATENCY_100;
1081 break;
1082 case SPEED_1000:
1083 adjust = IGB_I210_RX_LATENCY_1000;
1084 break;
1085 }
1086 }
1087 skb_hwtstamps(skb)->hwtstamp =
1088 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
1089
1090 /* Update the last_rx_timestamp timer in order to enable watchdog check
1091 * for error case of latched timestamp on a dropped packet.
1092 */
1093 adapter->last_rx_timestamp = jiffies;
1094 }
1095
1096 /**
1097 * igb_ptp_hwtstamp_get - get hardware time stamping config
1098 * @netdev: netdev struct
1099 * @config: timestamping configuration structure
1100 *
1101 * Get the hwtstamp_config settings to return to the user. Rather than attempt
1102 * to deconstruct the settings from the registers, just return a shadow copy
1103 * of the last known settings.
1104 **/
igb_ptp_hwtstamp_get(struct net_device * netdev,struct kernel_hwtstamp_config * config)1105 int igb_ptp_hwtstamp_get(struct net_device *netdev,
1106 struct kernel_hwtstamp_config *config)
1107 {
1108 struct igb_adapter *adapter = netdev_priv(netdev);
1109
1110 *config = adapter->tstamp_config;
1111
1112 return 0;
1113 }
1114
1115 /**
1116 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
1117 * @adapter: networking device structure
1118 * @config: hwtstamp configuration
1119 *
1120 * Outgoing time stamping can be enabled and disabled. Play nice and
1121 * disable it when requested, although it shouldn't case any overhead
1122 * when no packet needs it. At most one packet in the queue may be
1123 * marked for time stamping, otherwise it would be impossible to tell
1124 * for sure to which packet the hardware time stamp belongs.
1125 *
1126 * Incoming time stamping has to be configured via the hardware
1127 * filters. Not all combinations are supported, in particular event
1128 * type has to be specified. Matching the kind of event packet is
1129 * not supported, with the exception of "all V2 events regardless of
1130 * level 2 or 4".
1131 */
igb_ptp_set_timestamp_mode(struct igb_adapter * adapter,struct kernel_hwtstamp_config * config)1132 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
1133 struct kernel_hwtstamp_config *config)
1134 {
1135 struct e1000_hw *hw = &adapter->hw;
1136 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
1137 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1138 u32 tsync_rx_cfg = 0;
1139 bool is_l4 = false;
1140 bool is_l2 = false;
1141 u32 regval;
1142
1143 switch (config->tx_type) {
1144 case HWTSTAMP_TX_OFF:
1145 tsync_tx_ctl = 0;
1146 break;
1147 case HWTSTAMP_TX_ON:
1148 break;
1149 default:
1150 return -ERANGE;
1151 }
1152
1153 switch (config->rx_filter) {
1154 case HWTSTAMP_FILTER_NONE:
1155 tsync_rx_ctl = 0;
1156 break;
1157 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1158 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1159 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1160 is_l4 = true;
1161 break;
1162 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1163 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1164 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1165 is_l4 = true;
1166 break;
1167 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1168 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1169 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1170 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1171 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1172 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1173 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1174 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1175 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1176 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1177 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1178 is_l2 = true;
1179 is_l4 = true;
1180 break;
1181 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1182 case HWTSTAMP_FILTER_NTP_ALL:
1183 case HWTSTAMP_FILTER_ALL:
1184 /* 82576 cannot timestamp all packets, which it needs to do to
1185 * support both V1 Sync and Delay_Req messages
1186 */
1187 if (hw->mac.type != e1000_82576) {
1188 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1189 config->rx_filter = HWTSTAMP_FILTER_ALL;
1190 break;
1191 }
1192 fallthrough;
1193 default:
1194 config->rx_filter = HWTSTAMP_FILTER_NONE;
1195 return -ERANGE;
1196 }
1197
1198 if (hw->mac.type == e1000_82575) {
1199 if (tsync_rx_ctl | tsync_tx_ctl)
1200 return -EINVAL;
1201 return 0;
1202 }
1203
1204 /* Per-packet timestamping only works if all packets are
1205 * timestamped, so enable timestamping in all packets as
1206 * long as one Rx filter was configured.
1207 */
1208 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1209 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1210 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1211 config->rx_filter = HWTSTAMP_FILTER_ALL;
1212 is_l2 = true;
1213 is_l4 = true;
1214
1215 if ((hw->mac.type == e1000_i210) ||
1216 (hw->mac.type == e1000_i211)) {
1217 regval = rd32(E1000_RXPBS);
1218 regval |= E1000_RXPBS_CFG_TS_EN;
1219 wr32(E1000_RXPBS, regval);
1220 }
1221 }
1222
1223 /* enable/disable TX */
1224 regval = rd32(E1000_TSYNCTXCTL);
1225 regval &= ~E1000_TSYNCTXCTL_ENABLED;
1226 regval |= tsync_tx_ctl;
1227 wr32(E1000_TSYNCTXCTL, regval);
1228
1229 /* enable/disable RX */
1230 regval = rd32(E1000_TSYNCRXCTL);
1231 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1232 regval |= tsync_rx_ctl;
1233 wr32(E1000_TSYNCRXCTL, regval);
1234
1235 /* define which PTP packets are time stamped */
1236 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1237
1238 /* define ethertype filter for timestamped packets */
1239 if (is_l2)
1240 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1241 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1242 E1000_ETQF_1588 | /* enable timestamping */
1243 ETH_P_1588)); /* 1588 eth protocol type */
1244 else
1245 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1246
1247 /* L4 Queue Filter[3]: filter by destination port and protocol */
1248 if (is_l4) {
1249 u32 ftqf = (IPPROTO_UDP /* UDP */
1250 | E1000_FTQF_VF_BP /* VF not compared */
1251 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1252 | E1000_FTQF_MASK); /* mask all inputs */
1253 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1254
1255 wr32(E1000_IMIR(3), (__force unsigned int)htons(PTP_EV_PORT));
1256 wr32(E1000_IMIREXT(3),
1257 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1258 if (hw->mac.type == e1000_82576) {
1259 /* enable source port check */
1260 wr32(E1000_SPQF(3), (__force unsigned int)htons(PTP_EV_PORT));
1261 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1262 }
1263 wr32(E1000_FTQF(3), ftqf);
1264 } else {
1265 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1266 }
1267 wrfl();
1268
1269 /* clear TX/RX time stamp registers, just to be sure */
1270 regval = rd32(E1000_TXSTMPL);
1271 regval = rd32(E1000_TXSTMPH);
1272 regval = rd32(E1000_RXSTMPL);
1273 regval = rd32(E1000_RXSTMPH);
1274
1275 return 0;
1276 }
1277
1278 /**
1279 * igb_ptp_hwtstamp_set - set hardware time stamping config
1280 * @netdev: netdev struct
1281 * @config: timestamping configuration structure
1282 * @extack: netlink extended ack structure for error reporting
1283 **/
igb_ptp_hwtstamp_set(struct net_device * netdev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)1284 int igb_ptp_hwtstamp_set(struct net_device *netdev,
1285 struct kernel_hwtstamp_config *config,
1286 struct netlink_ext_ack *extack)
1287 {
1288 struct igb_adapter *adapter = netdev_priv(netdev);
1289 int err;
1290
1291 err = igb_ptp_set_timestamp_mode(adapter, config);
1292 if (err)
1293 return err;
1294
1295 /* save these settings for future reference */
1296 adapter->tstamp_config = *config;
1297
1298 return 0;
1299 }
1300
1301 /**
1302 * igb_ptp_init - Initialize PTP functionality
1303 * @adapter: Board private structure
1304 *
1305 * This function is called at device probe to initialize the PTP
1306 * functionality.
1307 */
igb_ptp_init(struct igb_adapter * adapter)1308 void igb_ptp_init(struct igb_adapter *adapter)
1309 {
1310 struct e1000_hw *hw = &adapter->hw;
1311 struct net_device *netdev = adapter->netdev;
1312
1313 switch (hw->mac.type) {
1314 case e1000_82576:
1315 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1316 adapter->ptp_caps.owner = THIS_MODULE;
1317 adapter->ptp_caps.max_adj = 999999881;
1318 adapter->ptp_caps.n_ext_ts = 0;
1319 adapter->ptp_caps.pps = 0;
1320 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82576;
1321 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1322 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1323 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1324 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1325 adapter->cc.read = igb_ptp_read_82576;
1326 adapter->cc.mask = CYCLECOUNTER_MASK(64);
1327 adapter->cc.mult = 1;
1328 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1329 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1330 break;
1331 case e1000_82580:
1332 case e1000_i354:
1333 case e1000_i350:
1334 igb_ptp_sdp_init(adapter);
1335 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1336 adapter->ptp_caps.owner = THIS_MODULE;
1337 adapter->ptp_caps.max_adj = 62499999;
1338 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1339 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1340 adapter->ptp_caps.n_pins = IGB_N_SDP;
1341 adapter->ptp_caps.pps = 0;
1342 adapter->ptp_caps.supported_extts_flags = PTP_RISING_EDGE |
1343 PTP_FALLING_EDGE |
1344 PTP_STRICT_FLAGS;
1345 adapter->ptp_caps.pin_config = adapter->sdp_config;
1346 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1347 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1348 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1349 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1350 adapter->ptp_caps.enable = igb_ptp_feature_enable_82580;
1351 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1352 adapter->cc.read = igb_ptp_read_82580;
1353 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1354 adapter->cc.mult = 1;
1355 adapter->cc.shift = 0;
1356 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1357 break;
1358 case e1000_i210:
1359 case e1000_i211:
1360 igb_ptp_sdp_init(adapter);
1361 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1362 adapter->ptp_caps.owner = THIS_MODULE;
1363 adapter->ptp_caps.max_adj = 62499999;
1364 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1365 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1366 adapter->ptp_caps.n_pins = IGB_N_SDP;
1367 adapter->ptp_caps.supported_extts_flags = PTP_RISING_EDGE |
1368 PTP_FALLING_EDGE |
1369 PTP_STRICT_FLAGS;
1370 adapter->ptp_caps.pps = 1;
1371 adapter->ptp_caps.pin_config = adapter->sdp_config;
1372 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1373 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1374 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1375 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1376 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1377 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1378 break;
1379 default:
1380 adapter->ptp_clock = NULL;
1381 return;
1382 }
1383
1384 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1385 &adapter->pdev->dev);
1386 if (IS_ERR(adapter->ptp_clock)) {
1387 adapter->ptp_clock = NULL;
1388 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1389 } else if (adapter->ptp_clock) {
1390 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1391 adapter->netdev->name);
1392 adapter->ptp_flags |= IGB_PTP_ENABLED;
1393
1394 spin_lock_init(&adapter->tmreg_lock);
1395 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1396
1397 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1398 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1399 igb_ptp_overflow_check);
1400
1401 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1402 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1403
1404 igb_ptp_reset(adapter);
1405 }
1406 }
1407
1408 /**
1409 * igb_ptp_sdp_init - utility function which inits the SDP config structs
1410 * @adapter: Board private structure.
1411 **/
igb_ptp_sdp_init(struct igb_adapter * adapter)1412 void igb_ptp_sdp_init(struct igb_adapter *adapter)
1413 {
1414 int i;
1415
1416 for (i = 0; i < IGB_N_SDP; i++) {
1417 struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1418
1419 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1420 ppd->index = i;
1421 ppd->func = PTP_PF_NONE;
1422 }
1423 }
1424
1425 /**
1426 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1427 * @adapter: Board private structure
1428 *
1429 * This function stops the overflow check work and PTP Tx timestamp work, and
1430 * will prepare the device for OS suspend.
1431 */
igb_ptp_suspend(struct igb_adapter * adapter)1432 void igb_ptp_suspend(struct igb_adapter *adapter)
1433 {
1434 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1435 return;
1436
1437 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1438 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1439
1440 cancel_work_sync(&adapter->ptp_tx_work);
1441 if (adapter->ptp_tx_skb) {
1442 dev_kfree_skb_any(adapter->ptp_tx_skb);
1443 adapter->ptp_tx_skb = NULL;
1444 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1445 }
1446 }
1447
1448 /**
1449 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1450 * @adapter: Board private structure.
1451 *
1452 * This function stops the PTP support and cancels the delayed work.
1453 **/
igb_ptp_stop(struct igb_adapter * adapter)1454 void igb_ptp_stop(struct igb_adapter *adapter)
1455 {
1456 igb_ptp_suspend(adapter);
1457
1458 if (adapter->ptp_clock) {
1459 ptp_clock_unregister(adapter->ptp_clock);
1460 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1461 adapter->netdev->name);
1462 adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1463 }
1464 }
1465
1466 /**
1467 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1468 * @adapter: Board private structure.
1469 *
1470 * This function handles the reset work required to re-enable the PTP device.
1471 **/
igb_ptp_reset(struct igb_adapter * adapter)1472 void igb_ptp_reset(struct igb_adapter *adapter)
1473 {
1474 struct e1000_hw *hw = &adapter->hw;
1475 unsigned long flags;
1476
1477 /* reset the tstamp_config */
1478 igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1479
1480 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1481
1482 switch (adapter->hw.mac.type) {
1483 case e1000_82576:
1484 /* Dial the nominal frequency. */
1485 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1486 break;
1487 case e1000_82580:
1488 case e1000_i354:
1489 case e1000_i350:
1490 case e1000_i210:
1491 case e1000_i211:
1492 wr32(E1000_TSAUXC, 0x0);
1493 wr32(E1000_TSSDP, 0x0);
1494 wr32(E1000_TSIM,
1495 TSYNC_INTERRUPTS |
1496 (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1497 wr32(E1000_IMS, E1000_IMS_TS);
1498 break;
1499 default:
1500 /* No work to do. */
1501 goto out;
1502 }
1503
1504 /* Re-initialize the timer. */
1505 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1506 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1507
1508 igb_ptp_write_i210(adapter, &ts);
1509 } else {
1510 timecounter_init(&adapter->tc, &adapter->cc,
1511 ktime_to_ns(ktime_get_real()));
1512 }
1513 out:
1514 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1515
1516 wrfl();
1517
1518 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1519 schedule_delayed_work(&adapter->ptp_overflow_work,
1520 IGB_SYSTIM_OVERFLOW_PERIOD);
1521 }
1522