xref: /linux/drivers/net/ethernet/intel/igb/igb_ptp.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
3 
4 #include <linux/module.h>
5 #include <linux/device.h>
6 #include <linux/pci.h>
7 #include <linux/ptp_classify.h>
8 
9 #include "igb.h"
10 
11 #define INCVALUE_MASK		0x7fffffff
12 #define ISGN			0x80000000
13 
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15  * and this update value cannot be reprogrammed.
16  *
17  * Neither the 82576 nor the 82580 offer registers wide enough to hold
18  * nanoseconds time values for very long. For the 82580, SYSTIM always
19  * counts nanoseconds, but the upper 24 bits are not available. The
20  * frequency is adjusted by changing the 32 bit fractional nanoseconds
21  * register, TIMINCA.
22  *
23  * For the 82576, the SYSTIM register time unit is affect by the
24  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25  * field are needed to provide the nominal 16 nanosecond period,
26  * leaving 19 bits for fractional nanoseconds.
27  *
28  * We scale the NIC clock cycle by a large factor so that relatively
29  * small clock corrections can be added or subtracted at each clock
30  * tick. The drawbacks of a large factor are a) that the clock
31  * register overflows more quickly (not such a big deal) and b) that
32  * the increment per tick has to fit into 24 bits.  As a result we
33  * need to use a shift of 19 so we can fit a value of 16 into the
34  * TIMINCA register.
35  *
36  *
37  *             SYSTIMH            SYSTIML
38  *        +--------------+   +---+---+------+
39  *  82576 |      32      |   | 8 | 5 |  19  |
40  *        +--------------+   +---+---+------+
41  *         \________ 45 bits _______/  fract
42  *
43  *        +----------+---+   +--------------+
44  *  82580 |    24    | 8 |   |      32      |
45  *        +----------+---+   +--------------+
46  *          reserved  \______ 40 bits _____/
47  *
48  *
49  * The 45 bit 82576 SYSTIM overflows every
50  *   2^45 * 10^-9 / 3600 = 9.77 hours.
51  *
52  * The 40 bit 82580 SYSTIM overflows every
53  *   2^40 * 10^-9 /  60  = 18.3 minutes.
54  *
55  * SYSTIM is converted to real time using a timecounter. As
56  * timecounter_cyc2time() allows old timestamps, the timecounter needs
57  * to be updated at least once per half of the SYSTIM interval.
58  * Scheduling of delayed work is not very accurate, and also the NIC
59  * clock can be adjusted to run up to 6% faster and the system clock
60  * up to 10% slower, so we aim for 6 minutes to be sure the actual
61  * interval in the NIC time is shorter than 9.16 minutes.
62  */
63 
64 #define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 6)
65 #define IGB_PTP_TX_TIMEOUT		(HZ * 15)
66 #define INCPERIOD_82576			BIT(E1000_TIMINCA_16NS_SHIFT)
67 #define INCVALUE_82576_MASK		GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
68 #define INCVALUE_82576			(16u << IGB_82576_TSYNC_SHIFT)
69 #define IGB_NBITS_82580			40
70 #define IGB_82580_BASE_PERIOD		0x800000000
71 
72 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
73 static void igb_ptp_sdp_init(struct igb_adapter *adapter);
74 
75 /* SYSTIM read access for the 82576 */
igb_ptp_read_82576(struct cyclecounter * cc)76 static u64 igb_ptp_read_82576(struct cyclecounter *cc)
77 {
78 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
79 	struct e1000_hw *hw = &igb->hw;
80 	u64 val;
81 	u32 lo, hi;
82 
83 	lo = rd32(E1000_SYSTIML);
84 	hi = rd32(E1000_SYSTIMH);
85 
86 	val = ((u64) hi) << 32;
87 	val |= lo;
88 
89 	return val;
90 }
91 
92 /* SYSTIM read access for the 82580 */
igb_ptp_read_82580(struct cyclecounter * cc)93 static u64 igb_ptp_read_82580(struct cyclecounter *cc)
94 {
95 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
96 	struct e1000_hw *hw = &igb->hw;
97 	u32 lo, hi;
98 	u64 val;
99 
100 	/* The timestamp latches on lowest register read. For the 82580
101 	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
102 	 * need to provide nanosecond resolution, so we just ignore it.
103 	 */
104 	rd32(E1000_SYSTIMR);
105 	lo = rd32(E1000_SYSTIML);
106 	hi = rd32(E1000_SYSTIMH);
107 
108 	val = ((u64) hi) << 32;
109 	val |= lo;
110 
111 	return val;
112 }
113 
114 /* SYSTIM read access for I210/I211 */
igb_ptp_read_i210(struct igb_adapter * adapter,struct timespec64 * ts)115 static void igb_ptp_read_i210(struct igb_adapter *adapter,
116 			      struct timespec64 *ts)
117 {
118 	struct e1000_hw *hw = &adapter->hw;
119 	u32 sec, nsec;
120 
121 	/* The timestamp latches on lowest register read. For I210/I211, the
122 	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
123 	 * resolution, we can ignore it.
124 	 */
125 	rd32(E1000_SYSTIMR);
126 	nsec = rd32(E1000_SYSTIML);
127 	sec = rd32(E1000_SYSTIMH);
128 
129 	ts->tv_sec = sec;
130 	ts->tv_nsec = nsec;
131 }
132 
igb_ptp_write_i210(struct igb_adapter * adapter,const struct timespec64 * ts)133 static void igb_ptp_write_i210(struct igb_adapter *adapter,
134 			       const struct timespec64 *ts)
135 {
136 	struct e1000_hw *hw = &adapter->hw;
137 
138 	/* Writing the SYSTIMR register is not necessary as it only provides
139 	 * sub-nanosecond resolution.
140 	 */
141 	wr32(E1000_SYSTIML, ts->tv_nsec);
142 	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
143 }
144 
145 /**
146  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
147  * @adapter: board private structure
148  * @hwtstamps: timestamp structure to update
149  * @systim: unsigned 64bit system time value.
150  *
151  * We need to convert the system time value stored in the RX/TXSTMP registers
152  * into a hwtstamp which can be used by the upper level timestamping functions.
153  *
154  * The 'tmreg_lock' spinlock is used to protect the consistency of the
155  * system time value. This is needed because reading the 64 bit time
156  * value involves reading two (or three) 32 bit registers. The first
157  * read latches the value. Ditto for writing.
158  *
159  * In addition, here have extended the system time with an overflow
160  * counter in software.
161  **/
igb_ptp_systim_to_hwtstamp(struct igb_adapter * adapter,struct skb_shared_hwtstamps * hwtstamps,u64 systim)162 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
163 				       struct skb_shared_hwtstamps *hwtstamps,
164 				       u64 systim)
165 {
166 	unsigned long flags;
167 	u64 ns;
168 
169 	memset(hwtstamps, 0, sizeof(*hwtstamps));
170 
171 	switch (adapter->hw.mac.type) {
172 	case e1000_82576:
173 	case e1000_82580:
174 	case e1000_i354:
175 	case e1000_i350:
176 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
177 		ns = timecounter_cyc2time(&adapter->tc, systim);
178 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
179 
180 		hwtstamps->hwtstamp = ns_to_ktime(ns);
181 		break;
182 	case e1000_i210:
183 	case e1000_i211:
184 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
185 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
186 						systim & 0xFFFFFFFF);
187 		break;
188 	default:
189 		break;
190 	}
191 }
192 
193 /* PTP clock operations */
igb_ptp_adjfine_82576(struct ptp_clock_info * ptp,long scaled_ppm)194 static int igb_ptp_adjfine_82576(struct ptp_clock_info *ptp, long scaled_ppm)
195 {
196 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
197 					       ptp_caps);
198 	struct e1000_hw *hw = &igb->hw;
199 	u64 incvalue;
200 
201 	incvalue = adjust_by_scaled_ppm(INCVALUE_82576, scaled_ppm);
202 
203 	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
204 
205 	return 0;
206 }
207 
igb_ptp_adjfine_82580(struct ptp_clock_info * ptp,long scaled_ppm)208 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
209 {
210 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
211 					       ptp_caps);
212 	struct e1000_hw *hw = &igb->hw;
213 	bool neg_adj;
214 	u64 rate;
215 	u32 inca;
216 
217 	neg_adj = diff_by_scaled_ppm(IGB_82580_BASE_PERIOD, scaled_ppm, &rate);
218 
219 	inca = rate & INCVALUE_MASK;
220 	if (neg_adj)
221 		inca |= ISGN;
222 
223 	wr32(E1000_TIMINCA, inca);
224 
225 	return 0;
226 }
227 
igb_ptp_adjtime_82576(struct ptp_clock_info * ptp,s64 delta)228 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
229 {
230 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
231 					       ptp_caps);
232 	unsigned long flags;
233 
234 	spin_lock_irqsave(&igb->tmreg_lock, flags);
235 	timecounter_adjtime(&igb->tc, delta);
236 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
237 
238 	return 0;
239 }
240 
igb_ptp_adjtime_i210(struct ptp_clock_info * ptp,s64 delta)241 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
242 {
243 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
244 					       ptp_caps);
245 	unsigned long flags;
246 	struct timespec64 now, then = ns_to_timespec64(delta);
247 
248 	spin_lock_irqsave(&igb->tmreg_lock, flags);
249 
250 	igb_ptp_read_i210(igb, &now);
251 	now = timespec64_add(now, then);
252 	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
253 
254 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
255 
256 	return 0;
257 }
258 
igb_ptp_gettimex_82576(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)259 static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
260 				  struct timespec64 *ts,
261 				  struct ptp_system_timestamp *sts)
262 {
263 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
264 					       ptp_caps);
265 	struct e1000_hw *hw = &igb->hw;
266 	unsigned long flags;
267 	u32 lo, hi;
268 	u64 ns;
269 
270 	spin_lock_irqsave(&igb->tmreg_lock, flags);
271 
272 	ptp_read_system_prets(sts);
273 	lo = rd32(E1000_SYSTIML);
274 	ptp_read_system_postts(sts);
275 	hi = rd32(E1000_SYSTIMH);
276 
277 	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
278 
279 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
280 
281 	*ts = ns_to_timespec64(ns);
282 
283 	return 0;
284 }
285 
igb_ptp_gettimex_82580(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)286 static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
287 				  struct timespec64 *ts,
288 				  struct ptp_system_timestamp *sts)
289 {
290 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
291 					       ptp_caps);
292 	struct e1000_hw *hw = &igb->hw;
293 	unsigned long flags;
294 	u32 lo, hi;
295 	u64 ns;
296 
297 	spin_lock_irqsave(&igb->tmreg_lock, flags);
298 
299 	ptp_read_system_prets(sts);
300 	rd32(E1000_SYSTIMR);
301 	ptp_read_system_postts(sts);
302 	lo = rd32(E1000_SYSTIML);
303 	hi = rd32(E1000_SYSTIMH);
304 
305 	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
306 
307 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
308 
309 	*ts = ns_to_timespec64(ns);
310 
311 	return 0;
312 }
313 
igb_ptp_gettimex_i210(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)314 static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
315 				 struct timespec64 *ts,
316 				 struct ptp_system_timestamp *sts)
317 {
318 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
319 					       ptp_caps);
320 	struct e1000_hw *hw = &igb->hw;
321 	unsigned long flags;
322 
323 	spin_lock_irqsave(&igb->tmreg_lock, flags);
324 
325 	ptp_read_system_prets(sts);
326 	rd32(E1000_SYSTIMR);
327 	ptp_read_system_postts(sts);
328 	ts->tv_nsec = rd32(E1000_SYSTIML);
329 	ts->tv_sec = rd32(E1000_SYSTIMH);
330 
331 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
332 
333 	return 0;
334 }
335 
igb_ptp_settime_82576(struct ptp_clock_info * ptp,const struct timespec64 * ts)336 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
337 				 const struct timespec64 *ts)
338 {
339 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
340 					       ptp_caps);
341 	unsigned long flags;
342 	u64 ns;
343 
344 	ns = timespec64_to_ns(ts);
345 
346 	spin_lock_irqsave(&igb->tmreg_lock, flags);
347 
348 	timecounter_init(&igb->tc, &igb->cc, ns);
349 
350 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
351 
352 	return 0;
353 }
354 
igb_ptp_settime_i210(struct ptp_clock_info * ptp,const struct timespec64 * ts)355 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
356 				const struct timespec64 *ts)
357 {
358 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
359 					       ptp_caps);
360 	unsigned long flags;
361 
362 	spin_lock_irqsave(&igb->tmreg_lock, flags);
363 
364 	igb_ptp_write_i210(igb, ts);
365 
366 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
367 
368 	return 0;
369 }
370 
igb_pin_direction(int pin,int input,u32 * ctrl,u32 * ctrl_ext)371 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
372 {
373 	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
374 	static const u32 mask[IGB_N_SDP] = {
375 		E1000_CTRL_SDP0_DIR,
376 		E1000_CTRL_SDP1_DIR,
377 		E1000_CTRL_EXT_SDP2_DIR,
378 		E1000_CTRL_EXT_SDP3_DIR,
379 	};
380 
381 	if (input)
382 		*ptr &= ~mask[pin];
383 	else
384 		*ptr |= mask[pin];
385 }
386 
igb_pin_extts(struct igb_adapter * igb,int chan,int pin)387 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
388 {
389 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
390 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
391 	};
392 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
393 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
394 	};
395 	static const u32 ts_sdp_en[IGB_N_SDP] = {
396 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
397 	};
398 	struct e1000_hw *hw = &igb->hw;
399 	u32 ctrl, ctrl_ext, tssdp = 0;
400 
401 	ctrl = rd32(E1000_CTRL);
402 	ctrl_ext = rd32(E1000_CTRL_EXT);
403 	tssdp = rd32(E1000_TSSDP);
404 
405 	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
406 
407 	/* Make sure this pin is not enabled as an output. */
408 	tssdp &= ~ts_sdp_en[pin];
409 
410 	if (chan == 1) {
411 		tssdp &= ~AUX1_SEL_SDP3;
412 		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
413 	} else {
414 		tssdp &= ~AUX0_SEL_SDP3;
415 		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
416 	}
417 
418 	wr32(E1000_TSSDP, tssdp);
419 	wr32(E1000_CTRL, ctrl);
420 	wr32(E1000_CTRL_EXT, ctrl_ext);
421 }
422 
igb_pin_perout(struct igb_adapter * igb,int chan,int pin,int freq)423 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
424 {
425 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
426 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
427 	};
428 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
429 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
430 	};
431 	static const u32 ts_sdp_en[IGB_N_SDP] = {
432 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
433 	};
434 	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
435 		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
436 		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
437 	};
438 	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
439 		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
440 		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
441 	};
442 	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
443 		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
444 		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
445 	};
446 	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
447 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
448 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
449 	};
450 	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
451 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
452 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
453 	};
454 	struct e1000_hw *hw = &igb->hw;
455 	u32 ctrl, ctrl_ext, tssdp = 0;
456 
457 	ctrl = rd32(E1000_CTRL);
458 	ctrl_ext = rd32(E1000_CTRL_EXT);
459 	tssdp = rd32(E1000_TSSDP);
460 
461 	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
462 
463 	/* Make sure this pin is not enabled as an input. */
464 	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
465 		tssdp &= ~AUX0_TS_SDP_EN;
466 
467 	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
468 		tssdp &= ~AUX1_TS_SDP_EN;
469 
470 	tssdp &= ~ts_sdp_sel_clr[pin];
471 	if (freq) {
472 		if (chan == 1)
473 			tssdp |= ts_sdp_sel_fc1[pin];
474 		else
475 			tssdp |= ts_sdp_sel_fc0[pin];
476 	} else {
477 		if (chan == 1)
478 			tssdp |= ts_sdp_sel_tt1[pin];
479 		else
480 			tssdp |= ts_sdp_sel_tt0[pin];
481 	}
482 	tssdp |= ts_sdp_en[pin];
483 
484 	wr32(E1000_TSSDP, tssdp);
485 	wr32(E1000_CTRL, ctrl);
486 	wr32(E1000_CTRL_EXT, ctrl_ext);
487 }
488 
igb_ptp_feature_enable_82580(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)489 static int igb_ptp_feature_enable_82580(struct ptp_clock_info *ptp,
490 					struct ptp_clock_request *rq, int on)
491 {
492 	struct igb_adapter *igb =
493 		container_of(ptp, struct igb_adapter, ptp_caps);
494 	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, systiml,
495 		systimh, level_mask, level, rem;
496 	struct e1000_hw *hw = &igb->hw;
497 	struct timespec64 ts, start;
498 	unsigned long flags;
499 	u64 systim, now;
500 	int pin = -1;
501 	s64 ns;
502 
503 	switch (rq->type) {
504 	case PTP_CLK_REQ_EXTTS:
505 		/* Both the rising and falling edge are timestamped */
506 		if (rq->extts.flags & PTP_STRICT_FLAGS &&
507 		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
508 		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
509 			return -EOPNOTSUPP;
510 
511 		if (on) {
512 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
513 					   rq->extts.index);
514 			if (pin < 0)
515 				return -EBUSY;
516 		}
517 		if (rq->extts.index == 1) {
518 			tsauxc_mask = TSAUXC_EN_TS1;
519 			tsim_mask = TSINTR_AUTT1;
520 		} else {
521 			tsauxc_mask = TSAUXC_EN_TS0;
522 			tsim_mask = TSINTR_AUTT0;
523 		}
524 		spin_lock_irqsave(&igb->tmreg_lock, flags);
525 		tsauxc = rd32(E1000_TSAUXC);
526 		tsim = rd32(E1000_TSIM);
527 		if (on) {
528 			igb_pin_extts(igb, rq->extts.index, pin);
529 			tsauxc |= tsauxc_mask;
530 			tsim |= tsim_mask;
531 		} else {
532 			tsauxc &= ~tsauxc_mask;
533 			tsim &= ~tsim_mask;
534 		}
535 		wr32(E1000_TSAUXC, tsauxc);
536 		wr32(E1000_TSIM, tsim);
537 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
538 		return 0;
539 
540 	case PTP_CLK_REQ_PEROUT:
541 		/* Reject requests with unsupported flags */
542 		if (rq->perout.flags)
543 			return -EOPNOTSUPP;
544 
545 		if (on) {
546 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
547 					   rq->perout.index);
548 			if (pin < 0)
549 				return -EBUSY;
550 		}
551 		ts.tv_sec = rq->perout.period.sec;
552 		ts.tv_nsec = rq->perout.period.nsec;
553 		ns = timespec64_to_ns(&ts);
554 		ns = ns >> 1;
555 		if (on && ns < 8LL)
556 			return -EINVAL;
557 		ts = ns_to_timespec64(ns);
558 		if (rq->perout.index == 1) {
559 			tsauxc_mask = TSAUXC_EN_TT1;
560 			tsim_mask = TSINTR_TT1;
561 			trgttiml = E1000_TRGTTIML1;
562 			trgttimh = E1000_TRGTTIMH1;
563 		} else {
564 			tsauxc_mask = TSAUXC_EN_TT0;
565 			tsim_mask = TSINTR_TT0;
566 			trgttiml = E1000_TRGTTIML0;
567 			trgttimh = E1000_TRGTTIMH0;
568 		}
569 		spin_lock_irqsave(&igb->tmreg_lock, flags);
570 		tsauxc = rd32(E1000_TSAUXC);
571 		tsim = rd32(E1000_TSIM);
572 		if (rq->perout.index == 1) {
573 			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
574 			tsim &= ~TSINTR_TT1;
575 		} else {
576 			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
577 			tsim &= ~TSINTR_TT0;
578 		}
579 		if (on) {
580 			int i = rq->perout.index;
581 
582 			/* read systim registers in sequence */
583 			rd32(E1000_SYSTIMR);
584 			systiml = rd32(E1000_SYSTIML);
585 			systimh = rd32(E1000_SYSTIMH);
586 			systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
587 			now = timecounter_cyc2time(&igb->tc, systim);
588 
589 			if (pin < 2) {
590 				level_mask = (i == 1) ? 0x80000 : 0x40000;
591 				level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
592 			} else {
593 				level_mask = (i == 1) ? 0x80 : 0x40;
594 				level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
595 			}
596 
597 			div_u64_rem(now, ns, &rem);
598 			systim = systim + (ns - rem);
599 
600 			/* synchronize pin level with rising/falling edges */
601 			div_u64_rem(now, ns << 1, &rem);
602 			if (rem < ns) {
603 				/* first half of period */
604 				if (level == 0) {
605 					/* output is already low, skip this period */
606 					systim += ns;
607 				}
608 			} else {
609 				/* second half of period */
610 				if (level == 1) {
611 					/* output is already high, skip this period */
612 					systim += ns;
613 				}
614 			}
615 
616 			start = ns_to_timespec64(systim + (ns - rem));
617 			igb_pin_perout(igb, i, pin, 0);
618 			igb->perout[i].start.tv_sec = start.tv_sec;
619 			igb->perout[i].start.tv_nsec = start.tv_nsec;
620 			igb->perout[i].period.tv_sec = ts.tv_sec;
621 			igb->perout[i].period.tv_nsec = ts.tv_nsec;
622 
623 			wr32(trgttiml, (u32)systim);
624 			wr32(trgttimh, ((u32)(systim >> 32)) & 0xFF);
625 			tsauxc |= tsauxc_mask;
626 			tsim |= tsim_mask;
627 		}
628 		wr32(E1000_TSAUXC, tsauxc);
629 		wr32(E1000_TSIM, tsim);
630 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
631 		return 0;
632 
633 	case PTP_CLK_REQ_PPS:
634 		return -EOPNOTSUPP;
635 	}
636 
637 	return -EOPNOTSUPP;
638 }
639 
igb_ptp_feature_enable_i210(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)640 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
641 				       struct ptp_clock_request *rq, int on)
642 {
643 	struct igb_adapter *igb =
644 		container_of(ptp, struct igb_adapter, ptp_caps);
645 	struct e1000_hw *hw = &igb->hw;
646 	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
647 	unsigned long flags;
648 	struct timespec64 ts;
649 	int use_freq = 0, pin = -1;
650 	s64 ns;
651 
652 	switch (rq->type) {
653 	case PTP_CLK_REQ_EXTTS:
654 		/* Reject requests failing to enable both edges. */
655 		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
656 		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
657 		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
658 			return -EOPNOTSUPP;
659 
660 		if (on) {
661 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
662 					   rq->extts.index);
663 			if (pin < 0)
664 				return -EBUSY;
665 		}
666 		if (rq->extts.index == 1) {
667 			tsauxc_mask = TSAUXC_EN_TS1;
668 			tsim_mask = TSINTR_AUTT1;
669 		} else {
670 			tsauxc_mask = TSAUXC_EN_TS0;
671 			tsim_mask = TSINTR_AUTT0;
672 		}
673 		spin_lock_irqsave(&igb->tmreg_lock, flags);
674 		tsauxc = rd32(E1000_TSAUXC);
675 		tsim = rd32(E1000_TSIM);
676 		if (on) {
677 			igb_pin_extts(igb, rq->extts.index, pin);
678 			tsauxc |= tsauxc_mask;
679 			tsim |= tsim_mask;
680 		} else {
681 			tsauxc &= ~tsauxc_mask;
682 			tsim &= ~tsim_mask;
683 		}
684 		wr32(E1000_TSAUXC, tsauxc);
685 		wr32(E1000_TSIM, tsim);
686 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
687 		return 0;
688 
689 	case PTP_CLK_REQ_PEROUT:
690 		/* Reject requests with unsupported flags */
691 		if (rq->perout.flags)
692 			return -EOPNOTSUPP;
693 
694 		if (on) {
695 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
696 					   rq->perout.index);
697 			if (pin < 0)
698 				return -EBUSY;
699 		}
700 		ts.tv_sec = rq->perout.period.sec;
701 		ts.tv_nsec = rq->perout.period.nsec;
702 		ns = timespec64_to_ns(&ts);
703 		ns = ns >> 1;
704 		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
705 			   (ns == 250000000LL) || (ns == 500000000LL))) {
706 			if (ns < 8LL)
707 				return -EINVAL;
708 			use_freq = 1;
709 		}
710 		ts = ns_to_timespec64(ns);
711 		if (rq->perout.index == 1) {
712 			if (use_freq) {
713 				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
714 				tsim_mask = 0;
715 			} else {
716 				tsauxc_mask = TSAUXC_EN_TT1;
717 				tsim_mask = TSINTR_TT1;
718 			}
719 			trgttiml = E1000_TRGTTIML1;
720 			trgttimh = E1000_TRGTTIMH1;
721 			freqout = E1000_FREQOUT1;
722 		} else {
723 			if (use_freq) {
724 				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
725 				tsim_mask = 0;
726 			} else {
727 				tsauxc_mask = TSAUXC_EN_TT0;
728 				tsim_mask = TSINTR_TT0;
729 			}
730 			trgttiml = E1000_TRGTTIML0;
731 			trgttimh = E1000_TRGTTIMH0;
732 			freqout = E1000_FREQOUT0;
733 		}
734 		spin_lock_irqsave(&igb->tmreg_lock, flags);
735 		tsauxc = rd32(E1000_TSAUXC);
736 		tsim = rd32(E1000_TSIM);
737 		if (rq->perout.index == 1) {
738 			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
739 			tsim &= ~TSINTR_TT1;
740 		} else {
741 			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
742 			tsim &= ~TSINTR_TT0;
743 		}
744 		if (on) {
745 			int i = rq->perout.index;
746 			igb_pin_perout(igb, i, pin, use_freq);
747 			igb->perout[i].start.tv_sec = rq->perout.start.sec;
748 			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
749 			igb->perout[i].period.tv_sec = ts.tv_sec;
750 			igb->perout[i].period.tv_nsec = ts.tv_nsec;
751 			wr32(trgttimh, rq->perout.start.sec);
752 			wr32(trgttiml, rq->perout.start.nsec);
753 			if (use_freq)
754 				wr32(freqout, ns);
755 			tsauxc |= tsauxc_mask;
756 			tsim |= tsim_mask;
757 		}
758 		wr32(E1000_TSAUXC, tsauxc);
759 		wr32(E1000_TSIM, tsim);
760 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
761 		return 0;
762 
763 	case PTP_CLK_REQ_PPS:
764 		spin_lock_irqsave(&igb->tmreg_lock, flags);
765 		tsim = rd32(E1000_TSIM);
766 		if (on)
767 			tsim |= TSINTR_SYS_WRAP;
768 		else
769 			tsim &= ~TSINTR_SYS_WRAP;
770 		igb->pps_sys_wrap_on = !!on;
771 		wr32(E1000_TSIM, tsim);
772 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
773 		return 0;
774 	}
775 
776 	return -EOPNOTSUPP;
777 }
778 
igb_ptp_feature_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)779 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
780 				  struct ptp_clock_request *rq, int on)
781 {
782 	return -EOPNOTSUPP;
783 }
784 
igb_ptp_verify_pin(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)785 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
786 			      enum ptp_pin_function func, unsigned int chan)
787 {
788 	switch (func) {
789 	case PTP_PF_NONE:
790 	case PTP_PF_EXTTS:
791 	case PTP_PF_PEROUT:
792 		break;
793 	case PTP_PF_PHYSYNC:
794 		return -1;
795 	}
796 	return 0;
797 }
798 
799 /**
800  * igb_ptp_tx_work
801  * @work: pointer to work struct
802  *
803  * This work function polls the TSYNCTXCTL valid bit to determine when a
804  * timestamp has been taken for the current stored skb.
805  **/
igb_ptp_tx_work(struct work_struct * work)806 static void igb_ptp_tx_work(struct work_struct *work)
807 {
808 	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
809 						   ptp_tx_work);
810 	struct e1000_hw *hw = &adapter->hw;
811 	u32 tsynctxctl;
812 
813 	if (!adapter->ptp_tx_skb)
814 		return;
815 
816 	if (time_is_before_jiffies(adapter->ptp_tx_start +
817 				   IGB_PTP_TX_TIMEOUT)) {
818 		dev_kfree_skb_any(adapter->ptp_tx_skb);
819 		adapter->ptp_tx_skb = NULL;
820 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
821 		adapter->tx_hwtstamp_timeouts++;
822 		/* Clear the tx valid bit in TSYNCTXCTL register to enable
823 		 * interrupt
824 		 */
825 		rd32(E1000_TXSTMPH);
826 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
827 		return;
828 	}
829 
830 	tsynctxctl = rd32(E1000_TSYNCTXCTL);
831 	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
832 		igb_ptp_tx_hwtstamp(adapter);
833 	else
834 		/* reschedule to check later */
835 		schedule_work(&adapter->ptp_tx_work);
836 }
837 
igb_ptp_overflow_check(struct work_struct * work)838 static void igb_ptp_overflow_check(struct work_struct *work)
839 {
840 	struct igb_adapter *igb =
841 		container_of(work, struct igb_adapter, ptp_overflow_work.work);
842 	struct timespec64 ts;
843 	u64 ns;
844 
845 	/* Update the timecounter */
846 	ns = timecounter_read(&igb->tc);
847 
848 	ts = ns_to_timespec64(ns);
849 	pr_debug("igb overflow check at %lld.%09lu\n",
850 		 (long long) ts.tv_sec, ts.tv_nsec);
851 
852 	schedule_delayed_work(&igb->ptp_overflow_work,
853 			      IGB_SYSTIM_OVERFLOW_PERIOD);
854 }
855 
856 /**
857  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
858  * @adapter: private network adapter structure
859  *
860  * This watchdog task is scheduled to detect error case where hardware has
861  * dropped an Rx packet that was timestamped when the ring is full. The
862  * particular error is rare but leaves the device in a state unable to timestamp
863  * any future packets.
864  **/
igb_ptp_rx_hang(struct igb_adapter * adapter)865 void igb_ptp_rx_hang(struct igb_adapter *adapter)
866 {
867 	struct e1000_hw *hw = &adapter->hw;
868 	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
869 	unsigned long rx_event;
870 
871 	/* Other hardware uses per-packet timestamps */
872 	if (hw->mac.type != e1000_82576)
873 		return;
874 
875 	/* If we don't have a valid timestamp in the registers, just update the
876 	 * timeout counter and exit
877 	 */
878 	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
879 		adapter->last_rx_ptp_check = jiffies;
880 		return;
881 	}
882 
883 	/* Determine the most recent watchdog or rx_timestamp event */
884 	rx_event = adapter->last_rx_ptp_check;
885 	if (time_after(adapter->last_rx_timestamp, rx_event))
886 		rx_event = adapter->last_rx_timestamp;
887 
888 	/* Only need to read the high RXSTMP register to clear the lock */
889 	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
890 		rd32(E1000_RXSTMPH);
891 		adapter->last_rx_ptp_check = jiffies;
892 		adapter->rx_hwtstamp_cleared++;
893 		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
894 	}
895 }
896 
897 /**
898  * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
899  * @adapter: private network adapter structure
900  */
igb_ptp_tx_hang(struct igb_adapter * adapter)901 void igb_ptp_tx_hang(struct igb_adapter *adapter)
902 {
903 	struct e1000_hw *hw = &adapter->hw;
904 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
905 					      IGB_PTP_TX_TIMEOUT);
906 
907 	if (!adapter->ptp_tx_skb)
908 		return;
909 
910 	if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
911 		return;
912 
913 	/* If we haven't received a timestamp within the timeout, it is
914 	 * reasonable to assume that it will never occur, so we can unlock the
915 	 * timestamp bit when this occurs.
916 	 */
917 	if (timeout) {
918 		cancel_work_sync(&adapter->ptp_tx_work);
919 		dev_kfree_skb_any(adapter->ptp_tx_skb);
920 		adapter->ptp_tx_skb = NULL;
921 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
922 		adapter->tx_hwtstamp_timeouts++;
923 		/* Clear the tx valid bit in TSYNCTXCTL register to enable
924 		 * interrupt
925 		 */
926 		rd32(E1000_TXSTMPH);
927 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
928 	}
929 }
930 
931 /**
932  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
933  * @adapter: Board private structure.
934  *
935  * If we were asked to do hardware stamping and such a time stamp is
936  * available, then it must have been for this skb here because we only
937  * allow only one such packet into the queue.
938  **/
igb_ptp_tx_hwtstamp(struct igb_adapter * adapter)939 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
940 {
941 	struct sk_buff *skb = adapter->ptp_tx_skb;
942 	struct e1000_hw *hw = &adapter->hw;
943 	struct skb_shared_hwtstamps shhwtstamps;
944 	u64 regval;
945 	int adjust = 0;
946 
947 	regval = rd32(E1000_TXSTMPL);
948 	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
949 
950 	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
951 	/* adjust timestamp for the TX latency based on link speed */
952 	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
953 		switch (adapter->link_speed) {
954 		case SPEED_10:
955 			adjust = IGB_I210_TX_LATENCY_10;
956 			break;
957 		case SPEED_100:
958 			adjust = IGB_I210_TX_LATENCY_100;
959 			break;
960 		case SPEED_1000:
961 			adjust = IGB_I210_TX_LATENCY_1000;
962 			break;
963 		}
964 	}
965 
966 	shhwtstamps.hwtstamp =
967 		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
968 
969 	/* Clear the lock early before calling skb_tstamp_tx so that
970 	 * applications are not woken up before the lock bit is clear. We use
971 	 * a copy of the skb pointer to ensure other threads can't change it
972 	 * while we're notifying the stack.
973 	 */
974 	adapter->ptp_tx_skb = NULL;
975 	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
976 
977 	/* Notify the stack and free the skb after we've unlocked */
978 	skb_tstamp_tx(skb, &shhwtstamps);
979 	dev_kfree_skb_any(skb);
980 }
981 
982 /**
983  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
984  * @q_vector: Pointer to interrupt specific structure
985  * @va: Pointer to address containing Rx buffer
986  * @timestamp: Pointer where timestamp will be stored
987  *
988  * This function is meant to retrieve a timestamp from the first buffer of an
989  * incoming frame.  The value is stored in little endian format starting on
990  * byte 8
991  *
992  * Returns: The timestamp header length or 0 if not available
993  **/
igb_ptp_rx_pktstamp(struct igb_q_vector * q_vector,void * va,ktime_t * timestamp)994 int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
995 			ktime_t *timestamp)
996 {
997 	struct igb_adapter *adapter = q_vector->adapter;
998 	struct e1000_hw *hw = &adapter->hw;
999 	struct skb_shared_hwtstamps ts;
1000 	__le64 *regval = (__le64 *)va;
1001 	int adjust = 0;
1002 
1003 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1004 		return 0;
1005 
1006 	/* The timestamp is recorded in little endian format.
1007 	 * DWORD: 0        1        2        3
1008 	 * Field: Reserved Reserved SYSTIML  SYSTIMH
1009 	 */
1010 
1011 	/* check reserved dwords are zero, be/le doesn't matter for zero */
1012 	if (regval[0])
1013 		return 0;
1014 
1015 	igb_ptp_systim_to_hwtstamp(adapter, &ts, le64_to_cpu(regval[1]));
1016 
1017 	/* adjust timestamp for the RX latency based on link speed */
1018 	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1019 		switch (adapter->link_speed) {
1020 		case SPEED_10:
1021 			adjust = IGB_I210_RX_LATENCY_10;
1022 			break;
1023 		case SPEED_100:
1024 			adjust = IGB_I210_RX_LATENCY_100;
1025 			break;
1026 		case SPEED_1000:
1027 			adjust = IGB_I210_RX_LATENCY_1000;
1028 			break;
1029 		}
1030 	}
1031 
1032 	*timestamp = ktime_sub_ns(ts.hwtstamp, adjust);
1033 
1034 	return IGB_TS_HDR_LEN;
1035 }
1036 
1037 /**
1038  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
1039  * @q_vector: Pointer to interrupt specific structure
1040  * @skb: Buffer containing timestamp and packet
1041  *
1042  * This function is meant to retrieve a timestamp from the internal registers
1043  * of the adapter and store it in the skb.
1044  **/
igb_ptp_rx_rgtstamp(struct igb_q_vector * q_vector,struct sk_buff * skb)1045 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
1046 {
1047 	struct igb_adapter *adapter = q_vector->adapter;
1048 	struct e1000_hw *hw = &adapter->hw;
1049 	int adjust = 0;
1050 	u64 regval;
1051 
1052 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1053 		return;
1054 
1055 	/* If this bit is set, then the RX registers contain the time stamp. No
1056 	 * other packet will be time stamped until we read these registers, so
1057 	 * read the registers to make them available again. Because only one
1058 	 * packet can be time stamped at a time, we know that the register
1059 	 * values must belong to this one here and therefore we don't need to
1060 	 * compare any of the additional attributes stored for it.
1061 	 *
1062 	 * If nothing went wrong, then it should have a shared tx_flags that we
1063 	 * can turn into a skb_shared_hwtstamps.
1064 	 */
1065 	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
1066 		return;
1067 
1068 	regval = rd32(E1000_RXSTMPL);
1069 	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
1070 
1071 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
1072 
1073 	/* adjust timestamp for the RX latency based on link speed */
1074 	if (adapter->hw.mac.type == e1000_i210) {
1075 		switch (adapter->link_speed) {
1076 		case SPEED_10:
1077 			adjust = IGB_I210_RX_LATENCY_10;
1078 			break;
1079 		case SPEED_100:
1080 			adjust = IGB_I210_RX_LATENCY_100;
1081 			break;
1082 		case SPEED_1000:
1083 			adjust = IGB_I210_RX_LATENCY_1000;
1084 			break;
1085 		}
1086 	}
1087 	skb_hwtstamps(skb)->hwtstamp =
1088 		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
1089 
1090 	/* Update the last_rx_timestamp timer in order to enable watchdog check
1091 	 * for error case of latched timestamp on a dropped packet.
1092 	 */
1093 	adapter->last_rx_timestamp = jiffies;
1094 }
1095 
1096 /**
1097  * igb_ptp_hwtstamp_get - get hardware time stamping config
1098  * @netdev: netdev struct
1099  * @config: timestamping configuration structure
1100  *
1101  * Get the hwtstamp_config settings to return to the user. Rather than attempt
1102  * to deconstruct the settings from the registers, just return a shadow copy
1103  * of the last known settings.
1104  **/
igb_ptp_hwtstamp_get(struct net_device * netdev,struct kernel_hwtstamp_config * config)1105 int igb_ptp_hwtstamp_get(struct net_device *netdev,
1106 			 struct kernel_hwtstamp_config *config)
1107 {
1108 	struct igb_adapter *adapter = netdev_priv(netdev);
1109 
1110 	*config = adapter->tstamp_config;
1111 
1112 	return 0;
1113 }
1114 
1115 /**
1116  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
1117  * @adapter: networking device structure
1118  * @config: hwtstamp configuration
1119  *
1120  * Outgoing time stamping can be enabled and disabled. Play nice and
1121  * disable it when requested, although it shouldn't case any overhead
1122  * when no packet needs it. At most one packet in the queue may be
1123  * marked for time stamping, otherwise it would be impossible to tell
1124  * for sure to which packet the hardware time stamp belongs.
1125  *
1126  * Incoming time stamping has to be configured via the hardware
1127  * filters. Not all combinations are supported, in particular event
1128  * type has to be specified. Matching the kind of event packet is
1129  * not supported, with the exception of "all V2 events regardless of
1130  * level 2 or 4".
1131  */
igb_ptp_set_timestamp_mode(struct igb_adapter * adapter,struct kernel_hwtstamp_config * config)1132 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
1133 				      struct kernel_hwtstamp_config *config)
1134 {
1135 	struct e1000_hw *hw = &adapter->hw;
1136 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
1137 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1138 	u32 tsync_rx_cfg = 0;
1139 	bool is_l4 = false;
1140 	bool is_l2 = false;
1141 	u32 regval;
1142 
1143 	switch (config->tx_type) {
1144 	case HWTSTAMP_TX_OFF:
1145 		tsync_tx_ctl = 0;
1146 		break;
1147 	case HWTSTAMP_TX_ON:
1148 		break;
1149 	default:
1150 		return -ERANGE;
1151 	}
1152 
1153 	switch (config->rx_filter) {
1154 	case HWTSTAMP_FILTER_NONE:
1155 		tsync_rx_ctl = 0;
1156 		break;
1157 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1158 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1159 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1160 		is_l4 = true;
1161 		break;
1162 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1163 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1164 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1165 		is_l4 = true;
1166 		break;
1167 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1168 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1169 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1170 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1171 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1172 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1173 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1174 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1175 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1176 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1177 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1178 		is_l2 = true;
1179 		is_l4 = true;
1180 		break;
1181 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1182 	case HWTSTAMP_FILTER_NTP_ALL:
1183 	case HWTSTAMP_FILTER_ALL:
1184 		/* 82576 cannot timestamp all packets, which it needs to do to
1185 		 * support both V1 Sync and Delay_Req messages
1186 		 */
1187 		if (hw->mac.type != e1000_82576) {
1188 			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1189 			config->rx_filter = HWTSTAMP_FILTER_ALL;
1190 			break;
1191 		}
1192 		fallthrough;
1193 	default:
1194 		config->rx_filter = HWTSTAMP_FILTER_NONE;
1195 		return -ERANGE;
1196 	}
1197 
1198 	if (hw->mac.type == e1000_82575) {
1199 		if (tsync_rx_ctl | tsync_tx_ctl)
1200 			return -EINVAL;
1201 		return 0;
1202 	}
1203 
1204 	/* Per-packet timestamping only works if all packets are
1205 	 * timestamped, so enable timestamping in all packets as
1206 	 * long as one Rx filter was configured.
1207 	 */
1208 	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1209 		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1210 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1211 		config->rx_filter = HWTSTAMP_FILTER_ALL;
1212 		is_l2 = true;
1213 		is_l4 = true;
1214 
1215 		if ((hw->mac.type == e1000_i210) ||
1216 		    (hw->mac.type == e1000_i211)) {
1217 			regval = rd32(E1000_RXPBS);
1218 			regval |= E1000_RXPBS_CFG_TS_EN;
1219 			wr32(E1000_RXPBS, regval);
1220 		}
1221 	}
1222 
1223 	/* enable/disable TX */
1224 	regval = rd32(E1000_TSYNCTXCTL);
1225 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
1226 	regval |= tsync_tx_ctl;
1227 	wr32(E1000_TSYNCTXCTL, regval);
1228 
1229 	/* enable/disable RX */
1230 	regval = rd32(E1000_TSYNCRXCTL);
1231 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1232 	regval |= tsync_rx_ctl;
1233 	wr32(E1000_TSYNCRXCTL, regval);
1234 
1235 	/* define which PTP packets are time stamped */
1236 	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1237 
1238 	/* define ethertype filter for timestamped packets */
1239 	if (is_l2)
1240 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1241 		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1242 		      E1000_ETQF_1588 | /* enable timestamping */
1243 		      ETH_P_1588));     /* 1588 eth protocol type */
1244 	else
1245 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1246 
1247 	/* L4 Queue Filter[3]: filter by destination port and protocol */
1248 	if (is_l4) {
1249 		u32 ftqf = (IPPROTO_UDP /* UDP */
1250 			| E1000_FTQF_VF_BP /* VF not compared */
1251 			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1252 			| E1000_FTQF_MASK); /* mask all inputs */
1253 		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1254 
1255 		wr32(E1000_IMIR(3), (__force unsigned int)htons(PTP_EV_PORT));
1256 		wr32(E1000_IMIREXT(3),
1257 		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1258 		if (hw->mac.type == e1000_82576) {
1259 			/* enable source port check */
1260 			wr32(E1000_SPQF(3), (__force unsigned int)htons(PTP_EV_PORT));
1261 			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1262 		}
1263 		wr32(E1000_FTQF(3), ftqf);
1264 	} else {
1265 		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1266 	}
1267 	wrfl();
1268 
1269 	/* clear TX/RX time stamp registers, just to be sure */
1270 	regval = rd32(E1000_TXSTMPL);
1271 	regval = rd32(E1000_TXSTMPH);
1272 	regval = rd32(E1000_RXSTMPL);
1273 	regval = rd32(E1000_RXSTMPH);
1274 
1275 	return 0;
1276 }
1277 
1278 /**
1279  * igb_ptp_hwtstamp_set - set hardware time stamping config
1280  * @netdev: netdev struct
1281  * @config: timestamping configuration structure
1282  * @extack: netlink extended ack structure for error reporting
1283  **/
igb_ptp_hwtstamp_set(struct net_device * netdev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)1284 int igb_ptp_hwtstamp_set(struct net_device *netdev,
1285 			 struct kernel_hwtstamp_config *config,
1286 			 struct netlink_ext_ack *extack)
1287 {
1288 	struct igb_adapter *adapter = netdev_priv(netdev);
1289 	int err;
1290 
1291 	err = igb_ptp_set_timestamp_mode(adapter, config);
1292 	if (err)
1293 		return err;
1294 
1295 	/* save these settings for future reference */
1296 	adapter->tstamp_config = *config;
1297 
1298 	return 0;
1299 }
1300 
1301 /**
1302  * igb_ptp_init - Initialize PTP functionality
1303  * @adapter: Board private structure
1304  *
1305  * This function is called at device probe to initialize the PTP
1306  * functionality.
1307  */
igb_ptp_init(struct igb_adapter * adapter)1308 void igb_ptp_init(struct igb_adapter *adapter)
1309 {
1310 	struct e1000_hw *hw = &adapter->hw;
1311 	struct net_device *netdev = adapter->netdev;
1312 
1313 	switch (hw->mac.type) {
1314 	case e1000_82576:
1315 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1316 		adapter->ptp_caps.owner = THIS_MODULE;
1317 		adapter->ptp_caps.max_adj = 999999881;
1318 		adapter->ptp_caps.n_ext_ts = 0;
1319 		adapter->ptp_caps.pps = 0;
1320 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82576;
1321 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1322 		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1323 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1324 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1325 		adapter->cc.read = igb_ptp_read_82576;
1326 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1327 		adapter->cc.mult = 1;
1328 		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1329 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1330 		break;
1331 	case e1000_82580:
1332 	case e1000_i354:
1333 	case e1000_i350:
1334 		igb_ptp_sdp_init(adapter);
1335 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1336 		adapter->ptp_caps.owner = THIS_MODULE;
1337 		adapter->ptp_caps.max_adj = 62499999;
1338 		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1339 		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1340 		adapter->ptp_caps.n_pins = IGB_N_SDP;
1341 		adapter->ptp_caps.pps = 0;
1342 		adapter->ptp_caps.supported_extts_flags = PTP_RISING_EDGE |
1343 							  PTP_FALLING_EDGE |
1344 							  PTP_STRICT_FLAGS;
1345 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1346 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1347 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1348 		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1349 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1350 		adapter->ptp_caps.enable = igb_ptp_feature_enable_82580;
1351 		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1352 		adapter->cc.read = igb_ptp_read_82580;
1353 		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1354 		adapter->cc.mult = 1;
1355 		adapter->cc.shift = 0;
1356 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1357 		break;
1358 	case e1000_i210:
1359 	case e1000_i211:
1360 		igb_ptp_sdp_init(adapter);
1361 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1362 		adapter->ptp_caps.owner = THIS_MODULE;
1363 		adapter->ptp_caps.max_adj = 62499999;
1364 		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1365 		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1366 		adapter->ptp_caps.n_pins = IGB_N_SDP;
1367 		adapter->ptp_caps.supported_extts_flags = PTP_RISING_EDGE |
1368 							  PTP_FALLING_EDGE |
1369 							  PTP_STRICT_FLAGS;
1370 		adapter->ptp_caps.pps = 1;
1371 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1372 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1373 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1374 		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1375 		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1376 		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1377 		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1378 		break;
1379 	default:
1380 		adapter->ptp_clock = NULL;
1381 		return;
1382 	}
1383 
1384 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1385 						&adapter->pdev->dev);
1386 	if (IS_ERR(adapter->ptp_clock)) {
1387 		adapter->ptp_clock = NULL;
1388 		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1389 	} else if (adapter->ptp_clock) {
1390 		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1391 			 adapter->netdev->name);
1392 		adapter->ptp_flags |= IGB_PTP_ENABLED;
1393 
1394 		spin_lock_init(&adapter->tmreg_lock);
1395 		INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1396 
1397 		if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1398 			INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1399 					  igb_ptp_overflow_check);
1400 
1401 		adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1402 		adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1403 
1404 		igb_ptp_reset(adapter);
1405 	}
1406 }
1407 
1408 /**
1409  * igb_ptp_sdp_init - utility function which inits the SDP config structs
1410  * @adapter: Board private structure.
1411  **/
igb_ptp_sdp_init(struct igb_adapter * adapter)1412 void igb_ptp_sdp_init(struct igb_adapter *adapter)
1413 {
1414 	int i;
1415 
1416 	for (i = 0; i < IGB_N_SDP; i++) {
1417 		struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1418 
1419 		snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1420 		ppd->index = i;
1421 		ppd->func = PTP_PF_NONE;
1422 	}
1423 }
1424 
1425 /**
1426  * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1427  * @adapter: Board private structure
1428  *
1429  * This function stops the overflow check work and PTP Tx timestamp work, and
1430  * will prepare the device for OS suspend.
1431  */
igb_ptp_suspend(struct igb_adapter * adapter)1432 void igb_ptp_suspend(struct igb_adapter *adapter)
1433 {
1434 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1435 		return;
1436 
1437 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1438 		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1439 
1440 	cancel_work_sync(&adapter->ptp_tx_work);
1441 	if (adapter->ptp_tx_skb) {
1442 		dev_kfree_skb_any(adapter->ptp_tx_skb);
1443 		adapter->ptp_tx_skb = NULL;
1444 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1445 	}
1446 }
1447 
1448 /**
1449  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1450  * @adapter: Board private structure.
1451  *
1452  * This function stops the PTP support and cancels the delayed work.
1453  **/
igb_ptp_stop(struct igb_adapter * adapter)1454 void igb_ptp_stop(struct igb_adapter *adapter)
1455 {
1456 	igb_ptp_suspend(adapter);
1457 
1458 	if (adapter->ptp_clock) {
1459 		ptp_clock_unregister(adapter->ptp_clock);
1460 		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1461 			 adapter->netdev->name);
1462 		adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1463 	}
1464 }
1465 
1466 /**
1467  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1468  * @adapter: Board private structure.
1469  *
1470  * This function handles the reset work required to re-enable the PTP device.
1471  **/
igb_ptp_reset(struct igb_adapter * adapter)1472 void igb_ptp_reset(struct igb_adapter *adapter)
1473 {
1474 	struct e1000_hw *hw = &adapter->hw;
1475 	unsigned long flags;
1476 
1477 	/* reset the tstamp_config */
1478 	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1479 
1480 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1481 
1482 	switch (adapter->hw.mac.type) {
1483 	case e1000_82576:
1484 		/* Dial the nominal frequency. */
1485 		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1486 		break;
1487 	case e1000_82580:
1488 	case e1000_i354:
1489 	case e1000_i350:
1490 	case e1000_i210:
1491 	case e1000_i211:
1492 		wr32(E1000_TSAUXC, 0x0);
1493 		wr32(E1000_TSSDP, 0x0);
1494 		wr32(E1000_TSIM,
1495 		     TSYNC_INTERRUPTS |
1496 		     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1497 		wr32(E1000_IMS, E1000_IMS_TS);
1498 		break;
1499 	default:
1500 		/* No work to do. */
1501 		goto out;
1502 	}
1503 
1504 	/* Re-initialize the timer. */
1505 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1506 		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1507 
1508 		igb_ptp_write_i210(adapter, &ts);
1509 	} else {
1510 		timecounter_init(&adapter->tc, &adapter->cc,
1511 				 ktime_to_ns(ktime_get_real()));
1512 	}
1513 out:
1514 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1515 
1516 	wrfl();
1517 
1518 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1519 		schedule_delayed_work(&adapter->ptp_overflow_work,
1520 				      IGB_SYSTIM_OVERFLOW_PERIOD);
1521 }
1522