xref: /linux/drivers/iio/imu/st_lsm6dsx/st_lsm6dsx_buffer.c (revision 83bd89291f5cc866f60d32c34e268896c7ba8a3d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * STMicroelectronics st_lsm6dsx FIFO buffer library driver
4  *
5  * Pattern FIFO:
6  * The FIFO buffer can be configured to store data from gyroscope and
7  * accelerometer. Samples are queued without any tag according to a
8  * specific pattern based on 'FIFO data sets' (6 bytes each):
9  *  - 1st data set is reserved for gyroscope data
10  *  - 2nd data set is reserved for accelerometer data
11  * The FIFO pattern changes depending on the ODRs and decimation factors
12  * assigned to the FIFO data sets. The first sequence of data stored in FIFO
13  * buffer contains the data of all the enabled FIFO data sets
14  * (e.g. Gx, Gy, Gz, Ax, Ay, Az), then data are repeated depending on the
15  * value of the decimation factor and ODR set for each FIFO data set.
16  *
17  * Supported devices:
18  * - ISM330DLC
19  * - LSM6DS3
20  * - LSM6DS3H
21  * - LSM6DS3TR-C
22  * - LSM6DSL
23  * - LSM6DSM
24  *
25  * Tagged FIFO:
26  * The FIFO buffer can be configured to store data from gyroscope and
27  * accelerometer. Each sample is queued with a tag (1B) indicating data
28  * source (gyroscope, accelerometer, hw timer).
29  *
30  * Supported devices:
31  * - ASM330LHB
32  * - ASM330LHH
33  * - ASM330LHHX
34  * - ASM330LHHXG1
35  * - ISM330DHCX
36  * - LSM6DSO
37  * - LSM6DSOP
38  * - LSM6DSOX
39  * - LSM6DSR
40  * - LSM6DSRX
41  * - LSM6DST
42  * - LSM6DSTX
43  * - LSM6DSV
44  *
45  * FIFO supported modes:
46  *  - BYPASS: FIFO disabled
47  *  - CONTINUOUS: FIFO enabled. When the buffer is full, the FIFO index
48  *    restarts from the beginning and the oldest sample is overwritten
49  *
50  * Copyright 2016 STMicroelectronics Inc.
51  *
52  * Lorenzo Bianconi <lorenzo.bianconi@st.com>
53  * Denis Ciocca <denis.ciocca@st.com>
54  */
55 #include <linux/module.h>
56 #include <linux/iio/kfifo_buf.h>
57 #include <linux/iio/iio.h>
58 #include <linux/iio/buffer.h>
59 #include <linux/iio/sysfs.h>
60 #include <linux/regmap.h>
61 #include <linux/bitfield.h>
62 
63 #include <linux/platform_data/st_sensors_pdata.h>
64 
65 #include "st_lsm6dsx.h"
66 
67 #define ST_LSM6DSX_REG_FIFO_MODE_ADDR		0x0a
68 #define ST_LSM6DSX_FIFO_MODE_MASK		GENMASK(2, 0)
69 #define ST_LSM6DSX_FIFO_ODR_MASK		GENMASK(6, 3)
70 #define ST_LSM6DSX_FIFO_EMPTY_MASK		BIT(12)
71 #define ST_LSM6DSX_REG_FIFO_OUTL_ADDR		0x3e
72 #define ST_LSM6DSX_REG_FIFO_OUT_TAG_ADDR	0x78
73 #define ST_LSM6DSX_REG_TS_RESET_ADDR		0x42
74 
75 #define ST_LSM6DSX_MAX_FIFO_ODR_VAL		0x08
76 
77 #define ST_LSM6DSX_TS_RESET_VAL			0xaa
78 
79 struct st_lsm6dsx_decimator_entry {
80 	u8 decimator;
81 	u8 val;
82 };
83 
84 enum st_lsm6dsx_fifo_tag {
85 	ST_LSM6DSX_GYRO_TAG = 0x01,
86 	ST_LSM6DSX_ACC_TAG = 0x02,
87 	ST_LSM6DSX_TS_TAG = 0x04,
88 	ST_LSM6DSX_EXT0_TAG = 0x0f,
89 	ST_LSM6DSX_EXT1_TAG = 0x10,
90 	ST_LSM6DSX_EXT2_TAG = 0x11,
91 };
92 
93 static const
94 struct st_lsm6dsx_decimator_entry st_lsm6dsx_decimator_table[] = {
95 	{  0, 0x0 },
96 	{  1, 0x1 },
97 	{  2, 0x2 },
98 	{  3, 0x3 },
99 	{  4, 0x4 },
100 	{  8, 0x5 },
101 	{ 16, 0x6 },
102 	{ 32, 0x7 },
103 };
104 
105 static int
st_lsm6dsx_get_decimator_val(struct st_lsm6dsx_sensor * sensor,u32 max_odr)106 st_lsm6dsx_get_decimator_val(struct st_lsm6dsx_sensor *sensor, u32 max_odr)
107 {
108 	const int max_size = ARRAY_SIZE(st_lsm6dsx_decimator_table);
109 	u32 decimator = max_odr / sensor->hwfifo_odr_mHz;
110 	int i;
111 
112 	if (decimator > 1)
113 		decimator = round_down(decimator, 2);
114 
115 	for (i = 0; i < max_size; i++) {
116 		if (st_lsm6dsx_decimator_table[i].decimator == decimator)
117 			break;
118 	}
119 
120 	sensor->decimator = decimator;
121 	return i == max_size ? 0 : st_lsm6dsx_decimator_table[i].val;
122 }
123 
st_lsm6dsx_get_max_min_odr(struct st_lsm6dsx_hw * hw,u32 * max_odr,u32 * min_odr)124 static void st_lsm6dsx_get_max_min_odr(struct st_lsm6dsx_hw *hw,
125 				       u32 *max_odr, u32 *min_odr)
126 {
127 	struct st_lsm6dsx_sensor *sensor;
128 	int i;
129 
130 	*max_odr = 0, *min_odr = ~0;
131 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
132 		if (!hw->iio_devs[i])
133 			continue;
134 
135 		sensor = iio_priv(hw->iio_devs[i]);
136 
137 		if (!(hw->enable_mask & BIT(sensor->id)))
138 			continue;
139 
140 		*max_odr = max(*max_odr, sensor->hwfifo_odr_mHz);
141 		*min_odr = min(*min_odr, sensor->hwfifo_odr_mHz);
142 	}
143 }
144 
st_lsm6dsx_get_sip(struct st_lsm6dsx_sensor * sensor,u32 min_odr)145 static u8 st_lsm6dsx_get_sip(struct st_lsm6dsx_sensor *sensor, u32 min_odr)
146 {
147 	u8 sip = sensor->hwfifo_odr_mHz / min_odr;
148 
149 	return sip > 1 ? round_down(sip, 2) : sip;
150 }
151 
st_lsm6dsx_update_decimators(struct st_lsm6dsx_hw * hw)152 static int st_lsm6dsx_update_decimators(struct st_lsm6dsx_hw *hw)
153 {
154 	const struct st_lsm6dsx_reg *ts_dec_reg;
155 	struct st_lsm6dsx_sensor *sensor;
156 	u16 sip = 0, ts_sip = 0;
157 	u32 max_odr, min_odr;
158 	int err = 0, i;
159 	u8 data;
160 
161 	st_lsm6dsx_get_max_min_odr(hw, &max_odr, &min_odr);
162 
163 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
164 		const struct st_lsm6dsx_reg *dec_reg;
165 
166 		if (!hw->iio_devs[i])
167 			continue;
168 
169 		sensor = iio_priv(hw->iio_devs[i]);
170 		/* update fifo decimators and sample in pattern */
171 		if (hw->enable_mask & BIT(sensor->id)) {
172 			sensor->sip = st_lsm6dsx_get_sip(sensor, min_odr);
173 			data = st_lsm6dsx_get_decimator_val(sensor, max_odr);
174 		} else {
175 			sensor->sip = 0;
176 			data = 0;
177 		}
178 		ts_sip = max_t(u16, ts_sip, sensor->sip);
179 
180 		dec_reg = &hw->settings->decimator[sensor->id];
181 		if (dec_reg->addr) {
182 			int val = ST_LSM6DSX_SHIFT_VAL(data, dec_reg->mask);
183 
184 			err = st_lsm6dsx_update_bits_locked(hw, dec_reg->addr,
185 							    dec_reg->mask,
186 							    val);
187 			if (err < 0)
188 				return err;
189 		}
190 		sip += sensor->sip;
191 	}
192 	hw->sip = sip + ts_sip;
193 	hw->ts_sip = ts_sip;
194 
195 	/*
196 	 * update hw ts decimator if necessary. Decimator for hw timestamp
197 	 * is always 1 or 0 in order to have a ts sample for each data
198 	 * sample in FIFO
199 	 */
200 	ts_dec_reg = &hw->settings->ts_settings.decimator;
201 	if (ts_dec_reg->addr) {
202 		int val, ts_dec = !!hw->ts_sip;
203 
204 		val = ST_LSM6DSX_SHIFT_VAL(ts_dec, ts_dec_reg->mask);
205 		err = st_lsm6dsx_update_bits_locked(hw, ts_dec_reg->addr,
206 						    ts_dec_reg->mask, val);
207 	}
208 	return err;
209 }
210 
st_lsm6dsx_set_fifo_mode(struct st_lsm6dsx_hw * hw,enum st_lsm6dsx_fifo_mode fifo_mode)211 static int st_lsm6dsx_set_fifo_mode(struct st_lsm6dsx_hw *hw,
212 				    enum st_lsm6dsx_fifo_mode fifo_mode)
213 {
214 	unsigned int data;
215 
216 	data = FIELD_PREP(ST_LSM6DSX_FIFO_MODE_MASK, fifo_mode);
217 	return st_lsm6dsx_update_bits_locked(hw, ST_LSM6DSX_REG_FIFO_MODE_ADDR,
218 					     ST_LSM6DSX_FIFO_MODE_MASK, data);
219 }
220 
st_lsm6dsx_set_fifo_odr(struct st_lsm6dsx_sensor * sensor,bool enable)221 static int st_lsm6dsx_set_fifo_odr(struct st_lsm6dsx_sensor *sensor,
222 				   bool enable)
223 {
224 	struct st_lsm6dsx_hw *hw = sensor->hw;
225 	const struct st_lsm6dsx_reg *batch_reg;
226 	u8 data;
227 
228 	batch_reg = &hw->settings->batch[sensor->id];
229 	if (batch_reg->addr) {
230 		int val;
231 
232 		if (enable) {
233 			int err;
234 
235 			err = st_lsm6dsx_check_odr(sensor, sensor->hwfifo_odr_mHz,
236 						   &data);
237 			if (err < 0)
238 				return err;
239 		} else {
240 			data = 0;
241 		}
242 		val = ST_LSM6DSX_SHIFT_VAL(data, batch_reg->mask);
243 		return st_lsm6dsx_update_bits_locked(hw, batch_reg->addr,
244 						     batch_reg->mask, val);
245 	} else {
246 		data = hw->enable_mask ? ST_LSM6DSX_MAX_FIFO_ODR_VAL : 0;
247 		return st_lsm6dsx_update_bits_locked(hw,
248 					ST_LSM6DSX_REG_FIFO_MODE_ADDR,
249 					ST_LSM6DSX_FIFO_ODR_MASK,
250 					FIELD_PREP(ST_LSM6DSX_FIFO_ODR_MASK,
251 						   data));
252 	}
253 }
254 
st_lsm6dsx_update_watermark(struct st_lsm6dsx_sensor * sensor,u16 watermark)255 int st_lsm6dsx_update_watermark(struct st_lsm6dsx_sensor *sensor, u16 watermark)
256 {
257 	u16 fifo_watermark = ~0, cur_watermark, fifo_th_mask;
258 	struct st_lsm6dsx_hw *hw = sensor->hw;
259 	struct st_lsm6dsx_sensor *cur_sensor;
260 	int i, err, data;
261 	__le16 wdata;
262 
263 	if (!hw->sip)
264 		return 0;
265 
266 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
267 		if (!hw->iio_devs[i])
268 			continue;
269 
270 		cur_sensor = iio_priv(hw->iio_devs[i]);
271 
272 		if (!(hw->enable_mask & BIT(cur_sensor->id)))
273 			continue;
274 
275 		cur_watermark = (cur_sensor == sensor) ? watermark
276 						       : cur_sensor->watermark;
277 
278 		fifo_watermark = min_t(u16, fifo_watermark, cur_watermark);
279 	}
280 
281 	fifo_watermark = max_t(u16, fifo_watermark, hw->sip);
282 	fifo_watermark = (fifo_watermark / hw->sip) * hw->sip;
283 	fifo_watermark = fifo_watermark * hw->settings->fifo_ops.th_wl;
284 
285 	mutex_lock(&hw->page_lock);
286 	err = regmap_read(hw->regmap, hw->settings->fifo_ops.fifo_th.addr + 1,
287 			  &data);
288 	if (err < 0)
289 		goto out;
290 
291 	fifo_th_mask = hw->settings->fifo_ops.fifo_th.mask;
292 	fifo_watermark = ((data << 8) & ~fifo_th_mask) |
293 			 (fifo_watermark & fifo_th_mask);
294 
295 	wdata = cpu_to_le16(fifo_watermark);
296 	err = regmap_bulk_write(hw->regmap,
297 				hw->settings->fifo_ops.fifo_th.addr,
298 				&wdata, sizeof(wdata));
299 out:
300 	mutex_unlock(&hw->page_lock);
301 	return err;
302 }
303 
st_lsm6dsx_reset_hw_ts(struct st_lsm6dsx_hw * hw)304 static int st_lsm6dsx_reset_hw_ts(struct st_lsm6dsx_hw *hw)
305 {
306 	struct st_lsm6dsx_sensor *sensor;
307 	int i, err;
308 
309 	/* reset hw ts counter */
310 	err = st_lsm6dsx_write_locked(hw, ST_LSM6DSX_REG_TS_RESET_ADDR,
311 				      ST_LSM6DSX_TS_RESET_VAL);
312 	if (err < 0)
313 		return err;
314 
315 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
316 		if (!hw->iio_devs[i])
317 			continue;
318 
319 		sensor = iio_priv(hw->iio_devs[i]);
320 		/*
321 		 * store enable buffer timestamp as reference for
322 		 * hw timestamp
323 		 */
324 		sensor->ts_ref = iio_get_time_ns(hw->iio_devs[i]);
325 	}
326 	return 0;
327 }
328 
st_lsm6dsx_resume_fifo(struct st_lsm6dsx_hw * hw)329 int st_lsm6dsx_resume_fifo(struct st_lsm6dsx_hw *hw)
330 {
331 	int err;
332 
333 	/* reset hw ts counter */
334 	err = st_lsm6dsx_reset_hw_ts(hw);
335 	if (err < 0)
336 		return err;
337 
338 	return st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_CONT);
339 }
340 
341 /*
342  * Set max bulk read to ST_LSM6DSX_MAX_WORD_LEN/ST_LSM6DSX_MAX_TAGGED_WORD_LEN
343  * in order to avoid a kmalloc for each bus access
344  */
st_lsm6dsx_read_block(struct st_lsm6dsx_hw * hw,u8 addr,u8 * data,unsigned int data_len,unsigned int max_word_len)345 static inline int st_lsm6dsx_read_block(struct st_lsm6dsx_hw *hw, u8 addr,
346 					u8 *data, unsigned int data_len,
347 					unsigned int max_word_len)
348 {
349 	unsigned int word_len, read_len = 0;
350 	int err;
351 
352 	while (read_len < data_len) {
353 		word_len = min_t(unsigned int, data_len - read_len,
354 				 max_word_len);
355 		err = st_lsm6dsx_read_locked(hw, addr, data + read_len,
356 					     word_len);
357 		if (err < 0)
358 			return err;
359 		read_len += word_len;
360 	}
361 	return 0;
362 }
363 
364 #define ST_LSM6DSX_IIO_BUFF_SIZE	(ALIGN(ST_LSM6DSX_SAMPLE_SIZE, \
365 					       sizeof(s64)) + sizeof(s64))
366 /**
367  * st_lsm6dsx_read_fifo() - hw FIFO read routine
368  * @hw: Pointer to instance of struct st_lsm6dsx_hw.
369  *
370  * Read samples from the hw FIFO and push them to IIO buffers.
371  *
372  * Return: Number of bytes read from the FIFO
373  */
st_lsm6dsx_read_fifo(struct st_lsm6dsx_hw * hw)374 int st_lsm6dsx_read_fifo(struct st_lsm6dsx_hw *hw)
375 {
376 	struct st_lsm6dsx_sensor *acc_sensor, *gyro_sensor, *ext_sensor = NULL;
377 	int err, sip, acc_sip, gyro_sip, ts_sip, ext_sip, read_len, offset;
378 	u16 fifo_len, pattern_len = hw->sip * ST_LSM6DSX_SAMPLE_SIZE;
379 	u16 fifo_diff_mask = hw->settings->fifo_ops.fifo_diff.mask;
380 	bool reset_ts = false;
381 	__le16 fifo_status;
382 	s64 ts = 0;
383 
384 	err = st_lsm6dsx_read_locked(hw,
385 				     hw->settings->fifo_ops.fifo_diff.addr,
386 				     &fifo_status, sizeof(fifo_status));
387 	if (err < 0) {
388 		dev_err(hw->dev, "failed to read fifo status (err=%d)\n",
389 			err);
390 		return err;
391 	}
392 
393 	if (fifo_status & cpu_to_le16(ST_LSM6DSX_FIFO_EMPTY_MASK))
394 		return 0;
395 
396 	if (!pattern_len)
397 		pattern_len = ST_LSM6DSX_SAMPLE_SIZE;
398 
399 	fifo_len = (le16_to_cpu(fifo_status) & fifo_diff_mask) *
400 		   ST_LSM6DSX_CHAN_SIZE;
401 	fifo_len = (fifo_len / pattern_len) * pattern_len;
402 
403 	acc_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]);
404 	gyro_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_GYRO]);
405 	if (hw->iio_devs[ST_LSM6DSX_ID_EXT0])
406 		ext_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_EXT0]);
407 
408 	for (read_len = 0; read_len < fifo_len; read_len += pattern_len) {
409 		err = st_lsm6dsx_read_block(hw, ST_LSM6DSX_REG_FIFO_OUTL_ADDR,
410 					    hw->buff, pattern_len,
411 					    ST_LSM6DSX_MAX_WORD_LEN);
412 		if (err < 0) {
413 			dev_err(hw->dev,
414 				"failed to read pattern from fifo (err=%d)\n",
415 				err);
416 			return err;
417 		}
418 
419 		/*
420 		 * Data are written to the FIFO with a specific pattern
421 		 * depending on the configured ODRs. The first sequence of data
422 		 * stored in FIFO contains the data of all enabled sensors
423 		 * (e.g. Gx, Gy, Gz, Ax, Ay, Az, Ts), then data are repeated
424 		 * depending on the value of the decimation factor set for each
425 		 * sensor.
426 		 *
427 		 * Supposing the FIFO is storing data from gyroscope and
428 		 * accelerometer at different ODRs:
429 		 *   - gyroscope ODR = 208Hz, accelerometer ODR = 104Hz
430 		 * Since the gyroscope ODR is twice the accelerometer one, the
431 		 * following pattern is repeated every 9 samples:
432 		 *   - Gx, Gy, Gz, Ax, Ay, Az, Ts, Gx, Gy, Gz, Ts, Gx, ..
433 		 */
434 		ext_sip = ext_sensor ? ext_sensor->sip : 0;
435 		gyro_sip = gyro_sensor->sip;
436 		acc_sip = acc_sensor->sip;
437 		ts_sip = hw->ts_sip;
438 		offset = 0;
439 		sip = 0;
440 
441 		while (acc_sip > 0 || gyro_sip > 0 || ext_sip > 0) {
442 			if (gyro_sip > 0 && !(sip % gyro_sensor->decimator)) {
443 				memcpy(hw->scan[ST_LSM6DSX_ID_GYRO].channels,
444 				       &hw->buff[offset],
445 				       sizeof(hw->scan[ST_LSM6DSX_ID_GYRO].channels));
446 				offset += sizeof(hw->scan[ST_LSM6DSX_ID_GYRO].channels);
447 			}
448 			if (acc_sip > 0 && !(sip % acc_sensor->decimator)) {
449 				memcpy(hw->scan[ST_LSM6DSX_ID_ACC].channels,
450 				       &hw->buff[offset],
451 				       sizeof(hw->scan[ST_LSM6DSX_ID_ACC].channels));
452 				offset += sizeof(hw->scan[ST_LSM6DSX_ID_ACC].channels);
453 			}
454 			if (ext_sip > 0 && !(sip % ext_sensor->decimator)) {
455 				memcpy(hw->scan[ST_LSM6DSX_ID_EXT0].channels,
456 				       &hw->buff[offset],
457 				       sizeof(hw->scan[ST_LSM6DSX_ID_EXT0].channels));
458 				offset += sizeof(hw->scan[ST_LSM6DSX_ID_EXT0].channels);
459 			}
460 
461 			if (ts_sip-- > 0) {
462 				u8 data[ST_LSM6DSX_SAMPLE_SIZE];
463 
464 				memcpy(data, &hw->buff[offset], sizeof(data));
465 				/*
466 				 * hw timestamp is 3B long and it is stored
467 				 * in FIFO using 6B as 4th FIFO data set
468 				 * according to this schema:
469 				 * B0 = ts[15:8], B1 = ts[23:16], B3 = ts[7:0]
470 				 */
471 				ts = data[1] << 16 | data[0] << 8 | data[3];
472 				/*
473 				 * check if hw timestamp engine is going to
474 				 * reset (the sensor generates an interrupt
475 				 * to signal the hw timestamp will reset in
476 				 * 1.638s)
477 				 */
478 				if (!reset_ts && ts >= 0xff0000)
479 					reset_ts = true;
480 				ts *= hw->ts_gain;
481 
482 				offset += ST_LSM6DSX_SAMPLE_SIZE;
483 			}
484 
485 			if (gyro_sip > 0 && !(sip % gyro_sensor->decimator)) {
486 				/*
487 				 * We need to discards gyro samples during
488 				 * filters settling time
489 				 */
490 				if (gyro_sensor->samples_to_discard > 0)
491 					gyro_sensor->samples_to_discard--;
492 				else
493 					iio_push_to_buffers_with_timestamp(
494 						hw->iio_devs[ST_LSM6DSX_ID_GYRO],
495 						&hw->scan[ST_LSM6DSX_ID_GYRO],
496 						gyro_sensor->ts_ref + ts);
497 				gyro_sip--;
498 			}
499 			if (acc_sip > 0 && !(sip % acc_sensor->decimator)) {
500 				/*
501 				 * We need to discards accel samples during
502 				 * filters settling time
503 				 */
504 				if (acc_sensor->samples_to_discard > 0)
505 					acc_sensor->samples_to_discard--;
506 				else
507 					iio_push_to_buffers_with_timestamp(
508 						hw->iio_devs[ST_LSM6DSX_ID_ACC],
509 						&hw->scan[ST_LSM6DSX_ID_ACC],
510 						acc_sensor->ts_ref + ts);
511 				acc_sip--;
512 			}
513 			if (ext_sip > 0 && !(sip % ext_sensor->decimator)) {
514 				iio_push_to_buffers_with_timestamp(
515 					hw->iio_devs[ST_LSM6DSX_ID_EXT0],
516 					&hw->scan[ST_LSM6DSX_ID_EXT0],
517 					ext_sensor->ts_ref + ts);
518 				ext_sip--;
519 			}
520 			sip++;
521 		}
522 	}
523 
524 	if (unlikely(reset_ts)) {
525 		err = st_lsm6dsx_reset_hw_ts(hw);
526 		if (err < 0) {
527 			dev_err(hw->dev, "failed to reset hw ts (err=%d)\n",
528 				err);
529 			return err;
530 		}
531 	}
532 	return read_len;
533 }
534 
535 #define ST_LSM6DSX_INVALID_SAMPLE	0x7ffd
536 static int
st_lsm6dsx_push_tagged_data(struct st_lsm6dsx_hw * hw,u8 tag,u8 * data,s64 ts)537 st_lsm6dsx_push_tagged_data(struct st_lsm6dsx_hw *hw, u8 tag,
538 			    u8 *data, s64 ts)
539 {
540 	s16 val = le16_to_cpu(*(__le16 *)data);
541 	struct st_lsm6dsx_sensor *sensor;
542 	struct iio_dev *iio_dev;
543 
544 	/* invalid sample during bootstrap phase */
545 	if (val >= ST_LSM6DSX_INVALID_SAMPLE)
546 		return -EINVAL;
547 
548 	/*
549 	 * EXT_TAG are managed in FIFO fashion so ST_LSM6DSX_EXT0_TAG
550 	 * corresponds to the first enabled channel, ST_LSM6DSX_EXT1_TAG
551 	 * to the second one and ST_LSM6DSX_EXT2_TAG to the last enabled
552 	 * channel
553 	 */
554 	switch (tag) {
555 	case ST_LSM6DSX_GYRO_TAG:
556 		iio_dev = hw->iio_devs[ST_LSM6DSX_ID_GYRO];
557 		break;
558 	case ST_LSM6DSX_ACC_TAG:
559 		iio_dev = hw->iio_devs[ST_LSM6DSX_ID_ACC];
560 		break;
561 	case ST_LSM6DSX_EXT0_TAG:
562 		if (hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT0))
563 			iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT0];
564 		else if (hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT1))
565 			iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT1];
566 		else
567 			iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT2];
568 		break;
569 	case ST_LSM6DSX_EXT1_TAG:
570 		if ((hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT0)) &&
571 		    (hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT1)))
572 			iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT1];
573 		else
574 			iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT2];
575 		break;
576 	case ST_LSM6DSX_EXT2_TAG:
577 		iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT2];
578 		break;
579 	default:
580 		return -EINVAL;
581 	}
582 
583 	sensor = iio_priv(iio_dev);
584 	iio_push_to_buffers_with_timestamp(iio_dev, data,
585 					   ts + sensor->ts_ref);
586 
587 	return 0;
588 }
589 
590 /**
591  * st_lsm6dsx_read_tagged_fifo() - tagged hw FIFO read routine
592  * @hw: Pointer to instance of struct st_lsm6dsx_hw.
593  *
594  * Read samples from the hw FIFO and push them to IIO buffers.
595  *
596  * Return: Number of bytes read from the FIFO
597  */
st_lsm6dsx_read_tagged_fifo(struct st_lsm6dsx_hw * hw)598 int st_lsm6dsx_read_tagged_fifo(struct st_lsm6dsx_hw *hw)
599 {
600 	u16 pattern_len = hw->sip * ST_LSM6DSX_TAGGED_SAMPLE_SIZE;
601 	u16 fifo_len, fifo_diff_mask;
602 	/*
603 	 * Alignment needed as this can ultimately be passed to a
604 	 * call to iio_push_to_buffers_with_timestamp() which
605 	 * must be passed a buffer that is aligned to 8 bytes so
606 	 * as to allow insertion of a naturally aligned timestamp.
607 	 */
608 	u8 iio_buff[ST_LSM6DSX_IIO_BUFF_SIZE] __aligned(8);
609 	u8 tag;
610 	bool reset_ts = false;
611 	int i, err, read_len;
612 	__le16 fifo_status;
613 	s64 ts = 0;
614 
615 	err = st_lsm6dsx_read_locked(hw,
616 				     hw->settings->fifo_ops.fifo_diff.addr,
617 				     &fifo_status, sizeof(fifo_status));
618 	if (err < 0) {
619 		dev_err(hw->dev, "failed to read fifo status (err=%d)\n",
620 			err);
621 		return err;
622 	}
623 
624 	fifo_diff_mask = hw->settings->fifo_ops.fifo_diff.mask;
625 	fifo_len = (le16_to_cpu(fifo_status) & fifo_diff_mask) *
626 		   ST_LSM6DSX_TAGGED_SAMPLE_SIZE;
627 	if (!fifo_len)
628 		return 0;
629 
630 	if (!pattern_len)
631 		pattern_len = ST_LSM6DSX_TAGGED_SAMPLE_SIZE;
632 
633 	for (read_len = 0; read_len < fifo_len; read_len += pattern_len) {
634 		err = st_lsm6dsx_read_block(hw,
635 					    ST_LSM6DSX_REG_FIFO_OUT_TAG_ADDR,
636 					    hw->buff, pattern_len,
637 					    ST_LSM6DSX_MAX_TAGGED_WORD_LEN);
638 		if (err < 0) {
639 			dev_err(hw->dev,
640 				"failed to read pattern from fifo (err=%d)\n",
641 				err);
642 			return err;
643 		}
644 
645 		for (i = 0; i < pattern_len;
646 		     i += ST_LSM6DSX_TAGGED_SAMPLE_SIZE) {
647 			memcpy(iio_buff, &hw->buff[i + ST_LSM6DSX_TAG_SIZE],
648 			       ST_LSM6DSX_SAMPLE_SIZE);
649 
650 			tag = hw->buff[i] >> 3;
651 			if (tag == ST_LSM6DSX_TS_TAG) {
652 				/*
653 				 * hw timestamp is 4B long and it is stored
654 				 * in FIFO according to this schema:
655 				 * B0 = ts[7:0], B1 = ts[15:8], B2 = ts[23:16],
656 				 * B3 = ts[31:24]
657 				 */
658 				ts = le32_to_cpu(*((__le32 *)iio_buff));
659 				/*
660 				 * check if hw timestamp engine is going to
661 				 * reset (the sensor generates an interrupt
662 				 * to signal the hw timestamp will reset in
663 				 * 1.638s)
664 				 */
665 				if (!reset_ts && ts >= 0xffff0000)
666 					reset_ts = true;
667 				ts *= hw->ts_gain;
668 			} else {
669 				st_lsm6dsx_push_tagged_data(hw, tag, iio_buff,
670 							    ts);
671 			}
672 		}
673 	}
674 
675 	if (unlikely(reset_ts)) {
676 		err = st_lsm6dsx_reset_hw_ts(hw);
677 		if (err < 0)
678 			return err;
679 	}
680 	return read_len;
681 }
682 
st_lsm6dsx_flush_fifo(struct st_lsm6dsx_hw * hw)683 int st_lsm6dsx_flush_fifo(struct st_lsm6dsx_hw *hw)
684 {
685 	int err;
686 
687 	if (!hw->settings->fifo_ops.read_fifo)
688 		return -ENOTSUPP;
689 
690 	mutex_lock(&hw->fifo_lock);
691 
692 	hw->settings->fifo_ops.read_fifo(hw);
693 	err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_BYPASS);
694 
695 	mutex_unlock(&hw->fifo_lock);
696 
697 	return err;
698 }
699 
700 static void
st_lsm6dsx_update_samples_to_discard(struct st_lsm6dsx_sensor * sensor)701 st_lsm6dsx_update_samples_to_discard(struct st_lsm6dsx_sensor *sensor)
702 {
703 	const struct st_lsm6dsx_samples_to_discard *data;
704 	struct st_lsm6dsx_hw *hw = sensor->hw;
705 	int i;
706 
707 	if (sensor->id != ST_LSM6DSX_ID_GYRO &&
708 	    sensor->id != ST_LSM6DSX_ID_ACC)
709 		return;
710 
711 	/* check if drdy mask is supported in hw */
712 	if (hw->settings->drdy_mask.addr)
713 		return;
714 
715 	data = &hw->settings->samples_to_discard[sensor->id];
716 	for (i = 0; i < ST_LSM6DSX_ODR_LIST_SIZE; i++) {
717 		if (data->val[i].milli_hz == sensor->hwfifo_odr_mHz) {
718 			sensor->samples_to_discard = data->val[i].samples;
719 			return;
720 		}
721 	}
722 }
723 
st_lsm6dsx_update_fifo(struct st_lsm6dsx_sensor * sensor,bool enable)724 int st_lsm6dsx_update_fifo(struct st_lsm6dsx_sensor *sensor, bool enable)
725 {
726 	struct st_lsm6dsx_hw *hw = sensor->hw;
727 	u8 fifo_mask;
728 	int err;
729 
730 	mutex_lock(&hw->conf_lock);
731 
732 	if (enable)
733 		fifo_mask = hw->fifo_mask | BIT(sensor->id);
734 	else
735 		fifo_mask = hw->fifo_mask & ~BIT(sensor->id);
736 
737 	if (hw->fifo_mask) {
738 		err = st_lsm6dsx_flush_fifo(hw);
739 		if (err < 0)
740 			goto out;
741 	}
742 
743 	if (enable)
744 		st_lsm6dsx_update_samples_to_discard(sensor);
745 
746 	err = st_lsm6dsx_device_set_enable(sensor, enable);
747 	if (err < 0)
748 		goto out;
749 
750 	err = st_lsm6dsx_set_fifo_odr(sensor, enable);
751 	if (err < 0)
752 		goto out;
753 
754 	err = st_lsm6dsx_update_decimators(hw);
755 	if (err < 0)
756 		goto out;
757 
758 	err = st_lsm6dsx_update_watermark(sensor, sensor->watermark);
759 	if (err < 0)
760 		goto out;
761 
762 	if (fifo_mask) {
763 		err = st_lsm6dsx_resume_fifo(hw);
764 		if (err < 0)
765 			goto out;
766 	}
767 
768 	hw->fifo_mask = fifo_mask;
769 
770 out:
771 	mutex_unlock(&hw->conf_lock);
772 
773 	return err;
774 }
775 
st_lsm6dsx_buffer_preenable(struct iio_dev * iio_dev)776 static int st_lsm6dsx_buffer_preenable(struct iio_dev *iio_dev)
777 {
778 	struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
779 	struct st_lsm6dsx_hw *hw = sensor->hw;
780 
781 	if (!hw->settings->fifo_ops.update_fifo)
782 		return -ENOTSUPP;
783 
784 	return hw->settings->fifo_ops.update_fifo(sensor, true);
785 }
786 
st_lsm6dsx_buffer_postdisable(struct iio_dev * iio_dev)787 static int st_lsm6dsx_buffer_postdisable(struct iio_dev *iio_dev)
788 {
789 	struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
790 	struct st_lsm6dsx_hw *hw = sensor->hw;
791 
792 	if (!hw->settings->fifo_ops.update_fifo)
793 		return -ENOTSUPP;
794 
795 	return hw->settings->fifo_ops.update_fifo(sensor, false);
796 }
797 
798 static const struct iio_buffer_setup_ops st_lsm6dsx_buffer_ops = {
799 	.preenable = st_lsm6dsx_buffer_preenable,
800 	.postdisable = st_lsm6dsx_buffer_postdisable,
801 };
802 
st_lsm6dsx_hwfifo_odr_show(struct device * dev,struct device_attribute * attr,char * buf)803 static ssize_t st_lsm6dsx_hwfifo_odr_show(struct device *dev,
804 					  struct device_attribute *attr, char *buf)
805 {
806 	struct st_lsm6dsx_sensor *sensor = iio_priv(dev_to_iio_dev(dev));
807 
808 	return sysfs_emit(buf, "%d.%03d\n", sensor->hwfifo_odr_mHz / 1000,
809 			  sensor->hwfifo_odr_mHz % 1000);
810 }
811 
st_lsm6dsx_hwfifo_odr_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)812 static ssize_t st_lsm6dsx_hwfifo_odr_store(struct device *dev,
813 					   struct device_attribute *attr,
814 					   const char *buf, size_t len)
815 {
816 	struct iio_dev *iio_dev = dev_to_iio_dev(dev);
817 	struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
818 	int integer, milli;
819 	int ret;
820 	u32 hwfifo_odr;
821 	u8 data;
822 
823 	if (!iio_device_claim_direct(iio_dev))
824 		return -EBUSY;
825 
826 	ret = iio_str_to_fixpoint(buf, 100, &integer, &milli);
827 	if (ret)
828 		goto out;
829 
830 	hwfifo_odr = integer * 1000 + milli;
831 	ret = st_lsm6dsx_check_odr(sensor, hwfifo_odr, &data);
832 	if (ret < 0)
833 		goto out;
834 
835 	hwfifo_odr = ret;
836 
837 	/* the batch data rate must not exceed the sensor output data rate */
838 	if (hwfifo_odr <= sensor->odr)
839 		sensor->hwfifo_odr_mHz = hwfifo_odr;
840 	else
841 		ret = -EINVAL;
842 
843 out:
844 	iio_device_release_direct(iio_dev);
845 
846 	return ret < 0 ? ret : len;
847 }
848 
849 static IIO_DEV_ATTR_SAMP_FREQ(0664, st_lsm6dsx_hwfifo_odr_show, st_lsm6dsx_hwfifo_odr_store);
850 
851 static const struct iio_dev_attr *st_lsm6dsx_buffer_attrs[] = {
852 	&iio_dev_attr_sampling_frequency,
853 	NULL
854 };
855 
st_lsm6dsx_fifo_setup(struct st_lsm6dsx_hw * hw)856 int st_lsm6dsx_fifo_setup(struct st_lsm6dsx_hw *hw)
857 {
858 	int i, ret;
859 
860 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
861 		if (!hw->iio_devs[i])
862 			continue;
863 
864 		ret = devm_iio_kfifo_buffer_setup_ext(hw->dev, hw->iio_devs[i],
865 						      &st_lsm6dsx_buffer_ops,
866 						      st_lsm6dsx_buffer_attrs);
867 		if (ret)
868 			return ret;
869 	}
870 
871 	return 0;
872 }
873