xref: /linux/rust/kernel/num/bounded.rs (revision 367b81ef010ad3d0986af32f594c3a2e5807b40a)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Implementation of [`Bounded`], a wrapper around integer types limiting the number of bits
4 //! usable for value representation.
5 
6 use core::{
7     cmp,
8     fmt,
9     ops::{
10         self,
11         Deref, //
12     }, //,
13 };
14 
15 use kernel::{
16     num::Integer,
17     prelude::*, //
18 };
19 
20 /// Evaluates to `true` if `$value` can be represented using at most `$n` bits in a `$type`.
21 ///
22 /// `expr` must be of type `type`, or the result will be incorrect.
23 ///
24 /// Can be used in const context.
25 macro_rules! fits_within {
26     ($value:expr, $type:ty, $n:expr) => {{
27         let shift: u32 = <$type>::BITS - $n;
28 
29         // `value` fits within `$n` bits if shifting it left by the number of unused bits, then
30         // right by the same number, doesn't change it.
31         //
32         // This method has the benefit of working for both unsigned and signed values.
33         ($value << shift) >> shift == $value
34     }};
35 }
36 
37 /// Returns `true` if `value` can be represented with at most `N` bits in a `T`.
38 #[inline(always)]
fits_within<T: Integer>(value: T, num_bits: u32) -> bool39 fn fits_within<T: Integer>(value: T, num_bits: u32) -> bool {
40     fits_within!(value, T, num_bits)
41 }
42 
43 /// An integer value that requires only the `N` least significant bits of the wrapped type to be
44 /// encoded.
45 ///
46 /// This limits the number of usable bits in the wrapped integer type, and thus the stored value to
47 /// a narrower range, which provides guarantees that can be useful when working within e.g.
48 /// bitfields.
49 ///
50 /// # Invariants
51 ///
52 /// - `N` is greater than `0`.
53 /// - `N` is less than or equal to `T::BITS`.
54 /// - Stored values can be represented with at most `N` bits.
55 ///
56 /// # Examples
57 ///
58 /// The preferred way to create values is through constants and the [`Bounded::new`] family of
59 /// constructors, as they trigger a build error if the type invariants cannot be upheld.
60 ///
61 /// ```
62 /// use kernel::num::Bounded;
63 ///
64 /// // An unsigned 8-bit integer, of which only the 4 LSBs are used.
65 /// // The value `15` is statically validated to fit that constraint at build time.
66 /// let v = Bounded::<u8, 4>::new::<15>();
67 /// assert_eq!(v.get(), 15);
68 ///
69 /// // Same using signed values.
70 /// let v = Bounded::<i8, 4>::new::<-8>();
71 /// assert_eq!(v.get(), -8);
72 ///
73 /// // This doesn't build: a `u8` is smaller than the requested 9 bits.
74 /// // let _ = Bounded::<u8, 9>::new::<10>();
75 ///
76 /// // This also doesn't build: the requested value doesn't fit within 4 signed bits.
77 /// // let _ = Bounded::<i8, 4>::new::<8>();
78 /// ```
79 ///
80 /// Values can also be validated at runtime with [`Bounded::try_new`].
81 ///
82 /// ```
83 /// use kernel::num::Bounded;
84 ///
85 /// // This succeeds because `15` can be represented with 4 unsigned bits.
86 /// assert!(Bounded::<u8, 4>::try_new(15).is_some());
87 ///
88 /// // This fails because `16` cannot be represented with 4 unsigned bits.
89 /// assert!(Bounded::<u8, 4>::try_new(16).is_none());
90 /// ```
91 ///
92 /// Non-constant expressions can be validated at build-time thanks to compiler optimizations. This
93 /// should be used with caution, on simple expressions only.
94 ///
95 /// ```
96 /// use kernel::num::Bounded;
97 /// # fn some_number() -> u32 { 0xffffffff }
98 ///
99 /// // Here the compiler can infer from the mask that the type invariants are not violated, even
100 /// // though the value returned by `some_number` is not statically known.
101 /// let v = Bounded::<u32, 4>::from_expr(some_number() & 0xf);
102 /// ```
103 ///
104 /// Comparison and arithmetic operations are supported on [`Bounded`]s with a compatible backing
105 /// type, regardless of their number of valid bits.
106 ///
107 /// ```
108 /// use kernel::num::Bounded;
109 ///
110 /// let v1 = Bounded::<u32, 8>::new::<4>();
111 /// let v2 = Bounded::<u32, 4>::new::<15>();
112 ///
113 /// assert!(v1 != v2);
114 /// assert!(v1 < v2);
115 /// assert_eq!(v1 + v2, 19);
116 /// assert_eq!(v2 % v1, 3);
117 /// ```
118 ///
119 /// These operations are also supported between a [`Bounded`] and its backing type.
120 ///
121 /// ```
122 /// use kernel::num::Bounded;
123 ///
124 /// let v = Bounded::<u8, 4>::new::<15>();
125 ///
126 /// assert!(v == 15);
127 /// assert!(v > 12);
128 /// assert_eq!(v + 5, 20);
129 /// assert_eq!(v / 3, 5);
130 /// ```
131 ///
132 /// A change of backing types is possible using [`Bounded::cast`], and the number of valid bits can
133 /// be extended or reduced with [`Bounded::extend`] and [`Bounded::try_shrink`].
134 ///
135 /// ```
136 /// use kernel::num::Bounded;
137 ///
138 /// let v = Bounded::<u32, 12>::new::<127>();
139 ///
140 /// // Changes backing type from `u32` to `u16`.
141 /// let _: Bounded<u16, 12> = v.cast();
142 ///
143 /// // This does not build, as `u8` is smaller than 12 bits.
144 /// // let _: Bounded<u8, 12> = v.cast();
145 ///
146 /// // We can safely extend the number of bits...
147 /// let _ = v.extend::<15>();
148 ///
149 /// // ... to the limits of the backing type. This doesn't build as a `u32` cannot contain 33 bits.
150 /// // let _ = v.extend::<33>();
151 ///
152 /// // Reducing the number of bits is validated at runtime. This works because `127` can be
153 /// // represented with 8 bits.
154 /// assert!(v.try_shrink::<8>().is_some());
155 ///
156 /// // ... but not with 6, so this fails.
157 /// assert!(v.try_shrink::<6>().is_none());
158 /// ```
159 ///
160 /// Infallible conversions from a primitive integer to a large-enough [`Bounded`] are supported.
161 ///
162 /// ```
163 /// use kernel::num::Bounded;
164 ///
165 /// // This unsigned `Bounded` has 8 bits, so it can represent any `u8`.
166 /// let v = Bounded::<u32, 8>::from(128u8);
167 /// assert_eq!(v.get(), 128);
168 ///
169 /// // This signed `Bounded` has 8 bits, so it can represent any `i8`.
170 /// let v = Bounded::<i32, 8>::from(-128i8);
171 /// assert_eq!(v.get(), -128);
172 ///
173 /// // This doesn't build, as this 6-bit `Bounded` does not have enough capacity to represent a
174 /// // `u8` (regardless of the passed value).
175 /// // let _ = Bounded::<u32, 6>::from(10u8);
176 ///
177 /// // Booleans can be converted into single-bit `Bounded`s.
178 ///
179 /// let v = Bounded::<u64, 1>::from(false);
180 /// assert_eq!(v.get(), 0);
181 ///
182 /// let v = Bounded::<u64, 1>::from(true);
183 /// assert_eq!(v.get(), 1);
184 /// ```
185 ///
186 /// Infallible conversions from a [`Bounded`] to a primitive integer are also supported, and
187 /// dependent on the number of bits used for value representation, not on the backing type.
188 ///
189 /// ```
190 /// use kernel::num::Bounded;
191 ///
192 /// // Even though its backing type is `u32`, this `Bounded` only uses 6 bits and thus can safely
193 /// // be converted to a `u8`.
194 /// let v = Bounded::<u32, 6>::new::<63>();
195 /// assert_eq!(u8::from(v), 63);
196 ///
197 /// // Same using signed values.
198 /// let v = Bounded::<i32, 8>::new::<-128>();
199 /// assert_eq!(i8::from(v), -128);
200 ///
201 /// // This however does not build, as 10 bits won't fit into a `u8` (regardless of the actually
202 /// // contained value).
203 /// let _v = Bounded::<u32, 10>::new::<10>();
204 /// // assert_eq!(u8::from(_v), 10);
205 ///
206 /// // Single-bit `Bounded`s can be converted into a boolean.
207 /// let v = Bounded::<u8, 1>::new::<1>();
208 /// assert_eq!(bool::from(v), true);
209 ///
210 /// let v = Bounded::<u8, 1>::new::<0>();
211 /// assert_eq!(bool::from(v), false);
212 /// ```
213 ///
214 /// Fallible conversions from any primitive integer to any [`Bounded`] are also supported using the
215 /// [`TryIntoBounded`] trait.
216 ///
217 /// ```
218 /// use kernel::num::{Bounded, TryIntoBounded};
219 ///
220 /// // Succeeds because `128` fits into 8 bits.
221 /// let v: Option<Bounded<u16, 8>> = 128u32.try_into_bounded();
222 /// assert_eq!(v.as_deref().copied(), Some(128));
223 ///
224 /// // Fails because `128` doesn't fit into 6 bits.
225 /// let v: Option<Bounded<u16, 6>> = 128u32.try_into_bounded();
226 /// assert_eq!(v, None);
227 /// ```
228 #[repr(transparent)]
229 #[derive(Clone, Copy, Debug, Default, Hash)]
230 pub struct Bounded<T: Integer, const N: u32>(T);
231 
232 /// Validating the value as a const expression cannot be done as a regular method, as the
233 /// arithmetic operations we rely on to check the bounds are not const. Thus, implement
234 /// [`Bounded::new`] using a macro.
235 macro_rules! impl_const_new {
236     ($($type:ty)*) => {
237         $(
238         impl<const N: u32> Bounded<$type, N> {
239             /// Creates a [`Bounded`] for the constant `VALUE`.
240             ///
241             /// Fails at build time if `VALUE` cannot be represented with `N` bits.
242             ///
243             /// This method should be preferred to [`Self::from_expr`] whenever possible.
244             ///
245             /// # Examples
246             ///
247             /// ```
248             /// use kernel::num::Bounded;
249             ///
250             #[doc = ::core::concat!(
251                 "let v = Bounded::<",
252                 ::core::stringify!($type),
253                 ", 4>::new::<7>();")]
254             /// assert_eq!(v.get(), 7);
255             /// ```
256             pub const fn new<const VALUE: $type>() -> Self {
257                 // Statically assert that `VALUE` fits within the set number of bits.
258                 const {
259                     assert!(fits_within!(VALUE, $type, N));
260                 }
261 
262                 // SAFETY: `fits_within` confirmed that `VALUE` can be represented within
263                 // `N` bits.
264                 unsafe { Self::__new(VALUE) }
265             }
266         }
267         )*
268     };
269 }
270 
271 impl_const_new!(
272     u8 u16 u32 u64 usize
273     i8 i16 i32 i64 isize
274 );
275 
276 impl<T, const N: u32> Bounded<T, N>
277 where
278     T: Integer,
279 {
280     /// Private constructor enforcing the type invariants.
281     ///
282     /// All instances of [`Bounded`] must be created through this method as it enforces most of the
283     /// type invariants.
284     ///
285     /// # Safety
286     ///
287     /// The caller must ensure that `value` can be represented within `N` bits.
__new(value: T) -> Self288     const unsafe fn __new(value: T) -> Self {
289         // Enforce the type invariants.
290         const {
291             // `N` cannot be zero.
292             assert!(N != 0);
293             // The backing type is at least as large as `N` bits.
294             assert!(N <= T::BITS);
295         }
296 
297         // INVARIANT: The caller ensures `value` fits within `N` bits.
298         Self(value)
299     }
300 
301     /// Attempts to turn `value` into a `Bounded` using `N` bits.
302     ///
303     /// Returns [`None`] if `value` doesn't fit within `N` bits.
304     ///
305     /// # Examples
306     ///
307     /// ```
308     /// use kernel::num::Bounded;
309     ///
310     /// let v = Bounded::<u8, 1>::try_new(1);
311     /// assert_eq!(v.as_deref().copied(), Some(1));
312     ///
313     /// let v = Bounded::<i8, 4>::try_new(-2);
314     /// assert_eq!(v.as_deref().copied(), Some(-2));
315     ///
316     /// // `0x1ff` doesn't fit into 8 unsigned bits.
317     /// let v = Bounded::<u32, 8>::try_new(0x1ff);
318     /// assert_eq!(v, None);
319     ///
320     /// // The range of values representable with 4 bits is `[-8..=7]`. The following tests these
321     /// // limits.
322     /// let v = Bounded::<i8, 4>::try_new(-8);
323     /// assert_eq!(v.map(Bounded::get), Some(-8));
324     /// let v = Bounded::<i8, 4>::try_new(-9);
325     /// assert_eq!(v, None);
326     /// let v = Bounded::<i8, 4>::try_new(7);
327     /// assert_eq!(v.map(Bounded::get), Some(7));
328     /// let v = Bounded::<i8, 4>::try_new(8);
329     /// assert_eq!(v, None);
330     /// ```
try_new(value: T) -> Option<Self>331     pub fn try_new(value: T) -> Option<Self> {
332         fits_within(value, N).then(|| {
333             // SAFETY: `fits_within` confirmed that `value` can be represented within `N` bits.
334             unsafe { Self::__new(value) }
335         })
336     }
337 
338     /// Checks that `expr` is valid for this type at compile-time and build a new value.
339     ///
340     /// This relies on [`build_assert!`] and guaranteed optimization to perform validation at
341     /// compile-time. If `expr` cannot be proved to be within the requested bounds at compile-time,
342     /// use the fallible [`Self::try_new`] instead.
343     ///
344     /// Limit this to simple, easily provable expressions, and prefer one of the [`Self::new`]
345     /// constructors whenever possible as they statically validate the value instead of relying on
346     /// compiler optimizations.
347     ///
348     /// # Examples
349     ///
350     /// ```
351     /// use kernel::num::Bounded;
352     /// # fn some_number() -> u32 { 0xffffffff }
353     ///
354     /// // Some undefined number.
355     /// let v: u32 = some_number();
356     ///
357     /// // Triggers a build error as `v` cannot be asserted to fit within 4 bits...
358     /// // let _ = Bounded::<u32, 4>::from_expr(v);
359     ///
360     /// // ... but this works as the compiler can assert the range from the mask.
361     /// let _ = Bounded::<u32, 4>::from_expr(v & 0xf);
362     ///
363     /// // These expressions are simple enough to be proven correct, but since they are static the
364     /// // `new` constructor should be preferred.
365     /// assert_eq!(Bounded::<u8, 1>::from_expr(1).get(), 1);
366     /// assert_eq!(Bounded::<u16, 8>::from_expr(0xff).get(), 0xff);
367     /// ```
368     // Always inline to optimize out error path of `build_assert`.
369     #[inline(always)]
from_expr(expr: T) -> Self370     pub fn from_expr(expr: T) -> Self {
371         crate::build_assert!(
372             fits_within(expr, N),
373             "Requested value larger than maximal representable value."
374         );
375 
376         // SAFETY: `fits_within` confirmed that `expr` can be represented within `N` bits.
377         unsafe { Self::__new(expr) }
378     }
379 
380     /// Returns the wrapped value as the backing type.
381     ///
382     /// # Examples
383     ///
384     /// ```
385     /// use kernel::num::Bounded;
386     ///
387     /// let v = Bounded::<u32, 4>::new::<7>();
388     /// assert_eq!(v.get(), 7u32);
389     /// ```
get(self) -> T390     pub fn get(self) -> T {
391         *self.deref()
392     }
393 
394     /// Increases the number of bits usable for `self`.
395     ///
396     /// This operation cannot fail.
397     ///
398     /// # Examples
399     ///
400     /// ```
401     /// use kernel::num::Bounded;
402     ///
403     /// let v = Bounded::<u32, 4>::new::<7>();
404     /// let larger_v = v.extend::<12>();
405     /// // The contained values are equal even though `larger_v` has a bigger capacity.
406     /// assert_eq!(larger_v, v);
407     /// ```
extend<const M: u32>(self) -> Bounded<T, M>408     pub const fn extend<const M: u32>(self) -> Bounded<T, M> {
409         const {
410             assert!(
411                 M >= N,
412                 "Requested number of bits is less than the current representation."
413             );
414         }
415 
416         // SAFETY: The value did fit within `N` bits, so it will all the more fit within
417         // the larger `M` bits.
418         unsafe { Bounded::__new(self.0) }
419     }
420 
421     /// Attempts to shrink the number of bits usable for `self`.
422     ///
423     /// Returns [`None`] if the value of `self` cannot be represented within `M` bits.
424     ///
425     /// # Examples
426     ///
427     /// ```
428     /// use kernel::num::Bounded;
429     ///
430     /// let v = Bounded::<u32, 12>::new::<7>();
431     ///
432     /// // `7` can be represented using 3 unsigned bits...
433     /// let smaller_v = v.try_shrink::<3>();
434     /// assert_eq!(smaller_v.as_deref().copied(), Some(7));
435     ///
436     /// // ... but doesn't fit within `2` bits.
437     /// assert_eq!(v.try_shrink::<2>(), None);
438     /// ```
try_shrink<const M: u32>(self) -> Option<Bounded<T, M>>439     pub fn try_shrink<const M: u32>(self) -> Option<Bounded<T, M>> {
440         Bounded::<T, M>::try_new(self.get())
441     }
442 
443     /// Casts `self` into a [`Bounded`] backed by a different storage type, but using the same
444     /// number of valid bits.
445     ///
446     /// Both `T` and `U` must be of same signedness, and `U` must be at least as large as
447     /// `N` bits, or a build error will occur.
448     ///
449     /// # Examples
450     ///
451     /// ```
452     /// use kernel::num::Bounded;
453     ///
454     /// let v = Bounded::<u32, 12>::new::<127>();
455     ///
456     /// let u16_v: Bounded<u16, 12> = v.cast();
457     /// assert_eq!(u16_v.get(), 127);
458     ///
459     /// // This won't build: a `u8` is smaller than the required 12 bits.
460     /// // let _: Bounded<u8, 12> = v.cast();
461     /// ```
cast<U>(self) -> Bounded<U, N> where U: TryFrom<T> + Integer, T: Integer, U: Integer<Signedness = T::Signedness>,462     pub fn cast<U>(self) -> Bounded<U, N>
463     where
464         U: TryFrom<T> + Integer,
465         T: Integer,
466         U: Integer<Signedness = T::Signedness>,
467     {
468         // SAFETY: The converted value is represented using `N` bits, `U` can contain `N` bits, and
469         // `U` and `T` have the same sign, hence this conversion cannot fail.
470         let value = unsafe { U::try_from(self.get()).unwrap_unchecked() };
471 
472         // SAFETY: Although the backing type has changed, the value is still represented within
473         // `N` bits, and with the same signedness.
474         unsafe { Bounded::__new(value) }
475     }
476 }
477 
478 impl<T, const N: u32> Deref for Bounded<T, N>
479 where
480     T: Integer,
481 {
482     type Target = T;
483 
deref(&self) -> &Self::Target484     fn deref(&self) -> &Self::Target {
485         // Enforce the invariant to inform the compiler of the bounds of the value.
486         if !fits_within(self.0, N) {
487             // SAFETY: Per the `Bounded` invariants, `fits_within` can never return `false` on the
488             // value of a valid instance.
489             unsafe { core::hint::unreachable_unchecked() }
490         }
491 
492         &self.0
493     }
494 }
495 
496 /// Trait similar to [`TryInto`] but for [`Bounded`], to avoid conflicting implementations.
497 ///
498 /// # Examples
499 ///
500 /// ```
501 /// use kernel::num::{Bounded, TryIntoBounded};
502 ///
503 /// // Succeeds because `128` fits into 8 bits.
504 /// let v: Option<Bounded<u16, 8>> = 128u32.try_into_bounded();
505 /// assert_eq!(v.as_deref().copied(), Some(128));
506 ///
507 /// // Fails because `128` doesn't fit into 6 bits.
508 /// let v: Option<Bounded<u16, 6>> = 128u32.try_into_bounded();
509 /// assert_eq!(v, None);
510 /// ```
511 pub trait TryIntoBounded<T: Integer, const N: u32> {
512     /// Attempts to convert `self` into a [`Bounded`] using `N` bits.
513     ///
514     /// Returns [`None`] if `self` does not fit into the target type.
try_into_bounded(self) -> Option<Bounded<T, N>>515     fn try_into_bounded(self) -> Option<Bounded<T, N>>;
516 }
517 
518 /// Any integer value can be attempted to be converted into a [`Bounded`] of any size.
519 impl<T, U, const N: u32> TryIntoBounded<T, N> for U
520 where
521     T: Integer,
522     U: TryInto<T>,
523 {
try_into_bounded(self) -> Option<Bounded<T, N>>524     fn try_into_bounded(self) -> Option<Bounded<T, N>> {
525         self.try_into().ok().and_then(Bounded::try_new)
526     }
527 }
528 
529 // Comparisons between `Bounded`s.
530 
531 impl<T, U, const N: u32, const M: u32> PartialEq<Bounded<U, M>> for Bounded<T, N>
532 where
533     T: Integer,
534     U: Integer,
535     T: PartialEq<U>,
536 {
eq(&self, other: &Bounded<U, M>) -> bool537     fn eq(&self, other: &Bounded<U, M>) -> bool {
538         self.get() == other.get()
539     }
540 }
541 
542 impl<T, const N: u32> Eq for Bounded<T, N> where T: Integer {}
543 
544 impl<T, U, const N: u32, const M: u32> PartialOrd<Bounded<U, M>> for Bounded<T, N>
545 where
546     T: Integer,
547     U: Integer,
548     T: PartialOrd<U>,
549 {
partial_cmp(&self, other: &Bounded<U, M>) -> Option<cmp::Ordering>550     fn partial_cmp(&self, other: &Bounded<U, M>) -> Option<cmp::Ordering> {
551         self.get().partial_cmp(&other.get())
552     }
553 }
554 
555 impl<T, const N: u32> Ord for Bounded<T, N>
556 where
557     T: Integer,
558     T: Ord,
559 {
cmp(&self, other: &Self) -> cmp::Ordering560     fn cmp(&self, other: &Self) -> cmp::Ordering {
561         self.get().cmp(&other.get())
562     }
563 }
564 
565 // Comparisons between a `Bounded` and its backing type.
566 
567 impl<T, const N: u32> PartialEq<T> for Bounded<T, N>
568 where
569     T: Integer,
570     T: PartialEq,
571 {
eq(&self, other: &T) -> bool572     fn eq(&self, other: &T) -> bool {
573         self.get() == *other
574     }
575 }
576 
577 impl<T, const N: u32> PartialOrd<T> for Bounded<T, N>
578 where
579     T: Integer,
580     T: PartialOrd,
581 {
partial_cmp(&self, other: &T) -> Option<cmp::Ordering>582     fn partial_cmp(&self, other: &T) -> Option<cmp::Ordering> {
583         self.get().partial_cmp(other)
584     }
585 }
586 
587 // Implementations of `core::ops` for two `Bounded` with the same backing type.
588 
589 impl<T, const N: u32, const M: u32> ops::Add<Bounded<T, M>> for Bounded<T, N>
590 where
591     T: Integer,
592     T: ops::Add<Output = T>,
593 {
594     type Output = T;
595 
add(self, rhs: Bounded<T, M>) -> Self::Output596     fn add(self, rhs: Bounded<T, M>) -> Self::Output {
597         self.get() + rhs.get()
598     }
599 }
600 
601 impl<T, const N: u32, const M: u32> ops::BitAnd<Bounded<T, M>> for Bounded<T, N>
602 where
603     T: Integer,
604     T: ops::BitAnd<Output = T>,
605 {
606     type Output = T;
607 
bitand(self, rhs: Bounded<T, M>) -> Self::Output608     fn bitand(self, rhs: Bounded<T, M>) -> Self::Output {
609         self.get() & rhs.get()
610     }
611 }
612 
613 impl<T, const N: u32, const M: u32> ops::BitOr<Bounded<T, M>> for Bounded<T, N>
614 where
615     T: Integer,
616     T: ops::BitOr<Output = T>,
617 {
618     type Output = T;
619 
bitor(self, rhs: Bounded<T, M>) -> Self::Output620     fn bitor(self, rhs: Bounded<T, M>) -> Self::Output {
621         self.get() | rhs.get()
622     }
623 }
624 
625 impl<T, const N: u32, const M: u32> ops::BitXor<Bounded<T, M>> for Bounded<T, N>
626 where
627     T: Integer,
628     T: ops::BitXor<Output = T>,
629 {
630     type Output = T;
631 
bitxor(self, rhs: Bounded<T, M>) -> Self::Output632     fn bitxor(self, rhs: Bounded<T, M>) -> Self::Output {
633         self.get() ^ rhs.get()
634     }
635 }
636 
637 impl<T, const N: u32, const M: u32> ops::Div<Bounded<T, M>> for Bounded<T, N>
638 where
639     T: Integer,
640     T: ops::Div<Output = T>,
641 {
642     type Output = T;
643 
div(self, rhs: Bounded<T, M>) -> Self::Output644     fn div(self, rhs: Bounded<T, M>) -> Self::Output {
645         self.get() / rhs.get()
646     }
647 }
648 
649 impl<T, const N: u32, const M: u32> ops::Mul<Bounded<T, M>> for Bounded<T, N>
650 where
651     T: Integer,
652     T: ops::Mul<Output = T>,
653 {
654     type Output = T;
655 
mul(self, rhs: Bounded<T, M>) -> Self::Output656     fn mul(self, rhs: Bounded<T, M>) -> Self::Output {
657         self.get() * rhs.get()
658     }
659 }
660 
661 impl<T, const N: u32, const M: u32> ops::Rem<Bounded<T, M>> for Bounded<T, N>
662 where
663     T: Integer,
664     T: ops::Rem<Output = T>,
665 {
666     type Output = T;
667 
rem(self, rhs: Bounded<T, M>) -> Self::Output668     fn rem(self, rhs: Bounded<T, M>) -> Self::Output {
669         self.get() % rhs.get()
670     }
671 }
672 
673 impl<T, const N: u32, const M: u32> ops::Sub<Bounded<T, M>> for Bounded<T, N>
674 where
675     T: Integer,
676     T: ops::Sub<Output = T>,
677 {
678     type Output = T;
679 
sub(self, rhs: Bounded<T, M>) -> Self::Output680     fn sub(self, rhs: Bounded<T, M>) -> Self::Output {
681         self.get() - rhs.get()
682     }
683 }
684 
685 // Implementations of `core::ops` between a `Bounded` and its backing type.
686 
687 impl<T, const N: u32> ops::Add<T> for Bounded<T, N>
688 where
689     T: Integer,
690     T: ops::Add<Output = T>,
691 {
692     type Output = T;
693 
add(self, rhs: T) -> Self::Output694     fn add(self, rhs: T) -> Self::Output {
695         self.get() + rhs
696     }
697 }
698 
699 impl<T, const N: u32> ops::BitAnd<T> for Bounded<T, N>
700 where
701     T: Integer,
702     T: ops::BitAnd<Output = T>,
703 {
704     type Output = T;
705 
bitand(self, rhs: T) -> Self::Output706     fn bitand(self, rhs: T) -> Self::Output {
707         self.get() & rhs
708     }
709 }
710 
711 impl<T, const N: u32> ops::BitOr<T> for Bounded<T, N>
712 where
713     T: Integer,
714     T: ops::BitOr<Output = T>,
715 {
716     type Output = T;
717 
bitor(self, rhs: T) -> Self::Output718     fn bitor(self, rhs: T) -> Self::Output {
719         self.get() | rhs
720     }
721 }
722 
723 impl<T, const N: u32> ops::BitXor<T> for Bounded<T, N>
724 where
725     T: Integer,
726     T: ops::BitXor<Output = T>,
727 {
728     type Output = T;
729 
bitxor(self, rhs: T) -> Self::Output730     fn bitxor(self, rhs: T) -> Self::Output {
731         self.get() ^ rhs
732     }
733 }
734 
735 impl<T, const N: u32> ops::Div<T> for Bounded<T, N>
736 where
737     T: Integer,
738     T: ops::Div<Output = T>,
739 {
740     type Output = T;
741 
div(self, rhs: T) -> Self::Output742     fn div(self, rhs: T) -> Self::Output {
743         self.get() / rhs
744     }
745 }
746 
747 impl<T, const N: u32> ops::Mul<T> for Bounded<T, N>
748 where
749     T: Integer,
750     T: ops::Mul<Output = T>,
751 {
752     type Output = T;
753 
mul(self, rhs: T) -> Self::Output754     fn mul(self, rhs: T) -> Self::Output {
755         self.get() * rhs
756     }
757 }
758 
759 impl<T, const N: u32> ops::Neg for Bounded<T, N>
760 where
761     T: Integer,
762     T: ops::Neg<Output = T>,
763 {
764     type Output = T;
765 
neg(self) -> Self::Output766     fn neg(self) -> Self::Output {
767         -self.get()
768     }
769 }
770 
771 impl<T, const N: u32> ops::Not for Bounded<T, N>
772 where
773     T: Integer,
774     T: ops::Not<Output = T>,
775 {
776     type Output = T;
777 
not(self) -> Self::Output778     fn not(self) -> Self::Output {
779         !self.get()
780     }
781 }
782 
783 impl<T, const N: u32> ops::Rem<T> for Bounded<T, N>
784 where
785     T: Integer,
786     T: ops::Rem<Output = T>,
787 {
788     type Output = T;
789 
rem(self, rhs: T) -> Self::Output790     fn rem(self, rhs: T) -> Self::Output {
791         self.get() % rhs
792     }
793 }
794 
795 impl<T, const N: u32> ops::Sub<T> for Bounded<T, N>
796 where
797     T: Integer,
798     T: ops::Sub<Output = T>,
799 {
800     type Output = T;
801 
sub(self, rhs: T) -> Self::Output802     fn sub(self, rhs: T) -> Self::Output {
803         self.get() - rhs
804     }
805 }
806 
807 // Proxy implementations of `core::fmt`.
808 
809 impl<T, const N: u32> fmt::Display for Bounded<T, N>
810 where
811     T: Integer,
812     T: fmt::Display,
813 {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result814     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
815         self.get().fmt(f)
816     }
817 }
818 
819 impl<T, const N: u32> fmt::Binary for Bounded<T, N>
820 where
821     T: Integer,
822     T: fmt::Binary,
823 {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result824     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
825         self.get().fmt(f)
826     }
827 }
828 
829 impl<T, const N: u32> fmt::LowerExp for Bounded<T, N>
830 where
831     T: Integer,
832     T: fmt::LowerExp,
833 {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result834     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
835         self.get().fmt(f)
836     }
837 }
838 
839 impl<T, const N: u32> fmt::LowerHex for Bounded<T, N>
840 where
841     T: Integer,
842     T: fmt::LowerHex,
843 {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result844     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
845         self.get().fmt(f)
846     }
847 }
848 
849 impl<T, const N: u32> fmt::Octal for Bounded<T, N>
850 where
851     T: Integer,
852     T: fmt::Octal,
853 {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result854     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
855         self.get().fmt(f)
856     }
857 }
858 
859 impl<T, const N: u32> fmt::UpperExp for Bounded<T, N>
860 where
861     T: Integer,
862     T: fmt::UpperExp,
863 {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result864     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
865         self.get().fmt(f)
866     }
867 }
868 
869 impl<T, const N: u32> fmt::UpperHex for Bounded<T, N>
870 where
871     T: Integer,
872     T: fmt::UpperHex,
873 {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result874     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
875         self.get().fmt(f)
876     }
877 }
878 
879 /// Implements `$trait` for all [`Bounded`] types represented using `$num_bits`.
880 ///
881 /// This is used to declare size properties as traits that we can constrain against in impl blocks.
882 macro_rules! impl_size_rule {
883     ($trait:ty, $($num_bits:literal)*) => {
884         $(
885         impl<T> $trait for Bounded<T, $num_bits> where T: Integer {}
886         )*
887     };
888 }
889 
890 /// Local trait expressing the fact that a given [`Bounded`] has at least `N` bits used for value
891 /// representation.
892 trait AtLeastXBits<const N: usize> {}
893 
894 /// Implementations for infallibly converting a primitive type into a [`Bounded`] that can contain
895 /// it.
896 ///
897 /// Put into their own module for readability, and to avoid cluttering the rustdoc of the parent
898 /// module.
899 mod atleast_impls {
900     use super::*;
901 
902     // Number of bits at least as large as 64.
903     impl_size_rule!(AtLeastXBits<64>, 64);
904 
905     // Anything 64 bits or more is also larger than 32.
906     impl<T> AtLeastXBits<32> for T where T: AtLeastXBits<64> {}
907     // Other numbers of bits at least as large as 32.
908     impl_size_rule!(AtLeastXBits<32>,
909         32 33 34 35 36 37 38 39
910         40 41 42 43 44 45 46 47
911         48 49 50 51 52 53 54 55
912         56 57 58 59 60 61 62 63
913     );
914 
915     // Anything 32 bits or more is also larger than 16.
916     impl<T> AtLeastXBits<16> for T where T: AtLeastXBits<32> {}
917     // Other numbers of bits at least as large as 16.
918     impl_size_rule!(AtLeastXBits<16>,
919         16 17 18 19 20 21 22 23
920         24 25 26 27 28 29 30 31
921     );
922 
923     // Anything 16 bits or more is also larger than 8.
924     impl<T> AtLeastXBits<8> for T where T: AtLeastXBits<16> {}
925     // Other numbers of bits at least as large as 8.
926     impl_size_rule!(AtLeastXBits<8>, 8 9 10 11 12 13 14 15);
927 }
928 
929 /// Generates `From` implementations from a primitive type into a [`Bounded`] with
930 /// enough bits to store any value of that type.
931 ///
932 /// Note: The only reason for having this macro is that if we pass `$type` as a generic
933 /// parameter, we cannot use it in the const context of [`AtLeastXBits`]'s generic parameter. This
934 /// can be fixed once the `generic_const_exprs` feature is usable, and this macro replaced by a
935 /// regular `impl` block.
936 macro_rules! impl_from_primitive {
937     ($($type:ty)*) => {
938         $(
939         #[doc = ::core::concat!(
940             "Conversion from a [`",
941             ::core::stringify!($type),
942             "`] into a [`Bounded`] of same signedness with enough bits to store it.")]
943         impl<T, const N: u32> From<$type> for Bounded<T, N>
944         where
945             $type: Integer,
946             T: Integer<Signedness = <$type as Integer>::Signedness> + From<$type>,
947             Self: AtLeastXBits<{ <$type as Integer>::BITS as usize }>,
948         {
949             fn from(value: $type) -> Self {
950                 // SAFETY: The trait bound on `Self` guarantees that `N` bits is
951                 // enough to hold any value of the source type.
952                 unsafe { Self::__new(T::from(value)) }
953             }
954         }
955         )*
956     }
957 }
958 
959 impl_from_primitive!(
960     u8 u16 u32 u64 usize
961     i8 i16 i32 i64 isize
962 );
963 
964 /// Local trait expressing the fact that a given [`Bounded`] fits into a primitive type of `N` bits,
965 /// provided they have the same signedness.
966 trait FitsInXBits<const N: usize> {}
967 
968 /// Implementations for infallibly converting a [`Bounded`] into a primitive type that can contain
969 /// it.
970 ///
971 /// Put into their own module for readability, and to avoid cluttering the rustdoc of the parent
972 /// module.
973 mod fits_impls {
974     use super::*;
975 
976     // Number of bits that fit into a 8-bits primitive.
977     impl_size_rule!(FitsInXBits<8>, 1 2 3 4 5 6 7 8);
978 
979     // Anything that fits into 8 bits also fits into 16.
980     impl<T> FitsInXBits<16> for T where T: FitsInXBits<8> {}
981     // Other number of bits that fit into a 16-bits primitive.
982     impl_size_rule!(FitsInXBits<16>, 9 10 11 12 13 14 15 16);
983 
984     // Anything that fits into 16 bits also fits into 32.
985     impl<T> FitsInXBits<32> for T where T: FitsInXBits<16> {}
986     // Other number of bits that fit into a 32-bits primitive.
987     impl_size_rule!(FitsInXBits<32>,
988         17 18 19 20 21 22 23 24
989         25 26 27 28 29 30 31 32
990     );
991 
992     // Anything that fits into 32 bits also fits into 64.
993     impl<T> FitsInXBits<64> for T where T: FitsInXBits<32> {}
994     // Other number of bits that fit into a 64-bits primitive.
995     impl_size_rule!(FitsInXBits<64>,
996         33 34 35 36 37 38 39 40
997         41 42 43 44 45 46 47 48
998         49 50 51 52 53 54 55 56
999         57 58 59 60 61 62 63 64
1000     );
1001 }
1002 
1003 /// Generates [`From`] implementations from a [`Bounded`] into a primitive type that is
1004 /// guaranteed to contain it.
1005 ///
1006 /// Note: The only reason for having this macro is that if we pass `$type` as a generic
1007 /// parameter, we cannot use it in the const context of `AtLeastXBits`'s generic parameter. This
1008 /// can be fixed once the `generic_const_exprs` feature is usable, and this macro replaced by a
1009 /// regular `impl` block.
1010 macro_rules! impl_into_primitive {
1011     ($($type:ty)*) => {
1012         $(
1013         #[doc = ::core::concat!(
1014             "Conversion from a [`Bounded`] with no more bits than a [`",
1015             ::core::stringify!($type),
1016             "`] and of same signedness into [`",
1017             ::core::stringify!($type),
1018             "`]")]
1019         impl<T, const N: u32> From<Bounded<T, N>> for $type
1020         where
1021             $type: Integer + TryFrom<T>,
1022             T: Integer<Signedness = <$type as Integer>::Signedness>,
1023             Bounded<T, N>: FitsInXBits<{ <$type as Integer>::BITS as usize }>,
1024         {
1025             fn from(value: Bounded<T, N>) -> $type {
1026                 // SAFETY: The trait bound on `Bounded` ensures that any value it holds (which
1027                 // is constrained to `N` bits) can fit into the destination type, so this
1028                 // conversion cannot fail.
1029                 unsafe { <$type>::try_from(value.get()).unwrap_unchecked() }
1030             }
1031         }
1032         )*
1033     }
1034 }
1035 
1036 impl_into_primitive!(
1037     u8 u16 u32 u64 usize
1038     i8 i16 i32 i64 isize
1039 );
1040 
1041 // Single-bit `Bounded`s can be converted from/to a boolean.
1042 
1043 impl<T> From<Bounded<T, 1>> for bool
1044 where
1045     T: Integer + Zeroable,
1046 {
from(value: Bounded<T, 1>) -> Self1047     fn from(value: Bounded<T, 1>) -> Self {
1048         value.get() != Zeroable::zeroed()
1049     }
1050 }
1051 
1052 impl<T, const N: u32> From<bool> for Bounded<T, N>
1053 where
1054     T: Integer + From<bool>,
1055 {
from(value: bool) -> Self1056     fn from(value: bool) -> Self {
1057         // SAFETY: A boolean can be represented using a single bit, and thus fits within any
1058         // integer type for any `N` > 0.
1059         unsafe { Self::__new(T::from(value)) }
1060     }
1061 }
1062