1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Contains CPU feature definitions
4 *
5 * Copyright (C) 2015 ARM Ltd.
6 *
7 * A note for the weary kernel hacker: the code here is confusing and hard to
8 * follow! That's partly because it's solving a nasty problem, but also because
9 * there's a little bit of over-abstraction that tends to obscure what's going
10 * on behind a maze of helper functions and macros.
11 *
12 * The basic problem is that hardware folks have started gluing together CPUs
13 * with distinct architectural features; in some cases even creating SoCs where
14 * user-visible instructions are available only on a subset of the available
15 * cores. We try to address this by snapshotting the feature registers of the
16 * boot CPU and comparing these with the feature registers of each secondary
17 * CPU when bringing them up. If there is a mismatch, then we update the
18 * snapshot state to indicate the lowest-common denominator of the feature,
19 * known as the "safe" value. This snapshot state can be queried to view the
20 * "sanitised" value of a feature register.
21 *
22 * The sanitised register values are used to decide which capabilities we
23 * have in the system. These may be in the form of traditional "hwcaps"
24 * advertised to userspace or internal "cpucaps" which are used to configure
25 * things like alternative patching and static keys. While a feature mismatch
26 * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27 * may prevent a CPU from being onlined at all.
28 *
29 * Some implementation details worth remembering:
30 *
31 * - Mismatched features are *always* sanitised to a "safe" value, which
32 * usually indicates that the feature is not supported.
33 *
34 * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35 * warning when onlining an offending CPU and the kernel will be tainted
36 * with TAINT_CPU_OUT_OF_SPEC.
37 *
38 * - Features marked as FTR_VISIBLE have their sanitised value visible to
39 * userspace. FTR_VISIBLE features in registers that are only visible
40 * to EL0 by trapping *must* have a corresponding HWCAP so that late
41 * onlining of CPUs cannot lead to features disappearing at runtime.
42 *
43 * - A "feature" is typically a 4-bit register field. A "capability" is the
44 * high-level description derived from the sanitised field value.
45 *
46 * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47 * scheme for fields in ID registers") to understand when feature fields
48 * may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49 *
50 * - KVM exposes its own view of the feature registers to guest operating
51 * systems regardless of FTR_VISIBLE. This is typically driven from the
52 * sanitised register values to allow virtual CPUs to be migrated between
53 * arbitrary physical CPUs, but some features not present on the host are
54 * also advertised and emulated. Look at sys_reg_descs[] for the gory
55 * details.
56 *
57 * - If the arm64_ftr_bits[] for a register has a missing field, then this
58 * field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59 * This is stronger than FTR_HIDDEN and can be used to hide features from
60 * KVM guests.
61 */
62
63 #define pr_fmt(fmt) "CPU features: " fmt
64
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/kstrtox.h>
69 #include <linux/sort.h>
70 #include <linux/stop_machine.h>
71 #include <linux/sysfs.h>
72 #include <linux/types.h>
73 #include <linux/minmax.h>
74 #include <linux/mm.h>
75 #include <linux/cpu.h>
76 #include <linux/kasan.h>
77 #include <linux/percpu.h>
78 #include <linux/sched/isolation.h>
79
80 #include <asm/cpu.h>
81 #include <asm/cpufeature.h>
82 #include <asm/cpu_ops.h>
83 #include <asm/fpsimd.h>
84 #include <asm/hwcap.h>
85 #include <asm/insn.h>
86 #include <asm/kvm_host.h>
87 #include <asm/mmu.h>
88 #include <asm/mmu_context.h>
89 #include <asm/mte.h>
90 #include <asm/hypervisor.h>
91 #include <asm/processor.h>
92 #include <asm/smp.h>
93 #include <asm/sysreg.h>
94 #include <asm/traps.h>
95 #include <asm/vectors.h>
96 #include <asm/virt.h>
97
98 #include <asm/spectre.h>
99 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
100 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
101
102 #ifdef CONFIG_COMPAT
103 #define COMPAT_ELF_HWCAP_DEFAULT \
104 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
105 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
106 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
107 COMPAT_HWCAP_LPAE)
108 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
109 unsigned int compat_elf_hwcap2 __read_mostly;
110 unsigned int compat_elf_hwcap3 __read_mostly;
111 #endif
112
113 DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
114 EXPORT_SYMBOL(system_cpucaps);
115 static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
116
117 DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
118
119 /*
120 * arm64_use_ng_mappings must be placed in the .data section, otherwise it
121 * ends up in the .bss section where it is initialized in early_map_kernel()
122 * after the MMU (with the idmap) was enabled. create_init_idmap() - which
123 * runs before early_map_kernel() and reads the variable via PTE_MAYBE_NG -
124 * may end up generating an incorrect idmap page table attributes.
125 */
126 bool arm64_use_ng_mappings __read_mostly = false;
127 EXPORT_SYMBOL(arm64_use_ng_mappings);
128
129 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
130
131 /*
132 * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
133 * support it?
134 */
135 static bool __read_mostly allow_mismatched_32bit_el0;
136
137 /*
138 * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
139 * seen at least one CPU capable of 32-bit EL0.
140 */
141 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
142
143 /*
144 * Mask of CPUs supporting 32-bit EL0.
145 * Only valid if arm64_mismatched_32bit_el0 is enabled.
146 */
147 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
148
dump_cpu_features(void)149 void dump_cpu_features(void)
150 {
151 /* file-wide pr_fmt adds "CPU features: " prefix */
152 pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
153 }
154
155 #define __ARM64_MAX_POSITIVE(reg, field) \
156 ((reg##_##field##_SIGNED ? \
157 BIT(reg##_##field##_WIDTH - 1) : \
158 BIT(reg##_##field##_WIDTH)) - 1)
159
160 #define __ARM64_MIN_NEGATIVE(reg, field) BIT(reg##_##field##_WIDTH - 1)
161
162 #define __ARM64_CPUID_FIELDS(reg, field, min_value, max_value) \
163 .sys_reg = SYS_##reg, \
164 .field_pos = reg##_##field##_SHIFT, \
165 .field_width = reg##_##field##_WIDTH, \
166 .sign = reg##_##field##_SIGNED, \
167 .min_field_value = min_value, \
168 .max_field_value = max_value,
169
170 /*
171 * ARM64_CPUID_FIELDS() encodes a field with a range from min_value to
172 * an implicit maximum that depends on the sign-ess of the field.
173 *
174 * An unsigned field will be capped at all ones, while a signed field
175 * will be limited to the positive half only.
176 */
177 #define ARM64_CPUID_FIELDS(reg, field, min_value) \
178 __ARM64_CPUID_FIELDS(reg, field, \
179 SYS_FIELD_VALUE(reg, field, min_value), \
180 __ARM64_MAX_POSITIVE(reg, field))
181
182 /*
183 * ARM64_CPUID_FIELDS_NEG() encodes a field with a range from an
184 * implicit minimal value to max_value. This should be used when
185 * matching a non-implemented property.
186 */
187 #define ARM64_CPUID_FIELDS_NEG(reg, field, max_value) \
188 __ARM64_CPUID_FIELDS(reg, field, \
189 __ARM64_MIN_NEGATIVE(reg, field), \
190 SYS_FIELD_VALUE(reg, field, max_value))
191
192 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
193 { \
194 .sign = SIGNED, \
195 .visible = VISIBLE, \
196 .strict = STRICT, \
197 .type = TYPE, \
198 .shift = SHIFT, \
199 .width = WIDTH, \
200 .safe_val = SAFE_VAL, \
201 }
202
203 /* Define a feature with unsigned values */
204 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
205 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
206
207 /* Define a feature with a signed value */
208 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
209 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
210
211 #define ARM64_FTR_END \
212 { \
213 .width = 0, \
214 }
215
216 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
217
218 static bool __system_matches_cap(unsigned int n);
219
220 /*
221 * NOTE: Any changes to the visibility of features should be kept in
222 * sync with the documentation of the CPU feature register ABI.
223 */
224 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
225 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
226 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
227 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
228 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
229 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
230 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
231 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
232 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
233 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
234 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
235 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
236 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
237 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
238 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
239 ARM64_FTR_END,
240 };
241
242 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
243 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_XS_SHIFT, 4, 0),
244 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
245 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
246 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
247 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
248 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
249 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
250 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
251 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
252 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
253 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
254 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
255 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
256 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
257 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
258 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
259 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
260 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
261 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
262 ARM64_FTR_END,
263 };
264
265 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
266 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_LUT_SHIFT, 4, 0),
267 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
268 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
269 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0),
270 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
271 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
272 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
273 FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
274 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
275 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
276 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
277 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
278 ARM64_FTR_END,
279 };
280
281 static const struct arm64_ftr_bits ftr_id_aa64isar3[] = {
282 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FPRCVT_SHIFT, 4, 0),
283 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_LSFE_SHIFT, 4, 0),
284 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FAMINMAX_SHIFT, 4, 0),
285 ARM64_FTR_END,
286 };
287
288 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
289 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
290 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
291 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
292 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
293 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
294 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
295 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
296 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
297 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
298 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
299 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
300 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
301 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
302 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
303 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_EL1_IMP),
304 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_EL0_IMP),
305 ARM64_FTR_END,
306 };
307
308 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
309 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_DF2_SHIFT, 4, 0),
310 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_GCS),
311 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_GCS_SHIFT, 4, 0),
312 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_frac_SHIFT, 4, 0),
313 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
314 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
315 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
316 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
317 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
318 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
319 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
320 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
321 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
322 ARM64_FTR_END,
323 };
324
325 static const struct arm64_ftr_bits ftr_id_aa64pfr2[] = {
326 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_FPMR_SHIFT, 4, 0),
327 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_MTEFAR_SHIFT, 4, ID_AA64PFR2_EL1_MTEFAR_NI),
328 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_MTESTOREONLY_SHIFT, 4, ID_AA64PFR2_EL1_MTESTOREONLY_NI),
329 ARM64_FTR_END,
330 };
331
332 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
333 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
334 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
335 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
336 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
337 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
338 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F16MM_SHIFT, 4, 0),
339 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
340 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
341 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
342 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
343 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
344 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
345 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
346 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_B16B16_SHIFT, 4, 0),
347 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
348 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
349 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
350 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
351 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
352 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_EltPerm_SHIFT, 4, 0),
353 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
354 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
355 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
356 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
357 ARM64_FTR_END,
358 };
359
360 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
361 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
362 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
363 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
364 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_LUTv2_SHIFT, 1, 0),
365 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
366 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
367 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
368 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
369 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
370 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
371 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
372 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
373 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
374 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
375 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
376 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
377 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
378 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F16_SHIFT, 1, 0),
379 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
380 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F32_SHIFT, 1, 0),
381 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
382 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
383 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
384 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
385 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
386 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
387 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
388 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
389 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
390 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
391 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
392 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8FMA_SHIFT, 1, 0),
393 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
394 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP4_SHIFT, 1, 0),
395 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
396 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP2_SHIFT, 1, 0),
397 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
398 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SBitPerm_SHIFT, 1, 0),
399 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
400 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_AES_SHIFT, 1, 0),
401 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
402 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SFEXPA_SHIFT, 1, 0),
403 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
404 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_STMOP_SHIFT, 1, 0),
405 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
406 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMOP4_SHIFT, 1, 0),
407 ARM64_FTR_END,
408 };
409
410 static const struct arm64_ftr_bits ftr_id_aa64fpfr0[] = {
411 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8CVT_SHIFT, 1, 0),
412 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8FMA_SHIFT, 1, 0),
413 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP4_SHIFT, 1, 0),
414 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP2_SHIFT, 1, 0),
415 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8MM8_SHIFT, 1, 0),
416 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8MM4_SHIFT, 1, 0),
417 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E4M3_SHIFT, 1, 0),
418 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E5M2_SHIFT, 1, 0),
419 ARM64_FTR_END,
420 };
421
422 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
423 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
424 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
425 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
426 /*
427 * Page size not being supported at Stage-2 is not fatal. You
428 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
429 * your favourite nesting hypervisor.
430 *
431 * There is a small corner case where the hypervisor explicitly
432 * advertises a given granule size at Stage-2 (value 2) on some
433 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
434 * vCPUs. Although this is not forbidden by the architecture, it
435 * indicates that the hypervisor is being silly (or buggy).
436 *
437 * We make no effort to cope with this and pretend that if these
438 * fields are inconsistent across vCPUs, then it isn't worth
439 * trying to bring KVM up.
440 */
441 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
442 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
443 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
444 /*
445 * We already refuse to boot CPUs that don't support our configured
446 * page size, so we can only detect mismatches for a page size other
447 * than the one we're currently using. Unfortunately, SoCs like this
448 * exist in the wild so, even though we don't like it, we'll have to go
449 * along with it and treat them as non-strict.
450 */
451 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
452 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
453 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
454
455 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
456 /* Linux shouldn't care about secure memory */
457 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
458 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
459 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
460 /*
461 * Differing PARange is fine as long as all peripherals and memory are mapped
462 * within the minimum PARange of all CPUs
463 */
464 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
465 ARM64_FTR_END,
466 };
467
468 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
469 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ECBHB_SHIFT, 4, 0),
470 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
471 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
472 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
473 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
474 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
475 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
476 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
477 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
478 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
479 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
480 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
481 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
482 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
483 ARM64_FTR_END,
484 };
485
486 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
487 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
488 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
489 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
490 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
491 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
492 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
493 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
494 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
495 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
496 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
497 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
498 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
499 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
500 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
501 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
502 ARM64_FTR_END,
503 };
504
505 static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
506 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_POE),
507 FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1POE_SHIFT, 4, 0),
508 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
509 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_SCTLRX_SHIFT, 4, 0),
510 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
511 ARM64_FTR_END,
512 };
513
514 static const struct arm64_ftr_bits ftr_id_aa64mmfr4[] = {
515 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_E2H0_SHIFT, 4, 0),
516 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_NV_frac_SHIFT, 4, 0),
517 ARM64_FTR_END,
518 };
519
520 static const struct arm64_ftr_bits ftr_ctr[] = {
521 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
522 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
523 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
524 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
525 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
526 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
527 /*
528 * Linux can handle differing I-cache policies. Userspace JITs will
529 * make use of *minLine.
530 * If we have differing I-cache policies, report it as the weakest - VIPT.
531 */
532 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT), /* L1Ip */
533 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
534 ARM64_FTR_END,
535 };
536
537 static struct arm64_ftr_override __ro_after_init no_override = { };
538
539 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
540 .name = "SYS_CTR_EL0",
541 .ftr_bits = ftr_ctr,
542 .override = &no_override,
543 };
544
545 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
546 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
547 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
548 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
549 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
550 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
551 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
552 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
553 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
554 ARM64_FTR_END,
555 };
556
557 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
558 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
559 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
560 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
561 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
562 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
563 /*
564 * We can instantiate multiple PMU instances with different levels
565 * of support.
566 */
567 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
568 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
569 ARM64_FTR_END,
570 };
571
572 static const struct arm64_ftr_bits ftr_mvfr0[] = {
573 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
574 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
575 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
576 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
577 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
578 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
579 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
580 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
581 ARM64_FTR_END,
582 };
583
584 static const struct arm64_ftr_bits ftr_mvfr1[] = {
585 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
586 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
587 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
588 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
589 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
590 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
591 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
592 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
593 ARM64_FTR_END,
594 };
595
596 static const struct arm64_ftr_bits ftr_mvfr2[] = {
597 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
598 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
599 ARM64_FTR_END,
600 };
601
602 static const struct arm64_ftr_bits ftr_dczid[] = {
603 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
604 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
605 ARM64_FTR_END,
606 };
607
608 static const struct arm64_ftr_bits ftr_gmid[] = {
609 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
610 ARM64_FTR_END,
611 };
612
613 static const struct arm64_ftr_bits ftr_id_isar0[] = {
614 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
615 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
616 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
617 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
618 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
619 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
620 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
621 ARM64_FTR_END,
622 };
623
624 static const struct arm64_ftr_bits ftr_id_isar5[] = {
625 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
626 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
627 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
628 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
629 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
630 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
631 ARM64_FTR_END,
632 };
633
634 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
635 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
636 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
637 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
638 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
639 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
640 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
641 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
642
643 /*
644 * SpecSEI = 1 indicates that the PE might generate an SError on an
645 * external abort on speculative read. It is safe to assume that an
646 * SError might be generated than it will not be. Hence it has been
647 * classified as FTR_HIGHER_SAFE.
648 */
649 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
650 ARM64_FTR_END,
651 };
652
653 static const struct arm64_ftr_bits ftr_id_isar4[] = {
654 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
655 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
656 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
657 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
658 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
659 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
660 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
661 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
662 ARM64_FTR_END,
663 };
664
665 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
666 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
667 ARM64_FTR_END,
668 };
669
670 static const struct arm64_ftr_bits ftr_id_isar6[] = {
671 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
672 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
673 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
674 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
675 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
676 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
677 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
678 ARM64_FTR_END,
679 };
680
681 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
682 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
683 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
684 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
685 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
686 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
687 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
688 ARM64_FTR_END,
689 };
690
691 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
692 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
693 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
694 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
695 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
696 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
697 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
698 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
699 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
700 ARM64_FTR_END,
701 };
702
703 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
704 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
705 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
706 ARM64_FTR_END,
707 };
708
709 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
710 /* [31:28] TraceFilt */
711 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
712 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
713 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
714 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
715 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
716 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
717 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
718 ARM64_FTR_END,
719 };
720
721 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
722 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
723 ARM64_FTR_END,
724 };
725
726 static const struct arm64_ftr_bits ftr_mpamidr[] = {
727 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_PMG_MAX_SHIFT, MPAMIDR_EL1_PMG_MAX_WIDTH, 0),
728 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_VPMR_MAX_SHIFT, MPAMIDR_EL1_VPMR_MAX_WIDTH, 0),
729 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_HAS_HCR_SHIFT, 1, 0),
730 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_PARTID_MAX_SHIFT, MPAMIDR_EL1_PARTID_MAX_WIDTH, 0),
731 ARM64_FTR_END,
732 };
733
734 /*
735 * Common ftr bits for a 32bit register with all hidden, strict
736 * attributes, with 4bit feature fields and a default safe value of
737 * 0. Covers the following 32bit registers:
738 * id_isar[1-3], id_mmfr[1-3]
739 */
740 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
741 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
742 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
743 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
744 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
745 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
746 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
747 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
748 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
749 ARM64_FTR_END,
750 };
751
752 /* Table for a single 32bit feature value */
753 static const struct arm64_ftr_bits ftr_single32[] = {
754 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
755 ARM64_FTR_END,
756 };
757
758 static const struct arm64_ftr_bits ftr_raz[] = {
759 ARM64_FTR_END,
760 };
761
762 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) { \
763 .sys_id = id, \
764 .reg = &(struct arm64_ftr_reg){ \
765 .name = id_str, \
766 .override = (ovr), \
767 .ftr_bits = &((table)[0]), \
768 }}
769
770 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr) \
771 __ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
772
773 #define ARM64_FTR_REG(id, table) \
774 __ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
775
776 struct arm64_ftr_override __read_mostly id_aa64mmfr0_override;
777 struct arm64_ftr_override __read_mostly id_aa64mmfr1_override;
778 struct arm64_ftr_override __read_mostly id_aa64mmfr2_override;
779 struct arm64_ftr_override __read_mostly id_aa64pfr0_override;
780 struct arm64_ftr_override __read_mostly id_aa64pfr1_override;
781 struct arm64_ftr_override __read_mostly id_aa64zfr0_override;
782 struct arm64_ftr_override __read_mostly id_aa64smfr0_override;
783 struct arm64_ftr_override __read_mostly id_aa64isar1_override;
784 struct arm64_ftr_override __read_mostly id_aa64isar2_override;
785
786 struct arm64_ftr_override __read_mostly arm64_sw_feature_override;
787
788 static const struct __ftr_reg_entry {
789 u32 sys_id;
790 struct arm64_ftr_reg *reg;
791 } arm64_ftr_regs[] = {
792
793 /* Op1 = 0, CRn = 0, CRm = 1 */
794 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
795 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
796 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
797 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
798 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
799 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
800 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
801
802 /* Op1 = 0, CRn = 0, CRm = 2 */
803 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
804 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
805 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
806 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
807 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
808 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
809 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
810 ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
811
812 /* Op1 = 0, CRn = 0, CRm = 3 */
813 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
814 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
815 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
816 ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
817 ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
818 ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
819
820 /* Op1 = 0, CRn = 0, CRm = 4 */
821 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
822 &id_aa64pfr0_override),
823 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
824 &id_aa64pfr1_override),
825 ARM64_FTR_REG(SYS_ID_AA64PFR2_EL1, ftr_id_aa64pfr2),
826 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
827 &id_aa64zfr0_override),
828 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
829 &id_aa64smfr0_override),
830 ARM64_FTR_REG(SYS_ID_AA64FPFR0_EL1, ftr_id_aa64fpfr0),
831
832 /* Op1 = 0, CRn = 0, CRm = 5 */
833 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
834 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
835
836 /* Op1 = 0, CRn = 0, CRm = 6 */
837 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
838 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
839 &id_aa64isar1_override),
840 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
841 &id_aa64isar2_override),
842 ARM64_FTR_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3),
843
844 /* Op1 = 0, CRn = 0, CRm = 7 */
845 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0,
846 &id_aa64mmfr0_override),
847 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
848 &id_aa64mmfr1_override),
849 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2,
850 &id_aa64mmfr2_override),
851 ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
852 ARM64_FTR_REG(SYS_ID_AA64MMFR4_EL1, ftr_id_aa64mmfr4),
853
854 /* Op1 = 0, CRn = 10, CRm = 4 */
855 ARM64_FTR_REG(SYS_MPAMIDR_EL1, ftr_mpamidr),
856
857 /* Op1 = 1, CRn = 0, CRm = 0 */
858 ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
859
860 /* Op1 = 3, CRn = 0, CRm = 0 */
861 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
862 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
863
864 /* Op1 = 3, CRn = 14, CRm = 0 */
865 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
866 };
867
search_cmp_ftr_reg(const void * id,const void * regp)868 static int search_cmp_ftr_reg(const void *id, const void *regp)
869 {
870 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
871 }
872
873 /*
874 * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
875 * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
876 * ascending order of sys_id, we use binary search to find a matching
877 * entry.
878 *
879 * returns - Upon success, matching ftr_reg entry for id.
880 * - NULL on failure. It is upto the caller to decide
881 * the impact of a failure.
882 */
get_arm64_ftr_reg_nowarn(u32 sys_id)883 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
884 {
885 const struct __ftr_reg_entry *ret;
886
887 ret = bsearch((const void *)(unsigned long)sys_id,
888 arm64_ftr_regs,
889 ARRAY_SIZE(arm64_ftr_regs),
890 sizeof(arm64_ftr_regs[0]),
891 search_cmp_ftr_reg);
892 if (ret)
893 return ret->reg;
894 return NULL;
895 }
896
897 /*
898 * get_arm64_ftr_reg - Looks up a feature register entry using
899 * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
900 *
901 * returns - Upon success, matching ftr_reg entry for id.
902 * - NULL on failure but with an WARN_ON().
903 */
get_arm64_ftr_reg(u32 sys_id)904 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
905 {
906 struct arm64_ftr_reg *reg;
907
908 reg = get_arm64_ftr_reg_nowarn(sys_id);
909
910 /*
911 * Requesting a non-existent register search is an error. Warn
912 * and let the caller handle it.
913 */
914 WARN_ON(!reg);
915 return reg;
916 }
917
arm64_ftr_set_value(const struct arm64_ftr_bits * ftrp,s64 reg,s64 ftr_val)918 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
919 s64 ftr_val)
920 {
921 u64 mask = arm64_ftr_mask(ftrp);
922
923 reg &= ~mask;
924 reg |= (ftr_val << ftrp->shift) & mask;
925 return reg;
926 }
927
arm64_ftr_safe_value(const struct arm64_ftr_bits * ftrp,s64 new,s64 cur)928 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
929 s64 cur)
930 {
931 s64 ret = 0;
932
933 switch (ftrp->type) {
934 case FTR_EXACT:
935 ret = ftrp->safe_val;
936 break;
937 case FTR_LOWER_SAFE:
938 ret = min(new, cur);
939 break;
940 case FTR_HIGHER_OR_ZERO_SAFE:
941 if (!cur || !new)
942 break;
943 fallthrough;
944 case FTR_HIGHER_SAFE:
945 ret = max(new, cur);
946 break;
947 default:
948 BUG();
949 }
950
951 return ret;
952 }
953
sort_ftr_regs(void)954 static void __init sort_ftr_regs(void)
955 {
956 unsigned int i;
957
958 for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
959 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
960 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
961 unsigned int j = 0;
962
963 /*
964 * Features here must be sorted in descending order with respect
965 * to their shift values and should not overlap with each other.
966 */
967 for (; ftr_bits->width != 0; ftr_bits++, j++) {
968 unsigned int width = ftr_reg->ftr_bits[j].width;
969 unsigned int shift = ftr_reg->ftr_bits[j].shift;
970 unsigned int prev_shift;
971
972 WARN((shift + width) > 64,
973 "%s has invalid feature at shift %d\n",
974 ftr_reg->name, shift);
975
976 /*
977 * Skip the first feature. There is nothing to
978 * compare against for now.
979 */
980 if (j == 0)
981 continue;
982
983 prev_shift = ftr_reg->ftr_bits[j - 1].shift;
984 WARN((shift + width) > prev_shift,
985 "%s has feature overlap at shift %d\n",
986 ftr_reg->name, shift);
987 }
988
989 /*
990 * Skip the first register. There is nothing to
991 * compare against for now.
992 */
993 if (i == 0)
994 continue;
995 /*
996 * Registers here must be sorted in ascending order with respect
997 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
998 * to work correctly.
999 */
1000 BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
1001 }
1002 }
1003
1004 /*
1005 * Initialise the CPU feature register from Boot CPU values.
1006 * Also initiliases the strict_mask for the register.
1007 * Any bits that are not covered by an arm64_ftr_bits entry are considered
1008 * RES0 for the system-wide value, and must strictly match.
1009 */
init_cpu_ftr_reg(u32 sys_reg,u64 new)1010 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
1011 {
1012 u64 val = 0;
1013 u64 strict_mask = ~0x0ULL;
1014 u64 user_mask = 0;
1015 u64 valid_mask = 0;
1016
1017 const struct arm64_ftr_bits *ftrp;
1018 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
1019
1020 if (!reg)
1021 return;
1022
1023 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1024 u64 ftr_mask = arm64_ftr_mask(ftrp);
1025 s64 ftr_new = arm64_ftr_value(ftrp, new);
1026 s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
1027
1028 if ((ftr_mask & reg->override->mask) == ftr_mask) {
1029 s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
1030 char *str = NULL;
1031
1032 if (ftr_ovr != tmp) {
1033 /* Unsafe, remove the override */
1034 reg->override->mask &= ~ftr_mask;
1035 reg->override->val &= ~ftr_mask;
1036 tmp = ftr_ovr;
1037 str = "ignoring override";
1038 } else if (ftr_new != tmp) {
1039 /* Override was valid */
1040 ftr_new = tmp;
1041 str = "forced";
1042 } else {
1043 /* Override was the safe value */
1044 str = "already set";
1045 }
1046
1047 pr_warn("%s[%d:%d]: %s to %llx\n",
1048 reg->name,
1049 ftrp->shift + ftrp->width - 1,
1050 ftrp->shift, str,
1051 tmp & (BIT(ftrp->width) - 1));
1052 } else if ((ftr_mask & reg->override->val) == ftr_mask) {
1053 reg->override->val &= ~ftr_mask;
1054 pr_warn("%s[%d:%d]: impossible override, ignored\n",
1055 reg->name,
1056 ftrp->shift + ftrp->width - 1,
1057 ftrp->shift);
1058 }
1059
1060 val = arm64_ftr_set_value(ftrp, val, ftr_new);
1061
1062 valid_mask |= ftr_mask;
1063 if (!ftrp->strict)
1064 strict_mask &= ~ftr_mask;
1065 if (ftrp->visible)
1066 user_mask |= ftr_mask;
1067 else
1068 reg->user_val = arm64_ftr_set_value(ftrp,
1069 reg->user_val,
1070 ftrp->safe_val);
1071 }
1072
1073 val &= valid_mask;
1074
1075 reg->sys_val = val;
1076 reg->strict_mask = strict_mask;
1077 reg->user_mask = user_mask;
1078 }
1079
1080 extern const struct arm64_cpu_capabilities arm64_errata[];
1081 static const struct arm64_cpu_capabilities arm64_features[];
1082
1083 static void __init
init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities * caps)1084 init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
1085 {
1086 for (; caps->matches; caps++) {
1087 if (WARN(caps->capability >= ARM64_NCAPS,
1088 "Invalid capability %d\n", caps->capability))
1089 continue;
1090 if (WARN(cpucap_ptrs[caps->capability],
1091 "Duplicate entry for capability %d\n",
1092 caps->capability))
1093 continue;
1094 cpucap_ptrs[caps->capability] = caps;
1095 }
1096 }
1097
init_cpucap_indirect_list(void)1098 static void __init init_cpucap_indirect_list(void)
1099 {
1100 init_cpucap_indirect_list_from_array(arm64_features);
1101 init_cpucap_indirect_list_from_array(arm64_errata);
1102 }
1103
1104 static void __init setup_boot_cpu_capabilities(void);
1105
init_32bit_cpu_features(struct cpuinfo_32bit * info)1106 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
1107 {
1108 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
1109 init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
1110 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
1111 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
1112 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
1113 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
1114 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
1115 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
1116 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
1117 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
1118 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
1119 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
1120 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
1121 init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
1122 init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
1123 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
1124 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
1125 init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
1126 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
1127 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
1128 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1129 }
1130
1131 #ifdef CONFIG_ARM64_PSEUDO_NMI
1132 static bool enable_pseudo_nmi;
1133
early_enable_pseudo_nmi(char * p)1134 static int __init early_enable_pseudo_nmi(char *p)
1135 {
1136 return kstrtobool(p, &enable_pseudo_nmi);
1137 }
1138 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1139
detect_system_supports_pseudo_nmi(void)1140 static __init void detect_system_supports_pseudo_nmi(void)
1141 {
1142 struct device_node *np;
1143
1144 if (!enable_pseudo_nmi)
1145 return;
1146
1147 /*
1148 * Detect broken MediaTek firmware that doesn't properly save and
1149 * restore GIC priorities.
1150 */
1151 np = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1152 if (np && of_property_read_bool(np, "mediatek,broken-save-restore-fw")) {
1153 pr_info("Pseudo-NMI disabled due to MediaTek Chromebook GICR save problem\n");
1154 enable_pseudo_nmi = false;
1155 }
1156 of_node_put(np);
1157 }
1158 #else /* CONFIG_ARM64_PSEUDO_NMI */
detect_system_supports_pseudo_nmi(void)1159 static inline void detect_system_supports_pseudo_nmi(void) { }
1160 #endif
1161
init_cpu_features(struct cpuinfo_arm64 * info)1162 void __init init_cpu_features(struct cpuinfo_arm64 *info)
1163 {
1164 /* Before we start using the tables, make sure it is sorted */
1165 sort_ftr_regs();
1166
1167 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1168 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1169 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1170 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1171 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1172 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1173 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1174 init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1175 init_cpu_ftr_reg(SYS_ID_AA64ISAR3_EL1, info->reg_id_aa64isar3);
1176 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1177 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1178 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1179 init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
1180 init_cpu_ftr_reg(SYS_ID_AA64MMFR4_EL1, info->reg_id_aa64mmfr4);
1181 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1182 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1183 init_cpu_ftr_reg(SYS_ID_AA64PFR2_EL1, info->reg_id_aa64pfr2);
1184 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1185 init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1186 init_cpu_ftr_reg(SYS_ID_AA64FPFR0_EL1, info->reg_id_aa64fpfr0);
1187
1188 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1189 init_32bit_cpu_features(&info->aarch32);
1190
1191 if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1192 id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1193 unsigned long cpacr = cpacr_save_enable_kernel_sve();
1194
1195 vec_init_vq_map(ARM64_VEC_SVE);
1196
1197 cpacr_restore(cpacr);
1198 }
1199
1200 if (IS_ENABLED(CONFIG_ARM64_SME) &&
1201 id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1202 unsigned long cpacr = cpacr_save_enable_kernel_sme();
1203
1204 vec_init_vq_map(ARM64_VEC_SME);
1205
1206 cpacr_restore(cpacr);
1207 }
1208
1209 if (id_aa64pfr0_mpam(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1210 info->reg_mpamidr = read_cpuid(MPAMIDR_EL1);
1211 init_cpu_ftr_reg(SYS_MPAMIDR_EL1, info->reg_mpamidr);
1212 }
1213
1214 if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1215 init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1216 }
1217
update_cpu_ftr_reg(struct arm64_ftr_reg * reg,u64 new)1218 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1219 {
1220 const struct arm64_ftr_bits *ftrp;
1221
1222 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1223 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1224 s64 ftr_new = arm64_ftr_value(ftrp, new);
1225
1226 if (ftr_cur == ftr_new)
1227 continue;
1228 /* Find a safe value */
1229 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1230 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1231 }
1232
1233 }
1234
check_update_ftr_reg(u32 sys_id,int cpu,u64 val,u64 boot)1235 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1236 {
1237 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1238
1239 if (!regp)
1240 return 0;
1241
1242 update_cpu_ftr_reg(regp, val);
1243 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1244 return 0;
1245 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1246 regp->name, boot, cpu, val);
1247 return 1;
1248 }
1249
relax_cpu_ftr_reg(u32 sys_id,int field)1250 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1251 {
1252 const struct arm64_ftr_bits *ftrp;
1253 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1254
1255 if (!regp)
1256 return;
1257
1258 for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1259 if (ftrp->shift == field) {
1260 regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1261 break;
1262 }
1263 }
1264
1265 /* Bogus field? */
1266 WARN_ON(!ftrp->width);
1267 }
1268
lazy_init_32bit_cpu_features(struct cpuinfo_arm64 * info,struct cpuinfo_arm64 * boot)1269 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1270 struct cpuinfo_arm64 *boot)
1271 {
1272 static bool boot_cpu_32bit_regs_overridden = false;
1273
1274 if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1275 return;
1276
1277 if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1278 return;
1279
1280 boot->aarch32 = info->aarch32;
1281 init_32bit_cpu_features(&boot->aarch32);
1282 boot_cpu_32bit_regs_overridden = true;
1283 }
1284
update_32bit_cpu_features(int cpu,struct cpuinfo_32bit * info,struct cpuinfo_32bit * boot)1285 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1286 struct cpuinfo_32bit *boot)
1287 {
1288 int taint = 0;
1289 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1290
1291 /*
1292 * If we don't have AArch32 at EL1, then relax the strictness of
1293 * EL1-dependent register fields to avoid spurious sanity check fails.
1294 */
1295 if (!id_aa64pfr0_32bit_el1(pfr0)) {
1296 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1297 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1298 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1299 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1300 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1301 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1302 }
1303
1304 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1305 info->reg_id_dfr0, boot->reg_id_dfr0);
1306 taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1307 info->reg_id_dfr1, boot->reg_id_dfr1);
1308 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1309 info->reg_id_isar0, boot->reg_id_isar0);
1310 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1311 info->reg_id_isar1, boot->reg_id_isar1);
1312 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1313 info->reg_id_isar2, boot->reg_id_isar2);
1314 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1315 info->reg_id_isar3, boot->reg_id_isar3);
1316 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1317 info->reg_id_isar4, boot->reg_id_isar4);
1318 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1319 info->reg_id_isar5, boot->reg_id_isar5);
1320 taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1321 info->reg_id_isar6, boot->reg_id_isar6);
1322
1323 /*
1324 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1325 * ACTLR formats could differ across CPUs and therefore would have to
1326 * be trapped for virtualization anyway.
1327 */
1328 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1329 info->reg_id_mmfr0, boot->reg_id_mmfr0);
1330 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1331 info->reg_id_mmfr1, boot->reg_id_mmfr1);
1332 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1333 info->reg_id_mmfr2, boot->reg_id_mmfr2);
1334 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1335 info->reg_id_mmfr3, boot->reg_id_mmfr3);
1336 taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1337 info->reg_id_mmfr4, boot->reg_id_mmfr4);
1338 taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1339 info->reg_id_mmfr5, boot->reg_id_mmfr5);
1340 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1341 info->reg_id_pfr0, boot->reg_id_pfr0);
1342 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1343 info->reg_id_pfr1, boot->reg_id_pfr1);
1344 taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1345 info->reg_id_pfr2, boot->reg_id_pfr2);
1346 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1347 info->reg_mvfr0, boot->reg_mvfr0);
1348 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1349 info->reg_mvfr1, boot->reg_mvfr1);
1350 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1351 info->reg_mvfr2, boot->reg_mvfr2);
1352
1353 return taint;
1354 }
1355
1356 /*
1357 * Update system wide CPU feature registers with the values from a
1358 * non-boot CPU. Also performs SANITY checks to make sure that there
1359 * aren't any insane variations from that of the boot CPU.
1360 */
update_cpu_features(int cpu,struct cpuinfo_arm64 * info,struct cpuinfo_arm64 * boot)1361 void update_cpu_features(int cpu,
1362 struct cpuinfo_arm64 *info,
1363 struct cpuinfo_arm64 *boot)
1364 {
1365 int taint = 0;
1366
1367 /*
1368 * The kernel can handle differing I-cache policies, but otherwise
1369 * caches should look identical. Userspace JITs will make use of
1370 * *minLine.
1371 */
1372 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1373 info->reg_ctr, boot->reg_ctr);
1374
1375 /*
1376 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1377 * could result in too much or too little memory being zeroed if a
1378 * process is preempted and migrated between CPUs.
1379 */
1380 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1381 info->reg_dczid, boot->reg_dczid);
1382
1383 /* If different, timekeeping will be broken (especially with KVM) */
1384 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1385 info->reg_cntfrq, boot->reg_cntfrq);
1386
1387 /*
1388 * The kernel uses self-hosted debug features and expects CPUs to
1389 * support identical debug features. We presently need CTX_CMPs, WRPs,
1390 * and BRPs to be identical.
1391 * ID_AA64DFR1 is currently RES0.
1392 */
1393 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1394 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1395 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1396 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1397 /*
1398 * Even in big.LITTLE, processors should be identical instruction-set
1399 * wise.
1400 */
1401 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1402 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1403 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1404 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1405 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1406 info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1407 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR3_EL1, cpu,
1408 info->reg_id_aa64isar3, boot->reg_id_aa64isar3);
1409
1410 /*
1411 * Differing PARange support is fine as long as all peripherals and
1412 * memory are mapped within the minimum PARange of all CPUs.
1413 * Linux should not care about secure memory.
1414 */
1415 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1416 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1417 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1418 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1419 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1420 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1421 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
1422 info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
1423 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR4_EL1, cpu,
1424 info->reg_id_aa64mmfr4, boot->reg_id_aa64mmfr4);
1425
1426 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1427 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1428 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1429 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1430 taint |= check_update_ftr_reg(SYS_ID_AA64PFR2_EL1, cpu,
1431 info->reg_id_aa64pfr2, boot->reg_id_aa64pfr2);
1432
1433 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1434 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1435
1436 taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1437 info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1438
1439 taint |= check_update_ftr_reg(SYS_ID_AA64FPFR0_EL1, cpu,
1440 info->reg_id_aa64fpfr0, boot->reg_id_aa64fpfr0);
1441
1442 /* Probe vector lengths */
1443 if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1444 id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1445 if (!system_capabilities_finalized()) {
1446 unsigned long cpacr = cpacr_save_enable_kernel_sve();
1447
1448 vec_update_vq_map(ARM64_VEC_SVE);
1449
1450 cpacr_restore(cpacr);
1451 }
1452 }
1453
1454 if (IS_ENABLED(CONFIG_ARM64_SME) &&
1455 id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1456 unsigned long cpacr = cpacr_save_enable_kernel_sme();
1457
1458 /* Probe vector lengths */
1459 if (!system_capabilities_finalized())
1460 vec_update_vq_map(ARM64_VEC_SME);
1461
1462 cpacr_restore(cpacr);
1463 }
1464
1465 if (id_aa64pfr0_mpam(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1466 info->reg_mpamidr = read_cpuid(MPAMIDR_EL1);
1467 taint |= check_update_ftr_reg(SYS_MPAMIDR_EL1, cpu,
1468 info->reg_mpamidr, boot->reg_mpamidr);
1469 }
1470
1471 /*
1472 * The kernel uses the LDGM/STGM instructions and the number of tags
1473 * they read/write depends on the GMID_EL1.BS field. Check that the
1474 * value is the same on all CPUs.
1475 */
1476 if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1477 id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1478 taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1479 info->reg_gmid, boot->reg_gmid);
1480 }
1481
1482 /*
1483 * If we don't have AArch32 at all then skip the checks entirely
1484 * as the register values may be UNKNOWN and we're not going to be
1485 * using them for anything.
1486 *
1487 * This relies on a sanitised view of the AArch64 ID registers
1488 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1489 */
1490 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1491 lazy_init_32bit_cpu_features(info, boot);
1492 taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1493 &boot->aarch32);
1494 }
1495
1496 /*
1497 * Mismatched CPU features are a recipe for disaster. Don't even
1498 * pretend to support them.
1499 */
1500 if (taint) {
1501 pr_warn_once("Unsupported CPU feature variation detected.\n");
1502 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1503 }
1504 }
1505
read_sanitised_ftr_reg(u32 id)1506 u64 read_sanitised_ftr_reg(u32 id)
1507 {
1508 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1509
1510 if (!regp)
1511 return 0;
1512 return regp->sys_val;
1513 }
1514 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1515
1516 #define read_sysreg_case(r) \
1517 case r: val = read_sysreg_s(r); break;
1518
1519 /*
1520 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1521 * Read the system register on the current CPU
1522 */
__read_sysreg_by_encoding(u32 sys_id)1523 u64 __read_sysreg_by_encoding(u32 sys_id)
1524 {
1525 struct arm64_ftr_reg *regp;
1526 u64 val;
1527
1528 switch (sys_id) {
1529 read_sysreg_case(SYS_ID_PFR0_EL1);
1530 read_sysreg_case(SYS_ID_PFR1_EL1);
1531 read_sysreg_case(SYS_ID_PFR2_EL1);
1532 read_sysreg_case(SYS_ID_DFR0_EL1);
1533 read_sysreg_case(SYS_ID_DFR1_EL1);
1534 read_sysreg_case(SYS_ID_MMFR0_EL1);
1535 read_sysreg_case(SYS_ID_MMFR1_EL1);
1536 read_sysreg_case(SYS_ID_MMFR2_EL1);
1537 read_sysreg_case(SYS_ID_MMFR3_EL1);
1538 read_sysreg_case(SYS_ID_MMFR4_EL1);
1539 read_sysreg_case(SYS_ID_MMFR5_EL1);
1540 read_sysreg_case(SYS_ID_ISAR0_EL1);
1541 read_sysreg_case(SYS_ID_ISAR1_EL1);
1542 read_sysreg_case(SYS_ID_ISAR2_EL1);
1543 read_sysreg_case(SYS_ID_ISAR3_EL1);
1544 read_sysreg_case(SYS_ID_ISAR4_EL1);
1545 read_sysreg_case(SYS_ID_ISAR5_EL1);
1546 read_sysreg_case(SYS_ID_ISAR6_EL1);
1547 read_sysreg_case(SYS_MVFR0_EL1);
1548 read_sysreg_case(SYS_MVFR1_EL1);
1549 read_sysreg_case(SYS_MVFR2_EL1);
1550
1551 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1552 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1553 read_sysreg_case(SYS_ID_AA64PFR2_EL1);
1554 read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1555 read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1556 read_sysreg_case(SYS_ID_AA64FPFR0_EL1);
1557 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1558 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1559 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1560 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1561 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1562 read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
1563 read_sysreg_case(SYS_ID_AA64MMFR4_EL1);
1564 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1565 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1566 read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1567 read_sysreg_case(SYS_ID_AA64ISAR3_EL1);
1568
1569 read_sysreg_case(SYS_CNTFRQ_EL0);
1570 read_sysreg_case(SYS_CTR_EL0);
1571 read_sysreg_case(SYS_DCZID_EL0);
1572
1573 default:
1574 BUG();
1575 return 0;
1576 }
1577
1578 regp = get_arm64_ftr_reg(sys_id);
1579 if (regp) {
1580 val &= ~regp->override->mask;
1581 val |= (regp->override->val & regp->override->mask);
1582 }
1583
1584 return val;
1585 }
1586
1587 #include <linux/irqchip/arm-gic-v3.h>
1588
1589 static bool
has_always(const struct arm64_cpu_capabilities * entry,int scope)1590 has_always(const struct arm64_cpu_capabilities *entry, int scope)
1591 {
1592 return true;
1593 }
1594
1595 static bool
feature_matches(u64 reg,const struct arm64_cpu_capabilities * entry)1596 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1597 {
1598 int val, min, max;
1599 u64 tmp;
1600
1601 val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1602 entry->field_width,
1603 entry->sign);
1604
1605 tmp = entry->min_field_value;
1606 tmp <<= entry->field_pos;
1607
1608 min = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1609 entry->field_width,
1610 entry->sign);
1611
1612 tmp = entry->max_field_value;
1613 tmp <<= entry->field_pos;
1614
1615 max = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1616 entry->field_width,
1617 entry->sign);
1618
1619 return val >= min && val <= max;
1620 }
1621
1622 static u64
read_scoped_sysreg(const struct arm64_cpu_capabilities * entry,int scope)1623 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1624 {
1625 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1626 if (scope == SCOPE_SYSTEM)
1627 return read_sanitised_ftr_reg(entry->sys_reg);
1628 else
1629 return __read_sysreg_by_encoding(entry->sys_reg);
1630 }
1631
1632 static bool
has_user_cpuid_feature(const struct arm64_cpu_capabilities * entry,int scope)1633 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1634 {
1635 int mask;
1636 struct arm64_ftr_reg *regp;
1637 u64 val = read_scoped_sysreg(entry, scope);
1638
1639 regp = get_arm64_ftr_reg(entry->sys_reg);
1640 if (!regp)
1641 return false;
1642
1643 mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1644 entry->field_pos,
1645 entry->field_width);
1646 if (!mask)
1647 return false;
1648
1649 return feature_matches(val, entry);
1650 }
1651
1652 static bool
has_cpuid_feature(const struct arm64_cpu_capabilities * entry,int scope)1653 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1654 {
1655 u64 val = read_scoped_sysreg(entry, scope);
1656 return feature_matches(val, entry);
1657 }
1658
system_32bit_el0_cpumask(void)1659 const struct cpumask *system_32bit_el0_cpumask(void)
1660 {
1661 if (!system_supports_32bit_el0())
1662 return cpu_none_mask;
1663
1664 if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1665 return cpu_32bit_el0_mask;
1666
1667 return cpu_possible_mask;
1668 }
1669
task_cpu_fallback_mask(struct task_struct * p)1670 const struct cpumask *task_cpu_fallback_mask(struct task_struct *p)
1671 {
1672 return __task_cpu_possible_mask(p, housekeeping_cpumask(HK_TYPE_TICK));
1673 }
1674
parse_32bit_el0_param(char * str)1675 static int __init parse_32bit_el0_param(char *str)
1676 {
1677 allow_mismatched_32bit_el0 = true;
1678 return 0;
1679 }
1680 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1681
aarch32_el0_show(struct device * dev,struct device_attribute * attr,char * buf)1682 static ssize_t aarch32_el0_show(struct device *dev,
1683 struct device_attribute *attr, char *buf)
1684 {
1685 const struct cpumask *mask = system_32bit_el0_cpumask();
1686
1687 return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1688 }
1689 static const DEVICE_ATTR_RO(aarch32_el0);
1690
aarch32_el0_sysfs_init(void)1691 static int __init aarch32_el0_sysfs_init(void)
1692 {
1693 struct device *dev_root;
1694 int ret = 0;
1695
1696 if (!allow_mismatched_32bit_el0)
1697 return 0;
1698
1699 dev_root = bus_get_dev_root(&cpu_subsys);
1700 if (dev_root) {
1701 ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1702 put_device(dev_root);
1703 }
1704 return ret;
1705 }
1706 device_initcall(aarch32_el0_sysfs_init);
1707
has_32bit_el0(const struct arm64_cpu_capabilities * entry,int scope)1708 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1709 {
1710 if (!has_cpuid_feature(entry, scope))
1711 return allow_mismatched_32bit_el0;
1712
1713 if (scope == SCOPE_SYSTEM)
1714 pr_info("detected: 32-bit EL0 Support\n");
1715
1716 return true;
1717 }
1718
has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities * entry,int scope)1719 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1720 {
1721 bool has_sre;
1722
1723 if (!has_cpuid_feature(entry, scope))
1724 return false;
1725
1726 has_sre = gic_enable_sre();
1727 if (!has_sre)
1728 pr_warn_once("%s present but disabled by higher exception level\n",
1729 entry->desc);
1730
1731 return has_sre;
1732 }
1733
has_cache_idc(const struct arm64_cpu_capabilities * entry,int scope)1734 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1735 int scope)
1736 {
1737 u64 ctr;
1738
1739 if (scope == SCOPE_SYSTEM)
1740 ctr = arm64_ftr_reg_ctrel0.sys_val;
1741 else
1742 ctr = read_cpuid_effective_cachetype();
1743
1744 return ctr & BIT(CTR_EL0_IDC_SHIFT);
1745 }
1746
cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities * __unused)1747 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1748 {
1749 /*
1750 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1751 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1752 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1753 * value.
1754 */
1755 if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1756 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1757 }
1758
has_cache_dic(const struct arm64_cpu_capabilities * entry,int scope)1759 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1760 int scope)
1761 {
1762 u64 ctr;
1763
1764 if (scope == SCOPE_SYSTEM)
1765 ctr = arm64_ftr_reg_ctrel0.sys_val;
1766 else
1767 ctr = read_cpuid_cachetype();
1768
1769 return ctr & BIT(CTR_EL0_DIC_SHIFT);
1770 }
1771
1772 static bool __maybe_unused
has_useable_cnp(const struct arm64_cpu_capabilities * entry,int scope)1773 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1774 {
1775 /*
1776 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1777 * may share TLB entries with a CPU stuck in the crashed
1778 * kernel.
1779 */
1780 if (is_kdump_kernel())
1781 return false;
1782
1783 if (cpus_have_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1784 return false;
1785
1786 return has_cpuid_feature(entry, scope);
1787 }
1788
1789 static bool __meltdown_safe = true;
1790 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1791
unmap_kernel_at_el0(const struct arm64_cpu_capabilities * entry,int scope)1792 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1793 int scope)
1794 {
1795 /* List of CPUs that are not vulnerable and don't need KPTI */
1796 static const struct midr_range kpti_safe_list[] = {
1797 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1798 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1799 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1800 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1801 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1802 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1803 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1804 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1805 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1806 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1807 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1808 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1809 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1810 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1811 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1812 { /* sentinel */ }
1813 };
1814 char const *str = "kpti command line option";
1815 bool meltdown_safe;
1816
1817 meltdown_safe = is_midr_in_range_list(kpti_safe_list);
1818
1819 /* Defer to CPU feature registers */
1820 if (has_cpuid_feature(entry, scope))
1821 meltdown_safe = true;
1822
1823 if (!meltdown_safe)
1824 __meltdown_safe = false;
1825
1826 /*
1827 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1828 * ThunderX leads to apparent I-cache corruption of kernel text, which
1829 * ends as well as you might imagine. Don't even try. We cannot rely
1830 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1831 * because cpucap detection order may change. However, since we know
1832 * affected CPUs are always in a homogeneous configuration, it is
1833 * safe to rely on this_cpu_has_cap() here.
1834 */
1835 if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1836 str = "ARM64_WORKAROUND_CAVIUM_27456";
1837 __kpti_forced = -1;
1838 }
1839
1840 /* Useful for KASLR robustness */
1841 if (kaslr_enabled() && kaslr_requires_kpti()) {
1842 if (!__kpti_forced) {
1843 str = "KASLR";
1844 __kpti_forced = 1;
1845 }
1846 }
1847
1848 if (cpu_mitigations_off() && !__kpti_forced) {
1849 str = "mitigations=off";
1850 __kpti_forced = -1;
1851 }
1852
1853 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1854 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1855 return false;
1856 }
1857
1858 /* Forced? */
1859 if (__kpti_forced) {
1860 pr_info_once("kernel page table isolation forced %s by %s\n",
1861 __kpti_forced > 0 ? "ON" : "OFF", str);
1862 return __kpti_forced > 0;
1863 }
1864
1865 return !meltdown_safe;
1866 }
1867
has_nv1(const struct arm64_cpu_capabilities * entry,int scope)1868 static bool has_nv1(const struct arm64_cpu_capabilities *entry, int scope)
1869 {
1870 /*
1871 * Although the Apple M2 family appears to support NV1, the
1872 * PTW barfs on the nVHE EL2 S1 page table format. Pretend
1873 * that it doesn't support NV1 at all.
1874 */
1875 static const struct midr_range nv1_ni_list[] = {
1876 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
1877 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
1878 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
1879 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
1880 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
1881 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
1882 {}
1883 };
1884
1885 return (__system_matches_cap(ARM64_HAS_NESTED_VIRT) &&
1886 !(has_cpuid_feature(entry, scope) ||
1887 is_midr_in_range_list(nv1_ni_list)));
1888 }
1889
1890 #if defined(ID_AA64MMFR0_EL1_TGRAN_LPA2) && defined(ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2)
has_lpa2_at_stage1(u64 mmfr0)1891 static bool has_lpa2_at_stage1(u64 mmfr0)
1892 {
1893 unsigned int tgran;
1894
1895 tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1896 ID_AA64MMFR0_EL1_TGRAN_SHIFT);
1897 return tgran == ID_AA64MMFR0_EL1_TGRAN_LPA2;
1898 }
1899
has_lpa2_at_stage2(u64 mmfr0)1900 static bool has_lpa2_at_stage2(u64 mmfr0)
1901 {
1902 unsigned int tgran;
1903
1904 tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1905 ID_AA64MMFR0_EL1_TGRAN_2_SHIFT);
1906 return tgran == ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2;
1907 }
1908
has_lpa2(const struct arm64_cpu_capabilities * entry,int scope)1909 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1910 {
1911 u64 mmfr0;
1912
1913 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1914 return has_lpa2_at_stage1(mmfr0) && has_lpa2_at_stage2(mmfr0);
1915 }
1916 #else
has_lpa2(const struct arm64_cpu_capabilities * entry,int scope)1917 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1918 {
1919 return false;
1920 }
1921 #endif
1922
1923 #ifdef CONFIG_HW_PERF_EVENTS
has_pmuv3(const struct arm64_cpu_capabilities * entry,int scope)1924 static bool has_pmuv3(const struct arm64_cpu_capabilities *entry, int scope)
1925 {
1926 u64 dfr0 = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1927 unsigned int pmuver;
1928
1929 /*
1930 * PMUVer follows the standard ID scheme for an unsigned field with the
1931 * exception of 0xF (IMP_DEF) which is treated specially and implies
1932 * FEAT_PMUv3 is not implemented.
1933 *
1934 * See DDI0487L.a D24.1.3.2 for more details.
1935 */
1936 pmuver = cpuid_feature_extract_unsigned_field(dfr0,
1937 ID_AA64DFR0_EL1_PMUVer_SHIFT);
1938 if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1939 return false;
1940
1941 return pmuver >= ID_AA64DFR0_EL1_PMUVer_IMP;
1942 }
1943 #endif
1944
cpu_enable_kpti(struct arm64_cpu_capabilities const * cap)1945 static void cpu_enable_kpti(struct arm64_cpu_capabilities const *cap)
1946 {
1947 if (__this_cpu_read(this_cpu_vector) == vectors) {
1948 const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1949
1950 __this_cpu_write(this_cpu_vector, v);
1951 }
1952
1953 }
1954
parse_kpti(char * str)1955 static int __init parse_kpti(char *str)
1956 {
1957 bool enabled;
1958 int ret = kstrtobool(str, &enabled);
1959
1960 if (ret)
1961 return ret;
1962
1963 __kpti_forced = enabled ? 1 : -1;
1964 return 0;
1965 }
1966 early_param("kpti", parse_kpti);
1967
1968 #ifdef CONFIG_ARM64_HW_AFDBM
1969 static struct cpumask dbm_cpus __read_mostly;
1970
__cpu_enable_hw_dbm(void)1971 static inline void __cpu_enable_hw_dbm(void)
1972 {
1973 u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1974
1975 write_sysreg(tcr, tcr_el1);
1976 isb();
1977 local_flush_tlb_all();
1978 }
1979
cpu_has_broken_dbm(void)1980 static bool cpu_has_broken_dbm(void)
1981 {
1982 /* List of CPUs which have broken DBM support. */
1983 static const struct midr_range cpus[] = {
1984 #ifdef CONFIG_ARM64_ERRATUM_1024718
1985 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1986 /* Kryo4xx Silver (rdpe => r1p0) */
1987 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1988 #endif
1989 #ifdef CONFIG_ARM64_ERRATUM_2051678
1990 MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
1991 #endif
1992 {},
1993 };
1994
1995 return is_midr_in_range_list(cpus);
1996 }
1997
cpu_can_use_dbm(const struct arm64_cpu_capabilities * cap)1998 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1999 {
2000 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
2001 !cpu_has_broken_dbm();
2002 }
2003
cpu_enable_hw_dbm(struct arm64_cpu_capabilities const * cap)2004 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
2005 {
2006 if (cpu_can_use_dbm(cap)) {
2007 __cpu_enable_hw_dbm();
2008 cpumask_set_cpu(smp_processor_id(), &dbm_cpus);
2009 }
2010 }
2011
has_hw_dbm(const struct arm64_cpu_capabilities * cap,int __unused)2012 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
2013 int __unused)
2014 {
2015 /*
2016 * DBM is a non-conflicting feature. i.e, the kernel can safely
2017 * run a mix of CPUs with and without the feature. So, we
2018 * unconditionally enable the capability to allow any late CPU
2019 * to use the feature. We only enable the control bits on the
2020 * CPU, if it is supported.
2021 */
2022
2023 return true;
2024 }
2025
2026 #endif
2027
2028 #ifdef CONFIG_ARM64_AMU_EXTN
2029
2030 /*
2031 * The "amu_cpus" cpumask only signals that the CPU implementation for the
2032 * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
2033 * information regarding all the events that it supports. When a CPU bit is
2034 * set in the cpumask, the user of this feature can only rely on the presence
2035 * of the 4 fixed counters for that CPU. But this does not guarantee that the
2036 * counters are enabled or access to these counters is enabled by code
2037 * executed at higher exception levels (firmware).
2038 */
2039 static struct cpumask amu_cpus __read_mostly;
2040
cpu_has_amu_feat(int cpu)2041 bool cpu_has_amu_feat(int cpu)
2042 {
2043 return cpumask_test_cpu(cpu, &amu_cpus);
2044 }
2045
get_cpu_with_amu_feat(void)2046 int get_cpu_with_amu_feat(void)
2047 {
2048 return cpumask_any(&amu_cpus);
2049 }
2050
cpu_amu_enable(struct arm64_cpu_capabilities const * cap)2051 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
2052 {
2053 if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
2054 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
2055
2056 /* 0 reference values signal broken/disabled counters */
2057 if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
2058 update_freq_counters_refs();
2059 }
2060 }
2061
has_amu(const struct arm64_cpu_capabilities * cap,int __unused)2062 static bool has_amu(const struct arm64_cpu_capabilities *cap,
2063 int __unused)
2064 {
2065 /*
2066 * The AMU extension is a non-conflicting feature: the kernel can
2067 * safely run a mix of CPUs with and without support for the
2068 * activity monitors extension. Therefore, unconditionally enable
2069 * the capability to allow any late CPU to use the feature.
2070 *
2071 * With this feature unconditionally enabled, the cpu_enable
2072 * function will be called for all CPUs that match the criteria,
2073 * including secondary and hotplugged, marking this feature as
2074 * present on that respective CPU. The enable function will also
2075 * print a detection message.
2076 */
2077
2078 return true;
2079 }
2080 #else
get_cpu_with_amu_feat(void)2081 int get_cpu_with_amu_feat(void)
2082 {
2083 return nr_cpu_ids;
2084 }
2085 #endif
2086
runs_at_el2(const struct arm64_cpu_capabilities * entry,int __unused)2087 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
2088 {
2089 return is_kernel_in_hyp_mode();
2090 }
2091
cpu_copy_el2regs(const struct arm64_cpu_capabilities * __unused)2092 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
2093 {
2094 /*
2095 * Copy register values that aren't redirected by hardware.
2096 *
2097 * Before code patching, we only set tpidr_el1, all CPUs need to copy
2098 * this value to tpidr_el2 before we patch the code. Once we've done
2099 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
2100 * do anything here.
2101 */
2102 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
2103 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
2104 }
2105
has_nested_virt_support(const struct arm64_cpu_capabilities * cap,int scope)2106 static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
2107 int scope)
2108 {
2109 if (kvm_get_mode() != KVM_MODE_NV)
2110 return false;
2111
2112 if (!cpucap_multi_entry_cap_matches(cap, scope)) {
2113 pr_warn("unavailable: %s\n", cap->desc);
2114 return false;
2115 }
2116
2117 return true;
2118 }
2119
hvhe_possible(const struct arm64_cpu_capabilities * entry,int __unused)2120 static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
2121 int __unused)
2122 {
2123 return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_HVHE);
2124 }
2125
cpu_supports_bbml2_noabort(void)2126 bool cpu_supports_bbml2_noabort(void)
2127 {
2128 /*
2129 * We want to allow usage of BBML2 in as wide a range of kernel contexts
2130 * as possible. This list is therefore an allow-list of known-good
2131 * implementations that both support BBML2 and additionally, fulfill the
2132 * extra constraint of never generating TLB conflict aborts when using
2133 * the relaxed BBML2 semantics (such aborts make use of BBML2 in certain
2134 * kernel contexts difficult to prove safe against recursive aborts).
2135 *
2136 * Note that implementations can only be considered "known-good" if their
2137 * implementors attest to the fact that the implementation never raises
2138 * TLB conflict aborts for BBML2 mapping granularity changes.
2139 */
2140 static const struct midr_range supports_bbml2_noabort_list[] = {
2141 MIDR_REV_RANGE(MIDR_CORTEX_X4, 0, 3, 0xf),
2142 MIDR_REV_RANGE(MIDR_NEOVERSE_V3, 0, 2, 0xf),
2143 MIDR_REV_RANGE(MIDR_NEOVERSE_V3AE, 0, 2, 0xf),
2144 MIDR_ALL_VERSIONS(MIDR_NVIDIA_OLYMPUS),
2145 MIDR_ALL_VERSIONS(MIDR_AMPERE1),
2146 MIDR_ALL_VERSIONS(MIDR_AMPERE1A),
2147 {}
2148 };
2149
2150 /* Does our cpu guarantee to never raise TLB conflict aborts? */
2151 if (!is_midr_in_range_list(supports_bbml2_noabort_list))
2152 return false;
2153
2154 /*
2155 * We currently ignore the ID_AA64MMFR2_EL1 register, and only care
2156 * about whether the MIDR check passes.
2157 */
2158
2159 return true;
2160 }
2161
has_bbml2_noabort(const struct arm64_cpu_capabilities * caps,int scope)2162 static bool has_bbml2_noabort(const struct arm64_cpu_capabilities *caps, int scope)
2163 {
2164 return cpu_supports_bbml2_noabort();
2165 }
2166
2167 #ifdef CONFIG_ARM64_PAN
cpu_enable_pan(const struct arm64_cpu_capabilities * __unused)2168 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2169 {
2170 /*
2171 * We modify PSTATE. This won't work from irq context as the PSTATE
2172 * is discarded once we return from the exception.
2173 */
2174 WARN_ON_ONCE(in_interrupt());
2175
2176 sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2177 set_pstate_pan(1);
2178 }
2179 #endif /* CONFIG_ARM64_PAN */
2180
2181 #ifdef CONFIG_ARM64_RAS_EXTN
cpu_clear_disr(const struct arm64_cpu_capabilities * __unused)2182 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2183 {
2184 /* Firmware may have left a deferred SError in this register. */
2185 write_sysreg_s(0, SYS_DISR_EL1);
2186 }
has_rasv1p1(const struct arm64_cpu_capabilities * __unused,int scope)2187 static bool has_rasv1p1(const struct arm64_cpu_capabilities *__unused, int scope)
2188 {
2189 const struct arm64_cpu_capabilities rasv1p1_caps[] = {
2190 {
2191 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, V1P1)
2192 },
2193 {
2194 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2195 },
2196 {
2197 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, RAS_frac, RASv1p1)
2198 },
2199 };
2200
2201 return (has_cpuid_feature(&rasv1p1_caps[0], scope) ||
2202 (has_cpuid_feature(&rasv1p1_caps[1], scope) &&
2203 has_cpuid_feature(&rasv1p1_caps[2], scope)));
2204 }
2205 #endif /* CONFIG_ARM64_RAS_EXTN */
2206
2207 #ifdef CONFIG_ARM64_PTR_AUTH
has_address_auth_cpucap(const struct arm64_cpu_capabilities * entry,int scope)2208 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2209 {
2210 int boot_val, sec_val;
2211
2212 /* We don't expect to be called with SCOPE_SYSTEM */
2213 WARN_ON(scope == SCOPE_SYSTEM);
2214 /*
2215 * The ptr-auth feature levels are not intercompatible with lower
2216 * levels. Hence we must match ptr-auth feature level of the secondary
2217 * CPUs with that of the boot CPU. The level of boot cpu is fetched
2218 * from the sanitised register whereas direct register read is done for
2219 * the secondary CPUs.
2220 * The sanitised feature state is guaranteed to match that of the
2221 * boot CPU as a mismatched secondary CPU is parked before it gets
2222 * a chance to update the state, with the capability.
2223 */
2224 boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2225 entry->field_pos, entry->sign);
2226 if (scope & SCOPE_BOOT_CPU)
2227 return boot_val >= entry->min_field_value;
2228 /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2229 sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2230 entry->field_pos, entry->sign);
2231 return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2232 }
2233
has_address_auth_metacap(const struct arm64_cpu_capabilities * entry,int scope)2234 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2235 int scope)
2236 {
2237 bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2238 bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2239 bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2240
2241 return apa || apa3 || api;
2242 }
2243
has_generic_auth(const struct arm64_cpu_capabilities * entry,int __unused)2244 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2245 int __unused)
2246 {
2247 bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2248 bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2249 bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2250
2251 return gpa || gpa3 || gpi;
2252 }
2253 #endif /* CONFIG_ARM64_PTR_AUTH */
2254
2255 #ifdef CONFIG_ARM64_E0PD
cpu_enable_e0pd(struct arm64_cpu_capabilities const * cap)2256 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2257 {
2258 if (this_cpu_has_cap(ARM64_HAS_E0PD))
2259 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2260 }
2261 #endif /* CONFIG_ARM64_E0PD */
2262
2263 #ifdef CONFIG_ARM64_PSEUDO_NMI
can_use_gic_priorities(const struct arm64_cpu_capabilities * entry,int scope)2264 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2265 int scope)
2266 {
2267 /*
2268 * ARM64_HAS_GICV3_CPUIF has a lower index, and is a boot CPU
2269 * feature, so will be detected earlier.
2270 */
2271 BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GICV3_CPUIF);
2272 if (!cpus_have_cap(ARM64_HAS_GICV3_CPUIF))
2273 return false;
2274
2275 return enable_pseudo_nmi;
2276 }
2277
has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities * entry,int scope)2278 static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2279 int scope)
2280 {
2281 /*
2282 * If we're not using priority masking then we won't be poking PMR_EL1,
2283 * and there's no need to relax synchronization of writes to it, and
2284 * ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2285 * that.
2286 *
2287 * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2288 * feature, so will be detected earlier.
2289 */
2290 BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2291 if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2292 return false;
2293
2294 /*
2295 * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2296 * hint for interrupt distribution, a DSB is not necessary when
2297 * unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2298 *
2299 * Linux itself doesn't use 1:N distribution, so has no need to
2300 * set PMHE. The only reason to have it set is if EL3 requires it
2301 * (and we can't change it).
2302 */
2303 return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2304 }
2305 #endif
2306
2307 #ifdef CONFIG_ARM64_BTI
bti_enable(const struct arm64_cpu_capabilities * __unused)2308 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2309 {
2310 /*
2311 * Use of X16/X17 for tail-calls and trampolines that jump to
2312 * function entry points using BR is a requirement for
2313 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2314 * So, be strict and forbid other BRs using other registers to
2315 * jump onto a PACIxSP instruction:
2316 */
2317 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2318 isb();
2319 }
2320 #endif /* CONFIG_ARM64_BTI */
2321
2322 #ifdef CONFIG_ARM64_MTE
cpu_enable_mte(struct arm64_cpu_capabilities const * cap)2323 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2324 {
2325 static bool cleared_zero_page = false;
2326
2327 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2328
2329 mte_cpu_setup();
2330
2331 /*
2332 * Clear the tags in the zero page. This needs to be done via the
2333 * linear map which has the Tagged attribute. Since this page is
2334 * always mapped as pte_special(), set_pte_at() will not attempt to
2335 * clear the tags or set PG_mte_tagged.
2336 */
2337 if (!cleared_zero_page) {
2338 cleared_zero_page = true;
2339 mte_clear_page_tags(lm_alias(empty_zero_page));
2340 }
2341
2342 kasan_init_hw_tags_cpu();
2343 }
2344 #endif /* CONFIG_ARM64_MTE */
2345
user_feature_fixup(void)2346 static void user_feature_fixup(void)
2347 {
2348 if (cpus_have_cap(ARM64_WORKAROUND_2658417)) {
2349 struct arm64_ftr_reg *regp;
2350
2351 regp = get_arm64_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2352 if (regp)
2353 regp->user_mask &= ~ID_AA64ISAR1_EL1_BF16_MASK;
2354 }
2355
2356 if (cpus_have_cap(ARM64_WORKAROUND_SPECULATIVE_SSBS)) {
2357 struct arm64_ftr_reg *regp;
2358
2359 regp = get_arm64_ftr_reg(SYS_ID_AA64PFR1_EL1);
2360 if (regp)
2361 regp->user_mask &= ~ID_AA64PFR1_EL1_SSBS_MASK;
2362 }
2363 }
2364
elf_hwcap_fixup(void)2365 static void elf_hwcap_fixup(void)
2366 {
2367 #ifdef CONFIG_COMPAT
2368 if (cpus_have_cap(ARM64_WORKAROUND_1742098))
2369 compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2370 #endif /* CONFIG_COMPAT */
2371 }
2372
2373 #ifdef CONFIG_KVM
is_kvm_protected_mode(const struct arm64_cpu_capabilities * entry,int __unused)2374 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2375 {
2376 return kvm_get_mode() == KVM_MODE_PROTECTED;
2377 }
2378 #endif /* CONFIG_KVM */
2379
cpu_trap_el0_impdef(const struct arm64_cpu_capabilities * __unused)2380 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2381 {
2382 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2383 }
2384
cpu_enable_dit(const struct arm64_cpu_capabilities * __unused)2385 static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2386 {
2387 set_pstate_dit(1);
2388 }
2389
cpu_enable_mops(const struct arm64_cpu_capabilities * __unused)2390 static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
2391 {
2392 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
2393 }
2394
2395 #ifdef CONFIG_ARM64_POE
cpu_enable_poe(const struct arm64_cpu_capabilities * __unused)2396 static void cpu_enable_poe(const struct arm64_cpu_capabilities *__unused)
2397 {
2398 sysreg_clear_set(REG_TCR2_EL1, 0, TCR2_EL1_E0POE);
2399 sysreg_clear_set(CPACR_EL1, 0, CPACR_EL1_E0POE);
2400 }
2401 #endif
2402
2403 #ifdef CONFIG_ARM64_GCS
cpu_enable_gcs(const struct arm64_cpu_capabilities * __unused)2404 static void cpu_enable_gcs(const struct arm64_cpu_capabilities *__unused)
2405 {
2406 /* GCSPR_EL0 is always readable */
2407 write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1);
2408 }
2409 #endif
2410
2411 /* Internal helper functions to match cpu capability type */
2412 static bool
cpucap_late_cpu_optional(const struct arm64_cpu_capabilities * cap)2413 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2414 {
2415 return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2416 }
2417
2418 static bool
cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities * cap)2419 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2420 {
2421 return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2422 }
2423
2424 static bool
cpucap_panic_on_conflict(const struct arm64_cpu_capabilities * cap)2425 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2426 {
2427 return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2428 }
2429
2430 static bool
test_has_mpam(const struct arm64_cpu_capabilities * entry,int scope)2431 test_has_mpam(const struct arm64_cpu_capabilities *entry, int scope)
2432 {
2433 if (!has_cpuid_feature(entry, scope))
2434 return false;
2435
2436 /* Check firmware actually enabled MPAM on this cpu. */
2437 return (read_sysreg_s(SYS_MPAM1_EL1) & MPAM1_EL1_MPAMEN);
2438 }
2439
2440 static void
cpu_enable_mpam(const struct arm64_cpu_capabilities * entry)2441 cpu_enable_mpam(const struct arm64_cpu_capabilities *entry)
2442 {
2443 /*
2444 * Access by the kernel (at EL1) should use the reserved PARTID
2445 * which is configured unrestricted. This avoids priority-inversion
2446 * where latency sensitive tasks have to wait for a task that has
2447 * been throttled to release the lock.
2448 */
2449 write_sysreg_s(0, SYS_MPAM1_EL1);
2450 }
2451
2452 static bool
test_has_mpam_hcr(const struct arm64_cpu_capabilities * entry,int scope)2453 test_has_mpam_hcr(const struct arm64_cpu_capabilities *entry, int scope)
2454 {
2455 u64 idr = read_sanitised_ftr_reg(SYS_MPAMIDR_EL1);
2456
2457 return idr & MPAMIDR_EL1_HAS_HCR;
2458 }
2459
2460 static bool
test_has_gicv5_legacy(const struct arm64_cpu_capabilities * entry,int scope)2461 test_has_gicv5_legacy(const struct arm64_cpu_capabilities *entry, int scope)
2462 {
2463 if (!this_cpu_has_cap(ARM64_HAS_GICV5_CPUIF))
2464 return false;
2465
2466 return !!(read_sysreg_s(SYS_ICC_IDR0_EL1) & ICC_IDR0_EL1_GCIE_LEGACY);
2467 }
2468
2469 static const struct arm64_cpu_capabilities arm64_features[] = {
2470 {
2471 .capability = ARM64_ALWAYS_BOOT,
2472 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2473 .matches = has_always,
2474 },
2475 {
2476 .capability = ARM64_ALWAYS_SYSTEM,
2477 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2478 .matches = has_always,
2479 },
2480 {
2481 .desc = "GICv3 CPU interface",
2482 .capability = ARM64_HAS_GICV3_CPUIF,
2483 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2484 .matches = has_useable_gicv3_cpuif,
2485 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2486 },
2487 {
2488 .desc = "Enhanced Counter Virtualization",
2489 .capability = ARM64_HAS_ECV,
2490 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2491 .matches = has_cpuid_feature,
2492 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2493 },
2494 {
2495 .desc = "Enhanced Counter Virtualization (CNTPOFF)",
2496 .capability = ARM64_HAS_ECV_CNTPOFF,
2497 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2498 .matches = has_cpuid_feature,
2499 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
2500 },
2501 #ifdef CONFIG_ARM64_PAN
2502 {
2503 .desc = "Privileged Access Never",
2504 .capability = ARM64_HAS_PAN,
2505 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2506 .matches = has_cpuid_feature,
2507 .cpu_enable = cpu_enable_pan,
2508 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2509 },
2510 #endif /* CONFIG_ARM64_PAN */
2511 #ifdef CONFIG_ARM64_EPAN
2512 {
2513 .desc = "Enhanced Privileged Access Never",
2514 .capability = ARM64_HAS_EPAN,
2515 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2516 .matches = has_cpuid_feature,
2517 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2518 },
2519 #endif /* CONFIG_ARM64_EPAN */
2520 #ifdef CONFIG_ARM64_LSE_ATOMICS
2521 {
2522 .desc = "LSE atomic instructions",
2523 .capability = ARM64_HAS_LSE_ATOMICS,
2524 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2525 .matches = has_cpuid_feature,
2526 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2527 },
2528 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2529 {
2530 .desc = "Virtualization Host Extensions",
2531 .capability = ARM64_HAS_VIRT_HOST_EXTN,
2532 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2533 .matches = runs_at_el2,
2534 .cpu_enable = cpu_copy_el2regs,
2535 },
2536 {
2537 .desc = "Nested Virtualization Support",
2538 .capability = ARM64_HAS_NESTED_VIRT,
2539 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2540 .matches = has_nested_virt_support,
2541 .match_list = (const struct arm64_cpu_capabilities []){
2542 {
2543 .matches = has_cpuid_feature,
2544 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, NV2)
2545 },
2546 {
2547 .matches = has_cpuid_feature,
2548 ARM64_CPUID_FIELDS(ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY)
2549 },
2550 { /* Sentinel */ }
2551 },
2552 },
2553 {
2554 .capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2555 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2556 .matches = has_32bit_el0,
2557 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2558 },
2559 #ifdef CONFIG_KVM
2560 {
2561 .desc = "32-bit EL1 Support",
2562 .capability = ARM64_HAS_32BIT_EL1,
2563 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2564 .matches = has_cpuid_feature,
2565 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2566 },
2567 {
2568 .desc = "Protected KVM",
2569 .capability = ARM64_KVM_PROTECTED_MODE,
2570 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2571 .matches = is_kvm_protected_mode,
2572 },
2573 {
2574 .desc = "HCRX_EL2 register",
2575 .capability = ARM64_HAS_HCX,
2576 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2577 .matches = has_cpuid_feature,
2578 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
2579 },
2580 #endif
2581 {
2582 .desc = "Kernel page table isolation (KPTI)",
2583 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
2584 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2585 .cpu_enable = cpu_enable_kpti,
2586 .matches = unmap_kernel_at_el0,
2587 /*
2588 * The ID feature fields below are used to indicate that
2589 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2590 * more details.
2591 */
2592 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2593 },
2594 {
2595 .capability = ARM64_HAS_FPSIMD,
2596 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2597 .matches = has_cpuid_feature,
2598 .cpu_enable = cpu_enable_fpsimd,
2599 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, FP, IMP)
2600 },
2601 #ifdef CONFIG_ARM64_PMEM
2602 {
2603 .desc = "Data cache clean to Point of Persistence",
2604 .capability = ARM64_HAS_DCPOP,
2605 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2606 .matches = has_cpuid_feature,
2607 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2608 },
2609 {
2610 .desc = "Data cache clean to Point of Deep Persistence",
2611 .capability = ARM64_HAS_DCPODP,
2612 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2613 .matches = has_cpuid_feature,
2614 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2615 },
2616 #endif
2617 #ifdef CONFIG_ARM64_SVE
2618 {
2619 .desc = "Scalable Vector Extension",
2620 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2621 .capability = ARM64_SVE,
2622 .cpu_enable = cpu_enable_sve,
2623 .matches = has_cpuid_feature,
2624 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2625 },
2626 #endif /* CONFIG_ARM64_SVE */
2627 #ifdef CONFIG_ARM64_RAS_EXTN
2628 {
2629 .desc = "RAS Extension Support",
2630 .capability = ARM64_HAS_RAS_EXTN,
2631 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2632 .matches = has_cpuid_feature,
2633 .cpu_enable = cpu_clear_disr,
2634 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2635 },
2636 {
2637 .desc = "RASv1p1 Extension Support",
2638 .capability = ARM64_HAS_RASV1P1_EXTN,
2639 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2640 .matches = has_rasv1p1,
2641 },
2642 #endif /* CONFIG_ARM64_RAS_EXTN */
2643 #ifdef CONFIG_ARM64_AMU_EXTN
2644 {
2645 .desc = "Activity Monitors Unit (AMU)",
2646 .capability = ARM64_HAS_AMU_EXTN,
2647 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2648 .matches = has_amu,
2649 .cpu_enable = cpu_amu_enable,
2650 .cpus = &amu_cpus,
2651 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2652 },
2653 #endif /* CONFIG_ARM64_AMU_EXTN */
2654 {
2655 .desc = "Data cache clean to the PoU not required for I/D coherence",
2656 .capability = ARM64_HAS_CACHE_IDC,
2657 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2658 .matches = has_cache_idc,
2659 .cpu_enable = cpu_emulate_effective_ctr,
2660 },
2661 {
2662 .desc = "Instruction cache invalidation not required for I/D coherence",
2663 .capability = ARM64_HAS_CACHE_DIC,
2664 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2665 .matches = has_cache_dic,
2666 },
2667 {
2668 .desc = "Stage-2 Force Write-Back",
2669 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2670 .capability = ARM64_HAS_STAGE2_FWB,
2671 .matches = has_cpuid_feature,
2672 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2673 },
2674 {
2675 .desc = "ARMv8.4 Translation Table Level",
2676 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2677 .capability = ARM64_HAS_ARMv8_4_TTL,
2678 .matches = has_cpuid_feature,
2679 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2680 },
2681 {
2682 .desc = "TLB range maintenance instructions",
2683 .capability = ARM64_HAS_TLB_RANGE,
2684 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2685 .matches = has_cpuid_feature,
2686 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2687 },
2688 #ifdef CONFIG_ARM64_HW_AFDBM
2689 {
2690 .desc = "Hardware dirty bit management",
2691 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2692 .capability = ARM64_HW_DBM,
2693 .matches = has_hw_dbm,
2694 .cpu_enable = cpu_enable_hw_dbm,
2695 .cpus = &dbm_cpus,
2696 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2697 },
2698 #endif
2699 #ifdef CONFIG_ARM64_HAFT
2700 {
2701 .desc = "Hardware managed Access Flag for Table Descriptors",
2702 /*
2703 * Contrary to the page/block access flag, the table access flag
2704 * cannot be emulated in software (no access fault will occur).
2705 * Therefore this should be used only if it's supported system
2706 * wide.
2707 */
2708 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2709 .capability = ARM64_HAFT,
2710 .matches = has_cpuid_feature,
2711 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, HAFT)
2712 },
2713 #endif
2714 {
2715 .desc = "CRC32 instructions",
2716 .capability = ARM64_HAS_CRC32,
2717 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2718 .matches = has_cpuid_feature,
2719 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2720 },
2721 {
2722 .desc = "Speculative Store Bypassing Safe (SSBS)",
2723 .capability = ARM64_SSBS,
2724 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2725 .matches = has_cpuid_feature,
2726 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2727 },
2728 #ifdef CONFIG_ARM64_CNP
2729 {
2730 .desc = "Common not Private translations",
2731 .capability = ARM64_HAS_CNP,
2732 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2733 .matches = has_useable_cnp,
2734 .cpu_enable = cpu_enable_cnp,
2735 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2736 },
2737 #endif
2738 {
2739 .desc = "Speculation barrier (SB)",
2740 .capability = ARM64_HAS_SB,
2741 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2742 .matches = has_cpuid_feature,
2743 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2744 },
2745 #ifdef CONFIG_ARM64_PTR_AUTH
2746 {
2747 .desc = "Address authentication (architected QARMA5 algorithm)",
2748 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2749 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2750 .matches = has_address_auth_cpucap,
2751 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2752 },
2753 {
2754 .desc = "Address authentication (architected QARMA3 algorithm)",
2755 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2756 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2757 .matches = has_address_auth_cpucap,
2758 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2759 },
2760 {
2761 .desc = "Address authentication (IMP DEF algorithm)",
2762 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2763 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2764 .matches = has_address_auth_cpucap,
2765 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2766 },
2767 {
2768 .capability = ARM64_HAS_ADDRESS_AUTH,
2769 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2770 .matches = has_address_auth_metacap,
2771 },
2772 {
2773 .desc = "Generic authentication (architected QARMA5 algorithm)",
2774 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2775 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2776 .matches = has_cpuid_feature,
2777 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2778 },
2779 {
2780 .desc = "Generic authentication (architected QARMA3 algorithm)",
2781 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2782 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2783 .matches = has_cpuid_feature,
2784 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2785 },
2786 {
2787 .desc = "Generic authentication (IMP DEF algorithm)",
2788 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2789 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2790 .matches = has_cpuid_feature,
2791 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2792 },
2793 {
2794 .capability = ARM64_HAS_GENERIC_AUTH,
2795 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2796 .matches = has_generic_auth,
2797 },
2798 #endif /* CONFIG_ARM64_PTR_AUTH */
2799 #ifdef CONFIG_ARM64_PSEUDO_NMI
2800 {
2801 /*
2802 * Depends on having GICv3
2803 */
2804 .desc = "IRQ priority masking",
2805 .capability = ARM64_HAS_GIC_PRIO_MASKING,
2806 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2807 .matches = can_use_gic_priorities,
2808 },
2809 {
2810 /*
2811 * Depends on ARM64_HAS_GIC_PRIO_MASKING
2812 */
2813 .capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2814 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2815 .matches = has_gic_prio_relaxed_sync,
2816 },
2817 #endif
2818 #ifdef CONFIG_ARM64_E0PD
2819 {
2820 .desc = "E0PD",
2821 .capability = ARM64_HAS_E0PD,
2822 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2823 .cpu_enable = cpu_enable_e0pd,
2824 .matches = has_cpuid_feature,
2825 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2826 },
2827 #endif
2828 {
2829 .desc = "Random Number Generator",
2830 .capability = ARM64_HAS_RNG,
2831 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2832 .matches = has_cpuid_feature,
2833 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2834 },
2835 #ifdef CONFIG_ARM64_BTI
2836 {
2837 .desc = "Branch Target Identification",
2838 .capability = ARM64_BTI,
2839 #ifdef CONFIG_ARM64_BTI_KERNEL
2840 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2841 #else
2842 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2843 #endif
2844 .matches = has_cpuid_feature,
2845 .cpu_enable = bti_enable,
2846 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2847 },
2848 #endif
2849 #ifdef CONFIG_ARM64_MTE
2850 {
2851 .desc = "Memory Tagging Extension",
2852 .capability = ARM64_MTE,
2853 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2854 .matches = has_cpuid_feature,
2855 .cpu_enable = cpu_enable_mte,
2856 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2857 },
2858 {
2859 .desc = "Asymmetric MTE Tag Check Fault",
2860 .capability = ARM64_MTE_ASYMM,
2861 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2862 .matches = has_cpuid_feature,
2863 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2864 },
2865 {
2866 .desc = "FAR on MTE Tag Check Fault",
2867 .capability = ARM64_MTE_FAR,
2868 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2869 .matches = has_cpuid_feature,
2870 ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, MTEFAR, IMP)
2871 },
2872 {
2873 .desc = "Store Only MTE Tag Check",
2874 .capability = ARM64_MTE_STORE_ONLY,
2875 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2876 .matches = has_cpuid_feature,
2877 ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, MTESTOREONLY, IMP)
2878 },
2879 #endif /* CONFIG_ARM64_MTE */
2880 {
2881 .desc = "RCpc load-acquire (LDAPR)",
2882 .capability = ARM64_HAS_LDAPR,
2883 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2884 .matches = has_cpuid_feature,
2885 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2886 },
2887 {
2888 .desc = "Fine Grained Traps",
2889 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2890 .capability = ARM64_HAS_FGT,
2891 .matches = has_cpuid_feature,
2892 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
2893 },
2894 {
2895 .desc = "Fine Grained Traps 2",
2896 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2897 .capability = ARM64_HAS_FGT2,
2898 .matches = has_cpuid_feature,
2899 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, FGT2)
2900 },
2901 #ifdef CONFIG_ARM64_SME
2902 {
2903 .desc = "Scalable Matrix Extension",
2904 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2905 .capability = ARM64_SME,
2906 .matches = has_cpuid_feature,
2907 .cpu_enable = cpu_enable_sme,
2908 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2909 },
2910 /* FA64 should be sorted after the base SME capability */
2911 {
2912 .desc = "FA64",
2913 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2914 .capability = ARM64_SME_FA64,
2915 .matches = has_cpuid_feature,
2916 .cpu_enable = cpu_enable_fa64,
2917 ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
2918 },
2919 {
2920 .desc = "SME2",
2921 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2922 .capability = ARM64_SME2,
2923 .matches = has_cpuid_feature,
2924 .cpu_enable = cpu_enable_sme2,
2925 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
2926 },
2927 #endif /* CONFIG_ARM64_SME */
2928 {
2929 .desc = "WFx with timeout",
2930 .capability = ARM64_HAS_WFXT,
2931 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2932 .matches = has_cpuid_feature,
2933 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
2934 },
2935 {
2936 .desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2937 .capability = ARM64_HAS_TIDCP1,
2938 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2939 .matches = has_cpuid_feature,
2940 .cpu_enable = cpu_trap_el0_impdef,
2941 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
2942 },
2943 {
2944 .desc = "Data independent timing control (DIT)",
2945 .capability = ARM64_HAS_DIT,
2946 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2947 .matches = has_cpuid_feature,
2948 .cpu_enable = cpu_enable_dit,
2949 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
2950 },
2951 {
2952 .desc = "Memory Copy and Memory Set instructions",
2953 .capability = ARM64_HAS_MOPS,
2954 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2955 .matches = has_cpuid_feature,
2956 .cpu_enable = cpu_enable_mops,
2957 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
2958 },
2959 {
2960 .capability = ARM64_HAS_TCR2,
2961 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2962 .matches = has_cpuid_feature,
2963 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
2964 },
2965 {
2966 .desc = "Stage-1 Permission Indirection Extension (S1PIE)",
2967 .capability = ARM64_HAS_S1PIE,
2968 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2969 .matches = has_cpuid_feature,
2970 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
2971 },
2972 {
2973 .desc = "VHE for hypervisor only",
2974 .capability = ARM64_KVM_HVHE,
2975 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2976 .matches = hvhe_possible,
2977 },
2978 {
2979 .desc = "Enhanced Virtualization Traps",
2980 .capability = ARM64_HAS_EVT,
2981 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2982 .matches = has_cpuid_feature,
2983 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
2984 },
2985 {
2986 .desc = "BBM Level 2 without TLB conflict abort",
2987 .capability = ARM64_HAS_BBML2_NOABORT,
2988 .type = ARM64_CPUCAP_EARLY_LOCAL_CPU_FEATURE,
2989 .matches = has_bbml2_noabort,
2990 },
2991 {
2992 .desc = "52-bit Virtual Addressing for KVM (LPA2)",
2993 .capability = ARM64_HAS_LPA2,
2994 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2995 .matches = has_lpa2,
2996 },
2997 {
2998 .desc = "FPMR",
2999 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3000 .capability = ARM64_HAS_FPMR,
3001 .matches = has_cpuid_feature,
3002 .cpu_enable = cpu_enable_fpmr,
3003 ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, FPMR, IMP)
3004 },
3005 #ifdef CONFIG_ARM64_VA_BITS_52
3006 {
3007 .capability = ARM64_HAS_VA52,
3008 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3009 .matches = has_cpuid_feature,
3010 #ifdef CONFIG_ARM64_64K_PAGES
3011 .desc = "52-bit Virtual Addressing (LVA)",
3012 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, VARange, 52)
3013 #else
3014 .desc = "52-bit Virtual Addressing (LPA2)",
3015 #ifdef CONFIG_ARM64_4K_PAGES
3016 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN4, 52_BIT)
3017 #else
3018 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN16, 52_BIT)
3019 #endif
3020 #endif
3021 },
3022 #endif
3023 {
3024 .desc = "Memory Partitioning And Monitoring",
3025 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3026 .capability = ARM64_MPAM,
3027 .matches = test_has_mpam,
3028 .cpu_enable = cpu_enable_mpam,
3029 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, MPAM, 1)
3030 },
3031 {
3032 .desc = "Memory Partitioning And Monitoring Virtualisation",
3033 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3034 .capability = ARM64_MPAM_HCR,
3035 .matches = test_has_mpam_hcr,
3036 },
3037 {
3038 .desc = "NV1",
3039 .capability = ARM64_HAS_HCR_NV1,
3040 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3041 .matches = has_nv1,
3042 ARM64_CPUID_FIELDS_NEG(ID_AA64MMFR4_EL1, E2H0, NI_NV1)
3043 },
3044 #ifdef CONFIG_ARM64_POE
3045 {
3046 .desc = "Stage-1 Permission Overlay Extension (S1POE)",
3047 .capability = ARM64_HAS_S1POE,
3048 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3049 .matches = has_cpuid_feature,
3050 .cpu_enable = cpu_enable_poe,
3051 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1POE, IMP)
3052 },
3053 #endif
3054 #ifdef CONFIG_ARM64_GCS
3055 {
3056 .desc = "Guarded Control Stack (GCS)",
3057 .capability = ARM64_HAS_GCS,
3058 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3059 .cpu_enable = cpu_enable_gcs,
3060 .matches = has_cpuid_feature,
3061 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, GCS, IMP)
3062 },
3063 #endif
3064 #ifdef CONFIG_HW_PERF_EVENTS
3065 {
3066 .desc = "PMUv3",
3067 .capability = ARM64_HAS_PMUV3,
3068 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3069 .matches = has_pmuv3,
3070 },
3071 #endif
3072 {
3073 .desc = "SCTLR2",
3074 .capability = ARM64_HAS_SCTLR2,
3075 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3076 .matches = has_cpuid_feature,
3077 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, SCTLRX, IMP)
3078 },
3079 {
3080 .desc = "GICv5 CPU interface",
3081 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
3082 .capability = ARM64_HAS_GICV5_CPUIF,
3083 .matches = has_cpuid_feature,
3084 ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, GCIE, IMP)
3085 },
3086 {
3087 .desc = "GICv5 Legacy vCPU interface",
3088 .type = ARM64_CPUCAP_EARLY_LOCAL_CPU_FEATURE,
3089 .capability = ARM64_HAS_GICV5_LEGACY,
3090 .matches = test_has_gicv5_legacy,
3091 },
3092 {},
3093 };
3094
3095 #define HWCAP_CPUID_MATCH(reg, field, min_value) \
3096 .matches = has_user_cpuid_feature, \
3097 ARM64_CPUID_FIELDS(reg, field, min_value)
3098
3099 #define __HWCAP_CAP(name, cap_type, cap) \
3100 .desc = name, \
3101 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
3102 .hwcap_type = cap_type, \
3103 .hwcap = cap, \
3104
3105 #define HWCAP_CAP(reg, field, min_value, cap_type, cap) \
3106 { \
3107 __HWCAP_CAP(#cap, cap_type, cap) \
3108 HWCAP_CPUID_MATCH(reg, field, min_value) \
3109 }
3110
3111 #define HWCAP_MULTI_CAP(list, cap_type, cap) \
3112 { \
3113 __HWCAP_CAP(#cap, cap_type, cap) \
3114 .matches = cpucap_multi_entry_cap_matches, \
3115 .match_list = list, \
3116 }
3117
3118 #define HWCAP_CAP_MATCH(match, cap_type, cap) \
3119 { \
3120 __HWCAP_CAP(#cap, cap_type, cap) \
3121 .matches = match, \
3122 }
3123
3124 #define HWCAP_CAP_MATCH_ID(match, reg, field, min_value, cap_type, cap) \
3125 { \
3126 __HWCAP_CAP(#cap, cap_type, cap) \
3127 HWCAP_CPUID_MATCH(reg, field, min_value) \
3128 .matches = match, \
3129 }
3130
3131 #ifdef CONFIG_ARM64_PTR_AUTH
3132 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
3133 {
3134 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
3135 },
3136 {
3137 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
3138 },
3139 {
3140 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
3141 },
3142 {},
3143 };
3144
3145 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
3146 {
3147 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
3148 },
3149 {
3150 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
3151 },
3152 {
3153 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
3154 },
3155 {},
3156 };
3157 #endif
3158
3159 #ifdef CONFIG_ARM64_SVE
has_sve_feature(const struct arm64_cpu_capabilities * cap,int scope)3160 static bool has_sve_feature(const struct arm64_cpu_capabilities *cap, int scope)
3161 {
3162 return system_supports_sve() && has_user_cpuid_feature(cap, scope);
3163 }
3164 #endif
3165
3166 #ifdef CONFIG_ARM64_SME
has_sme_feature(const struct arm64_cpu_capabilities * cap,int scope)3167 static bool has_sme_feature(const struct arm64_cpu_capabilities *cap, int scope)
3168 {
3169 return system_supports_sme() && has_user_cpuid_feature(cap, scope);
3170 }
3171 #endif
3172
3173 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
3174 HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
3175 HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
3176 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
3177 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
3178 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
3179 HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
3180 HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
3181 HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, FEAT_LSE128, CAP_HWCAP, KERNEL_HWCAP_LSE128),
3182 HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
3183 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
3184 HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
3185 HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
3186 HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
3187 HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
3188 HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
3189 HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
3190 HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
3191 HWCAP_CAP(ID_AA64ISAR3_EL1, FPRCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_FPRCVT),
3192 HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
3193 HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
3194 HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
3195 HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
3196 HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
3197 HWCAP_CAP(ID_AA64PFR2_EL1, FPMR, IMP, CAP_HWCAP, KERNEL_HWCAP_FPMR),
3198 HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
3199 HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
3200 HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
3201 HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
3202 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
3203 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
3204 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC3, CAP_HWCAP, KERNEL_HWCAP_LRCPC3),
3205 HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
3206 HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
3207 HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
3208 HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
3209 HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
3210 HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
3211 HWCAP_CAP(ID_AA64ISAR2_EL1, LUT, IMP, CAP_HWCAP, KERNEL_HWCAP_LUT),
3212 HWCAP_CAP(ID_AA64ISAR3_EL1, FAMINMAX, IMP, CAP_HWCAP, KERNEL_HWCAP_FAMINMAX),
3213 HWCAP_CAP(ID_AA64ISAR3_EL1, LSFE, IMP, CAP_HWCAP, KERNEL_HWCAP_LSFE),
3214 HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
3215 #ifdef CONFIG_ARM64_SVE
3216 HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
3217 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2p2, CAP_HWCAP, KERNEL_HWCAP_SVE2P2),
3218 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
3219 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
3220 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
3221 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
3222 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, AES2, CAP_HWCAP, KERNEL_HWCAP_SVE_AES2),
3223 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
3224 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_B16B16),
3225 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, B16B16, BFSCALE, CAP_HWCAP, KERNEL_HWCAP_SVE_BFSCALE),
3226 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
3227 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
3228 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
3229 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
3230 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
3231 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
3232 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
3233 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F16MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_F16MM),
3234 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, EltPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_ELTPERM),
3235 #endif
3236 #ifdef CONFIG_ARM64_GCS
3237 HWCAP_CAP(ID_AA64PFR1_EL1, GCS, IMP, CAP_HWCAP, KERNEL_HWCAP_GCS),
3238 #endif
3239 HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
3240 #ifdef CONFIG_ARM64_BTI
3241 HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
3242 #endif
3243 #ifdef CONFIG_ARM64_PTR_AUTH
3244 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
3245 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
3246 #endif
3247 #ifdef CONFIG_ARM64_MTE
3248 HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
3249 HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
3250 HWCAP_CAP(ID_AA64PFR2_EL1, MTEFAR, IMP, CAP_HWCAP, KERNEL_HWCAP_MTE_FAR),
3251 HWCAP_CAP(ID_AA64PFR2_EL1, MTESTOREONLY, IMP, CAP_HWCAP , KERNEL_HWCAP_MTE_STORE_ONLY),
3252 #endif /* CONFIG_ARM64_MTE */
3253 HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
3254 HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
3255 HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
3256 HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, CMPBR, CAP_HWCAP, KERNEL_HWCAP_CMPBR),
3257 HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
3258 HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
3259 HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
3260 HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
3261 HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
3262 #ifdef CONFIG_ARM64_SME
3263 HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
3264 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
3265 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, LUTv2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_LUTV2),
3266 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMEver, SME2p2, CAP_HWCAP, KERNEL_HWCAP_SME2P2),
3267 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
3268 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
3269 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
3270 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
3271 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
3272 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
3273 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
3274 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F8F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F16),
3275 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F8F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F32),
3276 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
3277 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
3278 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
3279 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
3280 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
3281 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SF8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8FMA),
3282 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SF8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP4),
3283 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SF8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP2),
3284 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SBitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SBITPERM),
3285 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_AES),
3286 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SFEXPA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SFEXPA),
3287 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, STMOP, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_STMOP),
3288 HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMOP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SMOP4),
3289 #endif /* CONFIG_ARM64_SME */
3290 HWCAP_CAP(ID_AA64FPFR0_EL1, F8CVT, IMP, CAP_HWCAP, KERNEL_HWCAP_F8CVT),
3291 HWCAP_CAP(ID_AA64FPFR0_EL1, F8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_F8FMA),
3292 HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP4),
3293 HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP2),
3294 HWCAP_CAP(ID_AA64FPFR0_EL1, F8MM8, IMP, CAP_HWCAP, KERNEL_HWCAP_F8MM8),
3295 HWCAP_CAP(ID_AA64FPFR0_EL1, F8MM4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8MM4),
3296 HWCAP_CAP(ID_AA64FPFR0_EL1, F8E4M3, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E4M3),
3297 HWCAP_CAP(ID_AA64FPFR0_EL1, F8E5M2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E5M2),
3298 #ifdef CONFIG_ARM64_POE
3299 HWCAP_CAP(ID_AA64MMFR3_EL1, S1POE, IMP, CAP_HWCAP, KERNEL_HWCAP_POE),
3300 #endif
3301 {},
3302 };
3303
3304 #ifdef CONFIG_COMPAT
compat_has_neon(const struct arm64_cpu_capabilities * cap,int scope)3305 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
3306 {
3307 /*
3308 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
3309 * in line with that of arm32 as in vfp_init(). We make sure that the
3310 * check is future proof, by making sure value is non-zero.
3311 */
3312 u32 mvfr1;
3313
3314 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
3315 if (scope == SCOPE_SYSTEM)
3316 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
3317 else
3318 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
3319
3320 return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
3321 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
3322 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
3323 }
3324 #endif
3325
3326 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
3327 #ifdef CONFIG_COMPAT
3328 HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
3329 HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
3330 /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
3331 HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
3332 HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
3333 HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
3334 HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
3335 HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
3336 HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
3337 HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
3338 HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
3339 HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
3340 HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
3341 HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
3342 HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
3343 HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
3344 HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
3345 HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
3346 #endif
3347 {},
3348 };
3349
cap_set_elf_hwcap(const struct arm64_cpu_capabilities * cap)3350 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3351 {
3352 switch (cap->hwcap_type) {
3353 case CAP_HWCAP:
3354 cpu_set_feature(cap->hwcap);
3355 break;
3356 #ifdef CONFIG_COMPAT
3357 case CAP_COMPAT_HWCAP:
3358 compat_elf_hwcap |= (u32)cap->hwcap;
3359 break;
3360 case CAP_COMPAT_HWCAP2:
3361 compat_elf_hwcap2 |= (u32)cap->hwcap;
3362 break;
3363 #endif
3364 default:
3365 WARN_ON(1);
3366 break;
3367 }
3368 }
3369
3370 /* Check if we have a particular HWCAP enabled */
cpus_have_elf_hwcap(const struct arm64_cpu_capabilities * cap)3371 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3372 {
3373 bool rc;
3374
3375 switch (cap->hwcap_type) {
3376 case CAP_HWCAP:
3377 rc = cpu_have_feature(cap->hwcap);
3378 break;
3379 #ifdef CONFIG_COMPAT
3380 case CAP_COMPAT_HWCAP:
3381 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
3382 break;
3383 case CAP_COMPAT_HWCAP2:
3384 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
3385 break;
3386 #endif
3387 default:
3388 WARN_ON(1);
3389 rc = false;
3390 }
3391
3392 return rc;
3393 }
3394
setup_elf_hwcaps(const struct arm64_cpu_capabilities * hwcaps)3395 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
3396 {
3397 /* We support emulation of accesses to CPU ID feature registers */
3398 cpu_set_named_feature(CPUID);
3399 for (; hwcaps->matches; hwcaps++)
3400 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
3401 cap_set_elf_hwcap(hwcaps);
3402 }
3403
update_cpu_capabilities(u16 scope_mask)3404 static void update_cpu_capabilities(u16 scope_mask)
3405 {
3406 int i;
3407 const struct arm64_cpu_capabilities *caps;
3408
3409 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3410 for (i = 0; i < ARM64_NCAPS; i++) {
3411 bool match_all = false;
3412 bool caps_set = false;
3413 bool boot_cpu = false;
3414
3415 caps = cpucap_ptrs[i];
3416 if (!caps || !(caps->type & scope_mask))
3417 continue;
3418
3419 match_all = cpucap_match_all_early_cpus(caps);
3420 caps_set = cpus_have_cap(caps->capability);
3421 boot_cpu = scope_mask & SCOPE_BOOT_CPU;
3422
3423 /*
3424 * Unless it's a match-all CPUs feature, avoid probing if
3425 * already detected.
3426 */
3427 if (!match_all && caps_set)
3428 continue;
3429
3430 /*
3431 * A match-all CPUs capability is only set when probing the
3432 * boot CPU. It may be cleared subsequently if not detected on
3433 * secondary ones.
3434 */
3435 if (match_all && !caps_set && !boot_cpu)
3436 continue;
3437
3438 if (!caps->matches(caps, cpucap_default_scope(caps))) {
3439 if (match_all)
3440 __clear_bit(caps->capability, system_cpucaps);
3441 continue;
3442 }
3443
3444 /*
3445 * Match-all CPUs capabilities are logged later when the
3446 * system capabilities are finalised.
3447 */
3448 if (!match_all && caps->desc && !caps->cpus)
3449 pr_info("detected: %s\n", caps->desc);
3450
3451 __set_bit(caps->capability, system_cpucaps);
3452
3453 if (boot_cpu && (caps->type & SCOPE_BOOT_CPU))
3454 set_bit(caps->capability, boot_cpucaps);
3455 }
3456 }
3457
3458 /*
3459 * Enable all the available capabilities on this CPU. The capabilities
3460 * with BOOT_CPU scope are handled separately and hence skipped here.
3461 */
cpu_enable_non_boot_scope_capabilities(void * __unused)3462 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
3463 {
3464 int i;
3465 u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
3466
3467 for_each_available_cap(i) {
3468 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
3469
3470 if (WARN_ON(!cap))
3471 continue;
3472
3473 if (!(cap->type & non_boot_scope))
3474 continue;
3475
3476 if (cap->cpu_enable)
3477 cap->cpu_enable(cap);
3478 }
3479 return 0;
3480 }
3481
3482 /*
3483 * Run through the enabled capabilities and enable() it on all active
3484 * CPUs
3485 */
enable_cpu_capabilities(u16 scope_mask)3486 static void __init enable_cpu_capabilities(u16 scope_mask)
3487 {
3488 int i;
3489 const struct arm64_cpu_capabilities *caps;
3490 bool boot_scope;
3491
3492 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3493 boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
3494
3495 for (i = 0; i < ARM64_NCAPS; i++) {
3496 caps = cpucap_ptrs[i];
3497 if (!caps || !(caps->type & scope_mask) ||
3498 !cpus_have_cap(caps->capability))
3499 continue;
3500
3501 if (boot_scope && caps->cpu_enable)
3502 /*
3503 * Capabilities with SCOPE_BOOT_CPU scope are finalised
3504 * before any secondary CPU boots. Thus, each secondary
3505 * will enable the capability as appropriate via
3506 * check_local_cpu_capabilities(). The only exception is
3507 * the boot CPU, for which the capability must be
3508 * enabled here. This approach avoids costly
3509 * stop_machine() calls for this case.
3510 */
3511 caps->cpu_enable(caps);
3512 }
3513
3514 /*
3515 * For all non-boot scope capabilities, use stop_machine()
3516 * as it schedules the work allowing us to modify PSTATE,
3517 * instead of on_each_cpu() which uses an IPI, giving us a
3518 * PSTATE that disappears when we return.
3519 */
3520 if (!boot_scope)
3521 stop_machine(cpu_enable_non_boot_scope_capabilities,
3522 NULL, cpu_online_mask);
3523 }
3524
3525 /*
3526 * Run through the list of capabilities to check for conflicts.
3527 * If the system has already detected a capability, take necessary
3528 * action on this CPU.
3529 */
verify_local_cpu_caps(u16 scope_mask)3530 static void verify_local_cpu_caps(u16 scope_mask)
3531 {
3532 int i;
3533 bool cpu_has_cap, system_has_cap;
3534 const struct arm64_cpu_capabilities *caps;
3535
3536 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3537
3538 for (i = 0; i < ARM64_NCAPS; i++) {
3539 caps = cpucap_ptrs[i];
3540 if (!caps || !(caps->type & scope_mask))
3541 continue;
3542
3543 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3544 system_has_cap = cpus_have_cap(caps->capability);
3545
3546 if (system_has_cap) {
3547 /*
3548 * Check if the new CPU misses an advertised feature,
3549 * which is not safe to miss.
3550 */
3551 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3552 break;
3553 /*
3554 * We have to issue cpu_enable() irrespective of
3555 * whether the CPU has it or not, as it is enabeld
3556 * system wide. It is upto the call back to take
3557 * appropriate action on this CPU.
3558 */
3559 if (caps->cpu_enable)
3560 caps->cpu_enable(caps);
3561 } else {
3562 /*
3563 * Check if the CPU has this capability if it isn't
3564 * safe to have when the system doesn't.
3565 */
3566 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3567 break;
3568 }
3569 }
3570
3571 if (i < ARM64_NCAPS) {
3572 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3573 smp_processor_id(), caps->capability,
3574 caps->desc, system_has_cap, cpu_has_cap);
3575
3576 if (cpucap_panic_on_conflict(caps))
3577 cpu_panic_kernel();
3578 else
3579 cpu_die_early();
3580 }
3581 }
3582
3583 /*
3584 * Check for CPU features that are used in early boot
3585 * based on the Boot CPU value.
3586 */
check_early_cpu_features(void)3587 static void check_early_cpu_features(void)
3588 {
3589 verify_cpu_asid_bits();
3590
3591 verify_local_cpu_caps(SCOPE_BOOT_CPU);
3592 }
3593
3594 static void
__verify_local_elf_hwcaps(const struct arm64_cpu_capabilities * caps)3595 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3596 {
3597
3598 for (; caps->matches; caps++)
3599 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3600 pr_crit("CPU%d: missing HWCAP: %s\n",
3601 smp_processor_id(), caps->desc);
3602 cpu_die_early();
3603 }
3604 }
3605
verify_local_elf_hwcaps(void)3606 static void verify_local_elf_hwcaps(void)
3607 {
3608 __verify_local_elf_hwcaps(arm64_elf_hwcaps);
3609
3610 if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3611 __verify_local_elf_hwcaps(compat_elf_hwcaps);
3612 }
3613
verify_sve_features(void)3614 static void verify_sve_features(void)
3615 {
3616 unsigned long cpacr = cpacr_save_enable_kernel_sve();
3617
3618 if (vec_verify_vq_map(ARM64_VEC_SVE)) {
3619 pr_crit("CPU%d: SVE: vector length support mismatch\n",
3620 smp_processor_id());
3621 cpu_die_early();
3622 }
3623
3624 cpacr_restore(cpacr);
3625 }
3626
verify_sme_features(void)3627 static void verify_sme_features(void)
3628 {
3629 unsigned long cpacr = cpacr_save_enable_kernel_sme();
3630
3631 if (vec_verify_vq_map(ARM64_VEC_SME)) {
3632 pr_crit("CPU%d: SME: vector length support mismatch\n",
3633 smp_processor_id());
3634 cpu_die_early();
3635 }
3636
3637 cpacr_restore(cpacr);
3638 }
3639
verify_hyp_capabilities(void)3640 static void verify_hyp_capabilities(void)
3641 {
3642 u64 safe_mmfr1, mmfr0, mmfr1;
3643 int parange, ipa_max;
3644 unsigned int safe_vmid_bits, vmid_bits;
3645
3646 if (!IS_ENABLED(CONFIG_KVM))
3647 return;
3648
3649 safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3650 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
3651 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3652
3653 /* Verify VMID bits */
3654 safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3655 vmid_bits = get_vmid_bits(mmfr1);
3656 if (vmid_bits < safe_vmid_bits) {
3657 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3658 cpu_die_early();
3659 }
3660
3661 /* Verify IPA range */
3662 parange = cpuid_feature_extract_unsigned_field(mmfr0,
3663 ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3664 ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3665 if (ipa_max < get_kvm_ipa_limit()) {
3666 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3667 cpu_die_early();
3668 }
3669 }
3670
verify_mpam_capabilities(void)3671 static void verify_mpam_capabilities(void)
3672 {
3673 u64 cpu_idr = read_cpuid(ID_AA64PFR0_EL1);
3674 u64 sys_idr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
3675 u16 cpu_partid_max, cpu_pmg_max, sys_partid_max, sys_pmg_max;
3676
3677 if (FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK, cpu_idr) !=
3678 FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK, sys_idr)) {
3679 pr_crit("CPU%d: MPAM version mismatch\n", smp_processor_id());
3680 cpu_die_early();
3681 }
3682
3683 cpu_idr = read_cpuid(MPAMIDR_EL1);
3684 sys_idr = read_sanitised_ftr_reg(SYS_MPAMIDR_EL1);
3685 if (FIELD_GET(MPAMIDR_EL1_HAS_HCR, cpu_idr) !=
3686 FIELD_GET(MPAMIDR_EL1_HAS_HCR, sys_idr)) {
3687 pr_crit("CPU%d: Missing MPAM HCR\n", smp_processor_id());
3688 cpu_die_early();
3689 }
3690
3691 cpu_partid_max = FIELD_GET(MPAMIDR_EL1_PARTID_MAX, cpu_idr);
3692 cpu_pmg_max = FIELD_GET(MPAMIDR_EL1_PMG_MAX, cpu_idr);
3693 sys_partid_max = FIELD_GET(MPAMIDR_EL1_PARTID_MAX, sys_idr);
3694 sys_pmg_max = FIELD_GET(MPAMIDR_EL1_PMG_MAX, sys_idr);
3695 if (cpu_partid_max < sys_partid_max || cpu_pmg_max < sys_pmg_max) {
3696 pr_crit("CPU%d: MPAM PARTID/PMG max values are mismatched\n", smp_processor_id());
3697 cpu_die_early();
3698 }
3699 }
3700
3701 /*
3702 * Run through the enabled system capabilities and enable() it on this CPU.
3703 * The capabilities were decided based on the available CPUs at the boot time.
3704 * Any new CPU should match the system wide status of the capability. If the
3705 * new CPU doesn't have a capability which the system now has enabled, we
3706 * cannot do anything to fix it up and could cause unexpected failures. So
3707 * we park the CPU.
3708 */
verify_local_cpu_capabilities(void)3709 static void verify_local_cpu_capabilities(void)
3710 {
3711 /*
3712 * The capabilities with SCOPE_BOOT_CPU are checked from
3713 * check_early_cpu_features(), as they need to be verified
3714 * on all secondary CPUs.
3715 */
3716 verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3717 verify_local_elf_hwcaps();
3718
3719 if (system_supports_sve())
3720 verify_sve_features();
3721
3722 if (system_supports_sme())
3723 verify_sme_features();
3724
3725 if (is_hyp_mode_available())
3726 verify_hyp_capabilities();
3727
3728 if (system_supports_mpam())
3729 verify_mpam_capabilities();
3730 }
3731
check_local_cpu_capabilities(void)3732 void check_local_cpu_capabilities(void)
3733 {
3734 /*
3735 * All secondary CPUs should conform to the early CPU features
3736 * in use by the kernel based on boot CPU.
3737 */
3738 check_early_cpu_features();
3739
3740 /*
3741 * If we haven't finalised the system capabilities, this CPU gets
3742 * a chance to update the errata work arounds and local features.
3743 * Otherwise, this CPU should verify that it has all the system
3744 * advertised capabilities.
3745 */
3746 if (!system_capabilities_finalized())
3747 update_cpu_capabilities(SCOPE_LOCAL_CPU);
3748 else
3749 verify_local_cpu_capabilities();
3750 }
3751
this_cpu_has_cap(unsigned int n)3752 bool this_cpu_has_cap(unsigned int n)
3753 {
3754 if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3755 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3756
3757 if (cap)
3758 return cap->matches(cap, SCOPE_LOCAL_CPU);
3759 }
3760
3761 return false;
3762 }
3763 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3764
3765 /*
3766 * This helper function is used in a narrow window when,
3767 * - The system wide safe registers are set with all the SMP CPUs and,
3768 * - The SYSTEM_FEATURE system_cpucaps may not have been set.
3769 */
__system_matches_cap(unsigned int n)3770 static bool __maybe_unused __system_matches_cap(unsigned int n)
3771 {
3772 if (n < ARM64_NCAPS) {
3773 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3774
3775 if (cap)
3776 return cap->matches(cap, SCOPE_SYSTEM);
3777 }
3778 return false;
3779 }
3780
cpu_set_feature(unsigned int num)3781 void cpu_set_feature(unsigned int num)
3782 {
3783 set_bit(num, elf_hwcap);
3784 }
3785
cpu_have_feature(unsigned int num)3786 bool cpu_have_feature(unsigned int num)
3787 {
3788 return test_bit(num, elf_hwcap);
3789 }
3790 EXPORT_SYMBOL_GPL(cpu_have_feature);
3791
cpu_get_elf_hwcap(void)3792 unsigned long cpu_get_elf_hwcap(void)
3793 {
3794 /*
3795 * We currently only populate the first 32 bits of AT_HWCAP. Please
3796 * note that for userspace compatibility we guarantee that bits 62
3797 * and 63 will always be returned as 0.
3798 */
3799 return elf_hwcap[0];
3800 }
3801
cpu_get_elf_hwcap2(void)3802 unsigned long cpu_get_elf_hwcap2(void)
3803 {
3804 return elf_hwcap[1];
3805 }
3806
cpu_get_elf_hwcap3(void)3807 unsigned long cpu_get_elf_hwcap3(void)
3808 {
3809 return elf_hwcap[2];
3810 }
3811
setup_boot_cpu_capabilities(void)3812 static void __init setup_boot_cpu_capabilities(void)
3813 {
3814 kvm_arm_target_impl_cpu_init();
3815 /*
3816 * The boot CPU's feature register values have been recorded. Detect
3817 * boot cpucaps and local cpucaps for the boot CPU, then enable and
3818 * patch alternatives for the available boot cpucaps.
3819 */
3820 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3821 enable_cpu_capabilities(SCOPE_BOOT_CPU);
3822 apply_boot_alternatives();
3823 }
3824
setup_boot_cpu_features(void)3825 void __init setup_boot_cpu_features(void)
3826 {
3827 /*
3828 * Initialize the indirect array of CPU capabilities pointers before we
3829 * handle the boot CPU.
3830 */
3831 init_cpucap_indirect_list();
3832
3833 /*
3834 * Detect broken pseudo-NMI. Must be called _before_ the call to
3835 * setup_boot_cpu_capabilities() since it interacts with
3836 * can_use_gic_priorities().
3837 */
3838 detect_system_supports_pseudo_nmi();
3839
3840 setup_boot_cpu_capabilities();
3841 }
3842
setup_system_capabilities(void)3843 static void __init setup_system_capabilities(void)
3844 {
3845 /*
3846 * The system-wide safe feature register values have been finalized.
3847 * Detect, enable, and patch alternatives for the available system
3848 * cpucaps.
3849 */
3850 update_cpu_capabilities(SCOPE_SYSTEM);
3851 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3852 apply_alternatives_all();
3853
3854 for (int i = 0; i < ARM64_NCAPS; i++) {
3855 const struct arm64_cpu_capabilities *caps = cpucap_ptrs[i];
3856
3857 if (!caps || !caps->desc)
3858 continue;
3859
3860 /*
3861 * Log any cpucaps with a cpumask as these aren't logged by
3862 * update_cpu_capabilities().
3863 */
3864 if (caps->cpus && cpumask_any(caps->cpus) < nr_cpu_ids)
3865 pr_info("detected: %s on CPU%*pbl\n",
3866 caps->desc, cpumask_pr_args(caps->cpus));
3867
3868 /* Log match-all CPUs capabilities */
3869 if (cpucap_match_all_early_cpus(caps) &&
3870 cpus_have_cap(caps->capability))
3871 pr_info("detected: %s\n", caps->desc);
3872 }
3873
3874 /*
3875 * TTBR0 PAN doesn't have its own cpucap, so log it manually.
3876 */
3877 if (system_uses_ttbr0_pan())
3878 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3879
3880 /*
3881 * Report Spectre mitigations status.
3882 */
3883 spectre_print_disabled_mitigations();
3884 }
3885
setup_system_features(void)3886 void __init setup_system_features(void)
3887 {
3888 setup_system_capabilities();
3889
3890 linear_map_maybe_split_to_ptes();
3891 kpti_install_ng_mappings();
3892
3893 sve_setup();
3894 sme_setup();
3895
3896 /*
3897 * Check for sane CTR_EL0.CWG value.
3898 */
3899 if (!cache_type_cwg())
3900 pr_warn("No Cache Writeback Granule information, assuming %d\n",
3901 ARCH_DMA_MINALIGN);
3902 }
3903
setup_user_features(void)3904 void __init setup_user_features(void)
3905 {
3906 user_feature_fixup();
3907
3908 setup_elf_hwcaps(arm64_elf_hwcaps);
3909
3910 if (system_supports_32bit_el0()) {
3911 setup_elf_hwcaps(compat_elf_hwcaps);
3912 elf_hwcap_fixup();
3913 }
3914
3915 minsigstksz_setup();
3916 }
3917
enable_mismatched_32bit_el0(unsigned int cpu)3918 static int enable_mismatched_32bit_el0(unsigned int cpu)
3919 {
3920 /*
3921 * The first 32-bit-capable CPU we detected and so can no longer
3922 * be offlined by userspace. -1 indicates we haven't yet onlined
3923 * a 32-bit-capable CPU.
3924 */
3925 static int lucky_winner = -1;
3926
3927 struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3928 bool cpu_32bit = false;
3929
3930 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
3931 if (!housekeeping_cpu(cpu, HK_TYPE_TICK))
3932 pr_info("Treating adaptive-ticks CPU %u as 64-bit only\n", cpu);
3933 else
3934 cpu_32bit = true;
3935 }
3936
3937 if (cpu_32bit) {
3938 cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3939 static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3940 }
3941
3942 if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3943 return 0;
3944
3945 if (lucky_winner >= 0)
3946 return 0;
3947
3948 /*
3949 * We've detected a mismatch. We need to keep one of our CPUs with
3950 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3951 * every CPU in the system for a 32-bit task.
3952 */
3953 lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3954 cpu_active_mask);
3955 get_cpu_device(lucky_winner)->offline_disabled = true;
3956 setup_elf_hwcaps(compat_elf_hwcaps);
3957 elf_hwcap_fixup();
3958 pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3959 cpu, lucky_winner);
3960 return 0;
3961 }
3962
init_32bit_el0_mask(void)3963 static int __init init_32bit_el0_mask(void)
3964 {
3965 if (!allow_mismatched_32bit_el0)
3966 return 0;
3967
3968 if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3969 return -ENOMEM;
3970
3971 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3972 "arm64/mismatched_32bit_el0:online",
3973 enable_mismatched_32bit_el0, NULL);
3974 }
3975 subsys_initcall_sync(init_32bit_el0_mask);
3976
cpu_enable_cnp(struct arm64_cpu_capabilities const * cap)3977 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3978 {
3979 cpu_enable_swapper_cnp();
3980 }
3981
3982 /*
3983 * We emulate only the following system register space.
3984 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
3985 * See Table C5-6 System instruction encodings for System register accesses,
3986 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3987 */
is_emulated(u32 id)3988 static inline bool __attribute_const__ is_emulated(u32 id)
3989 {
3990 return (sys_reg_Op0(id) == 0x3 &&
3991 sys_reg_CRn(id) == 0x0 &&
3992 sys_reg_Op1(id) == 0x0 &&
3993 (sys_reg_CRm(id) == 0 ||
3994 ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
3995 }
3996
3997 /*
3998 * With CRm == 0, reg should be one of :
3999 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
4000 */
emulate_id_reg(u32 id,u64 * valp)4001 static inline int emulate_id_reg(u32 id, u64 *valp)
4002 {
4003 switch (id) {
4004 case SYS_MIDR_EL1:
4005 *valp = read_cpuid_id();
4006 break;
4007 case SYS_MPIDR_EL1:
4008 *valp = SYS_MPIDR_SAFE_VAL;
4009 break;
4010 case SYS_REVIDR_EL1:
4011 /* IMPLEMENTATION DEFINED values are emulated with 0 */
4012 *valp = 0;
4013 break;
4014 default:
4015 return -EINVAL;
4016 }
4017
4018 return 0;
4019 }
4020
emulate_sys_reg(u32 id,u64 * valp)4021 static int emulate_sys_reg(u32 id, u64 *valp)
4022 {
4023 struct arm64_ftr_reg *regp;
4024
4025 if (!is_emulated(id))
4026 return -EINVAL;
4027
4028 if (sys_reg_CRm(id) == 0)
4029 return emulate_id_reg(id, valp);
4030
4031 regp = get_arm64_ftr_reg_nowarn(id);
4032 if (regp)
4033 *valp = arm64_ftr_reg_user_value(regp);
4034 else
4035 /*
4036 * The untracked registers are either IMPLEMENTATION DEFINED
4037 * (e.g, ID_AFR0_EL1) or reserved RAZ.
4038 */
4039 *valp = 0;
4040 return 0;
4041 }
4042
do_emulate_mrs(struct pt_regs * regs,u32 sys_reg,u32 rt)4043 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
4044 {
4045 int rc;
4046 u64 val;
4047
4048 rc = emulate_sys_reg(sys_reg, &val);
4049 if (!rc) {
4050 pt_regs_write_reg(regs, rt, val);
4051 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
4052 }
4053 return rc;
4054 }
4055
try_emulate_mrs(struct pt_regs * regs,u32 insn)4056 bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
4057 {
4058 u32 sys_reg, rt;
4059
4060 if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
4061 return false;
4062
4063 /*
4064 * sys_reg values are defined as used in mrs/msr instruction.
4065 * shift the imm value to get the encoding.
4066 */
4067 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
4068 rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
4069 return do_emulate_mrs(regs, sys_reg, rt) == 0;
4070 }
4071
arm64_get_meltdown_state(void)4072 enum mitigation_state arm64_get_meltdown_state(void)
4073 {
4074 if (__meltdown_safe)
4075 return SPECTRE_UNAFFECTED;
4076
4077 if (arm64_kernel_unmapped_at_el0())
4078 return SPECTRE_MITIGATED;
4079
4080 return SPECTRE_VULNERABLE;
4081 }
4082
cpu_show_meltdown(struct device * dev,struct device_attribute * attr,char * buf)4083 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
4084 char *buf)
4085 {
4086 switch (arm64_get_meltdown_state()) {
4087 case SPECTRE_UNAFFECTED:
4088 return sprintf(buf, "Not affected\n");
4089
4090 case SPECTRE_MITIGATED:
4091 return sprintf(buf, "Mitigation: PTI\n");
4092
4093 default:
4094 return sprintf(buf, "Vulnerable\n");
4095 }
4096 }
4097