1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/truncate.c - code for taking down pages from address_spaces 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 10Sep2002 Andrew Morton 8 * Initial version. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/backing-dev.h> 13 #include <linux/dax.h> 14 #include <linux/gfp.h> 15 #include <linux/mm.h> 16 #include <linux/swap.h> 17 #include <linux/export.h> 18 #include <linux/pagemap.h> 19 #include <linux/highmem.h> 20 #include <linux/pagevec.h> 21 #include <linux/task_io_accounting_ops.h> 22 #include <linux/shmem_fs.h> 23 #include <linux/rmap.h> 24 #include "internal.h" 25 26 static void clear_shadow_entries(struct address_space *mapping, 27 unsigned long start, unsigned long max) 28 { 29 XA_STATE(xas, &mapping->i_pages, start); 30 struct folio *folio; 31 32 /* Handled by shmem itself, or for DAX we do nothing. */ 33 if (shmem_mapping(mapping) || dax_mapping(mapping)) 34 return; 35 36 xas_set_update(&xas, workingset_update_node); 37 38 spin_lock(&mapping->host->i_lock); 39 xas_lock_irq(&xas); 40 41 /* Clear all shadow entries from start to max */ 42 xas_for_each(&xas, folio, max) { 43 if (xa_is_value(folio)) 44 xas_store(&xas, NULL); 45 } 46 47 xas_unlock_irq(&xas); 48 if (mapping_shrinkable(mapping)) 49 inode_add_lru(mapping->host); 50 spin_unlock(&mapping->host->i_lock); 51 } 52 53 /* 54 * Unconditionally remove exceptional entries. Usually called from truncate 55 * path. Note that the folio_batch may be altered by this function by removing 56 * exceptional entries similar to what folio_batch_remove_exceptionals() does. 57 * Please note that indices[] has entries in ascending order as guaranteed by 58 * either find_get_entries() or find_lock_entries(). 59 */ 60 static void truncate_folio_batch_exceptionals(struct address_space *mapping, 61 struct folio_batch *fbatch, pgoff_t *indices) 62 { 63 XA_STATE(xas, &mapping->i_pages, indices[0]); 64 int nr = folio_batch_count(fbatch); 65 struct folio *folio; 66 int i, j; 67 68 /* Handled by shmem itself */ 69 if (shmem_mapping(mapping)) 70 return; 71 72 for (j = 0; j < nr; j++) 73 if (xa_is_value(fbatch->folios[j])) 74 break; 75 76 if (j == nr) 77 return; 78 79 if (dax_mapping(mapping)) { 80 for (i = j; i < nr; i++) { 81 if (xa_is_value(fbatch->folios[i])) { 82 /* 83 * File systems should already have called 84 * dax_break_layout_entry() to remove all DAX 85 * entries while holding a lock to prevent 86 * establishing new entries. Therefore we 87 * shouldn't find any here. 88 */ 89 WARN_ON_ONCE(1); 90 91 /* 92 * Delete the mapping so truncate_pagecache() 93 * doesn't loop forever. 94 */ 95 dax_delete_mapping_entry(mapping, indices[i]); 96 } 97 } 98 goto out; 99 } 100 101 xas_set(&xas, indices[j]); 102 xas_set_update(&xas, workingset_update_node); 103 104 spin_lock(&mapping->host->i_lock); 105 xas_lock_irq(&xas); 106 107 xas_for_each(&xas, folio, indices[nr-1]) { 108 if (xa_is_value(folio)) 109 xas_store(&xas, NULL); 110 } 111 112 xas_unlock_irq(&xas); 113 if (mapping_shrinkable(mapping)) 114 inode_add_lru(mapping->host); 115 spin_unlock(&mapping->host->i_lock); 116 out: 117 folio_batch_remove_exceptionals(fbatch); 118 } 119 120 /** 121 * folio_invalidate - Invalidate part or all of a folio. 122 * @folio: The folio which is affected. 123 * @offset: start of the range to invalidate 124 * @length: length of the range to invalidate 125 * 126 * folio_invalidate() is called when all or part of the folio has become 127 * invalidated by a truncate operation. 128 * 129 * folio_invalidate() does not have to release all buffers, but it must 130 * ensure that no dirty buffer is left outside @offset and that no I/O 131 * is underway against any of the blocks which are outside the truncation 132 * point. Because the caller is about to free (and possibly reuse) those 133 * blocks on-disk. 134 */ 135 void folio_invalidate(struct folio *folio, size_t offset, size_t length) 136 { 137 const struct address_space_operations *aops = folio->mapping->a_ops; 138 139 if (aops->invalidate_folio) 140 aops->invalidate_folio(folio, offset, length); 141 } 142 EXPORT_SYMBOL_GPL(folio_invalidate); 143 144 /* 145 * If truncate cannot remove the fs-private metadata from the page, the page 146 * becomes orphaned. It will be left on the LRU and may even be mapped into 147 * user pagetables if we're racing with filemap_fault(). 148 * 149 * We need to bail out if page->mapping is no longer equal to the original 150 * mapping. This happens a) when the VM reclaimed the page while we waited on 151 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 152 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 153 */ 154 static void truncate_cleanup_folio(struct folio *folio) 155 { 156 if (folio_mapped(folio)) 157 unmap_mapping_folio(folio); 158 159 if (folio_needs_release(folio)) 160 folio_invalidate(folio, 0, folio_size(folio)); 161 162 /* 163 * Some filesystems seem to re-dirty the page even after 164 * the VM has canceled the dirty bit (eg ext3 journaling). 165 * Hence dirty accounting check is placed after invalidation. 166 */ 167 folio_cancel_dirty(folio); 168 } 169 170 int truncate_inode_folio(struct address_space *mapping, struct folio *folio) 171 { 172 if (folio->mapping != mapping) 173 return -EIO; 174 175 truncate_cleanup_folio(folio); 176 filemap_remove_folio(folio); 177 return 0; 178 } 179 180 /* 181 * Handle partial folios. The folio may be entirely within the 182 * range if a split has raced with us. If not, we zero the part of the 183 * folio that's within the [start, end] range, and then split the folio if 184 * it's large. split_page_range() will discard pages which now lie beyond 185 * i_size, and we rely on the caller to discard pages which lie within a 186 * newly created hole. 187 * 188 * Returns false if splitting failed so the caller can avoid 189 * discarding the entire folio which is stubbornly unsplit. 190 */ 191 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end) 192 { 193 loff_t pos = folio_pos(folio); 194 size_t size = folio_size(folio); 195 unsigned int offset, length; 196 struct page *split_at, *split_at2; 197 198 if (pos < start) 199 offset = start - pos; 200 else 201 offset = 0; 202 if (pos + size <= (u64)end) 203 length = size - offset; 204 else 205 length = end + 1 - pos - offset; 206 207 folio_wait_writeback(folio); 208 if (length == size) { 209 truncate_inode_folio(folio->mapping, folio); 210 return true; 211 } 212 213 /* 214 * We may be zeroing pages we're about to discard, but it avoids 215 * doing a complex calculation here, and then doing the zeroing 216 * anyway if the page split fails. 217 */ 218 if (!mapping_inaccessible(folio->mapping)) 219 folio_zero_range(folio, offset, length); 220 221 if (folio_needs_release(folio)) 222 folio_invalidate(folio, offset, length); 223 if (!folio_test_large(folio)) 224 return true; 225 226 split_at = folio_page(folio, PAGE_ALIGN_DOWN(offset) / PAGE_SIZE); 227 if (!try_folio_split(folio, split_at, NULL)) { 228 /* 229 * try to split at offset + length to make sure folios within 230 * the range can be dropped, especially to avoid memory waste 231 * for shmem truncate 232 */ 233 struct folio *folio2; 234 235 if (offset + length == size) 236 goto no_split; 237 238 split_at2 = folio_page(folio, 239 PAGE_ALIGN_DOWN(offset + length) / PAGE_SIZE); 240 folio2 = page_folio(split_at2); 241 242 if (!folio_try_get(folio2)) 243 goto no_split; 244 245 if (!folio_test_large(folio2)) 246 goto out; 247 248 if (!folio_trylock(folio2)) 249 goto out; 250 251 /* 252 * make sure folio2 is large and does not change its mapping. 253 * Its split result does not matter here. 254 */ 255 if (folio_test_large(folio2) && 256 folio2->mapping == folio->mapping) 257 try_folio_split(folio2, split_at2, NULL); 258 259 folio_unlock(folio2); 260 out: 261 folio_put(folio2); 262 no_split: 263 return true; 264 } 265 if (folio_test_dirty(folio)) 266 return false; 267 truncate_inode_folio(folio->mapping, folio); 268 return true; 269 } 270 271 /* 272 * Used to get rid of pages on hardware memory corruption. 273 */ 274 int generic_error_remove_folio(struct address_space *mapping, 275 struct folio *folio) 276 { 277 if (!mapping) 278 return -EINVAL; 279 /* 280 * Only punch for normal data pages for now. 281 * Handling other types like directories would need more auditing. 282 */ 283 if (!S_ISREG(mapping->host->i_mode)) 284 return -EIO; 285 return truncate_inode_folio(mapping, folio); 286 } 287 EXPORT_SYMBOL(generic_error_remove_folio); 288 289 /** 290 * mapping_evict_folio() - Remove an unused folio from the page-cache. 291 * @mapping: The mapping this folio belongs to. 292 * @folio: The folio to remove. 293 * 294 * Safely remove one folio from the page cache. 295 * It only drops clean, unused folios. 296 * 297 * Context: Folio must be locked. 298 * Return: The number of pages successfully removed. 299 */ 300 long mapping_evict_folio(struct address_space *mapping, struct folio *folio) 301 { 302 /* The page may have been truncated before it was locked */ 303 if (!mapping) 304 return 0; 305 if (folio_test_dirty(folio) || folio_test_writeback(folio)) 306 return 0; 307 /* The refcount will be elevated if any page in the folio is mapped */ 308 if (folio_ref_count(folio) > 309 folio_nr_pages(folio) + folio_has_private(folio) + 1) 310 return 0; 311 if (!filemap_release_folio(folio, 0)) 312 return 0; 313 314 return remove_mapping(mapping, folio); 315 } 316 317 /** 318 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 319 * @mapping: mapping to truncate 320 * @lstart: offset from which to truncate 321 * @lend: offset to which to truncate (inclusive) 322 * 323 * Truncate the page cache, removing the pages that are between 324 * specified offsets (and zeroing out partial pages 325 * if lstart or lend + 1 is not page aligned). 326 * 327 * Truncate takes two passes - the first pass is nonblocking. It will not 328 * block on page locks and it will not block on writeback. The second pass 329 * will wait. This is to prevent as much IO as possible in the affected region. 330 * The first pass will remove most pages, so the search cost of the second pass 331 * is low. 332 * 333 * We pass down the cache-hot hint to the page freeing code. Even if the 334 * mapping is large, it is probably the case that the final pages are the most 335 * recently touched, and freeing happens in ascending file offset order. 336 * 337 * Note that since ->invalidate_folio() accepts range to invalidate 338 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 339 * page aligned properly. 340 */ 341 void truncate_inode_pages_range(struct address_space *mapping, 342 loff_t lstart, loff_t lend) 343 { 344 pgoff_t start; /* inclusive */ 345 pgoff_t end; /* exclusive */ 346 struct folio_batch fbatch; 347 pgoff_t indices[PAGEVEC_SIZE]; 348 pgoff_t index; 349 int i; 350 struct folio *folio; 351 bool same_folio; 352 353 if (mapping_empty(mapping)) 354 return; 355 356 /* 357 * 'start' and 'end' always covers the range of pages to be fully 358 * truncated. Partial pages are covered with 'partial_start' at the 359 * start of the range and 'partial_end' at the end of the range. 360 * Note that 'end' is exclusive while 'lend' is inclusive. 361 */ 362 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 363 if (lend == -1) 364 /* 365 * lend == -1 indicates end-of-file so we have to set 'end' 366 * to the highest possible pgoff_t and since the type is 367 * unsigned we're using -1. 368 */ 369 end = -1; 370 else 371 end = (lend + 1) >> PAGE_SHIFT; 372 373 folio_batch_init(&fbatch); 374 index = start; 375 while (index < end && find_lock_entries(mapping, &index, end - 1, 376 &fbatch, indices)) { 377 truncate_folio_batch_exceptionals(mapping, &fbatch, indices); 378 for (i = 0; i < folio_batch_count(&fbatch); i++) 379 truncate_cleanup_folio(fbatch.folios[i]); 380 delete_from_page_cache_batch(mapping, &fbatch); 381 for (i = 0; i < folio_batch_count(&fbatch); i++) 382 folio_unlock(fbatch.folios[i]); 383 folio_batch_release(&fbatch); 384 cond_resched(); 385 } 386 387 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 388 folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0); 389 if (!IS_ERR(folio)) { 390 same_folio = lend < folio_pos(folio) + folio_size(folio); 391 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 392 start = folio_next_index(folio); 393 if (same_folio) 394 end = folio->index; 395 } 396 folio_unlock(folio); 397 folio_put(folio); 398 folio = NULL; 399 } 400 401 if (!same_folio) { 402 folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT, 403 FGP_LOCK, 0); 404 if (!IS_ERR(folio)) { 405 if (!truncate_inode_partial_folio(folio, lstart, lend)) 406 end = folio->index; 407 folio_unlock(folio); 408 folio_put(folio); 409 } 410 } 411 412 index = start; 413 while (index < end) { 414 cond_resched(); 415 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 416 indices)) { 417 /* If all gone from start onwards, we're done */ 418 if (index == start) 419 break; 420 /* Otherwise restart to make sure all gone */ 421 index = start; 422 continue; 423 } 424 425 for (i = 0; i < folio_batch_count(&fbatch); i++) { 426 struct folio *folio = fbatch.folios[i]; 427 428 /* We rely upon deletion not changing folio->index */ 429 430 if (xa_is_value(folio)) 431 continue; 432 433 folio_lock(folio); 434 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio); 435 folio_wait_writeback(folio); 436 truncate_inode_folio(mapping, folio); 437 folio_unlock(folio); 438 } 439 truncate_folio_batch_exceptionals(mapping, &fbatch, indices); 440 folio_batch_release(&fbatch); 441 } 442 } 443 EXPORT_SYMBOL(truncate_inode_pages_range); 444 445 /** 446 * truncate_inode_pages - truncate *all* the pages from an offset 447 * @mapping: mapping to truncate 448 * @lstart: offset from which to truncate 449 * 450 * Called under (and serialised by) inode->i_rwsem and 451 * mapping->invalidate_lock. 452 * 453 * Note: When this function returns, there can be a page in the process of 454 * deletion (inside __filemap_remove_folio()) in the specified range. Thus 455 * mapping->nrpages can be non-zero when this function returns even after 456 * truncation of the whole mapping. 457 */ 458 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 459 { 460 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 461 } 462 EXPORT_SYMBOL(truncate_inode_pages); 463 464 /** 465 * truncate_inode_pages_final - truncate *all* pages before inode dies 466 * @mapping: mapping to truncate 467 * 468 * Called under (and serialized by) inode->i_rwsem. 469 * 470 * Filesystems have to use this in the .evict_inode path to inform the 471 * VM that this is the final truncate and the inode is going away. 472 */ 473 void truncate_inode_pages_final(struct address_space *mapping) 474 { 475 /* 476 * Page reclaim can not participate in regular inode lifetime 477 * management (can't call iput()) and thus can race with the 478 * inode teardown. Tell it when the address space is exiting, 479 * so that it does not install eviction information after the 480 * final truncate has begun. 481 */ 482 mapping_set_exiting(mapping); 483 484 if (!mapping_empty(mapping)) { 485 /* 486 * As truncation uses a lockless tree lookup, cycle 487 * the tree lock to make sure any ongoing tree 488 * modification that does not see AS_EXITING is 489 * completed before starting the final truncate. 490 */ 491 xa_lock_irq(&mapping->i_pages); 492 xa_unlock_irq(&mapping->i_pages); 493 } 494 495 truncate_inode_pages(mapping, 0); 496 } 497 EXPORT_SYMBOL(truncate_inode_pages_final); 498 499 /** 500 * mapping_try_invalidate - Invalidate all the evictable folios of one inode 501 * @mapping: the address_space which holds the folios to invalidate 502 * @start: the offset 'from' which to invalidate 503 * @end: the offset 'to' which to invalidate (inclusive) 504 * @nr_failed: How many folio invalidations failed 505 * 506 * This function is similar to invalidate_mapping_pages(), except that it 507 * returns the number of folios which could not be evicted in @nr_failed. 508 */ 509 unsigned long mapping_try_invalidate(struct address_space *mapping, 510 pgoff_t start, pgoff_t end, unsigned long *nr_failed) 511 { 512 pgoff_t indices[PAGEVEC_SIZE]; 513 struct folio_batch fbatch; 514 pgoff_t index = start; 515 unsigned long ret; 516 unsigned long count = 0; 517 int i; 518 519 folio_batch_init(&fbatch); 520 while (find_lock_entries(mapping, &index, end, &fbatch, indices)) { 521 bool xa_has_values = false; 522 int nr = folio_batch_count(&fbatch); 523 524 for (i = 0; i < nr; i++) { 525 struct folio *folio = fbatch.folios[i]; 526 527 /* We rely upon deletion not changing folio->index */ 528 529 if (xa_is_value(folio)) { 530 xa_has_values = true; 531 count++; 532 continue; 533 } 534 535 ret = mapping_evict_folio(mapping, folio); 536 folio_unlock(folio); 537 /* 538 * Invalidation is a hint that the folio is no longer 539 * of interest and try to speed up its reclaim. 540 */ 541 if (!ret) { 542 deactivate_file_folio(folio); 543 /* Likely in the lru cache of a remote CPU */ 544 if (nr_failed) 545 (*nr_failed)++; 546 } 547 count += ret; 548 } 549 550 if (xa_has_values) 551 clear_shadow_entries(mapping, indices[0], indices[nr-1]); 552 553 folio_batch_remove_exceptionals(&fbatch); 554 folio_batch_release(&fbatch); 555 cond_resched(); 556 } 557 return count; 558 } 559 560 /** 561 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode 562 * @mapping: the address_space which holds the cache to invalidate 563 * @start: the offset 'from' which to invalidate 564 * @end: the offset 'to' which to invalidate (inclusive) 565 * 566 * This function removes pages that are clean, unmapped and unlocked, 567 * as well as shadow entries. It will not block on IO activity. 568 * 569 * If you want to remove all the pages of one inode, regardless of 570 * their use and writeback state, use truncate_inode_pages(). 571 * 572 * Return: The number of indices that had their contents invalidated 573 */ 574 unsigned long invalidate_mapping_pages(struct address_space *mapping, 575 pgoff_t start, pgoff_t end) 576 { 577 return mapping_try_invalidate(mapping, start, end, NULL); 578 } 579 EXPORT_SYMBOL(invalidate_mapping_pages); 580 581 static int folio_launder(struct address_space *mapping, struct folio *folio) 582 { 583 if (!folio_test_dirty(folio)) 584 return 0; 585 if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL) 586 return 0; 587 return mapping->a_ops->launder_folio(folio); 588 } 589 590 /* 591 * This is like mapping_evict_folio(), except it ignores the folio's 592 * refcount. We do this because invalidate_inode_pages2() needs stronger 593 * invalidation guarantees, and cannot afford to leave folios behind because 594 * shrink_folio_list() has a temp ref on them, or because they're transiently 595 * sitting in the folio_add_lru() caches. 596 */ 597 int folio_unmap_invalidate(struct address_space *mapping, struct folio *folio, 598 gfp_t gfp) 599 { 600 int ret; 601 602 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 603 604 if (folio_mapped(folio)) 605 unmap_mapping_folio(folio); 606 BUG_ON(folio_mapped(folio)); 607 608 ret = folio_launder(mapping, folio); 609 if (ret) 610 return ret; 611 if (folio->mapping != mapping) 612 return -EBUSY; 613 if (!filemap_release_folio(folio, gfp)) 614 return -EBUSY; 615 616 spin_lock(&mapping->host->i_lock); 617 xa_lock_irq(&mapping->i_pages); 618 if (folio_test_dirty(folio)) 619 goto failed; 620 621 BUG_ON(folio_has_private(folio)); 622 __filemap_remove_folio(folio, NULL); 623 xa_unlock_irq(&mapping->i_pages); 624 if (mapping_shrinkable(mapping)) 625 inode_add_lru(mapping->host); 626 spin_unlock(&mapping->host->i_lock); 627 628 filemap_free_folio(mapping, folio); 629 return 1; 630 failed: 631 xa_unlock_irq(&mapping->i_pages); 632 spin_unlock(&mapping->host->i_lock); 633 return -EBUSY; 634 } 635 636 /** 637 * invalidate_inode_pages2_range - remove range of pages from an address_space 638 * @mapping: the address_space 639 * @start: the page offset 'from' which to invalidate 640 * @end: the page offset 'to' which to invalidate (inclusive) 641 * 642 * Any pages which are found to be mapped into pagetables are unmapped prior to 643 * invalidation. 644 * 645 * Return: -EBUSY if any pages could not be invalidated. 646 */ 647 int invalidate_inode_pages2_range(struct address_space *mapping, 648 pgoff_t start, pgoff_t end) 649 { 650 pgoff_t indices[PAGEVEC_SIZE]; 651 struct folio_batch fbatch; 652 pgoff_t index; 653 int i; 654 int ret = 0; 655 int ret2 = 0; 656 int did_range_unmap = 0; 657 658 if (mapping_empty(mapping)) 659 return 0; 660 661 folio_batch_init(&fbatch); 662 index = start; 663 while (find_get_entries(mapping, &index, end, &fbatch, indices)) { 664 bool xa_has_values = false; 665 int nr = folio_batch_count(&fbatch); 666 667 for (i = 0; i < nr; i++) { 668 struct folio *folio = fbatch.folios[i]; 669 670 /* We rely upon deletion not changing folio->index */ 671 672 if (xa_is_value(folio)) { 673 xa_has_values = true; 674 if (dax_mapping(mapping) && 675 !dax_invalidate_mapping_entry_sync(mapping, indices[i])) 676 ret = -EBUSY; 677 continue; 678 } 679 680 if (!did_range_unmap && folio_mapped(folio)) { 681 /* 682 * If folio is mapped, before taking its lock, 683 * zap the rest of the file in one hit. 684 */ 685 unmap_mapping_pages(mapping, indices[i], 686 (1 + end - indices[i]), false); 687 did_range_unmap = 1; 688 } 689 690 folio_lock(folio); 691 if (unlikely(folio->mapping != mapping)) { 692 folio_unlock(folio); 693 continue; 694 } 695 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio); 696 folio_wait_writeback(folio); 697 ret2 = folio_unmap_invalidate(mapping, folio, GFP_KERNEL); 698 if (ret2 < 0) 699 ret = ret2; 700 folio_unlock(folio); 701 } 702 703 if (xa_has_values) 704 clear_shadow_entries(mapping, indices[0], indices[nr-1]); 705 706 folio_batch_remove_exceptionals(&fbatch); 707 folio_batch_release(&fbatch); 708 cond_resched(); 709 } 710 /* 711 * For DAX we invalidate page tables after invalidating page cache. We 712 * could invalidate page tables while invalidating each entry however 713 * that would be expensive. And doing range unmapping before doesn't 714 * work as we have no cheap way to find whether page cache entry didn't 715 * get remapped later. 716 */ 717 if (dax_mapping(mapping)) { 718 unmap_mapping_pages(mapping, start, end - start + 1, false); 719 } 720 return ret; 721 } 722 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 723 724 /** 725 * invalidate_inode_pages2 - remove all pages from an address_space 726 * @mapping: the address_space 727 * 728 * Any pages which are found to be mapped into pagetables are unmapped prior to 729 * invalidation. 730 * 731 * Return: -EBUSY if any pages could not be invalidated. 732 */ 733 int invalidate_inode_pages2(struct address_space *mapping) 734 { 735 return invalidate_inode_pages2_range(mapping, 0, -1); 736 } 737 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 738 739 /** 740 * truncate_pagecache - unmap and remove pagecache that has been truncated 741 * @inode: inode 742 * @newsize: new file size 743 * 744 * inode's new i_size must already be written before truncate_pagecache 745 * is called. 746 * 747 * This function should typically be called before the filesystem 748 * releases resources associated with the freed range (eg. deallocates 749 * blocks). This way, pagecache will always stay logically coherent 750 * with on-disk format, and the filesystem would not have to deal with 751 * situations such as writepage being called for a page that has already 752 * had its underlying blocks deallocated. 753 */ 754 void truncate_pagecache(struct inode *inode, loff_t newsize) 755 { 756 struct address_space *mapping = inode->i_mapping; 757 loff_t holebegin = round_up(newsize, PAGE_SIZE); 758 759 /* 760 * unmap_mapping_range is called twice, first simply for 761 * efficiency so that truncate_inode_pages does fewer 762 * single-page unmaps. However after this first call, and 763 * before truncate_inode_pages finishes, it is possible for 764 * private pages to be COWed, which remain after 765 * truncate_inode_pages finishes, hence the second 766 * unmap_mapping_range call must be made for correctness. 767 */ 768 unmap_mapping_range(mapping, holebegin, 0, 1); 769 truncate_inode_pages(mapping, newsize); 770 unmap_mapping_range(mapping, holebegin, 0, 1); 771 } 772 EXPORT_SYMBOL(truncate_pagecache); 773 774 /** 775 * truncate_setsize - update inode and pagecache for a new file size 776 * @inode: inode 777 * @newsize: new file size 778 * 779 * truncate_setsize updates i_size and performs pagecache truncation (if 780 * necessary) to @newsize. It will be typically be called from the filesystem's 781 * setattr function when ATTR_SIZE is passed in. 782 * 783 * Must be called with a lock serializing truncates and writes (generally 784 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem 785 * specific block truncation has been performed. 786 */ 787 void truncate_setsize(struct inode *inode, loff_t newsize) 788 { 789 loff_t oldsize = inode->i_size; 790 791 i_size_write(inode, newsize); 792 if (newsize > oldsize) 793 pagecache_isize_extended(inode, oldsize, newsize); 794 truncate_pagecache(inode, newsize); 795 } 796 EXPORT_SYMBOL(truncate_setsize); 797 798 /** 799 * pagecache_isize_extended - update pagecache after extension of i_size 800 * @inode: inode for which i_size was extended 801 * @from: original inode size 802 * @to: new inode size 803 * 804 * Handle extension of inode size either caused by extending truncate or 805 * by write starting after current i_size. We mark the page straddling 806 * current i_size RO so that page_mkwrite() is called on the first 807 * write access to the page. The filesystem will update its per-block 808 * information before user writes to the page via mmap after the i_size 809 * has been changed. 810 * 811 * The function must be called after i_size is updated so that page fault 812 * coming after we unlock the folio will already see the new i_size. 813 * The function must be called while we still hold i_rwsem - this not only 814 * makes sure i_size is stable but also that userspace cannot observe new 815 * i_size value before we are prepared to store mmap writes at new inode size. 816 */ 817 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 818 { 819 int bsize = i_blocksize(inode); 820 loff_t rounded_from; 821 struct folio *folio; 822 823 WARN_ON(to > inode->i_size); 824 825 if (from >= to || bsize >= PAGE_SIZE) 826 return; 827 /* Page straddling @from will not have any hole block created? */ 828 rounded_from = round_up(from, bsize); 829 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) 830 return; 831 832 folio = filemap_lock_folio(inode->i_mapping, from / PAGE_SIZE); 833 /* Folio not cached? Nothing to do */ 834 if (IS_ERR(folio)) 835 return; 836 /* 837 * See folio_clear_dirty_for_io() for details why folio_mark_dirty() 838 * is needed. 839 */ 840 if (folio_mkclean(folio)) 841 folio_mark_dirty(folio); 842 843 /* 844 * The post-eof range of the folio must be zeroed before it is exposed 845 * to the file. Writeback normally does this, but since i_size has been 846 * increased we handle it here. 847 */ 848 if (folio_test_dirty(folio)) { 849 unsigned int offset, end; 850 851 offset = from - folio_pos(folio); 852 end = min_t(unsigned int, to - folio_pos(folio), 853 folio_size(folio)); 854 folio_zero_segment(folio, offset, end); 855 } 856 857 folio_unlock(folio); 858 folio_put(folio); 859 } 860 EXPORT_SYMBOL(pagecache_isize_extended); 861 862 /** 863 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 864 * @inode: inode 865 * @lstart: offset of beginning of hole 866 * @lend: offset of last byte of hole 867 * 868 * This function should typically be called before the filesystem 869 * releases resources associated with the freed range (eg. deallocates 870 * blocks). This way, pagecache will always stay logically coherent 871 * with on-disk format, and the filesystem would not have to deal with 872 * situations such as writepage being called for a page that has already 873 * had its underlying blocks deallocated. 874 */ 875 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 876 { 877 struct address_space *mapping = inode->i_mapping; 878 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 879 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 880 /* 881 * This rounding is currently just for example: unmap_mapping_range 882 * expands its hole outwards, whereas we want it to contract the hole 883 * inwards. However, existing callers of truncate_pagecache_range are 884 * doing their own page rounding first. Note that unmap_mapping_range 885 * allows holelen 0 for all, and we allow lend -1 for end of file. 886 */ 887 888 /* 889 * Unlike in truncate_pagecache, unmap_mapping_range is called only 890 * once (before truncating pagecache), and without "even_cows" flag: 891 * hole-punching should not remove private COWed pages from the hole. 892 */ 893 if ((u64)unmap_end > (u64)unmap_start) 894 unmap_mapping_range(mapping, unmap_start, 895 1 + unmap_end - unmap_start, 0); 896 truncate_inode_pages_range(mapping, lstart, lend); 897 } 898 EXPORT_SYMBOL(truncate_pagecache_range); 899