xref: /linux/drivers/dma/mediatek/mtk-cqdma.c (revision 5723cc3450bccf7f98f227b9723b5c9f6b3af1c5)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (c) 2018-2019 MediaTek Inc.
3 
4 /*
5  * Driver for MediaTek Command-Queue DMA Controller
6  *
7  * Author: Shun-Chih Yu <shun-chih.yu@mediatek.com>
8  *
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/clk.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/iopoll.h>
17 #include <linux/interrupt.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/of_dma.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/refcount.h>
25 #include <linux/slab.h>
26 
27 #include "../virt-dma.h"
28 
29 #define MTK_CQDMA_USEC_POLL		10
30 #define MTK_CQDMA_TIMEOUT_POLL		1000
31 #define MTK_CQDMA_DMA_BUSWIDTHS		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
32 #define MTK_CQDMA_ALIGN_SIZE		1
33 
34 /* The default number of virtual channel */
35 #define MTK_CQDMA_NR_VCHANS		32
36 
37 /* The default number of physical channel */
38 #define MTK_CQDMA_NR_PCHANS		3
39 
40 /* Registers for underlying dma manipulation */
41 #define MTK_CQDMA_INT_FLAG		0x0
42 #define MTK_CQDMA_INT_EN		0x4
43 #define MTK_CQDMA_EN			0x8
44 #define MTK_CQDMA_RESET			0xc
45 #define MTK_CQDMA_FLUSH			0x14
46 #define MTK_CQDMA_SRC			0x1c
47 #define MTK_CQDMA_DST			0x20
48 #define MTK_CQDMA_LEN1			0x24
49 #define MTK_CQDMA_LEN2			0x28
50 #define MTK_CQDMA_SRC2			0x60
51 #define MTK_CQDMA_DST2			0x64
52 
53 /* Registers setting */
54 #define MTK_CQDMA_EN_BIT		BIT(0)
55 #define MTK_CQDMA_INT_FLAG_BIT		BIT(0)
56 #define MTK_CQDMA_INT_EN_BIT		BIT(0)
57 #define MTK_CQDMA_FLUSH_BIT		BIT(0)
58 
59 #define MTK_CQDMA_WARM_RST_BIT		BIT(0)
60 #define MTK_CQDMA_HARD_RST_BIT		BIT(1)
61 
62 #define MTK_CQDMA_MAX_LEN		GENMASK(27, 0)
63 #define MTK_CQDMA_ADDR_LIMIT		GENMASK(31, 0)
64 #define MTK_CQDMA_ADDR2_SHFIT		(32)
65 
66 /**
67  * struct mtk_cqdma_vdesc - The struct holding info describing virtual
68  *                         descriptor (CVD)
69  * @vd:                    An instance for struct virt_dma_desc
70  * @len:                   The total data size device wants to move
71  * @residue:               The remaining data size device will move
72  * @dest:                  The destination address device wants to move to
73  * @src:                   The source address device wants to move from
74  * @ch:                    The pointer to the corresponding dma channel
75  * @node:                  The lise_head struct to build link-list for VDs
76  * @parent:                The pointer to the parent CVD
77  */
78 struct mtk_cqdma_vdesc {
79 	struct virt_dma_desc vd;
80 	size_t len;
81 	size_t residue;
82 	dma_addr_t dest;
83 	dma_addr_t src;
84 	struct dma_chan *ch;
85 
86 	struct list_head node;
87 	struct mtk_cqdma_vdesc *parent;
88 };
89 
90 /**
91  * struct mtk_cqdma_pchan - The struct holding info describing physical
92  *                         channel (PC)
93  * @queue:                 Queue for the PDs issued to this PC
94  * @base:                  The mapped register I/O base of this PC
95  * @irq:                   The IRQ that this PC are using
96  * @refcnt:                Track how many VCs are using this PC
97  * @tasklet:               Tasklet for this PC
98  * @lock:                  Lock protect agaisting multiple VCs access PC
99  */
100 struct mtk_cqdma_pchan {
101 	struct list_head queue;
102 	void __iomem *base;
103 	u32 irq;
104 
105 	refcount_t refcnt;
106 
107 	struct tasklet_struct tasklet;
108 
109 	/* lock to protect PC */
110 	spinlock_t lock;
111 };
112 
113 /**
114  * struct mtk_cqdma_vchan - The struct holding info describing virtual
115  *                         channel (VC)
116  * @vc:                    An instance for struct virt_dma_chan
117  * @pc:                    The pointer to the underlying PC
118  * @issue_completion:	   The wait for all issued descriptors completited
119  * @issue_synchronize:	   Bool indicating channel synchronization starts
120  */
121 struct mtk_cqdma_vchan {
122 	struct virt_dma_chan vc;
123 	struct mtk_cqdma_pchan *pc;
124 	struct completion issue_completion;
125 	bool issue_synchronize;
126 };
127 
128 /**
129  * struct mtk_cqdma_device - The struct holding info describing CQDMA
130  *                          device
131  * @ddev:                   An instance for struct dma_device
132  * @clk:                    The clock that device internal is using
133  * @dma_requests:           The number of VCs the device supports to
134  * @dma_channels:           The number of PCs the device supports to
135  * @vc:                     The pointer to all available VCs
136  * @pc:                     The pointer to all the underlying PCs
137  */
138 struct mtk_cqdma_device {
139 	struct dma_device ddev;
140 	struct clk *clk;
141 
142 	u32 dma_requests;
143 	u32 dma_channels;
144 	struct mtk_cqdma_vchan *vc;
145 	struct mtk_cqdma_pchan **pc;
146 };
147 
to_cqdma_dev(struct dma_chan * chan)148 static struct mtk_cqdma_device *to_cqdma_dev(struct dma_chan *chan)
149 {
150 	return container_of(chan->device, struct mtk_cqdma_device, ddev);
151 }
152 
to_cqdma_vchan(struct dma_chan * chan)153 static struct mtk_cqdma_vchan *to_cqdma_vchan(struct dma_chan *chan)
154 {
155 	return container_of(chan, struct mtk_cqdma_vchan, vc.chan);
156 }
157 
to_cqdma_vdesc(struct virt_dma_desc * vd)158 static struct mtk_cqdma_vdesc *to_cqdma_vdesc(struct virt_dma_desc *vd)
159 {
160 	return container_of(vd, struct mtk_cqdma_vdesc, vd);
161 }
162 
cqdma2dev(struct mtk_cqdma_device * cqdma)163 static struct device *cqdma2dev(struct mtk_cqdma_device *cqdma)
164 {
165 	return cqdma->ddev.dev;
166 }
167 
mtk_dma_read(struct mtk_cqdma_pchan * pc,u32 reg)168 static u32 mtk_dma_read(struct mtk_cqdma_pchan *pc, u32 reg)
169 {
170 	return readl(pc->base + reg);
171 }
172 
mtk_dma_write(struct mtk_cqdma_pchan * pc,u32 reg,u32 val)173 static void mtk_dma_write(struct mtk_cqdma_pchan *pc, u32 reg, u32 val)
174 {
175 	writel_relaxed(val, pc->base + reg);
176 }
177 
mtk_dma_rmw(struct mtk_cqdma_pchan * pc,u32 reg,u32 mask,u32 set)178 static void mtk_dma_rmw(struct mtk_cqdma_pchan *pc, u32 reg,
179 			u32 mask, u32 set)
180 {
181 	u32 val;
182 
183 	val = mtk_dma_read(pc, reg);
184 	val &= ~mask;
185 	val |= set;
186 	mtk_dma_write(pc, reg, val);
187 }
188 
mtk_dma_set(struct mtk_cqdma_pchan * pc,u32 reg,u32 val)189 static void mtk_dma_set(struct mtk_cqdma_pchan *pc, u32 reg, u32 val)
190 {
191 	mtk_dma_rmw(pc, reg, 0, val);
192 }
193 
mtk_dma_clr(struct mtk_cqdma_pchan * pc,u32 reg,u32 val)194 static void mtk_dma_clr(struct mtk_cqdma_pchan *pc, u32 reg, u32 val)
195 {
196 	mtk_dma_rmw(pc, reg, val, 0);
197 }
198 
mtk_cqdma_vdesc_free(struct virt_dma_desc * vd)199 static void mtk_cqdma_vdesc_free(struct virt_dma_desc *vd)
200 {
201 	kfree(to_cqdma_vdesc(vd));
202 }
203 
mtk_cqdma_poll_engine_done(struct mtk_cqdma_pchan * pc,bool atomic)204 static int mtk_cqdma_poll_engine_done(struct mtk_cqdma_pchan *pc, bool atomic)
205 {
206 	u32 status = 0;
207 
208 	if (!atomic)
209 		return readl_poll_timeout(pc->base + MTK_CQDMA_EN,
210 					  status,
211 					  !(status & MTK_CQDMA_EN_BIT),
212 					  MTK_CQDMA_USEC_POLL,
213 					  MTK_CQDMA_TIMEOUT_POLL);
214 
215 	return readl_poll_timeout_atomic(pc->base + MTK_CQDMA_EN,
216 					 status,
217 					 !(status & MTK_CQDMA_EN_BIT),
218 					 MTK_CQDMA_USEC_POLL,
219 					 MTK_CQDMA_TIMEOUT_POLL);
220 }
221 
mtk_cqdma_hard_reset(struct mtk_cqdma_pchan * pc)222 static int mtk_cqdma_hard_reset(struct mtk_cqdma_pchan *pc)
223 {
224 	mtk_dma_set(pc, MTK_CQDMA_RESET, MTK_CQDMA_HARD_RST_BIT);
225 	mtk_dma_clr(pc, MTK_CQDMA_RESET, MTK_CQDMA_HARD_RST_BIT);
226 
227 	return mtk_cqdma_poll_engine_done(pc, true);
228 }
229 
mtk_cqdma_start(struct mtk_cqdma_pchan * pc,struct mtk_cqdma_vdesc * cvd)230 static void mtk_cqdma_start(struct mtk_cqdma_pchan *pc,
231 			    struct mtk_cqdma_vdesc *cvd)
232 {
233 	/* wait for the previous transaction done */
234 	if (mtk_cqdma_poll_engine_done(pc, true) < 0)
235 		dev_err(cqdma2dev(to_cqdma_dev(cvd->ch)), "cqdma wait transaction timeout\n");
236 
237 	/* warm reset the dma engine for the new transaction */
238 	mtk_dma_set(pc, MTK_CQDMA_RESET, MTK_CQDMA_WARM_RST_BIT);
239 	if (mtk_cqdma_poll_engine_done(pc, true) < 0)
240 		dev_err(cqdma2dev(to_cqdma_dev(cvd->ch)), "cqdma warm reset timeout\n");
241 
242 	/* setup the source */
243 	mtk_dma_set(pc, MTK_CQDMA_SRC, cvd->src & MTK_CQDMA_ADDR_LIMIT);
244 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
245 	mtk_dma_set(pc, MTK_CQDMA_SRC2, cvd->src >> MTK_CQDMA_ADDR2_SHFIT);
246 #else
247 	mtk_dma_set(pc, MTK_CQDMA_SRC2, 0);
248 #endif
249 
250 	/* setup the destination */
251 	mtk_dma_set(pc, MTK_CQDMA_DST, cvd->dest & MTK_CQDMA_ADDR_LIMIT);
252 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
253 	mtk_dma_set(pc, MTK_CQDMA_DST2, cvd->dest >> MTK_CQDMA_ADDR2_SHFIT);
254 #else
255 	mtk_dma_set(pc, MTK_CQDMA_DST2, 0);
256 #endif
257 
258 	/* setup the length */
259 	mtk_dma_set(pc, MTK_CQDMA_LEN1, cvd->len);
260 
261 	/* start dma engine */
262 	mtk_dma_set(pc, MTK_CQDMA_EN, MTK_CQDMA_EN_BIT);
263 }
264 
mtk_cqdma_issue_vchan_pending(struct mtk_cqdma_vchan * cvc)265 static void mtk_cqdma_issue_vchan_pending(struct mtk_cqdma_vchan *cvc)
266 {
267 	struct virt_dma_desc *vd, *vd2;
268 	struct mtk_cqdma_pchan *pc = cvc->pc;
269 	struct mtk_cqdma_vdesc *cvd;
270 	bool trigger_engine = false;
271 
272 	lockdep_assert_held(&cvc->vc.lock);
273 	lockdep_assert_held(&pc->lock);
274 
275 	list_for_each_entry_safe(vd, vd2, &cvc->vc.desc_issued, node) {
276 		/* need to trigger dma engine if PC's queue is empty */
277 		if (list_empty(&pc->queue))
278 			trigger_engine = true;
279 
280 		cvd = to_cqdma_vdesc(vd);
281 
282 		/* add VD into PC's queue */
283 		list_add_tail(&cvd->node, &pc->queue);
284 
285 		/* start the dma engine */
286 		if (trigger_engine)
287 			mtk_cqdma_start(pc, cvd);
288 
289 		/* remove VD from list desc_issued */
290 		list_del(&vd->node);
291 	}
292 }
293 
294 /*
295  * return true if this VC is active,
296  * meaning that there are VDs under processing by the PC
297  */
mtk_cqdma_is_vchan_active(struct mtk_cqdma_vchan * cvc)298 static bool mtk_cqdma_is_vchan_active(struct mtk_cqdma_vchan *cvc)
299 {
300 	struct mtk_cqdma_vdesc *cvd;
301 
302 	list_for_each_entry(cvd, &cvc->pc->queue, node)
303 		if (cvc == to_cqdma_vchan(cvd->ch))
304 			return true;
305 
306 	return false;
307 }
308 
309 /*
310  * return the pointer of the CVD that is just consumed by the PC
311  */
312 static struct mtk_cqdma_vdesc
mtk_cqdma_consume_work_queue(struct mtk_cqdma_pchan * pc)313 *mtk_cqdma_consume_work_queue(struct mtk_cqdma_pchan *pc)
314 {
315 	struct mtk_cqdma_vchan *cvc;
316 	struct mtk_cqdma_vdesc *cvd, *ret = NULL;
317 
318 	/* consume a CVD from PC's queue */
319 	cvd = list_first_entry_or_null(&pc->queue,
320 				       struct mtk_cqdma_vdesc, node);
321 	if (unlikely(!cvd || !cvd->parent))
322 		return NULL;
323 
324 	cvc = to_cqdma_vchan(cvd->ch);
325 	ret = cvd;
326 
327 	/* update residue of the parent CVD */
328 	cvd->parent->residue -= cvd->len;
329 
330 	/* delete CVD from PC's queue */
331 	list_del(&cvd->node);
332 
333 	spin_lock(&cvc->vc.lock);
334 
335 	/* check whether all the child CVDs completed */
336 	if (!cvd->parent->residue) {
337 		/* add the parent VD into list desc_completed */
338 		vchan_cookie_complete(&cvd->parent->vd);
339 
340 		/* setup completion if this VC is under synchronization */
341 		if (cvc->issue_synchronize && !mtk_cqdma_is_vchan_active(cvc)) {
342 			complete(&cvc->issue_completion);
343 			cvc->issue_synchronize = false;
344 		}
345 	}
346 
347 	spin_unlock(&cvc->vc.lock);
348 
349 	/* start transaction for next CVD in the queue */
350 	cvd = list_first_entry_or_null(&pc->queue,
351 				       struct mtk_cqdma_vdesc, node);
352 	if (cvd)
353 		mtk_cqdma_start(pc, cvd);
354 
355 	return ret;
356 }
357 
mtk_cqdma_tasklet_cb(struct tasklet_struct * t)358 static void mtk_cqdma_tasklet_cb(struct tasklet_struct *t)
359 {
360 	struct mtk_cqdma_pchan *pc = from_tasklet(pc, t, tasklet);
361 	struct mtk_cqdma_vdesc *cvd = NULL;
362 	unsigned long flags;
363 
364 	spin_lock_irqsave(&pc->lock, flags);
365 	/* consume the queue */
366 	cvd = mtk_cqdma_consume_work_queue(pc);
367 	spin_unlock_irqrestore(&pc->lock, flags);
368 
369 	/* submit the next CVD */
370 	if (cvd) {
371 		dma_run_dependencies(&cvd->vd.tx);
372 
373 		/*
374 		 * free child CVD after completion.
375 		 * the parent CVD would be freed with desc_free by user.
376 		 */
377 		if (cvd->parent != cvd)
378 			kfree(cvd);
379 	}
380 
381 	/* re-enable interrupt before leaving tasklet */
382 	enable_irq(pc->irq);
383 }
384 
mtk_cqdma_irq(int irq,void * devid)385 static irqreturn_t mtk_cqdma_irq(int irq, void *devid)
386 {
387 	struct mtk_cqdma_device *cqdma = devid;
388 	irqreturn_t ret = IRQ_NONE;
389 	bool schedule_tasklet = false;
390 	u32 i;
391 
392 	/* clear interrupt flags for each PC */
393 	for (i = 0; i < cqdma->dma_channels; ++i, schedule_tasklet = false) {
394 		spin_lock(&cqdma->pc[i]->lock);
395 		if (mtk_dma_read(cqdma->pc[i],
396 				 MTK_CQDMA_INT_FLAG) & MTK_CQDMA_INT_FLAG_BIT) {
397 			/* clear interrupt */
398 			mtk_dma_clr(cqdma->pc[i], MTK_CQDMA_INT_FLAG,
399 				    MTK_CQDMA_INT_FLAG_BIT);
400 
401 			schedule_tasklet = true;
402 			ret = IRQ_HANDLED;
403 		}
404 		spin_unlock(&cqdma->pc[i]->lock);
405 
406 		if (schedule_tasklet) {
407 			/* disable interrupt */
408 			disable_irq_nosync(cqdma->pc[i]->irq);
409 
410 			/* schedule the tasklet to handle the transactions */
411 			tasklet_schedule(&cqdma->pc[i]->tasklet);
412 		}
413 	}
414 
415 	return ret;
416 }
417 
mtk_cqdma_find_active_desc(struct dma_chan * c,dma_cookie_t cookie)418 static struct virt_dma_desc *mtk_cqdma_find_active_desc(struct dma_chan *c,
419 							dma_cookie_t cookie)
420 {
421 	struct mtk_cqdma_vchan *cvc = to_cqdma_vchan(c);
422 	struct virt_dma_desc *vd;
423 
424 	list_for_each_entry(vd, &cvc->pc->queue, node)
425 		if (vd->tx.cookie == cookie) {
426 			return vd;
427 		}
428 
429 	list_for_each_entry(vd, &cvc->vc.desc_issued, node)
430 		if (vd->tx.cookie == cookie)
431 			return vd;
432 
433 	return NULL;
434 }
435 
mtk_cqdma_tx_status(struct dma_chan * c,dma_cookie_t cookie,struct dma_tx_state * txstate)436 static enum dma_status mtk_cqdma_tx_status(struct dma_chan *c,
437 					   dma_cookie_t cookie,
438 					   struct dma_tx_state *txstate)
439 {
440 	struct mtk_cqdma_vchan *cvc = to_cqdma_vchan(c);
441 	struct mtk_cqdma_vdesc *cvd;
442 	struct virt_dma_desc *vd;
443 	enum dma_status ret;
444 	unsigned long flags;
445 	size_t bytes = 0;
446 
447 	ret = dma_cookie_status(c, cookie, txstate);
448 	if (ret == DMA_COMPLETE || !txstate)
449 		return ret;
450 
451 	spin_lock_irqsave(&cvc->pc->lock, flags);
452 	spin_lock_irqsave(&cvc->vc.lock, flags);
453 	vd = mtk_cqdma_find_active_desc(c, cookie);
454 	spin_unlock_irqrestore(&cvc->vc.lock, flags);
455 	spin_unlock_irqrestore(&cvc->pc->lock, flags);
456 
457 	if (vd) {
458 		cvd = to_cqdma_vdesc(vd);
459 		bytes = cvd->residue;
460 	}
461 
462 	dma_set_residue(txstate, bytes);
463 
464 	return ret;
465 }
466 
mtk_cqdma_issue_pending(struct dma_chan * c)467 static void mtk_cqdma_issue_pending(struct dma_chan *c)
468 {
469 	struct mtk_cqdma_vchan *cvc = to_cqdma_vchan(c);
470 	unsigned long pc_flags;
471 	unsigned long vc_flags;
472 
473 	/* acquire PC's lock before VS's lock for lock dependency in tasklet */
474 	spin_lock_irqsave(&cvc->pc->lock, pc_flags);
475 	spin_lock_irqsave(&cvc->vc.lock, vc_flags);
476 
477 	if (vchan_issue_pending(&cvc->vc))
478 		mtk_cqdma_issue_vchan_pending(cvc);
479 
480 	spin_unlock_irqrestore(&cvc->vc.lock, vc_flags);
481 	spin_unlock_irqrestore(&cvc->pc->lock, pc_flags);
482 }
483 
484 static struct dma_async_tx_descriptor *
mtk_cqdma_prep_dma_memcpy(struct dma_chan * c,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)485 mtk_cqdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest,
486 			  dma_addr_t src, size_t len, unsigned long flags)
487 {
488 	struct mtk_cqdma_vdesc **cvd;
489 	struct dma_async_tx_descriptor *tx = NULL, *prev_tx = NULL;
490 	size_t i, tlen, nr_vd;
491 
492 	/*
493 	 * In the case that trsanction length is larger than the
494 	 * DMA engine supports, a single memcpy transaction needs
495 	 * to be separated into several DMA transactions.
496 	 * Each DMA transaction would be described by a CVD,
497 	 * and the first one is referred as the parent CVD,
498 	 * while the others are child CVDs.
499 	 * The parent CVD's tx descriptor is the only tx descriptor
500 	 * returned to the DMA user, and it should not be completed
501 	 * until all the child CVDs completed.
502 	 */
503 	nr_vd = DIV_ROUND_UP(len, MTK_CQDMA_MAX_LEN);
504 	cvd = kcalloc(nr_vd, sizeof(*cvd), GFP_NOWAIT);
505 	if (!cvd)
506 		return NULL;
507 
508 	for (i = 0; i < nr_vd; ++i) {
509 		cvd[i] = kzalloc(sizeof(*cvd[i]), GFP_NOWAIT);
510 		if (!cvd[i]) {
511 			for (; i > 0; --i)
512 				kfree(cvd[i - 1]);
513 			return NULL;
514 		}
515 
516 		/* setup dma channel */
517 		cvd[i]->ch = c;
518 
519 		/* setup source, destination, and length */
520 		tlen = (len > MTK_CQDMA_MAX_LEN) ? MTK_CQDMA_MAX_LEN : len;
521 		cvd[i]->len = tlen;
522 		cvd[i]->src = src;
523 		cvd[i]->dest = dest;
524 
525 		/* setup tx descriptor */
526 		tx = vchan_tx_prep(to_virt_chan(c), &cvd[i]->vd, flags);
527 		tx->next = NULL;
528 
529 		if (!i) {
530 			cvd[0]->residue = len;
531 		} else {
532 			prev_tx->next = tx;
533 			cvd[i]->residue = tlen;
534 		}
535 
536 		cvd[i]->parent = cvd[0];
537 
538 		/* update the src, dest, len, prev_tx for the next CVD */
539 		src += tlen;
540 		dest += tlen;
541 		len -= tlen;
542 		prev_tx = tx;
543 	}
544 
545 	return &cvd[0]->vd.tx;
546 }
547 
mtk_cqdma_free_inactive_desc(struct dma_chan * c)548 static void mtk_cqdma_free_inactive_desc(struct dma_chan *c)
549 {
550 	struct virt_dma_chan *vc = to_virt_chan(c);
551 	unsigned long flags;
552 	LIST_HEAD(head);
553 
554 	/*
555 	 * set desc_allocated, desc_submitted,
556 	 * and desc_issued as the candicates to be freed
557 	 */
558 	spin_lock_irqsave(&vc->lock, flags);
559 	list_splice_tail_init(&vc->desc_allocated, &head);
560 	list_splice_tail_init(&vc->desc_submitted, &head);
561 	list_splice_tail_init(&vc->desc_issued, &head);
562 	spin_unlock_irqrestore(&vc->lock, flags);
563 
564 	/* free descriptor lists */
565 	vchan_dma_desc_free_list(vc, &head);
566 }
567 
mtk_cqdma_free_active_desc(struct dma_chan * c)568 static void mtk_cqdma_free_active_desc(struct dma_chan *c)
569 {
570 	struct mtk_cqdma_vchan *cvc = to_cqdma_vchan(c);
571 	bool sync_needed = false;
572 	unsigned long pc_flags;
573 	unsigned long vc_flags;
574 
575 	/* acquire PC's lock first due to lock dependency in dma ISR */
576 	spin_lock_irqsave(&cvc->pc->lock, pc_flags);
577 	spin_lock_irqsave(&cvc->vc.lock, vc_flags);
578 
579 	/* synchronization is required if this VC is active */
580 	if (mtk_cqdma_is_vchan_active(cvc)) {
581 		cvc->issue_synchronize = true;
582 		sync_needed = true;
583 	}
584 
585 	spin_unlock_irqrestore(&cvc->vc.lock, vc_flags);
586 	spin_unlock_irqrestore(&cvc->pc->lock, pc_flags);
587 
588 	/* waiting for the completion of this VC */
589 	if (sync_needed)
590 		wait_for_completion(&cvc->issue_completion);
591 
592 	/* free all descriptors in list desc_completed */
593 	vchan_synchronize(&cvc->vc);
594 
595 	WARN_ONCE(!list_empty(&cvc->vc.desc_completed),
596 		  "Desc pending still in list desc_completed\n");
597 }
598 
mtk_cqdma_terminate_all(struct dma_chan * c)599 static int mtk_cqdma_terminate_all(struct dma_chan *c)
600 {
601 	/* free descriptors not processed yet by hardware */
602 	mtk_cqdma_free_inactive_desc(c);
603 
604 	/* free descriptors being processed by hardware */
605 	mtk_cqdma_free_active_desc(c);
606 
607 	return 0;
608 }
609 
mtk_cqdma_alloc_chan_resources(struct dma_chan * c)610 static int mtk_cqdma_alloc_chan_resources(struct dma_chan *c)
611 {
612 	struct mtk_cqdma_device *cqdma = to_cqdma_dev(c);
613 	struct mtk_cqdma_vchan *vc = to_cqdma_vchan(c);
614 	struct mtk_cqdma_pchan *pc = NULL;
615 	u32 i, min_refcnt = U32_MAX, refcnt;
616 	unsigned long flags;
617 
618 	/* allocate PC with the minimum refcount */
619 	for (i = 0; i < cqdma->dma_channels; ++i) {
620 		refcnt = refcount_read(&cqdma->pc[i]->refcnt);
621 		if (refcnt < min_refcnt) {
622 			pc = cqdma->pc[i];
623 			min_refcnt = refcnt;
624 		}
625 	}
626 
627 	if (!pc)
628 		return -ENOSPC;
629 
630 	spin_lock_irqsave(&pc->lock, flags);
631 
632 	if (!refcount_read(&pc->refcnt)) {
633 		/* allocate PC when the refcount is zero */
634 		mtk_cqdma_hard_reset(pc);
635 
636 		/* enable interrupt for this PC */
637 		mtk_dma_set(pc, MTK_CQDMA_INT_EN, MTK_CQDMA_INT_EN_BIT);
638 
639 		/*
640 		 * refcount_inc would complain increment on 0; use-after-free.
641 		 * Thus, we need to explicitly set it as 1 initially.
642 		 */
643 		refcount_set(&pc->refcnt, 1);
644 	} else {
645 		refcount_inc(&pc->refcnt);
646 	}
647 
648 	spin_unlock_irqrestore(&pc->lock, flags);
649 
650 	vc->pc = pc;
651 
652 	return 0;
653 }
654 
mtk_cqdma_free_chan_resources(struct dma_chan * c)655 static void mtk_cqdma_free_chan_resources(struct dma_chan *c)
656 {
657 	struct mtk_cqdma_vchan *cvc = to_cqdma_vchan(c);
658 	unsigned long flags;
659 
660 	/* free all descriptors in all lists on the VC */
661 	mtk_cqdma_terminate_all(c);
662 
663 	spin_lock_irqsave(&cvc->pc->lock, flags);
664 
665 	/* PC is not freed until there is no VC mapped to it */
666 	if (refcount_dec_and_test(&cvc->pc->refcnt)) {
667 		/* start the flush operation and stop the engine */
668 		mtk_dma_set(cvc->pc, MTK_CQDMA_FLUSH, MTK_CQDMA_FLUSH_BIT);
669 
670 		/* wait for the completion of flush operation */
671 		if (mtk_cqdma_poll_engine_done(cvc->pc, true) < 0)
672 			dev_err(cqdma2dev(to_cqdma_dev(c)), "cqdma flush timeout\n");
673 
674 		/* clear the flush bit and interrupt flag */
675 		mtk_dma_clr(cvc->pc, MTK_CQDMA_FLUSH, MTK_CQDMA_FLUSH_BIT);
676 		mtk_dma_clr(cvc->pc, MTK_CQDMA_INT_FLAG,
677 			    MTK_CQDMA_INT_FLAG_BIT);
678 
679 		/* disable interrupt for this PC */
680 		mtk_dma_clr(cvc->pc, MTK_CQDMA_INT_EN, MTK_CQDMA_INT_EN_BIT);
681 	}
682 
683 	spin_unlock_irqrestore(&cvc->pc->lock, flags);
684 }
685 
mtk_cqdma_hw_init(struct mtk_cqdma_device * cqdma)686 static int mtk_cqdma_hw_init(struct mtk_cqdma_device *cqdma)
687 {
688 	unsigned long flags;
689 	int err;
690 	u32 i;
691 
692 	pm_runtime_enable(cqdma2dev(cqdma));
693 	pm_runtime_get_sync(cqdma2dev(cqdma));
694 
695 	err = clk_prepare_enable(cqdma->clk);
696 
697 	if (err) {
698 		pm_runtime_put_sync(cqdma2dev(cqdma));
699 		pm_runtime_disable(cqdma2dev(cqdma));
700 		return err;
701 	}
702 
703 	/* reset all PCs */
704 	for (i = 0; i < cqdma->dma_channels; ++i) {
705 		spin_lock_irqsave(&cqdma->pc[i]->lock, flags);
706 		if (mtk_cqdma_hard_reset(cqdma->pc[i]) < 0) {
707 			dev_err(cqdma2dev(cqdma), "cqdma hard reset timeout\n");
708 			spin_unlock_irqrestore(&cqdma->pc[i]->lock, flags);
709 
710 			clk_disable_unprepare(cqdma->clk);
711 			pm_runtime_put_sync(cqdma2dev(cqdma));
712 			pm_runtime_disable(cqdma2dev(cqdma));
713 			return -EINVAL;
714 		}
715 		spin_unlock_irqrestore(&cqdma->pc[i]->lock, flags);
716 	}
717 
718 	return 0;
719 }
720 
mtk_cqdma_hw_deinit(struct mtk_cqdma_device * cqdma)721 static void mtk_cqdma_hw_deinit(struct mtk_cqdma_device *cqdma)
722 {
723 	unsigned long flags;
724 	u32 i;
725 
726 	/* reset all PCs */
727 	for (i = 0; i < cqdma->dma_channels; ++i) {
728 		spin_lock_irqsave(&cqdma->pc[i]->lock, flags);
729 		if (mtk_cqdma_hard_reset(cqdma->pc[i]) < 0)
730 			dev_err(cqdma2dev(cqdma), "cqdma hard reset timeout\n");
731 		spin_unlock_irqrestore(&cqdma->pc[i]->lock, flags);
732 	}
733 
734 	clk_disable_unprepare(cqdma->clk);
735 
736 	pm_runtime_put_sync(cqdma2dev(cqdma));
737 	pm_runtime_disable(cqdma2dev(cqdma));
738 }
739 
740 static const struct of_device_id mtk_cqdma_match[] = {
741 	{ .compatible = "mediatek,mt6765-cqdma" },
742 	{ /* sentinel */ }
743 };
744 MODULE_DEVICE_TABLE(of, mtk_cqdma_match);
745 
mtk_cqdma_probe(struct platform_device * pdev)746 static int mtk_cqdma_probe(struct platform_device *pdev)
747 {
748 	struct mtk_cqdma_device *cqdma;
749 	struct mtk_cqdma_vchan *vc;
750 	struct dma_device *dd;
751 	int err;
752 	u32 i;
753 
754 	cqdma = devm_kzalloc(&pdev->dev, sizeof(*cqdma), GFP_KERNEL);
755 	if (!cqdma)
756 		return -ENOMEM;
757 
758 	dd = &cqdma->ddev;
759 
760 	cqdma->clk = devm_clk_get(&pdev->dev, "cqdma");
761 	if (IS_ERR(cqdma->clk)) {
762 		dev_err(&pdev->dev, "No clock for %s\n",
763 			dev_name(&pdev->dev));
764 		return PTR_ERR(cqdma->clk);
765 	}
766 
767 	dma_cap_set(DMA_MEMCPY, dd->cap_mask);
768 
769 	dd->copy_align = MTK_CQDMA_ALIGN_SIZE;
770 	dd->device_alloc_chan_resources = mtk_cqdma_alloc_chan_resources;
771 	dd->device_free_chan_resources = mtk_cqdma_free_chan_resources;
772 	dd->device_tx_status = mtk_cqdma_tx_status;
773 	dd->device_issue_pending = mtk_cqdma_issue_pending;
774 	dd->device_prep_dma_memcpy = mtk_cqdma_prep_dma_memcpy;
775 	dd->device_terminate_all = mtk_cqdma_terminate_all;
776 	dd->src_addr_widths = MTK_CQDMA_DMA_BUSWIDTHS;
777 	dd->dst_addr_widths = MTK_CQDMA_DMA_BUSWIDTHS;
778 	dd->directions = BIT(DMA_MEM_TO_MEM);
779 	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
780 	dd->dev = &pdev->dev;
781 	INIT_LIST_HEAD(&dd->channels);
782 
783 	if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
784 						      "dma-requests",
785 						      &cqdma->dma_requests)) {
786 		dev_info(&pdev->dev,
787 			 "Using %u as missing dma-requests property\n",
788 			 MTK_CQDMA_NR_VCHANS);
789 
790 		cqdma->dma_requests = MTK_CQDMA_NR_VCHANS;
791 	}
792 
793 	if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
794 						      "dma-channels",
795 						      &cqdma->dma_channels)) {
796 		dev_info(&pdev->dev,
797 			 "Using %u as missing dma-channels property\n",
798 			 MTK_CQDMA_NR_PCHANS);
799 
800 		cqdma->dma_channels = MTK_CQDMA_NR_PCHANS;
801 	}
802 
803 	cqdma->pc = devm_kcalloc(&pdev->dev, cqdma->dma_channels,
804 				 sizeof(*cqdma->pc), GFP_KERNEL);
805 	if (!cqdma->pc)
806 		return -ENOMEM;
807 
808 	/* initialization for PCs */
809 	for (i = 0; i < cqdma->dma_channels; ++i) {
810 		cqdma->pc[i] = devm_kcalloc(&pdev->dev, 1,
811 					    sizeof(**cqdma->pc), GFP_KERNEL);
812 		if (!cqdma->pc[i])
813 			return -ENOMEM;
814 
815 		INIT_LIST_HEAD(&cqdma->pc[i]->queue);
816 		spin_lock_init(&cqdma->pc[i]->lock);
817 		refcount_set(&cqdma->pc[i]->refcnt, 0);
818 		cqdma->pc[i]->base = devm_platform_ioremap_resource(pdev, i);
819 		if (IS_ERR(cqdma->pc[i]->base))
820 			return PTR_ERR(cqdma->pc[i]->base);
821 
822 		/* allocate IRQ resource */
823 		err = platform_get_irq(pdev, i);
824 		if (err < 0)
825 			return err;
826 		cqdma->pc[i]->irq = err;
827 
828 		err = devm_request_irq(&pdev->dev, cqdma->pc[i]->irq,
829 				       mtk_cqdma_irq, 0, dev_name(&pdev->dev),
830 				       cqdma);
831 		if (err) {
832 			dev_err(&pdev->dev,
833 				"request_irq failed with err %d\n", err);
834 			return -EINVAL;
835 		}
836 	}
837 
838 	/* allocate resource for VCs */
839 	cqdma->vc = devm_kcalloc(&pdev->dev, cqdma->dma_requests,
840 				 sizeof(*cqdma->vc), GFP_KERNEL);
841 	if (!cqdma->vc)
842 		return -ENOMEM;
843 
844 	for (i = 0; i < cqdma->dma_requests; i++) {
845 		vc = &cqdma->vc[i];
846 		vc->vc.desc_free = mtk_cqdma_vdesc_free;
847 		vchan_init(&vc->vc, dd);
848 		init_completion(&vc->issue_completion);
849 	}
850 
851 	err = dma_async_device_register(dd);
852 	if (err)
853 		return err;
854 
855 	err = of_dma_controller_register(pdev->dev.of_node,
856 					 of_dma_xlate_by_chan_id, cqdma);
857 	if (err) {
858 		dev_err(&pdev->dev,
859 			"MediaTek CQDMA OF registration failed %d\n", err);
860 		goto err_unregister;
861 	}
862 
863 	err = mtk_cqdma_hw_init(cqdma);
864 	if (err) {
865 		dev_err(&pdev->dev,
866 			"MediaTek CQDMA HW initialization failed %d\n", err);
867 		goto err_unregister;
868 	}
869 
870 	platform_set_drvdata(pdev, cqdma);
871 
872 	/* initialize tasklet for each PC */
873 	for (i = 0; i < cqdma->dma_channels; ++i)
874 		tasklet_setup(&cqdma->pc[i]->tasklet, mtk_cqdma_tasklet_cb);
875 
876 	dev_info(&pdev->dev, "MediaTek CQDMA driver registered\n");
877 
878 	return 0;
879 
880 err_unregister:
881 	dma_async_device_unregister(dd);
882 
883 	return err;
884 }
885 
mtk_cqdma_remove(struct platform_device * pdev)886 static void mtk_cqdma_remove(struct platform_device *pdev)
887 {
888 	struct mtk_cqdma_device *cqdma = platform_get_drvdata(pdev);
889 	struct mtk_cqdma_vchan *vc;
890 	unsigned long flags;
891 	int i;
892 
893 	/* kill VC task */
894 	for (i = 0; i < cqdma->dma_requests; i++) {
895 		vc = &cqdma->vc[i];
896 
897 		list_del(&vc->vc.chan.device_node);
898 		tasklet_kill(&vc->vc.task);
899 	}
900 
901 	/* disable interrupt */
902 	for (i = 0; i < cqdma->dma_channels; i++) {
903 		spin_lock_irqsave(&cqdma->pc[i]->lock, flags);
904 		mtk_dma_clr(cqdma->pc[i], MTK_CQDMA_INT_EN,
905 			    MTK_CQDMA_INT_EN_BIT);
906 		spin_unlock_irqrestore(&cqdma->pc[i]->lock, flags);
907 
908 		/* Waits for any pending IRQ handlers to complete */
909 		synchronize_irq(cqdma->pc[i]->irq);
910 
911 		tasklet_kill(&cqdma->pc[i]->tasklet);
912 	}
913 
914 	/* disable hardware */
915 	mtk_cqdma_hw_deinit(cqdma);
916 
917 	dma_async_device_unregister(&cqdma->ddev);
918 	of_dma_controller_free(pdev->dev.of_node);
919 }
920 
921 static struct platform_driver mtk_cqdma_driver = {
922 	.probe = mtk_cqdma_probe,
923 	.remove = mtk_cqdma_remove,
924 	.driver = {
925 		.name           = KBUILD_MODNAME,
926 		.of_match_table = mtk_cqdma_match,
927 	},
928 };
929 module_platform_driver(mtk_cqdma_driver);
930 
931 MODULE_DESCRIPTION("MediaTek CQDMA Controller Driver");
932 MODULE_AUTHOR("Shun-Chih Yu <shun-chih.yu@mediatek.com>");
933 MODULE_LICENSE("GPL v2");
934